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Abstract

Previous studies indicated that cognitive conflict continues to bias actions even after a move-

ment has been initiated. The present paper examined whether cognitive control also biases

actions after movement initiation. To this end, we had participants perform a Stroop task in

which we manipulated the item-specific proportion of (in)congruent trials (80% congruent vs.

20% congruent). Importantly, participants responded via mouse movements, allowing us to

evaluate various movement parameters: initiation times, movement times, and movement

accuracy. Results showed that mouse movements were faster and more accurate during

congruent trials compared to incongruent trials. Moreover, we observed that this congruency

effect was larger for 80% congruent compared to 20% congruent items, which reflects item-

specific cognitive control. Notably, when responses were initiated very fast – rendering virtu-

ally no time for stimulus processing before movement onset – this item-specific control was

observed only in movement times. However, for relatively slow initiated responses, item spe-

cific control was observed both in initiation and in movement times. These findings demon-

strate that item-specific cognitive control biases actions before and after movement initiation.

Introduction

The ability to engage in goal-directed action is a core aspect of human cognition and has been

referred to as cognitive control (e.g., [1]). In the laboratory, cognitive control can be investi-

gated via conflict paradigms where stimulus features are potentially in conflict with each other.

For example, in the Stroop task [2] participants respond to the ink color in which color words

are printed. Responses are typically faster and more accurate for congruent (e.g., “GREEN” in

green ink) compared to incongruent (e.g., “GREEN” in red ink) combinations of ink color and

color word. It is assumed that the (semantic) processing of the task-irrelevant color word

occurs in a relatively automatic fashion, such that it interferes with the processing of the task-

relevant ink color and consequently impairs performance on incongruent trials (e.g., [3]). The

difference in performance between responses to congruent versus incongruent stimuli is

referred to as the congruency effect (e.g., [4]).

The congruency effect is not a static effect but is modulated, for example, by previous trial

congruency. The so-called congruency sequence effect reflects the observation that when the
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previous trial was incongruent the congruency effect is typically decreased compared to when

the previous trial was congruent [5]. The congruency sequence effect in the Stroop task is

assumed to be the result of conflict-driven adjustments in cognitive control [4]. Another

example, which is core to the current paper, is the impact of the overall proportion congruency

within a specific trial list. Hence, the congruency effect is typically reduced for color words

that are presented mostly with their incongruent color (mostly incongruent or MI items) as

compared to color words that are presented mostly with a congruent color (mostly congruent

or MC items). This phenomenon is referred to as the item-specific proportion congruency
(ISPC) effect and represents a hallmark phenomenon of cognitive control [6–8].

The ISPC effect is often explained in terms of conflict monitoring and subsequent stimulus-

driven attention modulation. More specifically, various studies have proposed that participants

monitor conflict and modulate attention accordingly to maintain current task-goals [7, 9–14].

As a result, MC items become associated with a weak attentional filtering of the task-irrelevant

stimulus feature (i.e., the word) over time, as this feature often does not interfere with the task-

goal to correctly respond to the stimulus. In contrast, for MI items these models assume that

the task-irrelevant stimulus feature becomes associated with a strong attentional filtering, as

word information regularly interferes with the task-goal [6, 11, 13]. Alternatively, others have

suggested that ISPC effects are due to the implicit acquisition of stimulus-response contingen-

cies that are used to predict responses [15, 16]. However, an extensive discussion of both views

is beyond the scope of the present paper.

