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Photocatalytic process involving RGO-CoFe2O4 heterostructure transformation of the 

structure from normal spinel to inverse spinel and vice versa may continuously take place via 

the electron trapping and detrapping by Fe3+ and Co2+ ions. 
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Abstract   

RGO-CoFe2O4 heterostructure nanocomposite was prepared by hydrothermal method and 

was  characterized by various analytical techniques such as Powder X-ray Diffraction method 

(PXRD), UV-visible absorbance, Photoluminescence (PL), Fourier Transform Infra Red 

(FTIR) spectroscopic techniques, BET surface area measurements, Field Emission Scanning 

Electron Microscopy (FESEM),  Raman Spectroscopy and Vibrating Sample Magnetometer 

(VSM). The results confirmed the formation of hybrid structure with CoFe2O4 particles 

embedded in RGO sheets. Photocatalytic activity of the nanocomposites was probed for the 

degradation of 4-Chlorophenol (4-CP) as the model compound under the visible light 

illumination. The photocatalytic activity decreases in the following order RGO-CoFe2O4 

>CoFe2O4 >RGO. Further the activity of RGO-CoFe2O4 composite was explored in the 

presence of peroxymonosulfate (PMS) as an oxidant. LUMO of PMS can accommodate 

photogenerated electrons, thereby suppresses the recombination process. The enhanced 

activity of RGO-CoFe2O4 hybrid is compared to its individual counterparts and the higher 

activity is accounted to its unique electronic structure. RGO serves as electron acceptor from 

CoFe2O4 and electron donor to the oxygen molecule. During the photocatalysis, 

transformation of the native structure from normal spinel to inverse spinel and vice versa may 

take place continuously from the process of electron trapping and detrapping by Fe3+ and 

Co2+ions. The observed continuous absorption for RGO-CoFe2O4 composite in the UV-

visible spectra implies active d-d transitions involving transition metals present in the 

nanocomposite. 

Keywords: CoFe2O4, Normal spinel, Inverse spinel, Reduced graphene oxide, 

Peroxymonosulfate.  

1. INTRODUCTION   
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It is of great interest to explore new materials with multifunctional properties for energy and 

environment applications. Many of the wide band gap semiconductor materials tested so far 

are found to be active only under UV light and these materials are proven to be stable in 

aqueous medium [1-8]. Thus under the best circumstances they absorb less than 10% of the 

incident solar radiant energy. There are several other metal oxide materials with smaller band 

gap like Fe2O3, Co3O4, V2O5 etc., which are good sunlight absorbers but their conduction 

band is located at considerably lower energy (0.5 eV) than the position of hydrogen redox 

potential level. In such cases the photogenerated electrons are unable to reduce H2O into H2 

without the aid of external bias. Therefore, it appears that a good way to tackle these 

problems might be to alter the properties of the materials which are already giving best 

response and to improve their efficiencies [9-13]. Spinel ferrite material with narrow band 

gap and which can absorb natural sunlight draws the attention of many researchers. Previous 

studies have shown the enhanced photocatalytic activities for some of the ferrite 

nanoparticles [14-17]. Literature shows that RGO imparts longer life for the photogenerated 

charge carriers by providing channels for the movement of electrons [18-29]. He et. al., have 

used CoFe2O4 nanoparticles and RGO-CoFe2O4 hybrid nanostructures for the degradation of 

malachite green in the water by both photocatalysis and photo-Fenton process. They show a 

remarkable increase in the rate with increase in the H2O2 concentration [31]. Chen et. al., 

have prepared RGO-CoFe2O4 composite by ball milling process and reports its efficiency for 

the degradation of methylene blue, rhodomine B and methyl orange under visible light 

irradiation [32]. Ghosh et. al., have synthesized  RGO-CoFe2O4 catalyst by in situ co-

precipitation reduction method and the catalyst is shown to have excellent microwave 

absorbing property as well as high photocatalytic activity under visible light [33]. Cao et. al., 

have prepared RGO-CoFe2O4 by solvothermal method. Their synthesis process includes 

conversion of graphite to graphene oxide by Hammers method followed by the process of 
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incorporation of Fe3+ and Co2+ions by ion exchange method. Further the product was 

subjected to solvothermal process in the presence of N2H4.H2O. They have reported good 

adsorption performance for their prepared catalyst [34]. Pu et. al., have prepared RGO-

CoFe2O4 by combustion method and the higher performance of their catalyst is attributed to 

the efficient transfer of photogenerated electrons from CoFe2O4 to graphene sheets [35]. 

CoFe2O4 is a mixed metal oxide having spinel structure with Fe3+ ions in the octahedral sites. 

