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Abstract

Motivated by assembly processes, we consider a Markovian queueing system with multiple coupled queues and
customer impatience. Coupling means that departures from all constituent queues are synchronised and that service
is interrupted whenever any of the queues is empty and only resumes when all queues are non-empty again. Even
under Markovian assumptions, the state-space grows exponentially with the number of queues involved. To cope with
this inherent state-space explosion problem, we investigate performance by means of two numerical approximation
techniques based on series expansions, as well as by deriving the fluid limit. In addition, we provide closed-form
expressions for the first terms in the series expansion of the mean queue content for the symmetric coupled queueing
system. By an extensive set of numerical experiments, we show that the approximation methods complement each
other, each one being accurate in a particular subset of the parameter space.
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1. Introduction

We investigate the performance of a particular Markovian queueing system with K parallel queues, as depicted
in Figure 1. The queues have finite or capacity; let Ck ∈ N

+ be the capacity of the kth queue. Customers arrive at
the kth queue in accordance with a Poisson process with rate λk > 0, the arrival processes at the different queues
being independent. We further assume that departures from the different queues are coupled. This means that there
are simultaneous departures from all queues with rate µ as long as all queues are non-empty. If one of the queues is
empty, no service takes place. Finally, customer impatience is assumed: each customer leaves the kth queue prior to
service with abandonment rate αk with the exception of customers whose service has started.

The queueing system described above is a natural abstraction for an assembly process with multiple inventories;
see [1, 2] and the references therein for advances in stochastic inventory models. The different queues represent part
inventories for the different parts that are used during assembly. These inventories are continuously replenished by in-
house production facilities (in accordance to a Poisson process), the inventories offering temporary storage to smooth
out uncertainty in the various production processes. Parts are assumed to be perishable, meaning that they should be
used before a (random) due-date or be discarded once this due-date is crossed. This perishability is captured by the
abandonment processes from the different queues. Food-products are a prime example of perishable semi-finished
products. However, perishable semi-finished products are also found in biochemical production, and in battery and
semiconductor manufacturing [3]. Finally, assuming that assembly requires that all the necessary inputs are available,
it can only proceed if the inventories (or queues) are not empty, which corresponds to the notion of the coupled
departures introduced above.

The two-buffer coupled queueing system without customer impatience is well understood. If the buffer capac-
ity is infinite, the uncontrolled queue process is null recurrent in the Markovian setting. The inherent instability of
such queueing systems is demonstrated in [6] where the buffer content difference is studied in the two-queue case.
Assuming finite capacity buffers, Hopp and Simon developed a model for a two-buffer kitting process with exponen-
tially distributed processing times for kits and Poisson arrivals [5]. The exponential service times and Poisson arrival
assumptions were later relaxed in [16] and [17], respectively.

Only a few authors have studied coupled (or paired) queueing systems with multiple (i.e. more than two) queues.
In [4], Harrison studies stability of coupled queueing under very general assumptions: K ≥ 2 infinite-capacity buffers,
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Figure 1: Representation of the coupled queueing system with customer impatience

generally distributed interarrival times at the different buffers, and generally distributed service times. He proves
that stability requires buffer control, or more precisely, that the distribution of the vector of waiting times (in the
different queues) without control and infinite queue capacity is defective. When the queues are finite, such a control
is not necessary. The queue content of the coupled queueing system with finite buffers is studied in [18], assuming
exponential service and Poisson arrivals. As the size of the state-space of the associated Markov chain grows quickly
with the number of queues involved, [18] presents an approximation for the queue content when the system is in the
overloaded regime.

In contrast to the uncontrolled coupled queueing system, the controlled coupled queueing system has received
considerable attention in the scientific literature. Ramakrishnan and Krishnamurthy adopt the term synchronisation
station and present a recent account on approximations of such systems [8]. A particular type of control of coupled
queues relates to fork-join type queueing system [9, 10]. In fork-join systems, a job is forked into different sub-jobs,
run on different servers. Upon completion of all sub-jobs, there is a final service joining the sub-jobs again. The server
joining the sub-jobs operates as a coupled server, albeit with a controlled arrival process. Indeed, the sub-jobs that
need to be merged, are already present in the fork-join system. These will be available for the coupled server after
some delay.

Coupled queueing may also refer to different types of multi-queueing systems, most prominently to systems with
discriminatory processor sharing. In discriminatory processor sharing the total service capacity is distributed amongst
all queues that have waiting customers, some queues getting a larger share than others. Once one of the queues is
empty, its share is moved to the queues with waiting customers. The authors in [11] investigate such a two-queue
system where customers in both queues are served at unit rate when both queues are non-empty, while the non-empty
queue is served at a higher rate when the other is empty. A similar system is studied in [12] in the heavy traffic regime
while [13] allows for time varying arrival rates and the possibility that jobs abandon. In contrast to [11, 12, 13], jobs in
the first queue do not leave the system but move to the second queue upon completion in [14]. Finally, [15] studies the
stability of a more generic system with multiple queues where the service rate of each queue depends on the number
of customers in all queues.

