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Abstract Linear and weakly nonlinear analyses are made for the Rayleigh-Bénard
convection in two-component couple-stress liquids with the Soret effect. Conditions for
pitchfork, Hopf, Takens-Bogdanov, and codimension-two bifurcations are presented. The
Lorenz model is used to study the inverted bifurcation. Positive values of the Soret co-
efficient favor a pitchfork bifurcation, whereas negative values favor a Hopf bifurcation.
Takens-Bogdanov and codimension-two bifurcations are not as much influenced by the
Soret coefficient as pitchfork and Hopf bifurcations. The influence of the Soret coefficient
on the inverted bifurcation is similar to the influence on the pitchfork bifurcation. The in-
fluence of other parameters on the aforementioned bifurcations is also similar as reported
earlier in the literature. Using the Newell-Whitehead-Segel equation, the condition for
occurrence of Eckhaus and zigzag secondary instabilities is obtained. The domain of ap-
pearance of Eckhaus and zigzag instabilities expands due to the presence of the Soret
coefficient for positive values. The Soret coefficient with negative values enhances heat
transport, while positive values diminish it in comparison with heat transport for the
case without the Soret effect. The dual nature of other parameters in influencing heat
and mass transport is shown by considering positive and negative values of the Soret
coefficient.
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Nomenclature

A, B, C, D, E, amplitudes;
βT, thermal expansion coefficient;
βS, solutal expansion coefficient;
CS, couple stress parameter;
DS, Soret parameter;
Dm, solutal diffusivity;

D1, Soret coefficient;
d, depth;
g, acceleration due to gravity;
κ, thermal diffusivity;
Le, Lewis number;
µ, dynamic viscosity;
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µ1, couple-stress viscosity;
P , pressure;
Pr, Prandtl number;
q, wave number;
RT, thermal Rayleigh number;
RS, solutal Rayleigh number;
ρ, density;
S, concentration;

T , temperature;
t, time;
τ , scaled time;
Θ, non-dimensional temperature;
(u, v, w), vertical velocity components;
V (u′, v′, w′), velocity vector;
X, Y, Z, scaled coordinate.

1 Introduction

Relative to the research activity on thermal convection, the work on thermosolutal convec-
tion is quite limited. It is now well known that the two mutually opposing diffusing mechanisms
give rise to a wide range of interesting phenomena. In such systems with opposing influence
on instability, the existence of a net negative density distribution does not ensure stability.
Salt fingering (stationary) and diffusive instabilities (overstable) are of importance in these
systems. A linear stability analysis of the two-component system was first performed by Nield
and Bejan[1].

Most of the literature on double diffusive convection, however, did not consider coupled
molecular diffusion, namely, the cross-diffusion effects of Soret and Dufour. These coupled
fluxes are due to irreversible thermodynamic effects. If one of the two properties is temperature,
the diffusion of solute due to an applied temperature gradient is called the Soret effect or the
thermo-diffusion effect, and the diffusion coupled with it is the Dufour effect or diffusion-thermo
effect. In liquids, the Dufour effect is negligibly small.

In the presence of chemically inert micron-sized particles, the suspension can be modelled by
Stokes’ couple stress liquid whose governing equations can be obtained from Eringen’s equations
for a micropolar continuum. Siddheshwar and Pranesh[2] were the first to study thermoconvec-
tive instabilities in such liquids with the single-buoyancy effect. Malashetty et al.[3] extended
this study to a system with a second diffusing component and the Soret effect.

Rudraiah and Siddheshwar[4] considered both Soret and Dufour effects on two-component
convection of Newtonian liquids saturating a sparsely-packed porous medium. A very com-
prehensive account of the cross-diffusion coefficient on finite-amplitude instability and heat
and mass transport was presented in the paper. There have been other works that consider
thermoconvective instability in the couple-stress liquid with the single-buoyancy effect[5–12].

Thermo-diffusion (Soret effect) and diffusion-thermo (Dufour effect) effects on convective
instabilities in nanofluids have been theoretically investigated by Kim et al.[13]. They noticed
that both the Soret and Dufour effects make nanofluids unstable, and the heat transfer en-
hancement by the Soret effect in binary nanofluids is more significant than that in normal
nanofluids. Siddheshwar et al.[14] made a detailed study of the effect of Soret coefficient on heat
transport in twenty nanoliquids. Wang and Tan[15] investigated stability analysis of double-
diffusive convection in a viscoelastic fluid with the Soret effect occupying a porous medium
using a modified-Maxwell-Darcy model. They showed that the relaxation time also enhances
the instability of the system along with the Soret parameter. Altawallbeh et al.[16] analytically
studied double-diffusive convection in an anisotropic porous layer heated and salted from below
with an internal heat source and Soret effect using both linear and nonlinear stability analyses.
They found that increasing the mechanical anisotropy parameter, the Soret parameter, and the
internal Rayleigh number enhances heat and mass transfer. The instability of a horizontal layer
of a binary nanofluid in a vertical magnetic field was investigated by Gupta et al.[17] using the
normal mode analysis and weighted residual method. Complex expressions for the Rayleigh
number were simplified by valid approximations for an analytical study, and numerical investi-
gations were made for the alumina-water nanofluid. They showed that the critical wave number
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increases when the Chandrasekhar number increases, and it is independent of the solute and
nanoparticles. Agarwal and Rana[18] studied the onset of periodic and aperiodic convection in
a binary nanofluid saturated rotating porous layer. They obtained the Rayleigh numbers for
stationary and oscillatory convections in terms of various non-dimensional parameters. The
effect of the physical parameters on the aperiodic convection was analyzed graphically. The
thermal instability using the linear stability analysis in a rotating anisotropic porous medium
saturated by a nanofluid was analytically studied by Agarwal et al.[19]. The expression of the
Rayleigh number for both stationary and oscillatory convections in the case of the bottom-heavy
arrangement was obtained. A reversed trend between the stationary and oscillatory modes for
the bottom-heavy and top-heavy arrangements was explained in the paper. Ren and Chan[20]

studied double-diffusive convection in a vertical cavity with horizontal temperature and con-
centration gradients using the lattice Boltzmann method. They showed that an increase in the
buoyancy ratio from 0.01 to 2 causes a decrease in the average Nusselt and Sherwood numbers.
However, a further increase in the buoyancy ratio from 2 causes an increase. In addition, the
double-diffusive flow was observed to be unsteady at a small Prandtl number (Pr = 0.1) and
large Lewis numbers (Le > 6). Hu et al.[21] studied transient growth due to non-normality
for the Poiseuille-Rayleigh-Bénard flows of binary fluids with the Soret effect. They considered
two cases (i) negative separation factors and (ii) positive separation factors. They showed that
for negative separation factors, the transient growth is strong, whereas for positive separation
factors, it is weak. They used the least-stable mode for computation. Other noteworthy works
considering Soret and/or Dufour effects in their problems were those of Ibrahim et al.[22], Nawaz
et al.[23], and Al-Odat and Al-Ghamdi[24].

