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1.1 Assisted reproductive technologies in cattle 

Today, assisted reproductive technology (ART) refers to all fertility treatments in which human or 

animals’ eggs, semen and embryos are being manipulated. Primarily, ART is used to overcome 

infertility and to help couples to fulfil their desire to have children. In cattle, ART is mainly performed 

to improve reproductive results but it is also intensively used to improve genetic selection in valuable 

individuals or herds. Furthermore, ART can also be a part of the preservation of endangered species. 

ART can be as simple as artificial insemination (AI) in which sperm cells from a male animal of interest 

is manually deposited in the reproductive tract of the female. This allows the use of genetic material 

of superior males, the import of semen to introduce new genetic material without the need to 

transport live animals, the use of frozen semen long after the animals’ dead and the risk reduction of 

spreading transmittable sexual diseases (Foote 2002). Generally, AI techniques have been 

standardized for many species and AI is performed globally in more than 100 million cattle every year 

(Boa-Amponsem and Minozzi 2006). Pregnancy rates after AI however can vary between 30 and 70% 

depending on several factors such as timing (Lamb et al. 2010), parity (Pursley et al. 1997) and number 

of AI performed (Chebel et al. 2004). Due to its massive worldwide application, the genetic impact 

from the male side increased enormously. Some bulls have over hundred thousands of descendants 

and have therefore a remarkable impact on the genetic pool of a breed (Thibier 2005; Goovaerts et al. 

2007). Less evident is however producing more offspring from genetically valuable females to increase 

their genetic impact on the selection process. 

Starting from the mid-seventies, female donors are routinely treated with hormones to induce 

superovulation and are subsequently inseminated to recover embryos by uterine flushing. These in 

vivo derived embryos are then transferred to synchronized recipients (multiple ovulation and embryo 

transfer – MOET). Although annually more than 500,000 in vivo derived embryos are transferred 

worldwide to increase the genetic impact from the female side, it is not successful at all times due to 

the unpredictable response to the hormonal treatment between cows (Hasler et al. 1995; Van 

Wagtendonk-de Leeuw 2006). Nonetheless, the embryo transfer technique proved to be very useful 

in the transfer of in vitro produced embryos (IVP) (Goovaerts et al. 2007), in which immature oocytes 

are removed from the ovaries and are fertilized with semen in a dish. During culture, the fertilized 

oocytes or zygotes will start cleaving and when the blastocyst stage is reached, transfer of the embryo 

to the uterus of a recipient donor is possible. As some disadvantages of MOET, such as the unreliable 

hormonal response, can be overcome by IVP, it gained worldwide interest and nowadays more than 

660,000 IVP embryos are produced each year. Since the first in vitro produced calf, including in vitro 

maturation of the oocyte, was born in 1990 (Fukuda et al. 1990), tremendous progress has been made 
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not only in the oocyte retrieval process (ovum pick-up – OPU) but also in the in vitro procedures 

(maturation, fertilization and culture) and cryopreservation techniques. 

Other ART are part of fundamental or biomedical research, such as the production of cloned embryos 

by somatic cell nuclear transfer or the production of transgenic embryos. However, cloned and 

genetically engineered animals have already raised interest in the meat and dairy industry, for 

application in breeding programs, such as the production of hornless offspring or improved food 

products from animals (Foote 2005). Until now, European legislation only recommends cloning or 

producing genetically modified animals by novel techniques such as Crispr-Cas for research purposes 

as the European Group on Ethics is still in doubt whether using cloned or genetically modified animals 

for food supply is ethically justified (European legislation COM/2010/0585).  
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1.2 Commercial in vitro embryo production 

In order to produce bovine embryos in vitro from follicular oocytes, it is required to perform a series 

of essential techniques following a strict timing. After oocyte collection, which can be performed in 

live animals by ovum pick-up (OPU) or by follicular aspiration of slaughterhouse ovaries, three 

subsequent phases can be distinguished: in vitro maturation (IVM), in vitro fertilization (IVF) and in 

vitro culture (IVC) (Figure 1). When all consecutive steps are carried out punctually, viable embryos 

will be the result. In commercial settings, this will be the higher goal of IVP as these viable embryos 

will be transferred to recipient animals which will hopefully become pregnant and deliver a healthy 

calf. 

1.2.1 Oocyte collection 

Ovum pick-up in live donor animals 

Repeated oocyte collection by transvaginal ultrasound-guided follicular puncture (OPU) followed by 

routine IVP has become an important alternative to MOET in cattle. Adapted from human 

reproduction, OPU in cattle was performed for the first time in 1988 (Pieterse et al. 1988). It can be 

considered to be more advantageous than MOET as it can also be used in acyclic or pregnant cows, in 

cows with oviduct or genital tract problems and in cows insensitive to hormonal treatment (Boni 2012). 

Moreover, OPU can already be performed in animals of young age, i.e. nine months. Since these young 

heifers already have a genomic breeding value nowadays, they can be selected as a donor animal in a 

reliable way. Hereby, the generation interval is reduced significantly which in turn increases the genetic 

gain compared to MOET. Today, cattle breeders want as many offspring as possible from genetically 

superior cows, therefore, OPU/IVP is more and more being used in commercial practice because it 

does not interfere with the reproductive cycle or the milk production. In 2015, more than 660,000 

embryos were produced by in vitro techniques, which is a 10% increase compared to the previous year 

(IETS 2016). 

On the one hand, technical modifications were made to optimize the OPU technique over the years. 

Several studies investigated aspiration pressure, needle bevels and longitudes and ultrasound 

transducers to optimize the OPU technique itself, with the intention to retrieve not only as many 

oocytes as possible but also to maintain high quality oocytes (Bols et al. 1996b; Bols et al. 1997; Bols 

et al. 2004; Van Wagtendonk-de Leeuw 2006). In addition, the OPU operator also has an important 

influence as years of experience will lead to a higher oocyte collection rate (Scott et al. 1994). On the 

other hand, the oocyte yield is also influenced by biological factors which are less definable and 

controllable than the technical aspects of OPU. As in MOET programs, the donor itself is responsible 
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for approximately 20% of the variation seen in OPU oocyte and embryo yield (Van Wagtendonk-de 

Leeuw 2006). Other factors should also be accounted for such as the frequency of follicle aspiration 

and the use of hormonal stimulation.  

Since the success of OPU is irreversibly connected with the number of oocytes retrieved per puncture 

session, increasing this number has been a major goal. Although many reports investigated the effect 

of hormonal pretreatment of the donor animals prior to OPU (Fry et al. 1994; Looney et al. 1994; Paul 

et al. 1995; Bols et al. 1996a), optimizing hormonal treatment protocols showed however inconsistent 

results, mainly due to the variable response to the stimulation by the donors (Boland et al. 1991; 

Kohram et al. 1998; Durocher et al. 2006), contamination of pharmaceutical products with interfering 

hormonal components (Touati et al. 1991) and a poor halflife time which is either too long for equine 

chorionic gonadotropin (eCG) or too short in the case of follicle stimulating hormone (FSH) (Boland et 

al. 1991; Lovie et al. 1994). In general, a hormonal treatment protocol is based upon the removal of 

large follicles via transvaginal aspiration, followed by administration of gonadotropins. By dominant 

follicle ablation, an endogenous rise of FSH is created (Ooe et al. 1997; Baracaldo et al. 2000) and this 

follicular wave is sustained by giving the animals multiple injections of f.e. FSH. The best results are 

obtained when OPU is performed 48 hours after the last FSH injection. This period, which is also called 

the coasting period, mimics the in vivo process of early follicular dominance (Blondin et al. 2002). When 

however stimulating hormones are given to the donor animals, the frequency of aspiration is dropped 

to one OPU per two weeks, in comparison with the once or twice weekly OPU schedule when no 

stimulating hormones are given. This twice weekly schedule is even preferred over the once weekly, 

as it results in an increased follicular wave frequency and in an arrest of the estrous cycle, follicle 

maturation and ovulation (Boni 2012). Nonetheless, FSH treatment before OPU resulted in more high 

quality oocytes and subsequently, in more embryo transfers and pregnancies (Vieira et al. 2014). In 

both cases, with or without hormonal stimulation, OPU can be performed continuously for over several 

months without harming the donor animal’s health and fertility (Boni 2012). 

  



 

 
 

 

Figure 1 Schematic overview of bovine in vitro embryo production. Oocyte collection is followed by in vitro maturation and fertilization of the oocytes and subsequently 
zygotes are cultured until 8 days post insemination (dpi) (Pictures by Maaike Catteeuw)
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Despite refinement of the OPU collection method, the number of oocytes retrieved per donor is still 

disappointingly low; on average, 4 to 11 oocytes per aspiration session are collected in Bos Taurus 

(Blondin et al. 2002; De Roover et al. 2005; Chaubal et al. 2006; Vieira et al. 2014). A study by O’Doherty 

et al. (1997) indicated that the number of oocytes grouped has a major impact on the developmental 

capacity of the oocytes (Table 1). Small groups of 10 oocytes have decreased blastocyst rates 

compared to larger groups of at least 20 oocytes. From this point on, we are referring to “small donor 

groups” as groups of 10 oocytes or less coming from the same donor animal. Moreover, depending on 

the oocyte quality (only one third is of good quality), between 1.5 to 5 embryos can be produced per 

OPU session (Goovaerts et al. 2007). Nonetheless, OPU-IVP can yield 80 to 100 calves per donor per 

year, while only 20 to 25 and only 1 calf per year using MOET and AI, respectively (Van Wagtendonk-

de Leeuw 2006). 

Table 1 The effect of oocyte group size on the developmental outcome (O’Doherty et al. 1997).  

Group size 
 

Cleavage rate 
(%) 

Blastocyst rate 
(%) 

1 66.8 13.1 a 

5 78.3 20.8 b 

10 78.0 22.3 b 

20 81.5 32.5 c 

40 77.6 32.8 c 

Follicular aspiration of abattoir ovaries 

Oocyte collection from slaughterhouse ovaries results in a onetime recovery of a very limited number 

of gametes, which strongly contrasts the OPU-technique. It can be offered as a final resource when a 

cow needs to be slaughtered, but mostly it is done for research purposes. The recovery of oocytes from 

slaughterhouse ovaries is low budget, as only a syringe and needle are needed and the learning curve 

is much faster compared to OPU. Furthermore, the recovery rate of oocytes is higher when aspirating 

ovaries from slaughtered animals compared to OPU (Hashimoto et al. 1999). For research, the 

aspirated follicle fluid, containing cumulus oocyte complexes (COCs), will be left to precipitate in a 

tube. Subsequently, a rigorous selection of high quality COCs using a stereomicroscope can be done 

due to the high number of collected COCs. Although the donor’s identity will get lost, the high yield of 

COCs collected makes it possible to create large groups for maturation, with correlated higher success 

rates (Khurana and Niemann 2000; Fujita et al. 2006; Hoelker et al. 2010). 
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1.2.2 Oocyte maturation 

In vivo and in vitro maturation 

In vivo, the preovulatory or immature oocyte in several species, such as human, cattle and mouse, is 

surrounded by cells, such as granulosa and cumulus cells and follicular fluid. There is a close interaction 

between the follicular environment and the oocyte. Gap junctions penetrating the zona pellucida 

ensure a close contact between the oocyte’s membrane and the inner layer of surrounding cumulus 

cells or corona radiata cells (Atef et al. 2005). Furthermore, there is a bidirectional communication 

between the oocyte and granulosa and cumulus cells. On the one hand, oocyte secreted factors, such 

as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), will control 

the differentiation of cumulus cell through their receptors, such as ALK 5 and ALK 6. Subsequently, 

SMAD intracellular transducers are activated and will regulate a variation of cumulus cell functions, 

such as proliferation and expansion (Gilchrist 2011). On the other hand, cumulus cells are crucial for 

oocyte development as they contribute to oocyte growth and development via paracrine and gap-

junction-mediated pathways. Moreover, the follicular environment is regulating both the meiotic 

arrest of the oocyte at the prophase I stage, as well as the meiotic resumption. An important key player 

herein is cyclic AMP (cAMP), not only synthesized by the oocyte itself but also delivered by mural 

granulosa cells and adjacent cumulus cells via gap-junctions (Gilchrist 2011). As long as a high cAMP 

concentration is maintained inside the oocyte, the oocyte will be kept in meiotic arrest at the prophase 

I stage. To induce meiotic resumption, the preovulatory luteinizing hormone (LH) surge will act through 

the receptor, localized at the somatic cells. Through a secondary cascade of epidermal growth factor 

(EGF) like peptides, ERK1/2 in the cumulus cells are inducing a cAMP downregulation and 

concomitantly an upregulation of maturation promoting factor (MPF). In the 24 hours following the 

LH-surge, the primary oocyte undergoes maturation and ovulation is induced (Gordon 2003). 

When bovine oocytes are being removed from their follicle, the meiotic-inhibiting influence is ceased 

resulting in a spontaneous resumption and completion of meiosis (Pincus and Enzmann 1935; Gilchrist 

2011). Oocytes will undergo maturation even without the presence of endocrine and paracrine signals 

inducing maturation in vivo (Norris et al. 2009). Although an average of 90% of the oocytes resume 

meiosis up to metaphase II stage, only 30-40% will reach the blastocyst stage in cattle. Similar results 

are found in sheep and goat (Paramio and Izquierdo 2014). In contrast, only 70% of human immature 

oocytes reach the MII phase after IVM and less than 40% will develop into a transferable blastocyst, 

resulting in a pregnancy rate of 25%, which is only half of the pregnancy rate achieved after 

conventional IVF (Walls et al. 2015). Although IVM offers advantages for women having polycystic 

ovarian syndrome or diagnosed with cancer, higher miscarriage rates have also been reported 
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(Basatemur and Sutcliffe 2011). The non-physiological resumption of meiosis in vitro can compromise 

the subsequent oocyte developmental potential (Gilchrist and Thompson 2007). Moreover, the 

oocyte’s competence in vitro is also affected by an inadequate cytoplasmic maturation, which can be 

evidenced by a defective distribution and location of mitochondria (Gordon 2003). In vitro maturation 

of bovine oocytes does not only imply an appropriate segregation of the chromosomes but also an 

adequate cytoplasmic maturation to retrieve full competence. Although some factors can be taken 

into account when producing in vitro embryos, such as oocyte quality and in vitro maturation systems, 

it is clear that the in vitro maturation itself has an enormous impact on the developmental outcome of 

the oocytes. A study by Rizos et al. (2002) determined in detail the effect of each sequential step of 

the bovine embryo production process in vivo and in vitro. The IVM has a major impact on the further 

developmental capacities of the oocytes as only 38.9% blastocysts were formed after IVM, compared 

to 78% when in vivo matured oocytes were fertilized and cultured in vitro. More insights into bovine 

in vivo and in vitro maturation can therefore increase the effectiveness of the embryo development. 

Due to the immediate meiotic resumption that is taking place when oocytes are removed from the 

follicle, these precious gametes require careful handling in commercial settings. Moreover, there are 

often large time gaps between oocyte collection in different cows, implying not only different timings 

for onset of oocytes’ maturation but also the need for laborious scheduling of the later manipulations. 

Different methods have been investigated to keep the oocytes in the germinal vesicle stage (Alm et al. 

2008). Delaying oocyte maturation can be achieved by cAMP modulators by inducing cAMP production 

or preventing its breakdown. Three types of cAMP modulators can be applied; cAMP analogues, 

adenylate cyclase activators and phosphodiesterase inhibitors. In cattle, studies have investigated the 

effect of these cAMP modulators, showing oocyte maturation regulation, increased cAMP levels, 

reversibility of the inhibitory effects and delay of meiotic resumption. Nonetheless, results regarding 

oocyte maturation and embryo development were often inconsistent between different studies (Sato 

et al. 1990; Sanbuissho et al. 1992; Atkas et al. 1995a; Atkas et al. 1995b; Guixue et al. 2000; Mayes 

and Sirard 2002; Bilodeau-Goeseels 2003; Luciano et al. 2005; Barretto et al. 2007). Inhibition of M-

phase promoting factor (MPF) kinase activity by roscovitine, which is a purine, has also shown to be 

successful at maintaining bovine oocytes at the germinal vesicle stage. However, MPF inhibitors also 

have deleterious effects such as maturation kinetics alterations and a decrease in blastocyst 

development (Lonergan et al. 2000; Ponderato et al. 2001; Lagutina et al. 2002). Application of 

pharmacological inhibitors demands a cautious approach as these products are toxic. An easy, safe and 

coherent method to transport oocytes from different herds, enabling pausing of meiotic resumption, 

would definitely facilitate logistics for commercial practice. 
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Oocyte quality 

The oocyte’s quality is defined by its competence to develop into a viable blastocyst in in vitro 

conditions, which is influenced by the cumulus oocyte complex (COC) itself but also by laboratory 

conditions (Merton et al. 2003). First, biological factors have a major impact on oocyte quality. Nuclear 

maturation in mammalian oocytes involves the breakdown of the germinal vesicle, chromosome 

condensation and segregation, extrusion of the first polar body and resumption of the meiotic division 

up to the metaphase II stage (Roth and Hansen 2005). Also the redistribution of multiple cytoplasmic 

organelles defined as cytoplasmic maturation, such as the alignment of cortical granules just beneath 

the oolemma (Gilchrist and Thompson 2007), storage of mRNA, protein and transcription factors are 

essential for the oocyte to take the control of the first cleavage divisions until embryonic genome 

activation (Fair et al. 1995; Ferreira et al. 2009). Incomplete cytoplasmic maturation lowers the 

oocyte’s potential, even if the nuclear maturation is fully completed. An adequate coherence between 

nuclear and cytoplasmic maturation is therefore necessary for successful fertilization and embryo 

development. 

Other factors, such as follicle and oocyte diameter (Lonergan et al. 1994; Fair et al. 1995), oocyte and 

cumulus morphology (Yuan et al. 2005) (Figure 2), have been associated with the oocyte’s quality and 

developmental competences in cattle. By aspirating antral follicles with sizes ranging from >2 to 8 mm, 

oocytes have a better developmental potential compared to those collected from follicles <2 mm. 

Furthermore, selecting cumulus oocyte complexes having a homogeneous cytoplasm and multiple 

compact layers of cumulus cells has proven to be crucial as the presence of a tight cumulus cell-oocyte 

contact is essential for maturation (Hashimoto 2009). Both oocyte and cumulus cells are capable of 

producing regulatory factors which facilitate a bidirectional communication, essential for fertility 

(Gilchrist et al. 2008).  

 

Figure 2 Categories of oocyte quality. (A) high, (B) good, (C) low and (D) bad quality oocytes. (Pictures by Maaike 
Catteeuw) 

Second, some technical aspects in connection with bovine commercial IVP, may result in an impaired 

oocyte quality and developmental competence. In commercial practice, it is routine that oocytes and 

resulting embryos are grouped per donor, to prevent identity loss of the originating donor and to limit 
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possible disease transmission. Due to the low oocyte yield per donor, no strict oocyte selection, is 

performed. The low numbers of variable quality oocytes grouped together decrease as such the overall 

embryo developmental capacity (Marquant-Leguienne and Humblot 1998).  

In vitro maturation culture systems 

In vivo, the oocyte is stimulated by gonadotrophins, FSH and LH and the composition of follicular fluid 

is changed over time to fully support the progression of the oocyte’s maturation. In contrast, the in 

vitro maturation environment is often a static system composed of complex media, such as TCM-199, 

hormones (FSH, LH), serum or serum replacements and growth factors. In our lab, maturation medium 

is protein-free and composed of TCM-199 and EGF (Epidermal Growth Factor), which stimulates 

cumulus cell expansion and improves the percentage of oocytes undergoing nuclear maturation as 

well as the proportion of embryos attaining the blastocyst stage (Lonergan et al. 1996). Generally, in 

vitro maturation of bovine COCs is performed for 22 to 24 hours in specialized medium in order to 

achieve full developmental competence. In cattle, OPU oocytes can be matured in vitro for 16 to 28 

hours without compromising the embryo production (Merton et al. 2012). 

In general, bovine COCs are matured in a large volume of medium as this facilitates oocyte handling 

compared to maturation medium droplets under mineral oil. Since only small numbers of oocytes are 

retrieved per donor resulting in maturation in small groups of COCs, low oocyte densities (number of 

oocytes per volume unit of medium (µl)) are therefore common in commercial practice. The group size 

or number of COCs matured together is playing an important role, therefore, maturing large groups of 

COCs together is still preferred since a higher blastocyst yield is achieved compared to the maturation 

of individual COCs or small groups, even when similar oocyte densities are maintained (Carolan et al. 

1996). Grouping more COCs in a way that the oocytes do not lose their identity would benefit the 

commercial OPU-IVP practice as oocytes could possibly retrieve higher developmental capacities. 

1.2.3 Oocyte fertilization 

In vivo and in vitro fertilization 

In vivo, fertilization is a complex process which involves the activation of the oocyte by the 

spermatozoon. Once the spermatozoon passes the cumulus oophorus and contacts the zona pellucida, 

it undergoes the acrosome reaction and penetrates the zona due to its hyperactivated state. 

Subsequently the spermatozoon binds to the oolemma and fuses. The oocyte is activated and various 

events are initiated such as cortical granule release and cytoplasm rearrangement. The oocyte 

completes the second meiosis and subsequently, the second polar body is extruded. The penetrating 
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sperm cell undergoes morphological changes when transforming into the male pronucleus. After only 

a few hours, both male and female pronuclei are formed and will migrate to each other to form a 

diploid zygote nucleus. Shortly after, the cell division starts (in detail cfr. 1.4.1) and a first division 

towards a two cell embryo occurs.  

Routinely, in vitro fertilization is performed by co-incubating capacitated spermatozoa with mature 

oocytes. Prior to the incubation, semen of a previously IVF tested bull is separated over a discontinuous 

density gradient, in order to purify motile sperm from dead cells, thereby increasing the fertilization 

rate. Bovine IVF is performed with cumulus-enclosed oocytes. When oocytes are devoid of cumulus 

cells, which is sometimes the case in OPU settings, the fertilization rate decreases. Furthermore, these 

cumulus cells participate in the mechanisms of sperm capacitation and acrosome reaction, which 

directly affects polyspermy rate (Tanghe et al. 2002a). Polyspermy or penetration of more than one 

spermatozoon, has been reported to be between 2.9% and 22.0% in bovine in vitro fertilization (Parrish 

et al. 1986; Xu and Greve 1988; Verberckmoes et al. 2005; Destouni et al. 2016). Normally, when a 

spermatozoon has entered, the zona pellucida hardens which is also called ‘zona block’ or ‘zona 

hardening’ and prevents other spermatozoa from entering. The exocytosis of cortical granules is 

thought to be the major role player in this hardening process. However, polyspermy appears to be not 

only related to failure of exocytosis (Coy et al. 2008), but also to the oocytes’ morphology (Hosoe et 

al. 2014) and the maturation status (Sugimura et al. 2017).  

In vitro fertilization culture systems 

In commercial settings, the oocytes are fertilized in groups per donor animal. In theory, it would be 

possible to fertilize each oocyte separately with semen of a different bull to obtain a higher variation 

in genetic combinations, compared to MOET. Nonetheless, a good fertilisation capacity of a bull’s 

semen in vivo does not mean that this is also the case in vitro. It is therefore indicated to assess the in 

vitro fertilizing ability of a specific bull. The best way to evaluate this ability is to perform IVF and assess 

embryo development, which is a rather expensive and time-consuming method. However, semen 

quality parameters will already give a good indication of the bull’s in vitro fertilization capacity, such 

as sperm motility, progressive motility, normal morphology after thawing and life-dead ratio after 

fertilization (Tanghe et al. 2002b).  

Fertilization media comprise capacitating agents to increase the fertilization rate. One of the main 

agents used is heparin as it induces acrosome reaction of bovine spermatozoa, resulting in an improved 

frequency and quality of IVF (Fukui et al. 1990). However, increasing the heparin concentration results 

in an increased incidence of polyspermy (Fukui et al. 1990; Marquant-Le Guienne et al. 1990). Other 
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chemical agents to stimulate sperm motility can be used as well, such as caffeine and PHE 

(penicillamine, hypotaurine and epinephrine) (Izquierdo et al. 1998). Routinely, mature oocytes are 

co-incubated with 1 million spermatozoa per ml to achieve a proper fertilization rate. 

1.2.4 Embryo culture 

In vivo and in vitro embryonic development 

In vivo, the fertilized oocyte or zygote starts its first cleavage about 20 hours after the ovulation has 

occurred (Laurincik et al. 1994). The oviduct provides the optimal environment for early embryo 

development. There is a dynamic relationship as various endocrine and paracrine secretions are 

providing the appropriate environment to support development by producing oviduct-specific 

molecules (Hunter 1994). These oviduct proteins are playing a role in fertilization and can also act as 

stabilizers, carrier molecules or immunosuppressive agents and they might influence the embryonic 

development. Studying embryo development inside the oviduct is not routinely done as more invasive 

techniques, such as surgery and slaughter, are required to retrieve the in vivo embryos. However, a 

novel technique has been developed which makes it possible to flush the oviduct, bringing the embryos 

in the uterus where they can be retrieved by uterine flush (Besenfelder et al. 2010). In vivo, the bovine 

embryo reaches the uterine horn between day 4 and 6 of pregnancy and comprises 8 to 16 cells. The 

subsequent embryo development takes place in the uterus, where compact morula and blastocyst 

stages are reached by day 6 and day 7 of the pregnancy, respectively. During blastocyst formation, the 

first two embryonic cell lines are generated. These cell lines are the undifferentiated inner cell mass 

(ICM) and the outer epithelial trophectoderm cells (TE). The ICM will give rise to the hypoblast and 

epiblast, resulting in the foetal tissue and extraembryonic endoderm and extraembryonic mesoderm 

while the TE will develop into placental tissue. After hatching of the blastocyst, the bovine embryo will 

start elongating on day 14 and reach 20 to 30 cm length on day 20, just before implantation occurs 

(Ushizawa et al. 2004). 

In vitro produced embryos differ in various ways compared to their in vivo counterparts. Abnormalities 

such as polyspermy, polygyny (two or more female pronuclei) and asynchronous development of male 

and female pronucleus are more prominent in IVP embryos (Gordon 2003). Morphological differences 

are more noticed between in vitro produced embryos and the in vivo derived ones when serum was 

applied during IVC; blastomeres have a darker cytoplasm, blastomeres are more permeable and the 

zona is more sensitive to pronase digestion. Furthermore, there are clear and measurable differences 

in the inner cell mass, in the compaction process and in the lower metabolic activity (Gordon 2003). 
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More importantly for commercial purposes, the in vitro embryos are more sensitive to freezing-

thawing procedures, resulting in lower embryo survival (Gordon 2003).  

The first cell cleavages are an indication of the initial oocyte quality as the embryo is still dependent 

on stored maternal RNA and proteins present in the oocyte’s cytoplasm. After a few cleavages, the 

embryo takes over the development. The activation of the embryo genome is a multiple-step event 

with minor transcription of a small number of genes during early embryogenesis (Kues et al. 2008). 

This maternal-embryonic-transition (MET) corresponds to a shift from the maternal control to the 

embryonic control of development. The major genome activation is mainly occurring in the fourth cell 

cycle in bovine embryos. Previously, it was generally accepted that the embryonic genome activation 

(EGA) was happening during the 8-16 cell stage in cattle, while it has been reported to occur earlier, 

i.e. at the 4-8 cell stage (Meirelles et al. 2004). Maternal transcripts are degraded fast during MET, 

whereas embryonic transcripts are rapidly synthesized (Kues et al. 2008). When embryos fail to 

transcribe their own genome, embryonic development is arrested. This developmental block is most 

likely correlated with the cytoplasmic quality of the oocyte and the inability to activate transcription 

of important developmental genes. The maternal reserves necessary for early embryogenesis are 

accumulating in the oocyte during follicular growth. Therefore blastocyst development is mainly 

determined by the intrinsic quality of the oocyte, while culture conditions have an impact on the 

blastocyst quality (Rizos et al. 2001). 

In vitro embryo culture systems 

Up until the late nineties, the most popular method to culture bovine in vitro embryos was co-culture 

with somatic cells. Although the interaction between the somatic cells and the embryos stimulated 

metabolic pathways, important deficits in enzyme and mRNA were found. Moreover, the concern 

about disease transmission between somatic cells and embryos has led to in vitro culture systems 

without these cell layers (Ménézo et al. 1998). Subsequently, sequential media systems, consisting of 

macromolecules such as serum albumin and serum fractions, were used as the metabolic needs are 

different between precompaction and postcompaction stage embryos (Lane and Gardner 2007). 

However, as oxygen tension has been decreased from 20% to 5% and synthetic oviductal fluid (SOF) 

with bovine serum albumin (BSA) medium is used, it is possible to culture the embryo from zygote to 

blastocyst without extra interventions (Galli et al., 2003). This method of culturing bovine in vitro 

embryos is therefore amongst many preferred. 

Traditionally, embryos are cultured together in groups in a droplet of medium. This is typically done 

for research purposes as the identity of the embryos is not important in this case. Moreover, large 
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group culture is advantageous as not only the blastocyst yield is higher, but also the quality of those 

embryos is higher compared to individual embryo or small group culture (O'Doherty et al. 1997; 

Cebrian-Serrano et al. 2014). Single or small embryo culture which is linked to the commercial embryo 

production from oocytes collected by OPU (Carolan et al. 1996; Vajta et al. 2000; Ward et al. 2000; 

Goovaerts et al. 2009), has led to the evolution of new embryo culture dishes, such as the Corral® dish 

and Well-of-the-well (WOW) and embryo culture systems, such as microfluidics, trying to achieve a 

higher embryonic development while the embryo’s identity can be preserved. 

