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Samenvatting

Computerondersteund ontwerp en computationeel elektromagnetisme laten elek-
trotechnische ingenieurs toe om hun ontwerpen te valideren en te optimaliseren
in een vroeg stadium van het ontwerpsproces. Op die manier kan de totaalkost
geminimaliseerd worden. Computerondersteund ontwerp en computationeel elek-
tromagnetisme zijn quasi onmisbaar geworden voor ieder bedrijf dat elektronische
componenten produceert en assembleert. De aanhoudende trend om steeds verder
te miniaturiseren, om meer functionaliteiten aan te bieden en samen te brengen,
gecombineerd met de nood aan hogere datadebieten en hoogfrequente signalen
met meer bandbreedte, dwingt de ontwerpers van elektromagnetische simulatie-
software om steeds betere en efficiëntere software op de markt te brengen. Enkel
dan kunnen complexe ontwerpen nog binnen een aanvaardbare tijd en met blij-
vende nauwkeurigheid gesimuleerd worden.

Aangezien elektronische bouwstenen klein geworden zijn t.o.v. de golflengte, moet
het golfgedrag van spanningen en stromen mee in rekening gebracht worden. Men
spreekt dan van “full-wave” software waarmee velddistributies berekend worden
uitgaande van de vergelijkingen van Maxwell zonder daarbij quasi-statische voor-
veronderstellingen te maken. Eén van de belangrijke “full-wave” technieken is de
eindige-differentie-in-de-tijd of FDTD-methode. De FDTD-methode discretiseert
de vierdimensionale ruimtetijd in een geschrankt kubisch rooster en benadert de
afgeleiden in de vergelijkingen van Maxwell door centrale differenties om op die
manier een algoritme te bekomen waarbij elektrische en magnetische velden afwis-
selend geüpdatet worden in een haasje-over iteratieschema. Multischaal en mul-
tifysische problemen vormen een grote uitdaging voor alle “full-wave” software-
pakketten en voor de FDTD-methode in het bijzonder. Inderdaad, de steeds verder
doorgedreven miniaturisering van transistoren en andere componenten hebben
er voor gezorgd dat men bij de co-simulatie van IC’s en hun verpakking te ma-
ken krijgt met verschillen van grootte-orde één miljoen in de typische afmetingen.
Daarnaast zijn de opwarmingseffecten, de ladingsdynamica en soms zelfs kwan-
tumverschijnselen niet langer verwaarloosbaar.

De FDTD-methode heeft veel aantrekkelijke eigenschappen zoals rekentechnische
eenvoud, lineaire complexiteit, massieve parallelliseerbaarheid, robuustheid, de
mogelijkheid om niet-lineaire materialen te modelleren, breedband data-output,
behoud van lading en energie, enzovoort. De FDTD-methode is dan ook de pre-
ferentiële methode om multifysische problemen te modelleren. Als het echter op
multischaalproblemen aankomt, dan is de achilleshiel van de methode de ruimte-
lijke afhankelijkheid van de tijdstap, welbekend als de Courant stabiliteitslimiet. In
ruwe benadering komt het er op neer dat een lokale roosterverfijning een globaal
doorwegend effect heeft op de rekentijd. Indien de kleinste celdimensie uit het
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rooster met een factor r verfijnd wordt, dan zal de totale rekentijd met minstens
een factor r toenemen. Dit nadeel kan vermeden worden door over te stappen
op impliciete tijdsintegratietechnieken die niet gebonden zijn aan een stabiliteits-
criterium en die dus toelaten om het aantal iteraties in multischaalproblemen te
reduceren. Dit gaat wel gepaard met een toename van de rekencomplexiteit bij
iedere tijdstap.

Hierboven zijn al een aantal, voor dit proefschrift belangrijke, aspecten opgesomd:
lokale roosterverfijning, impliciete methodes en stabiliteit. De meeste nieuwe on-
derzoeksbijdragen in dit proefschrift situeren zich binnen deze drie domeinen. Lo-
kale roosterverfijning wordt gerealiseerd door het invoeren van niet-uniforme en
geneste roosters. Het nesten van roosters is zeer delicaat zowel met betrekking
tot de numerieke stabiliteit als met betrekking tot de nauwkeurigheid. Dit is te
wijten aan het feit dat de hoeken en randoppervlakken van de interface tussen
grof en fijn rooster vaak bronnen zijn van valse reflecties en valse ladingsopsta-
pelingen. Het verbeteren van geneste roosters is reeds gedurende meer dan een
kwarteeuw één van de meest uitdagende takken van het FDTD-onderzoek. Het
“per cel” nesten van roosters dat in Hoofdstuk 5 voorgesteld wordt, is gebaseerd
op goedgeargumenteerde fysische inzichten. Dit leidt tot de gezochte nauwkeurig-
heidsverbetering t.o.v. gekende technieken. Bovendien is de methode zeer flexibel
en bijgevolg bruikbaar voor adaptieve roosterverfijning.

Impliciete methodes worden in Hoofdstuk 4 besproken als een valabele manier
om de ruimtediscretisatie lokaal los te koppelen van de Courantlimiet. Dit houdt
meteen in dat numerieke stabiliteit ook in dit hoofdstuk een belangrijke rol speelt.
Om de efficiëntie van de voorgestelde impliciete technieken te verbeteren, wor-
den deze technieken enkel daar waar nodig in het rooster toegepast. Bovendien
worden ze ook anisotroop toegepast, t.t.z. enkel volgens de richting(en) die rele-
vant zijn, bijvoorbeeld loodrecht op een gelaagd medium. Op die manier wordt
het beste van twee werelden gecombineerd: “goedkope” expliciete berekeningen
in het grof rooster en “dure” impliciete berekeningen in de fijne roosters om er
voor te zorgen dat de tijdstap voldoende groot kan gekozen worden. Drie derge-
lijke hybride impliciete-expliciete (HIE) methodes werden ontwikkeld en geanaly-
seerd: de Newmark-β , de Crank-Nicolson en de haasje-over alternerende-richting
FDTD-methode.

Daarnaast is een belangrijk deel van dit doctoraat gewijd aan de hybridizatie van
de conventionele expliciete FDTD-methode en de volledig samen-gelokalizeerde
impliciete FDTD-methode (Hoofdstuk 6). Deze methode heeft een samenvallende
ruimtetijddiscretisatie voor de zes veldcomponenten, heeft geen bovenlimiet voor
de tijdstap en wordt gekenmerkt door een betere accuraatheid bij niet-uniforme
roosters. Dergelijke samen-gelokalizeerde methodes zijn ook bijzonder geschikt
voor de modellering van media beschreven door meer ingewikkelde constitutieve
wetmatigheden zoals bijvoorbeeld anisotrope media. Bovendien wordt in Hoofd-
stuk 7 een efficiëntere unidirectioneel samen-gelokalizeerde HIE-methode in drie
dimensies voorgesteld, die dan ook toegepast wordt op tweedimensionale proble-
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men op een geneste wijze. Het bleek daarbij noodzakelijk om over een absorbe-
rende randvoorwaarde, de zogenaamde perfect aangepaste laag (PML), te beschik-
ken. Deze PML wordt in Hoofdstuk 7 besproken samen met een hulpvergelijking
voor dispersieve Drude materialen, noodzakelijk voor het modelleren van grafeen
in het microgolf- en terahertz-bereik.

In dit doctoraatsonderzoek is veel aandacht besteed aan de rigoureuze stabiliteits-
analyse van elk van de voorgestelde technieken. Uitgaande van de numerieke
stabiliteitsproblemen eigen aan FDTD-technieken en van de gewenste efficiëntie-
winst voor multischaalproblemen, werd bij het onderzoek gaandeweg meer en
meer het “hou het eenvoudig” principe toegepast. Van zodra de dimensies van de
matrices slecht schalen met het aantal onbekenden of indien de geheugenorgani-
satie te complex wordt, heeft het geen zin meer tijd aan de ontwikkeling van een
vooropgestelde, nieuwe methode te besteden. Inderdaad, één van de belangrijk-
ste troeven van de FDTD-methode is haar conceptuele en aritmetische eenvoud
die aan de basis ligt van een aantal, hierboven reeds opgesomde, aantrekkelijke
eigenschappen. Verder is gebleken dat eindige differenties op zichzelf niet volstaan
om het effect van roosteranomalieën, zoals geneste roosters, te begrijpen. Bijge-
volg werden in het onderzoek en in dit proefschrift veel inspanningen geleverd
om de eindigedifferentiemethodes te complementeren met eindige-integratie- en
eindige-elementenanalyses. Het belang van deze technieken is dubbel: enerzijds
zijn ze toepasbaar op een willekeurig roostertype; anderzijds incorporeren ze ook
de differentiaalgeometrische principes waaraan de vergelijkingen van Maxwell vol-
doen. Dit laatste heeft dan weer tot gevolg dat alle fysische behoudswetten ook
na discretisatie gerespecteerd blijven.

Samenvattend kan gesteld worden dat de technieken die in dit proefschrift aan bod
komen tot doel hebben FDTD-simulaties van multischaalproblemen te versnellen
door het aantal ruimtelijke variabelen te reduceren mits het behoud van het oor-
spronkelijk aantal tijditeraties. Dat gereduceerde aantal variabelen levert dan de
extra computationele capaciteit op om, o.a., het huideffect in geleiders met eindige
geleidbaarheid correct te modelleren door middel van volumediscretisatie i.p.v. de
vaak gebruikte, maar benaderende oppervlakte-impedantierandvoorwaarden of
randvoorwaarden gebaseerd op impedantienetwerkbenaderingen.





Summary

Computer-aided design (CAD) and computational electromagnetic (CEM) tools al-
low electrical engineers to validate and optimize their designs at an early stage in
the development process, minimizing the overall costs. They have become indis-
pensable in virtually every industry that produces or closely deals with electrical
components. The everlasting urge for more compact technology with more func-
tionality, together with the need for higher data rates and high-frequency signals
with more bandwidth, forces CEM software to reinvent itself continuously such
that these complex configurations can still be simulated in a reasonable time span
retaining sufficient accuracy.

As electronic devices have become small compared to the wavelength, the wave
behavior of the current and voltage signals needs to be taken into account by ded-
icated software, the so-called full-wave solvers, which compute the field distribu-
tion starting from Maxwell’s equations without quasi-static assumptions. One of
the prevalent full-wave solutions is provided by the finite-difference time-domain
(FDTD) method, which discretizes the four dimensions of spacetime on a staggered
cubic lattice and approximates the derivatives occurring in Maxwell’s equations by
central differences as to render a marching-on-in-time scheme where electric and
magnetic fields are alternately updated. The present-day challenges of full-wave
solvers, and the FDTD method in particular, are focused on multiscale and mul-
tiphysics problems. Indeed, the sustained downscaling of transistors and other
components have made the chip-package cosimulation in essence a complex prob-
lem where the minimum feature size is likely to differ from the package dimensions
by a factor in the order of magnitude of millions. Besides, the effects from heating,
charge dynamics and quantum tunneling, to name a few, are no longer negligible
at the present-day small scales and small pitches.

The FDTD method has many favorable properties such as arithmetic simplicity,
linear complexity, massive parallelizability, robustness, broadband output genera-
tion, nonlinear material modeling capability, conservation of discrete charge and
energy, etcetera. For multiphysics problems, FDTD is undoubtedly the best suited
approach. However, when it comes to the modeling of multiscale geometries, its
Achilles’ heel is its spatial dependency of the time step, known as the Courant sta-
bility limit. Roughly speaking, it implies that local refinements of the grid have a
global effect on the CPU time because they invoke a larger number of time itera-
tions, i.e., if the smallest cell edge occurring in the grid is refined by a factor r, the
CPU time will rise by at least a factor r. This drawback can be circumvented by
means of implicit time integration techniques that are not bounded to a stability
criterion and, hence, are able to reduce the number of time iterations in multiscale
problems, but at the expense of more complex operations per time step.



xii Summary

In the above paragraph, several important aspects of this dissertation are already
put into perspective: local refinement, implicit methods and stability. The novel
contributions of this doctoral thesis are related to each of these domains. The
first one, local refinement of the spatial grid, is realized by means of nonuniform
gridding and subgridding. The latter is a delicate operation, in particular with
regard to the numerical stability, but also with respect to the accuracy because the
edges and corners of the interface between main grid and subgrid are a common
source of spurious reflections and spurious charges. As such, subgridding has been
a compelling branch of FDTD research during the past quarter century. The cell-
by-cell subgridding method proposed in Chapter 5 of this dissertation has a well-
argumented physical backbone, resulting in the desired accuracy boost, and shows
the level of flexibility needed for adaptive mesh refinement.

The second aspect, implicit methods, is discussed in Chapter 4 as a viable way to
locally decouple the spatial discretization from Courant’s time step limit. Conse-
quently, the third aspect, namely the numerical stability, readily comes into play
in this chapter as well. In order to improve the efficiency of the proposed im-
plicit techniques, they are only applied locally, there where needed, as well as
anisotropically, along the preferred dimension(s). Hence, we combine “the best of
both worlds”: cheap explicit computations in the coarse part of the grid and ex-
pensive implicit computations in the dense part as to be able to tune the time step
to our needs. Three such hybrid implicit-explicit (HIE) methods were developed
and analysed: the Newmark-β , the Crank-Nicolson and the leapfrog alternating-
direction HIE-FDTD method.

Furthermore, an important part of this doctoral research has been devoted to
a fourth domain: the hybridization of the conventional explicit FDTD scheme
with the fully-collocated implicit (FCI) FDTD method, which has no time step up-
per bound and features improved accuracy for nonuniform gridding (Chapter 6).
Collocated methods are attractive to model media exhibiting complex constitu-
tive relations, e.g. anisotropic media. Besides, a more efficient unidirectionally-
collocated hybrid implicit-explicit (UCHIE) FDTD method is developed in 3-D and
hybridized with the conventional FDTD method in 2-D (Chapter 7). The UCHIE-
FDTD method is extended with a uniaxial perfectly matched layer as to absorb
outgoing waves in open-space simulations and with an auxiliary differential equa-
tion to model dispersive Drude media, such as graphene in the microwave and
terahertz regime.

Throughout this doctoral research, much attention has been devoted to rigorous
stability analysis for each of the proposed contributions. Partially because of the
numerical stability issues that are typical for the FDTD method and partially be-
cause of the desired efficiency boost with regard to multiscale problems, the main
thought throughout this doctoral research has become “keep it simple”: once the
occurring matrices do not scale well with the number of unknowns or the mem-
ory organization gets too complicated, the idea is aborted. After all, one of the
main assets of the FDTD method is its conceptual and arithmetic simplicity, which
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lies at the root of other strongly appreciated properties mentioned earlier. Also,
since finite differences are often not sufficient to understand the behavior of grid
anomalies such as subgridding, much effort has been put into finite-integration
and finite-element analysis. Their main asset, apart from being applicable to any
type of grid, is that they inherently comply to the differential-geometric princi-
ples that underpin Maxwell’s equations, such that important physical conservation
properties are preserved on the discrete level.

In summary, the novel techniques proposed in this dissertation aim to speed up
multiscale FDTD simulations by reducing the number of spatial variables and, at
the same time, avoid oversampling in time due to the Courant stability limit. This
leverages extra computational capacity, which is then, for example, exploited to
resolve the skin depth of thin conductive layers with finite conductivity by means
of a standard volume discretization instead of a less accurate surface impedance
or impedance network boundary condition.
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NOVEL FINITE-DIFFERENCE TIME-DOMAIN TECHNIQUES

TO MODEL MULTISCALE ELECTROMAGNETIC PROBLEMS





PART I
Introductory Chapters





1
Introduction

“A state-of-the-art calculation requires 100 hours of CPU time

on the state-of-the-art computer, independent of the decade.”

Edward Teller

1.1 Background and Motivation

Computer-aided design (CAD) and computational electromagnetic (CEM) tools al-
low electrical engineers to validate and optimize their designs at an early stage in
the development process, minimizing the overall costs. They have become indis-
pensable in virtually every industry that produces or closely deals with electrical
components. The everlasting urge for more compact technology with more func-
tionality, which establishes itself as Moore’s “the transistor count doubles every
two years” law, together with the need for higher data rates and high-frequency
signals with more bandwidth, forces CEM software to reinvent itself continuously
such that these complex configurations can still be simulated in a reasonable time
span retaining sufficient accuracy.

For example, the Intel Core i7-8700K processor, which has recently been launched
in October 2017 [1], uses tri-gate transistors with 8 nm-wide fins that are sepa-
rated 42 nm from each other (Fig. 1.1). Billions of these transistors are placed
inside an electronic package measuring 37.5 mm× 37.5 mm× 4.4 mm. Since the
processor operates at a base frequency of 3.7 GHz, corresponding to a vacuum
wavelength of 81 mm, the package cannot be considered electrically small any-
more, such that the wave propagation happening inside it has to be taken into
account by dedicated software. This cannot be achieved by the traditional circuit
simulators, which essentially apply Kirchoff’s voltage and current laws, neither by
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Figure 1.1: Intel’s Core i7-8700K processor (left) and tri-gate transistors (right) [1].

transmission line theory. Ideally, the electromagnetic interactions should be de-
rived from first principles, that is, directly from Maxwell’s equations. There exists
a multitude of numerical techniques that are able to compute the electromagnetic
fields starting from Maxwell’s equations. They all fall under the umbrella of full-

wave simulators. One of them, the finite-difference time-domain (FDTD) method,
which essentially approximates the continuous derivatives occurring in the time-
domain formulation of Maxwell’s curl equations by discrete differences, is the sub-
ject of this dissertation.

Returning to the example of the Intel processor, it should be pointed out that the
ratio between the smallest dimension of the fins and the largest dimension of the
package is about 1 : 5 000000. In other words, the chip-package problem is multi-

scale, which poses a huge burden on full-wave simulations and the FDTD method in
particular. Also, due to the high transistor density, the heat produced by switch op-
erations causes a considerable amount of mechanical stress as the occurring mate-
rials all have different expansion coefficients. This is why, over the last decade, the
performance of processors is mainly improved by increasing the number of cores
in one processor, rather than increasing the clock frequency. Moreover, due to the
downscaling of transistors, the gate length and oxide thickness merely comprise a
countable number of atoms, such that quantum tunneling effects come into play.
Hence, Intel deals with what is typically called a multiphysics problem: Maxwell’s
theory of electromagnetics should be coupled with other physics domains such as
thermodynamics, classical mechanics, quantum mechanics, and so on.

Not the transitor switching speed, but the signal delay and distortion introduced
by the metal interconnections between electrical components forms the main per-
formance bottleneck of present integrated circuits (IC). To mitigate this, modern
ICs are stacked above each other along the third dimension (Fig. 1.2). One of the
most promising 3-D integration technologies are the through-silicon via (TSV) in-
terconnections between two dies. Despite their potential to drastically reduce the
interconnection path length, they require a whole new manufacturing process and
entail numerous unprecendented effects, such as the metal-oxide-semiconductor
capacitance, that are likely to result in signal and power integrity problems and,
hence, require careful numerical modeling. Since the TSVs, which have a diameter
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Figure 1.2: 3-D integration example (left) [2] and cross section of a silicon interposer with
TSVs (right) [3].

in the range 2-20 µm and a length of 10-100 µm, are orders of magnitude smaller
than the surrounding electronic package but orders of magnitude larger than the
planar interconnects, this again poses a complex multiscale problem. Moreover,
the desired level of accuracy requires the semiconductor charge dynamics inside
the silicon to be taken into account, which makes this problem again multiphysics
as well.

Although CEM has a long tradition that harks back to World War II, the continuous
innovation in the semiconductor industry keeps challenging software developers
to make their code more accurate and more efficient, with the current emphasis
being on multiscale and multiphysics problems. In fact, this is a vicious circle: CEM
software is needed to develop devices with more computational power, which are
in turn needed to perform more complex CEM simulations.

