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a b s t r a c t 

The electrohydrodynamic instability of a vertical dielectric fluid saturated Brinkman porous 

layer whose vertical walls are maintained at different temperatures is considered. An ex- 

ternal AC electric field is applied across the vertical porous layer to induce an unstably 

stratified electrical body force. The stability eigenvalue equation is solved numerically us- 

ing the Chebyshev collocation method. The presence of inertia is found to instill insta- 

bility on the system and the value of modified Darcy–Prandtl number Pr D at which the 

transition from stationary to travelling-wave mode takes place is independent of the AC 

electric field but increases considerably with an increase in the value of Darcy number 

Da . The presence of AC electric field promotes instability but its effect is found to be only 

marginal. Although the flow is stabilizing against stationary disturbances with increasing 

Da , its effect is noted to be dual in nature if the instability is via travelling-wave mode. 

The streamlines and isotherms for various values of physical parameters at their critical 

state are presented and analyzed. Besides, energy norm at the critical state is also com- 

puted and found that the disturbance kinetic energy due to surface drag, viscous force and 

dielectrophoretic force have no significant effect on the stability of fluid flow. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Natural convection in a layer of fluid saturated porous medium has constituted a pole of attraction to researchers because

of its applications in several fields such as oil recovery, soil mechanics, rheology, metal casting, ceramic engineering, solid-

matrix compact heat exchangers, spread of contaminants in the environment and in various processes in the chemical and

materials industry, and the technologies of paper, textiles, insulating materials. Available works on this topic are concerned

mostly with the study of natural convection in horizontal porous layers heated from below. The state of the art has been

summarized in the books by Nield and Bejan [1] and Straughan [2,3] . 

The stability of natural convection in a vertical porous layer has been investigated by many authors. Gill [4] was the

first to investigate the stability properties of natural convection in a vertical layer of Darcy porous medium and his find-

ings established a rigorous ground for the use of insulating porous materials in buildings, instead of air gaps. Kwok and

Chen [5] discussed different qualitative behaviors of the Darcy flow model used by Gill [4] considering the full Darcy–

Brinkman model with advective inertia and also performed experiments. Qin and Kaloni [6] used energy methods to give
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Nomenclature 

a vertical wave number 

c wave speed 

c r phase velocity 

c i growth rate 

D = d / dx differential operator 

Da = μe K / μh 2 Darcy number 
�
 E root-mean-square value of the electric field 

E b , E d , E D , E e , E s disturbance kinetic energies 

E 0 root-mean-square value of the electric field at x = 0 
�
 f e force of electrical origin 

�
 g acceleration due to gravity 

h half- width of the porous layer 

K permeability 

p pressure 

P = p − 0 . 5 ρ( ∂ ε/∂ ρ)( � E · � E ) modified pressure 

P r D = νh 2 ϕ 

2 
p / Kκ modified Darcy–Prandtl number 

�
 q = (u, v , w ) velocity vector 

R D = αgβh 2 K / νκ Darcy–Rayleigh number 

R eaD = γ 2 ε 0 E 
2 
0 
β2 h 2 K / μκ AC electric Darcy–Rayleigh number 

t time 

T temperature 

T c , T d disturbance thermal energies 

T 1 temperature of the left vertical boundary 

T 2 temperature of the right vertical boundary 

V root-mean-square value of the electric potential 

V 1 electric potential of the left vertical boundary 

V 2 electric potential of the right vertical boundary 

W b basic velocity 

( x , y , z ) Cartesian coordinates 

Greek symbols 

α thermal expansion coefficient 

β = ( T 2 −T 1 )/ h temperature gradient 

γ thermal expansion coefficient of dielectric constant 

ε dielectric constant 

ε0 reference dielectric constant at T 0 
κ thermal diffusivity 

χ ratio of heat capacities 

μ dynamic viscosity 

μe effective fluid viscosity 

ν( = μ/ ρ0 ) kinematic viscosity 

ψ( x , z , t ) stream function 

 amplitude of vertical component of perturbed velocity 

φ amplitude of perturbed electric potential 

ϕp porosity of the porous medium 

ρ fluid density 

ρe free charge density 

ρ0 reference density at T 0 
σ electrical conductivity of the fluid 

θ amplitude of perturbed temperature 

sufficient conditions for the stability of convection in a vertical porous slab. Most of the developments are covered in the

book by de Lemos [7] . Barletta [8] reconsidered Gill’s problem and showed that the change of velocity boundary conditions

from impermeable to permeable causes instability while Barletta [9] studied two-dimensional stationary mixed convection

in a vertical porous layer. Rees [10] and Scott and Straughan [11] presented a new perspective on Gill’s problem by tak-

ing into account of the local thermal nonequilibrium effect, while Shankar and Shivakumara [12,13] extended Gill’s and

Rees’s problems for an Oldroyd-B type of viscoelastic fluid, respectively. Recently, the effect of inertia on the stability of
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buoyancy-driven parallel shear flow in a vertical layer of isotropic and anisotropic porous medium using the Lapwood–

Brinkman model is discussed by Shankar et al. [14,15] . 

The interaction between electric and/or magnetic field on fluid flow in a porous medium is of interest in many practical

applications and is important particularly in the solidification process and geophysical context. Thermal convection in the

presence of a uniform applied vertical magnetic field, known as magnetoconvection, has been investigated in a horizontal

layer of porous medium in the past (Rudraiah [16] , Alchaar et al. [17] , Bergman et al. [18] , Muddamallappa et al. [19] , Bhatta

et al. [20] , Riahi [21] ). The linear stability of plane-Poiseuille flow at high Reynolds numbers and in the presence of a trans-

verse magnetic field is investigated theoretically using the multideck asymptotic approach by Makinde [22] , while Makinde

and Mhone [23] investigated the temporal stability of magnetohydrodynamic Jeffery–Hamel flows at very small magnetic

Reynolds number. The Chebyshev spectral collocation method is employed to investigate the temporal development of small

disturbances in a channel filled with a saturated porous medium under in the influence of magnetic field was studied by

Makinde and Mhone [24] . Shankar et al. [25] examined magnetohydrodynamic stability of natural convection in a vertical

porous slab. Electrohydrodynamics, coupling of the electric field and fluid motion, has led to many complex and interesting

instability phenomena. Incipient interest in theoretical studies was limited to electrohydrodynamic(EHD) convection in a

layer of dielectric fluid saturated porous medium caused by the dielectrophoretic force due to the variation in the dielectric

constant with the non-homogeneous temperature gradient in the bulk flow (Moreno et al. [26] , del Río and Whitaker [27] ,

Rudraiah and Gayathri [28] , Shivakumara et al. [29,30] ). The effect of a uniform horizontal AC electric field on the stability

of natural convection in a vertical dielectric fluid layer was examined by Takashima and Hambata [31] while the effect of a

transverse uniform magnetic field on the stability of natural convection in a vertical layer of an electrically conducting fluid

was analyzed by Takashima [32] . 