On the one hand, novel dishes were designed to keep track of the embryos’ identities while embryos 

were grouped because it is generally known that embryos cultured in group have better 

developmental competences compared to embryos cultured singly or in small groups. The Corral® dish, 

existing of central wells divided into quadrants by a semi-permeable wall, was designed for human 

embryo culture, and one embryo was placed per quadrant (Ebner et al. 2010). The culture medium is 

connecting the quadrants whereby exchange of nutrients and embryotrophic factors is possible, while 

embryos stay put. The design of the WOW-dish is quite similar, one droplet of medium is covering a 

small group of embryos. However, the embryos are placed in a narrow well inside the droplet well, 

referring to the well of the well principle. Embryos are closer to each other compared to the Corral® 

dish and higher blastocyst formation has been reported in a comparative study in cattle (Wydooghe et 

al. 2014b). Both dishes would definitely offer an opportunity for commercial IVP as oocytes can be 

allocated per donor in these dishes. Embryo identification throughout the culture is possible and as 

more embryos can be grouped, it would be possible to benefit from these larger group cultures. 

On the other hand, emerging new in vitro technologies, such as microfluidics, are trying to simulate 

the oviduct and uterine environments by adjusting the medium composition or fluid flow, according 

to the specific needs of the embryo during each stage of the development (Feugang et al. 2009). In 

vivo, the female tract does not only remove harmful substances from the environment, also a variety 

of nutrients are provided that are necessary for the embryonic regulation and development. These 

novel culture systems may produce higher quality embryos resulting in more successful pregnancies 

after transfer (Absalón-Medina et al. 2014). Unfortunately, these systems are often still very expensive 

and therefore not commonly used in commercial embryo industries. 

In vitro embryo culture conditions 

Culturing fertilized oocytes under strict conditions is necessary to obtain high quality embryos capable 

of developing into viable blastocysts which will subsequently be transferred and in ideal circumstances 

implant and result in life birth (Ménézo et al. 1998). These in vitro environmental conditions are trying 
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to mimic the in vivo micro-environment of the maternal tract necessary for early embryonic 

development. The culture media, which are complex mixtures of nutrient supplements, will inevitably 

have an impact on the growth and function of the embryonic cells (Mather and Roberts 1998). 

Historically, serum was an integrated component of the embryo culture system. However, embryos 

are not exposed to serum in vivo. Moreover, studies revealed that serum has various negative effects 

on in vitro embryo production such as morphological, metabolic, genetic and ultrastructural changes 

(Gardner 1994; Gardner et al. 1994; Thompson et al. 1995; Khosla et al. 2001). Serum is also associated 

with ‘large offspring syndrome’ (LOS) in cattle and sheep which is characterized by longer gestation 

length, increased perinatal loss, abnormally high birth weight and more breathing difficulties in the 

neonates (Young et al. 1998). Today, serum is more and more excluded from the culture medium and 

chemically semi-defined or even defined media are being used. These media are used to simplify and 

to control the culture conditions better and moreover, to prevent the transmission of pathogens 

affecting the embryonic development. The exact composition of fetal calf serum (FCS) is unknown and 

FCS supplementation can introduce pathogens into the medium (Blondin 2017). Finally, endless 

choices are offered to establish the best in vitro culture conditions regarding media, gas, temperature 

and oil to obtain high blastocyst and transfer results (Vajta et al. 2010). 

Embryo density and embryotrophic factors 

In many mammalian species, including cattle (Donnay et al. 1997; O'Doherty et al. 1997; Goovaerts et 

al. 2009; Salvador et al. 2011; Wydooghe et al. 2014a), mice (Paria and Dey 1990; Canseco et al. 1992; 

Lane and Gardner 1992), pigs (Stokes et al. 2005), cats (Spindler and Wildt 2002) and humans (Ebner 

et al. 2010), embryos cultured in large groups have better developmental competences compared to 

embryos cultured individually or in small groups. The beneficial effect of embryo group culture can be 

ascribed to the production and secretion of autocrine factors by preimplantation embryos. These 

embryotrophic factors include a wide range of biochemical messengers. Cytokines and growth factors, 

such as interleukin-1, insulin-like growth factor-1, survivin and peptide preimplantation factor, but also 

lipids, such as platelet activating factor, miRNAs, hyaluronic acid and nucleotides are signalling 

molecules beneficial for embryo development (Spanos et al. 2000; O'Neill 2005). These autocrine 

factors can be secreted through different mechanisms; active secretion, passive outflow, binding to a 

carrier molecule or transport within extracellular vesicles. By activating PI3K, MAPK and PPAR 

pathways, embryo survival and anti-apoptotic functions are enabled (Wydooghe et al. 2017). These 

autocrine factors stimulate development of the embryo itself and these of the neighbouring embryos 

cultured in vitro (Paria and Dey 1990; O'Neill 2008). The production of these factors is related to 

embryo density and that is why embryo density, expressed as the number of COCs or embryos 
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incubated in a defined volume of medium, is an important parameter during the process of in vitro 

embryo production (Vajta et al. 2000; Fujita et al. 2006; Feng et al. 2007; Hoelker et al. 2010; Reed 

2012). A low embryo density, by using a large volume of incubation medium or by grouping only a few 

embryos, is not preferred since the developmental competence is remarkably decreasing under these 

circumstances (Paria and Dey 1990; Lane and Gardner 1992; Gardner et al. 1994), probably because 

embryotrophic ligands secreted by preimplantation embryos are more diluted with concurrent loss of 

potency to stimulate embryo growth. Nevertheless, it has been suspected that when embryo density 

is very high, the risk is growing that waste materials, including ammonium, are accumulating and as a 

result, embryonic development is reduced also (Lane et al. 2002; Lane and Gardner 2003; Dai et al. 

2012). Different studies state that an embryo density of 1:1 to 1:3 (number of embryos per µL medium) 

yields optimal results (Ferry et al. 1994; Carolan et al. 1995; Donnay et al. 1997). Ideally, an embryo 

density of 1:2 is maintained in mice and cattle (Kato and Tsunoda 1994; Palasz et al. 2010). 

For commercial purposes, such as use in OPU, oocytes and embryos from one donor are being grouped 

together (Chaubal et al. 2006), because it is necessary to keep track of the embryo’s identity. Due to 

low oocyte retrieval, however, only small embryo groups can be maintained resulting in a lower 

blastocyst formation (16-18%) compared to large group culture (30-40%). Since many commercial 

laboratories do not adjust the volume of medium to the number of oocytes and embryos collected per 

donor and use large volumes instead, the embryo density stays low, meaning that the concentration 

of autocrine factors is probably also too low to stimulate the embryonic development (De Roover et 

al. 2005; Machado et al. 2006; Merton et al. 2012; Merton et al. 2013). Despite the progress made in 

bovine IVP, its use in cattle breeding remains therefore quite limited within the commercial sector. 

1.2.5 Cryopreservation and embryo transfer 

In breeding programs, cryopreservation of both in vivo derived embryos via MOET or in vitro produced 

embryos is routinely used to preserve spare embryos when no recipient animals are available. It does 

not only permit unlimited storage of genetically valuable gametes, it also permits long distance 

transportation. When cryopreserving embryos, two techniques can be applied; slow freezing and 

vitrification. The freezing process itself causes damage by the formation of ice crystals and changes in 

the intracellular solute concentrations. Nonetheless, cellular damage can be reduced by controlling 

the temperature reduction and by using cryoprotectants. However, only by vitrifying the formation of 

extracellular ice crystals is avoided because of the high viscosity vitrification medium (Mandawala et 

al. 2016). Several studies have investigated the efficacy of both cryopreserving techniques regarding 

embryo survival after thawing and pregnancy rates after transfer (Van Wagtendonk-De Leeuw et al. 

1995; Martinez et al. 2002; Nedambale et al. 2004). In a general field study, it was reported that 
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vitrification and subsequent dilution using a one-step procedure yields similar pregnancy rates as the 

conventional slow freezing protocol, i.e. over 50% in case of high quality embryos(Van Wagtendonk-

De Leeuw et al. 1995; Van Wagtendonk-de Leeuw et al. 1997). 

When fresh good quality in vitro produced embryos are being transferred, only 45-55% of them will 

give rise to a pregnancy and result in the birth of a healthy calf. Highest pregnancy rates are achieved 

by transfer of fresh day 7 blastocysts to recipient animals, synchronized correctly (Hasler et al. 1995). 

Earlier stages than morula stage transfer is impossible in contrast to human, where routinely cleavage 

stage embryos are transferred to minimize the exposure to suboptimal in vitro conditions. Even 

transferring day 8 blastocysts is associated with a decreased pregnancy rate. Furthermore, no matter 

which blastocyst is transferred (day 7 or day 8), when it has been cryopreserved, the pregnancy rates 

will drop with another 10% (Hasler 1998). Unfortunately, it is not possible to predict the outcome when 

transferring a blastocyst. There are however a few emerging technologies that are trying to anticipate 

the embryo developmental potential to achieve the best results. 

1.3 Quality assessment of embryonic development 

1.3.1 Embryo morphokinetics by time-lapse imaging 

Up until today, parameters such as timing of embryonic cleavages and embryo morphology are still 

the most used criteria to predict developmental competence and quality, as they can be assessed in 

an easy and non-invasive manner. Bovine embryos are normally selected for transfer at the end of the 

culture period (day 7-8) according to their morphology and developmental stage. However, early cell 

division anomalies such as the formation of fragments, the presence of unevenly sized blastomeres or 

cleavage from one cell to three blastomeres, could be missed by these current static embryo 

visualization approaches. Importantly, the appearance of these anomalies is often associated with 

impaired developmental competence (Somfai et al. 2010). Moreover, different in vitro produced 

embryos show substantial differences regarding timing events. Whereas fast cleaving embryos end the 

first cleavage before 24 hours post insemination, others need even an extra day to reach the two cell 

stage (Van Soom et al. 1992). Previously, it was thought that these fast cleavers were more similar 

regarding developmental capacity and quality as the in vivo ones (Gutierrez-Adan et al. 2015). 

However, there is an ongoing debate on which embryos should be selected for transfer because slow 

cleaving embryos mostly lack further development, while in mice the fast cleaving embryos with more 

than 8 cells at 24 hpi show genomic imprinting loss (Market Velker et al. 2012). At the moment, the 

intermediate cleaving embryos are considered to resemble in vivo embryos more closely (Gutierrez-

Adan et al. 2015), but data defining this category are lacking in cattle. 
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Time-lapse imaging can not only reveal anomalies which should be considered while selecting embryos 

for transfer, but it can also avoid environmental stressors occurring during routine static observations 

using microscopy, such as pH and temperature fluctuations. Commercially available systems offer the 

unique opportunity to monitor continuously embryonic morphokinetics inside the incubator. As 

microscopic light can compromise embryonic development and viability by ROS generation, disturbed 

ATP production and ultimately DNA damage (Lane and Gardner 2005; Ottosen et al. 2007; Frigault et 

al. 2009). Potential phototoxicity of time-lapse systems has been investigated in human, murine and 

bovine embryo studies. However, no study has described any significant deleterious effects of time-

lapse imaging compared with conventional in vitro embryo production (Grisart et al. 1994; Yoshioka et 

al. 2000; Nakahara et al. 2010; Wong et al. 2010). Due to its innovative and accessible application, it is 

used frequently in preimplantation embryo research to elucidate various developmental insights. 

Numerous studies have been investigating the morphological events during early embryo 

development. It has been reported in humans (Fenwick et al. 2002; Lemmen et al. 2008; Wong et al. 

2010), mice (Pribenszky et al. 2010) and cattle (Van Soom et al. 1997; Sugimura et al. 2010; Beck 2014) 

that the development of a zygote into a blastocyst is largely established as early as the first mitotic 

cleavage. Timing and synchronization of cell cleavage can be considered indicative for increased 

developmental potential. In cattle, a delay is observed in the onset of the first, second and third mitotic 

cleavage in non-viable embryos compared to viable embryos (Somfai et al. 2010). Moreover, the length 

of the one cell stage and the duration of the second mitotic cleavage is significantly shorter in viable 

embryos. 

1.3.2 Fluorescent staining techniques 

A first differentiation process, segregation between inner cell mass (ICM) and trophectoderm (TE), 

takes place at the morula stage and it continues throughout the blastocyst formation. By that time, 

different signs of apoptosis may arise too, such as caspase activation and DNA fragmentation. A 

differential staining where total cell number (TCN), ICM, TE and apoptotic cells can be distinguished, 

provides additional information regarding embryo quality (Fouladi-Nashta et al. 2005). In our lab 

(Wydooghe et al. 2011), a double-immunofluorescent staining was used, directed against CDX2, a 

transcription factor only expressed in the trophectoderm cells and against active caspase 3, which 

plays a central role in all apoptotic pathways. For CDX2 Texas Red was the fluorescent label, which 

stains the TE cells in red, and for active caspase 3 it was FITC, making apoptotic cells turn green. This is 

further combined with Hoechst nuclear stain, making all nuclei blue. When three stainings are 

combined, it is possible to discriminate the ICM as it is only stained blue (with green spots if apoptosis 

is present) (Figure 3). However, the main disadvantage of this invasive technique is that the embryo 



Chapter 1 

27 
 

cannot be transferred anymore. This technique is therefore not used in commercial embryo industries, 

but for research purposes. 

 
Figure 3 Differential apoptotic staining overlay picture of blastocyst. Blue: Inner cell mass by Hoechst 33342, 
Red: Trophectoderm by anti-CDX2 immunofluorescent staining, Green: apoptotic cells by anti-Caspase 3 
immunofluorescent staining (Picture by Eline Wydooghe). 

1.3.3 Cytogenetic analysis and chromosomal instability 

By removing cells from the embryo and analysing these cells by cytogenetic techniques, it is possible 

to screen the embryos’ genetic profiles in general (preimplantation genetic screening - PGS) or for 

specific disorders (preimplantation genetic diagnosis - PGD) before embryos are transferred to a 

recipient animal. Although it is more frequently used in human embryos, performing genetic analysis 

in bovine embryos can provide information about the embryo’s sex and about genetically inherited 

and important traits, such as milk production. It can also provide insights in the overall genetic 

constitution of the embryo as chromosomal abnormalities are associated with infertility and 

pregnancy loss. In cattle breeding industries, cytogenetic analyses can be performed on both in vivo 

embryos derived after uterine flush and on in vitro produced embryos. Different protocols regarding 

the embryo stage when the biopsy is taken, the method of biopsy and the methods for genetic analysis 

are used worldwide.  

Embryo biopsy 

Embryos can be biopsied by drilling the zona pellucida and aspirating one or more blastomeres at the 

cleavage stage or by cutting off a piece of trophectoderm with a microscalpel at the blastocyst stage 

since blastocysts comprise many blastomeres which are closely connected by a compact network of 

tight junctions and are therefore more difficult to aspirate (Herr and Reed 1991). In all procedures, the 

zona pellucida has been penetrated which makes it no longer intact, this however does not affect the 

further developmental capacity or pregnancy rate (de Sousa et al. 2017). 
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Embryos will not always develop into high quality transferrable blastocysts. As such unnecessary costs 

are made if genetic analysis has been done in early cleavage stage embryos that cease development. 

Moreover, if one blastomere was analysed, the result does not always reflect the exact genetic 

constitution of the embryo. Analysis performed on all blastomeres of an embryo showed different 

abnormalities in different blastomeres (Destouni et al. 2016). Also when TE is biopsied in a blastocyst, 

a completely normal ICM can be present while chromosomal abnormalities may be found in the 

genetic analysis of the TE. A tendency exists for allocation of chromosomally abnormal cells to the 

trophectoderm rather than the ICM (Iwasaki et al. 1992).  

Genetic analysis 

Different analysing techniques are available, such as karyotyping, fluorescent in situ hybridization 

(FISH), polymerase chain reaction (PCR), arrays and sequencing techniques (Table 2). Until recently, 

analysing both frequency and nature of chromosomal aberrations was done by conventional 

karyotyping. In this technique, cells are arrested in cell division as chromosomes are stained in the 

(pro)metaphase stage by f.e. Giemsa staining as it attaches to DNA. In this way, all types of 

aneuploidies are revealed. However, the procedure is rather inefficient since many embryonic cells 

cannot be analysed due to the difficulties obtaining metaphase preparations. Furthermore, the 

identification of missing or supernumerary chromosomes is challenging. In addition, the obtained 

result is not really reliable as chromosomal abnormalities will be mostly overestimated (Van Soom and 

Boerjan 2002). Furthermore, determination of embryo sex was only possible in 58.8% of the embryos 

(Hasler et al. 2002). FISH is a molecular technique based upon the binding of fluorescent probes to the 

chromosome or parts of the chromosome with a high complementarity in sequence. A major 

disadvantage, however, is that it is not possible to identify all chromosomal aberrations. Hybridization 

of differently labelled probes to different chromosomes is necessary to distinguish aneuploidy from 

polyploidy and haploidy from hybridization errors (Van Soom and Boerjan 2002). A more sensitive and 

accurate method for embryo sexing and screening specific genes is PCR, which is often used for PGD. 

Here, only a limited amount of DNA is necessary to conduct this technique as PCR amplifies the regions 

of DNA that it targets. Agarose gel electrophoresis may follow for size separation of PCR products 

which makes analysis possible. Moreover, quantitatively determining levels of gene expression is also 

possible by using quantitative PCR (qPCR) which measures the accumulation of a PCR product after 

each amplification. When there is no specific gene of interest that is targeted, other techniques are 

possible if it is necessary to know the complete DNA integrity of the embryo. DNA microarrays or 

molecular karyotyping methods can be used: these DNA chips comprise probes consisting of specific 

DNA sequences which will hybridize a DNA sample. Various regions of a genome can be genotyped and 
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evaluation of SNPs (single nucleotide polymorphisms) can be used in commercial practice to determine 

functional variants referenced to a general population. Furthermore, whole genome sequencing is a 

technique to determine the DNA sequence of an individual’s genome. As this is an expensive tool, it is 

mostly used in research. Next generation sequencing (NGS) will sequence millions of small fragments 

of DNA simultaneously, resulting in accurate data and insight into DNA variations (Behjati and Tarpey 

2013). Submicroscopic chromosomal changes such as microdeletions can be detected by NGS data, 

however, some regions are difficult to sequence such as regions with low/high guanine/cytosine (GC) 

content (Treangen and Salzberg 2011). The main disadvantage of these emerging genetic analysing 

methods is that expensive equipment is necessary and that, the amount of data that needs to be 

managed is enormous, requiring experienced personnel to analyse and interpret the data (Behjati and 

Tarpey 2013). 

When single cells are used for analysis, a whole genome amplification (WGA) is necessary as the 

amount of DNA is too little. Unfortunately, WGA can alter the frequency and composition of the cell’s 

alleles resulting in artefacts, making it difficult to interpret the results (Esteki et al. 2015). Recently, a 

novel analysis method has been developed which can overcome these issues. Moreover, it can be used 

for both PGD and PGS since it does not need a case specific design. Haplotypes, a group of genes 

inherited together from one parent, can be reconstructed genome wide as well as the copy number 

and segregational origin of those haplotypes. This method, called haplarithmisis (Esteki et al. 2015) 

can be used on single cells to diagnose disease alleles genome wide as well as both numeral and 

structural aberrations (Figure 4). Even a determination between meiotic and mitotic errors can be 

made. As this technique applies phasing of parental genotypes, grandparents or siblings are necessary. 

Haplarithmisis is based upon bioinformatics analysis of SNParrays and consists of 8 steps; (1) parental 

genotype phasing, (2) identification of informative SNP loci, (3) categorizing informative SNPs as 

paternal or maternal, (4) subcategorization on basis of phased parental SNP genotype combinations, 

(5) distribution of SNP BAF values (B allele frequency), (6) mirroring of BAF values, (7) segmentation of 

single cell BAF values for consecutive SNPs which define the haplotype blocks, (8) visualisation of 

segments and underlying processed SNP BAF values into separate plots. These plots display both 

parental haplotypes and sites of homologous recombination (Figure 5). Importantly, chromosomal 

imbalances can be deduced and parental and mechanistic origin are revealed. Although this method is 

still used for research purposes, it would offer new possibilities in genetic testing in cattle as it is a 

sensitive method to identify chromosomal anomalies (Destouni et al. 2016). In this thesis, this 

technique is also used to study chromosomal instability in bovine in vivo derived and in vitro produced 

cleavage stage embryos.  
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Table 2 Overview of cytogenetic screening tests and the type of genetic lesions that can be detected. (Vermeesch 
et al. 2016) 

 Screening test 
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Balanced chromosomal rearrangements +/- - - - - + 

Combination of monogenic and chromosomal disorders - - - - - + 

Complex rearrangements - +/-* +/- - + + 

De novo mutations - + + + - - 

Mechanistic origin of trisomies (mitotic vs meiotic) - - - - - + 

Monogenetic disorders - - - + - + 

Segmental chromosomal aneuploidy +/- + +/- - + + 

Submicroscopic deletions +/- + - - + + 

Submicroscopic duplications +/- - - - + + 

Unbalanced translocations +/- + +/- - - + 

Whole chromosome aneuploidy + +/-* + - + + 
+: possible; -: not possible; +/-: possible but specific requirements; FISH: fluorescent in situ hybridization; qPCR: 
qualitative polymerase chain reaction; *:Limited by the number of fluorochromes. 
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Figure 4 The basis of haplarithmisis. The figure shows how maternal and paternal haplarithm plots can be 
obtained from a single cell displaying disomy and one homologous recombination on both inherited 
chromosomes (Esteki et al. 2015). 
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Figure 5 Haplarithm plots for different chromosomal abnormalities (Esteki et al. 2015).  
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Chromosomal aberrations 

Chromosomal abnormalities comprise an atypical number of chromosomes and structural 

abnormalities in one or more chromosomes (Figure 6). Numerical disorders are called aneuploidies 

and refer to the loss of a chromosome from a pair (monosomy) or the presence of more than two 

chromosomes per pair (trisomy, tetrasomy…). A typical example of a numerical anomaly in human is 

trisomy 21 or Down Syndrome. In cattle, X monosomy and trisomy have been widely reported 

(Raudsepp and Chowdhary 2016). Structural anomalies can be either stable or unstable. Unstable 

anomalies, such as fragments, dicentric and ring chromosomes, will get lost due to anaphase lag or 

bridge-breakage-fusion. Stable abnormalities can be further divided into balanced or unbalanced 

abnormalities. When there is no loss or gain in genetic material, such as inversions, this is called a 

balanced anomaly. Deletions and duplications imply loss and gain respectively and are therefore 

considered as unbalanced. Translocations can be either balanced or unbalanced. When a part of a 

chromosome is transferred to another chromosome, this is called a translocation. There are different 

types of translocations. In a reciprocal translocation, there is an exchange of segments between two 

non-homologous chromosomes. Whereas in Robertsonian translocations, an entire chromosome is 

attached to another giving rise to one large metacentric chromosome. Normally, balanced aberrations 

will not affect the phenotype, unless the abnormality occurs inside a gene, which will then get 

disrupted or dysregulated resulting in a changed phenotype. Unbalanced translocations are mostly 

lethal resulting in embryo loss during early embryogenesis. Although the phenotype appears to be 

normal in individuals affected with balanced chromosomal abnormalities, they are prone to fertility 

disorders.  

Chromosomal anomalies can be of meiotic origin when an altered meiosis anaphase I or II takes place 

during gametogenesis leading to an unbalanced chromosome segregation. After fertilization of these 

unbalanced gametes, all embryonic cells will contain the same anomaly and due to the abnormal 

chromosome number, the majority of affected embryos will die during early development (Szczerbal 

and Switonski 2016). On the other hand, unbalanced sister chromosome segregation during the mitotic 

anaphase will lead to an embryo comprising normal diploid blastomeres while other blastomeres 

reveal abnormalities. When the affected embryo contains two or more cell lines with different 

chromosome constitutions, it is classified as mosaicism.  

Deciding whether or not an embryo should be transferred depends therefore not only on cytogenetic 

analysis results but also on the embryo stage, the number of cells analysed, where the biopsy was 

taken, the intrinsic embryo quality regarding morphokinetics… 
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Figure 6 Overview of numerical and structural chromosomal aberrations. A diploid cell can have numerical 
abnormalities leading to the loss or gain of more than two chromosomes and/or it can have structural 
abnormalities. These latter can be categorized as unstable which will get lost during the cell cycle or stable 
aberrations. Compared to unbalanced abnormalities, balanced abnormalities show no gains or losses in genetic 
material. 

1.4 Genetic disorders and chromosomal abnormalities in cattle 

Most studies investigating chromosomal anomalies in bovine embryos focussed on polyploidy and 

mixoploidy. Using FISH, 30% of bovine MII oocytes showed aneuploidy (Nicodemo et al. 2010) and 

mixoploidy has been reported in 25–90% of bovine embryos (Viuff et al. 1999; Garcia-Herreros et al. 

2010). A higher incidence of chromosomal abnormalities has been found in in vitro produced bovine 

embryos than in in vivo derived ones (Viuff et al. 1999; Hornak et al. 2016), indicating that the 

suboptimal in vitro conditions can even induce aneuploidy at this early preimplantation stage 

(Demyda-Peyrás et al. 2013). However, it seems that there might be a repair mechanism by allocating 

affected blastomeres to the trophectoderm when differentiating (Viuff et al. 2002) and pregnancy can 

be achieved with an incidence of 25% tetraploid trophoblast cells (Hare et al. 1980). These studies 

often use low-coverage cytogenetic analysing methods, reporting only the numerical chromosomal 

abnormalities. However, since the discovery of a Robertsonian translocation in cattle, more attention 

has been paid (Gustavsson 1979). The rob(1;29) translocation is the most frequent aberration 

detected, leading to a 5-10% reduction in fertility (Udroiu and Sgura 2017). By extensive cytogenetic 

screening programs, the import of affected cattle or semen can be detected. Affected animals have 

been dismissed from reproductive programs. This cytogenetic monitoring already resulted in an almost 

full eradication of rob(1;29) in Swedish carrier bulls (Udroiu and Sgura 2017). Beside the numerical and 
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structural chromosomal abnormalities, knowing whether the origin of the aberration is meiotic or 

mitotic can have a further influence on the decision making whether an embryo should be transferred 

or not. Meiotic errors will be present in all blastomeres and will therefore have a higher impact on 

embryonic development, mostly leading to early embryo death, while mitotic disorders take place in 

the later preimplantation embryonic development and do not affect all cells. 

In cattle, there are already over 500 inherited disorders described which can be consulted in the OMIA 

database (Online Mendelian Inheritance in Animals) (Nicholas and Hobbs 2012). Moreover, the highest 

number of these described traits, 58 until now, have been associated with abortion. This does not only 

imply the influence of infertility and subfertility in cattle breeding programs but also the importance 

of preimplantation genetic screening within an OPU/IVP or MOET program. The application of PGD an 

PGS would not only allow us to select embryos having the desired traits, but also to detect genetic 

abnormalities associated with early embryo loss and infertility in later life, as both have an enormous 

economic impact. 

1.5 Chromosomal abnormalities in human embryos and the bovine model 

Over six million children have been conceived via reproductive techniques and fertility treatments 

(Maheshwari et al. 2016). Despite progress made, the pregnancy rate per embryo transfer is still 30 to 

50% (Dyer et al. 2016; European IVF-monitoring Consortium, 2017). Embryo implanting failure and 

spontaneous miscarriages can explain the low pregnancy rates. Chromosomal aneuploidy can play a 

major role herein, as 70-90% of human cleavage-stage embryos have at least one aneuploidy cell 

(Vanneste et al. 2009). The chance is probably very low that highly affected embryos will lead to full 

term pregnancy. The impact of in vitro technologies is however strongly disputed. Although it was 

previously reported that the artificial reproductive techniques, such as IVF and ICSI, were linked with 

chromosomal birth defects (Hansen et al. 2002), taking parental factors into account made the 

increased risk for birth defects associated with IVF no longer significant (Davies et al. 2012). 

Nonetheless, associations of IVF with imprinting disorders such as Beckwith-Wiedemann syndrome 

and Angelman syndrome are widely reported (DeBaun et al. 2003; Gicquel et al. 2003; Maher et al. 

2003; Ørstavik et al. 2003; Sutcliffe et al. 2005; Johnson et al. 2018). As IVM is upraising due to the 

numerous patients with polycystic ovary syndrome or hormone sensitive cancers, concerns about the 

impact of in vitro embryo techniques remains high and widely investigated. 

Due to ethical constraints concerning human in vivo embryos, animal models are used to investigate 

chromosomal integrity. To date, the mouse model is still very popular for embryo manipulation and 

understanding biochemical and physiological processes. However, the differences between mice and 

human embryos are substantial, i.e. mice are polyovulatory animals having an accelerated life cycle. 
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Although it is a cheap model, the importance of the bovine model for human studies must not be 

underestimated (Ménézo and Hérubel 2002). Bovine and human embryos seem quite similar regarding 

biochemical and parental regulatory mechanisms. As chromosomal abnormalities are a well-known 

problem in both bovine and human embryos, the bovine embryo is an appropriate model to investigate 

chromosomal integrity as an example for human. 
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In commercial settings, bovine in vitro embryo production still yields low blastocyst rates. There are 

two main factors responsible for low embryo development. First, donors are often yielding low oocyte 

numbers at OPU sessions and moreover, these oocytes have a variable, mostly minor quality. Second, 

it is necessary to know at all times the embryo’s identity, as from which donor-semen combination the 

embryo originates. In the end, only small groups are made during the complete in vitro production 

process. The general aim of this thesis is to establish a more efficient embryo production protocol and 

gain insights in kinetics and genetics of early embryo development explaining the overall low efficiency 

in commercial settings. 