1.2 Contributions

In this dissertation, multiple efficiency and accuracy improvements with regard to
multiscale problems are added to the conventional finite-difference time-domain
method:

• reduction of grid samples by means of nonuniform gridding and subgridding

• reduction of time samples by means of hybrid implicit-explicit methods

• better geometrical modeling with a (partially) collocated grid

Then, for example, the reduced number of unknowns leverages extra computa-
tional capacity, which is exploited to resolve the skin depth of good conductors
by means of a standard volume discretization instead of a less accurate surface
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impedance or impedance network boundary condition. Much effort has been de-
voted to rigorous stability proofs for each of the proposed improvements. Because
of the numerical stability issues that are typical for the FDTD method and because
of the desired efficiency boost, the main thought throughout this doctoral research
has become “keep it simple”: once the occurring matrices do not scale well with
the number of unknowns or the memory organization gets too complicated, the
idea is aborted. After all, one of the main assets of the FDTD method is its concep-
tual and arithmetic simplicity, which lies at the root of other strongly appreciated
properties such as linear computational complexity and massive parallelism.

1.3 Outline

Part I of this manuscript is meant to introduce the reader to the basics of theoretical
and computational electromagnetics (Chapter 2) and the FDTD method in partic-
ular (Chapter 3). The latter discusses, amongst others, the equivalence of finite
differences, finite integrations and finite elements on cubic lattices, which will be
extensively utilized in Part II of this dissertation, where the new contributions are
presented, one at a time. Part II (Chapters 4-7) is based on the author’s publica-
tions in international journals and conference proceedings. Chapter 4 presents a
theoretical assessment of the numerical stability of nonuniform gridding in com-
bination with different types of hybrid implicit-explicit time integrations. Next,
Chapter 5 proposes an elegant and flexible subgridding method based on finite-
element and finite-integration insights, applied to a 3-D rectangular waveguide
example with a ridge discontinuity. In Chapter 6, the finite-element analysis of
the fully-collocated implicit FDTD method described in [4], [5] is reconsidered,
and the FCI-FDTD method is applied to a 2-D anisotropic slab example. In Chap-
ter 7, the novel unidirectionally-collocated hybrid implicit-explicit FDTD method
is proposed, which combines the advantages of staggered explicit updates and col-
located implicit updates to gain the best possible trade-off between accuracy and
effciency. Also, a 2-D subgridding version of the UCHIE-FDTD method is put for-
ward. This UCHIE-FDTD method is tested on several examples such as a thin con-
ductive layer, a graphene sheet, a metal grating far-field scattering problem, and a
microstrip line. In Part III, the author’s final remarks and conclusions are listed as
well as a comparative overview of the proposed multiscale techniques and some
prospects for possible future research.
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2
Maxwell’s Equations

and Their Numerical Solution

“Differential forms illuminate electromagnetic theory,

and electromagnetic theory illuminates differential forms.”

Misner, Thorne and Wheeler

2.1 Maxwell’s equations

In 1865, the Scottish scientist James Clerk Maxwell unified the theory of electricity
and magnetism under a set of twenty quaternion equations, which were later, in
1881, simplified by Oliver Heaviside to the four vector equations that are nowa-
days most often studied and used by physicists and engineers. Maxwell’s work
got experimentally validated and acknowledged after his death: Heinrich Hertz
demonstrated remote induction in 1888, Nikola Tesla and Guglielmo Marconi set
up wireless transmission links in 1893 and 1897 respectively. With the advent of
Albert Einstein’s special relativity in 1905, Maxwell’s equations were shown to be
relativistically invariant, and the speed of electromagnetic waves in vacuum was
proclaimed to be the universal upper speed limit. Moreover, Paul Dirac’s work on
quantum electrodynamics (QED) in 1927 made it clear that Maxwell’s equations
emerge from quantum mechanics in a smooth and consistent manner. So far, QED
is the only fundamental theory that is valid in both the relativistic and the quan-
tum regime, and even in the overlap of both regimes. The discrepancy between the
classical field theory of Maxwell and QED is only significant to the electrical engi-
neer for a few very advanced problems, e.g. quantum computing. Needless to say
that, over the last 150 years, Maxwell’s equations have affected a large number of
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scientific technologies, and that they will keep on influencing the next generations
of technology. [1]

2.1.1 Time domain

The basic equations describing electromagnetic phenomena are the two curl equa-
tions

∇× E(r , t) = −∂t B(r , t) (2.1)

∇×H(r , t) = ∂t D(r , t) + J(r , t) , (2.2)

which are typically named after Michael Faraday and André-Marie Ampère respec-
tively. Here, E and H are the electric and magnetic field intensities, D and B are
the electric and magnetic flux densities, and J is the electric current density. Taking
the divergence of both sides of the curl equations, yields the so-called divergence
equations

∇ · B(r , t) = 0 (2.3)

∇ · D(r , t) = ρ(r , t) , (2.4)

complemented with the continuity equation

∂tρ(r , t) +∇ · J(r , t) = 0 . (2.5)

Here, ρ denotes the electric charge density. (2.4) is often named after Carl Friedrich
Gauss. In the derivation of the divergence equations, it was silently assumed that
the occurring time integral does not introduce a constant or, equivalently, that
(2.3)–(2.4) hold at a particular time instance. The set of four Maxwell equations
(2.1)–(2.4) is closed by the constitutive relations

B(r , t) = µ(r )H(r , t) (2.6)

D(r , t) = ǫ(r )E(r , t) , (2.7)

where µ and ǫ denote the possibly inhomogeneous permeability and permittivity
of the medium. They define the phase velocity and wave impedance

c(r ) = 1/
Æ

ǫ(r )µ(r ) (2.8)

Z(r ) =
Æ

µ(r )/ǫ(r ) . (2.9)

The current term in (2.2) may have different contributions. Besides the external
current sources J ex t that excite the initial-boundary-value problem, a typical other
contribution is the conduction current

Jc(r , t) = σ(r )E(r , t) , (2.10)

which represents the Ohmic losses inside a conductor with conductivity σ. The
constitutive relations (2.6), (2.7) and (2.10) are a simplification of the complex
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field-matter interaction, which actually should take into account the coupling be-
tween Maxwell’s equations and other partial differential equations originating from
charge dynamics, mechanics, quantum mechanics, thermodynamics, and so on.
Instead, they encompass simple linear relations between the flux densities and
the field intensities that result from well-grounded physical assumptions and that
are fitted to measured data. Although more complex constitutive relations exist
describing e.g. (bi)anisotropic, dispersive or nonlinear media, (2.6)–(2.10) suffice
for most problems that are tackled in this dissertation. It should also be mentioned
that often magnetic current sources and charges are added to Maxwell’s equations
to introduce extra symmetry and to make numerical solutions more convenient.
However, the physical existence of these quantities has not been observed.

2.1.2 Frequency domain

In the frequency domain or sine regime, which is achieved by application of the
Fourier transform with respect to time, Maxwell’s equations (2.1)–(2.4) reduce to

∇× E(r ,ω) = −  ωB(r ,ω) (2.11)

∇×H(r ,ω) =  ωD(r ,ω) + J(r ,ω) (2.12)

∇ · B(r ,ω) = 0 (2.13)

∇ · D(r ,ω) = ρ(r ,ω) , (2.14)

with angular frequency ω and complex-valued frequency-domain variables. It is
often preferred to search analytical or numerical solutions for Maxwell’s equations
in the frequency domain, because the problem is now essentially 3-D instead of
4-D and, consequently, easier to solve.

2.1.3 Wave equation

The first-order Maxwell equations (2.1)–(2.2), which, after substitution of the con-
stitutive relations (2.6)–(2.10), depend on both the electric and magnetic field,
can be reduced to a single second-order differential equation solely depending on
one field quantity. Thereto, we take the curl of (2.1) and substitute (2.2) in the
right-hand side, which yields the electric-field wave equation

�

∇×µ(r )−1∇× +σ(r )∂t + ǫ(r )∂
2
t

�

E(r , t) = −∂t J ex t(r , t) . (2.15)

A similar expression can be derived for the magnetic field.

2.1.4 Integral formulation

Until now, we focused on the differential-equation formulation of Maxwell’s equa-
tions. An alternative formulation, which makes Maxwell’s equations easier to grasp
through intuitive visualizations, is deduced by taking the integral of both sides of
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the curl equations (2.1)–(2.2) over an arbitrary surface S and the integral of both
sides of the divergence equations (2.3)–(2.4) over an arbitrary volume V . The
resulting expressions are then simplified by means of Stoke’s theorem

∫

S

�

∇× A
�

· ds =

∫

∂ S

A · dl , (2.16)

where the infinitesimal segment dl runs over the contour ∂ S according to the right-
hand-rule with respect to the vector ds normal to the surface S, and the divergence
theorem

∫

V

�

∇ · A
�

dv =

∫

∂ V

A · ds , (2.17)

where ds is the infinitesimal vector normal to the closed surface ∂ V and point-
ing outwards with respect to the enclosed volume V . The resulting time-domain
integral formulation of Maxwell’s equations (2.1)–(2.4) is

∫

∂ S

E(r , t) · dl = −∂t

∫

S

B(r , t) · ds (2.18)

∫

∂ S

H(r , t) · dl = ∂t

∫

S

D(r , t) · ds +

∫

S

J(r , t) · ds (2.19)

∫

∂ V

B(r , t) · ds = 0 (2.20)

∫

∂ V

D(r , t) · ds =

∫

V

ρ(r , t)dv . (2.21)

2.1.5 Boundary conditions

By applying (2.18)–(2.21) to an infinitesimally small contour or closed surface
crossing the boundary between two media, it is readily found that the tangential
components of the electric field and the normal component of the magnetic flux
density need to be continuous, whereas the tangential components of the magnetic
field and the normal component of the electric flux density are allowed to exhibit
jumps ascribed to surface currents and surface charges respectively. For a perfect
electric conductor (PEC), it can be shown in a similar way that the tangential elec-
tric field and normal magnetic flux density need to be zero at the PEC’s surface.
For a perfect magnetic conductor (PMC), the tangential magnetic field and normal
electric flux density vanish.
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2.1.6 Differential forms

Vector calculus has limited capabilities as it allows only two types of quantities:
scalars and vectors. To see why the notion of vectors is too restrictive, notice,
for example, that the reflection transformation with respect to the origin, i.e. the
sign change of the coordinate axes, flips the orientation of vectors but leaves the
orientation of the cross product of two vectors unaltered, such that they actually
constitute two very similar yet distinct vector classes, respectively called polar and
axial vectors. In 1945, the French mathematician Élie Cartan understood that the
language of vector calculus is too concise to uncover the distinct behavior of each of
the electromagnetic quantities occurring in Maxwell’s equations and, so, he refor-
mulated them in terms of differential forms. Indeed, in 3-D, the exterior calculus of
differential forms allows four types of quantities: zero-forms (scalars), one-forms
(polar vectors), two-forms (axial vectors), and three-forms (pseudoscalars). Al-
though tensor calculus provides an even more general picture of the mathematics
and symmetry under the hood of Maxwell’s equations, exterior calculus suffices
for our engineering purposes. The remainder of this section is mainly based on
[2]–[10].

(3+ 1)-D representation

In the (3+ 1)-D representation, that is, if time is not treated the same way as the
three spatial dimensions, Maxwell’s equations in terms of differential forms are
given by

dE = −∂tB (2.22)

dH = ∂tD +J (2.23)

dB = 0 (2.24)

dD = ̺ (2.25)

B = µ ⋆H (2.26)

D = ǫ ⋆ E (2.27)

J = σ ⋆ E . (2.28)

Here, the field intensities are one-forms, the flux densities and current densities
are two-forms, and the electric charge density is a three-form. In Cartesian coor-
dinates, they are given by

E = Ex dx + Ey dy + Ez dz (2.29)

H = Hx dx + H y dy + Hz dz (2.30)

D = Dx dy ∧ dz + Dy dz ∧ dx + Dz dx ∧ dy (2.31)

B = Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy (2.32)

J = Jx dy ∧ dz + Jy dz ∧ dx + Jz dx ∧ dy (2.33)

̺ = ρ dx ∧ dy ∧ dz , (2.34)
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where the exterior product ‘∧’ is the distributive and anticommutative operator,
which, applied between two one- or two-forms, resembles1 the cross product and
dot product from vector calculus respectively. Note that the anticommutativity of
the exterior product implies that dx ∧ dx = 0, such that, in 3-D space, any k-form
of degree k > 3 is zero. The exterior derivative is defined as

d=
�

∂x dx + ∂y dy + ∂z dz
�

∧ . (2.35)

It is the exterior-calculus analog of the gradient, curl and divergence operators
depending on whether its argument is a zero-, one- or two-form respectively. From
(2.22)–(2.25), it is observed that the exterior derivative maps k-forms to (k + 1)-
forms. In (2.26)–(2.28), the tensors µ, ǫ, σ account for the material properties,
whereas the Hodge star operator ⋆ takes care of the metric and maps k-forms to
(n − k)-forms, with n the number of dimensions, here n = 3. The action of the
Hodge star operator on differential forms of different degrees is

⋆dx = dy ∧ dz ⋆dy ∧ dz = dx (2.36)

⋆dy = dz ∧ dx ⋆dz ∧ dx = dy (2.37)

⋆dz = dx ∧ dy ⋆dx ∧ dy = dz (2.38)

⋆1= dx ∧ dy ∧ dz ⋆dx ∧ dy ∧ dz = 1 , (2.39)

with, obviously,

⋆ ⋆= 1 . (2.40)

Differential forms have a clear-cut graphical representation: αdx can be visualized
by α surfaces normal to the x-axis, whereas β dx∧dy corresponds to the superpo-
sition of two sets of surfaces yielding β tubes along the z-axis, and γdx ∧ dy ∧ dz

is the superposition of three sets of surfaces giving rise to γ boxes. For example,
Ampère’s law (2.23) is elegantly represented by two-form J tubes giving rise to
one-formH surfaces (Fig. 2.1). This representation is in agreement with the fact
that one-forms should be integrable over a curve and two-forms over a surface:
one can count the number of surfaces pierced by a curve and the number of tubes
cut by a surface.

The differential forms needed to describe all quantities occurring in Maxwell’s
equations are elegantly summarized by the Tonti diagram [10], which consists

1Strictly speaking, the cross product is the superposition of the exterior product and the Hodge star
operator. Thus, the exterior product could be interpreted as a metric-free generalization of the cross
product.
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Figure 2.1: A graphical representation of Ampère’s law in terms of differential forms: tubes
(two-forms) of current generate surfaces (one-forms) of magnetic field intensity. The cur-
rent flows along the tubes, whereas the field intensity is normal to the surfaces, giving rise
to a circulating magnetic field that is only zero at the location of the current source. [3]

of two de Rham complexes connected by the Hodge star operators:

0-form
ϕ

d−→
∇

1-form
H

d−→
∇×

2-form
D ,J

d−→
∇·

3-form
̺

µ⋆ ↓ ↑ ǫ⋆ , σ⋆ (2.41)

3-form
0

d←−
∇·

2-form
B

d←−
∇×

1-form
E

d←−
∇

0-form
φ

A de Rham complex has the exact sequence property: each differential operator
maps its domain into the kernel of the next differential operator, i.e.

∇×∇ = 0 (2.42)

∇ ·∇×= 0 . (2.43)

In exterior calculus, this corresponds to the nilpotency of the exterior derivative

dd= 0 . (2.44)

The exact sequency property is crucial with regard to physical conservation laws.
Depending on what is more important, conservation of electric charge or mag-
netic flux, the top or bottom complex is chosen for the actual implementation in
electromagnetic simulation software.

As a last remark, in terms of differential forms, (2.16) and (2.17) are two instances
of the same generalized Stokes’ theorem, namely

∫

M

dα=

∮

∂M

α , (2.45)
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where M is a general (k+1)-dimensional manifold, ∂M is its k-dimensional bound-
ary, d is the exterior derivative, and α is a k-form. Integration plays a central role
in exterior calculus: the integral of a k-form over a k-dimensional manifold yields
a scalar. These scalars are the true measurable quantities. The fields themselves
are not.

4-D representation

In the 4-D Minkowski spacetime representation, Maxwell’s equations are even
more compact:

d4F = 0 (2.46)

d4G = J4 (2.47)

G = ⋆4F , (2.48)

with the spacetime exterior derivative defined as

d4 =
�

∂x dx + ∂y dy + ∂z dz + ∂t dt
�

∧ , (2.49)

and with Faraday and Maxwell two-forms and four-current three-form given by

F =B + E ∧ dt (2.50)

G = D −H ∧ dt (2.51)

J4 = ̺ −J ∧ dt . (2.52)

The continuity relation (2.5) is translated to

d4J4 = 0 . (2.53)

Analogously to vector calculus, (2.53) is redundant because of (2.47) in combina-
tion with the exact sequence property d4d4 = 0. The 4-D Hodge star operator ⋆4

accounts for both the material and the metric. As dictated by special relativity,
the spacetime metric is not positive definite, such that ⋆4⋆4 = ±1 as opposed to
(2.40). More details about the 4-D Hodge star operator is out of the scope of this
short introduction. Although the level of abstraction is quite high, the two-forms
(2.50) and (2.51) contain valuable information about how a spacetime discretiza-
tion should look like.

Whitney forms and discrete exterior calculus

In this paragraph, it is briefly explained how to define differential forms on a dis-
crete grid. The idea to expand the electromagnetic quantities in basis functions
that are derived from differential forms, was first proposed by Alain Bossavit in
1988 [11]. In his work, he relied on a particular class of forms defined by Hassler
Whitney in 1957 [12]. The so-called Whitney elements were found to be a general-
ization of Jean-Claude Nédélec’s seminal edge and face elements [13]. The beauty
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of these basis functions is that they automatically satisfy the boundary conditions
listed in Section 2.1.5 and correctly discretize the kernel of the curl, whereas for-
mer nodal basis functions introduced spurious solutions.

From (2.45), it is observed that continuous k-forms are typically integrated over
k-dimensional manifolds, such that it makes common sense to assign zero-forms to
vertices, one-forms to edges, two-forms to faces, and three-forms to volumes2. A
dual grid is constructed, e.g. with a barycentric or circumcentric approach, and the
discrete k-forms are anchored to k-dimensional manifolds of the primary or dual
grid depending on which de Rham complex they belong to in the Tonti diagram
(2.41). The discrete Hodge star operator maps primary-grid k-forms to dual-grid
(n− k)-forms, and vice versa.

A well-explained derivation of the Whitney elements for simplicial meshes, start-
ing from barycentric coordinates for zero-forms and generalizing to higher-degree
forms, can be found in [8]. To the author’s knowledge, there does not exist a sim-
ilar derivation for cubic grids, although the Whitney forms on simplices can be
deduced from those on cubic grids by pinching vertices together in a continuous
manner.

In recent years, the direct full spacetime discretization of Maxwell’s equations
based on the differential forms outlined in paragraph 2.1.6 has been gaining popu-
larity under the buzzword “discrete exterior calculus” (DEC) [9]. Here, a simplicial
spacetime mesh is used in combination with the diagonal Hodge star operator

⋆ α= K(s)
| ⋆ s|

|s|
α , (2.54)

where α is a discrete k-form defined on the k-simplex s. ⋆α and ⋆s are the dual
(n−k)-form and the dual (n−k)-simplex respectively. |s| denotes the k-dimensional
volume of s and K(s) is the causality operator, which equals +1 if s is spacelike
and -1 otherwise. A simplex is said to be spacelike if all its points (x , y, z, t) satisfy
x2 + y2 + z2 > (c t)2, with c the phase velocity defined in (2.8).