Nonetheless, studies pertaining to the stability of natural convection in a vertical dielectric fluid saturated porous layer

under the influence of electric field have been almost completely neglected. Electrohydrodynamic coupled heat transfer

in a fluid saturated vertical porous layer becomes important in geophysics to study the Earth’s core and to understand

the performance of petroleum reservoir. Moreover, the drying process in porous media is a rather complicated process as

coupled heat and mass transport phenomena are involved simultaneously. Therefore, new techniques are being used to

make the drying processes more efficient and one of the effective ways to improve the overall drying kinetics is to apply an

electric field (Yabe et al. [33] , Lai and Lai [34] ). The foregoing observations provide the motivation to investigate the stability

of natural convection in a vertical layer of dielectric fluid saturated Brinkman porous medium in the presence of a uniform

horizontal AC electric field. 

2. Mathematical formulation 

The physical configuration of the problem is illustrated in Fig. 1 . We consider a dielectric fluid saturated vertical layer of a

porous medium confined between two parallel vertical plates at x = ± h , subject to a uniform AC electric field applied across

the vertical porous layer. The plate at x = − h is maintained at fixed temperature T 1 and fixed electric potential V 1 ( = 0), while

the plate at x= h is maintained at fixed temperature T 2 ( > T 1 ) and at an alternating (60 Hz) potential whose root-mean-

square value is V 2 . A Cartesian coordinate system ( x, y, z ) is chosen with the origin in the middle of the vertical porous

layer, where the x -axis is taken perpendicular to the plates and the z -axis is vertically upwards, opposite in the direction of

gravity. The relevant basic equations under the Oberbeck–Boussinesq approximation are ([1,31]): 

∇ · � q = 0 (1)

ρ0 

[
1 

ϕ p 

∂ � q 

∂t 
+ 

1 

ϕ 

2 
p 

( � q · ∇ ) � q 

]
= −∇ p − μ

K 

�
 q + μe ∇ 

2 �
 q + 

�
 f e + ρ� g (2)

χ
∂T 

∂t 
+ ( � q · ∇ ) T = κ∇ 

2 T (3)

ρ = ρ0 { 1 − α( T − T 0 ) } (4)

where � q = (u, v , w ) is the velocity vector, p is the pressure, ρ is the fluid density, � g is the acceleration due to gravity, μ
is the dynamic viscosity, μe the effective viscosity, K is the permeability, T is the temperature, ϕp is the porosity of the

porous medium, χ is the ratio of heat capacities, κ is the thermal diffusivity, α is the thermal expansion coefficient, ρ0 is

the density at reference temperature T = T 0 = ( T 1 + T 2 )/2 and 

�
 f e is a body force term which represents the response of the

fluid to the electric field and can be expressed as (Landau and Lifshitz [35] ) 

�
 f e = ρe 

�
 E − 1 

2 

(
�
 E · � E 

)∇ ε + 

1 

2 

∇ 

(
ρ

∂ε 

∂ρ
�
 E · � E 

)
(5)

Here � E is the root-mean-square value of the electric field, ρe is the free charge density and ε is the dielectric constant.

The electrical force � f e will have no effect on the bulk of the dielectric fluid if the dielectric constant ε and the electrical

conductivity σ are homogeneous. Since ε and σ are functions of temperature, a temperature gradient applied to a dielectric
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Fig. 1. Sketch of the porous channel ( xz -plane section). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fluid produces a gradient in ε and σ . The application of DC electric field then results in the accumulation of free charge

in the liquid. The free charge increases exponentially in time with a time constant ε/σ , which is known as the electrical

relaxation time. If an AC electric field is applied at a frequency much higher than the reciprocal of the electrical relaxation

time, the free charge does not have time to accumulate. Moreover, the electrical relaxation time of most dielectric liquids

appear to be sufficiently long to prevent the buildup of free charge at standard power line frequencies. At the same time,

dielectric loss at these frequencies is so low that it makes no significant contribution to the temperature field. The Coulomb

force term ρe 
�
 E in Eq. (5) is the force per unit volume on a medium containing free electric charge of density ρe . It is the

strongest EHD force term and usually dominates when DC electric fields are present in dielectric fluids. The second term in

Eq. (5) , called dielectrophoretic force term, is due to the force exerted on a dielectric fluid by a nonuniform electric field. It

is usually weaker than the free charge force term and only dominates when the AC electric field is imposed on a dielectric

fluid. Therefore, the Coulomb force term has been neglected in Eq. (5) and only the dielectrophoretic force term is retained

in Eq. (5) . It is seen that the dielectrophoretic force term depends on ( � E · � E ) rather than 

�
 E . Since the variation of � E is very

rapid, the root-mean-square value of � E is used as the effective value in determining fluid motion. In other words, one can

treat the AC electric field as the DC electric field whose strength is equal to the root-mean-square value of the AC electric

field (Takashima and Aldridge [36] ). The last term in Eq. (5) is called the electrostriction term. This term can be conveniently

clubbed with the pressure in Eq. (5) and, because pressure amounts to an extra variable in incompressible flow, seems not

to have any influence on the hydrodynamics. 

Since there is no free charge, the relevant Maxwell equations are 

∇ × �
 E = 0 , ∇ · (ε � E ) = 0 . (6a,b) 

In view of Eq. (6a) , � E can be expressed as 

�
 E = −∇V (7) 

where V is the root-mean-square value of the electric potential. The dielectric constant is assumed to be a linear function

of temperature in the form 

ε = ε 0 [1 − γ (T − T 0 )] (8) 

where γ ( > 0) is the thermal expansion coefficient of dielectric constant and is assumed to be small. For example, for 10 cs

Silicone oil γ = 2.86 ×10 −3 K 

−1 and ε= 2.6 ×10 −11 Fm 

−1 . 
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3. Basic state 

It is assumed that the basic steady-state flow is laminar and fully developed. Thus, 

�
 q = W b (x ) ̂ k , P = P b (x, z) , � E = 

�
 E b (x ) ̂ i , T = T b ( x ) , ρ = ρb ( x ) , ε = ε b ( x ) , V = V b ( x ) (9)

where the subscript b denotes the basic state. Under this circumstance, the basic state solution is found to be (Takashima

and Hamabata [31] ) 

W b = 

αgβK 

2 ν

[ 

x − h cosech 

( √ 

μh 

2 

μe K 

) 

sinh 

( 

x 

√ 

μh 

2 

μe K 

) ] 

(10)

P b = const − ρ0 gz + 

ε 0 E 2 0 

2 ( 1 − γβx/ 2 ) 
(11)

T b − T 0 = βx/ 2 (12)

ρb = ρ0 

(
1 − αβx 

2 

)
(13)

ε b = ε 0 

(
1 − γβx 

2 

)
(14)

�
 E b = 

E 0 
1 − γβx/ 2 

ˆ i (15)

and hence 

V b = 

2 E 0 
γ β

log 

(
1 − γβx/ 2 

1 + γ βh/ 2 

)
(16)

where 

P = p − 0 . 5 ρ( ∂ ε/∂ ρ) 
(
�
 E · � E 

)
(17)

is the modified pressure and 

E 0 = 

γβV 2 

2 

log 

(
1 + γβh/ 2 

1 − γβh/ 2 

)
(18)

is the root-mean-square value of the electric field at x = 0 and β = ( T 2 −T 1 )/ h is the temperature gradient in the horizontal

direction. Here, W b and P b have been determined under the condition that the total flux of flow across a horizontal plane

z = constant is zero. It is observed that in the initial steady state the electric field does not affect the flow field. 