The spinels have general formula AB2O4 where, A can be group IIA metal ion or a transition 

metal ion in +2 oxidation state and B can be a group IIIA metal ion or a transition metal ion 

in +3 oxidation state. The oxide ions form close packed cubic lattice with 8 tetrahedral holes 

and 4 octahedral holes per AB2O4 unit. Although, pure CoFe2O4 itself is photocatalytically 

active under visible light irradiation, it is further possible to improve the photocatalytic 

efficiency by coupling it with Reduced Graphene Oxide (RGO). RGO coupled with CoFe2O4 

composite is expected to show excellent performance both under UV and visible light. Such 

heterostructure systems show high specificity in the reaction mechanism in addition to its 

higher performance under the visible light irradiation. In the present research CoFe2O4 and 

RGO-CoFe2O4 composite were prepared by simple one step hydrothermal method. Further an 

attempt is made to provide a new physical insight on the charge carrier dynamics based on 

the electronic configuration of Co2+ and Fe3+ metal ions, especially the mechanism of charge 

carrier generation, trapping, interfacial charge transfer and recombination process. Although, 

the literature shows enhanced activity for RGO-CoFe2O4, we have shown that the activity of 

this material is a complex function of several physico-chemical and electronic properties. The 

individual contribution of each metal oxide in the composite to the overall efficiency is 

explored. It is promising multi-functional material for both environmental remediation and 

energy conversion. Its activity is further explored in the presence of Peroxymonosulphate 

(PMS), an electron acceptor commonly known as oxone. 
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 2. EXPERIMENTAL SECTION   

 2.1. Materials  

Graphene oxide, concentrated sulfuric acid (98%), peroxymonosulphate (PMS), hydrochloric 

acid, sodium hydroxide, absolute ethanol, Fe(NO3)3.9H2O, Co(NO3)2.6H2O and 4-

chlorophenol were of analytical grade reagents and they were provided by Sigma Aldrich. All 

the reagents were used without further purification. Double distilled water was used for all 

the experiments. 

2.2. Method of preparation of catalysts. 

Cobalt ferrite (CoFe2O4) was prepared by hydrothermal method. 0.0662 g of Co(NO3)2.6H2O 

and 0.1837 g of Fe(NO3)3.9H2O were dissolved in 20 mL of absolute ethanol by stirring the 

solution  for 30 min. Further, the pH of the  reaction solution was adjusted to 10 by using 6 M 

NaOH solution and the stirring of reaction mixture was continued for 30 min. The above 

reaction mixture was transferred to a teflon-lined autoclave and kept at 180o C in a furnace 

for 6 h. The precipitate obtained from this hydrothermal method was filtered and washed with 

distilled water for several times and then finally with absolute ethanol. The precipitate was 

dried at 600 C in an oven to obtain CoFe2O4 

Exfoliated graphene oxide (XGO) was prepared by taking 1.0 g of graphene oxide (GO) 

dispersed in 500 mL of distilled water and was subjected to ultrasonication for 2 hr. This 

suspension was further centrifuged for the removal of any unexfoliated GO. The residue was 

dried at 450 C for 24 h to obtain XGO. 

Reduced graphene oxide (RGO) was synthesised by taking 0.4 g of XGO dispersed in 800 

mL of distilled water by continues stirring and heating at 950 C for 12 hrs. The obtained RGO 

solid was dried at 60o C. 

RGO–CoFe2O4 composite was synthesized by hydrothermal method according to the method 

suggested by Fu et al., [36]. 0.3 g of RGO was dispersed in 60 mL of absolute ethanol and 
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was subjected to sonication for 1 h. As mentioned previously a solution was made by taking 

0.0662 g of Co(NO3)2.6H2O and 0.1837 g of Fe(NO3)3.9H2O  in  20 mL of absolute ethanol. 

The above two solutions were mixed together and stirred for 30 min. The pH of the solution 

was adjusted to 10 with 6 M NaOH solution and resulting mixture is further continuously 

stirred for 30 min, which yields a stable bottle-green homogeneous suspension. The resultant 

mixture was subjected to hydrothermal treatment by transferring it to a 100 mL teflon-lined 

stainless steel autoclave which was heated at 1800 C for 20 h. Finally, the obtained precipitate 

was filtered, washed with distilled water several times and finally with absolute ethanol. This 

RGO–CoFe2O4 precipitate was dried in an oven at 600 C.  

2.3. Characterization techniques  

The crystal structures of RGO, CoFe2O4 and RGO-CoFe2O4 catalysts were investigated by 

using Bruker D8-Adavnace Powder X-ray diffractometer (PXRD) with Cu Kα (λ=1.541 Å) 

as source with accelerating voltage and current of 40 kV and 40 mA respectively. FTIR 

spectra were recorded on Perkin-Elmer spectrophotometer with a resolution of 4cm-1 in 

transition mode at room temperature using KBr pellets. The morphology of the materials 

were characterized by FESEM (Zeiss Neon 40EsB FIBSEM) equipped with EDS. The 

surface area, pore volume and pore size distribution of all the samples were determined by N2 

adsorption technique using Autosorb Quantachrome Corp Instrument at -196o C. All the 

samples were degassed at 1000 C for 4 h prior to the adsorption experiments. The values of 

surface area, pore diameter and pore volume were obtained by using Brunauer-Emmett-Teller 

(BET) equation. The pore size distribution was obtained by the Barrett-Joyner-Halenda (BJH) 

method.  Magnetic measurements were made using a Vibrating Sample Magnetometer 

(VSM) (Lake Shore 7410, Lake Shore Cryotronics, Inc., USA) at 25º C ± 2º C. Raman 

spectra of the samples were recorded at 633 nm laser excitation by using a DXR Raman 

Spectrophotometer (Thermo Fisher Scientific, USA). UV-visible absorbance spectra (UV-
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Vis-DRS) were recorded in the wavelength range of 200 to 800 nm using a SPECORD 210 

Plus spectrometer (Analytik Jena, Germany). 