The present paper investigates approximations for multi-buffer coupled queuing systems with customer impa-
tience, with service coupling as described above. We investigate two numerical approximation techniques as well as
the fluid limit of the system at hand. The numerical approximation methods rely on a Maclaurin-series expansion
of the steady-state probability vector, either around λ = 0 (light-traffic regime) or around α = µ = 0 (overloaded
regime). Series expansion techniques for Markov chains are referred to as perturbation techniques, the power series
algorithm or light-traffic approximations. While the naming is not absolute, perturbation methods are mainly moti-
vated by sensitivity analysis of performance measures with respect to the system parameters. In particular singular
perturbations where the perturbation does not preserve the class-structure of the non-perturbed chain, have received
considerable attention in literature, see [19, 20, 21] and the references therein. The power series algorithm transforms
a Markov chain of interest in a set of Markov chains parametrised by an auxiliary variable ρ. For ρ = 0, the chain
can be solved efficiently, and one can also obtain the perturbation of the chain in ρ. For ρ = 1 the original Markov
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chain is retrieved such that the series expansion can be used to approximate the solution of the original Markov chain,
provided the convergence region of the series expansion includes ρ = 1, see e.g. [22, 23, 24, 25]. Finally, light-traffic
approximations often corresponds to a series expansion in the arrival rate at a queue. For an overview on the technique
of series expansions in stochastic systems, we further refer the reader to the surveys in [26] and [27].

The remainder of the paper is organised as follows. In the next section, we introduce the balance equations and
present the numerical light-traffic analysis. Performance in the overloaded regime is investigated in section 3, while
section 4 focuses on the fluid limit when αn > 0 and µ < λn. Finally, we assess the accuracy of the approximations by
means of numerical examples in section 5 and draw conclusions in section 6.

2. Light traffic analysis

We first derive the balance equations for the coupled queueing system. In view of the modelling assumptions
introduced above, the state of the coupled queueing system is described by the number of customers in the queues.
Let Xk(t) be the number of customers in the kth queue at time t and let X(t) = [X1(t), . . . , XK(t)] ∈ X, where X denotes
the state space of the Markov chain,

X = {0, 1, . . . ,C1} × . . . × {0, 1, . . . ,CK} .

Further, let π(x) = limt→∞ P[X(t) = x] be the stationary probability vector of the process, for x = [x1, . . . , xK] ∈ X. In
particular, π(x) = 0 for x < X which simplifies the notation.

The following notation is introduced for further use. Let 1{·} be the indicator function which evaluates to one if
its argument is true and to 0 if its argument is false. The vector ek = [1{`=k}]`=1,...,K denotes a row vector with all its
elements zero, apart from the kth element which is 1, whereas e =

∑
k ek denotes a row vector with K ones. Given

the description of the queueing system and its notation in section 1, and the notation introduced above, we can now
summarise the possible state transitions from state x.

• Provided that the kth queue is not full (xk < Ck), new customers arrive at this queue with rate λk, inducing a
transition to state x + ek.

• Provided that no queue is empty (xk > 0 for all k), there is a departure event with rate µ. A departure event leads
to a single departure from each queue, inducing a transition to state x − e.

• Finally, customers abandon the kth queue with rate α(xk − 1) if all queues are non-empty (as the customer being
served does not abandon) and with rate αxk if at least one queue is empty (in this case, there is no service).
After the abandonment in the kth queue, the new state is x − ek.

Accounting for the different types of transitions, we find the following set of balance equations,

π(x)A(x) = π(x + e)µ +

K∑
k=1

π(x − ek)λk +

K∑
k=1

π(x + ek)αk(xk + 1 − E(x + ek)) (1)

for x ∈ X, with,

A(x) =

K∑
k=1

αk (xk − E(x)) +

K∑
k=1

λk1{xk<Ck} + µE(x) ,

and with E(x) the indicator function that all queues are non-empty,

E(x) =

K∏
k=1

1{xk>0} .

For the light-traffic approximation, we express all λk
.
= κkλ in terms of λ and we then send λ to zero. The system

of balance equations (1) has a matrix representation

πA = π(A0 + λA1) = 0 (2)
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where π = [π(x)]x∈X is the stationary probability vector, and where A, A0 and A1 are S × S matrices that do not
depend on λ. Here S = |X| denotes the size of the state space,

S =

K∏
k=1

(Ck + 1) . (3)

Note thatA0 only contains transition rates corresponding to service completions and/or abandonments, whileA1 only
contains transitions corresponding to arrivals.

2.1. Numerical series expansion
Direct solution of the system of equations (1), or of (2), is only possible if the number of queues and their capacities

is limited, as the size of the state space grows quickly with the number of queues, see (3). Therefore, we introduce the
Maclaurin series expansion of the stationary probability π(x),

π(x) =

∞∑
n=0

πn(x)λn ,

or, equivalently, of the stationary vector π,

π =

∞∑
n=0

πnλ
n . (4)

This series expansion is justified in section 2.3 where a lower bound for the region of convergence of the series
expansion is calculated.