4. Linear stability analysis 

To study the linear stability of fluid flow, we superimpose an infinitesimal disturbance on the base flow in the form 

�
 q = 

�
 q b + 

�
 q ′ , P = P b (x, z) + P ′ , V = V b + V 

′ , T = T b + T ′ , ρ = ρb + ρ ′ , ε = ε b + ε ′ . (19)

Substituting Eq. (19) into Eqs. (1)–(3) , linearizing by neglecting the product of perturbed quantities, we get 

∇ · � q ′ = 0 (20)

1 

ϕ p 

∂ � q ′ 
∂t 

+ 

1 

ϕ 

2 
p 

{
( � q b · ∇ ) � q ′ + 

(
�
 q ′ · ∇ 

)
�
 q b 
}

= − 1 

ρ0 

∇ P ′ − 1 

ρ0 

(
μ

K 

− μe ∇ 

2 
)
�
 q ′ + αT ′ g ̂  k − E 0 γβε 0 

2 ρ0 

∂V 

′ 
∂x 

ˆ i − E 2 0 γ
2 βε 0 

2 ρ0 

T ′ ˆ i 

(21)

χ
∂T ′ 
∂t 

+ ( � q b · ∇ ) � q ′ + ( � q ′ · ∇ ) T b = κ∇ 

2 T ′ (22)

γ E 0 
∂T ′ 
∂x 

= −∇ 

2 V 

′ . (23)
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We restrict our attention to two-dimensional disturbances (Squire’s theorem provides justification for working in two

dimensions rather than three dimensions [37] ) and the resulting equations are made dimensionless by scaling ( x , y , z ) by h ,

t by ϕ p h 
2 /κ , � q ′ by κ/h , T ′ by βh , V 

′ by γβE 0 h 
2 and P ′ by κμ/ hK to get (after discarding the primes for simplicity) 

∂u 

∂x 
+ 

∂w 

∂z 
= 0 (24) 

1 

P r D 

(
∂u 

∂t 
+ W b 

∂u 

∂z 

)
= −∂P 

∂x 
− u + Da 

(
∂ 2 u 

∂ x 2 
+ 

∂ 2 u 

∂ z 2 

)
− R eaD 

2 

(
∂V 

∂x 
+ T 

)
(25) 

1 

P r D 

(
∂w 

∂t 
+ u D W b + W b 

∂w 

∂z 

)
= −∂P 

∂z 
− w + Da 

(
∂ 2 w 

∂ x 2 
+ 

∂ 2 w 

∂ z 2 

)
+ R D T (26) 

M 

∂T 

∂t 
+ W b 

∂T 

∂z 
+ 

u 

2 

= 

∂ 2 T 

∂ x 2 
+ 

∂ 2 T 

∂ z 2 
(27) 

∂T 

∂x 
= −

(
∂ 2 V 

∂ x 2 
+ 

∂ 2 V 

∂ z 2 

)
(28) 

where D = d / dx , R eaD = γ 2 ε 0 E 
2 
0 β

2 h 2 K / μκ is the AC electric Darcy-Rayleigh number, P r D = νh 2 ϕ 

2 
p / Kκ is the modified Darcy–

Prandtl number, R D = αgβh 2 K / νκ is the Darcy–Rayleigh number, Da = μe K / μh 2 is the Darcy number, and M = χ / ϕp . It should

be noted that the basic velocity in dimensionless form is 

W b = 

R D 

2 

[
x − cosech 

(
D a −1 / 2 

)
sinh 

(
D a −1 / 2 x 

)]
. (29) 

Eliminating the pressure P from the momentum equations, introducing a stream function ψ( x , z , t ) through 

u = 

∂ψ 

∂z 
, w = −∂ψ 

∂x 
(30) 

and employing the normal mode analysis procedure in the form 

{ ψ, T , V } = { , θ, φ} (x ) e ia ( z−ct ) (31) 

where c is the wave speed which is real and positive and a is the vertical wave number, we obtain 

1 

P r D 

[
( W b − c ) 

(
D 

2 − a 2 
)
 − D 

2 W B 
]

+ 

R eaD 

2 

( Dφ + θ ) = 

1 

ia 

[ 
Da 

(
D 

2 − a 2 
)2 

 −
(
D 

2 − a 2 
)
 − R D Dθ

] 
(32) 

( W b − Mc ) θ + 

1 

2 

 = 

1 

ia 
( D 

2 − a 2 ) θ (33) 

Dθ + 

(
D 

2 − a 2 
)
φ = 0 (34) 

In general, c = c r + ic i where c r is the phase velocity and c i is the growth rate. It is considered that on the rigid and

isothermal vertical plates the tangential electric field vanishes. Thus the associated boundary conditions are: 

 = D  = θ = φ = 0 at x = ±1 . (35) 

Eqs. (32) –(35) constitute a stability eigenvalue problem which is solved numerically by the well known Chebyshev col-

location method (Orszag [38] , Canuto et al. [39] ). Accordingly, the field variables  , θ and φ are approximated in terms of

Chebyshev polynomials in the form 

( x ) = 

N ∑ 

j=0 

ξ j ( x )  j , θ ( x ) = 

N ∑ 

j=0 

ξ j ( x ) θ j , φ( x ) = 

N ∑ 

j=0 

ξ j ( x ) φ j (36) 

where ξ j ( x ) = cos ( j cos −1 x ). The usual procedure leads to the following generalized matrix eigenvalue problem (for details

see Shankar et al. [40] ) 

AX = cBX (37) 

where c is the eigenvalue and X is the discrete representation of the eigenfunction; A and B are square (complex) matrices

of order 3(N + 1) . The eigenvalues and the eigenfunctions of the above matrix eigenvalue problem are determined with the

aid of a QZ-algorithm which is available in the MATLAB software package in the form of built in function eig(). 
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Table 1 

Convergence of the Chebyshev collocation method. 