The works on convection in couple-stress liquids cited above are, however, silent about the
following subjects:

(i) Takens-Bogdanov bifurcation,
(ii) codimension-two bifurcation,
(iii) inverted bifurcation,
(iv) Eckhaus and zigzag instabilities,
(v) heat and mass transport.
These aforementioned unconsidered aspects of the two-component thermoconvective insta-

bility problem in couple-stress liquids with the Soret effect are studied in the paper using the
Lorenz and Newell-Whitehead-Segel equations[25].

2 Basic equations

Consider an infinite extent horizontal couple stress liquid layer of thickness d. The upper and
lower boundaries are held at a constant temperature T0 and T0 + ∆T (∆T > 0), respectively.
The solutal concentrations are maintained at S0 and S0 + ∆S, respectively. The bounding
surfaces of the layer are further assumed to be stress-free, isothermal, and isohaline. The
Boussinesq approximation is assumed to be valid. The thermal and solutal gradients lead to
simultaneous heat and mass transfer. In mixtures, temperature and concentration gradients
induce mass flow, called the Soret effect. With the above effect, heat and mass flows can be
expressed as follows:

Jh = −κ∇T ′, (1)

Jm = −Dm∇S′ −D1∇T ′, (2)

where κ and Dm are the thermal conductivity and the mass diffusivity of species, respectively.
The quantity D1 is the Soret coefficient that arises due to cross diffusion. Here, T ′ is the first
diffusing component, and S′ is the second diffusing component. Equation (2) signifies the cross-
diffusion phenomenon wherein there can be a flux of S′ due to ∇T ′. Similarly, there can be a
flux of T ′ due to ∇S′, but in the present case, this is assumed to be of negligible magnitude.
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Using the above expression, the governing equations[2–3] are written as

∇′ · V ′ = 0, (3)

ρ0

(∂V ′

∂t′
+ (V ′ · ∇′)V ′

)
= −∇P ′ + µ∇′2V ′ − µ1∇′4V ′ + ρ′g, (4)

∂T ′

∂t′
+ (V ′ · ∇′)T ′ = κ∇′2T ′, (5)

∂S′

∂t′
+ (V ′ · ∇′)S′ = Dm∇′2S′ +D1∇′2T ′, (6)

ρ′ = ρ0(1 − βT(T ′ − T0) + βS(S′ − S0)). (7)

The conduction state is characterized by

Tb =
(
1 − z′

d

)
∆T + T0, (8)

Sb =
(
1 − z′

d

)
∆S + S0. (9)

We use the Cartesian system of coordinates whose dimensional coordinates x′, y′, and z′ are

scaled by d. The time t′ is scaled by d2

κ
. The velocity vector V (u′, v′, w′), the temperature

T ′, the concentration S′, and the pressure P ′ are non-dimensionalized by the scales κ/d, ∆T ,
∆S, and ρ0κ

2/d2. The dimensionless equations for the perturbed quantities of primary and
secondary thermosolutal convective instabilities in two-component couple-stress liquids with
the Soret effect are

∇ · V = 0, (10)

1

Pr

(∂V

∂t
+ (V · ∇)V

)
= −∇P

Pr
+ ∇2V − CS∇4V + (RTθ −RSS)êz, (11)

∂θ

∂t
+ (V · ∇)θ = w + ∇2θ, (12)

∂S

∂t
+ (V · ∇)S = w +

1

Le
∇2S +DS

RT

RS
∇2θ, (13)

where

RT = βTg∆Td
3/(κν), RS = βSg∆Sd

3/(κν), CS = µ1/(µd
2),

P r = µ/(ρ0κ), Le = κ/Dm, DS = D1βS/(κβT),

and the Soret coefficient arises due to cross diffusion.
We apply curl two times on the momentum equation (11) and take the z-component of the

resulting equation,

( 1

Pr

∂

∂t
−∇2 + CS∇4

)
∇2w −RT∇2

hθ +RS∇2
hS =

1

Pr
êz · (∇×∇× (V · ∇)V ), (14)

where

∇2
h =

∂2

∂x2
+

∂2

∂y2
.

From Eqs. (12)–(14), we get

Lw = N , (15)
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where

L =
( 1

Pr

∂

∂t
−∇2 + CS∇4

)( ∂
∂t

−∇2
)( ∂

∂t
− 1

Le
∇2
)
∇2

+RS

( ∂
∂t

−∇2
)
∇2

h +RT

(
DS∇2 −

( ∂
∂t

− 1

Le
∇2
))

∇2
h, (16)

N =
1

Pr

( ∂
∂t

−∇2
)( ∂

∂t
− 1

Le
∇2
)
êz · (∇×∇× (V · ∇)V )

+RT

(
DS∇2 −

( ∂
∂t

− 1

Le
∇2
))

∇2
h(V · ∇)θ +RS

( ∂
∂t

−∇2
)
∇2

h(V · ∇)S. (17)

In the case of small scale convective motions, we may neglect the inertial term (see Siddheshwar
and Pranesh[2]), and this is assumed in the paper from here on.

We study the primary instabilities in the next section using the linear stability analysis.

3 Linear stability analysis and study of primary instabilities

We consider stress-free, isothermal, isohaline boundary conditions. In terms of w, the con-
ditions translate into the following ones:

w =
d2w

dz2
=

d4w

dz4
=

d6w

dz6
=

d8w

dz8
= 0 on z = 0, 1, ∀x, y. (18)

Substituting the normal mode solution

w = sin(πz)eiqx+iωt (19)

into the linearized version of Eq. (15), viz., Lw = 0, we obtain the dispersion relation,
(
δ2ω

( iω

Pr
+ δ2(1 + CSδ

2)
)
(iω + δ2)

(
iω +

1

Le
δ2
)

+RSq
2(iω + δ2) −RTq

2DSδ
2 +RTq

2
(
iω +

1

Le
δ2
))
w = 0, (20)

where
δ2 = π2 + q2.