2.2 Full-wave solvers

Roughly speaking, there are three main categories of full-wave modeling tech-
niques: boundary integrals, finite elements and finite differences. As shown in
Fig. 2.2, all of them have their own application domain, but no single one is a
panacea. Therefore, commercial software packages are often specialized in one of
these full-wave modeling techniques, but typically offer all three of them, mostly
even hybridized. For electrically very large objects such as ships and airplanes, a
fourth category of ray-tracing methods exists that encompasses the uniform theory
of diffraction (UTD), physical optics (PO) and geometrical optics (GO).

2In case of a 4-D spacetime lattice, four-forms could theoretically be assigned to hypervolumes,
but, in practice, there is no electromagnetic quantity corresponding to four-forms.
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Figure 2.2: Different electromagnetic simulation techniques offered by FEKO [14].

2.2.1 Boundary integrals

The boundary element method (BEM) discretizes only the boundary of scatter-
ing objects and computes the equivalent currents arising in the boundary-integral
equations by means of the method of moments (MoM) [15]. For electrically large
objects, the MoM is accelerated with the multilevel fast multipole method (MLFMM)
[16]. The salient advantage of the BEM is the discretization of a surface instead
of a volume, which heavily reduces the size of the MoM matrix. Also, there is
no need for a computationally expensive absorbing boundary condition to mimic
open space. But, as always, there is no free lunch: the MoM-matrix is dense and
becomes ill-conditioned for low frequencies as well as dense discretizations. Also,
the Green’s function, which is the kernel of the boundary integrals, is inflexible with
regard to complex media. Most often, the BEM is implemented in the frequency do-
main. This prohibits the modeling of transient phenomena as well as nonlinear or
active systems in which frequency is not conserved. There have been many investi-
gations in a time-domain analog [17]. However, besides the usual BEM drawbacks
mentioned earlier, the time-domain BEM suffers from poorly-understood stability
issues. One of the most rewarded commercial frequency-domain BEM software is
the Momentum solver delivered by Keysight Technologies.

2.2.2 Finite elements

The finite-element method (FEM) [18] tessellates the full 3-D domain of inter-
est with an unstructured mesh consisting of tetrahedral elements. The fields are
expanded in basis functions with local support anchored to the simplices belong-
ing to a particular element. A variational or weak formulation of the frequency-
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domain3 Maxwell equations is then solved by the Galerkin method, resulting in
large sparse matrices. The FEM is arguably the most mature full-wave modeling
technique with highly accurate solutions and adaptive meshes. However, it also is
the computationally most demanding method and, hence, it is only preferred if ac-
curacy is the top priority, as is for example the case for highly inhomogeneous and
geometrically complex structures. FEM solvers are usually equipped with efficient
frequency sweeps to generate broadband solutions, making them competitive with
time-domain methods. However, they cannot deal with nonlinear media as is often
needed to solve multiphysics problems. Also, they have troubles with multiscale
structures. The bestselling FEM software is HFSS delivered by Ansoft.

2.2.3 Finite differences

The finite-difference time-domain (FDTD) method was pioneered by Kane Yee
in 1966 [19] and popularized by Allen Taflove, who coined the term ‘FDTD’ in
1980 [20]. Basically, the FDTD method discretizes the full 3-D domain on a stag-
gered cubic grid and approximates the continuous derivatives occurring in the
time-domain Maxwell equations by discrete central differences. The algorithm
marches on in time, alternately updating the electric and magnetic fields in an
explicit manner, that is, without the need to invert a matrix. The FDTD method
outshines in terms of conceptual simplicity, which, on the one hand, makes it easy
to implement, and, on the other hand, makes it also computationally very effi-
cient owing to the absence of advanced linear algebra in its formulation, its linear
computational complexity, its well-structured memory, and its possibility to run
in parallel on a central processing unit (CPU) and/or a graphics processing unit
(GPU). Furthermore, being a time-domain method, broadband data can be gener-
ated with a single run, transient phenomena can be modeled, and nonlinear media
are treated naturally. Moreover, its stability is well understood to be guaranteed
for a spatially reciprocal discretization and a time step below the Courant limit.
Also, in contrast to some other time-domain methods, the FDTD method trans-
lates physical conservation laws correctly to the discrete level. At last, the FDTD
method is compatible with circuit simulators and it is relatively easy to extend to
multiphysics problems.

Probably the main drawback of the conventional FDTD method is the low level
of geometric flexibility due to its cubic grid. Several popular full-wave techniques
that are branched from the FDTD method tackle this problem, such as the finite
integration technique (FIT) [21], the finite-element time-domain (FETD) method
[22], the finite-volume time-domain (FVTD) method [23], and the discontinuous-
Galerkin time-domain (DGTD) method [24]. Also, the numerical dispersion error

3The FEM is most often formulated in the frequency domain, but there exists a time-domain coun-
terpart called the finite-element time-domain (FETD) method, which is taken up in Section 2.2.3 as
part of a series of time-domain techniques. Analogously, finite differences are almost exclusively ap-
plied in the time domain, but a so-called finite-difference frequency-domain (FDFD) method exists as
well and is, for example, used for the modal analysis that is required for wave port excitations in the
FDTD method.
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of the FDTD method can be reduced by means of higher-order approximations of
the derivatives, instead of the conventional central differences. However, these
higher-order schemes complicate the accurate modeling of material boundaries
[25], the most extreme example being the pseudo-spectral time-domain (PSTD)
method [26]. Finally, a third disadvantage of the conventional FDTD method is
that the Courant stability limit is in many cases too restrictive in terms of accuracy
such that, especially for multiscale problems, the fields are oversampled, lead-
ing to unnecessarily long computation times. This is countered by many different
implicit reformulations such as Crank-Nicolson (CN) [27], alternating-direction
implicit (ADI) [28] and locally one-dimensional (LOD) [29] FDTD methods. In
contrast to the FEM, the latter all yield (sparse) matrices that are well conditioned
by construction owing to the cubic grid.

The most prominent FDTD software is CST Microwave Studio, which has recently
been acquired by Dassault Systèmes.

For a well-written basic introduction to the FDTD method, the reader is referred to
[30]. More application-oriented notes on the FDTD method can be found in [31],
and more implementation details in [32]. The universally accepted standard book
about the FDTD method is [33].
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3
The Finite-Difference

Time-Domain Method

“Less is more.”

Felix De Laet

⋆ ⋆ ⋆

In this chapter, we will embark on an exciting journey into the discrete world of

finite differences, where less is more: less assumptions when solving Maxwell’s

equations result in more areas of application where the method is valid, less

degrees of approximation between the continuous derivatives and the discrete

differences yield more geometric flexibility, less far-reached modifications to the

standard algorithm yield better performance. After a short discussion on the

discretization of space and time with emphasis on important computational

aspects such as accuracy and efficiency in Sections 3.1 and 3.2, Maxwell’s curl

equations are cast into the framework of finite differences in Section 3.3, giving

rise to the FDTD update stencil as originally proposed by Kane Yee. Next, the

finite integration technique (FIT) and the finite-element time-domain (FETD)

method are demonstrated to be valid generalizations of the FDTD method. In

contrast to the conventional FDTD method, the latter are not bounded to reg-

ular cubic grids. As such, they provide valuable insights with respect to the

novel nonuniform gridding and subgridding techniques that will be proposed

in Part II of this dissertation. Section 3.4 summarizes the side effects of dis-

cretization, such as numerical dispersion and discrete-time stability. Many of

the complications associated to subgridding are highlighted. Finally, in Sec-

tion 3.5, we list the state-of-the-art subgridding methods and briefly reflect on

possible avenues of progress.
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3.1 Space discretization

The Yee cell, depicted in Fig. 3.1, is the elementary unit used to discretize the
3-D simulation domain. The different field components are staggered as to yield
second-order accuracy in space with minimal computational effort. It is the natural
discretization of the differential forms that underpin Maxwell’s equations: fields
(one-forms) are anchored to one-dimensional edges and flux densities (two-forms)
are anchored to two-dimensional faces, and the constitutive relations convert edge
quantities of the primary grid into face quantities of the dual grid and vice versa.
However, the Yee cell tessellation has some clear disadvantages:

• Any small deviation such as nonuniform gridding and subgridding forces
the Yee grid to become locally first-order accurate, albeit with second-order
supraconvergence [1], [2].

• The unbounded local error due to field singularities emerging near sharp
metallic edges and corners cannot be alleviated by supraconvergence [3], [4].

• The staggered nature requires the material constants to be averaged.

• The tangential-field continuity across (axis-aligned) boundaries of materials
exhibiting both electric and magnetic properties cannot be satisfied, again
due to the staggering [5, Sec. 3.7].

• The constitutive relations of (bi)anisotropic media are more naturally mod-
eled by a collocated grid [6]–[8].

Therefore, in this dissertation, we investigate the use of fully collocated and par-
tially collocated unit cells (Fig. 3.2). Although from a finite-element/differential-
form perspective nodal discretizations, such as the one in Fig. 3.2(a), are strongly
discouraged, the collocated FDTD scheme proposed in [7] exhibits enhanced accu-
racy thanks to a correct mixture of interpolation and differentiation operations to
evaluate Maxwell’s equations right in the middle between adjacent anchor points.
Similar arguments hold for the unidirectionally collocated cell shown in Fig. 3.2(b),
which projects the traditional Yee cell from Fig. 3.1 along one axis, here chosen to
be the x-axis, such that a layered discretization is retrieved. The proposed FDTD
scheme for the unidirectionally collocated cell preserves second-order accuracy in
the direction of collocation.

Now that we have defined the building blocks, we can assemble them into a grid.
Several ways to do this are clarified in the remainder of this section by discretizing a
2-D disc (Fig. 3.3). A first rudimentary discretization approach uses three invariant
spatial steps ∆x , ∆y and ∆z, one for each dimension. This corresponds to the
uniform grid with staircased boundary in Fig. 3.3(a).

A second straightforward approach allows the spatial steps to vary along their
respective axes, i.e. ∆x(x), ∆y(y) and ∆z(z). This so-called nonuniform grid,
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∆x

∆y

∆z

Figure 3.1: Primary (green) and dual (orange) Yee cell. The electric fields (triangle arrows)
and magnetic flux densities (square arrows) are discretized along the edges and faces re-
spectively of the primary grid. Equivalently, the magnetic fields (square arrows) and electric
flux densities (triangle arrows) are discretized along the edges and faces respectively of the
dual grid. Flux densities are coinciding with their associated fields. Red and blue markers
are staggered in time.

∆x

∆y

∆z

(a)

∆x

∆y

∆z

(b)

Figure 3.2: (a) Fully collocated cell with all electric and magnetic field components an-
chored to the vertices. (b) Unidirectionally collocated cell with electric field components
(triangle arrows) and magnetic field components (square arrows) collocated along the x-axis
but staggered along the y- and z-axis. Red and blue markers are staggered in time.



30 Chapter 3. The Finite-Difference Time-Domain Method

shown in Fig. 3.3(b), involves minimal changes to the uniform grid and its associ-
ated stability requirements, but allows much more geometrical flexibility. For the
traditional Yee scheme, the nonuniformities are locally first-order accurate, but
the global accuracy is still acceptable owing to second-order supraconvergence if
1) the dual-grid edges cross the centroids of the primary-grid faces and 2) two
adjacent steps do not differ by a factor larger than 1.5 [1], [3], [9].

A third approach, named subgridding, uses nested uniform grids, as is illustrated in
Fig. 3.3(c). This may seem straightforward at first sight, but deriving the physically
correct and numerically stable interpolation rules along the subgrid interface is
far from evident and has been a compelling FDTD research topic during the last
decades. Also, the reflection errors at the subgrid interface pose a larger issue than
the errors introduced by nonuniform grids.

A fourth approach discretizes the boundary exactly by means of a nonorthogonal
curvilinear grid (Fig. 3.3(d)), obtained by a coordinate transformation. However,
this may lead to very small and even singular cells, which is detrimental with re-
spect to the numerical stability of the traditional leapfrog time-stepping scheme.

A fifth category constitutes the so-called conformal techniques and subcell tech-
niques. Here, not the grid but the weights of the finite differences themselves are
adapted to the geometry by using the integral formulation of Maxwell’s equations.
This is a supplementary technique to reduce the staircasing error without chang-
ing the grid itself. As such, this category is kind of a cheater and Fig. 3.3(e) is an
idealization of the actual situation.

At last, a sixth approach does not use the earlier described cubic unit cells, but,
instead, appeals to tetrahedrons (or triangles in 2-D, such as in Fig. 3.3(f)). This
is called an unstructured grid and is typically used by the FIT, the FETD method,
the FVTD method and the DGTD method in regions that have complex geometrical
features.

3.2 Time discretization

Unless there are time-dependent media that require special treatment, there is no
reason not to choose standard uniformly spaced time samples. Analogously to the
spatial discretization, the time samples can be staggered (e.g. Yee-FDTD) or collo-
cated (e.g. CN-FDTD). The time discretization determines to a great extent the ef-
ficiency of the finite-difference scheme. Causal schemes, where new fields depend
on current and past fields, are explicit in the sense that they can be computed di-
rectly and do not require any kind of matrix inversion. On the contrary, non-causal
schemes are implicit: they require the simultaneous computation of multiple new
fields. Although, for finite-difference schemes, the resulting matrices are always
sparse and positive definite by construction, which permits a fast iterative solution
with a suitable preconditioner, implicit methods are always computationally more
demanding.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: The different types of gridding techniques applied to a circular object: (a)

uniform, (b) nonuniform, (c) subgridding, (d) nonorthogonal, (e) conformal, and (f) un-
structured. [4]

There is a good reason why sometimes implicit methods are preferred over ex-
plicit ones. If they are well constructed, they feature unconditional stability, which
means that the time step can be picked purely based on accuracy. Examples are
the Crank-Nicolson (CN), the alternating-direction implicit (ADI) and the locally-
one-dimensional (LOD) FDTD method. They are used if the working wavelength
is orders of magnitude larger than the smallest structure that needs to be resolved.
It is definitely not true that any implicit scheme is unconditionally stable! From
a digital-filtering perspective, unconditionally stable schemes act as a notch filter
that removes the Nyquist frequency. Not every non-causal time discretization has
this property. Also, there exist hybrid implicit-explicit (HIE) schemes that are “the
best of both worlds” if objects that are small in at least one but not all dimensions
need to be modeled. Fully implicit and hybrid implicit-explicit methods, as well as
the local application of each of them in combination with a fully explicit scheme,
are viable approaches for the efficient solution of multiscale problems. This is one
of the main tracks that will be addressed thoroughly in this dissertation.

For classical time discretizations, the time samples have a local support: only
neighboring time samples interact with each other. They adopt a so-called marching-
on-in-time (MOT) strategy: the algorithm iterates over time and updates the field
unknowns at each discrete time instance. In contrast, there exist finite-difference
methods that expand time in orthogonal polynomials spanning the full time inter-
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val of interest. These so-called marching-on-in-order (MOO) schemes iterate over
the order of the polynomials. Examples of orthogonal polynomials used to con-
struct MOO finite-difference schemes include Laguerre [10]–[12], Hermite [13]
and Chebyshev [14] polynomials. They give rise to implicit and unconditionally
stable MOO schemes with a sparse system matrix.

3.3 Yee’s finite-difference scheme

3.3.1 Finite differences

Yee’s original scheme [15] uses the staggered unit cell (Fig. 3.1) and approximates
all derivatives occurring in Maxwell’s curl equations by the central difference

(∂xφ)|i ≈
φ|i+ 1

2
−φ|i− 1

2

∆x
, (3.1)

where the index i denotes the evaluation of the function at x = i∆x . Upon sub-
stitution of the Taylor series expansions

φ|i+ 1
2
= φ|i +

∆x

2
(∂xφ)|i +

∆x2

8
(∂ 2

x
φ)|i +O(∆x3) (3.2)

φ|i− 1
2
= φ|i −

∆x

2
(∂xφ)|i +

∆x2

8
(∂ 2

x
φ)|i +O(∆x3) , (3.3)

the central difference operator (3.1) is found to be second-order accurate. In prac-
tice, this means that the error decreases quadratically with decreasing ∆x . FDTD
solvers typically perform several runs with increasing refinement until the error be-
tween consecutive solutions achieves a predefined tolerance. Therefore, quadratic
convergence is often stated to be the minimum acceptable rate. Finite-difference
schemes based on higher-order difference operators exist, but they impede the
accurate modeling of material boundaries and, consequenly, they should only be
applied to homogeneous problems.

If the difference operator (3.1) loses its central character, the quadratic terms in
the Taylor series expansions (3.2)–(3.3) no longer balance each other out, and
the operator becomes merely first-order accurate. As discussed in Section 3.1, this
happens amongst others in nonuniform grids and along the interfaces of subgrids,
but supraconvergence still yields second-order global convergence.

Not only the spatial but also the temporal derivatives are approximated by the cen-
tral difference (3.1). With electric and magnetic fields discretized in a staggered
fashion along the time axis, this gives rise to the explicit leapfrog update scheme,
where electric and magnetic fields are alternately updated.
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Update equations

We now apply Yee’s scheme to the curl equations (2.1)–(2.2) in the case of a
nonuniform spatial grid and in the absence of external sources. It is a silent conven-
tion in the FDTD community to use the indices {i, j, k, n} to denote the dimensions
{x , y, z, t}. Ampère’s law (2.2) gives rise to the electric-field update equations

Êx |
n+1
i, j,k = se

x
|i, j,k Êx |

n
i, j,k + ce
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|i, j,k
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Ĥz |
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n
i, j−1,k

�

.

whereas Faraday’s law (2.1) yields the magnetic-field update equations
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− Êz |
n+1
i+1, j,k + Êz |
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where we adopted the “implementation notation” instead of the conventional “half-
integer notation”1. Although the latter, used in (3.1), makes the staggering more
clear, the former is more compact and can be readily copied for implementation.
Also, the electric and magnetic field components are rescaled by the length of their
associated edges. In agreement with FIT terminology, we call these quantities grid
voltages. The electric and magnetic grid voltages are given by

Êx |i, j,k =∆x i Ex |i, j,k Ĥx |i, j,k =∆x⋆
i

Hx |i, j,k

Êy |i, j,k =∆y j Ey |i, j,k Ĥ y |i, j,k =∆y⋆
j

H y |i, j,k (3.6)

Êz |i, j,k =∆zk Ez |i, j,k Ĥz |i, j,k =∆z⋆
k

Hz |i, j,k ,

1The “half-integer notation” is easily retrieved by adding one half to the tangential space index of
the electric field and its coefficients as well as to the normal space indices of the magnetic field and its
coefficients, and by subtracting one half from the time index of the electric field.
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with the dual-grid steps (see Fig. 3.4)
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/2

∆y⋆
j
=
�

∆y j−1 +∆y j
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/2 .

This rescaling reduces the number of floating-point operations by one unit per
update equation. Using the time-average discretization of the conduction current,
the self-term coefficients in (3.4) are
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and the curl coefficients are
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whereas the curl coefficients belonging to (3.5) are
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.

Here, the material constants µd , ǫd and σd with d ∈ {x , y, z}, are properly aver-
aged over the cuboid volume covered by the associated field component, possibly
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xx i x i+1x i−1 x i+2

x⋆
i−1 x⋆

i
x⋆

i+1

∆x i−1 ∆x i ∆x i+1

∆x⋆
i

∆x⋆
i+1

Figure 3.4: Spatial indexing of the nodes and steps in primary and dual grid. The dual-grid
nodes are equidistant with respect to the nearest primary-grid nodes, i.e. x⋆

i
= (x i+ x i+1)/2.