Plugging (4) into (2) and equating the terms in λn yields,

π0A0 = 0 , πnA0 = −πn−1A1 , (5)

for n ∈ N+, whereas the normalisation condition πe′ = 1 yields,

π0e′ = 1 , πne′ = 0 ,

for n ∈ N+.
Assuming that the states are ordered lexicographically, one finds that A0 is lower triangular as A0 collects the

transition rates corresponding to departures (either by impatience or after a service completion). As a consequence,
the recursive equations (5) can be readily solved. We express the recursion in terms of the system parameters below.

In absence of arrivals (λ = 0), the stationary solution is the empty queue. That is, π0 equals,

π0(x) =

1 for x1 = 0,. . . , xK = 0,
0 otherwise.

Given π0, we can calculate the higher order terms recursively. Given the (n − 1)st vector πn−1, we can calculate the
values πn(x) in reverse lexicographical order by,

πn(x) =

∑K
k=1 πn−1(x − ek)κk − πn−1(x)

∑K
i=1 κi1{xi<Ci} + πn(x + e)µ +

∑K
k=1 πn(x + ek)αk(xk + 1 − E(x + ek))∑K

k=1 αk (xk − E(x)) + µE(x)
, (6)

for x , [0, 0, . . . , 0] .= 0. Finally, for x = 0, the normalisation condition yields,

πn(0) = −
∑

x∈X\{0}

πn(x) .

Remark 1. The recursion above closely resembles the well-known Gauss-Seidel method. Indeed, the transition matrix
A is decomposed into a lower and upper triangular matrix, which yields a recursion where each step is easily solved. In
the present setting, the Gauss-Seidel method allows for calculating the stationary probability vector for a single value
λ. In contrast, we obtain a polynomial expression for the stationary probability vector which accurately approximates
the probability vector in some interval [0, λmax].
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Remark 2. The above recursion can be used when the capacity of some (or all) of the queues is infinite. Indeed, let
Xn = {x ∈ X, |x| ≤ n} be the set of system states where the total system content does not exceed n. A careful analysis
of the recursion above reveals that πn(x) = 0 for x ∈ X \ Xn. Hence, the number of non-zero terms in the nth order
expansion is finite, even if the queue capacity is infinite. This observation confirms the so-called n-events rule which
states that for an nth order expansion, only sample paths with n or fewer perturbed events must be considered [26].

Remark 3. When the capacity of all queues is infinite, the complexity of calculating N terms in the expansion is
O(NK+1K). In view of the preceding remark, the number of non-zero values in πn is O(nK), the calculation of a single
term having complexity O(K). When the buffer size is finite, the number of values to calculate is also bounded by the
size of the state space. Assuming buffers with equal finite capacity C, the computational complexity of calculating
N terms in the expansion is O(min(C,N)K KN). Indeed, for each term in the series expansion, we need to calculate
(C + 1)K values at most.

Remark 4. The computational complexity further decreases when the arrival rates and abandonment rates in the
different queues are equal. By symmetry, one then has πn(x) = πn(y) for any permutation y of x. Limiting the
discussion to the case of infinite capacity buffers (which naturally forms an upper bound), the number of values to
calculate for the nth order term is [29]

cn =

n∑
m=0

pK(m + K) .

Here pk(n) is the number of partitions of the integer n into exactly k positive integer parts, satisfying the recursion,

pk(n) = pk(n − k) + pk−1(n − 1) , p0(0) = 1 ,

assuming pk(n) = 0 for k > n. The first 10 values of the sequence cn for any C > 10 are given below,

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, . . . .

2.2. Closed form expressions for the symmetric coupled queueing system

For the symmetric coupled queueing system we obtain closed-form expressions for the Kth order expansion of the
first two moments of the queue content. As the system is symmetric we have αk = α and κk = 1 for k = 1, . . . ,K. In
addition, we assume that the queue capacities exceed K: Ck > K for all k = 1, . . . ,K.

Repeated application of the set of recursive equations, then yields the following series expansions of the first two
moments of the queue content X (that is, the content of an arbitrary queue),

E[X] =
1
α
λ −

K(µ − α)
µαK λK + O(λK+1) , (7)

E[X2] =
1
α
λ +

1
α2 λ

2 −
K(µ − α)
µαK λK + O(λK+1) . (8)

Notice the disappearing terms in the power expansion (from 2 up to K − 1 in case of E[X], from 3 to K − 1 in case
of E[X2]). This can be explained by the n events rule: for the nth order expansion in λ we need to consider only n
arrivals, and when n < K, there are only departures due to impatience (and not due to service completion), hence it
can be intuited that the first term containing the parameter µ is indeed of the Kth order.

2.3. Lower bound for the radius of convergence

We now focus on a lower bound for the radius of the series expansion. The basic ideas for finding such a bound
date back to the seminal work of Schweitzer [28]. We validate the series expansion by explicitly constructing the
expansion. To do so, we first introduce some additional notation and the basic notion of the deviation matrix of a
CTMC.