The specific objectives of the present thesis were formulated as follows: 

1. To simplify the transportation protocol by using a commercial available holding medium which 

keeps the oocytes in meiotic arrest during storage (Chapter 3), 

2. To improve developmental capacities of the donors’ oocytes and embryos by using the embryo 

Corral® dish during in vitro maturation and in vitro culture (Chapter 4), 

3. To assess the predictive value of early developmental events and define ‘early’, ‘intermediate’ and 

‘late’ cleaving in serum-free conditions using Well-of-the-Well dishes and time-lapse imaging 

during in vitro culture (Chapter 5), 

4. To investigate the chromosomal instability in early cleavage stage embryos, not only in in vivo 

derived but also in in vitro produced embryos (Chapter 6).
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Abstract 

Bovine in vitro embryo production (IVP) following Ovum Pick-up (OPU) is all too often hampered by a 

large time gap between the harvest of oocytes of the first and last OPU session of the day. Immediately 

after retrieval, oocyte maturation is initiated, resulting in oocytes maturing at different time points 

which necessitates laborious scheduling of the IVP process. In this study, the potential of a commercial 

embryo holding medium (EHM; Syngro, Bioniche Inc.) to hold immature bovine oocytes was validated. 

We assessed the effect of holding time and temperature on (1) oocytes’ maturation; (2) blastocyst 

development and quality at day 8 post insemination; and (3) blastocyst yield in small groups of 

oocytes/zygotes simulating OPU settings. Oocytes, harvested from slaughterhouse ovaries, were held 

for 6 h (either at 4°C, room temperature [RT; 22 to 25°C], or 38.5°C), for 10 h (at 4°C or RT), and for 14 

h (only at RT) in 1 mL sterile glass osmometer tubes filled with EHM prior to standard maturation (22h 

at 38.5°C) and subsequent IVP. Results were compared with controls in which no prior holding was 

applied. Differences between the treated and control groups were assessed by generalized mixed-

effects models and considered significant at P < 0.05. Generally, oocytes held up to 14 h in EHM at 

different temperatures remained at the germinal vesicle stage. Holding immature oocytes in EHM for 

6 h at 38.5°C and for 10 h at 4°C significantly decreased maturation (57.1±4.1% VS 80.9±3.2% and 

68.6±3.5% VS 80.7±2.9%; respectively), and development (11.0 ± 1.8% VS 36.2 ± 2.8% and 20.1 ± 3.3% 

VS 40.6 ± 4.6%) (P < 0.05). However, holding in EHM for both 6 and 10 h at RT, did not affect the 

maturation rates (83.2±2.9% and 78.9±3.2%) nor day 8 blastocyst rates (35.2±2.7% and 40.2±4.5%). 

Prolonging holding time to 14 h in RT decreased maturation and day 8 blastocyst yield (71.9±3.5% VS 

84.5±2.7% and 25.7±2.5% VS 39.5±2.8%, respectively) (P < 0.05). Holding oocytes in EHM did not 

significantly affect embryonic quality as assessed by differential apoptotic staining in any of the time 

points. To simulate OPU-settings, small groups of 10 oocytes were held in EHM for 6 or 10 h at RT. 

When subsequently matured, fertilized and cultured per 8 zygotes, day 8 blastocyst rate was not 

affected (19.8±3.5% VS 20.6±3.6% and 18.8±3.6% VS 18.3±3.4%). In conclusion, immature bovine 

oocytes can be successfully conserved in EHM at RT for up to 10 h without compromising their 

embryonic developmental competence nor quality.
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Introduction 

Over the last couple of years, ovum pick-up (OPU) followed by in vitro embryo production (IVP) has 

gained popularity and is regarded as a more efficient alternative to bovine multiple ovulation and 

embryo transfer programs, as it can be applied irrespective of the donor’s reproductive status (Boni 

2012). The demand for these OPU-IVP embryos is therefore increasing, resulting in farmers all over the 

world interested in applying OPU in their breeding programs (Boni 2012). While OPU sessions are 

performed under field conditions, the harvested oocytes need to be transported to specialized 

laboratories in order to generate embryos under a controlled environment. These valuable gametes 

should therefore be handled with care; however, transportation remains a major challenge. Usually, 

immature oocytes are transported in maturation media in large portable incubators, keeping the 

temperature and atmosphere under control (Alm et al. 2008). However, this results in oocytes arriving 

at the laboratory at very different maturation stages significantly impairing the scheduling of the 

subsequent IVP procedure. 

In small follicles, granulosa and cumulus cells are activating the in vivo production of maturation 

inhibiting factors, such as cyclic adenosine monophosphate (cAMP), which are transferred through gap 

junctions to the oocytes, keeping the oocytes in the prophase of meiosis I (Tanghe et al. 2002). When 

mammalian oocytes are removed from the follicle, the connection with these follicular cells and the 

contact with the follicular fluid containing the inhibitors, is lost. Typically, the meiotic progression is 

therefore initiated immediately after oocyte collection (Bilodeau‐Goeseels 2011). Final IVP results are 

however dependent on the strict timing between oocyte maturation and fertilization (Blondin 2017). 

Due to the often large time span between the first and last oocyte collection of an OPU session, oocyte 

maturation is ending at widely different time points. Because the subsequent lab work, such as 

fertilization, has to take place at strict times, this asynchrony in maturation leads to late evening or 

night work. Therefore, the rising demand for IVP bovine embryos necessitates further simplification of 

the applied protocols. Holding immature bovine oocytes after OPU in handy transporting tubes 

containing a commercially available medium that is able to keep the oocytes in meiotic arrest while 

fully maintaining developmental competences, will not only facilitate logistics but also reduce the costs 

and allow more convenient scheduling for further manipulations in the laboratory. In horses, holding 

immature oocytes during long lasting shipping is already common practice (so that oocytes may be 

transported to distantly located labs). In this regard, the potential holding capacity of distinct media 

for transport of immature equine oocytes was evaluated at different temperatures and for different 

periods of time (Choi et al. 2006; Foss et al. 2013; Galli et al. 2014; Martino et al. 2014; Dini et al. 2016). 
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In cattle, media containing meiotic inhibitors were evaluated to hold immature oocytes to improve 

their developmental competence (Lonergan et al. 2000; Ponderato et al. 2001; Lagutina et al. 2002; 

Adona et al. 2008). Meiotic inhibitors are however not recommended due to their limited availability 

and potential toxicity allowing only specialized personnel to work with these compounds. Alm et al. 

(2008) demonstrated that immature bovine oocytes held for 16 to 18 h at room temperature (RT) in 

the absence of meiotic inhibitors developed into blastocysts, but oocytes’ kinetics were changed as 

more oocytes were matured after a reduced maturation time following the holding period. However, 

it is still unknown what the effects of holding immature bovine oocytes are on maturation kinetics and 

developmental capacity for different time spans, at distinct temperatures, and in various group sizes. 

Therefore, the present study aimed to evaluate timing and temperature of a commercially available 

embryo holding medium (EHM) to hold immature bovine oocytes by determining (1) oocytes’ 

maturation status, (2) embryo development and quality and (3) blastocyst development in small 

groups of zygotes, simulating OPU procedures. 

Methods 

Media and reagents 

Basic Eagle’s Medium amino acids, Minimal Essential Medium (MEM) non-essential amino acids 

(100 ×), TCM-199-medium, kanamycin and gentamycin were purchased from Life Technologies Europe 

(Ghent, Belgium) and all other components were obtained from Sigma (Schnelldorf, Germany), unless 

otherwise stated. All the media were filter-sterilized using a 0.22 μm filter (Pall Corporation, Ann Arbor, 

MI, USA) before use. 

In vitro embryo production protocol 

The ovaries were collected at the local slaughterhouse and processed within 2 h. Only follicles between 

2 and 8 mm were punctured, and follicular fluid containing the oocytes was collected in 2.5 mL of 

Hepes-Tyrode’s albumin-pyruvate-lactate (TALP). Embryos were produced as previously described by 

Wydooghe et al. (Wydooghe et al. 2014). Briefly, cumulus oocyte complexes (COCs) with uniformly 

granulated cytoplasm and surrounded by at least 3 compact layers of cumulus cells were grouped per 

60 and placed in 500 µL maturation medium, consisting of modified bicarbonate-buffered TCM-199 

supplemented with 50 µg/mL gentamycin and 20 ng/mL epidermal growth factor (EGF) for 22 h at 

38.5°C in 5% CO2 in humidified air. After maturation, frozen-thawed semen of a previously tested bull 

was used. Spermatozoa were separated over a discontinuous Percoll gradient (45 and 90%; GE 

Healthcare Biosciences, Uppsala, Sweden) and sperm concentration was adjusted to 1 × 106 
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spermatozoa/mL using IVF-TALP, supplemented with 6 mg/ml BSA (Sigma A8806) and 25 μg/ml 

heparin. Matured oocytes were incubated in 500 µL IVF-TALP with spermatozoa for 21 h at 38.5°C in 

5% CO2 in humidified air. After removal of excess spermatozoa and cumulus cells, presumed zygotes 

were transferred to synthetic oviductal fluid supplemented with essential and non-essential amino 

acids (SOFaa), 0.4% BSA (Sigma A9647) and ITS (5 µg/ml insulin, 5 µg/ml transferrin and 5 ng/ml 

selenium) and placed in groups of 25 in a 50 µL droplet of culture medium. Each droplet was covered 

by mineral oil and incubated at 38.5°C for 7 days in 5% CO2, 5% O2 and 90% N2.  

Holding medium usage 

We tested the ability of the Syngro EHM (Bioniche Inc., WA, USA) to hold oocytes before maturation. 

The EHM was always kept at 4°C when not used. Two hours before the onset of each experiment, the 

EHM was placed in the incubator to warm up (38.5°C) to prevent cold shock when transferring the 

oocytes to the EHM. Oocytes were held in 1 mL sterile glass osmometer tubes (Novolab, 

Geraardsbergen, Belgium), filled to the top with the EHM to limit the amount of air. Caps and parafilm 

were put on the tip of the vials to ensure a tight seal and prevent leakage.  

Experiment 1: Effect of holding time and temperature of EHM on oocytes’ maturation 

These trials were designed to find out at which temperature and for how long immature bovine 

oocytes can be stored in EHM without compromising meiotic progression. Nuclear maturation of 

oocytes was assessed in three separate experiments, each of them replicated three times. COCs were 

stored in EHM for 6, 10, and 14 h, respectively. The experimental set-up is summarized in Table 1. 

Briefly, immature oocytes were grouped per 60, and each group was transferred into glass osmometer 

tubes containing 1 mL of EHM. Each oocyte group was randomly assigned to different temperatures. 

In the first trial, COCs were stored in EHM during 6 h at 4°C, RT (22 to 25°C ) and 38.5°C. Oocytes to be 

held at 38.5°C were placed in the incubator (38.5°C). The vials with oocytes to be stored at RT and 4°C, 

were put in 50 mL centrifuge tubes containing water at 25°C. The oocytes to be held at 4°C were placed 

in an Equitainer (Hamilton Res Inc., Ipswich, MA, USA), originally designated for transporting equine 

semen. The centrifuge tubes containing the RT group oocytes were placed in a Styrofoam container 

for light insulation. After holding in EHM for 6 h, oocytes were directly fixed (immature holding) or they 

were fixed after subsequent 22 h of maturation (mature holding). Before fixation, oocytes were 

denuded by 8 min vortex in 2.5 mL of Hepes-TALP supplemented with 0.01% hyaluronidase. Fixation 

was performed in 2% paraformaldehyde during 20 minutes. Because maturation rates were 

substantially lower after holding at 38.5°C, this temperature was ruled out in the following trials. In 

the second trial, COCs were stored in EHM during 10 h at 4°C and RT, and fixed immediately after 
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(immature holding) or fixed after subsequent 22 h of maturation (mature holding). Due to the 

substantial low embryo development at 4°C, a third trial with COCs in holding for 14 h was only done 

at RT; and then proceeded as previously described. During all three trials, an immature control group 

consisting of oocytes fixed immediately after aspiration and a mature control group consisting of 

oocytes placed for 22 h in maturation medium without prior EHM storage were included each time. 

All oocytes were stained for 10 minutes with 0.1% Hoechst 33342, and standardly mounted on a 

microscope slide. The stained oocytes were evaluated using a 400x magnification fluorescence 

microscope (Leica DM 5500 B). Oocytes’ maturation stages were classified as: 1) germinal vesicle stage 

2) meiotic progression (diakinesis, metaphase I, or anaphase I), 3) matured (telophase I or metaphase 

II), and 4) degenerated (degraded chromatin) (Figure 1). 

 

Figure 1 Fluorescent images of bovine oocytes after Hoechst 33342 staining. (A) germinal vesicle stage 
(immature), (B) metaphase I (meiotic progression), (C) telophase I (matured), and (D) metaphase II (matured). 
Scale bar: 50 μm. 

Experiment 2: Effect of holding time and temperature of EHM on embryo development and quality 

The experimental design of experiment 2 was similar to the one described in experiment 1 (Table 1): 

In three separate trials (each of them replicated three times), immature oocytes were grouped per 60 

and stored in EHM for 6 h at 4°C, RT and 38.5°C; for 10 h at 4°C and RT; and for 14 h at RT. After holding, 

oocytes were washed with Hepes-TALP (38.5°C) and transferred to maturation medium as described 

in the embryo production protocol. Subsequently, oocytes were fertilized and zygotes were cultured 
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until 8 days post insemination (dpi). During all three trials, a control group was included each time. 

This group consisted of 60 COCs immediately transferred to maturation medium without prior holding, 

followed by the standard embryo production protocol. To evaluate embryo development, cleavage (45 

h post insemination) and blastocyst rates (8 dpi) were assessed.  

Table 1. Overview of storage time and temperature of the immature cumulus oocyte complexes (COCs) in a 
commercial embryo holding medium (EHM). 

Experiment Holding time Temperature 

  Room temperature 4°C 38.5°C 

Exp. 1.1 6 h X X X 

Exp. 1.2 10 h X X  

Exp. 1.3 14 h X   

The maximum storage time for immature COCs in EHM was determined in three experiments. The 

temperature at which the COCs were held is indicated with an X for each experiment. 

In order to assess the embryonic quality, a random subgroup (n = 8-12) of day 8 blastocysts per 

experiment (and replicate) were fixed in 2% paraformaldehyde for 20 min at RT and stored in 

phosphate-buffered saline (PBS) containing 0.5% BSA, at 4°C. To assess the blastocyst quality, a 

differential apoptotic staining was performed as described by Wydooghe et al. (Wydooghe et al. 2011). 

The assessment of the number of trophectoderm (TE) cells, inner cell mass number (ICM), total cells 

number (TCN; TE+ICM), ICM/TCN ratio and total number of apoptotic cells (AC) and apoptotic cells 

ratio (ACR; AC/TCN) was done by fluorescence microscopy (Leica DM 5500 B) using a triple bandpass 

filter for DAPI, FITC and Texas Red; by a single observer. 

Experiment 3: Effect of time and temperature of EHM on blastocyst development in small groups of 

oocytes/zygotes, simulating OPU procedures 

In two trials (each with three replicates), the commercial settings of OPU were simulated. These trials 

were performed to evaluate day 8 blastocyst development in individual donor groups. Only RT holding 

(6 and 10 h) was assessed because of results gained in the “experiments 1 and 2”. First, ovaries 

(collected at the local slaughterhouse) were punctured separately from each other, considering each 

ovary as an individual donor. For each replicate, 16 donors were used. From each donor, the first 8 to 

10 oocytes were randomly selected. All quality oocytes were used, but denuded oocytes were 

excluded. If fewer than 8 oocytes were collected, the donor was excluded from the experiment. Half 
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of the donor groups were randomly assigned as control. These oocytes were immediately transferred 

to maturation medium, followed by conventional IVF. Then, 8 zygotes per donor were randomly 

chosen and cultured in 20 µL drops of SOF + 0.4% BSA + ITS. During the whole procedure, the oocytes 

and embryos were constantly grouped per donor and there was no physical contact between different 

donor groups as different dishes and medium was used per donor. The other half of the donor groups 

were assigned to the treatments to determine maximal storage time in EHM at RT. Oocytes were 

grouped per donor in 1 mL EHM for 6 h at RT. After storage in EHM, the oocytes were handled per 

donor, washed (Hepes-TALP) and transferred to maturation medium and fertilized. Subsequently, only 

8 zygotes per donor were randomly cultured in 20 µL drops of SOF + 0.4% BSA + ITS. For the second 

trial, the same procedure was followed, but treatment groups were held in EHM for 10 h at RT. To 

evaluate embryo development, blastocyst rates were evaluated at 8 dpi. 

Statistical analysis 

For all statistical analyses, the oocyte/zygote/embryo was set as the unit of interest. Replicates were 

included as the random effect. Generalized mixed effect models were computed using the function 

glmer of the package lme4 via R Studio version 3.3.0, 2016 (R inc., Boston, USA). The statistical 

significance was set at P < 0.05, via Tukey test. Results are expressed as least square means (LSM) with 

their respective standard error (SE). 

In experiment 1, to test the effect of holding oocytes on the nuclear maturation outcome, the 

responsive variable was set as immature, meiotic progression, matured, and degenerated. Fixed 

effects tested were; holding 6 h (4°C vs. RT vs. 38.5°C vs. control), 10 h (4°C vs. RT vs. control) and 14 

h (RT vs. control). In experiment 2, to assess the effect of time and temperature of holding immature 

oocytes on the embryonic development, the cleavage and day 8 blastocyst outcomes were set as the 

responsive variables. Each of the treatments, being held for 6 h (4°C vs. RT vs. 38.5°C vs. control), 10 h 

(4°C vs. RT vs. control) and 14 h (RT vs. control); were tested as fixed effects. To determine the day 8 

embryo quality, the TE, ICM, TCN, TCN/ICM ratio, and ACR outcomes were stated as the responsive 

variable and holding 6 h (4°C vs. RT vs. 38.5°C vs. control), 10 h (4°C vs. RT vs. control) and 14 h (RT vs. 

control); as fixed effect. In experiment 3, the average of the day 8 embryo outcome of the 16 donors 

in each replicate was set as the responsive variable. Tested fixed effects were; holding 6 h (RT vs. 

control) and 10 h (RT vs. control). 
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Results 

A total of 3.043 oocytes were used for experiment 1 (results summarized in Table 2 and 3). Table 2 

shows that the maturation rates were not affected by the holding time (6, 10 and 14 h) nor by the 

holding temperature (4°C, RT and 38.5°C) (P < 0.05), as none of the oocytes matured while held in EHM 

(without subsequent maturation). However, significant differences were noticed when oocytes were 

matured after EHM storage (Table 3). When oocytes were held for 6 h and subsequently matured, the 

number of matured oocytes was significantly lower in oocytes held at 38.5°C in comparison to the 

other groups (control, RT and 4°C). When held for 10 h, the oocytes’ maturation rate was similar 

between the control and RT groups (P > 0.05), but it was significantly lower in oocytes held at 4°C. 

Lastly, when compared to oocytes held at RT for 14 h, the maturation rate was higher in the control 

group (P < 0.05). 

Table 2. Kinetics of cumulus oocyte complexes (COCs) nuclear status after holding in embryo holding medium 
(EHM) for different times and at different temperatures (without subsequent maturation). Controls represent 
no previous holding of COCs in EHM. No statistical differences (P > 0.05) were found between groups. 

 Holding 6 h (without maturation) 

Group n Immature Meiotic progression Matured Degenerated 

Control 165 92.1±2.1a 6.6±1.9a 0.0±0.0a 1.2±0.8a 

RT 152 92.7±2.1a 4.6±1.7a 0.0±0.0a 2.6±1.2a 

4°C 162 90.7±2.3a 8.0±2.1a 0.0±0.0a 1.2±0.3a 

38.5°C 160 91.8±2.2a 5.6±1.8a 0.0±0.0a 2.5±1.2a 

 Holding 10 h (without maturation) 

Group n Immature Meiotic progression Matured Degenerated 

Control 171 91.4±2.3a 7.4±2.1a 0.0±0.0a 1.1±0.8a 

RT 173 92.0±2.2a 4.5±1.6a 0.0±0.0a 3.4±1.3a 

4°C 170 90.7±2.4a 5.7±1.9a 0.0±0.0a 3.5±1.4a 

 Holding 14 h (without maturation) 

Group n Immature Meiotic progression Matured Degenerated 

Control 175 93.7±1.8a 5.1±1.2a 0.5±0.5a 0.5±0.5a 

RT 173 94.2±1.7a 2.8±1.2a 0.0±0.0a 2.8±1.2a 

Results are expressed as least square mean ± standard error (LSM±SE) 
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Table 3. Kinetics of cumulus oocyte complexes (COCs) nuclear status after holding in embryo holding medium 
(EHM) for different times and at different temperatures and subsequent 22 h maturation. Controls represent 
no previous holding of COCs in EHM. Different superscripts (a and b) represents statistical differences (P < 0.05) 
between groups. 

 Holding 6 h (+22 h maturation) 

Group n Immature Meiotic progression  Matured Degenerated 

Control 168 8.9±2.1a 7.7±2.0a 80.9±3.2a 2.3±1.1a 

RT 179 7.2±1.9a 4.4±1.5a 83.2±2.9a 4.9±1.7a,b 

4°C 154 8.4±2.2a 7.1±2.0a 81.2±3.3a 3.1±1.4a,b 

38.5°C 170 24.7±3.3b 8.2±2.1a 57.1±4.1b 9.7±2.6b 

 Holding 10 h (+22 h maturation) 

Group n Immature Meiotic progression Matured Degenerated 

Control 177 3.8±1.5a 13.8±2.8a 80.7±2.9a 1.0±0.8a 

RT 166 5.2±1.8a 13.7±2.9a 78.9±3.1a 1.7±1.0a 

4°C 169 1.4±3.2b 13.4±2.8a 68.6±3.5b 1.7±1.1a 

 Holding 14 h (+22 h maturation) 

Group n Immature Meiotic progression Matured Degenerated 

Control 181 5.6±1.7a 8.1±2.2a 84.5±2.7a 1.0±0.7a 

RT 178 6.0±1.8a 17.2±3.5b 71.9±3.5b 3.9±1.5a 

Results are expressed as least square mean ± standard error (LSM±SE) 

A total of 2.682 presumed zygotes were evaluated in experiment 2. Table 4 represents the overall 

results of the effect of holding immature oocytes in EHM at different temperatures for 6, 10 and 14 h 

on the cleavage and day 8 blastocyst rates. When oocytes were held for 6 h, the cleavage rate was 

lower at 38.5°C compared to the other groups (control, RT and 4°C) (P < 0.05). At 8 dpi, blastocyst rates 

were higher in the control and RT groups compared to 4°C and 38.5°C groups (P < 0.05). When oocytes 

were held for 10 h, the cleavage and blastocyst rates were significantly higher in the control and RT 

compared to the 4°C group. However, cleavage and blastocyst rates were significantly lower when 

oocytes were held for 14 h at RT compared to the control group. No differential staining parameters 

(TCN, ICM, ICM/TCN, AC, and AC/TCN) were found to be significantly different regardless holding times 

or temperature of the EHM (Figures 1 and 2). 
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Table 4. Cleavage and blastocyst day 8 rate expressed as percentage from presumed zygotes (least square 
mean ± standard error (LSM±SE)) performed in three different experiments (three replicates for each 
experiment). In each experiment, immature cumulus oocyte complexes (COCs) were held in embryo holding 
medium (EHM) at different temperatures for 6, 10 and 14 h prior to in vitro maturation. Controls represent no 
previous holding of COCs in EHM. 

Holding 6 h 

Group N° of presumed zygotes Cleavage Blastocysts at day 8 

Control 298 78.0±3.0a 36.2±2.8a 

RT 298 75.9±3.4a 35.2±2.7a 

4°C 297 71.5±3.1a 23.2±2.4b 

38°C 298 50.0±3.9b 11.0±1.8c 

Holding 10 h 

Group N° of presumed zygotes Cleavage Blastocysts at day 8 

Control 299 74.9±2.5a 40.6±4.6a 

RT 297 73.7±2.6a 40.2±4.5a 

4°C 298 46.9±2.9b 20.1±3.3b 

Holding 14 h 

Group N° of presumed zygotes Cleavage Blastocysts day 8 

Control 299 77.5±2.4a 39.5±2.8a 

RT 298 60.8±2.8b 25.7±2.5b 

Different superscripts (a, b, and c) represents statistical differences (P < 0.05) between groups. Results are 
expressed as least square mean ± standard error (LSM±SE) 
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Figure 2. Total cells number (TCN), inner cell mass (ICM) and ICM/TCN of day 8 blastocyst (n = 315) differentially 
stained. No significant differences (P < 0.05) were found between groups in three different experiments. In each 
experiment, cumulus oocyte complexes (COCs) were held in embryo holding medium (EHM) at different 
temperatures for 6 h (n = 140), 10 h (n = 105) and 14 h (n = 70). Controls represent no previous holding of COCs 
in EHM. Results are expressed as least square means (LSM) and standard error. 

 
Figure 3. Total apoptotic cells and apoptotic rate (total apoptotic cells/total cells number) of day 8 blastocyst 
(n = 315) differentially stained. In each experiment, cumulus oocyte complexes (COCs) were held in embryo 
holding medium (EHM) at different temperatures for 6 h (n = 140), 10 h (n = 105) and 14  h (n = 70). Controls 
represent no previous holding of COCs in EHM. No significant differences (P < 0.05) were found between groups. 
Results are expressed as least square means (LSM) with their respective standard error. 

In experiment 3, OPU conditions were simulated by culturing oocytes in small groups (n = 380). No 

significant differences were found between the day 8 blastocyst rate of the control and RT groups, for 

both treatments where oocytes were held for 6 or 10 h (Table 5). 
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Table 5. This table represents experiments which aimed to mimic the commercial settings of bovine ovum pick-
up (OPU). In two extra trials (each with three replicates), small number of cumulus oocyte complexes (COCs) (n= 
10) were either immediately matured (control) or held in embryo holding medium (EHM) for 6 or 10 h. No 
significant differences (P < 0.05) were found between groups (control vs. RT). 

 Control RT 

Holding 
time 

N° of presumed 
zygotes 

Blastocysts at day 
8  

N° of presumed 
zygotes 

Blastocysts at day 
8  

6 h 189 20.6±3.6a 189 19.8±3.5a  

10 h 190 18.3±3.4a  191 18.8±3.6a 

Results are expressed as least square mean ± standard error (LSM±SE) 

Discussion 

The fact that we demonstrated that bovine oocytes can be held for several hours at RT in a commercial 

holding medium opens new perspectives for commercial IVP industries in cattle. To obtain consistent 

results in OPU, collected oocytes are routinely placed in maturation media and allocated to a 

controlled environment (5% CO2 at 38.5°C) as soon as possible (Blondin 2017). These steps do not only 

require special equipment (transportable incubator), but also fresh maturation media which are 

necessary to achieve consistent results. From a practical point of view, when several OPU sessions are 

performed within the same day, the maturation gap may widely differ between the first and the last 

session. Since oocytes are already maturing during transportation, this may be translated to tedious 

manipulations schedules at the IVF lab. In this regard, we considered it to be essential for commercial 

practice to establish an easily applicable alternative by storing immature oocytes in EHM during 

transport, in order to prevent the start of maturation while keeping the oocyte alive and to plan further 

IVP steps at the best suitable time.  

Elevated intra-oocyte levels of cAMP are vital for the maintenance of meiotic arrest (prophase I) in vivo 

(Bilodeau‐Goeseels 2011). In cows, meiotic inhibitors such as roscovitine and butyrolactone were 

effectively tested to mimic intrafollicular conditions to preserve oocytes in meiotic arrest in vitro 

(Lonergan et al. 2000; Mermillod et al. 2000; Ponderato et al. 2001; Lagutina et al. 2002; Adona et al. 

2008). Since meiotic inhibitors are potentially toxic, the holding ability of a mixture of 1:1 TCM 199 

with Hanks’ salts and TCM 199 with Earle’s salts with 25 mM Hepes and 20% serum (absence of 

maturation inhibitors) was successfully tested by Alm et al. (2008). This enriched phosphate buffered 

medium made it possible to maintain the pH and osmotic balance in a low CO2 environment (~5% CO2), 

with an extra source of energy (Earle’s salts; glucose). In our study, however, we considered it to be 

essential for practitioners to provide a more easy transport method by using a holding medium. 

Therefore, we decided to test a ready-to-use commercial synthetic medium (Syngro EHM). This EHM 
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medium was originally designated to hold bovine and equine preimplantation embryos. Although its 

exact composition is not reported by the company, EHM does not contain materials of animal origin 

(such as serum) and is supplemented with hyaluronan, which is involved in the regulation of embryonic 

gene expression, cell proliferation and differentiation (Lapcí̌k et al. 1998). Furthermore, we decided to 

store oocytes in glass vials, to avoid any type of bias associated with toxicity of plastic polymers 

(Cruickshank et al. 1960; Lithner et al. 2011). 