N 
R D = 20 0 0 0 , P r D = 5 , R eaD = 20 , √ 

D a −1 = 0 . 5 , a = 1 = M 

R D = 20 0 0 0 , P r D = 20 , R eaD = 20 , √ 

D a −1 = 0 . 5 , a = 1 = M 

c r c i c r c i 

1 −12.19739532 125.79237869 −0.00406956 138.33800182 

5 −1.56843935 150.91954455 −6.81251762 161.64109986 

10 −1.68402373 150.32443549 −6.83280114 161.66535648 

15 −1.57766246 150.30126741 −6.77356582 161.62841441 

20 −1.57748620 150.30259469 −6.77304924 161.62926681 

25 −1.57746745 150.30253403 −6.77304791 161.62922607 

30 −1.57746867 150.30253184 −6.77304971 161.62922666 

35 −1.57746862 150.30253133 −6.77304969 161.62922662 

40 −1.57746862 150.30253134 −6.77304 96 8 161.62922660 

50 −1.57746863 150. 30253133 −6.77304967 161.62922660 

60 −1.57746862 150. 30253133 −6.77304 96 8 161.62922660 

70 −1.57746862 150. 30253133 −6.77304 96 8 161.62922661 

N 
R D = 20 0 0 0 , P r D = 20 , R eaD = 20 , √ 

D a −1 = 1 = a = M 

R D = 20 0 0 0 , P r D = 20 , R eaD = 70 , √ 

D a −1 = 1 = a = M 

c r c i c r c i 

1 −46.88995317 378.65934057 −46.91487760 378.61382378 

5 −8.59633138 539.87446855 −8.60038554 539.86143015 

10 −5.42388056 545.87106826 −5.42352315 545.85900275 

15 −8.80758431 543.99719042 −8.80801272 543.98425343 

20 −8.98798858 543.97439971 −8.97846256 543.96249464 

25 −8.98843536 543.97526623 −8.97890630 543.96251398 

30 −8.98844532 543.97526400 −8.97890742 543.95252197 

35 −8.98844548 543.97526048 −8.97890759 543.95252124 

40 −8.98844542 543.97526041 −8.97890758 543.95252126 

50 −8.98844542 543.97526041 −8.97890755 543.95252126 

60 −8.98844541 543.97526040 −8.97890755 543.95252125 

70 −8.98844542 543.97526041 −8.97890755 543.95252126 

Table 2 

Comparison of critical stability parameters. 

√ 

D a −1 Makinde [41] Present work 

Re c αc c c Re c αc c c 

0 5772.2283 1.02052 0 . 263997 5772.267785 1.020 0.26352965 

0.1 5832.2973 1.01986 0 . 262559 5831.536366 1.019 0.26240273 

0.2 6015.0334 1.01781 0 . 258313 6014.402939 1.017 0.25815868 

0.3 6328.7057 1.01492 0 . 251535 6328.339172 1.014 0.25136095 

0.4 6787.3070 1.01074 0 . 242499 6787.228187 1.011 0.24233670 

0.5 7411.1295 1.00561 0 . 231650 7411.468698 1.006 0.23149161 

0.6 8227.4284 0.99966 0 . 219445 8228.361884 0.998 0.21927310 

0.7 9271.2789 0.99307 0 . 206344 9273.216864 0.992 0.20613269 

0.8 10586.3898 0.98608 0 . 192782 10589.39436 0.985 0.19258345 

 

 

 

 

 

 

5. Energy norm at critical state 

In order to understand the physical mechanism during the flow transition, it is necessary to define an inner-product

and the associated norm. This will allow one to address the orthogonality of the eigenfunctions as well as the size of

perturbations. For the temporal evolution of disturbances in an incompressible flow, the energy density of a disturbance is

a physically meaningful measure of the size of the perturbation. The rate of change of two-dimensional (non dimensional)

kinetic and thermal energies are given by 

1 

P r D 

∂ 

∂t 

〈 
1 

2 

(
u 

2 + w 

2 
)〉 

= − 1 

P r D 
〈 uwD W b 〉 + R D 〈 wT 〉 − 〈

u 

2 + w 

2 
〉
− Da 

〈
( ∇u ) 

2 + ( ∇w ) 
2 
〉
− R eaD 

2 

〈
u 

∂V 

∂x 
+ uT 

〉
= E s + E b + E D + E d + E e (38)

1 

2 

〈 

M 

∂ 
(
T 2 

)
∂t 

〉 

= −1 

2 

〈 uT 〉 − 〈
( ∇T ) 

2 
〉
= T c + T d (39)
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Table 3 

Comparison of Chebyshev collocation and Galerkin method for different values of Pr D and 
√ 

D a −1 when 

R eaD = 50 and M = 1 . 

√ 

D a −1 Pr D Chebyshev collocation method Galerkin method 

R Dc a c c c R Dc a c c c 

0.5 1 16567.548915 1.374 0 16565.161995 1.371 0 

5 25881.212807 0.718 ±196.269020 25885.1639271 0.714 ±195.027960 

10 26789.475313 1.068 ±207.938936 26784.973353 1.068 ±206.329768 

50 55356.729218 1.274 ±4 46.5624 48 55351.251781 1.269 ±442.734840 

100 79604.651063 1.313 ±647.255100 79607.009146 1.311 ±644.656020 

200 115498.702807 1.323 ±944.519679 1154 99.404 833 1.323 ±945.759288 

1.0 1 1209.277224 1.363 0 1207.232984 1.362 0 

5 6040.636461 1.342 0 6044.601215 1.339 0 

10 12102.045597 1.342 0 12108.966391 1.339 0 

50 8161.211361 1.109 ±238.188553 8165.156269 1.112 ±237.590501 

100 11065.889915 1.206 ±328.681413 11061.509310 1.201 ±325.499233 

200 15656.609942 1.274 ±470.376116 15654.645291 1.271 ±469.698456 

4.0 1 30.694852 0.934 0 30.099528 0.933 0 

5 254.972191 0.807 0 253.971346 0.810 0 

10 523.163845 0.780 0 521.133746 0.783 0 

50 2713.021507 0.792 0 2716.166397 0.791 0 

100 5441.506959 0.792 0 5447.608054 0.789 0 

200 2091.925568 0.718 ±407.317435 2093.634812 0.719 ±407.402539 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the brackets 〈〉 represent the volumetric average over the volume of disturbance waves. In Eq. (38) , the first term

on the right hand side, E s represents the gain (loss) of the disturbance kinetic energy from (to) the mean flow through

Reynolds stress, and is referred to the shear production (destruction). The term denoted by E b is due to non-isothermal

effects and represents the production (destruction) of disturbance kinetic energy through the buoyancy effect. The third,

fourth and fifth terms ( E D , E d and E e ) represent, respectively, the dissipation of disturbance kinetic energy due to surface

drag, viscous force and electric force. The first term in E e has cropped up due to non-uniform variation in the electric

field and the second term is occurred due to dielectrophoretic forces caused by the variation in dielectric constant with

the non-homogeneous temperature gradient in the bulk flow. In Eq. (39) , quantities termed T c and T d are associated with

disturbance thermal energy due to thermal convection and disturbance thermal energy due to diffusion effect. All derivatives

are approximated by fourth-order finite difference in the given domain except at boundaries. Integrals are calculated using

fourth-order Simpson’s extended rule. 