Let π(λ) denote the steady state solution [π(x)]x∈X of the balance equations (1). We have made the dependence of
π(λ) on λ explicit for ease of notation. With this notation, the balance equations can be written in matrix notation as
follows,

π(λ)A(λ) = π(λ)(A0 + λA1) = 0 , (9)
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see equation (2). In view of the system assumptions it is readily seen thatA(0) = A0 only has one recurrent state, i.e.
0 (the empty state) is recurrent and all the others are transient. Therefore, the stationary vector π(0) exists, with state
π(0)(0) = 1 and π(0)(x) = 0 for x ∈ X \ {0}.

LetD0 be the deviation matrix of the CTMC with generator matrixA0,

A0 =

∫ ∞

0
(P0(t) −Π0)dt . (10)

Here the family {P0(t) = exp(A0t), t ≥ 0} is the Markov semigroup of the CTMC, and Π0 = limt→∞ P0(t) = e′π(0),
e′ being a column vector of ones. As the state-space X is finite, the deviation matrix is well defined. Moreover, the
deviation matrix satisfiesD0e′ = 0 — the row sums are zero — and,

D0A0 = A0D0 = Π0 − I , (11)

with I the identity matrix.

Theorem 1. The solution π(λ) of the CTMC adheres to the following power series expansion,

π(λ) =

∞∑
k=0

(
π(0)(A1D0)k

)
λk , (12)

for 0 ≤ λ < λ0, λ−1
0 being the spectral radius ofA1D0. Moreover, λ0 is bounded from below by λ∗0 and λ∗1,

λ∗0 =

2 ∫ ∞

0

1 − K∏
k=1

(1 − exp(αkt))Ck

 dt

−1

≥

2 K∑
k=1

Ck∑
`=1

1
`αk


−1

= λ∗1 .

Proof. Multiplying (9) byD0 and invoking (11) yields,

π(λ)(A0 + λA1)D0 = π(λ)(Π0 − I) + π(λ)λA1D0 = 0 .

Moreover, we have π(λ)Π0 = π(λ)e′π(0) = π(0), such that,

π(λ)(I − λA1D0) = π(0) .

The spectral radius of λA1D0 is λ/λ0. Hence for λ < λ0, (I−λA1D0) is invertible and the Neumann series converges
to the inverse,

∞∑
k=0

(λA1D0)k = (I − λA1D0)−1 .

Combining the previous expressions immediately yields the series expansion (12).
As all elements but the first column of Π0 are zero, only the first column of D0 may contain negative values; see

(10). Moreover, the row sums ofD0 are zero, hence the first column is equal in absolute value to the sum of the other
columns. The entries in the first column ofD0 have the following interpretation,

[D0]xo = −

∫ ∞

0
(1 − [P0(t)]xo)dt = −E[Tx] ,

where Tx is a random variable denoting the time it takes to reach the empty state 0 from state x (assuming no arrivals).
This interpretation shows that γ .

= E[Tc] ≥ E[Tx] for all x ∈ X where c denotes the full state.
We have the following upper bound for γ. It is easy to see that γ decreases if µ increases. Therefore, consider the

system without service, that is with µ = 0. Then each customer in the kth queue leaves at a rate αk and the bound
for Tc is the maximum of

∑
k Ck independent exponentially distributed random variables. Hence, the corresponding

cumulative distribution is the product of exponential distributions. The bound γ∗0 for γ is calculated by integrating this
distribution,

γ ≤ γ∗0 =

∫ ∞

0

1 − K∏
k=1

(1 − e−αk t)Ck

 dt .

6



Moreover, as the maximum of K non-negative random variables is bounded from above by the sum of these random
variables, we have the following crude upper bound for γ∗0 (and γ),

γ ≤ γ∗0 ≤ γ
∗
1 =

K∑
k=1

Ck∑
`=1

1
`αk

, (13)

the kth term in the sum on the right-hand side corresponding to the mean time to deplete the kth queue.
As the row sums of A1 are zero (A(λ) is a generator matrix for every λ), we have A1Π0 = 0. Moreover, for any

induced matrix norm, we have ‖A1D0‖ ≥ λ0. Therefore, we find,

λ−1
0 ≤ ‖A1D0‖ = ‖A1(D0 + γΠ0)‖ ≤ ‖A1‖ ‖D0 + γΠ0‖ .

In particular, using the maximum absolute row sum norm, we have ‖A1‖ =
∑K

k=1 κk
.
= κ; [A1]xx = −κ if all queues are

non-full in state x and [A1]xx > −κ if this not the case. In view of the definition of γ, one easily verifies that the matrix
D0 + γΠ0 has no negative entries. Recalling that D0 has zero row sums, this shows that all row sums of D0 + γΠ0
equal γ: ‖D0 + γΠ0‖ = γ and,

1
λ0
≤ 2κγ ≤ 2κγ∗0

.
=

1
λ∗0
,

which proves the lower bound λ∗0 for λ0. The lower bound λ∗1 follows from λ−1
0 ≤ 2κγ and the crude bound (13) for

γ.