The nodes and steps come in pairs (x i , ∆x⋆
i
) and (x⋆

i
, ∆x i).

by means of some conformal technique (recall Fig. 3.3(e)). Since the Yee scheme
preserves the exact sequence property (2.44) on the discrete level, Maxwell’s diver-
gence equations are automatically satisfied and the curl equations suffice to model
any electromagnetic problem as long as the source is charge-conserving. The most
basic FDTD code repeatedly performs the updates (3.4)–(3.5) with the inclusion
of boundary conditions and sources and with the extraction of the electromagnetic
quantities of interest, e.g., scattering parameters. Note that the electric and mag-
netic grid voltages are updated in-place such that the memory usage is propertional
to the number of cells but not to the number of time iterations.

Matrix notation

For a nonuniform grid composed of Nx × Ny × Nz primary cells and terminated
by PEC boundary conditions, the matrix-form update equation corresponding to
(3.4)–(3.5) can be written as
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 . (3.11)

with Cartesian components of the grid voltages stacked into column vectors

ê =

�
êx

êy

êz

�

ĥ =

�
ĥx

ĥy

ĥz

�

, (3.12)

with row-major vectorized components

êx |(i ny+ j)nz+k = Êx |i, j,k {i, j, k}= 1, ...,{Nx , ny , nz}

êy |(i Ny+ j)nz+k = Êy |i, j,k {i, j, k}= 1, ...,{nx , Ny , nz}

êz |(i ny+ j)Nz+k = Êz |i, j,k {i, j, k}= 1, ...,{nx , ny , Nz}

ĥx |(i Ny+ j)Nz+k = Ĥx |i, j,k {i, j, k}= 1, ...,{nx , Ny , Nz}

ĥy |(i ny+ j)Nz+k = Ĥ y |i, j,k {i, j, k}= 1, ...,{Nx , ny , Nz}

ĥz |(i Ny+ j)nz+k = Ĥz |i, j,k {i, j, k}= 1, ...,{Nx , Ny , nz} .
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We here used the notation

nd = Nd − 1 d ∈ {x , y, z} . (3.13)

Hence, the total lengths of ê and ĥ are respectively

ne = Nx ny nz + nx Ny nz + nx ny Nz (3.14)

nh = nx Ny Nz + Nx ny Nz + Nx Ny nz . (3.15)

The diagonal material matrices [µ], [ǫ], [σ] contain the properly averaged mate-
rial constants µ, ǫ and σ. The curl incidence matrix is given by

C =





0 −INx
⊗Iny

⊗Dz INx
⊗Dy⊗Inz

Inx
⊗INy
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−Inx
⊗Dy⊗INz

Dx⊗Iny
⊗INz

0





ne×nh

, (3.16)

where ‘⊗’ denotes the Kronecker product, In the n-dimensional identity matrix,
and Dd the central-difference incidence matrix acting on the d-dimension

Dd =





−1 1
−1 1

...
−1 1





nd×Nd

d ∈ {x , y, z} . (3.17)

The metric of the grid is included in the diagonal metric operators
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with δd and δ⋆
d

diagonal matrices containing the Nd and nd spatial increments in
the d-dimension of the primary and dual grid respectively. For instance,

δx =





∆x1
∆x2

...
∆xNx



 . (3.20)

Remarkably, (3.11) exhibits spatial reciprocity: the curl incidence matrices occur-
ring in Faraday’s and Ampère’s laws are related to each other by transposition.
This property is indispensible with regard to the numerical stability of the FDTD
method.
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3.3.2 Finite integrations

The finite integration technique (FIT) [16] is a generalization of the FDTD method
based on the time-domain integral formulation of Maxwell’s equations. It is appli-
cable to nonorthogonal and unstructured dual grid pairs. All grid edges and faces
are given an integer label2 and their corresponding FIT unknowns are stacked in
column vectors according to this label. With dual edge-face pairs denoted as (L, A⋆)

and (L⋆, A), the state variables in the FIT are the grid voltages

ê i(t) =

∫

Li

E(r , t) · dl ĥ j(t) =

∫

L⋆
j

H(r , t) · dl , (3.21)

and the grid fluxes

ˆ̂b j(t) =

∫

A j

B(r , t) · dA ˆ̂d i(t) =

∫

A⋆
i

D(r , t) · dA ˆ̂j i(t) =

∫

A⋆
i

J(r , t) · dA .

(3.22)
Each edge of one grid pierces a face of the other grid, and each vertex of one grid is
in the center of a cell volume of the other grid. This duality property is via cellular
contour integrations translated to spatially reciprocal curl equations

C ĥ(t) = ∂t
ˆ̂d(t) + ˆ̂j(t) (3.23)

C T ê(t) = −∂t
ˆ̂b(t) , (3.24)

with C earlier defined in (3.16). Note that (3.23)–(3.24) are purely topological
relations. As such, they are exact. The only approximation made by the FIT is in
the discretization of the constitutive relations,

ˆ̂b(t) = Mµ ĥ(t) ˆ̂d(t) = Mǫ ê(t) ˆ̂j(t) = Mσ ê(t) , (3.25)

which include both the material characteristics and the grid metric. There exist
quite advanced techniques, some of them even based on Whitney forms borrowed
from the FETD method [17], to approximate the material matrices Mµ, Mǫ and Mσ
for general dual grid pairs. For simplicity, we will only consider their derivation
for dual-orthogonal grid pairs, where all edge-face intersections are orthogonal
even though the grids themselves are not necessarrily orthogonal. In that case,
since the elementary vectors dl and dA occurring in (3.21)–(3.22) are collinear in
the intersection points, the grid voltages and fluxes can be mapped to each other
in a one-to-one sense. In other words, the material matrices are diagonal. Also,
we assume that all primary cells are homogeneously filled with material, such that
tangential electric field continuity and normal magnetic flux continuity are satisfied
by construction. Then, the FIT material matrices are

Mµ| j, j = µ j

|A j |

|L⋆
j
|

Mǫ|i,i = ǫi

|A⋆
i
|

|Li |
Mσ|i,i = σi

|A⋆
i
|

|Li |
, (3.26)

2Do not confuse the labels i and j in this section with the spatial indices used in other sections.
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where µ, ǫ and σ are properly averaged over the associated faces and the vertical
bars represent the line and surface integrals over edges and faces. Their derivation
is briefly illustrated for the FIT permittivity matrix:

Mǫ|i,i =
ˆ̂d i(t)

ê i(t)
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∫
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i

ǫ(r )E(r , t) · dA
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|A⋆
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|Li |
, (3.27)

with, obviously,

ǫi =
1

|A⋆
i
|

∫

A⋆
i

ǫ(r )dA . (3.28)

Mind the similarity between the FIT material matrix (3.27) and the diagonal Hodge
star operator (2.54) used in discrete exterior calculus. The approximation step
in (3.27) assumes that the electric field is both constant along the primary edge
Li and along the dual face A⋆

i
. The latter does not comply to the linear-normal

behavior of the Whitney one-form (Section 3.3.3). This should not be alarming:
the Whitney one-form has this property mainly to guarantee the tangential electric
field continuity across material boundaries, but this is already satisfied in the FIT
thanks to the piecewise homogeneous discretization on the primary grid. As a
rule of thumb, in the derivation of the material matrices, the material constants
should be integrated over dual-grid manifolds, because the dual grid comprises the
electromagnetic quantities that can feature jumps across material discontinuities.
To further illustrate this principle, we find for the FIT permeability matrix

Mµ| j, j =
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ĥ j(t)
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∫

A j

B(r , t) · dA

∫
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A j
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, (3.29)

with

µ j =
1

1
|L⋆

j
|

∫

L⋆
j

µ(r )−1 dl
. (3.30)

For the nonuniform Yee grid, the edges and faces are Cartesian (axis-aligned)
straight lines and flat surfaces. They give rise to simple line and surface integrals
that can be expressed in terms of the primary and dual spatial steps. For example,
for the edges and faces highlighted in Fig. 3.5,

|Li |=∆z |A⋆
i
|=∆x⋆∆y⋆ (3.31)

|L⋆
j
|=∆y⋆ |A j |=∆z∆x (3.32)
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Figure 3.5: (a) Yee cell with indication of the dual edge-face pair (Li , A⋆
i
) belonging to the

ith electric voltage sample and the dual edge-face pair (L⋆
j
, A j) belonging to the jth magnetic

voltage sample. (b) 2-D view of the face A⋆
i

with indication of the permittivity constants
assigned to each of the four primary cells that are involved. For a nonuniform grid, the
edge Li is not necessarily located in the center of the face A⋆

i
.

holds, such that (3.26) yields
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2µ j,1µ j,2
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(3.33)
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�
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+ (1− fx) (1− f y)σi,3 + (1− fx) f y σi,4

� ∆x⋆∆y⋆

∆z
, (3.35)

with fx and f y the dual-step fractions indicated in Fig. 3.5. The conventional FDTD
method uses the same material discretization and averaging procedure. Now, it
is easily seen that the FIT material matrices are related to the FDTD metric and
material matrices as follows:

Mµ = M [µ] Mǫ = M⋆ [ǫ] Mσ = M⋆ [σ] , (3.36)

such that, after leapfrog time integration, (3.23)–(3.24) indeed yield the FDTD
update equation (3.11).
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Λi(x)

xx i−1 x i x i+1

Πi(x)

xx i x i+1

1

1

Figure 3.6: Pulse and triangle basis functions.

(a) (b)

Figure 3.7: Visualization of (a) the Whitney one-form anchored to an edge and (b) the
Whitney two-form anchored to a face.

3.3.3 Finite elements

Space discretization

On a Cartesian grid, the Whitney one- and two-forms of lowest polynomial order
are (see [18])

W1
x
|i, j,k =Πi(x)Λ j(y)Λk(z)

W1
y
|i, j,k = Λi(x)Π j(y)Λk(z) (3.37)

W1
z
|i, j,k = Λi(x)Λ j(y)Πk(z)

W2
x
|i, j,k = Λi(x)Π j(y)Πk(z)

W2
y
|i, j,k =Πi(x)Λ j(y)Πk(z) (3.38)

W2
z
|i, j,k =Πi(x)Π j(y)Λk(z) ,
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with pulse and triangle functions (Fig. 3.6)

Πi(x) =

{

1 x i ≤ x < x i+1

0 elsewhere
, (3.39)

Λi(x) =











x−x i−1
x i−x i−1

x i−1 ≤ x < x i
x i+1−x

x i+1−x i
x i ≤ x < x i+1

0 elsewhere

. (3.40)

Here, x i is the location of the ith primary node. The primary-grid steps are defined
as (see Fig. 3.4)

∆x i = x i+1 − x i . (3.41)

As illustrated in Fig. 3.7, the Whitney one-form is a constant-tangent/linear-normal
edge element and the Whitney two-form a linear-tangent/constant-normal face el-
ement. Hence, if we opt for the (E,B) de Rham complex in the Tonti diagram, the
electric field intensity and magnetic flux density are expanded into grid voltages
and grid fluxes respectively as follows:

Ex(x , y, z, t) =
∑

i, j,k

êx |i, j,k(t)W
1
x
|i, j,k(x , y, z)/∆x i

Ey(x , y, z, t) =
∑

i, j,k

êy |i, j,k(t)W
1
y
|i, j,k(x , y, z)/∆y j (3.42)

Ez(x , y, z, t) =
∑

i, j,k

êz |i, j,k(t)W
1
z
|i, j,k(x , y, z)/∆zk

Bx(x , y, z, t) =
∑

i, j,k

ˆ̂bx |i, j,k(t)W
2
x
|i, j,k(x , y, z)/
�

∆y j∆zk

�

By(x , y, z, t) =
∑

i, j,k

ˆ̂by |i, j,k(t)W
2
y
|i, j,k(x , y, z)/
�

∆zk∆x i

�

(3.43)

Bz(x , y, z, t) =
∑

i, j,k

ˆ̂bz |i, j,k(t)W
2
z
|i, j,k(x , y, z)/
�

∆x i∆y j

�

.

After row-major vectorization and edge-length/face-area rescaling of the Whitney
vectors, this can be rewritten in matrix-form as

E(x , y, z, t) =
�

ŵ 1(x , y, z)
�T

ê(t) (3.44)

B(x , y, z, t) =
�

ˆ̂w 2(x , y, z)
�T ˆ̂b(t) . (3.45)

The rescaling of the Whitney vectors can be interpreted as a normalization of the
constituent pulse basis functions, i.e.

Π̂i(x) =Πi(x)/∆x i

Π̂ j(y) =Π j(y)/∆y j (3.46)

Π̂k(z) =Πk(z)/∆zk .
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Now, note that the space spanned by the derivatives of the triangle basis functions
resides in the space of pulse basis functions, since

d

dx
Λi(x) =

Πi−1(x)

x i − x i−1
− Πi(x)

x i+1 − x i

= Π̂i−1(x)− Π̂i(x) . (3.47)

As a matter of fact, this property is extendable to higher dimensions and gives rise
to the curl-inclusion property

∇× ŵ 1(x , y, z) = C ˆ̂w 2(x , y, z) , (3.48)

with C again the curl incidence matrix defined in (3.16). The substitution of the
finite-element expansions (3.44)–(3.45) into Faraday’s law (2.1) results in

∇×
�

ŵ 1(x , y, z)
�T

ê(t) = −
�

ˆ̂w 2(x , y, z)
�T
∂t

ˆ̂b(t) , (3.49)

such that the curl-inclusion property (3.48) yields

�
ˆ̂w 2(x , y, z)
�T

C T ê(t) = −
�

ˆ̂w 2(x , y, z)
�T
∂t

ˆ̂b(t) , (3.50)

or, since the elements of the vector ˆ̂w 2(x , y, z) are linearly independent functions,

C T ê(t) = −∂t
ˆ̂b(t) . (3.51)

Consequently, Faraday’s law is said to be satisfied in the strong sense. In contrast,
Ampère’s law causes more trouble. If the constitutive relations (2.6)–(2.7) are
discretized and substituted into the sourceless law of Ampère (2.2), the finite-
element analysis gives rise to

∇×
�

ˆ̂w 2(x , y, z)
�T
[µ]−1 ˆ̂b(t) = [ǫ]

�

ŵ 1(x , y, z)
�T
∂t ê(t) . (3.52)

However, since the pulse functions are not differentiable, the curl of the Whitney
two-forms occurring in (3.52) cannot be evaluated unless a trick is employed: in-
stead of looking for the solution of the original problem, a weak formulation is
adopted by taking the inner product of (3.52) with respect to a suitable differen-
tiable function, called a testing function, and applying integration by parts as to
shift the curl operator from the nondifferentiable basis function to the differen-
tiable testing function. This approach is usually named after Boris Galerkin. Here,
the appropriate testing function is ŵ 1. Hence, Galerkin testing gives rise to
∫∫∫
�

∇×ŵ 1
�

[µ]−1
�

ˆ̂w 2
�T

dx dy dz ˆ̂b(t) =

∫∫∫

ŵ 1 [ǫ]
�

ŵ 1
�T

dx dy dz ∂t ê(t) ,

(3.53)
where the spatial dependence of the Whitney elements was omitted to enhance
the readability. (3.48) permits to rewrite (3.53) as

C [⋆µ−1] ˆ̂b(t) = [⋆ǫ]∂t ê(t) , (3.54)
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with the finite-element material matrices

[⋆ǫ] =

∫∫∫

ŵ 1 [ǫ]
�

ŵ 1
�T

dx dy dz (3.55)

[⋆µ−1] =

∫∫∫

ˆ̂w 2 [µ]−1
�

ˆ̂w 2
�T

dx dy dz . (3.56)

From their differential-geometric interpretation, (3.55)–(3.56) are called Hodge
matrices. In the finite-element jargon, they are called mass matrices, a name orig-
inating from mechanics where finite elements were introduced for the first time.
They are symmetric positive definite by construction. However, they are not di-
agonal, since the triangle basis functions (3.40) are not orthogonal. This can be
remedied by evaluating the integrals using a low-order quadrature rule, which is
also called mass lumping. With the trapezoid rule

x i+1∫

x i

f (x)dx ≈ (x i+1 − x i)
f (x i) + f (x i+1)

2
, (3.57)

applied to the primary nodes x i , orthogonality of the triangle functions is yet en-
forced:

+∞∫

−∞

Λi1
(x)Λi2

(x)dx ≈
{

∆x⋆
i

if i1 = i2 = i

0 else
, (3.58)

with the dual-grid step ∆x⋆
i

as defined in (3.7). The normalized pulse functions
are orthogonal, even for continuous integration:

+∞∫

−∞

Π̂i1
(x) Π̂i2

(x)dx =

{

1
∆x i

if i1 = i2 = i

0 else
. (3.59)

Hence, the mass-lumped material matrices from the FETD method on a Cartesian
grid are equivalent to the material matrices from the FIT. As such, the finite-element
equations (3.51) and (3.54) are demonstrated to be equivalent to the ones derived
from finite integrations and finite differences, if mass lumping is applied. As a side
note, there exist tetrahedral Whitney-form elements as well. In fact, the FETD
method mostly uses unstructered tetrahedral grids.

Time discretization

Interestingly, a similar finite-element approach can be applied to the time axis.
Thereto, it is observed from (2.50) and (2.51) that the electric field is naturally
expanded in normalized time pulses and the magnetic flux density in time trian-
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gles, i.e.

ê(t) =
∑

n

ˆ̂en Π̂n−1(t) (3.60)

ˆ̂b(t) =
∑

n

ˆ̂bnΛn(t) , (3.61)

with
ˆ̂en =∆t ên . (3.62)

In agreement with differential geometry in 4-D spacetime, both the electric and
magnetic state variables are now two-forms. Substitution of these time expansions
into (3.51) and application of the derivative-inclusion property (3.47), reveals that
Faraday’s law preserves its strong formulation and gives rise to the purely topolog-
ical update equation

ˆ̂bn+1 =
ˆ̂bn − C T ˆ̂en+1 . (3.63)

Again, Ampère’s law can only be satisfied in the weak sense. Testing (3.54) with
Λn(t), it is found that

ˆ̂en+1 = ˆ̂en +∆t [⋆ǫ]
−1C [⋆µ−1]
∑

n′

∫

Λn′(t)Λn(t)dt ˆ̂bn′ . (3.64)

Here, we used integration by parts as well as the derivative-inclusion property
(3.47) and the unique definition of the inner product of two normalized pulses
(3.59). The inner product remaining in the right-hand side of (3.64) is not diago-
nal and needs to be evaluated by means of a low-order quadrature rule in order to
obtain an explicit update scheme. With the trapezoid rule (3.57), we retrieve the
leapfrog scheme:

ˆ̂en+1 = ˆ̂en + [⋆
4
ǫ]
−1C [⋆4

µ−1]
ˆ̂bn , (3.65)

with the 4-D Hodge matrices

[⋆4
ǫ] = [⋆ǫ]/∆t [⋆4

µ−1] = [⋆µ−1]∆t . (3.66)

With the midpoint rule

x i+1∫

x i

f (x)dx = (x i+1 − x i) f

�
x i + x i+1

2

�

, (3.67)

we find the Newmark-β scheme with β = 0.25 as proposed in [19], [20]. More
specifically,

ˆ̂en+1 = ˆ̂en + [⋆
4
ǫ]
−1C [⋆4

µ−1]
ˆ̂bn+1 + 2 ˆ̂bn +

ˆ̂bn−1

4
. (3.68)

Interestingly, this implicit and unconditionally stable scheme naturally comes to
light from the finite-element analysis. A similar result was found for the wave
equation in [21].
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3.4 Consequences of discretization

3.4.1 Round-off errors

The FDTD method is quite robust against round-off errors due to the finite machine
precision if, in the actual implementation, the electric field E is rescaled by the vac-
uum wave impedance Z0 in the (E,H) scheme or by the vacuum phase velocity c0

in the (E,B) scheme, such that all variables have the same order of magnitude [4].