So far, conflict processing and cognitive control in the Stroop task have typically been investi-

gated via discrete responses (e.g., key presses or verbal responses). A limitation of such responses

and their associated outcome measures (e.g., reaction time or accuracy) is that only the end prod-

uct of action control – that is, the executed response – can be evaluated. To investigate conflict

and cognitive control as it dynamically unfolds over time one can employ mouse tracking, as this

exposes various action control components such as initiation and execution. To date, only a few

studies have used this technique to study conflict processing and cognitive control. For example,

Incera and McLennan [17] demonstrated that the Stroop effect could be observed in mouse

movement trajectories. In addition, Scherbaum and colleagues [18] showed that mouse trajecto-

ries can also reflect the Simon effect, in which congruency between an irrelevant stimulus location

and a response location benefits performance. Another study observed that the size congruity

effect (i.e., better performance on a number-comparison task when numerical size and physical

size are congruent) is reflected in mouse trajectories as well [19]. Notably, Scherbaum and col-

leagues [18] also reported that the congruency effect as seen in mouse trajectories was more pro-

nounced when the previous trial was congruent, while the congruency effect was smaller when

the previous trial was incongruent, indicative of a congruency sequence effect reflecting adjust-

ments in cognitive control (c.f., [20]). These studies reinforce the notion that mouse tracking is

suitable to examine simple conflict processing and cognitive control in conflict paradigms, yet

they have revealed little information regarding the processing stage at which conflict and cogni-

tive control set in.

Following the traditional viewpoint that information processing is composed of distinct

stages that are serially organized and independent from each other [21], it could be hypothe-

sized that effects of conflict processing and cognitive control will only be observed in parameters

that reflect response selection processes preceding the onset of the actual action. However,

recent studies have indicated that cognitive conflict may bias actions both before and after

movement initiation [22–24]. Using a continuous response measure, Buc Calderon et al. [22]

had participants perform a reaching task in which lateral targets were (in)correctly cued. They

manipulated the probability of the cue validity such that one type of cue indicated a high proba-

bility of cue-target congruency, while another type indicated a low probability. Results showed
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that reach trajectories were biased by the probability manipulation, which suggests an ongoing

competition between response alternatives even after action planning and during the action

execution phase. In another study by Cohen Kadosh et al. [24], functional magnetic resonance

imaging (fMRI) was used to evaluate the neural correlates of cognitive conflict as reflected in

the size-congruity effect. Results indicated that the congruency effect was reflected in activation

of the primary motor cortex during response performance, suggesting that cognitive conflict

continues to affect actions even after movement initiation.

Taken together, mouse tracking has mainly been employed to examine conflict processing

[17–19] and (to a lesser degree) congruency sequence effects [18] in conflict tasks. The effect

of conflict processing and congruency sequence effects on mouse trajectories may be explain-

able by modern theories on cognitive control. These theories (e.g., [25, 26]) argue that binding

between task-relevant cortical areas and stimulus features is facilitated in situations where con-

flict is experienced, and that conflict affects performance because network weights are adjusted

via Hebbian (associative) learning after every trial. From this perspective, however, it remains

unclear how conflict adaptation unfolds within-trial and how such changes in within-trial cog-

nitive control dynamically affect responses. Therefore, examining how item-specific control

affects mouse trajectories is especially relevant as it allows to investigate how rapid, within-trial

conflict adaptation biases response selection at different moments in time.

The present study therefore aimed, first, to evaluate whether item-specific control can be

observed in mouse movements and, second, to examine if item-specific control biases mouse

responses until and/or after response initiation. To that end, participants were presented with

four response boxes with a color word printed in them in the upper half of a computer screen.

After they clicked on a start button that was shown centrally in the lower part of the computer

screen, a Stroop stimulus was displayed. Participants were instructed to respond to the ink color

of this stimulus by moving the mouse cursor towards one of the four response boxes that corre-

sponded with the ink color of the Stroop stimulus. Importantly, we manipulated the proportion

of (in)congruent stimuli in an item-specific manner, such that some words were in a congruent

word-color combination on 80% of the trials (i.e., MC items), while others were presented in

such a congruent combination on only 20% of the trials (i.e., MI items). We recorded the initia-

tion time (IT), movement time (MT), and movement accuracy in terms of deviation from the

optimal trajectory (area under the curve or AUC) of each of the participants’ mouse movement

responses. We hypothesized mouse tracking to be able to capture item-specific control pro-

cesses. Furthermore, while traditional (sequential) information processing accounts [21] would

predict that item-specific control only affects ITs as response selection would precede action

execution, more recent accounts argue that response selection continues after movement initia-

tion [22–24]. In line with these recent accounts, we predict that response selective processes will

continue after movement initiation, such that the ISPC manipulation will be evident after

response initiation in mouse movements as well.