6. Results and discussion 

The stability of natural convection in a vertical dielectric fluid saturated Brinkman porous layer under a uniform horizon-

tal AC electric field is investigated numerically using the Chebyshev collocation method. The non-dimensional parameters

involved in the present study are the Darcy-Rayleigh number R D , AC electric Darcy-Rayleigh number R eaD , Darcy number

Da , Darcy-Prandtl number Pr D and the non-dimensional group M . Convergence of the results is tested for different sets of

parametric values by varying the order of base polynomial N (see Table 1 ). From the table it is evident that four digits point

accuracy can be achieved by retaining 31 terms in Eq. (36) . As the number of terms increased in Eq. (36) , the results are

found to remain consistent and the accuracy improved up to 5 digits for N = 30 and up to 7 digits for N = 50. The results

presented here are for N = 50. The results obtained in the absence of AC electric field are compared with those of isother-

mal porous channel flows as the numerical results are lacking for non-isothermal case in the open literature. The results so

obtained for different values of Darcy number with proper adjustment of parameters are compared with those of Makinde

[41] in Table 2 and note that there is a good agreement between them. The result corresponds to the nonporous domain 

case ( Da −1 =0) is in conformity with the one obtained by Orszag [38] . Moreover, the eigenvalue problem is also solved

numerically using the Galerkin method with Legendre polynomials as trial functions 

( x ) = 

N ∑ 

n =0 

a n ( 1 − x 2 ) 
2 
P n ( x ) , θ ( x ) = 

N ∑ 

n =0 

b n ( 1 − x 2 ) P n ( x ) , φ( x ) = 

N ∑ 

n =0 

c n 
(
1 − x 2 

)
P n ( x ) 

where P n ( x ) is the Legendre polynomial of degree n and a n , b n and c n are constants (Singer et al. [42] , Chen and Chung

[43] ). The results obtained for a representative set of parametric values considering 55 terms in the Galerkin expansion are

shown in Table 3 along with those obtained from the Chebyshev collocation method. It is seen that the results complement

with each other. 

The basic natural convection flow, stationary and parallel, is not influenced by the AC electric field. Nonetheless, the

Darcy number and the Darcy-Rayleigh number influence the base flow significantly. Fig. 2 (a) and (b) show the influence of

Da −1 (with R =20 0 0) and R (with Da −1 =1) on the basic velocity W , respectively. These figures indicate that the velocity
D D b 
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Fig. 2. Basic velocity profiles. 

 

 

 

 

 

 

profiles are anti-symmetric about the vertical line at x = 0 but they are not precisely centro-symmetric about x = ±1/2. In

other words, in the half region, the basic velocity is in one direction and in the other half it is in the opposite direction and

it is zero at x = 0. Moreover, decrease in Da −1 is to suppress the fluid flow ( Fig. 2 (a)) and a similar trend is noticed with

decreasing R D ( Fig. 2 (b)). Also, at higher values of Da −1 we recover the Darcy flow case with a linear profile, but with thin

boundary layers near the two vertical walls in order to satisfy the no-slip condition. 

It is inquisitive to look at the results obtained under the limiting cases of R eaD =0 (absence of electric field), Pr D → ∞
(absence of inertial effects) and Da = 0 (Darcy case) as this problem was originally discussed analytically by Gill [4] . The
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Fig. 3. Variation of growth rate c i with wave number a . 

 

 

 

 

overall trend displayed in Fig. 3 (a) for this case shows the stability of the basic flow for all considered values of R D which

corroborate the results of Gill [4] . The basic flow is found to be stable even with the inclusion of Brinkman term and

AC electric field when Pr D → ∞ , and the results shown in Fig. 3 (b)–(d) demonstrate that the equilibrium is always stable.

Nonetheless, the study evidences an unstable behavior ( c i > 0) once the inertial effects are taken into consideration and

this fact is evident from Fig. 3 (e)–(h). A closer look at these figures reveals that there exists a threshold value of Da −1 , R 
D 
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Fig. 3. Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and R eaD above which ( Fig. 3 (e)–(g)), and the value of Pr D below which ( Fig. 3 (h)) instability occurs. Moreover, the threshold

values are interdependent on the parametric values involved therein. 

Fig. 4 (a)–(c) exhibit neutral stability curves in the ( R D , a )- plane for various values of Pr D (with Da −1 = 16, R eaD = 50), Da −1

(with Pr D = 10, R eaD = 50) and R eaD (with Pr D = 10, Da −1 = 9), respectively. The neutral stability curves exhibit single but dif-

ferent minimum with respect to the wave number for various values of Pr D , Da −1 and R eaD considered. The stability to linear

perturbations corresponds to the region below and outside the neutral stability curves while the instability corresponds to

the region above as well as inside each neutral stability curve. For the considered parametric values, Fig. 4 (a) illustrates that

there exists a threshold value of Pr D ( = 136.9) below which the instability always occurs as stationary mode while beyond

this threshold value the instability first occurs as a travelling-wave mode and switches over to stationary mode with further

increase in the value of wave number. Despite the change of instability with increasing wave number, the travelling-wave

mode turns out to be the preferred mode of instability. Moreover, it is seen that Pr D exhibits a dual behavior on the stability

of the basic flow depending on the mode of instability. Increasing Da −1 is to decrease the region of stability ( Fig. 4 (b)) and

similar is the case with increasing R eaD ( Fig. 4 (c)). 

The variation of R Dc and a c as a function of Pr D is illustrated in Fig. 5 (a) and (b), respectively for different values of

Da −1 when R eaD =50 and M=1. Fig. 5 (a) clearly indicates the existence of a threshold value of Pr D at which the instability

switches over from stationary to travelling-wave mode. Moreover, the threshold value of Pr D increases significantly with

increasing Da −1 . The effect of increasing Da −1 is to reinforce instability on the system. In other words, increasing Da −1

is to destabilize the basic flow if the instability is via stationary mode. This may be attributed to the fact that decreasing

Darcy number is equivalent to decrease in the ratio of viscosities, μe / μ and hence its effect is to destabilize the system

due to decrease in the viscous diffusion. However, when the instability is via travelling-wave mode the observed scenario

is quite different. For this case, R Dc passes through a minimum with increasing Pr D up to a certain value of Da −1 and this

trend eventually goes on diminishing with increasing Da −1 ( = 4, 9, 16) and leading to instability of the system with Pr D .

