
Updating prior geologic uncertainty with GPR traveltime

tomographic data

J. Lopez-Alvis, Urban and Environmental Engineering, University of Liege,
F. Nguyen, Urban and Environmental Engineering, University of Liege,

T. Hermans, Department of Geology, Ghent University

Key words: uncertainty, GPR tomography, multiple-
point geostatistics, Bayesian

Introduction

In a Popper-Bayes approach, the prior probability
states the initial degree of uncertainty, which should
be taken very large, and the collected data should only
be used to falsify unlikely scenarios [1]. In this context,
geophysical methods provide data sets limited in reso-
lution but with relatively large spatial extent enabling
to narrow the uncertainty of the prior.

Geological scenario is one of the uncertain parameter
often neglected in uncertainty analysis. It can be rep-
resented through training images from which multiple-
point geostatistics (MPS) simulations can be drawn.
Generating multiple simulations within each scenario
enable us to consider within-scenarios spatial uncer-
tainty [2].

GPR traveltime tomography is sensitive to porosity
variations and hence it might assist in obtaining a spa-
tial distribution of facies. The method provides good
resolution in imaging structures with high wave veloc-
ity which also makes it suitable to identify continuity
patterns. It is also the starting model for more complex
full waveform inversion which cannot work without it
and where uncertainty has been seldom investigated.

When simulating flow and transport in the subsur-
face, identifying preferential flow paths is necessary and
their magnitude can be quantified using connectivity
metrics [3]. When updating the prior uncertainty using
geophysical data it might be useful to compare different
scenarios based on its connectivity.

This work aims at using GPR traveltime data to up-
date the prior probability distribution using two dif-
ferent distance definitions: the Euclidean distance and
one based on connectivity metrics. By doing this we
can assess the value of this geophysical method in up-
dating prior uncertainty and also compare the effect of
the two distances for this type of data.

Methods

We follow a similar approach to [4]. Within a Bayesian
framework, applying this methodology results in an up-
dated prior that can be later used to obtain a posterior
distribution constrained to dynamic data. In this way,
geophysical data are used to falsify/validate the prior
geologic uncertainty.

The updating process (Figure 1) consists of the fol-
lowing steps:

(1) Defining a wide prior distribution f(p) taking
into account uncertainty in both continuous and dis-
crete parameters p, e.g. geometrical parameters and
depositional environments. We use training images and
MPS simulations to model this uncertainty.

(2) Transforming the facies distribution into a distri-
bution of geophysical properties, by using petrophysi-
cal relations which can also include uncertainty (either
on the parameters of the relation or the relation itself).
Forward modeling of GPR traveltimes in each of these
simulations is applied to get the geophysical response
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Figure 1: Updating of prior distribution
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Figure 2: MDS plot showing similarity of the GPR response
using facies simulations with two different scaling factors:
big channels (red) and medium channels (blue)

and additionally some data transformation can be used
(e.g. regularized inversion).

(3) Computing of distances between any two models
(including the model from observed data) using the Eu-
clidean distance and a distance based on connectivity
metrics. We then use multi-dimensional scaling (MDS)
to project these distances in a lower dimensional space
(Figure 2).

(4) Estimate probability density f(d|p) in this lower
dimensional space by using kernel smoothing [1] and
calculating f(p|d) through Bayes’ rule.

Results

We generate prior probability distributions consider-
ing uncertainty in several parameters including geolog-
ical scenario, geometrical properties and petrophysics.
This contrasts with other studies where only one type
of uncertainty is considered (e.g. [1, 4]). MPS sim-
ulations are generated and one of them is chosen as
the true model. Then the methodolgy is evaluated in
terms of its ability to constrain uncertainty around this
model.

Using GPR traveltime tomography to update prior
uncertainty shows that this method is more discrimi-
nant than other methods (e.g. surface ERT [4]), mean-
ing that GPR traveltime data further reduce prior spa-
tial uncertainty. Regarding uncertainty in geological
scenario, GPR tomography results in more scenarios
getting falsified. When considering alternative petro-
physical relations and different values for the param-
eters of these petrophysical relations, GPR traveltime
data significantly reduce the prior uncertainty.

As previously suggested, the methodology can be
used to compare different geophysical methods in terms
of their ability to narrow prior uncertainty, e.g. ERT
versus GPR, or traveltime tomography versus full
waveform inversion. It is also possible to integrate
time-lapse data in the workflow, which leads to fur-
ther constrain of prior uncertainty and is particularly
beneficial if this uncertainty is to be considered for dy-
namic modeling of a related process.
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