We demonstrated that the temperature in which immature oocytes are being held can be detrimental 

to the further embryonic development. Previous studies identified that a temperature zone between 

4 and 0°C significantly affects the oocytes’ ability to mature (Wu et al. 1999). However, in the present 

study, the maturation rate after holding oocytes at 4°C for 6 h was not affected, it was only detrimental 

when held at 4°C for 10 h. Interestingly, the blastocyst yield was significantly lower in oocytes held at 

4°C compared to the control and RT groups, no matter if oocytes were held for 6 or 10 h. Chromosomal 

defects have been reported when oocytes were exposed to low temperatures (Moor and Crosby 1985). 

This defect may indicate that the spindle reassembly is lacking when immature oocytes are stored at 

4°C, which in turn is resulting in a lower blastocyst formation. However, the lowest results with regards 

to maturation and blastocyst outcomes were noticed when oocytes were held at 38.5°C. Comparable 

to the study by Hashimoto et al. (Hashimoto et al. 2003), a deleterious effect of high temperature 

storage was noted when arresting oocytes at 39°C. The enzymatic activity might be increased in rising 

temperatures (Rekharsky et al. 1986). Eventually, various metabolites can be accumulated inside the 

oocytes held in EHM at 38.5°C, due to high enzymatic activity (Hashimoto et al. 2003), interfering with 

the oocyte’s viability. Still, regardless of the holding time, immature oocytes held in EHM (without 

subsequent maturation) did not reach metaphase II. Probably, holding for 6 to 14 h was not enough 

time to induce major meiotic changes in oocytes stored in EHM, as the metaphase II is normally 

reached between 18 to 24 h after the onset of maturation in normal IVP procedures without EHM use 

(Ward et al. 2002). 

Holding immature bovine oocytes in a commercial EHM at RT either for 6 or 10 h achieved comparable 

results to the control group in terms of oocyte maturation and blastocyst yield. Importantly, the 

kinetics of maturation were not affected during the EHM storage. In similar studies, where oocytes 

were held for 18 to 24 h at RT, a reduced maturation time must be taken into account in subsequent 

IVP steps (Ponderato et al. 2001; Hashimoto et al. 2002; Lagutina et al. 2002; Adona et al. 2008; Alm 

et al. 2008). Since we held oocytes for a considerable lower period of time, only standard maturation 

time (22 h) is necessary to achieve acceptable blastocyst rates. Similarly, Merton at al. (Merton et al. 

2003) suggested that oocytes can be in vitro matured for up to 28 h. Nevertheless, when oocytes were 
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held for 14 h at RT, their developmental competence was affected. Although oocytes did not mature 

during storage, their ability to reach metaphase II in the maturation medium decreased significantly. 

This was also translated to a lower blastocyst yield in comparison to the control group. Additionally, 

we assessed standard quality parameters of individual blastocysts in the different groups of holding 

treatments, using an immunofluorescent differential apoptotic staining. These parameters, being TCN, 

ICM, ICM/TCN, AC and AC/TCN, are very sensitive indicators of individual blastocyst quality (Fouladi-

Nashta et al. 2005; Wydooghe et al. 2011). Surprisingly, neither of these blastocyst quality parameters 

were affected by the oocytes’ storage temperature (RT, 4°C and 38°C) nor time (6, 10 and 14 h). 

Therefore, we hypothesize that storing oocytes before maturation may imply a natural selection 

process of the most capable specimen of the oocytes’ pool, translated to an uniform quality of 

blastocysts at 8 dpi. 

In experiment 3, we evaluated the effect of time and temperature of the EHM on the blastocyst 

development in small groups of zygotes (simulating OPU procedures), based on results obtained in 

experiments 1 and 2 (holding 6 to 10 h at RT). In European conditions, an average of 8 oocytes per 

donor animal is obtained per OPU session (Merton et al. 2012). Moreover, the quality of oocytes 

obtained by OPU is unequal since some oocytes may loose some cumulus cells due to fluctuations of 

the vacuum pressure (Bols et al. 1996). The number of cumulus cells surrounding the oocyte is directly 

associated with its quality and embryo predictive developmental potential (Goovaerts et al. 2010). This 

implies that during IVP only a small numbers of oocytes (n = 10) with variable quality are matured and 

cultured together (Catteeuw et al. 2017). Similarly to the control group, also consisting of small 

numbers of oocytes (n = 10) having a variable quality but without prior holding, blastocyst rates were 

around 20% when oocytes were held for both 6 and 10 h at RT in small groups of oocytes. This 

blastocyst outcome is similar to previous publications, where oocytes and embryos were cultured 

separately per donor (Merton et al. 2003; Machado et al. 2006). Therefore, independently from the 

group size, this study demonstrates a high developmental competence after holding immature bovine 

oocytes for up to 10 h at RT.  

Conclusions 

In conclusion, using a commercially available EHM to store and/or transport immature bovine oocytes 

has no detrimental effect on maturation rates, subsequent embryonic development and standard 

embryo quality parameters. Storing immature oocytes in EHM after collection can delay and therefore 

synchronize maturation. It offers the opportunity of scheduling laboratory work during more 

convenient working hours. However, it is recommended to maintain the oocytes in EHM at RT for no 

longer than 10 h, otherwise an unaffected development can not be guaranteed.  
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Abstract 

Since the identity of the embryos is utmost important during commercial in vitro embryo production, 

bovine oocytes and embryos have to be cultured strictly per donor. Due to the rather low yield of 

oocytes collected after ovum pick-up per individual cow, oocyte maturation and embryo culture take 

place in small groups, which is often associated with inferior embryo development. The objective of 

this study was to improve embryonic development in small donor groups by using the Corral® dish. 

This dish is commercially designed for human embryo production. It contains two central wells that 

are divided into quadrants by a semi-permeable wall. In human embryo culture, one embryo is placed 

per quadrant, allowing individual follow-up while embryos were exposed to a common medium. In our 

study, small groups of oocytes and subsequently embryos of different bovine donors were placed in 

the Corral® dish, each donor group in a separate quadrant. In two experiments, the Corral® dish was 

evaluated during in vitro maturation (IVM) and/or culture (IVC) by grouping oocytes and embryos of 

individual bovine donors per quadrant. At day 7, a significantly higher blastocyst rate was noted in the 

Corral® dish used during IVM and IVC than when only used during IVM (12.9% ± 2.10 versus 22.8% ± 

2.67) (P < 0.05). However, no significant differences in blastocyst yield were observed anymore 

between treatment groups at day 8 post insemination. In the present study, the Corral® dish was used 

for in vitro embryo production in cattle; allowing to allocate oocytes and/or embryos per donor. As 

fresh embryo transfers on day 7 have higher pregnancy outcomes, the Corral® dish offers an added 

value for commercial OPU/IVP, since a higher blastocyst development at day 7 is obtained when the 

Corral® dish is used during IVM and IVC. 
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Introduction 

Currently, many bovine embryos are being generated in vitro for commercial embryo transfer. In 2013, 

more than 500.000 embryos have been produced worldwide by ovum pick-up (OPU) and in vitro 

embryo production (IVP) technologies, with South America taking the lead in OPU/IVP. However, 

during the last decade there has been an almost three-fold rise in OPU/IVP embryos produced in 

Europe and North America, indicating an increasing interest in this application (George 2014). Since 

OPU/IVP has become an alternative and highly competitive technique for multiple ovulation and 

embryo transfer (Boni 2012), much research has been done to optimize the OPU technique because 

numerous factors can influence the oocyte yield, such as hormone treatment prior to oocyte collection 

(De Roover et al. 2008), OPU equipment (Bols et al. 1997) and interval between OPU sessions (Ding et 

al. 2008). However, an average of only eight oocytes per Holstein-Friesian donor are obtained, a breed 

particularly used in Europe (Merton et al. 2003). When these oocytes are being matured, they are 

grouped per individual donor, since the genetic identity of the OPU/IVP embryo needs to be preserved. 

This implies that during OPU/IVP, only small numbers (less than 10) of oocytes and embryos are 

cultured together. Moreover, quality of oocytes derived after OPU is very variable since some oocytes 

lack cumulus cells due to vacuum pressure (Bols et al. 1996). The quality of the oocyte is however 

crucial and is predictive of the developmental potential of the resulting embryo (Goovaerts et al. 2010). 

It has been demonstrated that in vitro production starting from oocytes surrounded by few cumulus 

cells or denuded oocytes resulted in a lower blastocyst formation compared to IVP starting from 

oocytes surrounded by compact layers of cumulus cells (Khurana and Niemann 2000; Merton et al. 

2003). Due to the scarcity of the oocytes retrieved per donor, a strict selection including only the best 

COCs prior to the in vitro process is not always possible. In commercial settings, where oocytes and 

embryos are cultured separately per donor, an average blastocyst rate of 16 to 18% is obtained 

(Machado et al. 2006; Merton et al. 2012). Besides the low blastocyst yield, there are also indications 

that grouping small numbers of embryos results in a lower total cell number and more apoptosis 

compared with embryos cultured in large groups (77.16 cells versus 98.48 cells and 24.17% versus 

12.14%, respectively) (Cebrian-Serrano et al. 2014). In mice (Lane and Gardner 1992; Dai et al. 2012), 

cattle (O'Doherty et al. 1997; Gopichandran and Leese 2006) and human (Ebner et al. 2010), pooling 

oocytes and embryos in large groups increases blastocyst yield up to 40%. This beneficial effect of 

group culture has been related to a higher concentration of embryo secreted factors in the surrounding 

culture media, such as insulin-like growth factor-I (Spanos et al. 2000) or platelet activating factor 

(O'Neill 2005). These secreted factors act potentially as a survival factor by preventing apoptosis of the 

embryonic cells or as a mitogenic factor (O'Neill 2008). In addition, during in vitro maturation cumulus 

cells and oocytes are also able to secrete signalling molecules. Oocyte secreted factors, such as bone 

morphogenetic protein 15 and growth differentiation factor 9, regulate a variety of cumulus cell 
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functions associated with growth and differentiation, which in turn may regulate and stimulate the 

developmental competence of the oocyte (Gilchrist and Thompson 2007). These paracrine and 

autocrine factors require a close interaction between groups of COCs and subsequently embryos, thus 

creating a supporting microenvironment for development.  

The Corral® dish, designed especially for human in vitro embryo production, consists of two central 

wells that are divided into four quadrants by a semi-permeable wall (Figure 1A). In human IVP, a single 

embryo, having a larger diameter than the gaps between the wall, is placed per quadrant, with a 

maximum of two times four embryos of the same female patient per Corral® dish. This makes 

individual monitoring of embryo development possible while the medium and embryotrophic factors 

can flow through the quadrants (Figure 1B) (Ebner et al. 2010). In human studies, single embryo culture 

has been applied in a Corral® dish setting (Ebner et al. 2010) where only one embryo was placed in 

one quadrant, but in our study, we chose to allocate 8 embryos belonging to the same donor in one 

quadrant, since embryo culture in small groups is routinely used in bovine OPU-IVF (O'Doherty et al. 

1997). We hypothesized that the embryonic development would be stimulated in the common 

medium by the exchange of putative autocrine factors between the donor cows, while individual 

allocation of oocytes and subsequently embryos per donor cow still remained possible. 

 

Figure 1. Design of the Corral® dish. (A) The Corral® dish consists of two central wells. (B) These central well is 
divided into quadrants by a semi-permeable wall, allowing medium and embryotrophic factors to pass (double 
arrow) but oocytes or embryos remained per individual donor in a quadrant (arrow). Each quadrant of the Corral® 
dish contains the oocytes or embryos of one specific donor and is filled with 30 µL medium. 
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Methods 

Media and reagents 

Basic Eagle’s Medium amino acids, Minimal Essential Medium (MEM) non-essential amino acids 

(100 ×), TCM-199-medium, kanamycin and gentamycin were purchased from Life Technologies Europe 

(Ghent, Belgium) and all other components were obtained from Sigma (Schnelldorf, Germany), unless 

otherwise stated. All the media were filter-sterilized using a 0.22 μm filter (Pall Corporation, Ann Arbor, 

MI, USA) before use. 

In vitro embryo production protocol 

Bovine embryos were produced by adapting previously described routine in vitro methods (Wydooghe 

et al. 2014). Briefly, ovaries were collected per slaughtered cow in separate plastic bags in a local 

slaughterhouse and processed within 2 hours. Follicles between 2 and 8 mm diameter were punctured. 

Subsequently, COCs and embryos were strictly kept per donor cow during the complete procedure. 

From each donor, the first eight to ten COCs visible in the petri dish were collected, without selection 

based on the quality of these COCs, only denuded oocytes were discarded. If fewer than eight COCs 

were available, the donor was excluded from the experiments. The COCs were transferred to 

maturation medium which consisted of modified bicarbonate-buffered TCM-199 supplemented with 

50 µg/mL gentamycin and 20 ng/mL epidermal growth factor (EGF). Subsequently, COCs were matured 

for 22 h at 38.5°C in 5% CO2 in humidified air.  

Fertilization occurred per donor with the semen of the same proven bull. Frozen-thawed spermatozoa 

were separated over a discontinuous Percoll gradient (45 and 90%; GE Healthcare Biosciences, 

Uppsala, Sweden). Sperm concentration was adjusted to 1 × 106 spermatozoa/mL using IVF-Tyrode’s 

Albumin-Pyruvate-Lactate (TALP), which consisted of bicarbonate buffered Tyrode’s solution, 

supplemented with BSA (Sigma A8806; 6 mg/mL) and heparin (25 μg/mL). The mature oocytes were 

incubated in 500 µL IVF-TALP with spermatozoa for 21 h at 38.5°C in 5% CO2 in humidified air. 

After fertilization, excess spermatozoa and cumulus cells were removed by vortexing. Eight 

presumptive zygotes per donor were transferred to synthetic oviductal fluid (SOF) supplemented with 

essential and non-essential amino acids (SOFaa), 0.4% BSA (Sigma A9647) and ITS (5 µg/mL insulin, 5 

µg/mL transferrin and 5 ng/mL selenium) and were incubated at 38.5°C in 5% CO2, 5% O2 and 90% N2 

till day 8 post insemination. During this culture period, embryos were kept in the same culture dish 

and no renewal of SOF medium was performed. 

Experiment 1: Embryo culture in the Corral® dish 
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For the first experiment, ovaries from individual donor cows were collected and processed separately. 

This experiment was conducted 4 times (4 replicates), for each replicate the ovaries of 16 different 

donor cows were collected. From each donor, eight to ten COCs were matured in 500 µL maturation 

medium in separate 4-well dishes. Subsequently, the oocytes were fertilized per donor in 4 well dishes. 

After fertilization, the first eight presumptive zygotes were grouped, without prior selection and 

cultured per donor. Half of these donor groups were allocated to a droplet and the other half to a 

quadrant of the Corral® dish, this was chosen completely at random. Culture droplets consisted of 30 

µL medium, eight droplets were made per culture dish (IVF Petridish, Nunc®, Thermo Fisher, Denmark) 

and 8.5 mL mineral oil was covering these droplets (Drop IVC). In the Corral® dish, the two central wells 

were filled with 120 µL culture medium, each quadrant containing 30 µL (Corral® IVC). A layer of 8.5 

mL mineral oil was put on top. Because of the typical structure of the Corral® dish, zygotes of eight 

different donors were grouped in those two central wells. An overview of COC and embryo distribution 

is shown in Figure 2A. 

Experiment 2: Oocyte maturation and embryo culture in the Corral® dish 

Comparable to experiment 1, this experiment was conducted 4 times (4 replicates). For each replicate, 

ovaries from 16 different donors were collected separately. From each donor, ten COCs were matured 

in a quadrant of the Corral® dish. Each quadrant contains 30 µL maturation medium. In one central 

well, 40 COCs of four different donors were matured in 120 µL medium, each donor separated by the 

semi-permeable wall dividing the Corral® dish in quadrants. Both central wells were covered with 8.5 

mL mineral oil. Routine fertilization occurred per donor in 4 well dishes. As described in the first 

experiment, eight presumptive zygotes were cultured per donor either in a 30 µL drop of medium 

(Corral® IVM) or in a quadrant of the Corral® dish (Corral® IVM/IVC). In the latter, eight different donors 

were again grouped in the two central wells. An overview of COC and embryo distribution is shown in 

Figure 2B. 
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Figure 2. Schematic design of the two experiments. As indicated in the legend, oocytes and embryos were 
grouped per donor in a 4-well dish, a droplet or in a quadrant of the Corral® dish during the different phases of 
the in vitro embryo production (in vitro maturation-IVM, in vitro fertilization-IVF, in vitro culture-IVC). 
Furthermore, the number of oocytes and embryos grouped together is indicated in the icons. (A) In experiment 
1, embryos were placed per donor in the Corral® dish or in a separate drop during IVC. (B) In experiment 2, 
oocytes and embryos were assigned per donor to the Corral® dish during IVM or during IVM and IVC. 

Evaluation of embryo development and embryo quality 

To evaluate the embryo development, the cleavage rate was assessed at 45 hours post insemination 

(hpi) as the percentage of presumed zygotes that cleaved. Blastocyst stages were evaluated according 

to the fourth edition IETS manual at 7 and 8 days post insemination (dpi). At 8 dpi, hatching rate was 

evaluated as the percentage of hatching or hatched blastocysts. Subsequently, total cell number (TCN) 

of the blastocysts was assessed by Hoechst 33342 staining. Briefly, day 8 blastocysts were fixed in 2% 

paraformaldehyde during 20 minutes and subsequently stained for 10 minutes with 0.1% Hoechst 

33342. The stained blastocysts were evaluated using a 400x magnification fluorescence microscope 

(Leica DM 5500 B). 

Statistical analysis 

Statistical analyses were carried out with IBM SPSS Statistics 23. Differences at P-value < 0.05 were 

considered statistically significant. Cleavage, blastocyst and hatching rates were analysed using a 

binary logistic regression model with treatment (Drop IVC vs Corral® IVC and Corral® IVM vs Corral® 

IVM/IVC) and replicate as fixed effects. The effect of replicates was assessed and excluded from the 

final model if it was not significant. Total cell numbers were analysed using a mixed model analysis of 

variance, with treatment (Drop IVC vs Corral® IVC and Corral® IVM vs Corral® IVM/IVC) as fixed effect 

and replicate as random effect and are expressed as means ± standard error of the mean (SEM). If the 

effect of replicates was not significant, this was excluded from the final model. 
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Results 

Experiment 1: Embryo culture in the Corral® dish 

There was no significant difference noted in embryonic development between embryos cultured in 

individual donor droplets (Drop IVC) or embryos cultured in the Corral® dish (Corral® IVC) (Table 1). 

Both cleavage and blastocyst rate were similar in both groups. At day 8, a blastocyst rate was reached 

of 26.9% in Corral® IVC and 24.8% in Drop IVC. Furthermore, no differences were observed in TCN of 

day 8 blastocysts (Drop IVC: 188.1 ± 10.49; Corral® IVC: 194.2 ± 13.59). 

Experiment 2: Oocyte maturation and embryo culture in the Corral® dish 

Cleavage rate did not differ between two groups. Significantly more blastocysts were observed in the 

Corral® IVM/IVC compared to the Corral® IVM, at 7 dpi (P < 0.05), respectively 22.8% and 12.9%. This 

was however no longer the case for blastocyst rate at day 8, 26.7% was reached in the Corral® IVM 

and 30.1% in Corral® IVM/IVC (Table 1). Furthermore, TCN of day 8 blastocysts in these two groups did 

not differ (Corral® IVM: 125.0 ± 3.21; Corral® IVM/IVC: 133.9 ± 3.87). 

Table 1. Embryonic development in the different treatment groups of experiment 1 and 2.  

  
Treatment Number of 

Oocytes 
Cleavage (%) Blastocysts 

D7 (%) 
Blastocysts 

D8 (%) 
% Hatched 

Exp 1 Drop IVC 219 158 (72.1) 41 (18.7) 59 (26.9) 22.0 

 

Corral® IVC 234 169 (72.2) 38 (16.2) 58 (24.8) 17.2 

Exp 2 Corral® IVM 255 186 (72.9) 33 (12.9)* 68 (26.7) 22.1 

  Corral® IVM/IVC 246 191 (77.6) 56 (22.8)* 74 (30.1) 28.4 

Cleavage (45 hpi), blastocyst (7 dpi and 8 dpi) and hatching rates of embryos produced per donor in droplets 
(Drop IVC) or in a quadrant of the Corral® dish (Corral® IVC) during in vitro culture (experiment 1) and embryos 
produced per donor in a quadrant of the Corral® dish during in vitro maturation (Corral® IVM) or during in vitro 
maturation and culture (Corral® IVM/IVC) (experiment 2). Asterisks (*) in the same column indicate a statistical 
difference between treatments within the same experiment (P < 0.05). 
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Discussion 

The overall aim of this study was to evaluate the efficiency of Corral® dish for commercial purposes. 

The Corral® dish allows grouping of embryos from different donor groups without losing track of 

genetic identity by placing the embryos of each donor in a quadrant of the central wells. This allows 

secreted embryotrophic factors to reach a larger group of embryos (32 instead of 8) since all embryos 

are exposed to the same surrounding medium. These factors stimulate growth and development which 

would result in a higher blastocyst yield. In this study, there was no difference found in embryonic 

development when applying the Corral® dish during culture in comparison with the allocation of 

embryos per donor in a separate droplet of medium. This was similar to the study of Ebner (Ebner et 

al. 2010) on human embryos, where one embryo was allocated to either a quadrant of the central 

wells or one embryo allocated to one of the other wells. However, when the Corral® dish was used 

both during maturation and culture, blastocyst yield was increased at day 7 pi (post insemination) 

compared to its use only during maturation, but this effect was no longer noticed at day 8 pi. Because 

more embryos reach the blastocyst stage on day 7 in the Corral® dish, when used during IVM and IVC, 

it offers the opportunity to transfer more fresh IVP embryos, which may subsequently give rise to more 

pregnancies and live born calves. It has been reported that pregnancy outcome is the highest when 

transferring fresh day 7 in vitro blastocysts, after transfers with in vivo derived embryos (Hasler et al. 

1995; Hasler 1998).  

On the other hand, the Corral® dish, has a specific design which implicates also three main 

disadvantages. First, the distance between donor groups is over 4 mm (Figure 3). Gopichandran and 

Leese (Gopichandran and Leese 2006) reported that an optimal blastocyst formation occurred when a 

distance of 165 µm between the embryos was achieved. In the Corral® dish, the distance components 

in the medium have to cross between two donor groups is probably too large for optimal exchange of 

autocrine factors. A mathematical model constructed by Matsuura (2014) calculated the concentration 

of secreted factors by embryos cultured in microwells based upon diffusion coefficients which are 

dependent on the size of the molecules. Small molecules (<1 kDa), such as waste secretions and 

reactive oxygen species, are rapidly diffusing away from the embryo and macromolecules (5-200 kDa), 

such as growth factors, are slowly diluted and remain quite high in the neighbourhood of the embryo. 

Due to the sloped sides of the quadrants (Figure 3), diffusion of secreted factors could therefore be 

facilitated in a vertical and oblique direction, with growth factors remaining in the neighbourhood of 

the embryos located in the deepest point of the well.  
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Figure 3. Graphic design of the Corral® dish. This figure is pointing out a distance of 4 mm between the deepest 
sites of the quadrants. An even larger distance has to be covered by the embryotrophic factors, secreted by the 
allocated cumulus-oocyte complexes or embryos, to reach another quadrant. The diffusion of secreted factors 
can only appear in a vertical and oblique direction (bold arrows), due to the well-shaped quadrants and the in-
between wall. 

Second, each quadrant needs to be filled with 30 µL medium in order to connect the four quadrants. 

In this way, adjusting the incubation volume to the number of oocytes or embryos is impossible. This 

static design has therefore a major impact on oocyte/embryo density, which is referring to the number 

of embryos on a given amount in µl of medium and which is an important parameter during in vitro 

embryo production (IVP) (Vajta et al. 2000; Fujita et al. 2006; Feng et al. 2007; Hoelker et al. 2010; 

Reed 2012). Because of low embryo numbers in commercial practices, the medium volume cannot be 

decreased to achieve the ideal density of 1:1 to 1:3 (Ferry et al. 1994; Carolan et al. 1995; Donnay et 
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al. 1997). The design of the Corral® dish could therefore be more suitable for donor cows having large 

numbers of COCs, since this is the only way to acquire a high embryo density in the Corral® dish. In 

Nelore cattle, a typical Brazilian breed, 30 or more oocytes can be collected per ovum pick-up session 

and this breed is therefore an excellent candidate for providing embryos for culture in the Corral dish 

(Pontes et al. 2011). Moreover, the fixed design of the Corral® dish makes the dish also two times more 

expensive than the traditional four well dish. Finally, from a sanitary point of view, possible 

transmission of pathogens can be considered as a risk factor between oocytes and embryos of different 

donors grouped in the Corral® dish. In theory, infection can be present as a consequence of 

intrafollicular infection or in vitro fertilization with infected semen. However, the risk of infection is 

rather small, since donor cows are carefully selected and tested for the absence of specific viral 

infections like BoHV1 before entering an in vitro embryo program, and also every bull is tested for 

absence of infectious pathogens before he is allowed to enter an artificial insemination program. The 

zona pellucida plays a major role in protecting the embryo, and only very small viruses can form a risk 

for transzonal infection. Furthermore, before embryo transfer, washing embryos in combination with 

trypsin treatment is advised by sanitary procedures of the IETS (International Embryo Technology 

Society) (Stringfellow 1998) to inactivate and remove possible viruses. In the end, it should still be 

advised to group oocytes and embryos of different donor cows in the Corral® dish only when the full 

health status is known. 

Conclusions 

A novel aspect of this study was that we used the Corral® dish for grouping only 10 oocytes of bovine 

oocytes and embryos per donor cow, whereas in other studies embryos have been cultured singly, 

thereby decreasing a possible beneficial effect of group culture. The dish is easy applicable to group 

donor’s oocytes or embryos together without losing track of the embryo’s identity. It is however 

doubtful whether the embryos can benefit from being grouped in the Corral® dish: the well-shaped 

quadrants on the one hand, and the distance between the quadrants on the other hand, could make 

it difficult for the secreted factors to diffuse out of one quadrant and reach the cumulus-oocyte 

complexes or embryos in the neighbouring quadrant. An improved version of the Corral® dish could 

be consisting of a dish with smaller wells, at a closer distance from each other and allowing culture in 

a smaller amount of medium to increase embryo density. In conclusion, the Corral® dish is an easy 

applicable tool to produce in vitro embryos by grouping bovine oocytes and embryos per donor. It may 

be a particularly interesting tool for donor cows like Nelore with high number of oocyte/embryos. 

Nevertheless, the Corral dish® increases blastocyst development at day 7 pi, when used during IVM 

and IVC, and is therefore beneficial for commercial practice regarding embryo transfers as higher 

pregnancy rates are achieved with fresh day 7 blastocysts. 
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Abstract 

Two decades ago, early cleaving embryos were considered as developmentally more competent than 

late cleaving embryos. But this theory has been challenged, since it has been shown that murine 

embryos developing at fast speed display loss in genomic imprinting and embryos developing at slow 

speed have low developmental rates. For the first time, time-lapse cinematography (TLC) as a non-

invasive tool was used to define the developmental competences and quality from bovine 

intermediate cleaving embryos in comparison with early and late cleaving embryos in a serum-free 

culture system. Immature oocytes were matured in 500 µL TCM199 supplemented with 20 ng/mL 

epidermal growth factor (EGF). After in vitro fertilization with frozen-thawed semen, presumed zygotes 

were cultured in Primo VisionTM micro dish (Well-of-the-well type) in 30 µL Synthetic Oviduct Fluid 

(SOF) supplemented with 0.4% BSA, 5 µg/mL insulin, 5 µg/mL transferrin and 5 ng/mL selenium (ITS), 

covered with mineral oil. In total, 63 zygotes were followed with TLC and images were taken every 10 

min for up to 90 hours post insemination (hpi). At 192 hpi, blastocyst formation was set as endpoint. 

At the 2-cell, 3-cell and 4-cell stage, embryos were categorized as early, intermediate or late cleaving 

depending on their time of cleavage. For both 2-cell and 3-cell stage embryos, there was a significant 

increase in blastocyst formation in the intermediate cleaving embryos compared to the late cleaving 

ones. However, no differences were found between the early and intermediate categories. 

Furthermore, no differences were noted at the 4-cell stage. Nonetheless, when embryos reached the 

2-cell stage before 31.1 hours, the odds ratio was 18 times higher to form a blastocyst compared to 

embryos cleaving after 31.1 hours. The odds ratio increased for embryos at the 4-cell stage at 41.9h 

(OR=43). In this study, we demonstrated that the bovine embryos can be easily cultured in the WOW-

dish under time-lapse imaging. Furthermore, timing of the first cleavages in bovine embryos can be 

predictive for the further embryonic development, with early and intermediate cleaving embryos 

having the highest chance of forming a blastocyst.  
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Introduction 

In commercial practice, the in vitro production (IVP) of bovine embryos has proven to be a useful 

method to enhance reproductive performance and genetic gains in cattle (Monteiro et al. 2017). The 

number of offspring from valuable females can be increased because more transferable embryos can 

be produced by ovum pick-up (OPU) and IVP compared to multiple ovulation and embryo transfer 

programs (Machado et al. 2006). A significant improvement of both OPU and IVP procedures has led 

to an annual production of more than a million embryos, which is over 40% of the embryos produced 

worldwide (Perry 2014). The success of the OPU/IVP technique is however highly dependent on 

individual characteristics of the donor animal (Watanabe et al. 2017), since multiple factors are 

influencing the efficiency of this in vitro procedure, such as breed, age and parity (Merton et al. 2009). 