Method

Participants

Thirty-one psychology students of Ghent University participated in the experiment. The data

from one participant (who reported to be dyslexic) were removed, and as such the analyses

reported below are based on the data of 30 participants (7 male; 5 left-handed). They were

aged between 17 and 25 years (M = 18.87, SD = 1.66) and were native Dutch speakers. None of

the participants reported to have problems with their sight (e.g., color blindness; corrections

via glasses or contact lenses were allowed). Prior to the experiment, all participants provided

written informed consent (please note that given the situation in Belgium that it is not unusual
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for 17-year-old individuals to attend university, consent by the legal guardian is not required

for such basic cognitive research). They received partial course credits for their participation.

The study was approved by the ethical committee of the Faculty of Psychology and Educational

Sciences of Ghent University.

Apparatus

Stimulus presentation, timing, and data recording were controlled by MouseTracker software

[27], running on a Dell Latitude E5530 laptop computer. The laptop was connected to a 48cm

Dell monitor, on which the stimuli and response locations were presented. Participants used a

standard computer mouse with the cursor speed set at the 6/11 default mode in Windows 7.

Task and procedure

Before the start of the experiment, participants were briefly informed about the procedure and

provided written informed consent. They then completed a short questionnaire regarding

their demographic details and filled out Annett’s [28] Handedness Inventory. Next, they were

seated in front of a computer screen. As Fig 1 shows, participants were presented four black

response boxes (4cm×5cm) outlined in white against a black background. The boxes were

Fig 1. Schematic illustration of a congruent (“RED” in red ink) and an incongruent trial (“BLUE” in yellow ink) trial. Participants clicked the start button to

prompt the presentation of a stimulus that indicated the correct response box. Note that all words were actually displayed in Dutch and that there was a 300ms delay

between clicking the start button and stimulus presentation. In addition, after clicking the response box of their choice, participants had to wait 500ms before the start

button appeared again to start the next trial.

https://doi.org/10.1371/journal.pone.0197278.g001
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displayed at the top of the screen and were filled with a color-word that was printed in white

letters (from left to right “ROOD”, “BLAUW”, “GEEL”, and “GROEN”; the Dutch words for

“RED”, “BLUE”, “YELLOW”, and “GREEN”, respectively). The response boxes remained visi-

ble throughout the experiment.

The stimuli in the present experiment consisted of four Dutch color-words for red, blue,

yellow and green. These words were printed in one of the same four ink colors, with the rest-

riction that red and green were always printed in either red or green, and blue and yellow

always in either blue or yellow. These color-words and ink colors were paired so that first con-

tingency problems were avoided [29]. Specifically, in a canonical four-alternative forced-ch-

oice task, increasing the proportion of congruent stimuli (e.g., 50% “RED” in red ink color)

would result in the irrelevant dimension (i.e., the word) becoming predictive (and therefore

relevant) of the correct response over time if the number of task irrelevant features (i.e. possi-

ble ink colors: blue, yellow, green) was not reduced accordingly [30]. Second, color-words and

ink colors were paired in this specific way to optimize mouse tracking (i.e., for incongruent tri-

als, the correct response and conflicting response were always on opposite sides from the start

location). For one of the pairs, 80% of the trials were congruent, while for the other pair only

20% of the trials were congruent (counterbalanced across participants). This allowed examina-

tion of the ISPC effect.