Performing the classical analysis on Eq. (20), we get the expression of the Rayleigh numbers
RTsc and RToc for the stationary and oscillatory modes of convection and the expression for
the frequency ω in the form of

RTsc =
δ6sc(ηsc + rSsc)

q2sc(DSLe+ 1)
, RToc =

I1
K
, ω2 =

−I3
I2

, (21)

where

I1 = q2ocδ
2
oc

(
− 1

Pr
ω4 + δ4oc

(
rSoc + ηoc(1 −DS) −

1

PrLe2
(DSLe(Le+ 1) + 1)

)
ω2

+
δ8

Le2
(Le(rS + ηocDS) + ηoc) + δ8ocDSrSoc

)
, (22)

I2 = q2ocδ
4
oc(1 −DS + ηocPr), (23)

I3 = δ8oc(q
2
oc(ηocPrDSLe

2 + (ηocPr + 1)(DSLe+ 1)) + rSocPrLe(Le(DS − 1) + 1)), (24)

δ2sc = π2 + q2sc, δ2oc = π2 + q2oc, K =
q4oc

Le2
(Le2ω2 + δ4oc(DSLe+ 1)2),

rSsc =
q2scRS

δ6sc
, rSoc =

q2ocRS

δ6sc
, ηsc = 1 + CSδ

2
sc, ηoc = 1 + CSδ

2
oc,
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and the subscripts sc and oc denote stationary and oscillatory convections, respectively.
The minimum value of RTsc is obtained at a minimum (critical) wave number qscc, which is

given below, (qscc
π

)4

+ 2
( 1

3CSπ2
+

1

3

)(qscc
π

)2

=
1

3CSπ2
+

1

3
. (25)

Since the equation governing the critical value of wave number for oscillatory convection does
not come in an elegant form as that of qsc above, the same is not recorded here. In Sections
4 and 5, a local nonlinear stability analysis is presented using the Lorenz equation and the
Newell-Whitehead-Segel equation.

Using these equations, the inverted bifurcation and Eckhaus and zigzag instabilities are
studied.

4 Derivation of fifth-order Lorenz equation at threshold of stationary con-
vection and study of inverted (subcritical) bifurcation

Eliminating the pressure P from Eq. (11), assuming two-dimensional motions, and using the
following minimal representation of Fourier series for u,w, θ, and S:

u = πA(t) sin(qscx) cos(πz), (26)

w = −qscA(t) cos(qscx) sin(πz), (27)

θ = B(t) cos(qscx) sin(πz) + C(t) sin(2πz), (28)

S = L(t) cos(qscx) sin(πz) +M(t) sin(2πz) (29)

in the resulting equations from Eqs. (10), (11), (12), and (13), we get the fifth-order Lorenz
model in the forms of

dA

dt
=
Pr

δ2sc
(−δ4scηA− qscRTscB + qscRSL), (30)

dB

dt
= −qscA− δ2scB − πqscAC, (31)

dC

dt
= −4π2C +

πqsc
2
AB, (32)

dL

dt
= −qscA− δ2scDS

RTsc

RS
B − πqscAM, (33)

dM

dt
=
πqsc
2
AL− 4π2DS

RTsc

RS
C − 4π2

Le
M. (34)

We now use the following scaling, keeping in mind the form of the classical Lorenz model which
can be obtained as a particular case obtained in the paper,

A =
πqscA

′

√
2δ2sc

, B =
πrTB

′

√
2

, C = −πrTC′, L =
πD′

√
2
, M = πE′. (35)

Using the scaling (35), the Lorenz system of Eqs. (30)–(34) reduces to

Ȧ′ = Pr(B′ − ηscA
′ − rSscD

′), (36)

Ḃ′ = rTA
′ −B′ −A′C′, (37)

Ċ′ = A′B′ − bC′, (38)

Ḋ′ = A′ − DS

rSsc
B′ − 1

Le
D′ +A′E′, (39)

Ė′ = b
DS

rSsc
C′ − b

Le
E′ −A′D′, (40)
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where

b =
4π2

δ2sc
, rT =

q2scRTsc

δ6sc
, t1 = tδ2sc,

and the overdot denotes t1-derivative.

It is a well known fact in the context of the classical Lorenz model that its trajectories remain
within the confines of a sphere. The nonlinear terms are responsible for keeping the trajectories
confined. Following Siddheshwar and Titus[26], the trapping region of the trajectories of the
solution of the Lorenz model in Eqs. (36)–(40) can be obtained in the form of

A′2 +B′2 + (C′ − rT − Pr)2 +
D′2

( 1
rSscPr

)
+

E′2

( 1
rSscPr

)
= (

√
2)2. (41)

From the above equation, we note that the trapping region is a four-ellipsoid in a five-dimensional
phase-space.

The Lorenz model of Eqs. (36)–(40) is intractable, but in the steady state, it does possess a
solution. The steady-state solution of the Lorenz model of Eqs. (36)–(40) is

A′2 =
−M2 +

√
M2

2 − 4M1M3

2M1
, (42)

B′ =
br1A

′

b+A′2
, (43)

C′ =
r1A

′2

b+A′2
, (44)

D′ = LeA′
(
1 − bDSrT

rSsc(b +A′2)
+

LeA′2

b+A′2Le2

(
Le− bDSrT(Le+ 1)

rSsc(b+A′2)

))
, (45)

E′ =
−LeA′2

b+ Le2A′2

(
Le− bDSrT

rSsc(b +A′2)
(Le+ 1)

)
, (46)

where

M1 = ηscLe
2, (47)

M2 = b
(
ηsc(Le

2 + 1) − rTLe
2 + rSLe

(
1 + Le

(
1 − DSrT

rSsc

)
+ Le

))
, (48)

M3 = b2
(
(ηsc − rT) + rSscLe

(
1 − DSrT

rSsc

))
. (49)

Equating the discriminant in Eq. (42) to zero, the finite-amplitude Rayleigh number Rf
T is

obtained as a quadratic equation as follows:

b2q4sccLe
4

δ12scc

(Rf
T)2 +

2bq2sccLe
2

δ6scc
(2bηsc(1 +DSLe) −Q1(1 −DS))Rf

T

+ (Q2
1 − 4ηscLe

2Q2) = 0. (50)

Solving Eq. (50), we get

Rf
T =

−Q4 −
√
Q2

4 − 4Q3Q5

2Q3
, (51)
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where

Q1 = ηscb((Le
2 + 1) + rSscLeb(Le

2 − Le+ 1)),

Q2 = b2(ηsc + rSscLe),

Q3 = b2Le4(1 −DS)
2,

Q4 = 4ηscb
2Le2(1 +DSLe) − 2Q1bLe

2(1 −DS),

Q5 = Q2
1 − 4ηscLe

2Q2.