Moreover, there is a high variability in oocyte yield and the intrinsic oocyte quality between donors 

(Machado et al. 2006), even if an identical OPU/IVP protocol is being used, which often results in 

unpredictable embryo development and blastocyst outcome.  

Traditionally, assessing the COCs and embryos’ quality is based upon the morphology and 

developmental progress by inspection of the embryos at specific time points (Mandawala et al. 2016). 

These inspections require that embryos are being removed from the incubator, which may harm the 

embryos’ development due to changes in culture conditions such as altered pH, temperature and 

humidity inducing additional stress (Campagna et al. 2001). Moreover, these single observations at 

specific time points can result in missing out on events such as abnormal cleavage patterns, which have 

been associated with a disturbed developmental competence and a decreased blastocyst formation in 

cattle (Somfai et al. 2010b) and in human (Rubio et al. 2012). As an alternative to these static 

observations, time-lapse monitoring systems are gaining more interest since numerous studies have 

shown that substantially more information can be acquired regarding morphokinetics and embryo 

viability in both bovine and human studies (Racowsky et al. 2015). Moreover, different morphokinetic 

parameters can be used to improve the prediction of blastocyst formation and embryo selection. 

Higher implantation and pregnancy rates have been reported after selection of human embryos based 

on the acquisition of this extra time-lapse information (Armstrong et al. 2014). Whereas in the past, it 

was accepted that early cleaving in vitro produced embryos were more similar to their in vivo 

counterparts, studies in mice have shown that early cleaving embryo show loss in genomic imprinting 

while late cleaving embryos have a decreased blastocyst formation (Market Velker et al. 2012). 

Therefore, the question rises whether intermediate cleaving embryos should be selected for embryo 

transfer rather than the early cleaving embryos (Gutierrez-Adan et al. 2015). Up until today, it is still 

unclear when embryos can be defined as intermediate cleaving and whether or not these bovine 
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intermediate cleaving embryos have a higher developmental rate and a better blastocyst quality 

compared to both early and late cleaving embryos. 

Another factor which may affect embryo quality and long-term development is the composition of the 

culture medium. An important improvement has been the switch from serum supplemented media 

and/or cell coculture to (semi-)defined media. Due to the link between serum and large offspring 

syndrome (Young et al. 1998), the interest in these chemically (semi-)defined media is increasing. 

Furthermore, serum has an important influence on the embryos’ kinetics as it is inhibiting the first 

embryo cleavage divisions (Pinyopummintr and Bavister 1991; Van Langendonckt et al. 1997). 

Investigating how bovine embryos are developing in these serum-free conditions can therefore 

contribute to the commercial OPU/IVP business. 

The aim of this present study was to determine bovine embryo kinetics by time-lapse imaging by 

defining which embryos can be considered as early, intermediate and late cleaving depending on the 

speed of the first embryonic cleavages in a serum-free environment and to investigate whether the 

timing of these first embryonic cleavages has a predictive value for the further embryonic development 

and quality. For the first time, bovine embryos were produced in serum-free conditions and cultured 

in a well-of-the-well (WOW) dish with time lapse monitoring. This method would allow commercial 

breeding companies to keep track of the development of each embryo while being cultured in groups 

and to predict the developmental outcome and potentially improve embryo selection for transfer 

based upon embryo kinetics.  

Methods 

Media and reagents 

Basic Eagle’s Medium amino acids, Minimal Essential Medium (MEM) non-essential amino acids 

(100 ×), TCM-199-medium, kanamycin and gentamycin were purchased from Life Technologies Europe 

(Ghent, Belgium) and all other components were obtained from Sigma (Schnelldorf, Germany), unless 

otherwise stated. All the media were filter-sterilized using a 0.22 μm filter (Pall Corporation, Ann Arbor, 

MI, USA) before use. 

In vitro embryo production protocol 

Bovine embryos were produced as described before (Wydooghe et al. 2014a). Bovine ovaries were 

processed within 2 h of slaughter. Only follicles between 2 and 8 mm were punctured, and follicular 

fluid containing the oocytes was collected in 2.5 mL of Hepes-Tyrode’s albumin-pyruvate-lactate 

(TALP). Standard, high and good quality cumulus oocyte complexes (COCs) with uniformly granulated 
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cytoplasm and surrounded by at least 3 compact layers of cumulus cells were grouped per 60 and 

placed in 500 µL maturation medium, consisting of modified bicarbonate-buffered TCM-199 

supplemented with 50 µg/mL gentamycin and 20 ng/mL epidermal growth factor (EGF) for 22 h at 

38.5°C in 5% CO2 in humidified air. After maturation, frozen-thawed semen of a previously tested bull 

was used. Spermatozoa were separated over a discontinuous Percoll gradient (45 and 90%; GE 

Healthcare Biosciences, Uppsala, Sweden) and the semen concentration was adjusted to 1 × 106 

spermatozoa/mL using IVF-TALP, supplemented with 6 mg/ml BSA (Sigma A8806) and 25 μg/ml 

heparin. Matured oocytes were incubated in 500 µL IVF-TALP with spermatozoa for 21 h at 38.5°C in 

5% CO2 in humidified air. After removal of excess spermatozoa and cumulus cells, presumed zygotes 

were transferred to synthetic oviductal fluid supplemented with essential and non-essential amino 

acids (SOFaa), 0.4% BSA (Sigma A9647) and ITS (5 µg/ml insulin, 5 µg/ml transferrin and 5 ng/ml 

selenium). Primo VisionTM micro well group culture dishes (Vitrolife, Göteborg, Sweden) were used, 

consisting of 9 small wells covered by a 30 µL droplet of medium and 2.5 mL mineral oil to prevent 

evaporation. These dishes are designed by the well-of-the-well (WOW) principle. In each WOW dish, 9 

presumed zygotes were placed in individual wells and placed under a time lapse imaging system. WOW 

dishes were incubated at 38.5°C for 7 days in 5% CO2, 5% O2 and 90% N2.  

Time lapse imaging system 

A compact, digital inverted microscope (Primo VisionTM; Vitrolife, Göteborg, Sweden) was placed 

inside a trigas incubator (5% CO2, 5% O2 and 90% N2). The WOW dishes were placed into the sample 

holder of the microscope. The focus was set mechanically and all embryos were positioned in the field 

of the view. Every 10 min, a single picture was taken. All images recorded were saved to be analysed 

later by the software. The embryos were not moved or disturbed during the time lapse analysis. 

Determination of early cleavage events in bovine embryos using time-lapse analysis 

In 7 replicates, 63 embryos were cultured in WOW dishes for 7 days and time-lapse analysis was 

performed from the start of culture untill day 3 post insemination (pi). At day 3 pi, the WOW dish 

including the embryos were placed in the same trigas incubator till day 8 pi but no time-lapse imaging 

was executed anymore. Only the first cleavages were visualized since the main interest was to 

determine the timing of the first cell cleavages in order to categorize the embryos depending on their 

development into early, intermediate or late cleaving embryos. 
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Analysis 

A total of 63 embryos were observed using time-lapse imaging. The time between the fertilization and 

the cleavage to the 2 cell, 3 cell and 4 cell stage was assessed. Furthermore, the time between the 2 

cell and 4 cell stage was noted as the second cell cleavage. An embryo displaying a direct cleavage from 

one to three or more cells was considered as abnormal first cell cleavage. At day 8 post insemination, 

total cell number of all blastocysts was evaluated by Hoechst 33342 staining as a criterion for embryo 

quality (Yuan et al 2003). Briefly, blastocysts were individually fixed in 2% paraformaldehyde during 20 

min and subsequently stained for 10 min with 0.1% Hoechst. The stained blastocysts were evaluated 

using a 400x magnification fluorescence microscope (Leica DM 5500B). 

Statistical analyses were carried out using RStudio. First, descriptive statistical analyses were executed 

using quartiles and means. In order to obtain the speed categories, embryos were grouped per cell 

stage according to the quartile distribution, i.e. embryos present in the first quartile were grouped as 

early cleaving, embryos present in the second and third quartile as intermediate cleaving and embryos 

present in the last quartile were grouped as late cleaving embryos. Furthermore, binomial logistic 

regression was used to assess statistical differences in embryonic development between intermediate 

versus late and early cleaving embryos. The level of significance was set at P value less than 0.05. The 

odds ratio was assessed using only two categories, i.e. late and early cleaving embryos. This was based 

upon the ROC-curve. Embryo quality as assessed by total cell number was evaluated using multilevel 

regression with timing of cleavage as fixed effect and replicate as random effect. 

Results 

In total, the morphokinetics of 63 embryos were analysed using time-lapse imaging. From those, 8 did 

not cleave (12.7%), while 21 embryos reached the blastocyst stage (33.3%). Most of the remaining 

embryos stopped their development before reaching the 8 cell stage (36.5%). When closely looking at 

the cleavage time points when embryos reach the 2 cell, 3 cell and 4 cell stage, a rather large 

distribution is noted (Figure 1). The grouping of the embryos into early, intermediate and late cleaving 

was based upon this distribution; the first quartile was considered as early, the second and third as 

intermediate and the last quartile as late cleaving. The exact categories can be found in Table 1. The 

average time point when embryos cleaved into 2 cells, 3 cells and 4 cells was 33.06h, 38.66h and 

40.39h, respectively. For both 2 cell and 3 cell stages, there was a significant difference between the 

intermediate cleaving embryos compared to the late cleaving ones, as more embryos reached the 

blastocyst stage in the intermediate group (P<0.05). However, no differences were seen between the 

early and intermediate cleaving embryos. Also at the 4 cell stage, no differences were noted between 

the intermediate cleaving embryos and early or late embryos (Figure 2). There were 12 embryos 
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displaying an abnormal first cell cleavage (19.0%) and 4 of these embryos reached the blastocyst stage 

(33.3%). These embryos were all but one considered as early cleaving since their first cleavage took 

place before 31.45h, at that moment they displayed three or more blastomeres. Only one abnormal 

cleaving embryo had an intermediate cleaving pattern.  

Table 1 Embryos were classified as early, intermediate and late cleaving depending on the timing of cleavage 
into 2 cell, 3 cell and 4 cell. (hpi: hours post insemination) 

 Embryonic kinetics (hpi) 
 Early Intermediate Late 

2 cells < 26.64 26.64 ≤ x ≤ 31.36 > 31.36 

3 cells < 31.45 31.45 ≤ x ≤ 40.90 > 40.90 

4 cells < 36.72 36.72 ≤ x ≤ 43.67 > 43.67 

 

 

Figure 1 Boxplots show the distribution of embryos cleaving to 2 cell, 3 cell and 4 cell stage embryos. Whiskers 
represent minimum and maximum, dots represent outliers. 

When embryos reach the 2 cell stage before 31.2 hours, the odd ratio is 18 times higher for the embryo 

to develop into a blastocyst compared to a late cleavage. Moreover, the odds ratio for an embryo to 

develop into a blastocyst increases even to 43 for embryos reaching the 4 cell stage before 41.9 hours. 

This is also the case for 2 cell stage embryos that need less than 15.5 hours to reach the 4 cell stage 

(OR: 43). No differences were found in embryo quality as assessed by the total cell numbers of the 

blastocysts developing after late, intermediate or early first cleavages (P-values > 0.47) (Table 2). 
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Table 2 Total cell number (TCN) of day 8 blastocysts depending on speed (early, intermediate, late) of cleavage 
at 2-cell, 3-cell and 4-cell stage. Results are expressed as mean ± standard error. 

Total cell number 

  Early (n) Intermediate (n) Late (n) 

2 cell 122 ± 14.7 (5) 140 ± 9.4 (11) 84.5 (1) 

3 cell 110 ± 19.4 (5) 134 ± 10.7 (11) 84.5 (1) 

4 cell 134 ± 4.9 (7) 116 ± 15.5 (11) 84.5 ± 14.0 (2) 

 

Figure 7 The proportion of early (F), intermediate (I) and late (S) cleaving embryos at the 2 cell, 3 cell and 4 cell 
stage that developed into a blastocyst is indicated in dark grey. The embryos that did not reach the blastocyst 
stage are visualized in light grey. Intermediate cleaving embryos were compared to early and late cleavers. The 
asterisk indicates significant differences between groups (* P < 0.05; ** P < 0.01; *** P < 0.001). A trend (P < 0.1) 
was noted at the 4-cell stage for slow compared to fast and intermediate. 

Discussion 

For the first time, the developmental competences and quality of bovine intermediate cleaving 

embryos produced in completely serum-free conditions were studied comparing early and late 

cleaving embryos. A well-of-the-well (WOW) dish under time-lapse monitoring system was applied and 

mophokinetics were assessed to identify developmental speed depending on the first embryonic 

cleavages. Furthermore, the predictive values of timing of early cleavage for blastocyst formation and 

quality were investigated. Although no differences were found between intermediate and early 

cleaving embryos regarding embryo development rate nor quality, the blastocyst formation was 

significantly higher in intermediate compared to late cleaving embryos. 

It was clear that bovine embryo development was not harmed in these WOW dishes as reported 

previously (Vajta et al. 2000; Sugimura et al. 2010; Cebrian-Serrano et al. 2014; Wydooghe et al. 2014b) 

since an overall blastocyst rate of 33.3% was observed. Furthermore, a similar embryo development 
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was reported compared to studies using serum-free conditions (Abe and Hoshi 2003; Wydooghe et al. 

2014a). Previous time-lapse bovine studies in cattle were performed using culture media containing 

serum and/or large group (Grisart et al. 1994; Somfai et al. 2010a; Somfai et al. 2010b; Sugimura et al. 

2010; Beck 2014), while this is the first study using a combination of the WOW principle and serum-

free media under time-lapse imaging.  

In general, there is a large variation between the timing of the embryos’ first divisions, which was also 

reported in earlier studies using SOF medium without serum supplementation (Van Langendonckt et 

al. 1997; Holm et al. 1998). The average time point of cleavage to the 2-cell and 4-cell stage (33.06h 

and 40.39h), was similar in our study compared to other studies using serum-free conditions (Grisart 

et al. 1994; Yoshioka et al. 2000). Whereas serum would inhibit the first embryonic cleavages 

(Pinyopummintr and Bavister 1991), studies using serum supplementation report an earlier first 

cleavage than our study (Table 3). This can probably be ascribed to the absence of serum during in 

vitro maturation and fertilization in our experimental set-up. It has been reported that serum proteins 

are important for pronucleus formation but not for cleavage and embryo development (Eckert and 

Niemann 1995). Moreover, sperm penetration was delayed in a protocol without serum during IVM 

(Holm et al. 2002). However, when comparing morphokinetic studies performed on bovine embryos 

cultured in the presence or absence of serum serum supplementation does not tend to affect cleavage 

kinetics to the 4-cell stage and beyond (Table 3). In general, in vitro produced bovine embryos have a 

dark cytoplasm due to lipid content, making it difficult to count the number of cells accurately when 

development continues and the embryo comprises more blastomeres. 

Regarding embryo quality, total cell numbers (TCN) of the blastocysts were assessed. Although there 

was no significant difference in embryo quality between early, intermediate and late cleaving embryos, 

these results could be biased due to the low number of embryos analysed. Previous studies 

investigating bovine embryo development using time-lapse did not observe any differences in 

blastocysts’ TCN either (Somfai et al. 2010b; Sugimura et al. 2010). Assessment of other parameters of 

bovine blastocyst quality such as chromosomal constitution, gene expression, proteomic and 

metabolomic analysis, could indicate differences between early, intermediate and late cleaving 

embryos. Aneuploidy rate was observed to be significantly higher in late bovine cleaving embryos 

compared to early cleaving two-cell embryos (Hornak et al. 2016). Although a lot of information on 

early and late cleaving bovine embryos has already been published, there is still a gap in reports 

focussing on intermediate cleaving embryos. 
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Table 3 Overview of mean time points of the first bovine embryonic cleavages in our study and in previous time-
lapse imaging studies  

Reference IVC medium Culture system 2-cell (hpi) 3-cell (hpi) 4-cell (hpi) 

Our study SOF + 0.4% BSA 

+ITS 

9 embryos in 30 µL WOW 33.1 38.7 40.4 

Van Langendonckt et 

al. 1997 

SOF + 1% BSA 28-30 embryos in 27 µL 28.9 ± 4.9                   36.9 ± 6.7  

Holm et al. 1998 M199 + 5% FCS 30-40 embryos in 400 µL 32 ± 3.9  40.8 ± 1.6  42.8 ± 4.7  

Yoshioka et al. 2000 SOF + PVA 25 embryos in 40 µL 31.5 ± 0.8  39.5 ± 1.0  NA 

Majerus et al. 2000 SOF + 5% FCS Groups (number NA) in 20 µL 25.4 ± 1.58  31.2 ± 4.12  NA 

Lequarré et al. 2003 SOF + 5% FCS 20-25 embryos in 25 µL 28.6 ± 3.28  37.8 ± 1.33  46.0 ± 1.63  

Somfai et al. 2010 CR1aa + 5% FCS 15-25 embryos in 50 µL 24.9 ± 0.3  33.5  41.7  

Sugimura et al. 2013 CR1aa + 5% FCS 15 embryos in 125 µL WOW  25.0 ± 2.3  34.9 ± 3.3  NA 

Beck 2014 SOF +5% OCS 16 embryos in 160 µL WOW 29.4 ± 5.8  38.4 ± 6.4  NA 

BSA: bovine serum albumin;CR1aa: Charles Rosenkrans 1 amino acids; FCS: fetal calf serum; hpi: hours post 

insemination; ITS: insulin, transferrin, selenium; IVC: in vitro culture; NA: not available; OCS: oestrus cow serum; 

PVA: polyvinyl alcohol; SOF: synthetic oviductal fluid; WOW: well-of-the-well. 

In this study, we noticed a high incidence of direct cleavages in which the embryo cleaved immediately 

from one to 3-4 blastomeres (19.0%), these could all but one, intermediate cleaving embryo, be 

considered as early cleaving embryos. Other studies have noted similar high incidences in cattle 

(Somfai et al. 2010b) and human (Yang et al. 2015; Zhan et al. 2016). In human, studies investigating 

these first abnormal cleavages events showed no significant differences in euploidy and aneuploidy 

(Campbell et al. 2013), however, it has been reported that abnormal division events may have a 

negative effect on the embryonic development (Meseguer et al. 2011). In contrast, direct cleavages 

from one to more than three blastomeres seem to have no major impact on further growth in cattle 

(Somfai et al. 2010b), but these bovine embryos have a higher frequency of chromosomal 

abnormalities (Somfai et al. 2010b). Moreover, it has been hypothesized that the chromosomal 

segregation patterns are aberrant in these direct cleavages and that one paternal genome segregates 

into a distinct blastomere lineage (Destouni et al. 2016). This has been recently investigated in bovine 

cleavage stage embryos using novel cytogenetical analysis and called ‘heterogoneic cell division’. 

Additionally, we found that the segregation of paternal and maternal genomes into different 

blastomeres happens at a high frequency in in vitro embryos (53.8%) while this was not observed in in 

vivo derived embryos (Tšuiko et al. 2017). Nonetheless, we did not notice any negative influence on 

the further development of these embryos displaying a direct cleavage in this study. Two possible 

rescue mechanisms can be suggested, apoptosis of a limited number of compromised blastomeres 
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while healthy blastomeres continue development (Everett and West 1998) and allocation of 

compromised blastomeres to the trophectoderm at the moment of differentiation (James et al. 1995). 

More research is necessary to elucidate these mechanisms since this direct cleavage and heterogoneic 

cell division can possibly cause molar pregnancies of androgenetic origin in human (Obeidi et al. 2015; 

Tšuiko et al. 2017) and hydroallantois as a result of a dysfunctional placenta in cattle, which is more 

often observed after transfer of in vitro produced embryos (Hasler et al. 1995). 

In conclusion, intermediate cleaving bovine embryos were defined by time-lapse analysis for the first 

time and the developmental competences and quality were compared with early and late cleaving 

embryos. Although there was no difference in quality between these embryos, it is clear that the 

developmental fate of an embryo produced in serum-free conditions has been set as early as the first 

embryonic cleavages. Significantly more intermediate cleaving embryos develop into a blastocyst 

compared to late cleaving embryos. Still, further research is necessary to obtain better insights 

regarding the impact of the developmental speed since there was no difference between early and 

intermediate cleaving embryos in developmental outcome. For this, genome, transcriptome and 

epigenetic analysis on embryos with different kinetic parameters could lead to a better understanding 

of preimplantation development in bovine embryos. In addition, transfer studies using these in vitro 

produced embryos could provide commercial practices more information whether intermediate 

cleaving embryos have a higher pregnancy outcome and life birth rate compared to early and late 

cleaving ones.  
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Abstract 

Chromosomal instability (CIN) occurs at high frequency during early embryogenesis and is known to 

be associated with early embryonic loss, but the stability of in vivo-conceived cleavage-stage embryos 

remains largely unknown. Five young, healthy, cycling Holstein Friesian heifers were used to analyse 

single blastomeres of in vivo embryos, in vitro embryos produced by ovum pick-up with ovarian 

stimulation (OPU-IVF), and in vitro embryos produced from in vitro matured oocytes retrieved without 

ovarian stimulation (IVM-IVF). A novel genome wide haplotyping and copy number profiling approach, 

called haplarithmisis was applied to investigate the allelic architecture of single blastomeres of bovine 

in vitro and in vivo produced embryos. The study revealed that the genomic stability of single 

blastomeres in both of the in vitro-cultured embryo cohorts was severely compromised (P < 0.0001), 

and the frequency of whole chromosome or segmental aberrations was higher in embryos produced 

in vitro than in embryos derived in vivo. Only 18.8% of in vivo-derived embryos contained at least one 

blastomere with chromosomal anomalies, compared to 69.2% of OPU-IVF embryos (P < 0.01) and 

84.6% of IVM-IVF embryos (P < 0.001). Although CIN is also present in in vivo-developed embryos, in 

vitro procedures exacerbate chromosomal abnormalities during early embryo development. Our 

results encourage to refine and improve in vitro culture conditions and assisted reproduction 

technologies. 

  



Chapter 6 

110 
 

Introduction 

Up until today, embryonic loss in cattle is still disappointingly high resulting in important economic 

losses for animal breeders. Whereas the fertilization rate is more than 80% (Hawk and Tanabe 1986), 

inseminating dairy cows will only lead in 40 to 55% to offspring (Diskin et al. 2012). This implies high 

embryonic and fetal losses, which mostly occur during the first 45 days of gestation (Berg et al. 2010). 

During early embryo development, critical events such as embryonic genome activation, first lineage 

differentiation and pregnancy recognition by embryonic-maternal signalling are initiated. Failures 

during these vital phases will lead to embryonic losses in the early stages of pregnancy. Losses can be 

ascribed to both maternal causes and embryo quality. Pregnancy failures solely due to maternal causes 

vary between 6 and 16% for heifers and cows, respectively, while 24% of embryo loss is due to the 

unsatisfactory developmental competence of the embryo itself (Berg et al. 2010). 

A major cause of embryo loss can be ascribed to chromosomal aberrations in the embryos. 

Chromosomal instability (CIN) can arise from errors during gametogenesis or around the time of 

fertilization and subsequent early development (King 1990). There is a progressive embryo loss during 

early development, but as embryo development continues, the incidence of chromosomally abnormal 

embryos decreases. Severe aberrations or abnormalities affecting the whole chromosome set are 

incompatible with development to term. (King 1990; Iwasaki et al. 1992; Kawarsky et al. 1996). 

Moreover, aneuploidy has been reported in one-fifth of bovine aborted foetuses and non-viable 

neonates (Coates et al. 1988). Chromosomal abnormalities have been widely investigated in in vivo 

and in vitro preimplantation bovine embryos (Iwasaki et al. 1992; Hyttel et al. 2000; Viuff et al. 2000; 

Viuff et al. 2001a; Destouni et al. 2016). In vivo derived embryos showed less anomalies such as 

polyploidy immediately after fertilization, compared to in vitro produced embryos (Viuff et al. 2001b). 

However, the major limitation of previous studies was the application of low-resolution karyotyping 

methods, mostly fluorescent in situ hybridization (FISH) with only a few chromosome probes, that can 

neither detect CIN at the single cell level nor reveal subtle sub-chromosomal aberrations. Thus, the 

knowledge about the genomic stability of in vivo-conceived embryos remained limited, largely due to 

the lack of robust genome analysis technologies. 

To compare in vitro versus in vivo chromosome instability directly, we used bovine cleavage-stage 

embryos. A genome-wide single-cell analysis method was applied to enable haplotyping and copy-

number profiling, called haplarithmisis (Zamani Esteki et al. 2015), on all individual bovine blastomeres 

obtained from in vivo embryos derived from oocytes that were matured and fertilized in vivo after 

ovarian stimulation of donor animals (referred to as in vivo embryos). In parallel, we tested in vitro 

produced embryos derived from in vitro matured and fertilized oocytes that were retrieved from the 
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same donor animals using ovarian stimulation and ovum pick-up (referred to as OPU-IVF embryos) and 

in vitro produced embryos derived from in vitro matured and fertilized oocytes that were retrieved 

from these donor animals without ovarian stimulation (referred to as IVM-IVF embryos). All single 

blastomeres were analysed for the presence of chromosomal aberrations. 

Methods 

Ethical approval 

This study was approved by the Ethical Committee of the Faculty of Veterinary Sciences of Ghent 

University, Belgium (EC2013/197, EC2015/71).  

Study design 

The aim of the study was to evaluate chromosome instability in naturally conceived preimplantation 

embryos. In parallel, we investigated the influence of different IVF procedures on embryo 

development using bovine as a model for human early embryogenesis (Menezo and Herubel 2002; 

Destouni et al. 2016). Five young, healthy, cycling Holstein Friesian heifers (Bos taurus) between 16 

and 27 months of age were used as oocyte and embryo donors. All donor cows were subjected to 

hormonal stimulation with subsequent ovum pick-up or in vivo embryo collection (Besenfelder et al. 

2008). Blood samples from the donor cows (mothers) and semen from the bull (father) were used to 

extract bulk DNA (DNeasy Blood and Tissue kit, Qiagen, Germany). Bulk DNA was also obtained from 

the parents of the bull (paternal grandparents) and the available parents of the cows (maternal 

grandparents; only for crosses 4757, 8301 and 9617). After hormonal treatments, the cows were left 

untreated for one month before they were slaughtered. After collection of ovaries, oocytes were 

retrieved and embryos were produced in vitro by routine procedures (Catteeuw et al. 2017). 

Subsequently, single blastomeres were isolated, whole-genome amplified and hybridized on BovineHD 

BeadChip arrays (Illumina Inc., USA). The acquired array data was used for single-cell genome-wide 

haplotyping and copy-number profiling (Zamani Esteki et al. 2015).  

Media and reagents 

Basic Eagle’s Medium amino acids, Minimal Essential Medium (MEM) non-essential amino acids 

(100 ×), TCM-199-medium, kanamycin and gentamycin were purchased from Life Technologies Europe 

(Ghent, Belgium) and all other components were obtained from Sigma (Schnelldorf, Germany), unless 

otherwise stated. All the media were filter-sterilized using a 0.22 μm filter (Pall Corporation, Ann Arbor, 

MI, USA) before use. 
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Stimulation protocol and ovum pick-up 

Stimulation protocol for ovum pick-up was used to generate OPU-IVF embryos and was performed 3 

to 6 times in all animals with at least one week interval between OPU sessions. On day 0, heifers were 

given an epidural anesthesia using 3 mL of Procaine Hydrochloride 2% (VMD, Belgium) to decrease 

peristalsis and discomfort. An ultrasound probe was inserted in the vagina, and follicles larger than 5 

mm were removed by puncturing the ovaries. Animals received dinoprost (PGF2α) intramuscularly 

(i.m.) (Dinolytic®, Zoetis, Belgium), and a CIDR (controlled internal drug release, Progesterone, Zoetis, 

Belgium) was administered in the vagina. In following days, pFSH injections (Stimufol®, Reprobiol, 

Belgium) were given i.m. twice a day. The CIDR was removed 40 to 44 hours after the last pFSH injection 

and OPU was performed. On the day of OPU animals were given an epidural anesthesia using 3 mL of 

Procaine Hydrochloride 2%. All follicles were aspirated using an ultrasound probe, a 7.5 MHz 

transducer and a stainless steel guide. Puncturing was performed using disposable 19G needles 

connected to a 50 mL tube via silicon tubing. Needles were changed between ovaries of the same 

animal and between animals, further tubing was also renewed between animals. Follicular fluid 

containing the oocytes was collected in 5 mL HEPES-buffered TCM-199 supplemented with 18 IU/mL 

heparin, 50 µg/mL gentamicin and 0.1% fetal calf serum (FCS). Immediately following recovery, the 

collected follicular fluid was filtered through a 75 µm mesh filter with HEPES-buffered TCM-199. For 

every donor, a new sterile filter was used. Oocytes were grouped per donor and embryos were 

produced according to the standard in vitro embryo production protocol. 