Remark 5. The former theorem establishes a lower bound for the region of convergence of the series expansion. The
existence of the series expansion in an interval around λ = 0 can be established more easily. Indeed, by Cramer’s
rule, one directly verifies that the stationary probabilities are rational functions of λ. The region of convergence of the
Maclaurin series expansion is therefore determined by the zero of the denominator with the smallest absolute value,
which is distinct from 0. As for every positive real λ the stationary probability is between 0 and 1, one further notes
that this smallest zero is definitely not real and positive.

3. Overload analysis

We now study the system when the queues operate in the overloaded regime. To this end, let αi = βiν. The system
of equations (1) then has the following matrix representation,

πA = π
(
Â0 + µÂ1 + νÂ2

)
= 0 , (14)

where the matrices Â0, Â1 and Â2 neither depend on µ nor on ν, and where we assume the states in the stationary
vector π are ordered lexicographically. The matrix Â0 contains transition rates corresponding to arrivals, and is an
upper triangular matrix. Further,A1 only contains transition rates corresponding to departures, whileA2 only contains
transitions corresponding to abandonments.

We introduce the bivariate series expansion of the stationary probabilities π(x) and of the corresponding stationary
vector π,

π(x) =

∞∑
m=0

∞∑
n=0

πm,n(x)µmνn , π =

∞∑
m=0

∞∑
n=0

πm,nµ
mνn .

Plugging the expansion of the stationary vector above in (14) and isolating terms in µmνn then yields,

πm,nÂ0 = −πm−1,nÂ1 − πm,n−1Â2 , (15)

and,

πm,0Â0 = −πm−1,0Â1 ,

π0,nÂ0 = −πm,n−1Â2 ,

π0,0Â0 = 0 , (16)
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for m, n ∈ N+. Moreover, by the normalisation condition πe′ = 1, we find,

π0,0e′ = 1 , πm,ne′ = 0 ,

for (m, n) ∈ N2 \ {(0, 0)}. Recalling the triangularity of Â0, the recursive equations (15)–(16) can be readily solved.
For convenience, we express the recursion in terms of the system parameters below.

3.1. Numerical series expansion
First, as for the light-traffic case, π0,0 is trivial as all queues eventually become full when there are neither depar-

tures nor abandonments,

π0(x) =

1 for x1 = C1,. . . , xK = CK ,
0 otherwise.

We can again calculate the higher order terms recursively. Given the values for m + n < k, we find the terms for
m + n = k by evaluating the equations below in lexicographical order. For x ∈ X \ {c} with c = [C1,C2, . . . ,CK], we
have,

πm,n(x) =

 K∑
k=1

λk1{xk<Ck}

−1 −πm,n−1(x)
K∑

k=1

βk (xk − E(x)) − πm−1,n(x)E(x) + πm−1,n(x + e)

+

K∑
k=1

πm,n(x − ek)λk +

K∑
k=1

πm,n−1(x + ek)βk(xk + 1 − E(x + ek))

 , (17)

whereas for x = c we have,
πm,n(c) = −

∑
x∈X\{c}

πm,n(x) .

Remark 6. In contrast to the light-traffic approach, the numerical complexity is now O(CK KN2), as the calculation of
every value in πn,m(x) is O(K). The algorithm is therefore considerably slower than the light-traffic approximation for
large N. In addition, more memory is required as well. In the light-traffic approximation it is sufficient to keep track
of the last term in the expansion only. Now, calculating the (m, n) terms with m + n = k requires all (m, n) terms in the
expansion with m + n = k − 1.

As for the light-traffic expansion, the number of non-zero terms in the vector πm,n, is considerably smaller than
the length of the vector. By the n-event rule, πm,n(x) is only non-zero for states x that can be reached from state c by
at most m departures by impatience and n departures upon service completion. Accounting for this observation, the
numerical complexity reduces to O(min(C,K)K KN2).

Likewise, if the abandonment and arrival rates are the same for all queues, one can again exploit the symmetry:
πm,n(x) = πm,n(y) for any permutation y of x.

Remark 7. The approach for light traffic can be adopted to study the system in the overloaded regime as well. To
this end, one scales the abandonment rates with µ, αi = βiµ and investigates the series expansion in µ = 0. Scaling
the abandonment rates with µ implies that there are no (lexicographically) downward transitions for µ = 0. In other
words, the generator matrix of the Markov chain for µ = 0 is triangular and the light-traffic approach applies.

3.2. Closed form expressions for the symmetric coupled queueing system
For the symmetric coupled queueing system we obtain closed-form expressions for the 2nd order expansion of the

first two moments of the queue content. As the system is symmetric we have αk = α and λk = λ for k = 1, . . . ,K. In
addition, we assume that the queue capacities are equal Ck = C for all k = 1, . . . ,K and that C > K > 2. By repeated
application of (17), we then have the following second order approximation for the first two moments of the queue
content X:

E[X] ≈ C −
C − 1
λ

α −
1
λ
µ −

(C − 1)(C − 3)
λ2 α2 − 2

C − 2
λ2 αµ −

1
λ2 µ

2 ,

E[X2] ≈ C2 −
(2C − 1)(C − 1)

λ
α −

2C − 1
λ

µ −
(2C − 7)(C − 1)2

λ2 α2 −
(2C − 5)(C − 1)

λ2 αµ −
2C − 3
λ2 µ2 .
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4. Fluid limit

In this section, we develop a fluid limit for the queueing model at hand. We hereby make the following additional
assumptions: the abandonment rates αk are non-zero, the arrival rates λk in all queues exceed the service rate, i.e.
λk > µ, (see Remark 9 for a rationale) all queue capacities Ck are infinite. We consider the scaling:

αk 7→ αk , λk 7→ ηλk , µ 7→ ηµ.