At the beginning of each trial, a start button (2cm×5cm) appeared centrally at the bottom of

the display. Upon clicking the button, the button and mouse cursor disappeared. After a 300ms

interval (c.f., [31, 32]) a stimulus was presented just above the start button location and the

mouse cursor reappeared. The interval was included to separate the motor component of click-

ing the start button from the motor component of initiating the mouse movement, and to allow

participants to shift their attention from the start click to the stimulus location. After clicking

the start button, the cursor was automatically relocated to the center of the start button (x,y
coordinates 0,0.16), so that mouse trajectories always started from the same location. Partici-

pants were instructed to move the mouse as quickly as possible from the start button to the

response box of which the color-word correctly corresponded with the ink color of the stimulus

and click the box to register their choice. The distance between the start location of the mouse

cursor and the center of each response box was approximately 31.5cm. Participants could use

their preferred hand for responding. A trial ended once they clicked one of the response boxes.

When participants clicked the wrong box, a red ‘X’ appeared centrally on the display for 2s,

after which they could start the next trial. The inter trial interval was 500ms, meaning that fol-

lowing their response participants had to wait 500ms before the start button appeared again to

start the next trial. When participants initiated the mouse movement later than 500ms after

stimulus presentation, the trial was followed by a message encouraging them to start moving

earlier on subsequent trials. This was done to ensure that participants did not strategically wait

to initiate their movement until after selection of the correct response was fully completed (c.f.,

[19, 33]).

Participants first performed a brief practice block in which they performed 16 randomly

ordered trials (50% congruent). Next, they completed four experimental blocks and could take a

self-paced break after each block. In two of the blocks, the ink color of the Stroop stimuli fol-

lowed a fixed order. Consequently, responses also followed a fixed order. Each of these sequence
blocks involved 20 repetitions of an 8-element sequence that was constructed such that it did not

involve direct repetitions, reversals or runs of three. The sequence was always a version of the

form 13243142, and counterbalanced across response locations and participants. In the other

two blocks, the Stroop stimuli were randomly ordered. These random blocks involved the presen-

tation of 160 trials, with the restrictions that there was no direct repetition of the stimulus color

(and thus response location) and that each stimulus was presented equally often. The sequence

Cognitive control before and after action onset
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and random blocks alternated and the order was counterbalanced across participants. Initially,

we aimed to examine whether the predictability of response order modulates the ISPC effect. Par-

ticipants showed faster mouse movements in sequence than in random blocks (1196 vs. 1220ms),

F(1,29) = 7.51, p = .010, ηp
2 = .21, and mouse trajectories were more accurate in sequence than in

random blocks (.45 vs. .48), F(1,29) = 4.39, p = .045, ηp
2 = .13. However, results showed no indica-

tions that response order significantly affected the ISPC effect in any of our dependent variables

(ps>.545). Therefore, for the sake of simplicity, we decided to omit the factor response order

from the analyses below and do not further discuss the sequence manipulation.

Data processing

The software recorded the x- and y-coordinates of the mouse cursor every 13-16ms during

each trial (±70Hz sampling rate). In addition, it recorded performance time during each trial

by logging how many milliseconds elapsed since stimulus presentation. The raw trajectory

data were rescaled to standardized coordinate space (x-axis range -1 to 1; y-axis range 0-1.5)

and remapped toward the right. Trajectories were time-normalized by the software to 101

time-steps, allowing us to average across the full length of trials that varied in duration (for

more details on the rescaling and normalization procedures, see [27]).

Based on these data we determined IT, MT, and AUC to investigate participants’ perfor-

mance. IT refers to time in ms between stimulus presentation and onset of the mouse move-

ment (i.e., the moment that the x,y coordinates first differ from those at the start position). MT

is the total time in ms the participant needed to move the mouse from the start button to click

on the response box. The AUC is the geometric area between the recorded mouse movement

and the optimal trajectory (which is a straight line from the start button to the response box).

This measure is based on the normalized trajectory data and is thus dimensionless. It reflects

the overall attraction towards a response alternative – a greater area indicates stronger attrac-

tion to the alternative and more conflict.