In vitro bovine embryo production protocol 

Bovine OPU-IVF and IVM-IVF embryos were produced per donor by previously described methods 

(Catteeuw et al. 2017). Briefly, oocytes retrieved via ovum pick-up and oocytes retrieved from ovaries 

of slaughtered animals were placed per donor in 500 µL maturation medium, consisting of modified 

bicarbonate-buffered TCM-199 supplemented with 50 µg/mL gentamycin and 20 ng/mL epidermal 

growth factor (EGF) for 22 h at 38.5°C in 5% CO2 in humidified air. After maturation, frozen-thawed 

semen of a previously tested Holstein Friesian bull was used for fertilization. Spermatozoa were 

separated over a discontinuous Percoll gradient (45 and 90%; GE Healthcare Biosciences, Uppsala, 

Sweden) and sperm concentration was adjusted to 1 × 106 spermatozoa/mL using IVF-TALP, which is 

supplemented with 6 mg/ml BSA (Sigma A8806) and 25 μg/ml heparin. Matured oocytes were 

incubated per donor in 500 µL IVF-TALP with spermatozoa for 21 h at 38.5°C in 5% CO2 in humidified 

air. Presumptive zygotes were transferred to synthetic oviductal fluid (SOF) supplemented with 

essential and non-essential amino acids (SOFaa), 0.4% BSA (Sigma A9647) and ITS (5 µg/ml insulin, 5 

µg/ml transferrin and 5 ng/ml selenium) and were placed per donor in a droplet of culture medium. 



Chapter 6 

113 
 

The droplet size differed between donors depending on the number of zygotes, an embryo:medium 

ratio of 1:2 was maintained with a minimal droplet size of 20 µL. Each droplet was covered by mineral 

oil and incubated at 38.5°C in 5% CO2, 5% O2 and 90% N2. 

Oviductal flush and collection of in vivo embryos 

The in vivo collection of embryos was performed by oviductal flush as described earlier (Besenfelder 

et al. 2008). First, estrous cycles of the donor animals were pre-synchronized by i.m. administering 2 

ml PGF2α (500 µg Cloprostenol, Estrumate, Belgium) twice within 11 days. Forty eight hours after both 

PGF2α treatments, the animals received i.m. 21 µg Gonadotropin Releasing Hormone (GnRH) 

(Receptal®, MSD AH, Belgium). Dominant follicles were ablated nine days after heat detection. Thirty 

six hours later, pFSH was administered in decreasing dosages twice a day for four days (1.5 mL, 1.4 mL, 

1.2 mL, 1.1 mL, 0.8 mL, 0.6 mL, 0.5 mL, 0.5 mL), and in total 380 µg follitropine was given. The donor 

animals received two PGF2α treatments 60 and 72h after the initial pFSH treatment. Finally, 24 h after 

the last pFSH treatment, 21 µg GnRH was administered to induce ovulation, simultaneously animals 

were inseminated with frozen-thawed semen. Artificial insemination (AI) was repeated 12 h and 24 h 

later. Embryos were flushed bilaterally 36 h after the last AI. Briefly, donor animals were given epidural 

anesthesia using 5 mL of Procaine Hydrochloride 2%. An embryo flushing catheter was directed 

through the cervix and fixed in the uterine horn. An integrated device consisting of a universal tube, 

an endoscope and flushing system was inserted through the vaginal wall into the peritoneal cavity, 

which was passively filled with air. Oviducts were flushed with 40 to 60 mL flushing medium (PBS 

supplemented with 1% FCS) to pass the embryos through the uterotubal junction. Once in the uterine 

horn, flushing medium containing the embryos was collected via the uterus flushing catheter into an 

embryo filter. Finally, the uterine horn was flushed with another 300 to 500 mL medium through the 

uterine flushing catheter. This procedure was repeated for flushing the other oviduct and uterine horn. 

The collected medium was transferred to petri dishes and examined for embryos using a 

stereomicroscope. 

Single blastomere isolation and SNP genotyping 

IVM-IVF, OPU-IVF and in vivo-derived embryos were treated with pronase (0.1% protease for IVM-IVF 

and OPU-IVF embryos and 1% protease for in vivo embryos from S. griseus, Sigma P88110) in Hepes-

buffered TCM-199 (Life Technologies Europe, Belgium) to dissolve zona pellucida. The zona-

free embryos were then washed in HEPES-buffered TCM-199 with 10% FCS followed by Ca+2/Mg+2 free 

PBS with 0.05% BSA to stimulate blastomere dissociation. Next, each blastomere was washed three 

times in wash medium (Ca+2/ Mg+2 free PBS with 0.1% PVP) and subsequently transferred into a 0.2-
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mL PCR tube containing 2μL of PBS and whole-genome amplified (WGA) using a commercial multiple 

displacement amplification (MDA) kit according to the manufacturer’s fast 3 h protocol (REPLI-g Single 

Cell Kit, Qiagen, Germany). WGA products were purified with SPRI-beads (Beckman Coulter Inc., USA) 

at 0.8× total reaction volume and SNP genotyped on BovineHD SNP arrays using the Infinium HD whole-

genome genotyping assay. Genotyping data obtained in this study has been submitted to NCBI Gene 

Expression Omnibus (GEO; accession number GSE95358; http://www.ncbi.nlm.nih.gov/geo/).  

Single blastomere whole-genome analysis 

SNP genotypes, log R Ratio (logR) and B Allele Frequency (BAF) values were obtained for each sample 

by applying the GenCall algorithm, embedded in the GenomeStudio software Genotyping Module v.3.1 

(Illumina Inc.). SNP genotypes were called by setting the GenCall score at 0.75. Next, computational 

workflow “siCHILD-bovine” was used to acquire genome-wide haplarithm plots for each sample as 

described previously (Destouni et al. 2016). Briefly, the acquired single cell SNP data underwent quality 

control (QC) using a combination of unsupervised hierarchical clustering on the discrete SNP genotype 

calls and cumulative chromosome specific standard deviation on the logR values. Substandard samples 

were excluded from further investigations. The entire process of haplarithmisis was then applied for 

data analysis as previously described (Zamani Esteki et al. 2015). Briefly, haplarithmisis uses single-cell 

SNP BAF-values and phased parental genotypes to determine genome-wide haplotypes, copy-number 

state of the haplotypes, as well as the parental and segregational origin of putative haplotype 

anomalies in the cell. The parental genotypes are phased via SNP genotype calls derived from a close 

relative, e.g. sibling or the grandparents. In this study we have used paternal and maternal 

grandparents. Next, specific combinations of phased parental genotypes are retrieved that 

consequently define single-cell SNP BAF-values. Consequently, these values are plotted on paternal 

and maternal haplarithms. All the haplarithm plots obtained from this study are provided in 

Supplementary Figure S3. In parallel with haplarithmisis, genome-wide haplotypes of single 

blastomeres were also reconstructed. Data were visualized with siCHILD, Circos (Krzywinski et al. 2009) 

and R (https://www.r-project.org/).  

Statistical analysis  

Statistical calculations were carried out using GraphPad Prism 6 software (GraphPad Software Inc., 

USA). The prevalence of CIN and the nature of detected chromosomal abnormalities were compared 

between the three embryo groups and corresponding single blastomeres by two-tailed Fisher’s exact 

test with Bonferroni correction for multiple testing. The differences in the frequencies of CIN between 

the three embryo cohorts were considered to be statistically significant when the multiple testing 

http://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
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corrected P-value was <0.01. When comparing monospermic embryos, a P-value <0.05 was considered 

to be statistically significant. 

Results 

Embryo collection and genome-wide analysis of single bovine blastomeres 

Five healthy, cycling Holstein Friesian heifers (Bos taurus) were used to produce IVM-IVF, OPU-IVF and 

in vivo embryos (Fig. 1A), and the incidence of CIN was evaluated for all three groups. The use of the 

same cows and bull seed to study the effect of CIN in vivo and in vitro reduces potential genetic 

background confounding effects. First, donor animals were subjected to varying numbers of ovum 

pick-up sessions depending on the ovarian response to hormonal stimulation and the number of 

oocytes retrieved per session (Table S1). Overall, 49 oocytes were collected, of which 13 (26.5%, n = 

49) were good quality oocytes with homogeneous non-granulated cytoplasm and at least three 

compact layers of cumulus cells. On day-1 post insemination (pi), 28 (57.1%, n = 49) of the presumed 

zygotes cleaved, and subsequently 77 single blastomeres were collected from 10 OPU-IVF embryos on 

day-2 pi (median 5.0 blastomeres per embryo) and five OPU-IVF embryos on day-3 pi (median 6.0 

blastomeres per embryo). 

Next, a total of 42 in vivo oviductal-stage embryos were retrieved on day-2 pi by oviduct flushing 

(Besenfelder et al. 2008), from which 34 (81.0%) have cleaved. Due to ovarian stimulation and OPU, 

the cow from cross 4757 developed scar tissue and no flushing of in vivo embryos was possible, 

because of the obstruction of the oviduct. Of all the cleaved in vivo embryos, 12 either had indigestible 

zona pellucida or lysed during washing and single cell collection. As a result, 22 zona-free embryos 

were collected (median 4.45 blastomeres per embryo) and 18 were hybridized on SNP arrays after 

successful amplification of at least half of the blastomeres per embryo (n = 73). 

Following OPU-IVF and in vivo embryo collection, donor animals were slaughtered, ovaries were 

collected, and in vitro embryos were produced (Catteeuw et al. 2017). Thirty-one oocytes were 

aspirated, of which 16 (51.6%, n = 31) were of good quality. On day-1 pi, 20 (64.5%, n = 31) of the 

presumed zygotes have cleaved. Subsequently, 72 blastomeres were isolated from 13 day-2 pi IVM-

IVF embryos (mean 5.54 blastomeres per embryo) and further analyzed. 
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Figure 1. Schematic overview of study design and data analysis. (A) Different protocols used for embryo 
production. First, five donor cows were used to obtain OPU-IVF embryos (left). Next, in vivo embryos were 
derived from the same donor cows via oviduct flush (middle). Finally, donor cows were slaughtered and IVM-IVF 
embryos were produced (right). (B) Schematic representation of haplarithm profiles for different genomic 
rearrangements. During initial parental phasing using informative SNPs, single cell B allele frequency (BAF) values 
are assigned to P1 or M1 (blue lines) and P2 or M2 (red lines) subcategories (for more detail see (Zamani Esteki 
et al. 2015)). Defined single cell BAF values of the segmented P1, P2, M1 and M2, as well as the distance between 
the P1-P2 or M1-M2 denote the origin and nature of copy number (CN) alterations. Dashed grey arrows showing 
the pairwise P1-P2 and M1-M2 breakpoints in the haplarithm profiles signify homologous recombination sites, 
accompanied by the switch in the haplotype blocks. (C) An example of genome-wide haplarithm profile of single 
blastomere of OPU-IVF embryo E04 with segmental and full chromosome losses (light red) and gains (light green), 
corroborated by the corresponding paternal and maternal haplarithm patterns and the normalized logR-values. 
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In summary, a total of 222 individual bovine blastomeres were collected from 13 IVM-IVF, 15 OPU-IVF 

and 18 in vivo-derived bovine cleavage-stage embryos. Following quality control and initial data 

analysis, 171 (77.0%, n = 222) blastomeres were considered for further data interpretation (66 

blastomeres from 13 IVM-IVF embryos, 46 blastomeres from 13 OPU-IVF embryos and 59 blastomeres 

from 16 in vivo-derived embryos, respectively; Table S2). For crosses 4757, 8301 and 9617 we applied 

haplarithmisis using both maternal and paternal grandparents as seeds for parental genotype phasing 

to reconstruct haplotypes of single blastomeres (Fig. 1B-C). For crosses 4006 and 4770, lacking 

maternal grandparental DNA samples, only parents of the bull were used as a seed for creating the 

paternal haplarithm profile.  

Characteristics of CIN in embryos developed in vitro and in vivo 

We first aimed to assess the prevalence of chromosome instability in IVM-IVF, OPU-IVF and in vivo-

derived bovine cleavage-stage embryos. To evaluate the genomic stability of embryos, we investigated 

chromosome segregation patterns in all analysed blastomeres (n = 171, Fig. S1). In this analysis, euploid 

blastomeres, irrespective of their ploidy, that lacked full chromosome or segmental aberrations were 

scored as balanced. The genomic integrity of single blastomeres was higher in in vivo embryos than in 

OPU-IVF and IVM-IVF embryos (in both cases P < 0.0001, Fisher’s exact test; Fig. 2A). At the embryonic 

level, the number of abnormal embryos carrying at least one blastomere with a full or segmental 

chromosomal aberration increased from 18.8% in in vivo embryos (3/16) up to 84.6% in IVM-IVF 

embryos (11/13) (P < 0.001, Fisher’s exact test; Fig. 2B). The CIN rate in OPU-IVF embryos (69.2%, 9/13) 

was comparable to the CIN rate in IVM-IVF embryos (P > 0.05, Fisher’s exact test), but was higher than 

in in vivo-derived embryos (P < 0.01, Fisher’s exact test). Because OPU-IVF group also contained five 

day-3 pi embryos that may have undergone at least one more cell division that can lead to mitotic 

error, we decided to analyse day-2 pi OPU-IVF embryos (n = 8) separately to obtain more consistency 

between the groups. Comparison of day-2 OPU-IVF and in vivo embryos provided similar results, 

demonstrating that CIN is higher in day-2 pi OPU-IVF embryos (75%, 6/8) than in in vivo-derived day-2 

pi embryos (P = 0.02, Fisher’s exact test). Likewise, OPU-IVF embryos contained a significantly larger 

proportion of unbalanced blastomeres that can subsequently lead to altered embryonic development 

(16/26, 61.5%, P < 0.0001, Fisher’s exact test).  
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Figure 2. The rate of CIN in IVM-IVF, OPU-IVF and in vivo embryos. The numbers above the columns 
represent the total numbers of blastomeres (A) and embryos (B) included in the study after quality 
control. (A) The comparison of balanced and unbalanced blastomeres represents the chromosome 
dynamics of single blastomeres in IVM-IVF (n = 66), OPU-IVF (n = 46) and in vivo-derived embryos (n = 
59); ****P < 0.0001, two-tailed Fisher’s exact test for multiple testing. (B) The proportion of normal 
diploid embryos and aberrant embryos in IVM-IVF (n = 13), OPU-IVF (n = 13) and in vivo group (n = 16); 
**P < 0.01, ***P < 0.001, two-tailed Fisher’s exact test for multiple testing. 

Next, we determined the nature of chromosomal aberrations in in vitro-produced and in vivo-derived 

embryos. As was expected, aneuploidy was the most prevalent type of error and all abnormal in vivo-

derived, OPU-IVF and IVM-IVF embryos contained whole chromosome aberrations. Therefore, the 

number of embryos with aneuploidy was significantly higher in OPU-IVF embryos (69.2%, 9/13) and in 

IVM-IVF embryos (84.6%, 11/13) than in the in vivo group (18.8%, 3/16, P < 0.01 and P < 0.001, 

respectively, Fisher’s exact test; Fig. 3A). Meiotic errors were observed only in Cross9617, once within 

the OPU-IVF group and once within the IVM-IVF group, in which case the embryos showed the same 

chromosomal aneuploidy in all of the sister blastomeres (OPU-IVF E01_Cross9617 and IVM-IVF 

E09_Cross9617 were monosomic for chromosomes 26 and 24, respectively; Fig. S1). The remaining 

aberrations were of mitotic origin and resulted in either whole chromosome or segmental imbalances. 

Segmental imbalances were most prevalent in IVM-IVF embryos (9/13, 69.2%) when compared to 

OPU-IVF embryos (2/13, 15.4%, P = 0.01, Fisher’s exact test) and in vivo embryos (1/16, 6.3%, P = 0.001, 

Fisher’s exact test; Fig. 3A).  

We also observed a number of embryos that had at least one blastomere with an abnormal ploidy 

state (Fig. 3A). Single-cell haplarithm profiles uncovered the presence of only paternal (androgenetic) 

or only maternal (gynogenetic) genomes in a single blastomere and enabled triploid blastomeres to be 

classified as diandric or digynic in origin. Upon comparing IVM-OPU, OPU-IVF and in vivo embryos, we 

observed that IVM-IVF embryos were burdened with mixoploidy. In this study, mixoploidy is defined 

by the presence of cell lineages of different parental origin and/or different genome-wide ploidy states 

within the same embryo. As such, mixoploid embryos harbour simultaneously haploid, diploid and/or 

triploid cells (Fig. 3B, Fig. S1). Mixoploidy in IVM-IVF embryos can be attributed to the dispermic 
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fertilization (69.2%, 9/13) that was identified by the presence of two different paternal haplotypes 

within the same embryo. In seven IVM-IVF embryos one of the extra paternal genomes segregated 

into a separate androgenetic cell line carrying only paternal DNA, a phenomenon that was recently 

discovered in in vitro produced bovine cleavage-stage embryos and termed heterogoneic cell division 

(Destouni et al. 2016). For example, a 10-cell IVM-IVF embryo contained eight androgenetic 

blastomeres, one biparental and one triploid blastomere (E10_Cross4770, Fig. 3B). In addition, we 

observed amplified shattered paternal chromosomal DNA fragments and no maternal DNA in 

blastomere Bl005 of E07_Cross4770 (Fig. S1), and in E11_Cross4770 two blastomeres (Bl002 and 

Bl003) contained residues of paternal DNA that were reciprocal in nature (Fig. S1). Such replication and 

division of the remnants of sperm genome were also observed in a previous study on bovine in vitro-

produced embryos (Destouni et al. 2016). In contrast, only one OPU-IVF embryo underwent dispermic 

fertilization resulting in a diandric triploid embryo (E03_Cross4757, Fig. S1). Notably, no abnormal 

fertilization events occurred in the in vivo-derived embryos.  

Because dispermy might influence CIN in embryos, we then analysed only those embryos that 

developed from monospermic zygotes. For this purpose, we combined monospermic IVM-IVF (n = 4) 

and OPU-IVF (n = 12) embryos into a single group (referred to as in vitro) and compared them to in 

vivo-derived embryos (n = 16). The CIN rates confirmed a considerable difference between the in vitro 

produced and cultured embryos, and in vivo-derived embryos (10/16, 62.5% vs 3/16, 18.8%, P = 0.03, 

Fisher’s exact test; Fig. S2A). In addition, it was clear that in vitro procedures had a highly significant 

negative impact on CIN, when we compared the low frequency of chromosomal aberrations and 

aberrant ploidy states in blastomeres of in vivo-derived embryos (7/59, 11.9%) with the high frequency 

chromosomal aberrations and aberrant ploidy states of in vitro produced and cultured embryos 

(27/57, 47.4%, P < 0.0001, Fisher’s exact test; Fig. S2B). Similarly, when analysing only day-2 pi 

embryos, seven in vitro embryos were classified as abnormal (7/11, 63.6%, P = 0.04), while the total 

number of abnormal blastomeres in the in vitro group reached up to 45.9% (17/37, P < 0.001, Fisher’s 

exact test). Together, these results strongly suggest that in vitro procedures, such as maturation, 

fertilization and culture, enhance embryonic CIN and consequently impede embryo developmental 

potential. 
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Figure 3. Incidence and nature of CIN in IVM-IVF, OPU-IVF and in vivo embryos. (A) The proportion of embryos 
with different genomic rearrangements. Abnormal ploidy state of blastomeres was not considered in evaluating 
whole-chromosome aberrations to avoid bias; for whole chromosome aberrations P-values stand as **P < 0.01, 
***P < 0.001; for segmental imbalances and aberrant ploidy P-values stand as **P = 0.01, ***P = 0.001, two-
tailed Fisher’s exact test for multiple testing. (B) Examples of embryos containing at least one blastomere with 
an abnormal ploidy status. The stacked bar plots depict the number of blastomeres with different genomic 
anomalies per embryo. Blastomeres with normal karyotype and with single aneuploidies and/or segmental losses 
or gains that have both maternal and paternal alleles present in their genome (diploid embryos) are depicted in 
black. 

Discussion 

Over the last thirty years, commercial embryo production and transfer has become a widely 

established technology in cattle breeding. Approximately 15% of bovine embryos are being produced 

via in vitro techniques, which is annually more than 500,000 embryos worldwide (Mapletoft and Hasler 

2005). Current cytogenetic testing are mostly used for sexing embryos, however, it is likely that these 

techniques will be applied on a large scale in the future for diagnostic purposes , such as evaluation of 

chromosome integrity. In this study, we applied an advanced genome analysis method to scrutinize 

the characteristics of chromosomal aberrations in in vivo-derived embryos and to investigate the 

potential influence of ART treatments on the rate and nature of chromosome instability during early 
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embryo development. We demonstrated that the genomic stability of in vivo embryos is significantly 

higher compared to OPU-IVF and IVM-IVF embryos.  

Only 50% of inseminations or embryo transfers will result in healthy offspring. Infertility and early 

embryo loss are playing a main role in this low calving rate, and the occurrence of chromosomal 

abnormalities in early embryos has been implicated as a possible cause (Schmutz et al. 1996). 

Chromosomal instability (CIN) has been reported to occur in both in vivo and in vitro produced bovine 

embryos (Viuff et al. 1999; Viuff et al. 2000; Viuff et al. 2001a; Garcia-Herreros et al. 2010; Demyda-

Peyrás et al. 2013; Destouni et al. 2016), but the incidence of anomalies varied widely among these 

studies, possibly due to low-resolution cytogenetic techniques. With this novel genome analysis, CIN 

was found to be significantly more frequent in in vitro-produced rather that in vivo-derived bovine 

embryos. Since CIN was observed in less than 20% of in vivo embryos compared to at least 70% in in 

vitro embryos, in vivo conceived embryos will most likely be overall more viable. This observation has 

two major implications: (1) commercial industries should be aware of the fact that ART may 

compromise embryo quality and (2) improvements to the embryo in vitro environment are likely still 

possible to enhance ART success.  

When oocytes are matured in vivo, they originate from ovulatory follicles that undergo strongly 

regulated processes of selection, growth and dominance, until luteinizing hormone (LH) surge induces 

the meiotic maturation of the fully grown oocytes into fertilizable oocytes (Li and Albertini 2013). In 

addition, during preimplantation embryo development in vivo, the female reproductive tract provides 

the appropriate environment and the essential nutrition that guide physiological processes of 

mammalian early embryogenesis (Gardner et al. 1996). In contrast, during preimplantation embryo 

development in vitro, even minor alterations during in vitro culture and the micromanipulation of 

oocytes and embryos may negatively impact embryo quality and subsequent fetal development (Wale 

and Gardner 2016). Indeed, a study in cattle investigated the separate effect of in vitro procedures 

(maturation, fertilization and culture) on embryo developmental potential, and it was clear that in vivo 

oocyte maturation and in vivo embryo development show consistently more favourable outcome in 

terms of embryo quality compared to in vitro conditions (Rizos et al. 2002). Moreover, the oocyte plays 

a central role in maintaining genomic integrity before major embryonic genome activation (EGA), as 

first post-zygotic divisions are highly dependent on the large pool of maternal mRNAs and proteins 

provided by the oocyte (Braude et al. 1988). This view is supported by a time-lapse study, 

demonstrating that the generation of embryonic aneuploidies precedes the major wave of EGA 

(Chavez et al. 2012), while the inheritance of an aberrant oocyte transcriptome has been associated 

with abnormal first post-zygotic cleavage (Vera-Rodriguez et al. 2015). Therefore, in the current study, 
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the higher rate of chromosomal abnormalities in in vitro embryos may also arise from the defective 

maternal resources of the oocytes; however more research should target the precise impact of the 

intrinsic quality of the oocyte on the incidence of chromosomal aberrations in cleavage-stage embryos. 

Finally, although it was recently demonstrated that mosaic embryos may be viable, as abnormal cells 

get depleted during embryo development, there needs to be a sufficient proportion of normal cells 

within the embryo to ensure its survival (Bolton et al. 2016).  

Ovarian stimulation is widely used to bypass the physiological limitation of one ovulation per oestrus 

cycle when embryo transfer is performed. Gonadotrophins are administered in order to attain multiple 

ovulations in the donor animal, which is subsequently inseminated. Resulting embryos can be flushed 

from the uterus and transferred to recipient cows (Aerts and Bols 2010). Although it is not necessary 

to use hormonal treatment prior to OPU, since follicles are punctured before ovulation, it is also 

commonly used in commercial industries. It does not increase the overall recovery rate since less 

sessions can be performed within the same timeframe compared to OPU without hormonal pre-

stimulation, however, the oocytes’ quality seemed to be higher after ovarian stimulation (Goodhand 

et al. 1999). Moreover, superstimulation is considered to be a safe procedure and in contrast to ovarian 

stimulation in women, there is no risk of hyperstimulation syndrome (Van Wagtendonk-de Leeuw 

2006). In our study, although both in vivo and OPU-IVF embryos were obtained after hormonal 

stimulation of donor animals, we observed more chromosomally normal diploid embryos and 

blastomeres in in vivo-derived embryos than in OPU-IVF embryos. This indicates that in vitro 

maturation, fertilization and culture are the major causes of embryonic CIN, rather than ovarian 

stimulation itself. This further suggests that improvements in culture conditions are necessary to 

increase IVF success rates.  

In vivo matured oocytes are after ovulation in contact with the oviductal environment, which enables 

the oocyte to reach full cytoplasmic maturation, which includes hardening of the zona pellucida 

(Mondéjar et al. 2013). The zona pellucida of IVM oocytes, which lack oviductal contact, may therefore 

become less resistant to dispermic fertilization under in vitro conditions (Xia 2013). Our results seem 

to corroborate this view as dispermic fertilization was almost exclusively found among IVM-IVF 

embryos. In addition, we observed that dispermic embryos segregate their extra paternal genome into 

a separate androgenetic cell lineage (Destouni et al. 2016) leading to mixoploidy. These embryos would 

have a low developmental potential, but due to a highly proliferative cell lineage carrying paternal 

genome only, they would have a higher implantation capacity and could potentially give rise to molar 

pregnancies of androgenetic origin. Complete hydatidiform moles of androgenetic origin have been 

reported in both human (Ibrahim et al. 1989; Kwon et al. 2002; Sun et al. 2012; Obeidi et al. 2015) and 
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in cattle (Meinecke et al. 2002). Furthermore, it can be suggested as well that these embryos which 

segregate into separate parental lineages give rise to hydrallantois pregnancies, since this is a result of 

a dysfunctional placenta causing an increased production and accumulation of fluid in the allantoic 

sac. It has already been reported that the frequency of hydrallantois pregnancies is significantly higher 

among IVF pregnancies compared to natural pregnancies, 1 in 200 vs 1 in 7500 pregnancies 

respectively (Hasler et al. 1995; Farin et al. 2006).  

A limitation of our study is the small number of embryos analysed, and because some of the cells did 

not pass the quality control, it was also not possible to determine the chromosomal status of those 

QC-failed blastomeres. In addition, due to small cohort sizes, we were not able to compare the 

pedigrees between each other to determine any cow-specific confounding factors, influencing the 

frequency of aneuploidy in embryos. Thus more studies are warranted to corroborate our findings. 

Also, in vivo-derived embryos do not entirely represent the natural conception, as donor cows 

underwent hormonal stimulation to increase the number of in vivo-derived embryos via oviductal 

flush. Moreover, the ovarian response to hormonal treatment is unpredictable and can vary from cycle 

to cycle, and may result in either ‘low’ or ‘high’ response to hormone treatment in cattle (De Roover 

et al. 2005; Durocher et al. 2006). Although the difference in oocyte and embryo quality after ovarian 

stimulation between donor animals was also noticed in this study (Table S1), future research is needed 

to evaluate the impact of hormonal stimulation on CIN in embryos. However, the overall reduced CIN 

in in vivo embryos compared to OPU-IVF embryos suggests that the effect of hormonal stimulation will 

be minor.  

Conclusions 

This is the first study to date that compared simultaneously the impact of three different embryo 

production protocols on subsequent embryo development using single-cell technologies. We showed 

that in vitro environment influence chromosome instability and compromises cleavage-stage embryo 

development and survival. This highlights the importance of understanding in vivo regulation of 

mammalian oocyte maturation and subsequent embryonic development to refine assisted 

reproductive technologies.  
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In cattle, the commercial in vitro embryo production is characterized by the oocyte collection via ovum 

pick-up (OPU) and in vitro maturation, followed by fertilization and culture of the embryos. Currently, 

the efficiency is still rather low due to two major obstacles, namely the low oocyte yield and the 

differences in oocyte quality. Typically, oocytes and subsequently embryos are always grouped per 

donor as it is important to know from which donor animal combination (cow – bull) the embryos are 

originating. This implies the use of donor groups, consisting of less than 10 oocytes with varying quality, 

which in turn, results in overall low blastocyst rates. Since the main objective is producing high quality 

blastocysts to transfer and acquire pregnancy and healthy offspring, the low efficiency in OPU/IVP is a 

major concern to commercial breeding companies. This research focused on establishing a more 

efficient embryo development protocol by using commercially available media and dishes. Further, 

more research was performed on how embryos can be selected better using non-invasive time-lapse 

analysis and which genetic causes can give rise to the low embryonic development in vitro. 

The first aim of this thesis was to evaluate a commercially available embryo holding medium to store 

immature bovine oocytes in order to simplify the commercial protocol. Today, these oocytes are 

collected by OPU, often at far distanced farms which necessitates expensive containers and adapted 

medium to transport the oocytes to the laboratory. Secondly, due to the overall low efficiency of in 

vitro embryo production in commercial practice, we aimed to increase the embryo development in 

these small donor groups by grouping oocytes and embryos in the Corral® dish during in vitro 

maturation and/or culture. We also described the kinetics of embryo development in small groups and 

semi-defined medium by time-lapse analysis. Finally, cytogenetical analysis was performed on single 

blastomeres from cleavage-stage embryos produced in vitro to evaluate the incidence of chromosomal 

abnormalities, compared to that of in vivo derived embryos. 