3.4.2 Numerical dispersion and stability

The numerical error introduced by the central difference operator (3.1) is often
characterized in the spatio-temporal frequency domain by substituting the discrete
plane-wave solution

Ex |
n
i, j,k = Ex0

e  (nω∆t−i k̃x∆x− j k̃y∆y−k k̃z∆z) (3.69)

Ey |
n
i, j,k = Ey0

e  (nω∆t−i k̃x∆x− j k̃y∆y−k k̃z∆z) (3.70)

Ez |
n
i, j,k = Ez0

e  (nω∆t−i k̃x∆x− j k̃y∆y−k k̃z∆z) (3.71)

Hx |
n
i, j,k = Hx0

e  (nω∆t−i k̃x∆x− j k̃y∆y−k k̃z∆z) (3.72)

H y |
n
i, j,k = H y0

e  (nω∆t−i k̃x∆x− j k̃y∆y−k k̃z∆z) (3.73)

Hz |
n
i, j,k = Hz0

e  (nω∆t−i k̃x∆x− j k̃y∆y−k k̃z∆z) , (3.74)

into the six update equations (3.4)–(3.5) for a lossless homogeneous medium with
phase velocity c and in the absence of grid nonuniformities. This yields the well-
known numerical dispersion relation of the Yee scheme (see e.g. [22])

� sin
�
ω∆t

2

�

c∆t

�2

=

� sin
�

k̃x∆x

2

�

∆x

�2

+

� sin
� k̃y∆y

2

�

∆y

�2

+

� sin
�

k̃z∆z

2

�

∆z

�2

, (3.75)

which relates the angular frequencyω to the numerical wavevector k̃ = [k̃x , k̃y , k̃z].
For a well-resolved wavelength and period, the sine arguments are small and the
numerical dispersion relation (3.75) converges to its continuous counterpart

�ω

c

�2
= k̃2

x
+ k̃2

y
+ k̃2

z
. (3.76)

The numerical error inherent to (3.75) is a phase error and not an amplitude error
as long as ω ∈ R, which is guaranteed for (see e.g. [22])

c∆t <
1

Ç
1
∆x2 +

1
∆y2 +

1
∆z2

. (3.77)

This is the notorious Courant stability criterion. For time steps that defy this cri-
terion, ω can become complex-valued such that the amplitude of the plane-wave
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solution (3.69)–(3.74) nonphysically increases while iterating over the time in-
dex n, making the numerical solution worthless. However, ∆t should be chosen
as close as possible to the upper bound (3.77) for reasons of computational ef-
ficiency, but also because this alleviates the phase error. The phase error due to
undersampling in time is isotropic, whereas the phase error due to undersampling
in space is anisotropic with the highest error occurring along the cell edges and the
lowest error along the cell diagonals. Most textbooks recommend a minimum of
ten samples per wavelength in order to guarantee a decent level of accuracy. The
Courant limit (3.77) automatically translates an accurate spatial resolution to an
(over)accurate temporal resolution.

In the case of nonuniform grids, the Courant limit (3.77) employs the minimum
cell size along each dimension, which means that the coarse cells dominate the
numerical dispersion. In the case of inhomogeneous media, c in (3.77) should
be the maximum occurring phase velocity, which is typically that of vacuum. In
Chapter 4 of this dissertation, however, a rigorous algebraic stability analysis shows
that the necessary and sufficient stability limit is given by the matrix two-norm

∆t <
2

‖M
−1/2
ǫ C M

−1/2
µ ‖2

, (3.78)

which depends on the curl incidence matrix (3.16) and the FIT material matrices
(3.36). Recall that the latter include both the material properties and the grid
metric. The derivation of (3.78) shows that the spatial reciprocity of the update
equations, i.e. the curl incidence matrices being each others transposition, plays
an important role with regard to the numerical stability, which cannot be deduced
from the complex-frequency analysis above. The traditional Courant limit (3.77)
is an overestimation of the algebraic limit (3.78) and, consequently, a sufficient but
not a necessary condition for stability. It is a necessary condition if the medium is
homogeneous and the grid is uniform and infinite.

In view of solving multiscale problems, it is important to decouple the time step
from the smallest grid cells. Hence, the Courant limit should be surpassed some-
how. This could be achieved by locally applying implicit or hybrid implicit-explicit
techniques, which are not bounded to the Courant limit. Alternatively, instead of
adapting the time integration to the space discretization, the time step could be
picked solely based on accuracy and the discrete curl could be adapted to the time
step by means of eigenvalue perturbation as to reduce the two-norm in (3.78) [23].
Yet another trick is to filter out the high spatial frequencies during time-stepping
such that the right-hand side of (3.75) is low enough to ensure stability [24].

3.4.3 Spurious reflections

The above dispersion analysis considered the ideal case of a uniform grid. Any
nonuniformity introduced in the grid changes the numerical dispersion relation
along the two sides of the nonuniformity, yielding a discrepancy in both numerical
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phase velocity and numerical wave impedance. This causes an additional unde-
sired artifact of discretization: spurious (or numerical) reflections.

To clarify this from another point of view, note that in the FIT material matrices
(3.36) the material properties and grid metric are intertwined, such that changing
the local cell size in a homogeneous region is equivalent to changing the local
material properties in a uniform region, which obviously causes scattering.

Numerical reflections are more critical to subgridding than to nonuniform grid-
ding. Especially the edges and corners of the subgrid pose a serious issue.

3.4.4 Spurious charges

In the source-free regions, the divergence of the electric and magnetic flux densi-
ties should be zero according to (2.3)-(2.4). Otherwise, spurious charges pollute
the solution. It can be shown that the conventional FDTD method preserves the
exact sequence property (2.44) of the de Rahm complex (2.41), implying that the
discrete divergence acting on the discrete curl is zero [18], [25]. However, badly
designed subgridding methods often lack the exact sequence property and, conse-
quently, suffer from spurious charge accumulation along the interface.

3.4.5 Convergence

In order to have any practical significance, the FDTD solution should converge
to the real-world solution in the limit {∆x ,∆y,∆z,∆t} → 0. This is indeed the
case and can be proven with the help of the Lax-Richtmyer equivalence theorem,
which states that a consistent finite-difference approximation of a well-posed linear
initial-value problem is convergent if and only if it is stable [26, Thm. 1.5.1]. The
consistency requirement is easily verified with local Taylor series expansions and
the stability requirement boils down to the Courant criterion (3.77).

3.4.6 Time reversibility and energy conservation

Owing to the spatial reciprocity, the lossless FDTD method is time-reversible: if
the time step flips sign after a certain number of iterations, the fields will return
to their original state after an equal number of iterations, even if the simulation is
unstable. According to the discrete version of Noether’s theorem, this time sym-
metry is an indication of energy conservation [27]. Indeed, there exists a discrete
energy measure that is always conserved, namely [18], [28], [29]

wn =
1

2∆t

�

ˆ̂e
T

n+1 [⋆
4
ǫ]

ˆ̂en +
ˆ̂b

T

n
[⋆4
µ−1]

ˆ̂bn

�

. (3.79)

Mind the “geometric averaging” in time of the electric-field contribution, such that
all energy contributions are collocated in time3. It can be verified by substituting

3Recall that we are not using the “half-integer notation”.
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the update equations (3.63) and (3.65) into (3.79) that wn = wn−1, independently
of the time step. Hence, this energy measure is of no practical use when it comes
to confirming FDTD stability by means of numerical experiments.

Nonetheless, an interesting observation can be made. Substitution of (3.65) into
(3.79) reveals that

wn =
1

2∆t





ˆ̂en
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T 
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 . (3.80)

Since the energy wn is a scalar, it is found that

wn =
1

2

�

wn + wT
n

�

=
1

2∆t





ˆ̂en

ˆ̂bn





T 



�

⋆4
ǫ

�
1
2 C
�

⋆4
µ−1

�

1
2

�

⋆4
µ−1

�

C T
�

⋆4
µ−1

�









ˆ̂en

ˆ̂bn



 , (3.81)

where we used the fact that the Hodge matrices are symmetric. A physically mean-
ingful energy measure cannot become negative. As is proven in [28]–[30], the
matrix occurring in (3.81) is only positive definite if

‖ [⋆4
ǫ]
−1/2C [⋆4

µ−1]
1/2‖2 < 2 , (3.82)

which, in FIT terminology, corresponds to the exact stability criterion (3.78). Nev-
ertheless, as stated before, the conservation of the discrete energy wn does not
necessarily imply stability.

3.4.7 Aliasing

In the conventional FDTD method, the high-frequency content of the source is usu-
ally well-resolved by the ten-samples-per-wavelength rule. There are no (spatial)
frequencies above the Nyquist limit and, hence, there is nothing to worry about
aliasing. However, for subgridding methods, high frequencies excited in the fine
grid can be transferred to the coarse grid, where they cause spurious effects due
to aliasing. What is even worse, they are likely to excite instabilities if the spatio-
temporal interpolation along the interface does not filter out the small band of
frequencies around the Nyquist limit of the coarse grid [31]. A first attempt to
fully theoretically describe the aliasing effects occurring in the FDTD method was
presented in [32].

3.4.8 Absorbing boundary conditions

Open-space simulations theoretically require an infinite grid or, at least, a grid that
is large enough as to avoid contamination of the region of interest with fields that
are back-scattered from the outer boundaries within the simulated time. As this is
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computationally very expensive, early FDTD research mainly focused on the devel-
opment of absorbing boundary conditions (ABC), which can be placed close to the
region of interest and absorb all outgoing waves with negligible reflections for trav-
eling as well as evanescent waves and for all angles of incidence. This has resulted
in the invention of the perfectly matched layer (PML). Although originally derived
as an impedance-matched non-Maxwellian absorbing medium [33] and later as
a uniaxial anisotropic medium [34], the PML is most frequently interpreted as a
complex-coordinate stretch [35]. Arguably the most effficient and most accurate
formulation of the PML is the complex-frequency-shifted (CFS) PML implemented
with a recursive convolution [36]. Despite its universal use in academic and com-
mercial software packages in several branches of physics, the stability of the PML is
still poorly understood. In fact, [37, Sect. 4.8] quotes an example of an open cavity
with loaded conductor, where the simulation gets unstable for certain PML param-
eters. A succinct summary of the evolution of absorbing boundary conditions in
the past half century can be found in [38].

3.4.9 Spurious solutions of the wave equation

A vast body of literature, e.g. [23], [39], discretizes the wave equation (2.15)
instead of Maxwell’s curl equations. It may look tempting to do this as to reduce
the number of unknowns since only the electric and not the magnetic field is com-
puted, but it should be kept in mind that a second-order time derivative requires
the storage of two instead of one time sample, such that both the wave equation
and the set of curl equations have six unknowns per Yee cell. There is, nonethe-
less, one real but mostly overlooked advantage of the wave equation: the stability
requirement of the curls being reciprocal is reduced to the curl-curl operator being
symmetric and positive definite, which facilitates many geometric modifications
to the wave equation-based FDTD method such as subgridding and model order
reduction. However, this advantage does not outweigh the huge drawback that
the wave equation supports spurious solutions [40].

3.5 Subgridding

3.5.1 Why subgridding?

Subgridding is used to reduce the CPU time and memory usage of the FDTD method
by means of local instead of global refinement4. Although it is essentially a spatial
operation, subgridding affects the time step via the Courant limit (3.77). The ideal
subgridding method allows to apply local refinement without changing the time
step in the original grid. In the Author’s opinion, there are two applications of
subgridding: domain decomposition (DD) and adaptive mesh refinement (AMR).

4There is, however, only an actual speedup if the reduction in number of variables counters the
increased complexity in memory architecture [41], [42]. Otherwise, nonuniform tensor-product grids
are more lucrative.
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DD aims to resolve electrically small features arising in multiscale setups. Here,
the combination of a nonuniform main grid with a nonuniform subgrid comprising
several coarse cells, provides optimal geometric flexibility as well as the possibility
to reduce the impedance mismatch between main grid and subgrid by gradually
changing the cell size. The user can specify the delicate parts of the geometry and
the mesher generates the subgrids prior to time-stepping. The subgrids are not
likely to share edges or faces. As a consequence, they can be updated implicitly
without the matrices of each subgrid combining to one large matrix. Hence, the
local use of (semi)-implicit techniques inside the subgrids allows the preserve the
original time step throughout the whole grid.

AMR aims to accelerate convergence. An error is assigned to each cell. Once it
exceeds a certain threshold, the cell is refined on-the-fly, i.e. during time-stepping.
For the FDTD method based on the (E,B) de Rham complex, a good error mea-
sure is, for example, based on the nonphysical jumps between tangential magnetic
fields. Subgrids with different refinement ratios are likely to share edges and faces.
There is no room for a buffer zone. Together with the adaptive aspect, this makes
AMR inattractive to implicit techniques. A better solution would be a local time-
stepping (LTS) procedure, where each subgrid has its own local time step deter-
mined by its local Courant limit. The late-time stability of LTS schemes, however,
is one of the main concerns of FDTD research during the past quarter century.

3.5.2 State of the art

The term “subgridding” was coined in [43], where an LTS approach was readily
proposed. This scheme was unstable, as was the case for many early publications
about subgridding, such as the very accurate scheme described in [44]. It became
clear very soon that the reciprocity of Maxwell’s equations needed to be preserved
on the discrete level. The fulfillment of spatial reciprocity led to the symmetric (or
reciprocal) subgridding methods. In first instance, they used a small global time
step depending on the cell size of the subgrid [45]. Later, a separate spatial and
temporal interface allowed to delay the instability of reciprocal LTS schemes [46].
A very promising stable subgridding scheme with explicit local time-stepping and
implicit interfacing is reported in [47], but has, to the author’s best knowledge,
never been further pursued. The ad hoc use of fully implicit time integration in-
side the subgrid as to enlarge the subgrid’s time step without stability issues has
been proposed in e.g. [48]–[50], but is theoretically not well founded. Besides,
these fully implicit subgridding methods are often either inaccurate (ADI-FDTD)
or inefficient (CN-FDTD). In [51], spatial filters based on expensive discrete Fourier
transforms are employed to stabilize subgridding methods with a single global time
step that can be picked based on accuracy.

A new category of LTS subgridding schemes based on grid overlap instead of grid
stitching was introduced in [52], where digital filters were employed as spatial
decimators and interpolators along the interface to suppress instabilities. This
idea was further developed in [31], [53], [54], disguised as “Huygens subgrid-
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ding” (HSG). HSG is a typical example of a subgridding method that should be
used for DD purposes: it allows much flexibility inside the subgrid, but it has dif-
ficulties placing multiple subgrids next to each other. The Huygens subgrid can be
nonuniform and rotated [55], it can be updated implicitly [56], it can be spatially
and temporally collocated [57], etcetera. However, despite the many efforts, HSG
is late-time unstable.

In [18], [58], another interesting type of subgridding is proposed, derived from
finite element principles. Interestingly, this method preserves the exact sequence
property and exhibits spatial reciprocity by construction. In constrast to many of
the aforementioned methods, this approach suffers minimally from spurious reflec-
tions arising from the subgrid edges and corners owing to the correct discretization
of the differential forms underpinning Maxwell’s equations. In Chapter 5 of this
dissertation, it is shown that the subgrid interfacing can be interpreted in terms
of finite integrations, which allows to place subgrids with different refinement ra-
tios next to each other. Hence, this is an example of a subgridding method that is
perfectly suited for AMR purposes, albeit with a small global time step. A stable
extension of this subgridding technique with a local time-stepping scheme for ar-
bitrary refinement ratios, would, without any doubt, make this the state-of-the-art
subgridding method.

In [29], [59], a modular approach to prove subgridding stability is put forward
based on the theory of dissipative systems and the earlier work in [30]. The name
‘dissipative systems’ is misleading as the theory also holds in the lossless case.
Although drafted for global time-stepping methods, this type of stability analysis
could maybe cause the breakthrough that is needed for LTS schemes such as the
one alluded to above.
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PART II
Novel Contributions





4
Stability of

Locally Implicit Methods

“Almost anything you can do with A−1 can be done without it.”

Forsythe and Moler

⋆ ⋆ ⋆

In this chapter, three local implicitization techniques are proposed and carefully

analyzed in order to relax the traditional time step limit of the FDTD method

on a nonuniform, staggered, tensor-product grid: Newmark, Crank-Nicolson

(CN) and alternating-direction implicit (ADI) implicitization. All of them are

applied in preferable directions, alike hybrid implicit-explicit (HIE) methods, as

to limit the rank of the sparse linear systems. Both exponential and polynomial

stability are rigorously investigated for arbitrary grid spacings and arbitrary

inhomogeneous, possibly lossy, isotropic media. Numerical examples confirm

the conservation of energy inside a cavity for a million iterations if the time

step is chosen below the proposed relaxed limit. Apart from the theoretical

contributions, new accomplishments such as the development of the leapfrog

alternating-direction hybrid implicit-explicit (ADHIE) FDTD method and a less

stringent Courant-like time step limit for the conventional, fully explicit FDTD

method on a nonuniform grid, have immediate practical applications.
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4.1 Introduction

As stated in the previous chapters, the finite-difference time-domain method is one
of the prevalent numerical techniques to predict electromagnetic behavior by solv-
ing Maxwell’s equations in the time domain. Often, the second-order accuracy of
the uniform Yee grid (Fig. 3.1) is locally given up in favor of more flexible nonuni-
form grids, which preserve the tensor-product nature but have step sizes that vary
along the respective axis (e.g.∆x varies along the x-axis). One of the major draw-
backs of the nonuniform FDTD method is the dependence of the time step on the
smallest cell size, as dictated by the Courant stability limit (3.77). Hence, multi-
scale problems that require a locally increased resolution, are usually temporally
oversampled to guarantee numerical stability. Various implicit and semi-implicit
techniques have been proposed to sidestep (3.77) such that fewer time iterations
are needed at the cost of more expensive computations per iteration. Generally,
these techniques are applied throughout the whole grid because little is known
about their influence on the stability limit if they would be applied locally.

The aim of this chapter is to put the stability of the FDTD method on nonuni-
form tensor-product grids, as well as its combination with several local implicitiza-
tion techniques, on a firm mathematical footing. The proposed techniques permit
implicitization in preferable directions as to end up with low-rank banded matri-
ces, such that the reduced number of iterations outweighs the slightly increased
computational cost per iteration for multiscale problems. The typical configura-
tions that will be tackled are illustrated in Fig. 4.1. If a thin layer or thin wire
needs to be modeled, the nonuniform grid is locally much more dense. It will be
demonstrated, both analytically and numerically, that the proposed local implic-
itization techniques allow to eliminate the small step sizes enforced by the thin
object from the stability limit.

The remainder of this chapter first lays out the update equations of each of the
three proposed local implicitization techniques: Newmark, CN and ADI impliciti-
zation. Next, in Section 4.3, the stability of each technique is discussed. Two types
of stability analyses are put forward: one based on z-transform theory and one
extending the state-space-based method described in [1]. The Newmark implicit-
ization technique is meticulously analyzed using the first approach. As a bonus, it
leads to an explicit Courant-like time step limit for the conventional FDTD method
on nonuniform grids that is less stringent than the one found in [2]. This new re-
laxed time step limit is directly applicable in classical FDTD software that leverages
nonuniform gridding. The ADI implicitization technique is handled by the state-
space approach, whereas the CN implicitization method is concisely analyzed using
both approaches. In Section 4.4, the analytical results are numerically validated
using the example of Fig. 4.1(a). The chapter concludes with a summary of the
pros and cons of each local implicitization technique.
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(a) (b)

Figure 4.1: 3-D representation of a nonuniform tensor-product grid obtained by projecting
the primary-grid edges on each of the three coordinate planes for (a) a thin plate and (b) a
thin wire.