We calculated each of these measures (i.e. IT, MT, AUC) for congruent and incongruent

trials within the 80% congruent pairs and 20% congruent pairs for every participant. The first

trial of each block, trials on which an error was made (<1%) and trials following an error were

omitted from the analyses. In addition, trials were excluded from the analyses when the MT

exceeded more than 3 standard deviations from the mean across participants. This was done

separately for the congruent and incongruent trials within the two proportion congruent con-

ditions, and resulted in the removal of 1.7% of the trials.

Results

We performed repeated measures analyses of variance (ANOVAs) on each of our dependent

variables with Congruency (2; congruent vs. incongruent) and Proportion Congruency (2;

80% congruent vs. 20% congruent) as within-subject variables. The results of these ANOVAs

are shown in Table 1. Results of our ANOVA on MT showed that mouse movements were per-

formed slower for incongruent than for congruent trials (1275 vs. 1142ms), F(1,29) = 106.31,

p<.001, ηp
2 = .79. This congruency effect was also observed in the accuracy of mouse move-

ment trajectories, as results showed that AUC was larger for incongruent relative to congruent

trials (.57 vs. .35), F(1,29) = 55.27, p<.001, ηp
2 = .66. Moreover, IT tended to be shorter for

congruent compared to incongruent trials (207 vs. 212 ms) but this difference just failed to

reach significance, F(1,29) = 3.94, p = .057, ηp
2 = .12. Results further showed a main effect of

Proportion congruency on AUC. Specifically, AUC was larger for MC relative to MI items (.49

vs. .43), F(1,29) = 4.50, p = .043, ηp
2 = .13). This main effect was not significant for IT (210 vs.

208 ms, F<1), and MT (1210 vs. 1196 ms, p = .25).
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Most interestingly, our results revealed significant Proportion Congruency × Congruency

interactions for MT and AUC indicative of the ISPC effect (see Table 1). Fig 2 shows the mouse

movement trajectories for congruent and incongruent trials in the 80% congruent (panel A) and

20% congruent (panel B) items. In addition, Fig 2 shows participants’ performance as reflected

in MT (panel C) and AUC (panel D) for the congruent and incongruent trials as a function of

proportion congruency. In all figures, error bars showing standard errors were calculated via the

Cousineau-Morey method for repeated-measures and represent within-subject standard errors

[34, 35]. Here we first zoom in on the interaction for MT, F(1,29) = 53.76, p<.001, ηp
2 = .65. Par-

ticipants showed shorter MTs on congruent compared to incongruent trials for MC items (1129

vs. 1311ms), F(1,29) = 122.54, p<.001, ηp
2 = .81 , as well as for MI items (1155 vs. 1239ms), F

(1,29) = 46.09, p<.001, ηp
2 = .61. A paired sample t-test revealed that the congruency effect was

larger for MC compared to MI items (182 vs. 84 ms), t(29) = 7.33, p< .001, demonstrating the

ISPC effect. Results of the ANOVA on AUC also showed an ISPC effect, F(1,29) = 15.35, p<.001,

ηp
2 = .35. Participants’ mouse movements exhibited a larger AUC on incongruent relative to

congruent trials, for both MC items (.64 vs. .35), F(1,29) = 57.20, p<.001, ηp
2 = .66, and MI items

(.51 vs. .36), F(1,29) = 25.60, p<.001, ηp
2 = .48. Like with MT, paired t-tests indicated that this

congruency effect was larger for MC compared to MI items (.29 vs. .15), t(29) = 3.92, p<.001.

Results of the ANOVA on IT did not reveal an ISPC effect, F(1,29) = 2.37, p = .14, ηp
2 = .08.

To rule out that the congruency and the ISPC effects varied as a function of response location

(peripheral vs. central pair), we performed two additional analyses. First, we ran an ANOVA with

Location and Congruency as within-subject variables. Results demonstrated that Location did

not significantly interact with the congruency effect for any of our dependent variables (ps>.64).