The photocurrent measurements were made under UV light irradiation using an 

electrochemical analyzer (CH Instruments) in a standard three-electrode system. The 

electrochemical cell consists of platinum electrodes as anode and cathode (having an active 

surface area of ca. 0.5 cm2) in an electrolyte (0.1 M Na2SO4) suspension containing catalyst 

particles along with Ag/AgCl (saturated with KCl) reference electrode. 125 W medium 

pressure mercury vapour lamp was used as the UV light source. The photon flux of the UV 

light source was determined by ferrioxalate actinometry and was found to be 6.95 mW/cm2. 

The emission wavelength was in the range of 350-400 nm with the λ max around 370 nm. The 

irradiation was carried out by focusing the light directly into the reaction mixture in the open 

air condition at a distance of 29 cm.  

 

2.4. Photochemical reactor  

Experiments were carried out at room temperature using a circular glass reactor whose 

surface area is 176.6 cm2. All the experiments were performed using double distilled water. 

Solar light experiments were performed under direct sunlight between 11 a.m. to 2 p.m. when 

the fluctuations in the solar light intensity was minimum. The experiments were conducted at 

Bangalore, India. The latitude and longitude are 12.58 N and 77.38 E respectively. The 

temperature of the reaction mixture was found to be around 28-300 C. The average solar 

intensity was found to be 0.753 kW/m2 (using solar radiometer). The intensity of the solar 

light was concentrated by using a convex lens and the reaction mixture was directly exposed 

to this concentrated sunlight. The solar radiation as a function of wavelength was measured 

by photometer, which shows a maximum at 450 nm. To compare the photocatalytic activity 

of the catalysts, experiments were simultaneously conducted to minimize the error arising 
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due to the fluctuations in solar intensity.  Further each experiment was repeated three times to 

find the consecutive values. Typical experiment contains 0.1 g of photocatalyst 

s(RGO/CoFe2O4/RGO-CoFe2O4) dispersed in 250 mL of 10 ppm 4-CP solution. The reaction 

mixture was stirred continuously using magnetic stirrer for entire time span of the 

experiment. During photochemical reaction process, a 5 mL aliquot sample were collected 

from the reaction suspension at definite time intervals and was subjected to centrifugation 

followed by filtration (through 0.4 μm millopore) to remove the catalyst particles for 

spectrophotometric analysis. Prior to irradiation, the reaction mixture was stirred for 30 min 

to ensure the establishment of adsorption/ desorption equilibrium (Fig.S2-S4). A plot of 

absorbance values against known concentration of 4-CP is plotted and this standard 

calibration curve is used for finding the unknown concentration. The extent of adsorption was 

calculated from the equation; Q = ( C0–C )V / W , where Q is the extent of adsorption, C0 and 

C are the concentrations (mg/L) before and after adsorption, V is the volume (L) of the 

reaction mixture and W is the amount of catalyst used (g). The unit of Q is mg g −1. The 

residual concentration of 4-CP was determined by UV-vis spectrophotometer (Table. S5).  

 

 

 

3. RESULTS and DISCUSSION 

3.1. PXRD studies  

The PXRD pattern of RGO, CoFe2O4 and RGO-CoFe2O4 nanocomposite are shown in the 

Figure.1. PXRD pattern of RGO shows 2θ  peaks at 26o (002), 45o (004) and 55 o (101) 

(JCPDS 41-1487). CoFe2O4 2θ  peaks appear at 30o (220), 36o (311), 37o (222), 43o (400), 55o 

(422), 57o (511), 63o (440), 71o (622) and 75o (533) (JCPDS 22-1086). RGO-CoFe2O4 

nanocomposite shows 2θ  peaks at 26.52o (002*), 30o (220), 36o (311), 43o (400), 45o (004*), 
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55o(422), 57o (511), 63o (440) and 75o (533). The hkl values are mentioned in the parenthesis. 

The PXRD results are consistent with the mentioned JCPDS standard pattern. The 

results obtained confirm the spinel crystal structure for CoFe2O4 and hexagonal structure for 

RGO. These native structures were well retained in the RGO-CoFe2O4 composite. The 

crystallite sizes were calculated by Debye-Scherer equation and were found to be 56.21 nm 

and 32.63 nm for CoFe2O4 and RGO-CoFe2O4 respectively. It is observed that the RGO in 

the RGO-CoFe2O4 nanocomposite was fully exfoliated and does not allow the crystal growth 

of CoFe2O4 nanoparticles between its interlayer sheets. The presence of RGO  peaks along 

with the peaks corresponding to the CoFe2O4 in the PXRD pattern of RGO-CoFe2O4 

nanocomposite catalyst indicate the absence of any structural change due to the exfoliation 

[37]. 