4.2 Update equations

We summarize the update equations for each of the three implicitization tech-
niques, where we choose to implicitize the magnetic fields. A dual scheme, im-
plicitizing the electric fields, of course, exists as well and is discussed in [3]. All
proposed FDTD techniques use the spatial discretization described in Section 3.3.1.
More specifically, the electric and magnetic fields are discretized on a nonuniform
tensor-product grid terminated by perfectly electrically conducting (PEC) bound-
ary conditions. The considered medium is isotropic, inhomogeneous and possibly
lossy.

4.2.1 Newmark implicitization

The Newmark-β technique is frequently used in finite-element time-domain sim-
ulations (e.g. [4]), but it is only recently investigated in the FDTD context. In one
variant [5], both curls are time averaged as prescribed by the Newmark-β scheme,
whereas in another variant [6] only a single one is. Indeed, the unconditionally
stable technique proposed in [6] is the Newmark-β time integration method with
β = 0.25, perceived as a dispersive background medium, which allows to inter-
pret partial implicitization in one instead of two directions as a manifestation of
anisotropy. Here, the unconditionally stable technique of [6] is extended to 3-D
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and applied locally, which gives rise to the update scheme
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and P the nh-dimensional diagonal matrix with elements

P|i,i =

{

1 if ĥi is updated explicitly
0 if ĥi is updated implicitly

, (4.3)

and with Mµ, Mǫ and Mσ the FIT material matrices defined in (3.26) and (3.36).
Interestingly, this Newmark-β method naturally entered the scene in the finite-
element analysis performed in Section 3.3.3, provided that the mass matrices per-
taining to the space discretization are lumped by the trapezoid rule and the mass
matrices pertaining to the time discretization by the midpoint rule. Indeed, the
finite-element update equations (3.63) and (3.68) are identical to (4.1) for P = 0.

4.2.2 CN implicitization

The Crank-Nicolson method is well-known in the FDTD community (e.g. [7]). If
applied locally, its update scheme is
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and P given by (4.3). The time discretization of the implicitized magnetic fields
is identical to that of the electric fields. A similar time discretization holds for the
source term.
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4.2.3 ADI implicitization

Although the original ADI-FDTD method was a split-step method where additional
field variables were needed at intermediate time instances, it has evolved to a
one-step leapfrog update scheme with the same dispersion and stability properties
but improved computation time and memory requirements [8]. Both the split-
step and the leapfrog ADI method split the curl incidence matrix into two parts,
e.g. C = C1 + C2, and this in a clever way as to end up with tridiagonal matrices
that scale with the number of cells in only one dimension. We call this complete

curl splitting as opposed to incomplete curl splitting, which will be presented in this
chapter. Our new curl splitting technique generalizes the traditional leapfrog ADI
method, which is fully implicit and unconditionally stable, to a hybrid implicit-
explicit version of the ADI method, named the “leapfrog ADHIE-FDTD method”,
which is only partially implicit and weakly conditionally stable. Without going into
the details yet, both the traditional leapfrog ADI and the newly proposed leapfrog
ADHIE update scheme can be cast as:
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where x n and s n are given by (4.2). The scalar α is a tunable parameter that has
to be chosen in the interval ]0, 1[ for incomplete curl splitting and equals one for
complete curl splitting. The curl parts C1 and C2 do not necessarily sum up to C .
They will be defined in Section 4.3.3. Note that, if they were zero, (4.6) would
reduce to the conventional, fully explicit FDTD method. Hence, they constitute a
perturbation, which results in the so-called ADI splitting error [9, Eq. 11]. This
leads to non-negligible numerical errors for time steps considerably exceeding the
Courant limit and for electromagnetic fields with large spatial gradients.

4.3 Lyapunov stability

4.3.1 Newmark implicitization

Exponential stability

The discrete-time system (4.1) is transformed to the z-domain for the most delicate
case where all energy is trapped inside a lossless cavity, resulting in the linear
system

Ax = s , (4.7)
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where

x =

∞∑

n=0

x n z−n s =

∞∑

n=0

s n z−n , (4.8)

with initial conditions
x 0 = x 1 = s0 = 0 , (4.9)

and system matrix

A=




(z − 1)Mǫ

∆t −C I

z C T (z − 1)
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 . (4.10)

The diagonal implicitization matrix I ∈ Cnh×nh , occurring in (4.10), has elements

I|i,i =

{

1 if ĥi is updated explicitly
(z + 1)2/(4z) if ĥi is updated implicitly

(4.11)

Exponentially growing instabilities are excluded if the poles of the transfer function
matrix belonging to (4.7), which are the solutions for z fulfilling det(A) = 0, do
not lie outside the unit disk [10]. Note that these solutions do not change upon
replacement of A with

Ã=∆t
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with the modified curl operator

C̃ =
∆t

2
M−1/2
ǫ C M−1/2

µ . (4.13)

We used the fact that all matrices occurring in (4.12) are diagonal and regular, and
that I is diagonal as well. The remainder of this stability analysis focuses on the
matrix Ã, which exhibits more symmetry than the original matrix A.

Similarly to [4], [11], [12], we need to distinguish between the static modes with
z = 1 and the dynamic modes with z 6= 1. The former obviously have unit-circle-
bounded z and reside in the nullspace of the system matrix (4.10) with insertion
of z = 1. They can also be found upon inspection of the nullspace of

1

2
Ãz=1 =

�
0 −C̃

C̃ T 0

�

. (4.14)

For the dynamic modes, the block matrices on the diagonal of (4.12) are nonsin-
gular and the stability analysis amounts to locating the roots of

det(Ãz 6=1)

= det
�
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�
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�

, (4.15)
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where we used the partitioned-matrix determinant rule [13, Eq. 2.8.13]. Along
the lines of [14], substituting the bilinear transformation

z =
ζ− 1

ζ+ 1
, (4.16)

which projects the unit disk in z-space to the right half-plane in ζ-space, into the
remaining determinant in (4.15), yields

det
�

Ine
+ C̃
�

ζ2 Inh
− P
�

C̃ T
�

= 0 , (4.17)

with P given by (4.3). Searching the roots of (4.17) is equivalent to solving the
generalized eigenvalue problem

ζ2 C̃ C̃ T v =
�

C̃ P C̃ T − Inh

�

v . (4.18)

The zero eigenvalues of the curl-curl matrix in the l.h.s. of (4.18) give rise to
so-called infinite eigenvalues ζ2 = ∞ of the generalized eigenvalue problem,
which are doubly mapped to z = 1. They correspond to static modes, which have
already been treated above and which were not allowed in the derivation of (4.15).
Therefore, we only consider the finite eigenvalues of (4.18), which correspond
to the dynamic modes. Left-multiplying (4.18) by the Hermitian transpose of v

and subsequently subtracting/adding the Hermitian-transposed equation, yields
respectively

Im(ζ2) ‖C̃ T v‖2
2 = 0 ∀ v 6= 0 (4.19)

Re(ζ2) ‖C̃ T v‖2
2 = ‖P C̃ T v‖2

2 − ‖v‖2
2 ∀ v 6= 0 , (4.20)

where we readily replaced the occurring inner products by vector two-norms and
used the fact that P = PT P. Now, recall that exponentially growing instabilities
are excluded by demanding that |z| ≤ 1, which is, via the bilinear transforma-
tion (4.16), translated to Re(ζ)≥ 0. From (4.19), we conclude that Im(ζ2) = 0,
such that any solution ζ2 yields either two real or two purely imaginary values
for ±ζ. Since the first scenario always implies that one of the two values ±ζ re-
sides on the negative real axis, the only way both ±ζ satisfy Re(ζ) ≥ 0 is the case
where they are purely imaginary. These purely imaginary values for ±ζ yield two
complex conjugate roots z lying on the unit circle. From a physical perspective,
this is exactly what we expect from a passive, lossless electromagnetic system; no
energy is created, nor is there energy lost. In conclusion, stability is guaranteed
if Re(ζ2) ≤ 0, which is satisfied if and only if the r.h.s. of (4.20) cannot become
positive. This gives rise to the stability criterion

‖C̃ P‖2 ≤ 1 , (4.21)

with the matrix two-norm defined as [13, Eq. 8.4.3]

‖C̃ P‖2 = ‖P C̃ T‖2 =max
v 6=0

‖P C̃ T v‖2

‖v‖2
= σmax

�

P C̃ T
�

=
Ç

λmax

�

C̃ P C̃ T
�

. (4.22)
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The functions σmax() and λmax() denote the largest singular value and eigenvalue
respectively. For a uniform grid that is homogeneously filled with vacuum and for
which we fully explicitly advance in time, i.e. P = Inh

, this upper bound is iden-
tical to the one found in [1], apart from the strict inequality. In Section 4.3.1,
it will be shown that thoughtful implicitization, which eliminates all small spatial
steps beneath a certain threshold from the r.h.s. of (4.21) by selecting the pertinent
P|i,i to be zero, can considerably reduce the time step limit for configurations with
strongly varying spatial step sizes.

Polynomial stability

Up till now, we only discussed exponential stability, meaning that the fields cannot
diverge exponentially, which is achieved by the condition |z| ≤ 1. As pointed out
in [15], however, unit circle boundedness of z does not fully guarantee Lyapunov
stability [13, Def. 11.10.1], which simply means that the fields cannot diverge to in-
finity in any kind of fashion. In addition, the poles located on the unit circle should
be semisimple. In other words, they should have equal algebraic and geometric
multiplicities [13, Def. 5.5.4], which is identical to the corresponding eigenvec-
tors being linearly independent or, equivalently, to the corresponding matrix being
diagonalizable. For a two-level update scheme, a violation of this condition man-
ifests itself in a subtle polynomial growth because the amplification matrix then
has at least one Jordan block of the form

�
λ 1

0 λ

�

, (4.23)

with |λ| = 1, which is clearly unbounded upon self-multiplication. The same rea-
soning holds for higher-level schemes, as it is always possible to reduce them to a
two-level scheme via a proper change of variables, e.g. companion linearization.
In [4], the FETD method with Newmark-β time integration of the second-order
wave equation is shown to be prone to this type of late-time instability.

We will show now that our proposed Newmark implicitization method, and by
extension also the conventional FDTD method, is free of polynomial instabilities.
Therefore, note that there are 2(ne+ nh) poles z that satisfy det(A) = 0, which can
be essentially categorized into four types:

• complex conjugate pole pairs (z, z∗) with |z|= 1, yielding dynamic modes

• the repeated pole z = 1, yielding static modes

• the repeated pole z = −1, yielding “almost unstable” dynamic modes

• the non-physical repeated pole z = 0
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First, we discuss the last category, which in our scheme only appears as an algebraic
artifact due to the linearization of the three-level Newmark scheme (4.1). If we
shortly write (4.1) as

M2 x n+2 = M1 x n+1 +M0 x n + s n+1 , (4.24)

then the companion linearization is
�

M2 0

0 Ine+nh

��
x n+2

x n+1

�

=

�
M1 M0

Ine+nh
0

��
x n+1

x n

�

+

�
s n+1

0

�

. (4.25)

The block structure of the matrix in the r.h.s. of (4.25) is given by








Bne×ne
Bne×nh

0 Bne×nh

0 Bnh×nh
0 0

Bne×ne
0 0 0

0 Bnh×nh
0 0









, (4.26)

where Bn1×n2
denotes an arbitrary block of size n1 × n2 that has at least one non-

zero element. A block permutation of the second and third row followed by a block
permutation of the second and third column yields









Bne×ne
0 Bne×nh

Bne×nh

Bne×ne
0 0 0

0 0 Bnh×nh
0

0 0 Bnh×nh
0









. (4.27)

This is a two-by-two block upper triangular matrix. Hence, the eigenvalues are
solely determined by the two blocks on its diagonal. The first block has at least ne

zero eigenvalues, the second block at least nh. Hence, this reveals that the matrix
in the r.h.s. of (4.25) has at least ne + nh zero eigenvalues or, equivalently, that
the transfer function of the linear system (4.25) has a pole z = 0 with multiplicity
ne + nh or more. This pole would also have been found in the analysis of Sec-
tion 4.3.1, if the source in (4.1) was shifted one step back in time; s n instead of
s n+1. Anyway, since z = 0 lies inside the unit disk, it is harmless. However, this
zero pole, which originates from the sparsity of the matrix M0, poses a fundamen-
tal difference between our proposed Newmark implicitization technique and the
Newmark FETD method [4], because the linearized system (4.25) only requires
ne+nh instead of 2(ne+nh) linearly independent modes. For this reason, it is very
likely that the Newmark-β FDTD method described in [5] suffers from polynomi-
ally growing non-physical fields analogous to [4].

We will now prove that the remaining ne+nh poles belong to one of the above three
mentioned categories on the unit circle and we will propose a sufficient condition
such that they are guaranteed to be semisimple. The poles from the first category
give rise to linearly independent dynamic modes in the ζ2-domain due to Lemma 1.
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Lemma 1. If A, B ∈ Cn×n are Hermitian and A is regular, then there exist n linearly

independent vectors v ∈ Cn×1 satisfying Av = λBv .

Proof. Since the matrices A and B are Hermitian, all eigenvalues λ must reside in
R∪ {∞}. We prove the existence of a full linearly independent set of eigenvectors
by ruling out the existence of non-trivial Jordan blocks in the Weierstrass canonical
form. First, suppose that the finite eigenvalue λr ∈ R gives rise to a Jordan block
of size k > 1, then there must exist a Jordan chain [16, Def. 3.1]

(A−λr B) v1 = 0 (4.28)

(A−λr B) v i = B v i−1 i = 2, ..., k . (4.29)

Consequently,

v
†
1B v1 = v

†
2(A−λr B)†v1 = v

†
2(A−λr B) v1 = 0 , (4.30)

where the first equality holds because of (4.29) with i = 2, the second equality
uses the Hermitian symmetry of the matrix pencil (A−λr B), and the third equality
uses (4.28). Since λr is finite, v1 cannot reside in the nullspace of B. Hence, (4.30)
implies v1 = 0, which is in contradiction with the existence of the Jordan block.

Second, suppose that∞ is an eigenvalue corresponding to a Jordan block of size
k > 1, then there must exist a Jordan chain [16, Def. 3.1]

B v1 = 0 (4.31)

B v i = Av i−1 i = 2, ..., k (4.32)

Repeating the steps from (4.30), now yields

v
†
1Av1 = 0 . (4.33)

Since A is regular, we conclude that v1 = 0, which rules out the existence of the
Jordan block. � �

Since every ζ2 is, in a one-to-one sense, mapped to a complex conjugate pair (z, z∗)
with z 6= z∗, this linear independence is preserved in the z-domain. Thus, the first
category of poles is semisimple. A similar reasoning could be repeated for the sec-
ond category, but since z = z∗ = −1, linear independence of the dynamic modes in
the z-domain cannot be guaranteed. This is, however, easily remedied by imposing
a strict inequality

‖C̃ P‖2 < 1 , (4.34)

instead of (4.21). Now, we must show that the third category of poles, correspond-
ing to the static modes, is semisimple. Since these modes are known to span the
nullspace of the skew-symmetric matrix (4.14), the number of linearly indepen-
dent static modes is given by

nstat = null
�

C̃
�

+ null
�

C̃ T
�

, (4.35)



4.3. Lyapunov stability 71

where null() denotes the nullity, i.e. the dimension of the nullspace. It now suffices
to show that these static modes together with the dynamic modes span the entire
space R(ne+nh)×(ne+nh). From (4.18), it is found that the number of dynamic modes
is

ndyn = 2
�

ne − null
�

C̃ C̃ T
��

. (4.36)

Since from [13, Cor. 2.5.1],

null
�

C̃ C̃ T
�

= null
�

C̃ T
�

, (4.37)

we obtain
nstat + ndyn = 2 ne + null

�

C̃)− null
�

C̃ T ) = ne + nh , (4.38)

where the last equality uses [13, Cor. 2.5.3], namely

null
�

C̃) = null
�

C̃ T ) + nh − ne . (4.39)

In conclusion, Lyapunov stability, which encompasses both polynomial and expo-
nential stability, is guaranteed if the time step satisfies (4.34). For uniform grids
with explicit time-stepping, i.e. P = Inh

, this agrees with [17], where the strict
inequality (4.34) is found to be a necessary and sufficient condition for Lyapunov
stability, and agrees with [18], where linear instability is numerically observed
for a one-dimensional conventional FDTD simulation running at the “magic time
step”, i.e., corresponding to an equality sign in (4.34).

Note that for a fully implicit grid, i.e. P = 0, it holds that det(Ãz=−1) 6= 0, such that
the standalone Newmark FDTD method (4.1) is free of polynomial instability.

A Courant-like stability limit for fully explicit, nonuniform grids

To obtain a more transparent expression for the maximum allowed time step, we
first derive an upper bound for the denominator of (4.34) in the simplified case that
P = Inh

. In other words, we consider a conventional FDTD scheme with explicit
leapfrog time-stepping in each point of the grid. It is helpful to introduce the matrix

K =






0 −INx
⊗ Iny

⊗ Kz INx
⊗ Ky ⊗ Inz

Inx
⊗ INy

⊗ Kz 0 −Kx ⊗ INy
⊗ Inz

−Inx
⊗ Ky ⊗ INz

Kx ⊗ Iny
⊗ INz

0




 , (4.40)

with
Kd =
�

δ⋆
d

�−1/2
Dd

�

δd

�−1/2
d ∈ {x , y, z} . (4.41)

As proven in [1, Eq. 44], a matrix of this particular form has the property

‖K‖2
2 = ‖Kx‖

2
2 + ‖Ky‖

2
2 + ‖Kz‖

2
2 . (4.42)

Now, it is left to the reader as an exercise to verify that

C̃ =
∆t

2
[ǫ]−1/2 K [µ]−1/2 . (4.43)
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In contrast to (4.13), the metric is now included in K instead of in the material
matrices. Using submultiplicativity of the matrix two-norm [13, Eq. 9.3.4], yields

‖C̃‖2
2 ≤

∆t

2

‖K‖2
2

ǫminµmin
, (4.44)

with ǫmin and µmin the lowest permittivity and permeability among all cells, which
are often those of vacuum. A similar reasoning shows that

‖Kd‖
2
2 ≤

‖Dd‖
2
2

δd,min δ
⋆
d,min

d ∈ {x , y, z} , (4.45)

with δd,min and δ⋆
d,min the smallest spatial step along the d-dimension present in

the primary and dual grid respectively, and [1, Eq. 50]

‖Dd‖2 = 2 cos
�
π

2Nd

�

d ∈ {x , y, z} . (4.46)

So, if no implicitization is applied, (4.42) together with (4.44)–(4.46) substituted
into (4.34) yields the time step limit

∆t <
1
Ç

1
ǫmin µmin

1
s

cos2( π2Nx
)

δx ,min δ
⋆
x ,min
+

cos2( π2Ny
)

δy,min δ
⋆
y,min
+

cos2( π2Nz
)

δz,min δ
⋆
z,min

, (4.47)

which is a generalization of the conventional Courant limit (3.77) to nonuniform
grids. The upper bound (4.47) is tighter than the one proposed in [2]. Note that,
due to the definition of the dual step (3.7), essentially being the average of two
adjacent primary steps, holds that

δ⋆
d,min ≥ δd,min d ∈ {x , y, z} . (4.48)

Local implicitization to relax the stability limit

Now, we elaborate on how local implicitization affects the explicit stability limit
(4.47) and, more importantly, how P can be tuned to get a more loose constraint.
Suppose δx ,min = δx |i,i , then we could implicitize all H y and Hz with x-index i,
which corresponds to

P =






Inx
⊗ INy

⊗ INz

P i
x
⊗ Iny

⊗ INz

P i
x
⊗ INy

⊗ Inz




 , (4.49)

where we used the notation Pk
d

to denote the diagonal projection matrix that is
constructed by setting the kth element of the Nd -dimensional identity matrix to
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∆c

(∆c +∆ f )/2

e

∆ f

PECPEC h

Figure 4.2: A one-dimensional refinement scheme with coarse step ∆c , fine step ∆ f and
average-sized transition step. Explicitly and implicitly updated magnetic fields are denoted
by full and empty circles respectively. Electric field samples in between two implicitly up-
dated magnetic field samples are involved in the implicit update, i.e. the matrix that needs
to be inverted has rank 11. The Courant limit solely depends on ∆c .

zero with d ∈ {x , y, z}. Now, (4.44) changes to

‖C̃ P‖2
2 ≤

∆t

2

‖K P‖2
2

ǫminµmin
. (4.50)

Because of the specific structure of P, essentially being a projection matrix, one
can see that

K P =






0 −INx
⊗ Iny

⊗ Kz INx
⊗ Ky ⊗ Inz

Inx
⊗ INy

⊗ Kz 0 −Kx P i
x
⊗ INy

⊗ Inz

−Inx
⊗ Ky ⊗ INz

Kx P i
x
⊗ Iny

⊗ INz
0




 P . (4.51)

Consequently, submultiplicativity implies that (4.42) gives rise to

‖K P‖2
2 ≤ ‖Kx P i

x
‖2

2 + ‖Ky‖
2
2 + ‖Kz‖

2
2 . (4.52)

Since P i
x

directly acts on δx , we succeeded in eliminating δx |i,i from the stability
limit, and δx ,min in (4.47) is replaced by the smallest step amongst those that were
not eliminated via implicitization. If we would like to eliminate δ⋆

x
|i,i , it suffices to

implicitize all H y and Hz with x-index i − 1 and i, because the central-difference
operator Dx is a bidiagonal matrix. This means that the one-dimensional refine-
ment scheme illustrated in Fig. 4.2 is stable under the Courant limit imposed by
the coarse step ∆c , if the magnetic fields indicated by empty circular markers are
implicitly updated. Note that the dual Newmark scheme with implicitization of the
electric instead of the magnetic fields would reduce the rank of the occurring ma-
trix by two, because the transition step in the dual grid can be eliminated directly
instead of eliminating the surrounding steps in the primary grid.