Second, we ran an ANOVA with Proportion Congruency and Congruency as within-subject vari-

ables, and with Location (peripheral MC vs. peripheral MI) as between-subject variable. Results

showed that the Congruency main effect as well as the Proportion Congruency × Congruency

interaction remained significant for both MT and AUC, Fs>14.84, ps< = .001, but that Location

did not interact with these effects for any of our dependent variables (ps>.50).

Inspection of our data indicated that some trials were associated with extremely fast ITs (M
= 208 ms, SD = 171 ms). It is reasonable to assume that on very fast initiations, stimuli were

not fully processed before the initiation. Therefore, it can be expected that substantial differ-

ences exist in conflict processing between trials with relatively short versus trials with relatively

Table 1. Overview of the main and interaction effects of the ANOVAs with congruency (2) and proportion congruency (2) on IT, MT, and AUC for the main analy-

ses and the IT bin analyses.

Main ANOVA ITfast ITslow

F p ηp2 F p ηp2 F p ηp2

IT

Congruency 3.94 .057 .12 .83 .37 .03 6.13 .019 .175

Proportion congruency .71 .41 .02 .89 .88 .00 .06 .81 .00

ISPC 2.37 .14 .08 .00 .96 .00 11.37 .002 .28

MT

Congruency 106.31 <.001 .79 90.78 <.001 .76 100.68 <.001 .78

Proportion congruency 1.40 .25 .05 1.44 .24 .05 1.44 .24 .05

ISPC 53.76 <.001 .65 14.11 .001 .33 46.12 <.001 .53

AUC

Congruency 55.27 <.001 .66 50.37 <.001 .64 41.94 <.001 .59

Proportion congruency 4.5 .043 .13 2.79 .11 .09 6.21 .019 .18

ISPC 15.35 <.001 .35 3.28 .081 .10 20.68 <.001 .42

https://doi.org/10.1371/journal.pone.0197278.t001
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long ITs. To examine this possibility, we ranked all trials based on IT and divided them based

on a median split into two bins. This was done separately for the congruent and incongruent

trials and for each participant, and resulted in a fast bin (ITfast, M = 88.30 ms, SD = 55.47) and

a slow bin (ITslow, M = 330.27 ms, SD = 101.1). We then performed a repeated-measures ANO-

VAs on IT, MT, and AUC with Bin (2; ITfast vs. ITslow) added as a within-subject variable.

The ANOVAs revealed a significant (three-way) interaction between the ISPC and bin for

IT, F(1,29) = 10.14, p = .003, ηp
2 = .26, and MT, F(1,29) = 6.29, p = .018, ηp

2 = .18. As Table 1

shows, the ISPC effect was significant for the slow IT trials (see Fig 3B), while results showed

no ISPC effect for fast IT trials (see Fig 3A). For MT, the ISPC effect was observed in both fast

IT and slow IT trials (see Fig 3C and 3D, respectively), although a paired-samples t-test showed

that the ISPC effect was smaller for fast IT compared to slow IT trials (67 vs. 131 ms), t(29) =

-2.51, p = .018. For AUC, results showed that trajectories were less accurate for fast IT com-

pared to slow IT trials (.50 vs. .42), F(1,29) = 9.84, p<.001, ηp
2 = .41. Results further confirmed

that there was a general ISPC effect, F(1,29) = 14.85, p = .001, ηp
2 = .34, but this effect was not

modulated by Bin (p = .14).