3.2. UV- visible spectroscopic studies  

The optical characteristics of RGO, CoFe2O4 and RGO-CoFe2O4 were obtained from UV-

visible absorption spectra as shown in Figure 2. The RGO exhibits a characteristic absorption 

peak around 250-300 nm corresponding to E2 and B bands of π−π* transition of aromatic 

C=C bonds and the conjugation extends the absorption to the visible region. CoFe2O4 and 

RGO-CoFe2O4 shows continuous wide absorption in the wavelength range from UV to 

visible light region. The band gap values were determined from these spectra by converting 

the absolute absorption values to Kubelka-Munk function F (R∞). The plot of Kubelka-Munk 

function [F(R∞)hv]1/2 versus photon energy in electron volts (eV) gives the band gap energy 

values as shown in the inset of Figure.2 and  the values were found to be 3.2 eV, 2.5 eV and 

2.1eV for RGO, CoFe2O4 and RGO-CoFe2O4 respectively. The reduction of band gap of 

RGO-CoFe2O4 composite can be accounted in the following way: i) the major contribution is 

from the presence of RGO with its π electron system in the composite ; ii) the electrostatic 

binding between RGO and CoFe2O4 may bring about mixing up of energy levels of both the 
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materials;  iii) delocalization of π electrons in the extensive RGO system; iv) charge transfer 

interaction between RGO and CoFe2O4 may shift the band edge positions in such a way that 

the band gap decreases. The broad absorption between 400-750 nm is attributed to the d-d 

transitions of Co2+ / Co3+ and Fe2+ / Fe3+. Octahedral cobalt (II) compounds are expected to 

show an absorption peak between 400-600 nm and tetrahedral compounds show between 

600-800 nm. The visible transitions are generally about an order of magnitude more intense 

and displaced to lower energy for tetrahedral compounds compared to octahedral systems. 

Because of small stability difference between octahedral and tetrahedral cobalt (II) 

compounds, both the types are usually expected to be present in equilibrium. Further iron (II) 

/ (III) compounds are expected to show absorption between 400-1000 nm. But the actual 

observed spectra show continues absorption without any specific peaks due to the overlap of 

these absorption bands.   

3.3. FTIR studies   

The FTIR spectra of RGO, CoFe2O4 and RGO-CoFe2O4 are shown in Figure.3. The 

characteristic transmittance peak of spinel structure of CoFe2O4 was observed at 556 cm−1. 

The absence of epoxy (1050 cm-1), carboxylic C=O and OH (1720 and 1620 cm-1) functional 

groups in the spectra confirms the complete reduction of GO to RGO. The presence of peak 

at 548 cm−1 in RGO-CoFe2O4 spectrum confirms the uniform distribution of cobalt ferrite 

spherical particles in the RGO layers. The observed small variation in the band position is 

due to the change in the chemical environment of Fe- O bond in the composite. 

3.4. Raman spectroscopy  

Raman spectroscopy is a powerful tool for investigating the electronic and phonon structure 

in pristine and coupled materials. The Raman spectra of RGO, CoFe2O4 and RGO-

CoFe2O4 are shown in Figure.4. The GO is expected to show D and G bands at 1362 cm-1 and 

1599 cm-1. However these bands are slightly shifted on reduction of GO to RGO. The 
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observed band at 1360 cm-1 was due to the disordered sp2 carbon and is termed as D band. 

The band at 1583 cm-1 was for well ordered RGO carbon (G band) [38]. The peaks observed 

at lower frequency values of 288 cm-1 and 477 cm-1 were due to the phonon modes of metal 

ions involved in octahedral groups (BO6). These modes correspond to symmetric and 

antisymmetric bending modes of oxygen atom in metal-oxygen (M-O) bond at octahedral 

groups [39, 40]. The band at 700 cm-1 is of A1g which arises due to the motions of oxygen 

atoms in tetrahedral structure of AO4 type.  There are many factors affecting the position and 

intensity of D and G bands such as defects, accompanied strain in coupling and doping etc., 

The observed Raman shifts in RGO-CoFe2O4 implies strong chemical interaction between 

RGO and CoFe2O4 nanocomposites.  The intensities of all the RGO-CoFe2O4 peaks were 

significantly lower compared to CoFe2O4. This is due to the homogeneous wrapping of 

CoFe2O4 surface by RGO sheets. 

3.5. Magnetic Property 

Figure.5 shows the plot of extent of magnetization versus magnetic field strength for 

CoFe2O4 and RGO-CoFe2O4 samples at room temperature. The experimentally observed 

coercivity and saturation magnetization values from the hysteresis loop were found to be 

1384 Oe and 56.71 emu/g for RGO–CoFe2O4 composite and 809 Oe and 14.08 emu/g for 

CoFe2O4.  The above observed higher values for RGO-CoFe2O4 nanocomposite implies 

stronger extent of magnetization compared to CoFe2O4. Hence, RGO–CoFe2O4 composite 

particles can be more efficiently separated due its high magnetization values compared to 

CoFe2O4. The increase in the extent of saturation magnetization is directly related to the 

coupling of RGO with CoFe2O4, which affects the super exchange interaction.  