Equation (51) will be used to explore the possibility of inverted (subcritical) bifurcation, and
the same is discussed in the results and discussion section. In the next section, we derive
the Newell-Whitehead-Segel equation with the intention of using it to study two secondary
instabilities, namely, Eckhaus and zigzag instabilities.

5 Derivation of nonlinear two-dimensional Newell-Whitehead-Segel equa-
tion at threshold of stationary convection and study of secondary insta-
bilities

In this section, we follow Newell and Whitehead to obtain the Newell-Whitehead-Segel
equation governing the amplitude of the imposed disturbance. We assume the manifestation
of cylindrical rolls with the axis parallel to the y-axis so that the y-derivatives need not be
considered in Eq. (15). The z-dependence comes through the trigonometric functions which
ensures that the stress-free boundary condition is satisfied. We use the expansion parameter ǫ
as

ǫ2 =
RTsc −RTscc

RTscc
(52)

to obtain the system of equations of several orders in powers of ǫ. However, the variables x, y, z,
and t are scaled as follows:

X = ǫx, Y = ǫ
1

2 y, Z = z, τ = ǫ2t. (53)

The inherent symmetry breaking of instability is reflected through the difference of scaling in
the two horizontal directions. In view of Eq. (52), the differential operators can be expressed as

∂

∂x
→ ∂

∂x
+ ǫ

∂

∂X
,

∂

∂y
→ ǫ

1

2

∂

∂Y
,

∂

∂z
→ ∂

∂Z
,

∂

∂t
→ ǫ2

∂

∂τ
. (54)

Due to the fact that we are making a local nonlinear stability analysis, RTsc is assumed to take
values close to the threshold value, RTscc, i.e., ǫ ≪ 1. The solution to Eqs. (10)–(13) is now
assumed as follows:

u = ǫu0 + ǫ2u1 + ǫ3u2 + · · · , (55)

v = ǫ
1

2 v0 + ǫv1 + ǫ
3

2 v2 + · · · , (56)

w = ǫw0 + ǫ2w1 + ǫ3w2 + · · · , (57)

θ = ǫθ0 + ǫ2θ1 + ǫ3θ2 + · · · , (58)

S = ǫS0 + ǫ2S1 + ǫ3S2 + · · · . (59)



Effects of second diffusing component and cross diffusion 1587

The first approximation is given by the eigenvector of the linearized problem,

u0 =
iπ

qscc
(A(X,Y, τ)eiqsccx cos(πZ) − c.c.), (60)

v0 = 0, (61)

w0 = A(X,Y, τ)eiqsccx sin(πZ) + c.c., (62)

θ0 =
1

δ2
(A(X,Y, τ)eiqsccx sin(πZ) + c.c.), (63)

S0 =
Le(1 −DS

RT

RS
)

δ2
(A(X,Y, τ)eiqsccx sin(πZ) + c.c.), (64)

where c.c. stands for complex conjugate. Using Eqs. (53) and (54), the linear operator L in
Eq. (16) can be written as

L = L0 + ǫL1 + ǫ2L2 + · · · , (65)

where

L0 =
(
∇6(CS∇2 − 1)

1

Le
+
(
RT

(
DS +

1

Le

)
−RS

)
∇2

h

)
∇2, (66)

L1 =
(
2

∂2

∂x∂X
+

∂2

∂Y 2

)(−4

Le
∇6 +

5

Le
CS∇8 +

(
RT

(
DS +

1

Le

)
−RS

)

· (∇2 + ∇2
h)
)
, (67)

L2 =
∂

∂τ

((
1 +

1

Le

)
(1 − CS∇2)∇6 − (RT −RS)∇2

h +
1

LePr
∇6
)

+
(
2

∂2

∂x∂X
+

∂2

∂Y 2

)2(
RT

(
DS +

1

Le

)
−RS − (6 − 10CS∇2)

1

Le
∇4
)

+
∂2

∂X2

(−4

Le
∇6 +

5

Le
CS∇8 +

(
RT

(
DS +

1

Le

)
−RS

)
(∇2 + ∇2

h)
)
. (68)

Similarly, the nonlinear term N in Eq. (17) is taken to be

N = ǫN0 + ǫ2N1 + ǫ3N2 + · · · , (69)

where

N0 = 0, (70)

N1 =∇2∇2
h

(
RT

(
DS +

1

Le

)
θ0 −RSS0

)(∂u0

∂x
+
∂w0

∂Z

)
, (71)

N2 =
(
∇2 + ∇2

h

)(
2

∂2

∂X∂x
+

∂2

∂Y 2

)(∂u0

∂x
+
∂w0

∂Z

)

·
(
RT

(
DS +

1

Le

)
θ0 − S0

)
+ ∇2∇2

hRT

(
DS +

1

Le

)

·
( ∂
∂x

(u1θ0 + u0θ1) +
∂

∂Z
(w1θ0 + w0θ1) +

∂

∂X
(u0θ0)

)
−∇2∇2

hRS

·
( ∂
∂x

(u0S1 + u1S0)
∂

∂Z
(w0S1 + w1S0) +

∂

∂X
(w0S0)

)
. (72)

Substituting Eqs. (54), (57), (65), and (69) into Eq. (15), we get

L0w0 = 0, (73)

L0w1 = N0 − L1w0, (74)

L0w2 = N1 − L1w1 − L2w0. (75)
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Equation (73) gives us the expression for the critical Rayleigh number for the onset of stationary
convection, viz., Eq. (21).