Fig 2. Panel A and B: Mean mouse trajectories for the congruent and incongruent trials as a function of proportion congruency (80% congruent: Panel A; 20%

congruent: panel B). Error bars represent 95% confidence intervals. Panel C and D: Mean MT and AUC for the congruent and incongruent trials as a function of

proportion congruency (i.e., ISPC effect). Error bars represent standard errors. ���p<.001.

https://doi.org/10.1371/journal.pone.0197278.g002
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Discussion

The present study examined whether item-specific control biases actions even after the initia-

tion of the corresponding movement. We employed a Stroop task in which we manipulated

the item-specific proportion congruency while participants’ responses were recorded using

mouse tracking. We showed for the first time that the ISPC effect can be observed in various

mouse tracking parameters. More importantly, our results revealed that item-specific control

affected response selection after movement onset – even when stimuli were (at least partially)

processed during the interval between stimulus presentation and movement onset. This is an

interesting observation because traditionally stimulus identification, response selection,

response initiation, and response execution are viewed as distinct, serial information process-

ing stages that neither overlap nor interact [21]. According to this view, response selection is

assumed to be completed at the time of response initiation and any processes after this point

are thought to be unaffected by prior factors (e.g., cognitive conflict and cognitive control).

Our study is in line with a set of recent studies that already casted doubts on the existence of a

strictly serial information processing system. For example, these studies demonstrated at the

behavioral [22], neurophysiological [23], and neural level [24] that cognitive conflict biases

Fig 3. Mean IT (panel A and B) and MT (panel C and D) for fast and slow initiation time bins. Error bars represent standard errors. ��p<.01, ���p<.001.

https://doi.org/10.1371/journal.pone.0197278.g003
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actions even after the response initiation phase. Our study extends these findings as the current

results suggest that information processing both before and after initiation of a response was

under the influence of item-specific control. Even when trials were initiated slowly enough

such that stimulus processing could occur before response initiation, our ISPC manipulation

was still evident in mouse movement execution, thus reflecting adaptive, item-specific res-

ponse selection processes occurring after movement initiation. The notion that cognition

biases actions after movement initiation is further supported by our finding that compared to

relatively slow initiated mouse movements, relatively fast initiated movements deviated more

from the optimal trajectory. This suggests that participants experienced a stronger attraction

to the alternative response when there was little time to process a stimulus before movement

initiation.

In addition to the here observed implementation of item-specific control (rather than sim-

ple conflict) both before and after movement onset, the current study extends previous work

in another way. Most of the previous studies showing that cognition leaks into the response

execution interval involved intentional, top-down processes based on the learning and imple-

mentation of instructed rules. Conversely, in the present study we demonstrate that incidental,

bottom-up control processes that are triggered within the trial (i.e., in an ISPC task, only upon

stimulus presentation does the system know the required control demands for the ongoing

trial) can also bias responses both before and after movement onset. This differs greatly from,

for example, the explicit cues used by Buc Calderon et al. [22] to indicate the probability of an

upcoming stimulus. By demonstrating that bottom-up, item-specific control affects mouse tra-

jectories after movement onset, we provide novel insights into the circumstances under which

cognitive processing and response execution can temporally overlap.

Our finding that the typical congruency effect was reflected in mouse movements corrobo-

rates previously reported observations [17–19]. Consistent with an ISPC effect, our results

showed that the congruency effect was smaller for MI items compared to MC items in mouse

movement parameters MT and AUC. These observations are in line with previous research

demonstrating that performance in key-press tasks is modulated by the item-specific propor-

tion of (in)congruent trials [6–8], potentially due to differential allocation of attentional res-

ources to the task-irrelevant stimulus feature in the MI compared to the MC context [7, 36].

The present results extend these findings by showing that mouse movement responses are able

to capture the influence of item-specific control. The observation that the difference in mouse

movement deviations from the optimal trajectory between incongruent and congruent items

was enhanced for MC compared to MI items suggests that participants experienced a stronger

attraction to the response associated with the task-irrelevant stimulus feature on incongruent

trials for MC items. This may underlie the modulation of movement times by item-specific

control.

