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Abstract

Let C3(n) denote the number of cubic partitions of n with 3-cores. In this paper, we establish

the arithmetic properties and formulas for C3(n) by employing Bailey’s 6ψ6 formula and theta

function identities.
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1. Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers whose sum

is n, i.e.,

n = λ1 + λ2 + λ3 + · · ·+ λk,

where λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λk ≥ 1.

For example, 7 = 3 + 2 + 1 + 1 and λ = (3, 2, 1, 1) is a partition of 7. Let t ≥ 1 be a positive

integer. Any partition λ of n whose Ferrers graph have no hook numbers divisible by t is known

as a t-core partition of n. We denote the number of t-core partitions of n by ct(n). Garvan et

al. [6, Eq. (2.1)] showed that the generating function for ct(n) is

∞∑
n=0

ct(n)q
n =

f t
t

f1
. (1)

Throughout this paper, we use

ft := (qt; qk)∞, if t = k,
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ft;k := (qt; qk)∞, if t �= k,

(a; q)∞ :=

∞∏
i=0

(1− aqi),

and

(a; q)n :=
(a; q)∞

(aqn; q)∞
(−∞ < n < ∞).

For convenience, we use customary notation

fa1,a2,...,an;k := fa1;kfa2;k . . . fan;k.

Using the theory of modular forms, Granville and Ono [7] proved that

c3(n) = d1,3(3n+ 1)− d2,3(3n+ 1), (2)

where dr,3(n) denote the number of positive divisors of n congruent to r modulo 3. Hirschhorn

and Sellers [9] gave an elementary proof of (2).

Let u(n) denote the number of representations of a nonnegative integer n in the form x2+3y2

with x, y ∈ Z. Using the Ramanujan’s theta function identities, Baruah and Nath [2] proved

that u(12n+ 4) = 6c3(n) and then (2) with the help of classical Lorentz identity.

If the sum of all parts of the partition k-tuple (λ1, λ2, . . . , λk) is n, then we say that

(λ1, λ2, . . . , λk) is a partition k-tuple of n. For example, ({3, 2}, {1}) is a partition pair of 6

and ({3, 1}, {1}, {1}) is a partition triple of 6. A partition k-tuple (λ1, λ2, . . . , λk) of n is t-core

if each λi is t-core. Let ct,k(n) denote the number of partition k-tuple of n with t-core. From

(1), we see that the generating function for ct,k(n) is

∞∑
n=0

ct,k(n)q
n =

f tk
t

fk
1

. (3)

Here we observe that ct,1(n) = ct(n).

Wang [11] established infinite families of arithmetic identities for c3,2(n) and c3,3(n). More

importantly, he found the formula

c3,2(n) =
1

3
σ(3n+ 2). (4)

From which he obtained the following theorem:

Theorem 1.1. Let p be a prime, and let k, n be a nonnegative integers.
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(1) If p ≡ 1 (mod 3), we have

c3,2

(
pkn+

2pk − 2

3

)
=

pk − 1

p− 1
c3,2

(
pn+

2p− 2

3

)
− pk − p

p− 1
c3,2(n).

(1) If p ≡ 2 (mod 3), we have

c3,2

(
p2kn+

2p2k − 2

3

)
=

p2k − 1

p2 − 1
c3,2

(
p2n+

2p2 − 2

3

)
− p2k − p2

p2 − 1
c3,2(n).

Wang [11] also found explicit formula for c3,3(n), that is,

c3,3(n) =
∑

d|n+1
d≡1 (mod 3)

(
n+ 1

d

)2

−
∑

d|n+1
d≡2 (mod 3)

(
n+ 1

d

)2

. (5)

From which he obtained the following theorem:

Theorem 1.2. Let p be a prime, and let k, n be a nonnegative integers.

(1) If p ≡ 1 (mod 3), we have

c3,3
(
pkn+ pk − 1

)
=

p2k − 1

p2 − 1
c3,3 (pn+ p− 1)− p2k − p2

p2 − 1
c3,3(n).

(1) If p ≡ 2 (mod 3), we have

c3,3
(
pkn+ pk − 1

)
=

p2k − (−1)k

p2 + 1
c3,3 (pn+ p− 1) +

p2k + (−1)kp2

p2 + 1
c3,3(n).

Chern [5] extended the work of Wang [11] and established formulas for ct,k(n) for some values

of t and k by employing the method of modular forms.