Using Eqs. (62), (67), and (70) in Eq. (74) and solving them, we get w1 = 0. Using the
continuity equation (10), we get u1 = 0. The equations for θ1 and S1 are given by

( ∂
∂t

−∇2
)
θ1 = w1 −

(
u0
∂θ0
∂x

+ w0
∂θ0
∂z

)
, (76)

( ∂
∂t

−∇2
)
S1 = w1 +

RT

RS
∇2θ1 −

(
u0
∂S0

∂x
+ w0

∂S0

∂z

)
. (77)

Substituting Eqs. (54), (57), (58), (59), and (65) into Eqs. (76) and (77), taking u1 = w1 = 0,
and solving the resulting equations, we get

θ1 = − 1

2πδ2scc
|A|2 sin(2πz), (78)

S1 =
Le

2πδ2scc

(
− Le+DS

RT

RS
(1 + Le)

)
|A|2 sin(2πz). (79)

Substituting Eqs. (62), (67), (68), (71), (78), and (79) in Eq. (75) with w1 = 0 and using the
Fredholm alternative condition on the resulting equation, we get the Newell-Whitehead-Segel
equation in the form of

λ0
∂A

∂τ
− λ1

( ∂

∂X
− i

2qscc

∂2

∂Y 2

)2

A− λ2A+ λ3|A|2A = 0, (80)

where

λ0 =
δ6scc
Le

(Le+ 1)(1 + CSδ
2
scc) − δ6scc(r1rT − rS) +

δ6scc
PrLe

, (81)

λ1 =
4δ6scc
Le

(
rSLe+

2q2scc
δ2scc

(3 + 5CSδ
2
scc) − rSrT(DSLe+ 1)

)
, (82)

λ2 =
δ8scc
Le

r1rT(DSLe+ 1), (83)

λ3 =
δ6sccrTr1

2Le
(DSLe+ 1) +

r2δ
6
scc

2

(
DSLe

r1
r2
rT − 1

)
, (84)

r1 =
RT

RTscc
. (85)

Since we consider cylindrical rolls with the axis parallel to the y-axis, we neglect the y-derivatives
and the time-derivatives. Equation (80) takes the form of

d2A

dX2
+
λ2

λ1

(
1 − λ3

λ2
|A|2

)
A = 0. (86)

Since λ1 > 0, the solution to Eq. (80) turns out to be

A(X) = A0

(
tanh

(X
Λ1

)
− 1
)
, (87)

where
A0 = (λ2/λ3)

1

2 , Λ1 = (2λ1/λ2)
1

2 . (88)

In the succeeding section, Eq. (80) will be used to study the secondary instabilities of Eckhaus
and zigzag.
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5.1 Secondary instabilities
In terms of fast variables x, y, z, and t, Eq. (80) may be written as

λ0
∂A

∂t
− λ1

( ∂
∂x

− i

2qscc

∂2

∂y2

)2

A− ǫ2λ2A+ λ3|A|2A = 0. (89)

We now consider the phase-winding solution to Eq. (89) in the form of

A(x, y, t) = A1(x, y, t)e
i(δqsc)x. (90)

Substituting Eq. (90) into Eq. (89), we get

λ0
∂A1

∂t
=(ǫ2λ2 − λ1(δqsc)

2)A1 + 2iλ1(δqsc)
( ∂
∂x

− i

2qsc

∂2

∂y2

)
A1

+ λ1

( ∂
∂x

− i

2qsc

∂2

∂y2

)2

A1 − λ3|A1|2A1 = 0. (91)

The steady-state uniform solution to Eq. (91) is

A1 = ((ǫ2λ2 − λ1(δqsc)
2)λ−1

3 )
1

2 . (92)

To study the secondary instabilities, we impose an infinitesimal perturbation on the uniform
steady state solution in the form of

A1 = ((ǫ2λ2 − λ1(δqsc)
2)λ−1

3 )
1

2 + ũ(x, y, t) + iṽ(x, y, t). (93)

Substituting Eq. (93) into Eq. (91) and equating real and imaginary parts on either side of the
resulting equation, we get

λ0
∂ũ

∂t
=
(
− 2(ǫ2λ2 − λ1(δqsc))

2 + λ1

( ∂2

∂x2
+
δqsc
qscc

∂2

∂y2
− 1

4q2scc

∂4

∂y4

))
ũ

−
(
2λ1(δqsc) −

λ1

qscc

∂2

∂y2

)∂ṽ
∂x
, (94)

λ0
∂ṽ

∂t
=
(
2λ1(δqsc) −

λ1

qscc

∂2

∂y2

)∂ũ
∂x

+ λ1

( ∂2

∂x2
+
δqsc
qscc

∂2

∂y2
− 1

4q2scc

∂4

∂y4

)
ṽ. (95)

We analyze Eqs. (94) and (95) by using the normal modes in the form of

ũ = UeSt cos(qxx) cos(qyy), ṽ = V eSt sin(qxx) cos(qyy). (96)

Substituting Eq. (96) into Eqs. (94) and (95), we get

(λ0S + 2(ǫ2λ2 − λ1(δqsc)
2) + χ1)U + λ1qxχ2V = 0, (97)

λ1qxχ2U + (λ0S + χ1)V = 0, (98)

where

χ1 = λ1(q
2
x + (q2y(δqsc))/qsc + q4y/(4q

2
sc)),

χ2 = 2(δqsc) + q2y/qsc.
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For a non-trivial solution to Eqs. (97) and (98), we require

λ2
0S

2 + 2(2λ0(ǫ
2λ2 − λ1(δqsc)

2) + λ0χ1)S

+ (2(ǫ2λ2 − λ1(δqsc)
2) + χ1)χ1 − q2xλ

2
1χ

2
2 = 0. (99)

We are not interested in a negative root of Eq. (99), since the mode would then be stable. The
positive root of Eq. (99) is

S = − 1

λ2
0

((2λ0(ǫ
2λ2 − λ1(δqsc)

2) + λ0χ1)

+ (2λ0(ǫ
2λ2 − λ1(δqsc)

2)2 + λ2
1q

2
xχ

2
2)

1

2 ). (100)

For this positive root, the rolls can become unstable.

5.2 Eckhaus instability

Substituting qy = 0 in Eq. (99), we get

λ2
0S

2 + 2(2λ0(ǫ
2λ2 − λ1(δqsc)

2) + λ0λ1q
2
x)S + λ1q

2
x(2(ǫ2λ2 − 3λ1(δk)

2) + q2x) = 0. (101)

The possibilities regarding the roots of Eq. (101) are as follows:

(i) both roots are negative, or

(ii) one root is positive, and the other is negative.
When both roots of Eq. (101) are negative (Case (i) above), the product of roots is positive.
Both the roots being negative refers to a stable situation.