4.3.2 CN implicitization

The conditional stability of the local application of Crank-Nicolson time integration
will be proven in two different ways. The first one is inspired by the previous
analysis for Newmark implicitization. The second one is built on the insights of [1].
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It forms the bridge to the third and last implicitization technique which locally
applies the leapfrog ADI method in preferable directions. Both arrive at the same
conclusion.

First stability analysis

The z-transform of the discrete-time system (4.4), again in the lossless case, yields
the system matrix

Acn =




(z − 1)Mǫ

∆t −C I1

z I2 C T (z − 1)
Mµ
∆t



 . (4.53)

where

I1|i,i =

{

1

(z + 1)/2
I2|i,i =

{

1 if ĥi is updated explicitly
(1+ z−1)/2 if ĥi is updated implicitly

(4.54)

The steps in Section 4.3.1 that led to (4.15), can be repeated yielding the charac-
teristic equation

det
�

Ine
+ 4z(z − 1)−2 C̃ I1I2 C̃ T

�

= 0 . (4.55)

Somewhat surprisingly, this characteristic equation is identical to the one of New-
mark implicitization since I1I2 = I. Hence, the exact same conclusions can be
drawn for the relaxation of the Courant limit using CN implicitization as was the
case for Newmark implicitization.

Second stability analysis

The update equation (4.4), including losses but omitting the source term, can be
rewritten as

(Ecn + Fcn) x̃ n+1 = (Ecn − Fcn) x̃ n , (4.56)

with decomposed update matrices

Ecn =

�
Ine

C̃ P

P C̃ T Inh

�

(4.57)

Fcn =

� 1
2 M−1

ǫ Mσ −C̃

C̃ T 0

�

, (4.58)

new state vectors

x̃ =

�
ẽ

h̃

�

=

�
M1/2
ǫ ê

M1/2
µ ĥ

�

, (4.59)
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and the modified curl C̃ specified in (4.13). According to [1], stability is assured if
the matrix Ecn is positive definite and Fcn+ F T

cn is positive semi-definite. The latter
is trivially true for physically existing materials. Further, the theory presented in
[1, Eq. 22-30] shows that Ecn is positive definite if the time step satisfies (4.34).
Rather unexpectedly, losses do not alter the stability limit.

Both stability analyses of CN implicitization lead to the same conclusion, being
that — similar as was the case for Newmark implicitization — proper choices of I1

and I2 or, equivalently, of P, i.e. well-chosen implicitization, leads to a relaxation
of the stability limit.

4.3.3 ADI implicitization

We start this section by presenting a rather atypical stability proof of the traditional
leapfrog ADI method, again inspired by [1]. Next, we use the acquired insights to
construct a leapfrog ADI formalism that allows implicitization in preferable direc-
tions. Finally, the novel leapfrog ADHIE method is used for local implicitization of
the conventional FDTD method.

Stability analysis of leapfrog ADI-FDTD

The standard ADI-FDTD method splits the curl incidence matrix (3.16) into a sum
C = C1 + C2 with the two contributions given by

C1 =





0 0 INx
⊗Dy⊗Inz

Inx
⊗INy

⊗Dz 0 0

0 Dx⊗Iny
⊗INz

0



 (4.60)

C2 =





0 −INx
⊗Iny

⊗Dz 0

0 0 −Dx⊗INy
⊗Inz

−Inx
⊗Dy⊗INz

0 0



 . (4.61)

The update equation (4.6), without sources and with α= 1, is rewritten as

(Eadi + Fadi) x̃ n+1 = (Eadi − Fadi) x̃ n , (4.62)

with decomposed update matrices

Eadi =

�
Ine
+ C̃1C̃ T

1 (C̃1 + C̃2)

(C̃1 + C̃2)
T Inh

+ C̃ T
2 C̃2

�

(4.63)

Fadi =

� 1
2 M−1

ǫ Mσ −(C̃1 + C̃2)

(C̃1 + C̃2)
T 0

�

, (4.64)
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and state vector x̃ defined in (4.59). The curl parts have undergone the same
left- and right-multiplication as the total curl in (4.13). Since clearly Fadi + F T

adi is
positive semi-definite, stability is guaranteed if Eadi is positive definite. Note that
Eadi can be factorized into Eadi =QTQ with

Q =

�
Ine

C̃2

C̃ T
1 Inh

�

. (4.65)

Consequently,

v T Eadi v = v TQTQ v = ‖Q v‖2
2 ≥ 0 ∀ v 6= 0 . (4.66)

In other words, Eadi is positive semi-definite. In theory, linear instability could still
occur for infelicitous time steps which render a singular matrix Eadi, corresponding
to the pole z = −1. Even if this theoretical case exists, in practice, it is very un-
likely to exactly pick such an unstable time step within the range of the machine
precision. Therefore, as also reported in literature [8], the traditional leapfrog
ADI-FDTD method may indeed be considered as unconditionally stable.

Leapfrog ADHIE-FDTD to implicitize selected dimensions

Suppose that we want to implicitize the x-dimension but not the y- and z-dimension,
then we propose the following incomplete curl splitting

Cx1 =

� 0 0 0

0 0 0

0 Dx⊗Iny
⊗INz

0

�

(4.67)

Cx2 =

�
0 0 0

0 0 −Dx⊗INy
⊗Inz

0 0 0

�

(4.68)

Cyz =





0 −INx
⊗Iny

⊗Dz INx
⊗Dy⊗Inz

Inx
⊗INy

⊗Dz 0 0

−Inx
⊗Dy⊗INz

0 0



 , (4.69)

such that the total curl is given by C = Cx1+ Cx2+ Cyz . We now insert these three
curl parts into (4.6) and proceed as in the previous paragraph. The only change
to (4.62), is a modified matrix Eadi, given by

Eadi =

�
Ine
+ 1
α2 C̃x1C̃ T

x1 (C̃x1 + C̃x2 + C̃yz)

(C̃x1 + C̃x2 + C̃yz)
T Inh

+ 1
α2 C̃ T

x2C̃x2

�

=

�
αIne

1
α C̃x2

1
α C̃ T

x1 αInh

�T

︸ ︷︷ ︸

QT
x

�
αIne

1
α C̃x2

1
α C̃ T

x1 αInh

�

︸ ︷︷ ︸

Q x

+

�
(1−α2)Ine

C̃yz

C̃ T
yz

(1−α2)Inh

�

︸ ︷︷ ︸

Q yz

. (4.70)
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QT
x
Q x is positive semi-definite. Consequently, stability is ensured if Q yz is positive

definite, which, along the lines of [1, Eq. 22-30], is found to be the case if

‖C̃yz‖2 < 1−α2 . (4.71)

This is the 2-D Courant limit in the yz-plane reduced by a factor 1 − α2. Based
on the conventional leapfrog ADI scheme, the most intuitive value for α would be
one. In this case, however, (4.71) does not yield a valid upper bound for the time
step. The scalar α poses a trade-off: the smaller α, the larger the maximum time
step, but the more splitting error is introduced into the ADHIE scheme. Compared
to the splitting error of the traditional split-step and one-step leapfrog ADI schemes
[9, Eq. 11], the overall splitting error of our ADHIE scheme is heavily reduced due
to the increased sparsity of the split curl parts Cx1 and Cx2. Most importantly,
(4.71) shows that all x-dependence is eliminated from the stability limit.

ADHIE local implicitization to relax the stability limit

Suppose we want to locally refine our 3-D grid in the x-direction. In contrast to
the above, the difficulty is now that Cx1 and Cx2 do not encompass the whole
x-dimension of the grid. Hence, the incomplete curl splitting looks as follows:

Cx1 =





0 0 0

0 0 0

0 Dx (Inx
−Px )⊗Iny

⊗INz
0



 (4.72)

Cx2 =





0 0 0

0 0 −Dx (Inx
−Px )⊗INy

⊗Inz

0 0 0



 (4.73)

Cyz =





0 −INx
⊗Iny

⊗Dz INx
⊗Dy⊗Inz

Inx
⊗INy

⊗Dz 0 −Dx Px⊗INy
⊗Inz

−Inx
⊗Dy⊗INz

Dx Px⊗Iny
⊗INz

0



 (4.74)

Px is the diagonal projection matrix that is zero if the corresponding primary step
needs to be eliminated from the stability limit. It is readily observed that stability
is again guaranteed if (4.71) is satisfied, but this time with ‖C̃yz‖2 derived from
(4.74). Consequently, a proper choice of Px can lead to a relaxation of the tradi-
tional Courant limit without having to implicitize the entire x-dimension.

4.4 Numerical validation: conservation of discrete

energy

Consider the example depicted in Fig. 4.1(a), where a grid with 12 × 8 × 8 cells
and main step size ∆ = 2.5 mm is locally refined in the x-dimension by a factor
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ten as follows:

δx =∆diag
�

1,1, 1,1,
1

10
,

1

10
,

1

10
,

1

10
, 1,1,1, 1
�

(4.75)

δy = δz =∆diag(1, 1,1, 1,1, 1,1, 1) . (4.76)

The dual nodes are placed halfway the primary nodes, i.e.

δ⋆
x
=∆diag
�

1,1, 1,
11

20
,

1

10
,

1

10
,

1

10
,
11

20
,1, 1,1
�

(4.77)

δ⋆
y
= δ⋆

z
=∆diag(1,1, 1,1, 1,1, 1) . (4.78)

The most delicate case where all energy is trapped inside a PEC cavity filled with
vacuum is analyzed. The cavity is excited by randomly initializing one of the elec-
tric field components to 1 V/m. Each simulation performs one million iterations
and records the discrete energy

qn =
1

2

�

ẽT
n
ẽn + h̃

T

n
h̃n

�

, (4.79)

with ẽ and h̃ defined in (4.59). Electric and magnetic energy are not necessarily
collocated in time. In contrast to (3.79), the energy measure (4.79) can only have
positive contributions from every electromagnetic field sample, such that diverging
fields give rise to a diverging energy. The goal of the proposed implicitization
techniques is to arrive at an efficient and flexible update scheme that preserves this
energy measure when the time step equals the traditional Courant limit (3.77) of
the coarse part of the grid, i.e.

∆tcoarse =
∆

c0

p
3
= 4.8145319ps . (4.80)

4.4.1 Fully explicit

For conventional leapfrog time-stepping, the explicit Courant-like limit (4.47) and
the numerically computed norm-based limit (4.21) are respectively given by

∆t fe
expl = 0.8329849 ps (4.81)

∆t fe
num = 0.8890071 ps . (4.82)

As expected, the submultiplicativity (4.45) used to find (4.47) gives rise to a 6.7%
smaller maximum time step. Fig. 4.3 shows the discrete energy (4.79) normalized
to the initial energy q0 for three different time steps close to ∆t fe

num. For a time
step slightly below ∆t fe

num, the simulation remains stable (Fig. 4.3(a)). For a time
step slightly above ∆t fe

num, the simulation is exponentially unstable (Fig. 4.3(c)).
For a time step that is exactly ∆t fe

num, the simulation is polynomially unstable
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Figure 4.3: Normalized discrete energy qn/q0 per iteration for conventional leapfrog time-
stepping with ∆t = (1 + κ)∆t fe

num. (a) For κ = −10−6, the total amount of energy in the
cavity is conserved. (b) For κ = 0, the energy increases slower than exponentially. (c) For
κ= 10−6, the energy grows exponentially.

(Fig. 4.3(b)). This is in line with the algebraic stability analysis in Section 4.3.1.
Note that the energy is not conserved from one iteration to the next, as was also
observed in e.g. [11]. Fig. 4.3 confirms that (4.21) is the exact stability limit for
nonuniform grids. Fig. 4.4 shows the relative error of the energy measure (3.79),
which is conserved between two iterations, independently of the time step. Expo-
nential instability is clearly observed due to round-off errors (Fig. 4.4(c)). How-
ever, the more subtle polynomial instability is well hidden by this energy measure
(Fig. 4.4(b)), but is nevertheless still present. Hence, at this point, it needs to be
stated that without round-off errors, i.e., with infinite floating-point precision, the
energy measure (3.79) would not reveal the instabilities for time steps that are
not below ∆t fe

num. The poles of the FDTD system are plotted in Fig. 4.5. They are
numerically determined by constructing the amplification matrix and computing
its eigenvalues with Matlab’s built-in function eig. As expected, all poles of the
lossless cavity are located on the unit circle. The number of poles inside the disk
with center z = 1 and a radius of thousand times the machine precision is 1306,
which is found to be in exact agreement with (4.35). The poles also accumulate
at z = −1, because the time step coincides with the exact stability limit. For time
steps exceeding (4.82), the poles start diverging along the real axis. They come
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Figure 4.4: Relative error of the discrete energy wn compared to the initial energy w0

per iteration for conventional leapfrog time-stepping with ∆t = (1 + κ)∆t fe
num. (a) For

κ = −10−6, the total amount of energy in the cavity is conserved from one iteration to the
next aside from numerical noise that is of the order of magnitude of the machine precision.
(b) For κ = 0, the energy is still conserved even though the fields are diverging, which
causes the numerical noise to grow gradually due to round-off errors in the finite-sized
floating-point numbers. (c) For κ = 10−6, the energy is conserved, despite the diverging
fields, until the round-off errors cause exponential instability.

-1 0 1

-1

0

1

Figure 4.5: Location of the poles in the complex plane for the fully explicit simulation with
∆t =∆t fe

num.
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Figure 4.6: Normalized discrete energy qn/q0 per iteration for Newmark implicitization
with ∆t = (1 + κ)∆tcn

num. (a) For κ = −10−6, the total amount of energy in the cavity is
conserved. (b) For κ= 0, the energy increases slower than exponentially. (c) For κ= 10−6,
the energy grows exponentially.

in pairs: one left and one right of z = −1. The former category of poles causes
numerical instability.

4.4.2 Newmark and CN implicitization

Due to the high degree of resemblance between the Newmark and the Crank-
Nicolson implicitization techniques, they are treated simultaneously in this section.
Both techniques use a projection operator of the form (4.49) eliminating the step
sizes of (4.75) and (4.77) that are smaller than ∆. For our example, P i

x
in (4.49)

is given by

Px = diag
�

1,1, 1,0, 0,0, 0,0, 0,1, 1,1
�

. (4.83)

Both implicitization techniques have an identical maximum time step specified by
(4.34), which is numerically determined to be

∆tcn
num = 5.0418099 ps . (4.84)

The late-time behavior of the normalized energy (4.79) is studied in Fig. 4.6 and
Fig. 4.7 for small perturbations of (4.84) and confirms that this is indeed the exact
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Figure 4.7: Normalized discrete energy qn/q0 per iteration for Crank-Nicolson implicitiza-
tion with ∆t = (1+ κ)∆tcn

num. (a) For κ = −10−6, the total amount of energy in the cavity
is conserved. (b) For κ = 0, the energy is still conserved but shows large fluctuations,
indicating nearly unstable behavior. (c) For κ= 10−6, the energy grows exponentially.
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Figure 4.8: Location of the poles in the complex plane for ∆t = ∆tcn
num. (a) Newmark

implicitization, where the non-physical zero pole of the quadratic eigenvalue problem is
omitted. (b) CN implicitization.
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Figure 4.9: Normalized discrete energy per iteration for ADI implicitization with different
time steps: (a) ∆t =∆tadi

num, (b) ∆t = 1.30∆tadi
num, and (c) ∆t = 1.33∆tadi

num.

upper bound on the time step to guarantee Lyapunov stability. As a side note, the
spectra of both amplification matrices (Fig. 4.8) are identical, as could be expected
from our stability analysis in Section 4.3.2. Compared to the conventional FDTD
method (Fig. 4.5), the dynamic poles are pushed towards z = −1 due to the larger
time step. All three spectra have the same number of static modes. In conclusion,
both implicitization techniques render a stable system for the pursued coarse time
step (4.80).

4.4.3 ADI implicitization

We adopt the split curl stencil (4.72)–(4.74) with projection operator (4.83). For
this example, the leapfrog ADHIE update scheme employs α = 0.5. A numerical
estimation of the maximum time step (4.71) is then given by

∆tadi
num = 3.7813574 ps . (4.85)

The small steps are clearly eliminated from the time step since (4.85) is four times
larger than (4.82), but unfortunately (4.85) is smaller than the desired time step
(4.80). Fig. 4.9 confirms that the local implicitization technique is stable, but also
shows that the upper bound (4.71) is an underestimation of the exact upper bound.
Numerical experiments to determine the actual upper bound (e.g. Fig. 4.10) re-
veal that, for this case, the upper bound (4.85) is underestimated by a factor of
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Figure 4.10: Pole tracking for ADI implicitization with different time steps: (a)∆t =∆tadi
num,

(b) ∆t = 1.30∆tadi
num, and (c) ∆t = 1.33∆tadi

num.
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circa 1.3. Consequently, the system also remains stable for the desired time step
(4.80). This can be explained as follows. The maximum time step allowed by
(4.71) corresponds to λmin(Q yz) = 0 but not necessarily to λmin(Q

T
x
Q x) = 0. There

is additional margin hidden in the latter, since it is known that [13, Thm. 8.4.11]

λmin(Eadi)≥ λmin(Q
T
x
Q x) +λmin(Q yz) . (4.86)

4.5 Conclusion

The stability of three different local implicitization techniques was rigorously proven
for nonuniform tensor-product grids with isotropic, inhomogeneous, possibly lossy
media enclosed in a PEC box. This resulted in an exact norm-based upper bound
for the time step in case of Newmark and Crank-Nicolson implicitization, and a
more loose upper bound for ADI implicitization. Also, an explicit, Courant-like
maximum time step was determined for fully explicit, nonuniform grids. Among
the proposed methods, Newmark implicitization is the most computationally ex-
pensive technique, as it has a three-level update scheme. The ADI implicitization
method is the most efficient one, because, no matter how many dimensions are
implicitized, the occurring matrices are tridiagonal and scale with only one dimen-
sion. However, it suffers from a splitting error. Fortunately, for the newly proposed
leapfrog ADHIE-FDTD method, this splitting error is heavily reduced compared to
the traditional (leapfrog) ADI-FDTD method since the split curl parts are more
sparse.