The infinite capacity assumption is relaxed below. We will indicate how to adapt the proof to the case of finite
capacities, provided that they are scaled as Ck 7→ ηCk, and satisfy:

Ck >
λk − µ

αk
(18)

for k = 1, 2, . . . ,K.
Recalling that Xk(t) denotes the number of customers in the kth queue at time t, let Xη

k (t) be the number of
customers in the kth queue at time t for the system with arrival rates ηλk and service rate ηµ. In the spirit of the
monograph of Ethier and Kurtz [30], we express the evolution of the system in terms of Poisson processes Yk with
deterministic time changes and Poisson processes Zk and U with random time changes:

Xη
k (t) = Xη

k (0) + Yk(ηλkt) − Zk

(
αk

∫ t

0
Xη

k (s)ds
)
− U

ηµ∫ t

0

∏
k

1{Xη
k (s)>0}ds

 .
where Yk(·), Zk(·) and U(·) are independent Poisson processes with unit rate. We further assume that the random
variables Xη

k (0)η−1 converge to the deterministic constants ρk(0) > 0 for η→ ∞. Such a construction not only applies
to the present setting but also in the generic queueing network setting of [31].

We will show that the process has the following fluid limit:

ρk(t) =
λk − µ

αk
(1 − e−αk t) + ρk(0)e−αk t , (19)

where we note that these functions can also be written as the unique solutions of the following integral equations:

ρk(t) = ρk(0) + (λk − µ)t − αk

∫ t

0
ρk(s)ds.

In order to establish the fluid limit, we want to prove that the processes X̂η
k (t) .

= (N−1Xη
k (t) − ρk(t)), converge to

zero processes, that is, that
sup

t∈[0,T ]

∑
k

|X̂η
k (t)|

converges to 0 in probability as η → ∞. We prove this proposition by making use of Grönwall’s lemma and of the
functional law of large numbers for Poisson processes. Let us rewrite the expression for X̂η

k (t) as follows:

X̂η
k (t) = X̂η

k (0) + Mη
1,k(t) − Mη

2(t) − Mη
3(t) − Mη

4,k(t) − αk

∫ t

0
X̂η

k (s)ds ,

with,

Mη
1,k(t) = η−1Yk(ηλkt) − λkt ,

Mη
2,k(t) = η−1Zk

(
αk

∫ t

0
Xη

k (s)ds
)
− η−1αk

∫ t

0
Xη

k (s)ds ,

Mη
3(t) = η−1U

ηµ∫ t

0

∏
k

1{Xη
k (s)>0}ds

 − µ∫ t

0

∏
k

1{Xη
k (s)>0}ds ,

Mη
4(t) = µ

∫ t

0

∏
k

1{Xη
k (s)>0}ds − µt .

9



We immediately see that∑
k

|X̂η
k (t)| ≤

∑
k

|X̂η
k (0)| +

∑
k

sup
t∈[0,T ]

|Mη
1,k(t)| +

∑
k

sup
t∈[0,T ]

|Mη
2,k(t)|

+ sup
t∈[0,T ]

|Mη
3(t)| + sup

t∈[0,T ]
|Mη

4(t)| + α∗
∫ t

0

∑
k

|X̂η
k (s)|ds,

where α∗ is the largest αi. Using the integral form of Grönwall’s lemma, we get∑
k

|X̂η
k (t)| ≤

∑
k

|X̂N
k (0)| +

∑
k

sup
t∈[0,T ]

|Mη
1,k(t)| +

∑
k

sup
t∈[0,T ]

|Mη
2,k(t)| + sup

t∈[0,T ]
|Mη

3(t)| + sup
t∈[0,T ]

|Mη
4(t)|

 exp(α∗t) .

Hence, to establish the fluid limit, it suffices to show that the five terms between parentheses converge to zero in
probability.

The convergence of |X̂η
k (0)| is by assumption, while the convergence of |Mη

1,k(t)| is a standard application of the
functional law of large numbers for Poisson processes.

Regarding |Mη
2,k(t)|, observe that from the inequality Xη

k (t) ≤ Xη
k (0) + Yk(ηλkt) we have

lim
η→∞

1
η

∫ t

0
Xη

k (s)ds ≤ lim
η→∞

1
η

∫ t

0
Xη

k (0) + Yk(ηλk s)ds = ρk(0)t +
1
2
λkt2 .