The vertical lines represent the discontinuous changes in the critical wave number a c due to the transition from stationary

to travelling-wave mode ( Fig. 5 (b)). The figure indicates that the dependence of a c on Pr D is weak at stationary mode,

whereas at travelling-wave mode a c depends strongly on Pr D . Also, the effect of increasing Da −1 is to enlarge the size of

convection cells at both stationary and travelling-wave modes. The results of travelling-wave mode instability summarized

in Fig. 5 (c) indeed confirm the above observed behavior more evidently, which shows the variation of positive c c with Pr D
for various values of Da −1 . The discontinuous changes in c c due to the transition from stationary ( c c =0) to travelling-wave

( c c 
 = 0) mode are represented by the vertical lines. From Fig. 5 (c) it is observed that for values of Da −1 =0.04, 0.25 and 1,

c c values pass through a minimum with increasing Pr D . This trend goes on diminishing with increasing Da −1 and for values

of Da −1 =4, 9 and 16 the critical wave speed decreases with increasing Pr D . 

Fig. 6 shows the instability map on the ( Pr DT , Da −1 )-plane showing the division of the plane into zones of stationary and

travelling wave modes. It is evident that the threshold value of the modified Darcy-Prandtl number at which the transition

from stationary mode to travelling-wave mode occurs increases significantly with Da −1 . 

The above observed facts are also viewed and analyzed through streamlines and isotherms at the critical state. In all

the contour plots, dashed lines denote negative values whereas solid lines stand for positive values. In addition, for stream

function, solid and dashed lines are associated with a clockwise and counter-clockwise rotation, respectively. Figs. 7 and

8 exhibit streamlines and isotherms before and after the transition mode as a function of Pr D for Da −1 = 1 = M and R eaD = 50.

For Pr D =12.1, the flow pattern appears to be as stationary and uni-cellular. Further, a closer look at the stream line con-

tour shows that uni-cellular pattern moving alternatively clockwise and anti-clockwise along the z direction ( Fig. 7 (a)). The
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Fig. 4. Neutral stability curves for different values of P r D , 
√ 

D a −1 and R eaD when M = 1 . ( ) Stationary modes, ( ) travelling-wave modes. 

 

 

 

 

 

 

 

 

 

 

isotherms are uni-cellular and concentrate in the vicinity of the hot wall and which is evident from Fig. 8 (a). The flow pat-

tern and flow strength changes qualitatively as well as quantitatively as the mode of instability changes from stationary to

travelling-wave with increasing Pr D . In other words, the instability switches over from stationary to travelling-wave mode

once the value of Pr D exceeds the value 12.1. When Pr D =12.3, it is observed that the convective motion is constructed by

two parts, one is the vigorous cell in the right half of the porous layer adjacent to the right surface, the other is the weak

circulation which is exterior to the vigorous convection cell in streamlines ( Fig. 7 (b)). Also, shapes of the isotherms change

( Fig. 8 (b)). It is further seen that the actual wavelengths are substantially larger in both streamlines and isotherms and at

this stage max increases from 0.62 to 1.05, also θmax changes from 0.017 to 0.004. This fact is also evident from Figs. 7 (b)

and 8 (b). Further increase in Pr D is to decrease the wavelength as well as to increase the flow strength slightly ( Fig. 7 (c) and

(d)) and also to strengthen the isotherms ( Fig. 8 (c) and (d)). From these figures, it is noted that the streamlines move closer
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Fig. 5. Variation of (a) critical Darcy–Rayleigh number R Dc , (b) critical wave number a c and (c) critical wave speed c c with the Darcy–Prandtl number Pr D 
for a fixed value of R eaD =50, M=1 and for various values of 

√ 

D a −1 . ( ) Stationary modes, ( ) travelling-wave modes. 
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Fig. 5. Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and appear to be parallel at the center of the vertical fluid-saturated porous layer and bi-cellular oblate triangles occupy

the whole thickness of the vertical porous layer in isotherms. With increasing Pr D (136.7 and 136.9), it is observed that the

magnitude of secondary flow changes in both streamlines and isotherms ( Figs. 7 (e), (f) and 8 (e), (f)). 

To know the impact of Darcy number on the stability characteristics of the system, the results are presented for Da −1 =4

in Fig. 9 . The streamlines and isotherms are shown in Fig. 9 (a, b) and (c, d), respectively, for Pr D =44.2 and 44.4. For

Pr D =44.2, the pattern appears to be stationary unicellular both in streamlines and isotherms ( Fig. 9 (a) and (c)). As Pr D 
increases to 44.4 ( Fig. 9 (b)), a sudden change in the magnitude of secondary flow is observed (i.e., max =0.63 to 1.11) and

convective cells transform from unicellular to bi-cellular in streamlines. In the case of isotherms, as mode changes from

stationary to travelling-wave, the magnitude of isothermal lines reduce drastically ( θmax =0.02 to 0.003). Also, shapes of

the isotherms change from unicellular to multi-cellular ( Fig. 9 (d)). This behavior of the streamlines and isotherms may be

due to the change in the mode of instability from stationary to travelling-wave mode. 

To get a clear understanding about the characteristics of neutral stability of fluid flow for a given set of parameters, en-

ergy spectrums of the secondary flow are analyzed in detail. Theoretically at the critical points, ∂ E kin / ∂ t = 0 and ∂ E thm 

/ ∂ t = 0.

In other words, total kinetic energy ( E kin ) as well as thermal energy ( E thm 

) production must balance the energy dissipation.

In all the numerical results produced here for energy analysis, this phenomenon is observed at the critical points. 

The neutral stability curves of the given flow show that the threshold value of Pr D , where the secondary flow changes its

mode from stationary to travelling-wave mode, is a strong function of Da −1 . For understanding this phenomenon, variation

of kinetic and thermal energy components are analyzed as a function of Pr D and shown in Figs. 10–12 for three different

values of Da −1 =0.25, 1 and 4, respectively, for a fixed value of R eaD =50 and M=1. It can be seen that for Da −1 =0.25,

shear production ( E s ) has a tendency to destabilize the flow and viscous dissipation ( E d ) stabilizes it, in the domain [0.1, 3]

of Pr D . However, the contribution of energy production due to buoyancy term ( E b ) is not negligible in this domain. Quantita-

tively, in this domain contribution of shear and buoyant term is around 80 and 20% approximately in the instability of flow,

respectively. Furthermore, the production of kinetic energy due to shear term diminishes drastically as Pr D changes from 3.0

to 3.1, which could be associated to the change of stationary to travelling-wave mode of secondary flow. After this threshold

value of Pr D ( = 3), E d is responsible to stabilize the flow and buoyant instability ( E b ) is the only instability mode. For this

range of Pr D ( > 3.1), other components of kinetic energy have negligible influence on the stability or instability of the flow.