Chan [4] studied the cubic partition function denoted by C(n) whose generating function is

∞∑
n=0

C(n)qn =
1

f1f2
.

In this paper, we restrict the cubic partition function C(n) to 3-core which is denoted by

C3(n) and the generating function of C3(n) is given by

∞∑
n=0

C3(n)q
n =

f3
3 f

3
6

f1f2
. (6)

Let w(n) denote the number of representations of a nonnegative integer n in the form x2 +

2y2 + 3z2 + 6r2 with x, y, z, r ∈ Z. In Section 3, we find the arithmetic properties of C3(n), and

relation connecting w(n) and C3(n) from which together with Alaca et al. [1] identity, we find

the formula for C3(n). We also find the formula for C3(n) by employing Bailey’s 6ψ6 formula.

Using formulas of C3(n), we establish the arithmetic properties of C3(n).
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2. Preliminaries

In this section, we list identities which are useful in proving our main results.

For |ab| < 1, Ramanujan’s general theta function f (a, b) is defined as

f (a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2. (7)

Using Jacobi’s triple product identity [3, Entry 19, p.35], (7) becomes

f (a, b) = (−a, ab)∞ (−b, ab)∞ (ab, ab)∞ .

The most important special cases of f (a, b) are

ϕ (q) := f (q, q) = 1 + 2
∞∑

n=1

qn
2

=
f5
2

f2
1 f

2
4

, (8)

ψ (q) := f
(
q, q3

)
=

∞∑
n=0

qn(n+1)/2 =
f2
2

f1
, (9)

and

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = f1. (10)

The Ramanuja’s cubic continued fraction denoted by V (q) is defined by

V (q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +
· · · .

Lemma 2.1 (Bailey’s 6ψ6 formula). For |qa2/(bcde)| < 1,

6ψ6

⎡
⎣ q

√
a, −q

√
a, b, c, d, e

√
a, −√

a, aq/b, aq/c, aq/d, aq/e
; q,

qa2

bcde

⎤
⎦

=
(aq, aq/(bc), aq/(bd), aq/(be), aq/(cd), aq/(ce), aq/(de), q, q/a; q)∞

(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa2/(bcde); q)∞
, (11)

where the 6ψ6 function is defined as

6ψ6

⎡
⎣ a1, a2, a3, a4, a5, a6

b1, b2, b3, b4, b5, b6
; q, z

⎤
⎦ :=

∞∑
n=−∞

(a1, a2, a3, a4, a5, a6; q)n
(b1, b2, b3, b4, b5, b6; q)n

zn.

Lemma 2.2. Let x(q) = q−1/3V (q). Then

f1f2 = f9f18

(
1

x(q3)
− q − 2q2x(q3)

)
. (12)
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Proof. Due to Chan [4, Theorem 2], we have

(q1/3; q1/3)∞(q2/3; q2/3)∞
(q3; q3)∞(q6; q6)∞

=
1

x(q)
− q1/3 − 2q2/3x(q). (13)

Replacing q by q3 in the above equation, we obtain

f1f2
f9f18

=
1

x(q3)
− q − 2q2x(q3). (14)

Multiplying throughout by f9f18, we arrive at (12).

Lemma 2.3. Let x(q) = q−1/3V (q). Then

f4
3 f

4
6

f4
9 f

4
18

=
1

x(q3)3
− 7q3 − 8q6x(q3)3. (15)

Proof. Due to Naika et al. [10, Theorem 3.1], we have

8V 3(−e−π
√

M/3)− 1

V 3(−e−π
√

M/3)
+ 7 =

9

a2M,3

, (16)

where

aM,3 =
3e−π/2

√
M/3ψ2(e−3π

√
M/3)φ2(−e−6π

√
M/3)

ψ2(e−π
√

M/3)φ2(−e−2π
√

M/3)
.

If q = e−π
√

M/3, then (16) can be written as

8V 3(−q)− 1

V 3(−q)
+ 7 =

ψ4(q)φ4(−q2)

qψ4(q3)φ4(−q6)
. (17)

Replacing q by −q and then multiplying throughout by −q, we obtain

−8qV 3(q) + q
1

V 3(q)
− 7q =

ψ4(−q)φ4(−q2)

ψ4(−q3)φ4(−q6)
. (18)

That is

−8q6x3(q3) +
1

x3(q3)
− 7q3 =

ψ4(−q3)φ4(−q6)

ψ4(−q9)φ4(−q18)
. (19)

Using φ(−q) =
f2
1

f2
and ψ(−q) =

f1f4
f2

in the above equation, we arrive at (15).