In Case (ii), the product of roots is negative, and this refers to an unstable situation due to
the positive root. By the Descartes rule of sign, the following condition ensures the existence
of a positive root:

q2x 6 2(3λ1(δqsc)
2 − ǫ2λ2). (102)

Since q2x > 0, we require

λ2

λ1
6

3(δqsc)
2RTsc

RTsc −RTscc
, (103)

and this condition defines the domain of Eckhaus instability in the
(

λ2

λ1
, δqsc

)
plane.

5.3 Zigzag instability

Let us now take qx = 0 in Eq. (99) to get

λ2
0S

2 + 2(2λ0(ǫ
2λ2 − λ1(δqsc)

2) + λ0χ11)S + (2(ǫ2λ2 − λ1(δqsc)
2) + χ11)χ11 = 0, (104)

where

χ11 = λ1(q
2
y(δqsc)/qscc + q4y/4q

2
scc).

Following the procedure of Subsection 5.2, we can obtain the domain of the zigzag instability
in the form of

λ2

λ1
6

( RTsc

RTsc −RTscc

)(
2(δqsc)

2 − (δqsc)q
2
y

q

)
. (105)

Having thus far studied the possibility of different types of primary and secondary instabilities,
we now quantify the heat and mass transport by considering the stationary instability (primary
instability).



Effects of second diffusing component and cross diffusion 1591

6 Heat and mass transports at lower boundary

The heat transport is quantified through the thermal Nusselt number Nu which is defined
as

Nu = 1 +

(
−
∫ 2π

qscc

0 ( ∂θ
∂Z

)dX

−
∫ 2π

qscc

0 (dθb

dZ
)dX

)

Z=0

, (106)

where

θb =
Tb − T0

∆T
.

Substituting Eqs. (8), (52), (58), (63), and (78) into Eq. (106) and completing integration,
we get

Nu = 1 +
(RTsc −RTscc

RTscc

) qscc
2πδ2scc

∫ 2π
qscc

0

A2dX. (107)

Similarly, mass transport is quantified through the Sherwood number Sh which is defined as

Sh =

(
1 +

∫ 2π
qscc

0

(
1

Le
∂S
∂Z

+DS
RT

RS

∂Θ
∂Z

)
dX

∫ 2π
qscc

0

(
1

Le
dSb

dZ
+DS

RT

RS

dθb

dZ

)
dX

)

Z=0

. (108)

Substituting Eqs. (8), (9), (52), (58), (59), (63), (64), (78), and (79) into Eq. (108), we get

Sh = 1 +
(RTsc −RTscc

RTscc

) qscc
2πδ2scc

(rT
rS

r1
Le

(Le− 1) + Le
)∫ 2π

qscc

0

A2dX. (109)

In computing Nu and Sh, we make use of Eq. (87) in Eqs. (107) and (109). The next section
documents the results and discussion extracted from the computation.

7 Results and discussion

Primary and secondary instabilities are discussed in the paper concerning double diffusive
convection in a couple stress liquid, in the presence of the cross diffusion effect of Soret. We first
discuss the variation of the critical Rayleigh number for the stationary convection RTscc and
the oscillatory convection RTocc with the couple stress parameter CS for different values of the
solutal Rayleigh number RS, the Lewis number Le, the Soret parameter DS, and the Prandtl
number Pr, and those are shown in Tables 1 and 2. In the above parameters, CS represents the
suspended particles, RS represents the Rayleigh number corresponding to the second diffusing
component, and DS represents the coupled molecular diffusion or cross-diffusion.

From the tables, one may make the inference that in the presence of suspended particles
(CS 6= 0), the system is stabilized in the cases of both stationary and oscillatory convection.

The effect of RS on the onset of stationary and oscillatory convection is also shown in
Tables 1 and 2. From the tables, we may conclude that when the magnitude of RS increases,
the critical Rayleigh numbers of stationary and oscillatory modes increase, thereby indicating
that the solutal concentration (second diffusing component) has a stabilizing effect on the onset
of convection.

The tables show the effect of the Lewis number Le on the onset of convection for fixed values
of the other parameters. With an increase in Le, one can see that the critical Rayleigh number
increases in the cases of both stationary and oscillatory convection.
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Table 1 Critical values of stationary and oscillatory convection for DS = −0.1, 0.1 (here, OSC refers
to oscillatory convection)

DS Pr Le CS RS qscc RTscc qocc ω2
c RTocc Remark

–0.1
5 7 0.04 1 000 2.045

26 787.7 1.8918 55.2135 2 268.72 OSC

0.1 4 727.25 1.341 5 22.490 3 2 840.7 OSC

–0.1

4

7 0.04 1 000 2.045 26 787.7

1.881 7 53.569 7 2 267.8 OSC

6 1.891 8 55.213 5 2 268.72 OSC

8 1.898 8 56.364 9 2 269.59 OSC

0.1

4

7 0.04 1 000 2.045 4 727.25

1.34 22.24 2 839.23 OSC

6 1.35 23.09 2 827.82 OSC

8 1.36 23.53 2 822.13 OSC

–0.1 5

5

0.04 1 000 2.045

12 072.6 1.779 9 51.128 7 2 461.28 OSC

6 17 590.8 1.840 5 53.659 1 2 350.47 OSC

7 26 787.7 1.891 8 55.213 5 2 268.72 OSC

0.1 5

5

0.04 1 000 2.045

4 024.21 1.296 5 16.926 5 3 014.06 OSC

6 4 397.7 1.321 5 20.300 1 2 913.72 OSC

7 4 727.25 1.341 5 22.490 3 2 840.7 OSC

–0.1 5 7

0.02

1 000

2.107 3 26 162.7 1.917 7 61.923 8 2 043.71 OSC

0.04 2.045 1 26 787.7 1.891 8 55.213 5 2 268.72 OSC

0.08 1.977 3 28 022.8 1.863 5 46.371 5 2 711.24 OSC

0.1 5 7

0.02

1 000

2.107 3 4 616.94 1.366 3 28.732 5 2 529.7 OSC

0.04 2.045 1 4 727.25 1.341 5 22.490 3 2 840.7 OSC

0.08 1.977 3 4 945.2 1.296 9 14.274 7 3 471.08 OSC

–0.1 5 7 0.04

800

2.045

22 121.1 1.910 1 47.055 2 2 068.54 OSC

5 000 120 121 1.682 4 231.17 6 152.91 OSC

10 000 236 788 1.313 7 501.101 10 910 OSC

0.1 5 7 0.04

800

2.045

3 903.72 1.315 7 15.049 8 2 678.25 OSC

5 000 21 197.8 1.311 4 182.069 6 566.46 OSC

10 000 41 786.1 1.042 5 412.148 11 234.8 OSC

Table 2 Critical values of stationary and oscillatory convections for DS = −0.3, 0.3 (here, PES refers
to principle of exchange of stabilities being valid)

