UNDEC

MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR

PAWEŁ E. MALINOWSKI, E. GEORGITZIKIS, J. MAES, M. MAMUN, O. ENZING, F. FRAZZICA, J. VAN OLMEN, P. DE MOOR, P. HEREMANS, Z. HENS, AND D. CHEYNS

IISW 2017, HIROSHIMA, JAPAN

IMAGE SENSORS AT IMEC

VISIBLE AND NON-VISIBLE IMAGING

1

is ondernemen

APPLICATIONS

see-through vision

low-light imaging

eye-tracking

surveillance

automotive

GHENT

UNIVERSITY

INTEGRATION

GHENT UNIVERSITY

(h

Vlaanderen

is ondernemen

umec

MATERIALS

GHENT

UNIVERSITY

umec

(h)

Vlaanderen

is ondernemen

INTEGRATION

umec

1

Vlaanderen

is ondernemen

COLLOIDAL QUANTUM DOT ABSORBER

150 NM THICK ACTIVE LAYER

TUNING OF ABSORPTION PEAK WITH QD SIZE

↓ LOWER ABSORPTION PEAK

GHENT

UNIVERSITY

unec

GHENT

UNIVERSITY

is ondernemen

EQE > 10% IN NEAR INFRARED FROM A 150 NM THIN-FILM DARK CURRENT @ - I V: ~ μ A/CM² DETECTIVITY: D* > 1011 JONES

RISE TIME (10% TO 90%): ~12.5 μs FALL TIME (90% TO 10%): ~51 μs

> GHENT UNIVERSITY

Vlaanderen

is ondernemen

(h)

umec

GHENT

UNIVERSITY

Vlaanderen

is ondernemen

n,

ເກາຍc

PHOTO/DARK RATIO IMPROVEMENT AT LOW TEMPERATURE 193K PACKAGE AN OPTION FOR SPECIFIC APPLICATIONS

IISW 2017, HIROSHIMA, JAPAN

PHOTODETECTOR OPTIMIZATION ON SILICON

TOP ILLUMINATION CMOS-COMPATIBLE BOTTOM CONTACT SEMI-TRANSPARENT TOP CONTACT

aanderen

ondernemen

unec

GHENT

UNIVERSITY

ADJUSTMENT FOR TOP ILLUMINATION

GHENT

UNIVERSITY

Vlaanderen

is ondernemen

(h)

unec

TUNING OF LAYER THICKNESSES WITH OPTICAL MODELLING

ADJUSTMENT FOR TOP ILLUMINATION

umec

1

is ondernemen

TUNING OF LAYER THICKNESSES WITH OPTICAL MODELLING

OUTLOOK

FROM PIXEL STACK TO MONOLITHIC INFRARED IMAGER

- continuous screening of new materials
 - main focus on quantum dots
 - parallel tracks on OPD (polymers and small molecules)
- scaling up photodetector integration
- two options for the pixel array architecture:
 - VIS+NIR in one plane (enabled by OPD patterning)
 - monochrome NIR (towards 2 µm wavelength)
- dedicated readout circuit design and fabrication
 - to be continued at IISW2019!

PAWEL.MALINOWSKI@IMEC.BE

GHENT

UNIVERSITY

imomec

embracing a better life

IMECTHIN-FILM PHOTODETECTOR TRACK RECORD

- P.E. Malinowski et al. "Monolithic Near Infrared Image Sensors Enabled by Quantum Dot Photodetector", IISW 2017
- E. Georgitzikis et al., "Determining charge carrier extraction in lead sulfide quantum dot near infrared photodetectors", **SPIE Nanoscience + Engineering 2017**
- D. Cheyns et al., "Infrared photodetectors based on lead-sulfide quantum dots", MRS Spring 2017
- F. De Roose et al. "A Flexible Thin-Film Pixel Array with a Charge-to-Current Gain of 59μA/pC and 0.33% Nonlinearity and a Cost Effective Readout Circuit for Large-Area X-ray Imaging", ISSCC2016
- G.H. Gelinck "X-Ray Detector-on-Plastic With High Sensitivity Using Low Cost, Solution-Processed Organic Photodiodes", IEEE Transactions on Electron Devices 2016
- A. Kumar et al. "High performance x-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current," SPIE Organic Photonics + Electronics 2015
- F. De Roose et al. "Active Pixel Concepts for High-Resolution Large Area Imagers", IISW 2015
- G.H. Gelinck et al. "Flexible X-ray detector with high sensitivity using low cost, solution-processed organic photodiodes," **IISW 2015**
- P. E. Malinowski et al. "Organic Imager on Readout Backplane Based on TFTs With Cross-Linkable Dielectrics," IEEE Photonics Technology Letters, 2014
- P. E. Malinowski et al. "Photolithographic patterning of organic photodetectors with a non-fluorinated photoresist system," **Organic Electronics** 15 (10), 2014
- A. Kumar et al. "X-ray imaging sensor arrays on foil using solution processed organic photodiodes and organic transistors," **Proc. SPIE** 9137, Organic Photonics VI, 2014
- G. H. Gelinck et al. "X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate," **Organic Electronics** 14 (10), 2013
- P. E. Malinowski et al. "Fully Organic Integrated Arrays on Flexible Substrates for X-Ray Imaging," IISW 2013