3.6. BET surface measurements 

The specific surface area and pore volume of CoFe2O4 and RGO−CoFe2O4 samples were 

determined by BET method (Figure 6a and b). The pore size distribution was obtained from 
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BJH method and was found to be 2.2-6.4 nm and 1.3-6 nm for RGO−CoFe2O4 and CoFe2O4 

samples respectively. Specific surface area and total pore volume were found to be 25.18 m2 

g−1 and 0.022 ccg−1 for RGO−CoFe2O4 and 6.202 m2 g−1 and 0.0031 ccg−1 for CoFe2O4 

respectively. These values are relatively large for RGO−CoFe2O4 sample compared to pure 

CoFe2O4 due to the random packing of CoFe2O4 nanoparticles between RGO sheets. It is 

well-known from the literature that the reported specific surface area of RGO is as high as 

2630 m2 g−1 [41]. However, the specific surface area of the RGO−CoFe2O4 is much lower 

than the RGO due to the dispersion of CoFe2O4 nanoparticles on its surface.  

3.7. FESEM images 

The morphology of RGO, CoFe2O4 and RGO-CoFe2O4 were recorded by using FESEM. The 

morphology of RGO was found to be layered sheet like structure (Figure.7a). Morphology of 

CoFe2O4 was found to be spherical (Figure.7b). RGO-CoFe2O4 nanocomposite shows the 

distribution of CoFe2O4 spheres in between RGO layers. In addition the figure also depicts 

the aggregation of CoFe2O4 spheres which is because of the magnetic dipolar interaction 

among them. Average particle size of RGO-CoFe2O4 was found to be 28-67 nm. The 

composition of the samples was confirmed by EDS technique as shown in the Figure 8. The 

presence of Fe, Co, C, and O were confirmed. The atomic ratio of Fe to Co was found to be 

2:1.  

3.8. Photoluminescence spectra (PL)   

The charge transfer and recombination processes of the photogenerated electron-hole pairs 

are studied by PL technique for RGO, CoFe2O4 and RGO-CoFe2O4 samples. RGO shows PL 

emission at 520 nm due to the recombination reactions occurring in the framework of 

extended conjugation. CoFe2O4 sample shows PL emissions at 270 and 480 nm as shown in 

the Figure.9.  The valence band of CoFe2O4 is formed by oxygen 2p levels and the 

conduction band is from 3d levels of iron. The cobalt 3d levels are located much higher than 
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conduction band edge. The peak at 270 nm should be because of the recombination reactions 

involving cobalt 3d levels, whereas the peak at 480 nm is due to the recombination reactions 

taking place between the valence band and conduction band. The oxidation of Co (II) to Co 

(III) results in change from high to low spin and it takes place in two steps. The first step 

being rearrangement of electrons in low spin state and second step will be removal of eg 

electron to generate Co (III).      2 5 2 2 6 1 3 6 0

2g 2g 2gCo t eg Co t eg Co t eg   
. 

The PL 

emission of RGO-CoFe2O4 sample was observed between 650-800 nm. The peak which was 

observed at 270 nm for CoFe2O4 is completely diminished in the case of RGO-CoFe2O4. The 

only recombination reaction occurring in the RGO-CoFe2O4 composite is in the extended 

conjugation of RGO framework. 

3.9 Photoelectrochemical studies  

The transient photocurrent response was recorded upon excitation of pure RGO, CoFe2O4 and 

RGO-CoFe2O4 dispersion in aqueous solution of sodium sulphate electrolyte under UV- light 

(Figure10). The photocurrent response was reproducible during the repeated on/off cycles 

under UV light irradiation. The photocurrent of the RGO-CoFe2O4 sample (7.31 μA) was 

about 2 times higher than that of the CoFe2O4 sample (3.26 μA), and 4 times higher than the 

RGO sample (1.87 μA). This indicates enhanced separation efficiency of photogenerated 

electrons and holes as a result of the electronic interaction between CoFe2O4 nanoparticles 

and RGO sheets. The photogenerated charge transfer process is more efficient under the 

influence of applied electric field for RGO-CoFe2O4. This may be because of unique 

transport properties of photogenrated charge carriers which behave as mass less fermions in 

two-dimensional π -conjugation structure of RGO in the nanocomposite system [42].  

 

3.9. Photocatalytic activities of RGO, CoFe2O4 and RGO-CoFe2O4 
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Photocatalytic activities of RGO, CoFe2O4, RGO−CoFe2O4 catalysts for the oxidation of 4-

CP was explored under visible light illumination (Figure.11 and Table 1). 250 ml of 10 ppm 

4-CP solution was completely degraded in 120 min in the presence of RGO−CoFe2O4, 

whereas 73% of degradation takes place with CoFe2O4 in 150 min. In the case of RGO, 50% 

of degradation takes place in 180 min. The significant enhancement in the photocatalytic 

activity of RGO-CoFe2O4 can be attributed to the remarkable synergistic effect between the 

photocatalyst CoFe2O4 and the extended conjugation of RGO samples. Efficient separation of 

photogenerated charge carriers takes place due to the presence of RGO. Such an enhancement 

in catalytic activity is due to the unique π-π  stacking electronic structure of RGO and high 

migration efficiency of electrons in its framework.  