DS Pr Le CS RS qscc RTscc qocc ω2
c RTocc Remark

–0.3
5 7 0.04 1 000 2.045

–7 305.74 2.248 1 104.053 1 861.06 OSC

0.3 2 592.36 1 –7.504 35 3 158.74 PES

–0.3

4

7 0.04 1 000 2.045 –7 305.7

2.247 7 100.655 1 843.43 OSC

5 2.248 1 104.053 1 861.06 OSC

6 2.248 7 106.46 1 873.33 OSC

0.3

4

7 0.04 1 000 2.045 2 592.36

1 –15.381 4 3 317.01 PES

5 1 –15.348 2 3 295.74 PES

6 1 –15.325 2 3 281.57 PES

–0.3 5

5

0.04 1 000 2.045

–12 073 2.154 5 99.511 1 2 033.82 OSC

6 –8 795.4 2.207 9 102.28 1 933.61 OSC

7 –7 305.7 2.248 1 104.053 1 861.06 OSC

0.3 5

5

0.04 1 000 2.045

2 414.53 1 –15.348 2 3 295.74 PES

6 2 512.97 1 –10.675 3 3 215.61 PES

7 2 592.36 1 –7.504 35 3 158.74 PES

–0.3 5 7

0.02

1 000

2.107 –7 135.3 2.379 113.021 1 644.54 OSC

0.04 2.045 –7 305.7 2.248 1 104.053 1 861.06 OSC

0.08 1.977 –7 642.6 2.115 8 93.082 2 282.03 OSC

0.3 5 7

0.02

1 000

2.107 2 531.87 1 –1.832 52 2 827.41 PES

0.04 2.045 2 592.36 1 –7.504 35 3 158.74 PES

0.08 1.977 2 711.88 1 –15.166 6 3 813.25 PES

–0.3 5 7 0.04

800

2.045

–6 033 2.204 94.622 9 1 705.01 OSC

5 000 –32 760 3.175 5 253.915 5 304.65 OSC

10 000 –64 579 4.023 388.406 9 598.35 OSC

0.3 5 7 0.04

800

2.045

2 140.75 1 –14.014 1 2 972.76 PES

5 000 11 624.6 1.098 2 117.282 6 857.55 PES

10 000 22 914.9 1 285.433 11 522 PES
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For positive values of DS, one can observe from the tables that RTscc increases with the
increase in DS, while for negative DS, RTscc decreases with the increase in |DS|. A similar
observation on the effect of DS on RTocc can be made. In the case of DS taking negative values,
oscillatory convection is shown to be possible. In the case of positive values of DS, however,
the PES is valid provided DS > 0.3. Overstability is seen only for the case when the sign of DS

is such as to make a stabilizing contribution to the density gradient.
The tables illustrate the fact that the Prandtl number has a destabilizing effect on oscillatory

convection and has no effect on stationary convection.
We now discuss about the possibility of pitchfork, Hopf, Takens-Bogdanov, and codimension-

two bifurcations (primary instabilities) using the results of linear stability analysis. The schematic
of pitchfork and Hopf bifurcations are shown in Fig. 1.

Fig. 1 Schematic of Rayleigh number versus wave number plots for pitchfork, Hopf, inverted, Takens-
Bogdanov, and codimension-two bifurcations

Based on the sign of DS, we may consider the following two cases:
(i) DS > 0 and
(ii) DS < 0.
The pitchfork and Hopf bifurcations are characterized by stationary and oscillatory Rayleigh

numbers given by Eq. (21). The finding on the effect of DS on RTsc and RToc is in tune with
the results of Malashetty et al.[6] and Hu et al.[21].

From Eq. (84), it is clear that the supercritical pitchfork, subcritical and tricritical bifur-
cations are, respectively, given by bifurcation λ3 > 0, λ3 < 0, and λ3 = 0 (see Fig. 2). The
Takens-Bogdanov bifurcation point is an equilibrium point (here, it is a wave number), at which
the neutral curve of oscillatory convection intersects the neutral curve of stationary convection,
i.e.,

RTocc(qocc) = RTscc(qscc), (110)

where qoc = qsc. If qoc 6= qsc, it is called the codimension-two bifurcation point.
Analysing the expression of ω2 in Eq. (21), we note that when I3 = 0, the frequency on the

neutral curve of oscillatory convection approaches zero, i.e.,

ω2 = 0. (111)
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Equation (111) is a double zero corresponding to the Takens-Bogdanov bifurcation point at
RS(qoc), where

RS(qoc) =
δ6oc(Pr(DSLe(Le+ 1) + 1)(1 + CSδ

2
oc) + (LeDS + 1))

q2ocLePr(Le(1 −DS) − 1)
. (112)

The schematic of the Rayleigh number versus the wave number plot corresponding to Takens-
Bogdanov and codimension-two bifurcations is shown in Fig. 2.

λ

λ

λ

λ

λ

λ

Fig. 2 Plots of RS versus Le obtained from coefficient λ3 of Newell-Whitehead-Segel equation at
onset of stationary convection for CS = 0.04, P r = 5, and DS = 0.1, 0.3,−0.1,−0.3

We now proceed to discuss the results of a nonlinear stability analysis using the Lorenz
and Ginzburg-Landau models. The Lorenz model is used to discuss about the possibility of
inverted (subcritical) bifurcation. Our findings from the weakly nonlinear stability analysis con-
cur with those of Platten and Chavepeyer[28] and Malashetty et al.[7] that subcritical instability
is possible for DS < 0.

Subsection 4.1 discusses the condition under which the secondary instabilities exist. The
Ginzburg-Landau equation is used in studying secondary instabilities such as Eckhaus and
zigzag.