Lemma 2.4. [3, p.49] we have

ϕ(q) = ϕ(q9) + 2qf(q3, q15). (20)
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Lemma 2.5. [8] The following 2-dissection is true:

f3
3

f1
=

f3
4 f

2
6

f2
2 f12

+ q
f3
12

f4
. (21)

Lemma 2.6. [2, Eq. 3.17] We have

ϕ(q)f(q, q5) = ψ(q2)f(q2, q4) + 3q
f3
12

f4
. (22)

Lemma 2.7. [1, Theorem. 1.15] Let w(n) denote the number of representations of a nonnegative

integer n in the form x2 + 2y2 + 3z2 + 6r2 with x, y, z, r ∈ Z. Set n = 2α3βN , where α, β ≥ 0,

N ≥ 1 and gcd(6, N) = 1. Then

w(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3β+1 − 2)σ(N) + a(n) if n ≡ 1 (mod 2),

2(3β+1 − 2)σ(N) if n ≡ 2 (mod 4),

6(3β+1 − 2)σ(N) if n ≡ 0 (mod 4),

(23)

where
∞∑

n=0
a(n)qn = q

∞∏
n=1

(1− q2n)(1− q4n)(1− q6n)(1− q12n).

3. Main results

In this section, we establish arithmetic properties and formulas for C3(n).

Theorem 3.1. For each k, n ≥ 0,

C3

(
3kn+ 3k − 1

)
= 3kC3

(
2kn+ 2k − 1

)
= 3kC3(n) (24)

and that

C3

(
3kn+ 3k − 1

) ≡ 0 (mod 3k). (25)

Proof. Consider

ξ =
f1f2
qf9f18

, μ =
1

qx(q3)
, R =

f4
3 f

4
6

q3f4
9 f

4
18

. (26)

Then, from (12), (15) and (26),

ξ =
f1f2
qf9f18

= μ− 1− 2

μ
(27)

and

R = μ3 − 7− 8

μ3
. (28)
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From (27) and (28), we have

ξ3 = μ3 − 3μ2 − 3μ+ 11 +
6

μ
− 12

μ2
− 8

μ3

= R+ 18− 3μ2 − 3μ+
6

μ
− 12

μ2

= R+ 9− 3ξ2 − 9μ+
18

μ

= R− 9ξ − 3ξ2. (29)

It follows from (29) that

ξ3 + 3ξ2 + 9ξ = R. (30)

We can write (30)
1

ξ
=

1

R
(9 + 3ξ + ξ2). (31)

Now let H be the “huffing” operator that extracts powers of q which is congruent to 0 modulo

3. If we apply H to (31), we find

H

(
1

ξ

)
=

1

R

(
9H(1) + 3H(ξ) +H(ξ2)

)
. (32)

Now,

H
(
ξ2
)
= H

(
μ2 − 2μ− 3 +

4

μ
+

4

μ2

)
= −3, (33)

H (ξ) = H

(
μ− 1− 2

μ

)
= −1, (34)

H (1) = 1. (35)

From (32)–(35), we find

H

(
1

ξ

)
=

3

R
. (36)

Using (26), (6) can be expressed as

∞∑
n=0

C3(n)q
n−2 =

f3
3 f

3
6

q3f9f18
× 1

ξ
(37)

Applying the operator H on both sides of (37) and then using (36), we find that

∞∑
n=0

C3(3n+ 2)q3n =
f3
3 f

3
6

q3f9f18
× 3

R
. (38)
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Using (26) in (38) and then replacing q3 by q, we obtain

∞∑
n=0

C3(3n+ 2)qn = 3
f3
3 f

3
6

f1f2

= 3

∞∑
n=0

C3(n)q
n.

Equating coefficients of qn on both sides of the above equation, we obtain

C3(3n+ 2) = 3C3(n). (39)

Now substituting (21) into (6), we find that

∞∑
n=0

C3(n)q
n =

f3
4 f

5
6

f3
2 f12

+ q
f3
6 f

3
12

f2f4
, (40)

which implies that

∞∑
n=0

C3(2n+ 1)qn =
f3
3 f

3
6

f1f2

=

∞∑
n=0

C3(n)q
n.