For calculating the rate constant a plot of ln(C/Co) versus time is plotted, where C0 and C is 

the initial concentration and concentration at time t respectively. The rate constant k is 

calculated from the slopes of the fitted straight lines [43]. The experimental data obtained fit 

well with the pseudo first order reaction kinetics (ln(C/Co) = −kt ). 

3.10. Effect of PMS as an oxidant 

The effect of electron scavenging species on the degradation mechanism was studied by 

taking PMS, which acts as an oxidant. The concentration of PMS was varied from 20-80 ppm 

while keeping the dosage of RGO-CoFe2O4 as constant and the obtained results are shown in 

Figure.12 and Table 2. The degradation reaction rate increased sequentially up to 60 ppm.  

The degradation rate decreased with further increase in the PMS concentration. At higher 

PMS concentration excess SO4
• − and •OH free radicals are formed which may recombine in 

the bulk of the solution by geminate recombination [44]. Further, increasing the PMS 

concentration at constant catalyst dosage, excessive -

5HSO  ions may scavenge 4SO 
 and 

•OH free radicals in the solution leading to the formation of less reactive 
5SO  radical as 
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shown in equation 1. Therefore, the increment of degradation rate with oxidant dosage is 

linear up to optimum concentration, further increase in the dosage leads to deviation from the 

linearity. 

- 2 + -
45 5 4HSO + SO / OH  SO SO + H /OH (1)    

 

The control experiments were performed for RGO and CoFe2O4 photocatalysts by taking 60 

ppm PMS solution. 20% decomposition takes place with RGO in 150 min and 45% 

degradation takes place with CoFe2O4 in 120 min. 

3.11. Effect of RGO-CoFe2O4 catalyst dosage  

Keeping the oxidant dosage constant as 60 ppm, the dosage of RGO-CoFe2O4 was varied 

from 0.1-0.25 g. Generally, it is expected that as the concentration of the catalyst is increased 

the rate of the degradation should also increase due to the increase in the number of active 

sites to generate more functional free radicals. The enhancement in the degradation rate was 

observed up to 0.2 g. Further increase in the catalyst dosage to 0.25 g the rate of the reaction 

was suppressed to certain extent (Figure.13 and Table 3). The adverse effect observed for 

high amounts of catalyst can also be endorsed to the difficulty of photons reaching each 

catalyst particle in the aqueous reaction suspension. Further the electron scavenging effect by 

the free radicals generated from the catalyst particles can dominate at higher concentrations 

as shown in the following equations:  

2-
42 4 2 4 4

2+ 3+ 2-
4 4

3+ -• • 2
4 4

CoFe O -RGO (e) SO / OH CoFe O -RGO ( ) SO / OH (2)

Co +  SO / OH Co + SO / OH (3)

Fe + SO / OH FeSO / [Fe(OH) ] (4)

h   

  



  





 

3.12. Effect of initial concentration of substrate 4-CP 

The reaction conditions were further standardised for the concentration of the substrate 4-CP 

by maintaining the constant concentration of RGO-CoFe2O4 catalyst (0.2 g ) and PMS (60 

ppm). Initial 4-CP concentration was varied from 10-40 ppm by maintaining the optimum 



16 
 

reaction parameters. The maximum concentration of 4-CP which can be efficiently degraded 

for the reaction conditions mentioned above  has been found to be 30 ppm and the 

degradation takes place within 60min (Figure 14 and Table 4). With further increase in the 

concentration of 4-CP to 40 ppm the rate of degradation decreased. The number of active 

sites on the catalyst surface and reactive free radicals like 4SO 
and •OH were quite 

sufficient for the degradation of 30 ppm concentration, but were found to be less for 40 ppm 

4-CP concentration.  

3.13. Discussion of RGO-CoFe2O4 photocatalytic reaction mechanism  

 Equation 5 shows the electron-hole pair generation in the RGO-CoFe2O4 composite under 

solar light illumination and the intramolecular charge transfer is depicted. The electrons 

moves into the RGO framework and the holes moves towards the catalyst- solution interface. 

More clearly the photogenerated electrons can migrate from the conduction band of CoFe2O4 

to RGO extended framework within the nanocomposite and holes can migrate to the solution 

interface. The photogenerated electrons from RGO framework are easily trapped by the 

molecular oxygen to generate super oxide radical. Alternatively conduction band electrons 

can even be trapped by oxygen molecules directly. The hole at the interface can react with 

OH-/H2O to produce .OH free radicals as shown in the equation 5-7.  

                                                                                                                      (5)       

                                                                                                                                                        

- + + •-

2 4 2 2 4 2

+ - •

2 4 2 2 4

- + - • •-

2 4 5 2 4 4

•- - •

4 2 4

RGO(e ) CoFe O (h ) + O RGO CoFe O (h ) O (6)

RGO CoFe O (h ) + OH / H O RGO CoFe O OH (7)

RGO(e ) CoFe O (h ) + HSO RGO CoFe O OH SO (8)

SO H O HSO OH (9)

   

   

    

  
  

5

- .- -

4

2 3Co + HSO Co + SO + OH (10) 
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5

5

3 2

2 3

4

3 2 2

4

Fe Fe (11)

-Fe HSO Fe SO OH (12)

-Fe HSO Fe SO OH (13)

e 

  

  

 

   

   

.