Hence, for any fixed ε > 0, we have the crude inequality

η−1
∫ T

0
Xη

k (s)ds ≤ (ρk(0) +
1
2
λkT )T + ε

.
= T̂ ,

on a set of at least probability 1 − ε for η large enough. We apply the functional limit of large numbers for Poisson
processes on the processes Zk in the interval [0, T̂ ], and by force we also have convergence of the original term. The
same reasoning applies to the term |Mη

3(t)|. In this case, we use the deterministic upper bound

µ

∫ t

0

∏
k

1{Xη
k (s)>0}ds ≤ µt .

For the convergence of |Mη
4(t)| to hold, we must establish that for large enough η, the queues stay non-empty in

the entire interval [0,T ]. To do so, note that we have Xη
k (t) ≥ X̃η

k (t), where the process X̃η
k (t) is defined as

X̃η
k (t) = Xη

k (0) + Yk(ηλkt) − Zk

(
αk

∫ t

0
Xη

k (s)ds
)
− U (µt) .

Using the same arguments as above, we can show that this process converges to the same fluid limit {ρk(t)}, the bound
on the last term in X̃η

k (t) now being immediate by the functional strong law of large numbers for Poisson processes.
As ρk(t) > 0 if ρk(0) > 0, it then follows that the larger process Xη

k (t) must also stay away from zero.
Remark 8. The reasoning for the last term can be repeated to establish the fluid limit for the kitting process with finite
capacity buffers. Indeed, the process with infinite queue capacity is an upper bound for any system where one or more
of the queue capacities is finite. One then only needs to show that the fluid limit stays away from the boundaries Ck.
This is indeed the case by equation (18).
Remark 9. We have chosen to restrict the proof of the fluid limit to the case of the system in the overloaded regime,
that is, for λk > µ. If we don’t impose this condition, then we would still be able to prove a fluid limit with the same
methods until at least one of the queues gets empty. What happens afterwards on a fluid scale is not so clear, nor —
we would argue — very interesting: Experiments indicate that the system goes to the zero vector with a speed that is
higher than what can be explained by abandonments alone and lower than when the system can serve customers the
entire time, which is logical as even if the system is zero in some components on a fluid scale, it still makes excursions
away from zero when zoomed in closer. Determining this exact speed is very complicated, in need of different tools,
and of limited practical value: as (we conjecture that) the fluid goes to zero on a fluid scale, its use as an approximation
of stationary performance characteristics is very limited, excluding the most important use case.
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Figure 2: Order 3, 10 and 50 light traffic approximation for the mean queue content of the kitting system with service rate µ = 1, and with K = 5
queues, each having capacity C = 10 and abandonment rates α = 0.1 or α = 0.2 as indicated.

5. Numerical results and discussion

Having established 3 approximations for the coupled queueing system, we now investigate the accuracy of the
proposed approximations by some numerical examples.

We first focus on the coupled queueing system in light traffic. Figures 2 and 3 show the light traffic approximations
of the mean and variance of the queue content for a symmetric kitting process with 5 queues, each having capacity
C = 10. The service rate is µ = 1 and the abandonment rate is the same in all queues — αi = α for i = 1, . . . , 5 —
with α = 0.1 or α = 0.2 as indicated. We compare the 3rd, 10th and 50th order approximations, and additionally also
simulate the system for verifying the accuracy of the approximations.

For the symmetric system at hand, the 3rd order approximation equals the first order approximation for the mean
and the second order approximation for the variance; the explicit expressions (7) and (8) show that the coefficients
of order 2, 3 and 4 for the mean and of order 3 and 4 for the variance are equal to zero (as we have 5 queues). The
third (or first) order approximation of the mean queue content is already quite good, while this is not the case for
the third (or second) order approximation of the variance. Higher order approximations improve the accuracy for
sufficiently small λ. For high N, we obtain very accurate results, up to a certain λmax where the series expansion no
longer converges to the correct result. Moreover, we have the same λmax for the mean and variance approximations.
The sudden deviation of the correct value is an indicator that this λmax corresponds to the radius of convergence of
the series expansion. We further note that the 3rd order approximation approximates the mean and variance better for
λ > λmax. This is coincidence, and cannot be established prior to simulating the system.

Assuming the same parameters as in Figures 2 and 3, Figures 4 and 5 depict the mean and variance of the queue
content for the symmetric kitting process for higher values of α: for α = 1 and α = 2. We again compare the 3rd, 10th
and 50th order approximations, and simulate the system for verifying the accuracy of the approximations. For these
high values of α, it is hard to discern the mean value and the variance plots. This can be explained as follows. For high
α, the abandonment process dominates the service process and the kitting process can be approximated by a system
of parallel M/M/∞ queues (the abandonment process being the service process of the M/M/∞ queues). It is well
known that the queue content distribution of an M/M/∞ process is a Poisson distribution, the Poisson distribution
having equal mean and variance.