The gained insights have led to a better understanding of bovine embryo development in small donor 

groups. In this final chapter, we will discuss how the donor can influence intrinsic oocyte quality and 

embryo development, and how in vitro fertilization and culture can induce chromosomal abnormalities 

(Figure 1).  
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7.1  Influence of the donor animal 

Since the technology of in vitro embryo production became feasible in cattle, the demand for in vitro 

embryos has been increasing as a stricter selection is possible from both male and female side. In 

commercial practice, female animals of high economic interest are used in embryo production 

programs. Unfortunately, not all cows are ideal oocyte donors due to different reasons. We noticed a 

high variation between different donors regarding both quantity and quality of the collected oocytes. 

Beside management factors, such as diet, which can be controlled before including animals as an 

oocyte donor, there are many biological factors we cannot influence.  

First, the breed has an impact on the success rate of the oocyte collection; it is known that Nelore 

cattle can be considered as better donors because an oocyte collection rate of over 30 is no exception 

(Pontes et al. 2011) while often less than 10 oocytes are collected in Holstein Friesians and Belgian 

Blue (Goovaerts et al. 2007). Second, the age is another important biological variable. Young calves of 

2-3 months old have on average 16 oocytes per OPU session, compared to only 9 for heifers or cows. 

However, the developmental capacity of oocytes from pre-pubertal animals is low (Galli et al. 2001). 

The older the donor animal, the lower the ovarian reserve and the less oocytes are collected. 

Determining anti-muellerian hormone (AMH) in blood plasma can therefore be a useful predictive 

parameter for OPU and whether or not an animal will be a good oocyte donor (Vernunft et al. 2015). 

The AMH concentration reflects the total number of follicles and oocytes in the ovary or the ovarian 

reserve. Older animals have typically low AMH levels and also limited follicles and oocytes (Guerreiro 

et al 2014). Besides determining AMH concentration as an indication for ovarian reserve, donor’s 

plasma hormones can be measured such as progesterone and oestradiol to determine the oocyte 

developmental capacities. Since age is related to different hormone balances, oocytes collected from 

heifers develop significantly more into high quality blastocysts compared to oocytes from older cows 

(more than 15 years) (Su et al. 2012). The age-related decline in fertility has been better investigated 

in women than in cattle because older animals are rarely oocyte donors in commercial breeding 

industries. Numerous studies have reported more oxidative stress, mitotic arrest and aneuploidy with 

increasing donor age and differences in transcriptional levels of genes involved in oocyte development 

(Huang et al. 2008; Keefe and Liu 2009; Grøndahl et al. 2010). 

Finally, the use of hormonal stimulation prior to the OPU has an impact on the success rate of the 

embryo development. There are several studies reporting a positive effect of FSH administration on 

the oocytes’ developmental competence (Blondin et al. 1997; Merton et al. 2009). Although the 

number of oocytes retrieved per session is not increasing by these hormonal treatments, it is indeed 

noticed that the quality of these oocytes is higher (Boni 2012). The efficiency rate increased to an 
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average of 3 embryos per OPU session after FSH stimulation with two week interval compared to only 

1 embryo per session in a twice weekly OPU scheme (Galli et al. 2014). On a weekly basis, this 

implicates that 1.5 embryos are produced by OPU after FSH prestimulation and 2 embryos by twice 

weekly OPU without hormonal treatment. Although it remains difficult to predict whether a donor 

animal will be sensitive to the hormonal treatment or not, insensitive animals are perfectly usable in 

the twice weekly OPU scheme as this does not require any hormones (De Roover et al. 2005). The 

aspect of responders and non-responders is also typically seen in human (Broekmans et al. 2014).  

In Chapter 6, we have used Holstein Friesian heifers when performing OPU. Holstein Friesian are less 

muscled which makes it easier to manipulate the animals’ ovaries. In addition, the Holstein Friesian 

breed is a typical European dairy breed and CRV, the company assisting the OPU sessions, has the most 

experience with this breed. Although our animals were quite uniform regarding age and origin, there 

was a remarkable difference between the donors as the collection rate varied from one oocyte to 15 

oocytes per OPU session (Supp table S1). Moreover, there was also a large variation in collection rate 

between different OPU sessions in the same donor, as some donors had a high collection rate in one 

OPU session and a low rate in the subsequent OPU session, or the other way around. The lack of 

consistency in collection rate makes it even more difficult to predict whether the animal will be an 

excellent oocyte donor in OPU/IVP programs. Inflammation to the ovaries was also observed in one 

donor cow due to the frequency of needle puncturing when performing OPU. This resulted in scar 

tissue which made the animal unsuitable for following OPU sessions and in vivo oviduct flushing. 

Although OPU is generally considered as a harmless technique, accumulation of fibrous tissue around 

the ovaries and hardening of the ovaries have been reported (Gibbons et al. 1994; Boni et al. 1997; 

Petyim et al. 2001; Chastant-Maillard et al. 2003; McEvoy et al. 2006). At the end of our study, cows 

were slaughtered after a period of at least 6 weeks without hormonal stimulation and ovaries were 

punctured. Slightly more oocytes per donor were recovered than during OPU sessions. This can be 

more likely ascribed to the way of collection (OPU technique versus follicular aspiration ex vivo) than 

to the effect of hormonal prestimulation.  

Nowadays, breeding companies are guided to a selection of donor animals based on a combination of 

reproductive efficiency and the herd’s genetic gains (Watanabe et al. 2017). Female animals having a 

genomic breeding value are selected as oocyte donor, which has been resulting in a more efficient 

OPU-IVP program. More research can still increase and maximize the number of oocytes that can be 

collected per OPU session. More insights into the natural cycle’s follicular dynamics of the individual 

donor animals can lead to an improvement of the oocyte quality (Sirard et al. 2018). Moreover, instead 
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of a generalized protocol for OPU, individualized approaches, taking into account all biological factors, 

can optimize oocyte collection rates. 

7.2  The intrinsic oocyte quality 

The oocyte quality can be determined by its ability to be fertilized, develop into a blastocyst and 

establish a pregnancy resulting in healthy offspring. Although it is impossible to predict the initial 

oocyte’s competences, some factors can be taken into account when producing bovine in vitro 

embryos. 

Collection technique: OPU vs follicular aspiration of slaughterhouse ovaries 

Often less than 10 oocytes having all sort of qualities are being collected by follicular aspiration during 

OPU sessions. In our experiments, slaughterhouse derived oocytes were also collected by follicular 

aspiration and not by ovary slicing. Small numbers of oocytes (10 per donor), having different qualities, 

were grouped to simulate grouping per donor as in OPU settings.  

We noticed that oocytes collected from slaughterhouse ovaries were often of better quality compared 

to those collected after OPU (Chapter 6), as more OPU-oocytes were lacking cumulus cells. On the one 

hand, post-mortem changes induce loosening of the cumulus oocyte complex (COC) from the follicular 

wall which makes it easier to collect the oocyte, surrounded by more compact layers of cumulus cells. 

This is not the case when performing OPU in live animals. Furthermore, due to the needle guiding 

system and the vacuum pressure during OPU, cumulus cells are often stripped from the oocyte (Bols 

et al. 1996; Bols et al. 1997). On the other hand, others have reported the opposite as they noted a 

more heterogeneous quality in oocytes collected from slaughterhouse ovaries (Manjunatha et al. 

2008). Oocytes harvested from follicles with a diameter larger than 2 mm show a better developmental 

competence than those of smaller diameters. Nonetheless, follicles are still being punctured in 

different stages of growth and atresia. Repeating OPU twice a week results in more homogenously 

sized follicles and reduced follicular atresia as follicles are aspirated before they become atretic 

(Gasparrini 2002), resulting in a collection rate of 46% good quality oocytes (Saini et al. 2015). In our 

OPU protocol (Chapter 6), a follicular ablation followed by a period of hormonal stimulation with FSH 

and subsequently OPU was preferred above the twice weekly OPU scheme, as it has been reported to 

be a more efficient and cost-effective protocol (Blondin et al. 2002; Chaubal et al. 2006). In total, we 

collected 49 oocytes by OPU of which 26.5% were of good quality, i.e. oocytes having homogeneous 

cytoplasm and surrounded by multiple layers of compact cumulus cells. This was lower than the 35.2% 

rate in the original study (Blondin et al. 2002), reporting a high developmental rate of 60% as well. 

Different circumstances should be taken into account, such as technical experience and materials used 
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for performing OPU, clarifying this rather small decrease in good quality oocytes in our study. In 

Chapter 6, we did not culture the oocytes until the blastocyst stage as they were collected at early 

cleavage stage for cytogenetical analysis. For this reason, we cannot conclude whether 60 % of these 

oocytes had the competence to develop into blastocysts, as in the original study (Blondin et al. 2002). 

In vitro maturation systems 

During in vitro maturation, it is necessary for immature oocytes to complete both nuclear and 

cytoplasmic maturation in order to become fertilized. This is established by multiple pathways 

signalled by paracrine and autocrine factors, produced by both cumulus cells and the oocyte (Gilchrist 

2011). There is a close interaction between the oocyte and cumulus cells, essential in the oocyte’s 

maturation process. It is important to find the best COC density to profit as much as possible from 

these secretions.  

In research settings, 50-60 high quality cumulus oocyte complexes are pooled and grouped together, 

resulting in an overall blastocyst rate of 30 to 40%. However, when only limited numbers of oocytes 

are being grouped, the blastocyst rate is reduced with almost 50% (Chapter 3). In general commercial 

settings, donor’s oocytes are matured in large volumes of maturation medium resulting in a low oocyte 

density, implying also low concentrations of paracrine and autocrine factors. A simple solution would 

be to adjust the volume of medium to the number of oocytes to achieve a higher density. This is more 

difficult to attain than in embryo culture, since each COC is composed of a different number of cumulus 

cells. In addition, maturing large numbers of COCs has been reported to be more effective than low 

numbers (Hashimoto et al. 1998). For this reason, the specially designed Corral® dish was applied in 

Chapter 4 (Ebner et al. 2010). It offers the opportunity to group COCs of four different donor groups 

in the central wells. Due to semi-permeable walls, oocytes stayed inside the initial quadrant while 

maturation medium could flow through all four quadrants. With regard to the special design, our 

hypothesis was that grouping different donor groups in the Corral® dish would result in higher embryo 

development due to the larger number of oocytes grouped together and therefore resulting in more 

secreted factors that stimulate growth. As a matter of fact, when the Corral® dish was used for 

grouping four donor oocyte groups together during both IVM and IVC, a positive effect was noticed on 

the blastocyst formation. This emphasises the importance of grouping oocytes and embryos during 

the complete embryo production process. 

Nuclear maturation and chromosomal integrity 

Oocytes that reach the metaphase of meiosis II at the end of IVM can be considered as mature oocytes 

and are able to be fertilized. In general, 90 % of bovine immature oocytes will reach this phase 
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(Lonergan et al. 1996) depending on the laboratory settings such as medium supplements, oxygen 

tension, temperature, time period of maturation. Assessing the nuclear maturation of oocytes was 

necessary when applying the commercial embryo holding medium (EHM) to get a good indication of 

the effect of EHM on the oocytes’ developmental capacities (Chapter 3). First, we did not see any 

meiotic resumption when holding immature bovine oocytes in the commercial embryo holding 

medium (EHM), as oocytes were immediately fixed after storage and subsequently stained with 

Hoechst 33342 DNA stain. Second, only EHM oocytes stored at room temperature were able to reach 

the MII after a subsequent IVM step when the storage time did not exceed 10 hours. In contrast, 

significantly less EHM oocytes stored at 38.5°C for 6h and at 4°C for 10h were mature after the 

subsequent IVM step. It is clear that the temperature at which the immature oocytes are stored in 

EHM has an effect on the oocytes’ ability to resume meiosis and the developmental competences. It 

has been reported that keeping oocytes at temperatures lower than 4°C is causing chromosomal 

defects as the spindle reassembly is lacking (Moor and Crosby 1985). We can only assume that this is 

the case when immature oocytes are stored at 4°C in EHM because we only performed a Hoechst DNA 

staining to observe the maturation status. It is not possible to deduce from this staining whether there 

were any chromosomal abnormalities responsible for the meiotic arrest. It appeared that holding 

oocytes at 38.5°C had also a detrimental effect on the oocytes’ maturation and subsequent embryo 

development. Possibly high enzymatic activity is causing metabolite accumulation and consequently, 

perturbing the oocytes viability (Rekharsky et al. 1986; Hashimoto et al. 2003). Finally, the exact 

composition of EHM is not known but the instructions for using EHM indicate “room temperature 

storage”. 

In Chapter 6, the cytogenetic analysis done by haplarithmisis on embryos derived by different 

techniques (OPU, IVP, in vivo), showed that only two embryos were burdened by a meiotic error, i.e. 

monosomy for chromosome 24 and 26, respectively. Typically, meiotic errors are maternal in origin 

(Tšuiko et al. 2018). Female spindle assembly checkpoint mechanisms are not able to block meiotic 

progression when only one chromosome is affected (Nagaoka et al. 2011), which was also the case in 

both bovine embryos. Also here, from the genome-wide haplarithm plots can be deduced that this 

meiotic error was maternal in origin, since only one copy was present from paternal origin. Moreover, 

these meiotic errors were both observed in embryos from the same donor animal. 

Oocytes that display chromosomal aberrations can be a major cause of fertilization disorders and 

embryonic, fetal and neonatal loss (Plachot and Popescu 1993). Although systematic genetic analysis 

of oocytes is not done, anomaly rates for metaphase II ranging from 3 up to 58.7% have been described 

in human (Pellestor 1991; Almeida and Bolton 1993). In cattle, the frequency of chromosomally 
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abnormal oocytes has been reported to vary from 1.9 to 16.5% (King et al. 1986; King 1990; Yadav et 

al. 1991; Lechniak et al. 1996). In Chapter 6, 4.8% (2/42) of the analysed embryos displayed 

chromosomal abnormalities due to abnormal oocytes. Despite the low numbers of samples analysed, 

haplarithmisis can reveal even mutations in small chromosomal segments. In contrast, previous studies 

could not reveal very small abnormalities because karyotyping techniques were used such as 

chromosome spread to reveal the presence of diploid oocytes. 

7.3  Embryo developmental competences 

Within the reproductive tract of the cow, the embryo is not only constantly provided with all necessary 

nutrients for early development, also harmful substances and waste are being removed. In the final 

phase of in vitro embryo production, the fertilized oocyte or zygote is cultured to the blastocyst stage, 

at which time it can be transferred to a recipient animal or cryopreserved. Although a huge number of 

studies have been investigating the culture of bovine embryos, it is still a suboptimal environment 

because only 30 to 40% of inseminated oocytes will develop into a viable blastocyst. In this thesis, we 

noticed that there is even more room for improvement for embryos cultured in small donor groups, 

since the blastocyst development is even lower than when embryos are being cultured for research 

purposes. Moreover, different elements play a substantial role herein and will be elucidated further. 

In vitro embryo culture per donor 

In commercial settings, donor’s embryos are often cultured in large volumes of culture medium. 

Comparable to COCs, embryos are also producing and secreting embryotrophic factors (Gopichandran 

and Leese 2006). Various studies have investigated the influence of embryo density on the 

developmental yield and noticed that a good equilibrium between the number of embryos and the 

medium volume should be attained. In ideal circumstances, an embryo density of 1:2 (meaning 1 

embryo per 2 µl of medium) showed the highest embryo development. In Chapter 4 and Chapter 5, 

we obtained an embryo density of 1:3 to 1:4 by using commercially available dishes, such as the Corral® 

dish or WOW dish or by culturing embryos per donor in droplets of medium. Although the embryo 

density was still too low, it is generally accepted that culturing large groups of embryos together (as 

was done by using the different quadrants, resulting in total embryo number of 36) is still preferred to 

individual embryo culture or even small donor groups, due to the secretion of these autocrine factors 

(Fujita et al. 2006). For this reason, the Corral® dish was applied during IVC. Although more blastocyst 

development was observed when implementing this dish during both IVM and IVC, no significant 

improvement was noticed when the Corral® dish was only used during IVC. In this dish, the donor 

groups are located 4 mm from each other during IVC. When the distance is larger than 165 µm, 

embryos do not have a direct effect on each other anymore (Gopichandran and Leese 2006). Grouping 
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the donors’ embryos in the Corral® dish during IVC did therefore not improve the blastocyst 

development because autocrine factors need to cross too much distance. In the WOW dish used in 

Chapter 5, when morphokinetics were investigated, 9 to 16 embryos can be monitored, depending on 

its design. An advantage of the PrimoVision WOW dish compared to the Corral dish is that the embryos 

are much closer together. In this manner, it is more likely that embryotrophic factors secreted by one 

embryo can reach its neighbouring embryos and support their development. In addition, applying 

these dishes did not improve embryo development compared to standard group culture in cattle 

(Wydooghe et al. 2014b). Due to the specific design, embryos stay in place which allows perfect 

individual follow-up. However, as stated before, only 9 to 16 embryos can be cultured together. The 

static design of the dish can again be considered as a disadvantage in commercial practice as there will 

be routinely more or less embryos per donor. This results in grouping embryos from different donors 

to fill all wells in the dish or to leave wells unused when the dish can only contain embryos from one 

donor. In the last case, cross-contaminations are being avoided, however, the dish is not used to the 

fullest which may question its positive effect on embryo development. In the end, both Corral® and 

WOW dishes have their advantages and disadvantages. The preference is however still grouping 

oocytes and embryos per donor in a droplet of medium, because it requires no special designed dishes 

or handlings, it avoids cross-contamination and it allows adapting the volume of medium to retrieve 

the ideal density. 

Regardless of the use of different culture dish systems (Chapter 4 and Chapter 5), the composition of 

the used culture medium remained unchanged and consisted of SOF, BSA and ITS in all experimental 

designs. First, semi- or even defined medium is preferred to avoid possible contamination coming from 

other cells than those of the donor itself. Even the use of oil is often avoided because it is possible that 

nutrients are migrating from the media to the oil and chemical oil compounds the other way around, 

affecting the embryo development (Gasperin et al. 2010). Second, SOF medium supplemented with 

BSA and ITS is not only reported to be an ideal replacement for serum, as serum has been implicated 

as a possible causes of large offspring syndrome. Finally, our culture medium was optimized for 

individual embryo culture, resulting in similar blastocyst rates as in standard group culture (Wydooghe 

et al. 2014a). Although this medium was used for donor groups, a lower blastocyst formation was 

noted. Since we were also using oocytes from variable qualities, these oocytes were possibly not fully 

capable of secreting embryotrophic factors. Identifying embryotrophic factors would make it possible 

to supplement these into the culture medium and support the embryos’ development to the fullest 

(Fujita et al. 2006).  
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Developmental kinetics and chromosomal integrity 

The earliest embryonic cleavages are regulated by maternally inherited components such as mRNA 

and proteins, which are stored inside the oocyte. Typically, the first cycle is rather long (Barnes and 

Eyestone 1990) and a high number of embryos reach the 2-cell stage but fail to develop into blastocyst. 

Usually, there is a developmental block at the 8-cell stage in cattle (Telford et al. 1990, Graf et al. 2014). 

This phenomenon has been related to the transition from maternal to embryonic control. Embryos 

reaching the blastocyst stage regularly display an early or intermediate cleavage pattern, a 

synchronous division and a successful switch to transcribe the embryonic genome, compared to those 

embryos that fail to develop. In Chapter 5, there was a lot of variation in embryonic development 

between the different donors, but embryos that reach beyond the 4-cell stage tend to have better 

chances of becoming a blastocyst, possibly due to a successful embryo genome activation. These 

embryos displayed an early to intermediate cleavage pattern. The average timings for the early 

cleavage events were similar to the timings reported by other time-lapse studies. Different conditions, 

such as laboratory environments and medium supplements, may cause the small variations in between 

these studies. 

It is likely that the overall low blastocyst formation in these donor groups is partially caused by 

chromosomal abnormalities (Chapter 6). High incidences were observed in the in vitro produced 

embryos compared to the in vivo derived ones, suggesting that the in vitro procedures are causing 

these aberrations. In addition, the in vitro produced embryos were burdened with over 70% of 

mixoploidy, defined by embryos having simultaneously haploid, diploid and/or triploid blastomeres. In 

other studies, chromosomal analyses have shown that the majority of bovine, porcine and ovine 

embryos are mixoploid (52.4%) (King 1990). These previous reports were set back by cytogenetic 

methods such as karyotyping and FISH, as only a minor fraction of the total cell number were analysed. 

Because of this, the frequency of chromosomal aberrations in embryos from these older studies is only 

an estimation. In Chapter 6, each blastomere from all cleavage stage embryos was analysed using a 

novel technique, called haplarithmisis which is a genome-wide single-cell analysis method that enables 

haplotyping and copy-number profiling (Esteki et al. 2015). Instead of earlier low-resolution 

karyotyping methods, chromosomal instability (CIN) was detected at single cell level and sub-

chromosomal aberrations were revealed. Although our CIN results are perhaps more accurate, it still 

reflects a moment in time since embryos were analysed at a certain point making it impossible to know 

how embryos will be evolving when affected with CIN. High rates of CIN do not mean that these 

embryos will definitely cease development. Previous studies using FISH showed that the level of 

polyploidy decreases when development continues, since 13% of day 3 in vitro produced embryos 
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were polyploid while at day 5 no polyploidy was observed (Viuff et al. 2000). This was also observed 

when analysing trophectoderm (TE) and inner cell mass (ICM) from day 7 IVP blastocysts and TE and 

ICM from day 7 IVP blastocysts that were subsequently transferred and flushed at day 12; a two-fold 

(ICM) and seven-fold (TE) more polyploidy was observed in day 7 IVP blastocysts compared to day 12 

flushed embryos (Viuff et al. 2002). Furthermore, 25% of tetraploidy in trophectoderm is still 

compatible with pregnancy (Viuff et al. 1999). On the other hand, mixoploidy appears to increase while 

in vitro embryos develop, going from 16% in day 4 embryos up to 72% in day 7/8 blastocysts (Viuff et 

al. 2000). Since over 50% of transferred blastocysts result in live birth, it means that mixoploidy is 

probably of minor importance for establishing a pregnancy. There are two important mechanisms in 

which affected embryos still develop into a normal foetus when only limited numbers of cells are 

affected. Compromised blastomeres can go in apoptosis while diploid blastomeres continue 

development (Jurisicova et al. 1996; Everett and West 1998). Furthermore, chromosomal abnormal 

cells can be allocated to the trophectoderm when differentiating (James et al. 1995).  

Haplarithmisis showed that there was a remarkably high incidence of polyspermy in embryos produced 

in vitro (12/28; 42%) compared to no polyspermy in in vivo embryos. It is possible that the polyspermy 

rate is overestimated due to the limited number of available embryos which were analysed, as other 

reports showed polyspermy incidence in in vitro produced bovine embryos ranging from 5 to 45% 

(Wang et al. 1997; Viuff et al. 2000; Roh et al. 2002; Coy et al. 2005; Iwata et al. 2008; Hosoe et al. 

2014; Destouni et al. 2016). Studies in our lab showed polyspermy rates ranging from 7 to 17% (Tanghe 

et al. 2004; Verberckmoes et al. 2005) based upon the presence of more than 2 pronuclei using 

Hoechst staining, while we found 22% polyspermic zygotes in a more recent study using the same 

innovative haplarthmisis technique (Destouni et al. 2016). There is also a bull factor as some bulls tend 

to have more polyspermy than others in IVF (Parrish et al. 1986). Nonetheless, in line with our findings, 

there was also significantly less polyspermy in in vivo derived embryos or even in in vivo matured 

oocytes (Leibfriedrutledge et al. 1989). There are however many different factors that have been 

associated with a higher incidence of polyspermy in cattle, such as a small perivitelline space of the in 

vitro oocyte as a result of a deficient hyaluronic acid accumulation whereby large amounts of 

hyaluronic acid, as it occurs in vivo, prevent the fusion of extra sperm and oocytes (Hosoe et al. 2014), 

an inappropriate oocyte maturation (Viuff et al. 2001; Sugimura et al. 2017), a delayed cortical granule 

release (Wang et al. 1997)… Due to the novel insights in Chapter 6, this high rate of polyspermy can 

probably be ascribed to the in vitro procedures. Important during IVF is the concentration of sperm, 

since a high concentration (107 sperm cells per ml) resulted in polyspermy while a low concentration 

(104 sperm cells per ml) resulted in a low fertilization rate (Saeki et al. 1995). We use standardly 1 

million spermatozoa per ml to fertilize mature oocytes in vitro. Although we did not test this 
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beforehand, a possible solution for this high polyspermy rate could have been to lower the 

concentration of sperm during IVF. In vivo, there is a natural selection process of sperm residing in the 

female tract, decreasing the chance of polyspermy. In a recent 3D-printed oviduct-on-a-chip, in vivo 

conditions were mimicked as bovine epithelial cells were cultured in a 3D chamber in which oocytes 

and sperm were introduced. While fertilization occurred, this system prevented polyspermy, even with 

the same sperm concentration of 106 sperm cells per ml. (Ferraz et al. 2017). Oviductal secretions can 

induce modifications to the zona pellucida, resulting in a hardening of the zona and preventing 

polyspermy (Coy et al. 2008). Identification of these molecules and introducing these in the in vitro 

procedure could reduce polyspermy by modifying and hardening the zona pellucida. 

Polyspermy has also been associated with abnormal first cleavage patterns (Sugimura et al. 2017). 

Aberrant cleavage patterns are often missed unless time-lapse monitoring systems are used. It has 

been reported that the abnormal event of direct cleavage from 1 to 3-4 cells has no impact on embryo 

development; however, these embryos are prone to more chromosome errors (Somfai et al. 2010). In 

Chapter 6, in 7 out of 9 dispermic embryos, one of the extra paternal genomes segregated into a 

separate cell lineage, consisting of only paternal DNA, meaning that these embryos had an abnormal 

genome constitution. This phenomenon, which has been called heterogoneic cell division, was recently 

discovered in in vitro produced bovine embryos (Destouni et al. 2016). Since no time-lapse imaging 

was applied during that study, it is not sure whether these embryos had an abnormal first cleavage. In 

the future, we plan to investigate this by specific studies combining cytogenetic analysis and time-lapse 

imaging.   
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Figure 1 Schematic overview of the commercial in vitro embryo production process in cattle, elucidating 
important aspects influencing the efficiency and key findings of this dissertation. 
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7.4  General conclusions 

Following take home messages can be concluded from this research providing novel insights in the 

commercial in vitro embryo production practice: 

1. Commercially available embryo holding medium (EHM) can be safely used to store and 

transport immature bovine oocytes at room temperature without harming the embryonic 

development and quality when the storage time does not exceed 10 hours. 

2. Laboratory handling schedules can be facilitated by storage of immature oocytes in EHM due 

to the possibility of artificially initiating the oocyte maturation when oocytes are removed from 

the EHM. 

3. The Corral dish® is easily applicable for grouping oocytes and embryos from different donors 

together without losing the donor specific identity. 

4. When the Corral dish® is used during both IVM and IVC, a higher blastocyst yield can be 

achieved at 7dpi, which makes it possible to transfer more fresh embryos on day 7. 

5. Timing of cleavage is predictive for embryonic development as more intermediate cleavers 

develop into blastocysts compared to late cleaving embryos. 

6. Cleavage stage embryos produced by in vitro techniques vs in vivo reveal a high incidence of 

chromosomal abnormalities which can be related to the in vitro embryo production procedure. 

7. Aneuploidy is the most prevalent type of chromosomal error in early cleavage stage embryos 

and chromosomal aberrations are mainly of mitotic origin resulting in whole chromosome or 

segmental imbalances. 
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7.5  Perspectives for future research 

Apart from the simplification and optimization of the embryo production procedure per donor, further 

attention should be payed to the high rates of chromosomal instabilities observed in the in vitro 

produced bovine embryos compared to the in vivo counterparts. Clarifying the origin of these 

chromosomal aberrations and their consequences on the further embryonic development, pregnancy 

and offspring should be addressed in future research. Furthermore, it would be interesting to 

investigate whether it is possible to link morphokinetics to chromosomal abnormalities, since these 

can be studied using non-invasive techniques such as time-lapse analysis. 

Non-invasive techniques to identify predictive parameters for high quality embryo development and 

even establishing pregnancy are uprising. Today, no unique morphokinetic or combinations of 

parameters have been found to predict the oocyte and embryo’s competence. Recent developments 

in life-cell time-lapse analysis made it possible to track nuclei from zygote to blastocyst stage by 

implementing fluorescent markers (Strnad et al. 2016). Artificial intelligence is fine-tuned as 

automated annotation tools are necessary to avoid subjectivity in data analysis since many parameters 

are scored by persons. Finally, the 3D constructions to mimic in vivo conditions are very promising. As 

many 3D lab-on-a-chips are still in their infancy, more research is necessary to elucidate the 

opportunities and investigate the impact on both pregnancy and birth rates in cattle breeding 

industries. 

In the end, not only improving the in vitro embryo production protocol and investigating embryo 

predictive parameters are necessary in cattle breeding industries. All begins with the choice of donor 

animal. A change of mind-set is therefore fundamental. Instead of selecting only those donor animals 

having high genetic and economic values, reproductive parameters should also be taken into account. 