 

Various reaction mechanism/ pathways are involved in the degradation reaction mechanism: 

(i) the reaction rate was increased in the presence of PMS (H-O-O-SO3) which acts as an 

oxidant (Eq. 8-9).  PMS possess unsymmetrical structure, the SO3 group in it can attract 

electrons and this end of O-O bond is negatively charged and hydrogen side is positively 

charged. The presence of PMS in a photocatalytic reaction is beneficial especially due to its 

unsymmetrical structure and dipolar nature of the molecule which posses lower unoccupied 

molecular orbital (LUMO) energy levels. The PMS molecule with unoccupied LUMO energy 

levels can readily accommodate photogenerated electrons more efficiently and shows better 

oxidising reactions; (ii) Co2+ ion in RGO-CoFe2O4 composite can easily bond with oxygen 

molecule by giving an electron. The resultant products can be Co3+ ion and super oxide 

radical. This activated super oxide radical can oxidise the organic substrate molecule. 

Simultaneously the reduction reaction involving super oxide radical can lead to the formation 

of H2O2. Both oxidation and reduction mechanisms are beneficial for the catalytic 

degradation reaction; (iii) transition metal ions are well known to attain multiple oxidation 

states. Cobalt and iron can be either in +2 or +3 oxidation state. The molecular formula of 

cobalt ferrite can be represented in two different ways: a) Co[Fe2]O4 in which case Fe3+ ions 

are present in the octahedral interstices, b)  Fe2+ [Co3+ Fe3+]O4,  in this case half of the iron 

ions are in +2 oxidation state and remaining in +3 oxidation state. Cobalt is also present in +3 

oxidation state. Further Fe2+ ions can occupy tetrahedral interstices and Co3+ ions are in 

octahedral interstices along with other half of Fe3+ ions. In the first case the preferential 

adopted structure can be spinel and in the second case the adopted structure is inverse spinel. 

The electron detrapping/trapping by either Co2+ ions or by Fe3+ ions (as shown in equations 
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10-13) will result in either spinel or inverse spinel structure. The transformation between the 

two structures may continuously take place during the photochemical reaction; (iv) Further 

iron can exist in +3 stable oxidation state having half filled 3d5 electronic configuration and 

cobalt can exist in +2 stable oxidation state corresponding to the electronic configuration of 

3d7. The photogenerated electron trapped by either Fe3+ or by Co2+ ions changes this stable 

electronic configuration and the ions will spontaneously attain the stable state by either 

trapping/detrapping the electron during the photochemical reactions; (v) the recombination 

process occurring at 270 nm for CoFe2O4 is extensively quenched in RGO-CoFe2O4 due to 

the extended π  - π  conjugated framework as described in the PL technique; (vi) The higher 

magnitude of observed photocurrent  for RGO-CoFe2O4 composite further substantiates the 

fact that efficient charge carrier separation takes place. The magnitude of photocurrent 

remains constant for several on and off cycles which exhibits good reproducibility. The 

magnitude of the photocurrent generated is two and four times higher than its counterparts 

due to the contribution of migrated electrons in RGO framework and also from the electrons 

generated in the conduction band of RGO-CoFe2O4 composite.  

3.14. Reusability of the RGO-CoFe2O4 catalyst 

The results of three consecutive experiments performed are given in Figure.15 and Table.5 

The duration for completing the degradation reaction for first experiment was 120 min. At the 

end of the each experiment the catalyst was separated and then washed thrice with deionized 

water. The extent of degradation was found to be 80% and 65% for second and third 

repetitive cycles for the same time period of 120 min. The catalytic activity was retained for 

consecutive cycles and these findings show that the RGO-CoFe2O4 catalyst is stable, 

recoverable, and reusable. 

4. Conclusion 
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The PXRD results of RGO-CoFe2O4 confirm the spinel structure and EDS results confirms 

the composition. The UV-visible absorption spectroscopic technique shows continuous 

absorption in visible region due to the overlap of many absorption bands and confirms the 

band gap to be 2.1 eV. FTIR spectrum confirms the spinel structure of CoFe2O4 and RGO-

CoFe2O4. The observed Raman shifts for RGO-CoFe2O4 implies the strong chemical 

interaction between RGO and CoFe2O4. The higher saturation magnetization value of RGO-

CoFe2O4 shows that these catalyst particles can also be separated efficiently by magnetization 

method. Lower PL intensity for RGO-CoFe2O4 implies lower recombination rate. 