However, a sudden change in the role of components of kinetic energy is observed for the value of Pr D at which the mode

of instability changes. Another important observation here is that the total kinetic energy production is almost balanced by

energy dissipation due to viscous force term ( E d ) in the entire domain of modified Darcy–Prandtl number ( Fig. 10 a). From

Figs. 11 (a) and 12 (a), it can be concluded that, for Da −1 =1 and 4 also kinetic energy spectrums show a similar character-
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Fig. 6. Variation of Pr DT (transition Darcy–Prandtl number at the critical domains) as a function of 
√ 

D a −1 when R eaD =50, M=1. 

Fig. 7. The disturbance streamlines at 
√ 

D a −1 = 1 = M and R eaD = 50 for different values of Pr D . 
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Fig. 8. The disturbance isotherms at 
√ 

D a −1 = 1 = M and R eaD = 50 for different values of Pr D . 

Table 4 

Variation of R Dc and energy spectrum as a function of Pr D and 
√ 

D a −1 at R eaD =50 and M=1 . 

√ 

D a −1 Pr D R Dc E s E D E d E b E e 

0.5 3.0 49804.572790 0.784256 −0.014264 −1.0 0 0 0 0 0 0.230173 0.0 0 0 096 

3.1 51466.316779 0.783093 −0.014249 −1.0 0 0 0 0 0 0.231324 0.0 0 0 093 

3.2 42787.295581 0.014915 −0.021193 −0.993746 1.0 0 0 0 0 0 0.0 0 0 073 

10.0 26789.475313 −0.011729 −0.023020 −0.965386 1.0 0 0 0 0 0 0.0 0 0167 

20.0 35368.893697 −0.006657 −0.023314 −0.970099 1.0 0 0 0 0 0 0.0 0 0 091 

50.0 55356.729218 −0.004804 −0.022999 −0.972232 1.0 0 0 0 0 0 0.0 0 0 045 

1.0 3.0 3614.991416 0.865652 −0.058229 −1.0 0 0 0 0 0 0.192367 0.001455 

10.0 12102.045597 0.806516 −0.055751 −1.0 0 0 0 0 0 0.250012 0.0 0 0410 

12.2 14769.039233 0.798545 −0.055364 −1.0 0 0 0 0 0 0.257663 0.0 0 0333 

12.3 12927.360435 0.007679 −0.077779 −0.929928 1.0 0 0 0 0 0 0.0 0 0220 

20.0 6977.095337 −0.013651 −0.082561 −0.904309 1.0 0 0 0 0 0 0.0 0 0691 

50.0 8161.211361 −0.011871 −0.085378 −0.903139 1.0 0 0 0 0 0 0.0 0 0493 

2.0 3.0 390.343298 1.0 0 0 0 0 0 −0.209133 −0.947373 0.142590 0.015321 

10.0 1312.208594 0.937712 −0.211236 −1.0 0 0 0 0 0 0.270466 0.004415 

20.0 2642.093549 0.886753 −0.204194 −1.0 0 0 0 0 0 0.316662 0.002093 

44.3 5871.486993 0.838016 −0.196468 −1.0 0 0 0 0 0 0.358812 0.0 0 0896 

44.4 5741.526922 −0.021873 −0.231796 −0.746564 1.0 0 0 0 0 0 0.0 0 0389 

50.0 3628.722121 −0.026603 −0.237509 −0.736670 1.0 0 0 0 0 0 0.0 0 0937 

 

 

 

 

 

istics as noted above before and after the threshold value of Pr D . Thermal energy spectrums show that disturbance thermal

energy due to thermal convection ( T c ) has a destabilizing effect on the flow and disturbance thermal energy due to diffusion

effect ( T d ) has a stabilizing effect throughout the domain of Pr D ( Figs. 10 (b), 11 (b) and 12 (b)) for all three values of Da −1 

considered here. As can be seen from Table 4 , similar to the results of Su and Chung [44] , kinetic disturbances lose their

energy to the mean flow by the shear destruction ( E s ) when Pr D crosses the threshold value for all the three values of Da −1 .

However, the characteristics of E s is a function of Pr D and energy is gained from the mean flow when Pr D is less than the

threshold value for a given set of parameters. 
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Fig. 9. The disturbance streamlines (a, b) and isotherms (c,d) at 
√ 

D a −1 = 2 , M = 1 and R eaD = 50 for different values of Pr D . 

Fig. 10. The rate of change of (a) kinetic energy and (b) thermal energy as a function of Pr D for 
√ 

D a −1 = 0 . 5 , M = 1 and R eaD =50. 

 

 

 

 

 

The variation of R Dc and a c with Pr D is shown in Fig. 13 (a) and (b) for a fixed value of Da −1 =16 with M = 1 and for

different values of R eaD . For a fixed value of R eaD , it is observed that R Dc increases linearly with Pr D till Pr D < 136.8 and

exceeding which R Dc decreases monotonically. Although the effect of increasing R eaD is to instill instability on the system

but its influence is found to be not so significant ( Fig. 13 (a) and Table 5 ). That is, higher the AC electric field strength

the less stable the system due to an increase in the destabilizing electrostatic energy to the system. If the disturbances are
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Fig. 11. The rate of change of (a) kinetic energy and (b) thermal energy as a function of Pr D for 
√ 

D a −1 = 1 = M and R eaD =50. 

Fig. 12. The rate of change of (a) kinetic energy and (b) thermal energy as a function of Pr D for 
√ 

D a −1 = 2 , M = 1 and R eaD =50. 

Table 5 

Variation of R Dc as a function of R eaD and Pr D for 
√ 

D a −1 = 4 

and M = 1 . 

Pr D R eaD =0 R eaD =50 R eaD =70 

R Dc R Dc R Dc 

1 45.738381 30.694852 21.3412548 

5 265.299459 254.972191 250.596912 

10 533.833851 523.163845 518.760672 

20 1084.409239 1074.239751 1070.111057 

50 2722.912919 2713.021507 2709.043272 

100 5451.337417 5441.506959 5437.561758 

136.8 7455.751171 7445.955952 7442.029549 

136.9 6747.693963 6738.556048 6733.486613 

150 3918.709473 3912.694057 3910.936924 

200 2105.4 4 4243 2091.925569 2086.514911 
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Fig. 13. Variation of (a) critical Darcy–Rayleigh number R Dc , (b) critical wave number a c and (c) critical wave speed c c with the Darcy–Prandtl number Pr D 
for a fixed value of 

√ 

D a −1 = 4 , M = 1 and for various values of R eaD . ( ) Stationary modes, ( ) travelling-wave modes. 
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Fig. 13. Continued 

Fig. 14. Variation of Pr DT (transition Darcy–Prandtl number at the critical domains) as a function of R eaD when 
√ 

D a −1 = 4 , M = 1. 
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Fig. 15. The disturbance streamlines at R eaD = 0 , M = 1 and 
√ 

D a −1 = 4 for different values of Pr D . 