Equating coefficients of qn on both sides of the above equation, we obtain

C3(2n+ 1) = C3(n). (41)

In view of (39), (41) and by induction, we arrive at (24). Congruence (25) follows from (24).

Theorem 3.2. Let σodd(n) denote the sum of odd divisors d of n. Then for all n, k ≥ 0,

C3

(
2kn+ 2k − 1

)
= σodd

3�n+1
d

(n+ 1) (42)

and

C3

(
3kn+ 3k − 1

)
= 3k σodd

3�n+1
d

(n+ 1). (43)

Proof. Replacing (a, b, c, d, e, q) → (q4, q2, q2, q2, q5, q6) in (11) and then multiplying both sides

by
q(1 + q2)

(1− q2)2
, we obtain

f2
3;6f

4
6

f1,5;6f2
2,4;6

· q =

∞∑
m=−∞

q3m+1(1 + q2(3m+1))

(1− q2(3m+1))2
. (44)
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Note that f1 = f1,2,3,...,k−1;kfk and from (6), we deduce that

∞∑
n=0

C3(n)q
n =

f3
3 f

3
6

f1f2
(45)

=
f2
3;6f

4
6

f1,5;6f2
2,4;6

. (46)

Combining (44) and (46), we find that

∞∑
n=0

C3(n)q
n+1 =

∞∑
m=−∞

q3m+1(1 + q2(3m+1))

(1− q2(3m+1))2

=
∞∑

m=0

q3m+1(1 + q2(3m+1))

(1− q2(3m+1))2
+

−1∑
m=−∞

q3m+1(1 + q2(3m+1))

(1− q2(3m+1))2

=
∞∑

m=0

q3m+1(1 + q2(3m+1))

(1− q2(3m+1))2
+

∞∑
m=0

q−(3m+2)(1 + q−2(3m+2))

(1− q−2(3m+2))2

=
∞∑

m=0

q3m+1(1 + q2(3m+1))

(1− q2(3m+1))2
+

∞∑
m=0

q3m+2(1 + q2(3m+2))

(1− q2(3m+2))2
, (47)

where the third equality follows by replacing m by −m− 1 in the second sum.

It is known that

log(1− x2) = −
∞∑
k=1

x2k

k
, |x| < 1.

Differentiating with respect to x twice and then multiplying throughout by x, we find that

x(1 + x2)

(1− x2)2
=

∞∑
k=0

(2k + 1)x2k+1, |x| < 1.

In view of the above identity, (47) can be written as

∞∑
n=0

C3(n)q
n+1 =

∞∑
m=0

∞∑
k=0

(2k + 1)q(2k+1)(3m+1) +
∞∑

m=0

∞∑
k=0

(2k + 1)q(2k+1)(3m+2). (48)

Comparing the coefficients of qn+1 on both sides of (48), we obtain

C3(n) = σodd
3�n+1

d

(n+ 1). (49)

Invoking (24) and (49), we arrive at desired results.

Theorem 3.3. Let p be a prime, and k, n be nonnegative integers.
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(1) If p = 2, then

C3(2
k − 1) = 1. (50)

(2) If p = 3, then

C3(3
k − 1) = 3k. (51)

(3) If p ≥ 5, then

C3(p
kn+ pk − 1) =

pk − 1

p− 1
C3(pn+ p− 1)− pk − p

p− 1
C3(n). (52)

Proof. (1) If we write n+ 1 = 2k, then by using (24) and (42), we deduce that

C3(2
k − 1) = σodd

3� 2
k

d

(2k) = 1.

(2) If we write n+ 1 = 3k, then by using (24) and (42), we deduce that

C3(3
k − 1) = σodd

3� 3
k

d

(3k) = 3k.