Photocurrent measurement shows the efficient photogenerated charge carrier separation for 

RGO-CoFe2O4 and the catalyst can be used efficiently in an electrochemical system for 

energy and environmental applications. The photogenerated electron trapped by either Fe3+ or 

by Co2+ ions changes the stable electronic configuration and the ions will spontaneously 

attain the stable state by either trapping/detrapping the electron during the photochemical 

reactions. 
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Figure.1. PXRD pattern of a) RGO b) CoFe2O4   c) RGO-CoFe2O4 
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Figure.2. UV-Visible absorbance spectra of a) RGO b) CoFe2O4 c) RGO-CoFe2O4. The inset 

figure shows Kubelka-munk plots. 
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Figure.3. FTIR spectra of a) RGO b) CoFe2O4 c) RGO-CoFe2O4 
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Figure.4. Raman spectra of a) RGO b) CoFe2O4   c) RGO-CoFe2O4  
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Figure.5. Magnetic hysteresis loops of a) CoFe2O4 and b) RGO-CoFe2O4 
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Figure.6. The N2 adsorption–desorption isotherms of a) CoFe2O4 b) RGO-CoFe2O4. Inset 

figure shows BJH pore size distribution curve. 
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Figure.7. FESEM images of a) RGO b) CoFe2O4  c) RGO- CoFe2O4 

 

 

  

Figure.8. EDS of a) RGO b) CoFe2O4 c) RGO-CoFe2O4  
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Figure.9. PL spectra of a) RGO b) CoFe2O4 c) RGO-CoFe2O4 
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Figure.10. Transient photocurrent responses of a) RGO b) CoFe2O4 c) RGO-CoFe2O4  
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Figure.11: Plot of C/Co vs. time in minutes for the degradation of 4-CP (10 ppm) along with 

0.1 g of catalyst. 
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Figure.12: Plot of C/Co vs. time in minutes for the degradation of 10 ppm 4-CP along with 

0.1 g of catalyst at different PMS concentration. The inset shows the extent of 4-CP 

degradation with RGO, CoFe2O4 and RGO-CoFe2O4 photocatalysts along with 60 ppm PMS 

as oxidant. 
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Figure 13: Plot of C/Co vs. time in minutes for the degradation of 4-CP (10 ppm) along with 

60 ppm PMS at different RGO-CoFe2O4 dosage 
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Figure14: Plot of C/Co vs. time in minutes for the degradation of 4-CP along with PMS (60 

ppm) and 0.2 g of RGO-CoFe2O4 at different 4-CP concentration  
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Figure.15: Reusability of RGO-CoFe2O4 (0.1 g) along with 250 ml of 4-CP (10 ppm) 

solution for three repeated cycles. 
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                                                                 Tables  

 

Table.1. Rate constant and correlation coefficient values for the degradation of 4-CP along 

with degradation times (catalysts dosage =  0.1 g, 4-CP concentration = 10ppm) 

 

 

 

Table.2. Degradation time, rate constant and correlation coefficient values for the 

degradation of 4-CP at different PMS concentration (catalysts dosage = 0.1 g RGO-CoFe2O4; 

4-CP concentration = 10ppm) 

 

Photocatalyst Rate constant x 10-2  min-1 Degradation 

time (min) 

Correlation 

coefficient (R2) 

RGO 0.7828 180 0.9930 

CoFe2O4 1.1327 150 0.9852 

RGO-CoFe2O4 3.3431 120 0.9462 

PMS 

Concentration 

(ppm) 

Rate constant x 10-2  min-1 Degradation 

time (min) 

Correlation 

coefficient (R2) 

20 1.605 105 0.9943 

40 3.889 90 0.9828 

60 6.910 60 0.9884 

80 1.763 105 0.9677 

60 + RGO 0.866 150 0.9758 

60+ CoFe2O4 1.365 120 0.9907 
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Table.3. Degradation time and rate constant values for the degradation of 4-CP at different 

catalyst dosages ( 4-CP concentration = 10 ppm and PMS concentration = 60 ppm ) 

 

 

 

 

Table.4. Degradation time, rate constant and correlation coefficient values for the 

degradation of 4-CP at different concentrations (RGO-CoFe2O4= 0.2 g and PMS 

concentration = 60 ppm)  

 

 

Table.5. Degradation time, rate constant and correlation coefficient values for the 

degradation of 4-CP for three consecutive repeated cycles (RGO-CoFe2O4 = 0.1 g and 4-CP 

concentration = 10ppm) 

 

RGO-CoFe2O4 

dosage (g) 

Rate constant x 10-2  min-1 Degradation 

time (min) 

Correlation 

coefficient (R2) 

0.1  2.9742 75 0.9388 

0.15  4.8587 60 0.9929 

0.2  8.5821 45 0.9871 

0.25  4.4750 60 0.9995 

4-CP 

concentration 

(ppm) 

Rate constant x 10-2  min-1 Degradation 

time (min) 

Correlation 

coefficient (R2) 

10 2.9424 75 0.9941 

20 5.2491 90 0.9867 

30 11.0337 60 0.9639 

40 4.8308 75 0.9717 

Cycles Rate constant x 10-2  min-1 Degradation 

time (min) 

Correlation 

coefficient (R2) 

1 cycle 2.4253 120 0.8914 

2 cycle 1.6854 120 0.9297 

3cycle 1.2446 120 0.9387 