Fig. 16. The disturbance isotherms at R eaD = 0 , M = 1 and 
√ 

D a −1 = 4 for different values of Pr D . 
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Fig. 17. The disturbance streamlines (a, b) and isotherms (c,d) at R eaD = 50 , M = 1 and 
√ 

D a −1 = 4 for different values of Pr D . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stationary, dependence of the critical wave number a c on Pr D is very weak while a c at travelling-wave mode is an increasing

function of Pr D . The vertical line represents the discontinuous changes in a c due to transition from stationary to travelling-

wave mode ( Fig. 13 (b)) and this behavior is unaltered with increasing R eaD . Fascinatingly, the value of Pr D at which transition

from stationary to travelling-wave instability occurs remain invariant for all the values of R eaD considered. This aspect has

been clearly shown in Fig. 14 . Additional information regarding the nature of the travelling-wave mode instability can be

obtained from Fig. 13 (c), which shows the variation of positive c c with Pr D for various values of R eaD when Da −1 =16 and

M = 1. In this figure, the vertical lines represent the discontinuous changes in c c due to the transition from stationary to

travelling-wave mode. Also, it is observed that c c for the travelling-wave mode is a monotonically decreasing function of

Pr D . The variation of R eaD on c c is found to be not so significant. 

As in the previous case, the streamlines and isotherms at the critical state for both stationary and travelling-wave modes

are analyzed for this case as well. Figs. 15 and 16 show the results for different values of Pr D and for a fixed value of R eaD =0

and Da −1 =16. From Figs. 15 (a) and 16 (a) it can be seen that for Pr D =10, the flow pattern appears to be as stationary uni-

cellular in streamlines ( Fig. 15 (a)) and a flurry of activity is noticed in isotherms i.e., cells of various patterns and shapes

are seen throughout the spread of porous layer ( Fig. 16 (a)). When Pr D =50, 100 and 136.7, it is observed that the convective

motion is uni-cellular ( Fig. 15 (b)–(d)) but the corresponding isotherms reveal that the undulation observed in Fig. 16 (b) and

(c) seem concentrated towards the hot wall ( Fig. 16 (b))/cold wall ( Fig. 16 (c)) followed by relatively milder formation at the

cold wall ( Fig. 16 (b))/hot wall ( Fig. 16 (c)). Fig. 16 (d) portrays a case of vigorous convection in the cell formation towards

the colder end, followed by a lull towards the warmer side. The instability switches over from stationary to travelling-

wave mode once the value of Pr D exceeds 136.7. When Pr D =136.9, convective cells change from uni-cellular to bi-cellular

in streamlines ( Fig. 15 (e)). Also, shapes of the isotherms appear to be multi-cellular and distributed throughout the porous

layer being sparser at the middle and getting denser towards at the ends ( Fig. 16 (e)). It is further seen that the actual

wavelengths are substantially larger in both streamlines and isotherms and at this stage, max , increases from 0.71 to 1.09

and θmax decreases from 0.021 to 0.002. This fact is evident from Figs. 15 (e) and 16 (e). It is observed that qualitatively

and quantitatively the flow strength remains almost the same in both streamlines and isotherms as Pr D increases to 150

( Figs. 15 (f) and 16 (f)). Interestingly, secondary flow behavior remains invariant for all the values of R eaD considered. The

change in streamlines and isotherms patterns is found to remain unaltered with increasing value of R eaD . This fact is evident

from Fig. 17 in which the results are presented for R eaD =50. 

The energy analysis at the critical state has also been carried out as explained previously. For the above case, the thresh-

old value of Pr at which the change of mode takes place is 136.8. To understand the characteristics of neural stability,
D 
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Fig. 18. The rate of change of (a) kinetic energy and (b) thermal energy as a function of Pr D for R eaD =0, M=1 and 
√ 

D a −1 = 4 . 

Fig. 19. The rate of change of (a) kinetic energy and (b) thermal energy as a function of Pr D for R eaD =50, M=1 and 
√ 

D a −1 = 4 . 

 

 

 

 

 

 

 

 

 

kinetic energy spectrums are analyzed as a function of Pr D for three different values of R eaD =0, 50 and 70 (see Figs. 18 –20 ).

From the figures it is evident that the energy spectrums show same behavior as a function of Pr D for all the values of R eaD .

It is also seen that the kinetic energy spectrum profile is independent of the value of R eaD and show the same characteristics

before and after the threshold value of Pr D ( = 136.8) as discussed earlier. 

7. Conclusions 

The linear instability of natural convection in a vertical dielectric fluid saturated Brinkman porous layer under the influ-

ence of a uniform horizontal AC electric field is investigated. Coupled stability equations are solved numerically using the

Chebyshev collocation method. The effect of Darcy number, Darcy–Prandtl number and AC electric Darcy-Rayleigh number

on the instability characteristics of the system is delineated. The basic stationary and parallel flow is not influenced by the

AC electric field while the Darcy number alters it significantly. Despite the presence of AC electric field, the basic flow is

found to be stable in the absence of inertia. Nonetheless, the inclusion of inertia causes instability in the system and the
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Fig. 20. The rate of change of (a) kinetic energy and (b) thermal energy as a function of Pr D for R eaD =70, M=1 and 
√ 

D a −1 = 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value of modified Darcy–Prandtl number at which the transition occurs from the stationary to travelling-wave mode insta-

bility increases with increasing Darcy number but remains invariant with varying AC electric Darcy–Rayleigh number. If the

instability is via stationary mode the effect of Darcy number is found to be destabilizing while it exhibits a dual behav-

ior if the instability is via travelling-wave mode. The streamlines and isotherms presented mimic the behavior of stability

curves observed before and after the change of mode of instability. The dissipation of disturbance kinetic energy due to

surface drag, viscous force and non-uniform electric field show no significant contribution on the stability of the flow. But

the disturbance thermal energy due to convection and diffusion shows destabilizing and stabilizing tendencies, respectively.

More importantly, the production of kinetic energy due to shear term diminishes drastically as the Darcy–Prandtl number

crosses its threshold value, which could be associated to the change of stationary to travelling-wave mode of secondary

flow. Also the kinetic energy production is almost balanced by energy dissipation due to viscous term in the entire domain

of Darcy–Prandtl number. 
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