There are important factors such as breed, age, responsiveness to hormones, oocyte yield and quality, 

that need to be considered even more in the future to lift the bovine in vitro embryo production to the 

next level. 
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Over the years, bovine assisted reproductive technologies have gained more and more interest and 

ovum pick-up (OPU) and in vitro embryo production (IVP) has become a technique that can be applied 

in practice (Chapter 1.1). Today, bovine in vitro embryos, with their own specific needs and demands, 

are being produced for commercial purposes via several sequential culture steps (Chapter 1.2). 

Although years of refinement have passed, there is still a lot of room for improvement as the embryo 

yield per donor cow is still quite low. This can be ascribed to two important aspects; only limited 

numbers of oocytes are retrieved per donor which implies that embryos are cultured in small groups 

since embryo identification is necessary at all times and moreover, these oocytes often have variable 

qualities. Due to the OPU technique, such as vacuum aspiration, cumulus cells are stripped from the 

oocytes. In general, oocytes lacking cumulus cells or denuded oocytes have a lower developmental 

competence compared to high quality oocytes, i.e. oocytes with homogeneous cytoplasm surrounded 

by multiple layers of compact cumulus cells. Oocytes and resulting embryos are carefully evaluated 

throughout and at the end of the developmental process, since preferably high quality embryos will 

be chosen for transfer which increases the chance of establishing a pregnancy followed by the birth of 

a healthy calf (Chapter 1.3). As in multiple ovulation and embryo transfer (MOET) programs, genetic 

analysis can be performed on in vitro produced embryos, exposing not only the chromosomal 

constitution associated with genetic disorders, but also revealing genetically inherited economic traits 

by embryo biopsy before transfer (Chapter 1.4). Nonetheless there is a low efficiency, OPU-IVP has 

numerous advantages as OPU can be applied to retrieve oocytes from prepubertal animals, cows 

pregnant during the first three months and cows having oviduct pathologies. OPU can be performed 

up to two times a week for a longer period without harming the donor’s health. Furthermore, 

hormonal stimulation can be done but it is not necessary prior to OPU. Moreover, each oocyte can be 

fertilized with the semen of a different bull, resulting in a higher variation of genetic combinations. 

These benefits outweigh the often low efficiency of the in vitro production, resulting in a further raising 

demand for in vitro produced bovine embryos.  

The general aim of this thesis was to establish a more efficient IVP protocol (Chapter 2). Furthermore, 

more research was performed on how embryos can be selected better using non-invasive time-lapse 

analysis and which genetic causes can give rise to the low embryonic development in vitro. 

Initially, the focus was set on the simplification of a first aspect of the commercial IVP procedure, 

namely the transport of freshly collected immature oocytes (Chapter 3). The maturation process such 

as the meiotic resumption, is initiated immediately after the oocytes are removed from their follicles. 

Since there can be a lot of time between different oocyte collections on different farms, the initiation 

of the maturation process has a wide range. This complicates further laboratory handlings needed on 
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specific time points following the onset of oocyte maturation, such as fertilization and culture of the 

embryos to blastocyst stage. By applying a commercially available transportation medium that keeps 

the immature oocytes in meiotic arrest, synchronized scheduling of subsequent laboratory 

manipulations is made possible. Previously used meiotic inhibitors did not have the desired effect 

because the subsequent embryonic development was compromised. We introduced non-toxic embryo 

holding medium for oocyte transport and we determined the ideal temperature at which the oocytes 

should be held as well as the time span during which the immature oocytes could be stored without 

harming the further embryo growth. The use of commercial holding medium was found to be 

successful in arresting the immature oocytes at room temperature without disturbance of blastocyst 

formation when storage was no longer than 10 hours. This can render logistics more easy and low-

budget for practitioners who need to transport the immature oocytes from farms to the laboratory. 

The goal of commercial IVP is to obtain as many transferable blastocysts of high quality as possible 

resulting in more pregnancies and more offspring. With this in mind, we focussed on improving the 

low blastocyst yield up to a level that is easily reached when large numbers of oocytes and embryos 

are pooled together as routinely done for research purposes. Knowing that embryo development 

benefits from culture in large groups, a specially designed dish was used which would expose the 

embryos to autocrine factors secreted by their neighbours, in order to stimulate growth (Chapter 4). 

In the Corral® dish, two central wells are divided into quadrants by a semi-permeable wall allowing 

medium to flow through while oocytes or embryos cannot pass this wall. Four donor groups were 

grouped together in this Corral® dish, making it possible to keep track of each separate donor group 

due the specific design. This dish was easily applicable during both maturation and culture periods. 

Our results showed an improvement of the day 7 blastocyst rate when the Corral® dish was applied 

during both IVM and IVC. Importantly, this day is the elected moment for fresh embryo transfer as this 

corresponds to the highest pregnancy rates. However, some questions can arise concerning sanitary 

risks and the possibility of disease contamination when oocytes and embryos of different donors are 

grouped together. 

To improve the embryo selection method, time-lapse analysis was used as a non-invasive method to 

evaluate embryonic development and kinetics as a predictive value for blastocyst formation (Chapter 

5). For the first time, categories ‘early’, ‘intermediate’ and ‘late’ cleaving embryos were defined in the 

well-of-the-well (WOW) dish in serum-free media. Recently, it has been discussed that these 

intermediate cleaving embryos would have a higher quality and therefore be more similar to their in 

vivo counterparts. In our observations, it was clear that fast cleaving embryos have higher odds to 

become a blastocyst compared to slow cleaving ones (Odds ratio 43 at 4-cell stage for 41.9h). 
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Furthermore, there was a significant increase in blastocyst formation in the intermediate cleaving 

embryos compared to the slow cleaving ones at the 2-cell and 3-cell stage.  

 

A large proportion of in vitro produced embryos are facing developmental arrest during early cleavage. 

In Chapter 6, we investigated the chromosomal constitution of these early cleavage stage embryos by 

a novel technique called haplarithmisis. Five donor animals were repeatedly used to obtain embryos 

by (1) in vivo oviductal flush, (2) by IVP procedures after hormonal treatment and OPU (OPU-IVF) and 

(3) by IVP after slaughter without prior hormonal treatment (IVM-IVF). We did not only determine the 

incidence but also the origin of the chromosomal abnormalities. Overall, aneuploidy was the most 

prevalent type of error and a significantly higher rate of abnormalities was noted for IVP embryos when 

compared to embryos that developed in vivo. Analyses showed that 18.8% of in vivo derived embryos 

contained at least one blastomere with chromosomal anomalies, compared to 69.2% of OPU-IVF 

embryos and 84.6% of IVM-IVF embryos. Meiotic errors were only observed in two embryos (OPU-IVF 

and IVM-IVF group) produced from the same donor. Segmental imbalances were more present in IVM-

IVF embryos (69.2%) compared to OPU-IVF (15.4%) and in vivo embryos (6.3%). Remarkably, a high 

number of dispermic fertilization was noted in IVM-IVF embryos (69.2%), while this was only 7.7% in 

OPU-IVF and no abnormal fertilization occurred in in vivo embryos. Heterogoneic cell divisions, which 

have been recently described as the spontaneous segregation of entire parental genomes into 

different cell lineages during cell cleavage, were observed in 7 IVM-IVF embryos (53.8%). It is clear that 

the in vitro procedure itself exacerbates the frequency of chromosomal aberrations, which can be a 

cause for this high developmental arrest in early cleavage embryos. 

In chapter 7, the general discussion and conclusions are presented. The following take home messages 

are listed below: 

1. Commercially available embryo holding medium (EHM) can be safely used to store and 

transport immature bovine oocytes at room temperature without harming the embryonic 

development and quality when the storage time does not exceed 10 hours. 

2. Laboratory handling schedules can be facilitated by the storage of immature oocytes in EHM 

due to the possibility of artificially initiating the oocyte maturation when oocytes are removed 

from the EHM. 

3. The Corral dish® is easily applicable for grouping oocytes and embryos from different donors 

together without losing the donor specific identity. 
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4. When the Corral dish® is used during both IVM and IVC, a higher blastocyst yield can be 

achieved at 7dpi, which makes it possible to transfer more fresh embryos on day 7. 

5. Timing of cleavage is predictive for embryonic development as fast and intermediate cleaving 

embryos have a higher chance to develop into blastocysts compared to late cleaving embryos. 

6. Cleavage stage embryos produced by in vitro techniques vs in vivo reveal a high incidence of 

chromosomal abnormalities which can be related to the in vitro embryo production procedure. 

7. Aneuploidy is the most prevalent type of chromosomal error in early cleavage stage embryos 

and chromosomal aberrations are mainly of mitotic origin resulting in whole chromosome or 

segmental imbalances. 
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Doorheen de jaren nam de belangstelling voor geassisteerde reproductieve technieken bij rundvee toe 

waardoor ovum pick-up en in vitro embryo productie (OPU-IVP) ook commercieel uitgebaat worden 

(Hoofdstuk 1.1). Deze runderembryo’s kunnen in vitro geproduceerd worden via verschillende 

opeenvolgende cultuurstappen waarbij rekening gehouden wordt met specifieke noden van het 

ontwikkelende embryo (Hoofdstuk 1.2). Ondanks de vele optimalisaties aan de techniek is er nog veel 

ruimte voor verbetering, aangezien de embryo-opbrengst per donorkoe nog steeds vrij laag is. Dit kan 

toegewezen worden aan twee belangrijke aspecten. Enerzijds wordt slechts een gelimiteerd aantal 

eicellen gecollecteerd per donor en omdat de identiteit van de embryo’s op elk moment moet 

gegarandeerd worden, betekent dit dat de embryo’s in kleine groepen per donor worden 

geproduceerd. Anderzijds zijn deze eicellen vaak van een variabele kwaliteit. Om alsnog de embryo’s 

met de hoogste kwaliteit voor transfer te selecteren, wordt de ontwikkeling van deze eicellen en 

embryo’s doorheen de in vitro productie nauwkeurig opgevolgd. Dit verhoogt namelijk de kansen op 

een dracht en bijgevolg ook op de geboorte van een gezond kalf (Hoofdstuk 1.3). Zoals in 

‘superovulatie en transfer’ (MOET) programma’s kunnen ook genetische analyses uitgevoerd worden 

op deze pre-implantatie embryo’s. Hierdoor kan nog voor de transplantatie informatie verkregen 

worden over zowel de chromosomale constitutie, die genetische afwijkingen kan onthullen, als over 

interessante economische eigenschappen die genetisch overdraagbaar zijn (Hoofdstuk 1.4). Ondanks 

de lage efficiëntie kent OPU-IVP vele mogelijke toepassingen, waaronder het verzamelen van eicellen 

bij prepuberale dieren, bij koeien drachtig in de eerste drie maanden en bij koeien met 

eileiderpathologieën. OPU kan tot twee keer per week uitgevoerd worden, dit gedurende een lange 

periode zonder dat de gezondheid van de donor in het gedrang komt. Bovendien kunnen donoren 

hormonaal gestimuleerd worden vooraleer OPU wordt uitgevoerd, maar dit is niet noodzakelijk. In 

principe kan elke eicel met sperma van een verschillende stier bevrucht worden, waardoor er meer 

genetische combinaties gemaakt kunnen worden. Deze belangrijke voordelen wegen dan ook op tegen 

de lage efficiëntie van de in vitro embryo productie, waardoor de vraag naar IVP runderembryo’s alleen 

maar verder toeneemt. 

De algemene doelstelling van dit onderzoek was het ontwikkelen van een efficiënter IVP protocol 

(Hoofdstuk 2). Tevens werd onderzocht hoe de selectie van embryo’s kan verbeterd worden en welke 

mogelijke genetische oorzaken aan de basis kunnen liggen van een minder efficiënte embryo-

opbrengst in vitro. 

Initieel werd de focus gelegd op het vereenvoudigen van een eerste aspect, namelijk het transport van 

onrijpe eicellen na OPU (Hoofdstuk 3). Het rijpingsproces wordt onmiddellijk geïnitieerd wanneer 

eicellen uit de follikels verwijderd worden. Er kan echter veel tijd zitten tussen verschillende 
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eicelcollecties en dus ook tussen de start van het rijpingsproces van de verschillende groepen eicellen. 

Dit bemoeilijkt de timing voor handelingen, die op specifieke tijdstippen na de start van de eicelrijping 

moeten gebeuren, zoals de bevruchting. Door tijdens het transport gebruik te maken van een 

commercieel beschikbaar embryo holding medium (EHM) kunnen eicellen in meiotisch arrest 

gehouden worden, wat het plannen van de bevruchting vereenvoudigt. Voorheen werden reeds 

meiotische inhibitoren gebruikt, maar deze hadden niet het gewenste effect doordat de embryonale 

ontwikkeling in het gedrang kwam. Wij hebben niet alleen de ideale temperatuur van het transport in 

EHM bepaald, maar ook hoe lang de eicellen in het medium konden bewaard worden zonder dat een 

negatieve invloed op de embryo-ontwikkeling werd waargenomen. Het EHM werd daarbij succesvol 

bevonden voor het bewaren van onrijpe eicellen wanneer deze bij kamertemperatuur en niet langer 

dan 10 uur bewaard werden. Hierdoor kan het transport van de onrijpe eicellen van de verafgelegen 

boerderijen naar het labo vereenvoudigd worden op een goedkopere manier. 

Het doel van commerciële IVP is het verkrijgen van zoveel mogelijk overplantbare blastocysten van 

hoge kwaliteit om zo meer drachten en nakomelingen te produceren. Met dit in gedachte werd de 

focus gezet op het verhogen van de lage blastocystopbrengst. Embryo’s in grote groepen ontwikkelen 

namelijk beter door de productie van autocriene factoren die de groei stimuleren. Daarom werd een 

speciaal ontwikkeld schaaltje gebruikt (Hoofdstuk 4). De twee centrale kuipjes in deze Corral® dish 

worden opgedeeld in kwadranten door middel van een semipermeabele wand. Hierdoor kunnen vier 

groepen per donor apart gehouden worden, terwijl alle eicellen en embryo’s toch blootgesteld worden 

aan hetzelfde medium. Dit impliceert dat een groter aantal eicellen en embryo’s gegroepeerd wordt 

dan wanneer de eicellen volledig apart per donor gekweekt worden. Het gebruik van de Corral® dish 

tijdens de in vitro maturatie en/of cultuur werd geëvalueerd en hierbij werd een hogere 

blastocystontwikkeling op dag 7 vastgesteld wanneer de Corral® dish werd gebruikt tijdens zowel 

maturatie- als de cultuurperiode. Bovendien wordt de transplantatie van dag 7 blastocysten verkozen, 

omdat hiermee de hoogste drachtpercentages worden verkregen. Ondanks het eenvoudig gebruik van 

de Corral® dish kunnen er vragen gesteld worden omtrent sanitaire risico’s en de mogelijkheid van 

ziekteoverdracht wanneer eicellen en embryo’s van verschillende donoren samen gegroepeerd 

worden. 

Om de embryoselectie te verbeteren, werd gebruik gemaakt van time-lapse analyse als een niet-

invasieve methode om de kinetiek van de embryo-ontwikkeling als voorspellende parameter voor de 

verdere blastocystvorming te evalueren (Hoofdstuk 5). Hierbij werden de categorieën ‘vroeg’, 

‘intermediair’ en ‘laat’ delende embryo’s voor het eerst gedefinieerd in well-of-the-well (WOW) 

plaatjes in serumvrij medium. Intermediair delende embryo’s zouden van een hogere kwaliteit zijn en 
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aldus het meest lijken op de in vivo embryo’s. Uit onze observaties werd duidelijk dat snel delende 

embryo’s een hogere waarschijnlijkheid hebben om tot blastocyst te ontwikkelen in vergelijking met 

traag delende embryo’s (Odds ratio 43 op 4-cellig stadium op 41.9h). Bovendien was er een significante 

stijging in blastocystontwikkeling bij de intermediair delende embryo’s in vergelijking met traag 

delende, op zowel het 2-cellig als het 3-cellig stadium. 

De ontwikkeling in een aanzienlijk deel van de in vitro geproduceerde embryo’s stopt tijdens de vroege 

delingen. In Hoofdstuk 6 werd de chromosomale samenstelling van deze vroeg delende embryo’s 

onderzocht met behulp van een recente techniek die ‘haplarithmisis’ wordt genoemd. Vijf 

donorkoeien werden herhaaldelijk gebruikt om embryo’s te verkrijgen via (1) in vivo spoeling van de 

eileider, (2) met behulp van IVP procedures na hormoonbehandeling en OPU (OPU-IVF) en (3) door IVP 

na het slachten zonder hormoontherapie (IVM-IVF). In het algemeen was aneuploidie de meest 

waargenomen afwijking. Analyses toonden aan dat 18.8% van de in vivo verkregen embryo’s minstens 

één blastomeer met chromosomale afwijkingen hadden, terwijl dit 69.2% was bij de OPU-IVF embryo’s 

en 84.6% bij de IVM-IVF embryo’s. Afwijkingen door fouten in de meiose werden maar bij twee 

embryo’s (OPU-IVF and IVM-IVF groep) afkomstig van hetzelfde donordier waargenomen. Afwijkingen 

van chromosoomsegmenten waren meer aanwezig in IVM-IVF embryo’s (69.2%) vergeleken met OPU-

IVF embryo’s (15.4%). Opmerkelijk was het hoge aandeel dispermie bij de IVM-IVF embryo’s (69.2%). 

Daarentegen werd enkel bij 7.7% van de OPU-IVF embryo’s dispermie gedetecteerd en bij 0% van de 

in vivo embryo’s. Heterogoneïsche celdelingen, welke recent werden beschreven als spontane 

segregatie van volledige ouderlijke genomen in verschillende cellijnen tijdens de embryonale delingen, 

werden geobserveerd bij 7 IVM-IVF embryo’s (53.8%). Het is duidelijk dat de toepassing van in vitro 

technieken de incidentie aan chromosomale afwijkingen doet toenemen, wat aldus een oorzaak kan 

zijn voor het hoge aantal embryo’s dat in hun vroege ontwikkeling stoppen met groeien. 

In Hoofdstuk 7 werden de algemene discussie en conclusies beschreven. De volgende take home 

messages werden hieronder opgesomd:  

1. Commercieel verkrijgbaar embryo holding medium (EHM) kan veilig gebruikt worden om 

onrijpe rundereicellen te bewaren zonder een nadelig effect op de verdere embryonale 

ontwikkeling wanneer dit op kamertemperatuur gebeurt en wanneer de opslagtijd niet langer 

dan 10 uur bedraagt. 

2. Labohandelingen kunnen eenvoudiger ingepland worden dankzij het gebruik van EHM om 

onrijpe eicellen te bewaren doordat de eicelrijping artificieel geïnitieerd kan worden wanneer 

deze uit het EHM gehaald worden. 



Chapter 8 

162 
 

3. De Corral® dish is een gebruiksvriendelijk schaaltje waarbij eicellen en embryo’s van 

verschillende donoren eenvoudig gegroepeerd kunnen worden zonder verlies van de 

specifieke donoridentiteit. 

4. Wanneer de Corral® dish gebruikt wordt zowel tijdens in vitro maturatie als tijdens de 

cultuurperiode, dan wordt een hogere blastocystopbrengst waargenomen op dag 7 na 

inseminatie, waardoor meer transfers met verse blastocysten kunnen uitgevoerd worden op 

diezelfde dag. 

5. Het tijdstip waarop embryo’s delen kan als voorspellende parameter voor 

blastocystontwikkeling aanschouwd worden doordat snelle en intermediaire delers meer tot 

blastocyst ontwikkelen dan traag delende embryo’s. 

6. Embryo’s in het delingsstadium die geproduceerd worden via in vitro technieken vertonen een 

hogere incidentie chromosomale abnormaliteiten in vergelijking met in vivo embryo’s. Dit kan 

gerelateerd worden aan de in vitro procedure op zich. 

7. Aneuploidie is het meest voorkomende type chromosomale afwijking in embryo’s in het 

delingsstadium en de chromosomale abnormaliteiten bij deze embryo’s zijn voornamelijk van 

mitotische origine. 
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weer was. Als ik ooit een rare vogel zie, kom ik bij jou langs ;-)! Petra, bedankt voor elke keer dat je mij 

een berichtje stuurde toen ik weer iets vergeten was. Je denkt veel verder dan de dagelijkse media 

voor iedereen, je houdt uren in de gaten, je bestelt de producten nog voor we door hebben dat ze op 

zijn. Je bent de moederkloek met haar kiekskes, die ze stuk voor stuk bijstaat tot ze het nest uit vliegen. 

Bedankt voor alle fijne babbels en voor zoveel meer! 

Bedankt aan Euro Meat Group Moeskroen en Flanders Meat Group Zele, in het bijzonder Kurt, Adam, 

Mohammed, om ons elke week van een nieuwe lading eierstokken te voorzien! 

Een jaar lang stonden er 3 tot 5 koeien in de stallen, net iets langer dan we hadden voorzien. Daarom 

bedankt Jan, dat ik zo lang de stal in kon nemen. Bedankt Dirk en Willy om dagelijks de koeien te 

verzorgen. Bedankt Marnik om alle logistiek op je te nemen en voor alle bestellingen droog ijs. Bedankt 

Véronique om het OPU materiaal te wassen en te steriliseren. Bedankt Els en Ria voor alle medicatie 

die ik bij jullie kon bestellen. 

Bedankt aan Sandra, je stond niet alleen klaar om al mijn administratieve rompslomp overzichtelijk te 

maken, je kwam ook met allerlei naald-en-draad-tips paraat! Ooit hoop ik zo goed overweg te kunnen 

met de naaimachine als jij! Bedankt, Leïla, voor alle bestelbonnen, facturen, kilometervergoedingen 

en zoveel meer dan financiële zaken. Zonder jullie zijn we allemaal verloren! 

Ook gaat een speciaal bedankje naar Eline Claes, want jij bent het die me op de hoogte bracht van de 

FAVV vacatures. Net op de valreep kon ik me nog aanmelden, en nog geen 5 maanden later ging ik er 

al aan de slag. Zonder meer is dit een volledige carrièreswitch geweest, maar ik heb er nog geen minuut 



 

166 
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E01 

OPU-IVF E02 

in vivo derived 

E03 

in vivo derived 

E04 

in vivo derived 
E05 

in vivo derived 

E06 

in vivo derived 



Supplementary Figure S1 (continued) 

 

 

Supplementary Figure S1. Circos plots representing genomic constitution of IVM-IVF, 

OPU-IVF and in vivo-derived embryos. Detailed whole genome overview of chromosomal 

anomalies corroborated by haplarithmisis. All embryos involved in the study are shown per 

pedigree. Each circos plot represents one embryo and each circle within the plot represents single 

blastomere derived from the embryo. The numbers above each line of a circos plot indicate 

chromosomes. Each chromosome is color coded according to the chromosomal status, indicating 

presence or absence of chromosomal anomalies (e.g. black for diploid, green for chromosome 

gain, red for chromosome loss). Androgenetic and gynogenetic cell lines are all depicted in either 

blue or purple color, respectively. Grey lines denote blastomere that did not pass the quality 

control, therefore the chromosomal status of these cells remained undetermined. Three embryos 

from Cross8301 that passed quality control had inconclusive data due to distort haplarithm 

profiles (depicted in yellow) and these embryos were also discarded from further investigation 

(E01, E09 and E10). 
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Supplementary Figure S2. The rate of CIN in monospermic in vitro and in vivo-derived 

embryos.  

The numbers above the columns represent the total numbers of embryos (A) and blastomeres (B) 

included in the analysis. (A) Comparison of normally fertilized in vitro and in vivo-derived 

embryos. Although in vivo-derived embryos can present with genomic aberrations, in vitro 

maturation, fertilization and culture influences CIN rates; *P = 0.029, two-tailed Fisher’s exact 

test. (B) The total proportion of blastomeres with aneuploidies, segmental imbalances, and/or 

aberrant ploidy in IVF and in vivo-derived embryos. IVF embryos contain more blastomeres with 

aberrant genomes than their in vivo counterparts; ****P < 0.0001, two-tailed Fisher’s exact test.  
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Supplementary Figure S3. Genome-wide haplarithm plots of single bovine blastomeres. For 

crosses 4006 and 4770 only paternal haplarithm is depicted. For crosses 4757, 8301 and 9617 

both paternal and maternal haplarithm plots were obtained. Defined single cell BAF values of the 

segmented P1 or M1 (blue lines) and P2 or M2 (red lines), as well as the distance between the 

P1-P2 or M1-M2 denote the origin and nature of copy number (CN) alterations. In total, the 

distance in paternal haplarithm profile and distance in maternal haplarithm profile must equal 1. 

As example, the P1-P2 or M1-M2 distance in a diploid blastomere is 0.5 in both paternal and 

maternal haplarithm profiles, while any deviation from this value would indicate loss (distances 

0 and 1) or gain (distances 0.67 and 0.33). For more information see (Zamani Esteki et al, 2015) 

  

Supplementary Table S1. Description of individual donor response to hormonal treatment prior to 

ovum pick up  

 

Cross 4770 Cross 4757 Cross 4006 Cross 8301 Cross 9617 

OPU 

session # oocytes 

# cleaved 

embryos # oocytes 

# cleaved 

embryos # oocytes 

# cleaved 

embryos # oocytes 

# cleaved 

embryos # oocytes 

# cleaved 

embryos 

1 7 3 1 0 5 5 4 3 1 1 

2 2 2 15 4 2 1 5 4 1 0 

3 4 4 2 1 - - - - - - 



Supplementary Table S2. Description of bovine cleavage stage embryo cohorts 

Embryo ID Origin 

Time of isolation 

(day pi) 

# of cells in 

the embryo 

# of hybridized 

cells 

# of QC passed 

cells (embryo 

representation %) 

E01_Cross4006 OPU-IVF 2 6 6 2 (33%) 

E02_Cross4006 OPU-IVF 2 4 4 3 (75%) 

E03_Cross4006 in vivo 2 2 2   2 (100%) 

E04_Cross4006 in vivo 2 4 3 2 (50%) 

E05_Cross4006 in vivo 2 2 2   2 (100%) 

E06_Cross4006 IVM-IVF 2 8 8   8 (100%) 

E07_Cross4006 IVM-IVF 2 7 6 4 (57%) 

E01_Cross4757 OPU-IVF 3 7 7 2 (28%) 

E02_Cross4757 OPU-IVF 2 4 4 2 (50%) 

E03_Cross4757 OPU-IVF 2 5 5 4 (80%) 

E04_Cross4757 OPU-IVF 3 3 3 2 (66%) 

E05_Cross4757 IVM-IVF 2 6 6   6 (100%) 

E01_Cross4770 OPU-IVF 2 4 4 3 (75%) 

E02_Cross4770 OPU-IVF 3 8 8 7 (87%) 

E03_Cross4770 OPU-IVF 2 5 5 2 (40%) 

E04_Cross4770 in vivo 2 3 3 2 (66%) 

E05_Cross4770 in vivo 2 4 2 1 (25%) 

E06_Cross4770 in vivo 2 2 1 1 (50%) 

E07_Cross4770 IVM-IVF 2 6 6 5 (83%) 

E08_Cross4770 IVM-IVF 2 4 4   4 (100%) 

E09_Cross4770 IVM-IVF 2 8 8 7 (87%) 

E10_Cross4770 IVM-IVF 2 10 10 10 (100%) 

E11_Cross4770 IVM-IVF 2 6 6  4 (66%) 

E01_Cross8301 OPU-IVF 2 8 8      8 (100%)* 

E02_Cross8301 OPU-IVF 2 8 8  6 (75%) 

E03_Cross8301 OPU-IVF 3 4 4  3 (75%) 

E04_Cross8301 OPU-IVF 3 8 8  6 (75%) 

E05_Cross8301 in vivo 2 8 7  7 (87%) 

E06_Cross8301 in vivo 2 7 7   7 (100%) 

E07_Cross8301 in vivo 2 8 8   8 (100%) 

E08_Cross8301 in vivo 2 2 2   2 (100%) 

E09_Cross8301 in vivo 2 4 4     4 (100%)* 

E10_Cross8301 in vivo 2 3 3 2 (66%) 

E11_Cross8301 IVM-IVF 2 2 2   2 (100%) 

E12_Cross8301 IVM-IVF 2 6 6   6 (100%) 

E13_Cross8301 IVM-IVF 2 5 5   5 (100%) 

E01_Cross9617 OPU-IVF 2 3 3   3 (100%) 



*The haplarithm profiles from these embryos were inconclusive for the majority of 

chromosomes, therefore they were removed from further study. The percentage indicates the 

overall representation of the embryo based on the initial number of blastomeres within an 

embryo and the final number of QC passed blastomeres that were analysed. IVP, in vitro 

produced; OPU, ovum pick up; pi, post-insemination. 

E02_Cross9617 in vivo 2 4 4   4 (100%) 

E03_Cross9617 in vivo 2 7 7 6 (85%) 

E04_Cross9617 in vivo 2 8 7 6 (75%) 

E05_Cross9617 in vivo 2 4 4 3 (75%) 

E06_Cross9617 in vivo 2 7 4 4 (57%) 

E07_Cross9617 in vivo 2 3 3 2 (66%) 

E08_Cross9617 IVM-IVF 2 2 2   2 (100%) 

E09_Cross9617 IVM-IVF 2 3 3   3 (100%) 