The accuracy of the overload approximations is illustrated by Figures 6 and 7 that depict the mean and variance
of the queue content vs. the service rate µ. As for the light traffic regime, we show the 3rd, 10th and 50th order
approximations and include simulation results to assess the accuracy of the approximations. We again consider a
system with 5 queues. The arrival rate λk is 1 for all queues, whereas the abandonment rate is α for every queue,
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Figure 3: Order 3, 10 and 50 light traffic approximation for the variance of the queue content of the kitting system with service rate µ = 1, and with
K = 5 queues, each having capacity C = 10 and abandonment rates α = 0.1 or α = 0.2 as indicated.
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Figure 4: Order 3, 10 and 50 light traffic approximation for the mean queue content of the kitting system with service rate µ = 1, and with K = 5
queues, each having capacity C = 10 and abandonment rates α = 1 or α = 2 as indicated.
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Figure 5: Order 3, 10 and 50 light traffic approximation for the variance of the queue content of the kitting system with service rate µ = 1, and with
K = 5 queues, each having capacity C = 10 and abandonment rates α = 1 or α = 2 as indicated.

different values of α being considered as depicted. As for the light traffic approximation, we find a reasonable accuracy
of lower order approximations and accurate results for higher-order approximations for µ up to a specific value µmax,
the series expansion no longer converging to the correct result for larger µ. This again is an indicator that µmax
corresponds to the radius of convergence of the series expansion.

Note that the overload approximation is a bivariate expansion. While the approximation for λ = 0 is exact for the
light traffic approximation, this is not the case for µ = 0 in the overload expansion. Indeed, the approximation is only
exact for µ = α = 0 and we evaluate for non-zero α. This is readily observed for the 3rd order approximations of
mean and variance in Figures 6 and 7, respectively.

Figure 8 depicts the mean queue content versus the abandonment rate α. There are 5 queues, the arrival rate is
λ = 1 for all queues, and the abandonment rate α and queue capacity C are equal for all queues. We consider different
sizes of the queue capacity C and service rates µ = 0.1 and µ = 0.25. As the system is overloaded, both the overload
approximation and the fluid approximation can be used. As the Figure focuses on stationary behaviour, we depict the
limiting value

lim
t→∞

ρk(t) =
λk − µ

αk
=
λ − µ

α

for the fluid limit approximation. Figure 8 depicts both approximations, as well as simulation results to verify the
accuracy of the approximations. For large α, one observes that the fluid approximation is accurate while this is not the
case for small α. Indeed, the constraint on the queue capacity (18) for the fluid approximation implies that α should
be at least (λ − µ)/C. In contrast to the fluid approximation, the overload approximation is most accurate for small
α. As illustrated by Figure 8, both approximations are complementary. Indeed, the simulation results reveal that the
combined approximation is accurate for all α.

Finally, Figure 9 compares the fluid approximation to some simulated trajectories of the rescaled queueing process.
We assume that there are K = 5 queues, each having capacity Ck = 200 η for k = 1, . . . , 5. The arrival rate in each
queue is λk = η (k = 1, . . . , 5), and the service rate is µ = 0.1 η. We depict the fluid limit ρ(t) = ρk(t) for ρ(0) = 100
and ρ(0) = 20 and compare with the simulated rescaled queueing process Xη

k (t)η−1 for η = 5 (top plot), η = 10 (middle
plot) and η = 50 (bottom plot). Even for η = 5, the fluid limit already approximates the sample path quite well. The
approximation further improves, leading to an almost perfect match for η = 50.
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Figure 6: Order 3, 10 and 50 heavy-traffic approximation for the mean queue content of the kitting system with arrival rate λ = 1, and with K = 5
queues, each having capacity C = 10 and abandonment rates α = 0, α = 0.05 or α = 0.1 as indicated.
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Figure 7: Order 3, 10 and 50 heavy traffic approximation for the variance of the queue content of the kitting system with arrival rate λ = 1, and
with K = 5 queues, each having capacity C = 10 and abandonment rates α = 0, α = 0.05 or α = 0.1 as indicated.
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Figure 8: Mean queue content versus the abandonment rate for a kitting process with K = 5 queues with λ = 1. The queue capacity is C = 40,
C = 60 and C = 80 as indicated whereas the service rate is µ = 0.1 or µ = 0.25 as indicated.
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6. Conclusions

We considered a numerical technique based on Maclaurin series expansions to study a coupled queueing system
with customer impatience. For the light-traffic approximation, we noted that the series expansion technique resem-
bles the Gauss-Seidel method, while it delivers an approximation in a range of the parameter space. The overload
approximation introduces a bivariate series expansion, expressing the performance measures of interest as a bivariate
polynomial of the service rate and the scaling factor of the abandonment rates. While the bivariate series expansion is
computationally more expensive, we found accurate approximations in reasonable time. Although the prime aim of
the series approximations was the development of a fast approximation algorithm, we also included expressions for
the Kth order light traffic approximation for the symmetric coupled queueing system with K queues, as well as the
2nd order approximation for the symmetric system in the overloaded regime. Finally, we also studied and formally
proved the fluid limit of the coupled queueing system when the queues operate in the overloaded regime. Numeri-
cal experiments particularly revealed that a combination of the overload approximation and the fluid limit allows for
approximating the system in the complete range of the abandonment rate α when the arrival rate exceeds the service
rate.
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