It is found from our computations that the regions of Eckhaus and zigzag instabilities in-
crease by increasing |DS| for fixed values of the other parameters (see Fig. 3). However, DS

does not significantly alter the region of both Eckhaus and zigzag instabilities.

δ

λ λ

Fig. 3 Plots of secondary instability regions of Eckhaus (E), zigzag (Z) instabilities and stable regions
(S) in (λ2/λ1, δqsc)-plane for RS = 1000, CS = 0.04, Le = 7, DS = 0.3, and Pr = 5

We evaluate the Nusselt number Nu and the Sherwood number Sh to study heat and mass
transport. Figure 4 shows the plots of Nu versus the scaled thermal Rayleigh number r1 for



Effects of second diffusing component and cross diffusion 1595

different values of the Soret parameter DS and keeping the other parameters fixed. From the
figure, it is clear that for DS > 0, heat transport is diminished, while for DS < 0, heat transport
is enhanced compared with the value of Nu of DS = 0.

Fig. 4 Plots of Nusselt number Nu versus scaled thermal Rayleigh number r1 for CS = 0.04, RS =
1000, Le = 7, and different values of DS

Figure 5 shows that as we increase Le, Nu increases for DS < 0, while the opposite result
is true for DS > 0. Thus, Le enhances heat transport in the case of DS < 0 and diminishes it
in the case of DS > 0. A similar effect can be observed in Fig. 6 which is the plot of Nu versus
r1 for different values of CS.

Fig. 5 Plots of Nu versus r1 for DS = 0.3,−0.3, CS = 0.04, RS = 1000, and different values of Le

Fig. 6 Plots of Nu versus r1 for DS = 0.3,−0.3, RS = 1000, Le = 7, and different values of CS
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Figure 7 throws up an interesting result in the case ofDS = 0.3, and the similar result applies
for other positive values of DS. In this case, the second diffusing component fails to alter heat
transport of a single component system, and this is essentially due to the cross-diffusion effect
signified by the Soret coefficient nullifying the solutal concentration effect on heat transfer.
However, in the case of DS < 0, heat transport is significantly altered by the second diffusing
component. We also find from the figure that the Nusselt number increases with the increase
in RS.

Fig. 7 Plots of Nu versus r1 for DS = 0.3,−0.3, CS = 0.04, Le = 7, and different values of RS

We next discuss the result on the Sherwood number. From Fig. 8, it is obvious that the
solutal transport decreases with an increase in the value of DS for DS > 0, a result similar
to the result on Nu in Fig. 4. Likewise, the results of Figs. 4 and 9 are similar for the case of
DS < 0. The effect of Le on Sh for the cases DS > 0 and DS < 0 are qualitatively similar
to those of the Nusselt number depicted in Fig. 5 but the only difference is that when Le
significantly influences Nu, there is comparatively insignificant influence of Le on Sh. From
Eqs. (107) and (109), we may write

Sh− 1

Nu− 1
=
rT
rS

r1
Le

(Le− 1) + Le < 1. (113)

This aspect can be explicitly seen by comparing the corresponding plots of Nu and Sh in
Figs. 4–11.

Fig. 8 Plots of Sherwood number Sh versus r1 for CS = 0.04, RS = 1000, Le = 7, and different
values of DS
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Fig. 9 Plots of Sh versus r1 for DS = 0.3,−0.3, CS = 0.04, RS = 1000, and different values of Le

Fig. 10 Plots of Sh versus r1 for DS = 0.3,−0.3, RS = 1000, Le = 7, and different values of CS

Fig. 11 Plots of Sh versus r1 for DS = 0.3,−0.3, CS = 0.04, Le = 7, and different values of RS

An important related paper to the current one is the excellent paper by Hu et al.[21] who
not only iterated that Poiseuille-Bénard flows are subcritically unstable for negative separation
factors but most importantly established that, for very small negative or large positive separa-
tion factors and large Rayleigh numbers, the maximum transient growth rate gets enlarged. In
the absence of a Poiseuille flow in their Bénard configuration, the results qualitatively match
with that of Hu et al.[21,27]. To compare the current paper with the paper of Hu et al.[21], we
note the following one-to-one correspondence between the papers:

(i) The separation ratio ψ of Hu et al.[21] is −RS

RT
of our paper and their Lewis number Le

is reciprocal of our Le.
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8 Conclusions

(i) The second diffusing component stabilizes the system due to the fact that the solutal
concentration increases the density. The Soret effect characterized by DS makes a stabilizing or
destabilizing contribution to the density gradient depending on the sign of DS. Overstability is
seen only for the case when the sign of DS is such as to make a stabilizing contribution to the
density gradient.

(ii) The suspended particles increase the viscosity of the fluid and thereby stabilize the
system. The presence of suspended particles is characterized by CS.

(iii) In addition to the pitchfork and Hopf bifurcations, Takens-Bogdanov and codimension-
two bifurcations are also possible in the system.

(iv) The inverted (subcritical) bifurcation is possible only for DS < 0.
(v) DS does not alter the regions of the Eckhaus and zigzag instabilities.
(vi) dNu

dDS
< 0, dSh

dDS
< 0 for DS > 0, and dNu

d|DS|
> 0, dSh

d|DS|
> 0 for DS < 0.

(vii) Variations of RTsc, RToc, Nu, and Sh with Le, CS, and RS for positive and negative
values of DS are tabulated in Table 3.

Table 3 Variations of RTsc, RToc, Nu, and Sh

RTsc RToc Nu Sh

DS > 0 DS < 0 DS > 0 DS < 0 DS > 0 DS < 0 DS > 0 DS < 0

dRTsc

dLe
<0

dRTsc

dLe
<0

dRToc

dLe
>0

dRToc

dLe
>0

dNu

dLe
<0

dNu

dLe
>0

dSh

dLe
<0

dSh

dLe
>0

dRTsc

dCS

>0
dRTsc

dCS

>0
dRToc

dCS

>0
dRToc

dCS

>0
dNu

dCS

<0
dNu

dCS

<0
dNu

dCS

<0
dNu

dCS

<0

dRTsc

dRS
>0

dRTsc

dRS
>0

dRToc

dRS
>0

dRToc

dRS
>0

dNu

dRS
=0

dNu

dRS
>0

dNu

dRS
=0

dNu

dRS
>0
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