It may appear counter-intuitive that our data showed a smaller ISPC effect in MT for trials

in the ITfast compared to ITslow bin, because the demand for the implementation of control

processes may be strongest closer to target stimulus onset. However, Pratte and colleagues [37]

have shown that indices of cognitive control (such as congruency) in the Stroop task are small-

est for fast responses and increase with increasing response latency. In light of these findings,

the smaller ISPC effect in MT for trials in the ITfast compared to ITslow bin in the current study

may be due to the fact that only little time elapsed between stimulus presentation and the initi-

ation of movements, leaving insufficient time for an ISPC effect to unfold completely. Alterna-

tively, the smaller ISPC effect in MT for trials in the ITfast compared to the ITslow bin may also

be related to stimulus and response anticipation and repetitions that may have prohibited the

ISPC manipulation to have a rapid effect on movement initiation. Admittedly, future research

needs to verify these speculations.
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In the current study, participants were required to identify the color of a centrally presented

Stroop stimulus in order to then move the mouse cursor towards the response box that included

the corresponding written color word. One limitation of the experimental design may be that

response alternatives were presented as color words. To identify the correct target, participants

had to activate (at least to some extent) their semantic processing system, while this system ide-

ally should be suppressed when processing Stroop stimuli to minimize the impact of the task-

irrelevant stimulus feature. It could therefore be argued that the concurrent need for both inhi-

bition and activation of the semantic processing system may have influenced participants’ per-

formance in the current task. An alternative approach might have been to label the response

boxes by color patches such that participants had to simply visually match the ink color of the

Stroop stimuli with the color of the response boxes. It has been shown that responses are faster

when one needs to discriminate between items that share modality (e.g., matching one color

with another color) compared to when items differed in their modality (e.g., matching color

with color word semantics) [38]. Accordingly, generally (much) faster response times may have

been the result if response boxes would have been labeled by ink color in the current task. How-

ever, when responses become faster the Stroop effect may be on the line as the effect is known

to decrease with shorter reaction times [37]. We argue that if response boxes were labeled by

ink color reaction times would decrease, which would result in either a reduction or even a can-

cellation of congruency effects (i.e., our effects of interest). Future studies should examine the

impact of the match between stimulus and response modality on the congruency and ISPC

effects as reflected in mouse movement parameters.

Another limitation of our paradigm is that we cannot exclude the possibility that our data

may reflect two different types of trials: one trial type in which individuals selected the correct

action before movement onset and a second trial type in which individuals initially selected an

incorrect action, which they then need to correct in order to move towards the correct target.

Even if this was the case, this is still in line with the notion of interacting rather than sequential

processing stages during action selection, as we speculate that the correction of an initially erro-

neous action selection may be corrected (even) after movement initiation and is not dependent

on the resolution of such a selection error before movement onset. Our speculation is in line

with recent accounts that have proposed that behavior is governed by a constant and parallel

competition and implementation of multiple action alternatives [39]. According to this view,

evidence for each action alternative is accrued continuously and throughout the movement

itself. Correspondingly, if evidence is accrued in favor of the incorrect response alternative at

some moment during the movement, such selection error can subsequently be adjusted by

accruing evidence in favor of the selection of the correct response. To that effect, the correction

of such erroneous selection does not require the process of response selection to begin anew,

thus arguing in favor of continuous response selection both before and after movement onset.

In conclusion, the present study illustrates that item-specific control affects mouse move-

ment responses before and also after movement onset. In line with recent evidence, our find-

ings support the notion that response selection may not necessarily be completed before

movement initiation, but that cognitive processes continue to affect responses even after

movement initiation. These findings illustrate the potential of mouse tracking to study cogni-

tive control. In addition to capturing simple congruency effects [17, 19], this technique is also

suitable for assessing the action dynamics of cognitive control phenomena such as the congru-

ency sequence effect [18, 20] and the ISPC effect (present Stroop task). Future studies should

examine the potential of mouse tracking to evaluate the action dynamics of ISPC effects and

other measures of cognitive control in different paradigms, taking into account any effects of

stimulus-response modality compatibility (c.f., [38]).
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