(3) Let p ≥ 5 is a prime. If we write n + 1 = pmN , where N is an integer not divisible by p,

then by using (24) and (42), we deduce that

C3(n) = σodd
3� p

mN
d

(pmN) = σodd
3� p

m

d

(pm)σodd
3�Nd

(N) =
pm+1 − 1

p− 1
σodd
3�Nd

(N). (53)

In a similar fashion, we find that

C3(pn+ p− 1) = σodd

3� p
m+1N

d

(pm+1N) = σodd

3� p
m+1

d

(pm+1)σodd
3�Nd

(N) =
pm+2 − 1

p− 1
σodd
3�Nd

(N) (54)

and

C3(p
kn+ pk − 1) = σodd

3� p
k+mN

d

(pk+mN) = σodd

3� p
k+m

d

(pk+m)σodd
3�Nd

(N) =
pk+m+1 − 1

p− 1
σodd
3�Nd

(N). (55)

Now consider

pk+m+1 − 1

p− 1
σodd
3�Nd

(N) =

(
pm+2 − 1

p− 1
c1 +

pm+1 − 1

p− 1
c2

)
σodd
3�Nd

(N), (56)

where c1 and c2 are constants that has to be find.
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Equation (56) can be written as

pk+m+1 − 1 = pk+m+1(p1−kc1 + p−kc2)− (c1 + c2). (57)

From which we obtain

p1−kc1 + p−kc2 = 1

and

c1 + c2 = 1.

Solving the above two equations, we obtain that

c1 =
pk − 1

p− 1
and c2 = −pk − p

p− 1
. (58)

Substituting (58) together with (53)–(55) into (56), we arrive at desired result.

Theorem 3.4. Let p ≥ 5 be a prime and n be the nonnegative integer such that p � n+ 1. Then

for each k ≥ 0,

C3(p
kn+ pk − 1) =

pk+1 − 1

p− 1
C3(n). (59)

Proof. From (24) and (42), we deduce that

C3

(
pkn+ pk − 1

)
= σodd

3�
pk(n+1)

d

(pk(n+ 1))

= σodd

3� p
k

d

(pk)σodd
3�n+1

d

(n+ 1)

=
pk+1 − 1

p− 1
σodd
3�n+1

d

(n+ 1)

=
pk+1 − 1

p− 1
C3(n),

which is same as (59).

Theorem 3.5. If w(n) denote the number of representations of a nonnegative integer n in the

form x2 +2y2 +3z2 +6r2 with x, y, z, r ∈ Z, and C3(n) is the number of 3-core cubic partitions

of n, then

36C3(n) = w(12n+ 12)− w(4n+ 4). (60)
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Proof. We have
∞∑

n=0

w(n)qn = ϕ(q)ϕ(q2)ϕ(q3)ϕ(q6). (61)

Substituting (20) into (61), we find that

∞∑
n=0

w(n)qn = ϕ(q3)ϕ(q6)
(
ϕ(q9) + 2qf(q3, q15)

) (
ϕ(q18) + 2q2f(q6, f30)

)
. (62)

Extracting the terms in which powers of q is congruent to 0 modulo 3 from (62) and replacing

q3 by q, we find that

∞∑
n=0

w(3n)qn = ϕ(q)ϕ(q2)ϕ(q3)ϕ(q6) + 4qϕ(q)ϕ(q2)f(q, q5)f(q2, q10)

=
∞∑

n=0

w(n)qn + 4qϕ(q)ϕ(q2)f(q, q5)f(q2, q10). (63)

Substituting (22) into (63) and then extracting terms of q4n in the resulting equation, we obtain

∞∑
n=0

w(12n)qn =
∞∑

n=0

w(4n)qn + 36q
f3
3 f

3
6

f1f2

=
∞∑

n=0

w(4n)qn + 36
∞∑

n=0

C3(n)q
n+1. (64)

Equating coefficients of qn+1 on both sides of the above equation, we obtain

36C3(n) = w(12n+ 12)− w(4n+ 4),

which is (60).

Theorem 3.6. Let n, k ≥ 0. Set 4n + 4 = 2α3βN , where α, β ≥ 0, N ≥ 1 and gcd(6, N) = 1.

Then

C3

(
3kn+ 3k − 1

)
= 3β+kσ(N) (65)

and

C3

(
2kn+ 2k − 1

)
= 3βσ(N). (66)

Proof. Since 4n + 4 and 12n + 12 are congruent to 0 modulo 4, we can make use of case 3 of

(23). Therefore, in view of (23) and (60), we see that

36C3(n) = 6(3β+2 − 2)σ(N)− 6(3β+1 − 2)σ(N)

= 6(3β+2 − 3β+1)σ(N)

= 4 · 3β+2σ(N), (67)

12



which implies that

C3(n) = 3βσ(N). (68)

Invoking (24) and (68), we arrive at desired results.
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