Possible future work includes the extension of the stability analysis to perfectly
matched layers (PMLs). By means of a final, short discussion on this matter, it is
worth mentioning that our z-domain stability analysis is well-suited to analyze the
convolutional PML as the discrete convolution is transformed to a simple multi-
plication in the z-domain. Multiplying the step sizes by the z-domain stretching
factors, our stability analysis can be repeated up to formula (4.18), but then the
z-dependence of the step size matrices inside the modified curl operator (4.13)
gives rise to a nonlinear eigenvalue problem with complex (instead of real) sym-
metry, which strongly impedes further conclusions about the location of z (or ζ)
in the complex plane.

4.6 Addendum: CN implicitization of subgrids

The z-domain stability analysis from this chapter is repeated for nonuniform sub-
gridding with local (semi-)implicit Crank-Nicolson time integration. Thereto, con-
sider a nonuniform coarse grid that is locally overlapped by a nonuniform fine
subgrid, whose outer edges coincide with coarse primary edges (see Fig. 4.11 in
the uniform 2-D case). Along the interface, coarse-grid electric fields are coupled to
fine-grid magnetic fields. If the overlapped coarse part would be filled with perfect
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Figure 4.11: Sketch of a 2-D subgrid. The coarse-grid electric and magnetic fields are
denoted by large arrows and dots respectively, the subgrid electric and magnetic fields by
small arrows and dots. Coarse-grid electric fields are symmetrically coupled to fine-grid
magnetic fields: the coarse-to-fine coupling weights (blue) equal the fine-to-coarse coupling
weights (red) apart from a normalization factor 3. If there is overlap, the coarse-grid electric
fields also couple to the coarse-grid magnetic field that is “underlying” the subgrid. This
coupling coefficient is zero if the coarse cell “underlying” the subgrid is filled with PMC
material.

magnetic conductors (PMCs) having infinite permeability, the resulting scheme is
equivalent to a conventional grid stitching scheme without overlap. PMCs can only
enhance the stability since they introduce zeros in the modified curl C̃ defined in
(4.13), which can only reduce its norm. Of course, for the subgridding scheme, the
curl incidence matrix C occurring in (4.13) is not (3.16), but the same principle
holds for a general matrix C . Hence, stability with overlap is a sufficient condition
for stability without overlap. This insight allows us to detach coarse-grid curl Cc,
fine-grid curl Cf and coupling operator S from each other, such that, for the sub-
gridding scheme with overlap, the leapfrog update equation reads
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. (4.87)

Here, coarse-grid (main grid) and fine-grid (subgrid) variables and operators are
highlighted by ‘c’ and ‘f’ subscripts respectively. The coarse-to-fine coupling matrix
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is the transposition and normalization of the fine-to-coarse coupling matrix. The
factor a embodies this normalization. Its scalar nature implies that the refinement
is uniform and isotropic. This FDTD scheme is stable if and only if the poles of its
transfer function matrix or, equivalently, the roots z of the characterstic equation,

det











(z − 1)
Mǫ,c
∆t −Cc −S

z C T
c (z − 1)

Mµ,c

∆t

(z − 1)
Mǫ,f
∆t −Cf

za ST z C T
f (z − 1)

Mµ,f

∆t











= 0 , (4.88)

do not exit the unit circle. Furthermore, repeated poles lying on the unit circle
must have linearly independent eigenvectors to avoid polynomially growing so-
lutions. A good subgridding method does not alter the time step of the original
grid. Therefore, the fields inside the subgrid and the fields involved in the inter-
facing should be updated implicitly by means of an unconditionally stable method,
here chosen to be the Crank-Nicolson method. Hence, electric-field implicitization
operators similar to (4.54) are added to both the fine-grid curl and the coupling
operator occurring in (4.88), which yields

det











(z − 1)
Mǫ,c
∆t −Cc −I1,s S

z C T
c (z − 1)

Mµ,c

∆t

(z − 1)
Mǫ,f
∆t −I1,f Cf

za STI2,s z C T
f I2,f (z − 1)

Mµ,f
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= 0 . (4.89)

Along the lines of (4.12), the roots of (4.89) are identical to those of

det










(z − 1)Ine ,c −2 C̃c −2I1,s S̃

2z C̃ T
c (z − 1)Inh,c
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a I1,f C̃f

2z S̃TI2,s
2zp

a
C̃ T

f I2,f (z − 1)Inh,f










= 0 , (4.90)

with

C̃c =
∆t

2
M−1/2
ǫ,c Cc M−1/2

µ,c (4.91)

C̃f =
∆t

2
M
−1/2
ǫ,f Cf M

−1/2
µ,f (4.92)

S̃ =
p

a
∆t

2
M−1/2
ǫ,c S M

−1/2
µ,f . (4.93)
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Since the determinant is invariant under block permutation, we can simplify the
problem by locating the roots of

det
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−2
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2z C̃ T
c (z − 1)Inh,c










= 0 , (4.94)

which, after applying the partitioned-determinant rule [13, Eq. 2.8.13], yields

det

�
Ine ,c +

4z
(z−1)2 C̃c C̃ T

c − 2
z−1 I1,s S̃

2z
z−1 S̃TI2,s Inh,f +

4z
(z−1)2 C̃ T

f I2,fI1,fC̃f

�

= 0 , (4.95)

where we discarded the static solutions. We now substitute the bilinear transfor-
mation (4.16), which maps |z| ≤ 1 to Re(ζ) ≥ 0. This gives rise to the quadratic
eigenvalue problem (QEP)

(ζ2 Q2 + ζQ1 +Q0)u = 0 , (4.96)

with

Q2 =QT
2 =

�
C̃c C̃ T

c 0

0 C̃ T
f C̃f

�

(4.97)

Q1 = −QT
1 =

�
0 S̃

−S̃T 0

�

(4.98)

Q0 =QT
0 =

�
Ine ,c − C̃c C̃ T

c Ps S̃

S̃T Ps Inh,f − C̃ T
f Pf C̃f

�

. (4.99)

The diagonal projection operators Pf and Ps are analogous to (4.3). A QEP with
this particular symmetry is well-known in mechanical engineering, where it is also
called gyroscopic. Generally, its spectrum consists of quadruplets that are sym-
metric with respect to the real and the imaginary axis. In the more specific case
that Q0 is positive definite, the eigenvalues are known to be purely imaginary and
semisimple [19]. With respect to our Maxwellian eigenmode analysis, this conser-
vative behavior is exactly what we would expect from a passive, lossless system.
Indeed, if Q0 is regular, which is a nontrivial condition that will be discussed later
on, the QEP (4.96) can be linearlized to

(ζ L1 + L0) v = 0 , (4.100)
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with

L1 = LT
1 =

�
Q2 0
0 Q0

�

(4.101)

L0 = −LT
0 =

�
Q1 Q0

−Q0 0

�

, (4.102)

and

v =

�
ζu

u

�

. (4.103)

Left-multiplying (4.100) with the Hermitian transpose of v and superposing the
Hermitian-transposed equation, yields

Re(ζ) v† L1 v = 0 ∀ v 6= 0 . (4.104)

As a matter of fact, (4.104) readily shows that the eigenvalues ζ are purely imag-
inary if

v† L1 v 6= 0 ∀ v 6= 0 . (4.105)

With λi and v i the eigenvalues and eigenvectors belonging to L1 respectively, the
spectral theorem for symmetric matrices states that

L1 =
∑

i

λi v i v T
i

, (4.106)

such that (4.105) translates to

v† L1 v =
∑

i

λi ‖v†v i‖
2
2 6= 0 ∀ v 6= 0 . (4.107)

Since this inequality must hold for any non-zero vector v , (4.105) can only be sat-
isfied if L1 is either positive or negative definite. Given the fact that Q2 and Q0 in-
evitably have some positive eigenvalues, positive definiteness is the rule. Note that
Q2 is “formally” positive definite, being the product of a matrix and its transposi-
tion, whose zero eigenvalues correspond to the static solutions that were discarded
in (4.95). For Q0, real symmetric positive definiteness, i.e.

uTQ0 u > 0 ∀ u 6= 0 , (4.108)

is not trivially satisified. If Q0 is decomposed into Q0 = I − R, the requirement
(4.108) leads to [13, Eq. 8.4.3]

max
u 6=0

uT R u

‖u‖2
2

= λmax(R)< 1 . (4.109)

Since

R=

�
C̃c C̃ T

c 0

0 C̃ T
f Pf C̃f

�

−
�

0 Ps S̃

S̃T Ps 0

�

, (4.110)
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the triangle inequality [13, Eq. 8.4.15] yields a sufficient condition for the numer-
ical stability of the locally implicitized subgridding scheme:

max
�

‖C̃c‖
2
2 , ‖Pf C̃f‖

2
2

�

+ ‖Ps S̃‖2
2 < 1 . (4.111)

All occurring operators are defined in (4.91)–(4.93). In case the subgrid and cou-
pling are fully implicit, (4.111) reduces to the coarse-grid Courant limit

‖C̃c‖
2
2 < 1 . (4.112)

In case of hybrid implicit-explicit subgridding, i.e., if the projectors Pf and Ps are
neither zero nor one, a reduced time step limit can be found with (4.111). Note
that, due to the use of the triangle inequality and the overlap, (4.111) can be a
large overestimation of the exact time step limit if main grid and subgrid are up-
dated fully explicitly.
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5
3-D Cell-by-Cell Subgridding

based on Finite Elements

“I suppose it is tempting,

if the only tool you have is a hammer,

to treat everything as if it were a nail.”

Abraham Maslow

⋆ ⋆ ⋆

The finite-element-based subgridding algorithm for the 3-D FDTD method pro-

posed in [1] is shown to be closely related to the finite integration technique.

This new insight permits the straightforward derivation of coupling coefficients

for complex configurations without the need for arduous finite-element pre-

processing. The result is a flexible cell-by-cell subgridding algorithm that al-

lows different refinement ratios without buffer zone and that preserves highly

desired physical conservation properties on the discrete level. Its accuracy is

validated by the S-parameter analysis of a rectangular waveguide with a ridge

discontinuity.
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5.1 Introduction

In the past quarter century, a considerable amount of FDTD research has been de-
voted to subgridding, i.e. the nesting of structured grids to judiciously reduce the
discretization error. Obviously, the interfacing between main grid and subgrid is
the crux of the problem. Most of the proposed subgridding methods use ad hoc
interpolation rules. As a consequence, numerical artifacts such as spurious reflec-
tions, mainly arising from the corners of the interface, pollute the solution. In addi-
tion, numerical instabilities may ensue. Among the few exceptions, the work pre-
sented in [1] provides a more rigorous and systematic methodology to FDTD sub-
gridding. Based on the finite-element time-domain method, the interpolation rules
are carefully derived from first principles according to the differential-geometric
principles that underpin Maxwell’s equations. Besides the discrete fulfillment of
the correct field and flux continuity, the resulting scheme guarantees the conserva-
tion of energy and charge, features inherent spatial reciprocity, and appropriately
takes care of the interface corners. Two drawbacks, however, are the extra pro-
gramming effort required to construct the finite-element restriction operators and
the implicitness of the resulting coupling scheme. Therefore, in [2, p.77-78], the
subgrid was mass lumped to enable explicit updates, and formulas for the coupling
weights were heuristically derived for some specific cases. However, for more gen-
eral configurations, the derivation of such heuristic coupling weights is infeasible.

In this chapter, it will be demonstrated that more general coupling coefficients
can be generated with the help of the finite integration technique [3]. As such,
we bridge the gap between three prominent computational electromagnetic time-
domain methods: FDTD, FETD and FIT. Section 5.2 describes the finite-integration
formulation of the subgridding method and provides implementation details. Sec-
tion 5.3 verifies the accuracy of the proposed method by computing the transmis-
sion S21 of a rectangular waveguide with an E-step ridge discontinuity. Finally,
Section 5.4 lists some concluding remarks and some perspectives for future work.

5.2 From finite elements to finite integrations

On the one hand, as explained in Section 3.3.3, the FDTD method can be recog-
nized as a special case of the FETD method with lowest-order mixed-order Whitney
elements on a hexahedral grid and mass lumping of the Hodge star operators. The
constant-tangent/linear-normal and linear-tangent/constant-normal functional be-
havior of the Whitney one- and two-forms reflects the correct boundary conditions
of the electric field and magnetic flux density respectively. On the other hand, as
pointed out in Section 3.3.2, the FDTD method can also be perceived as a special
case of the FIT on a hexahedral grid. Instead of fields and flux densities, the FIT
uses voltages and fluxes, i.e. line and surface integrals, which are related to one-
and two-forms respectively [3]. Since the same fundamentals from differential
geometry that characterize the FETD method also underpin the FIT, it is not sur-
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prising that some aspects of the subgridding method proposed in [1] can be cast
in the FIT framework.

The relation between the FETD and the FDTD method is particularly interesting
with respect to the development of subgridding schemes that obey the correct field
and flux continuity. Since the space of pulses and triangles with step ∆ resides in
the space of pulses and triangles with step ∆/r (with r ∈ N), restriction operators
Re and Rb can be constructed that relate coarse to fine Whitney elements:

ŵ 1
c = Re ŵ 1

f
ˆ̂w 2

c = Rb
ˆ̂w 2

f
. (5.1)

These are rectangular matrices with full row rank. Starting from a completely fine
grid, we can now coarsen the parts whose resolution is not crucial with regard to
the accuracy of the numerical solution. Alternatively, starting from two separate
grids, the restriction operators permit to assemble them. The key finding in [1]
is the coarsened/assembled/restricted version of the update equations (3.51) and
(3.54). More specifically,

∂t
ˆ̂b(t) = −C T

r
ê(t) (5.2)

∂t ê(t) = [⋆ǫ]
−1
r

Cr [⋆µ−1]r
ˆ̂b(t) . (5.3)

with

Cr = Re C Rb

�

RbRT
b

�−1
(5.4)

[⋆ǫ]r = Re[⋆ǫ]R
T
e

(5.5)

[⋆µ−1]r = Rb[⋆µ−1]RT
b

(5.6)

Here, Cr denotes the curl incidence matrix of the grid after restriction. [⋆ǫ] and
[⋆µ−1] are the Hodge matrices (3.55)–(3.56), which are diagonalized by means
of trapezoidal integration in order to retrieve the explicit FDTD method on the
completely fine grid. [⋆ǫ]r and [⋆µ−1]r are the restricted counterparts, which are
not necessarily diagonal anymore. (5.2)–(5.3) is only valid if all nearest electric
fields circulating a magnetic flux that is eliminated by restriction, are eliminated as
well. Clearly, the restricted set of equations (5.2)–(5.3) features spatial reciprocity
by construction, which is critical for the subgrid’s numerical stability. Indeed, from
our earlier stability analysis in Chapter 4, it is easily seen that (5.2)–(5.3) is stable
for

∆t <
2

‖[⋆ǫ]
−1/2
r Cr [⋆µ−1]

1/2
r ‖2

. (5.7)

Although (5.2)–(5.6) is of no further importance for the actual implementation
of the final subgridding algorithm, it is an attractive form to deduce conservation
properties (see [1]).

In the general 3-D case, (5.2)–(5.6) is not explicit. If the coarse Whitney elements
are chosen to form an interpolatory basis, that is, if every basis function is zero in all
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anchor points except for one, then it is always possible to diagonalize the restricted
Hodges (5.5)–(5.6) by judiciously introducing zeros on the diagonal of the original
Hodge, hereby increasing the remaining diagonal elements as to preserve the trace
[2, p. 74-76]. The resulting subgridding scheme is fully explicit and still possesses
the same conservation properties. Although the chosen basis functions only yield
first-order accuracy along the subgrid boundaries, quadratic supraconvergence is
observed in practice. In [2, p. 77-78], coupling weights explicitly depending on the
refinement ratio are listed for some specific subgridding configurations, namely a
straight interface, a convex corner and a concave corner. The key finding of this
chapter is that these coefficients can be interpeted in terms of finite integrations,
such that more complex subgridding configurations can be build easily.

We start from the most simple configuration where only one cell is refined by the
same factor rx = ry = rz = r in all three dimensions. This is the convex (or “ex-
terior”) corner in [2, p. 77-78]. For simplicity, we consider a uniform main grid
with cell size ∆x =∆y =∆z =∆ and a homogeneous medium with permittivity
ǫ and permeability µ. For each of the twelve primary edges of the refined cell,
there is a non-trivial update equation for the associated coarse-grid electric field.
For example, in case of the edge depicted in Fig. 5.1, where the refinement ratio
is chosen to be r = 5, the update equation of Ez , with “half-integer notation”, is

ǫµ

∆t

�

Ez |
n+1
i, j,k+ 1

2

− Ez |
n

i, j,k+ 1
2

�

=

αn By |
n+ 1

2

i+ 1
2 , j,k+ 1

2

−αs By |
n+ 1

2

i− 1
2 , j,k+ 1

2

+αw Bx |
n+ 1

2

i, j− 1
2 ,k+ 1

2

−αe Bx |
n+ 1

2

i, j+ 1
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2

(5.8)

+
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2r , j+1− p
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− β p
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Bx |
n+ 1

2

i+1− p

r , j+ 1
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q

r

�

,

with heuristically determined coefficients [2, p.77-78]

αn = αe =
2r2 + 2r

3r2 + 2r − 1

1

∆
=

75

105

1

∆
(5.9)

αs = αw =
4r2

3r2 + 2r − 1

1

∆
=

125

105

1

∆
(5.10)

β p
ne
= β p

en
=

4p/r

3r2 + 2r − 1

1

∆
=

p

105

1

∆
(5.11)

For r = 1, the double summation in (5.8) drops out and (5.9)–(5.10) reduce to the
standard FDTD coefficients. Although exhaustively derived from finite elements,
the coarse-grid coefficients α can be simply interpeted in terms of finite integra-
tions. They are the ratio of the partial lengths and the (pink) area indicated in
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Figure 5.1: Update coefficients for the coarse-grid electric field along a subgrid corner
with refinement ratio r = 5. The triangles denote the fine- and coarse-grid magnetic flux
densities of interest. The remaining unknowns and grid lines are omitted to enhance the
readability. Although only the x y-plane is shown, the actual geometry is 3-D and the upper-
right cell is refined in the z-dimension. The subscripts refer to the cardinal directions north,
east, south and west.

Fig. 5.1. More specifically,

αn = ln/A (5.12)

αe = le/A (5.13)

αs = ls/A (5.14)

αw = lw/A (5.15)

with

ln = le =∆ (1− v) (5.16)

ls = lw =∆ (5.17)

A=∆2 (1− v2) , (5.18)

where we used

v =
1

2
− 1

2r
. (5.19)

It is left as an exercise to the reader to verify that, indeed, the FIT theory put
forward in Section 3.3.2, with partial edges and partial faces, justifies the α coef-
ficients. Moreover, these coefficients could also be retrieved by filling the subgrid
with perfect magnetic conducting material and then applying the Dey-Mittra (DM)
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conformal technique [4]. As is the case for DM, the α coefficients are most effi-
ciently implemented by making ǫ and µ inhomogeneous, such that the original
FDTD update stencil is preserved.

The fine-grid coefficients are given by

β p
ne
= p/r3 ×∆/A . (5.20)

Since the fine-grid flux densities are summed over the z-dimension, an explanation
for these coefficients solely based on finite integrations is impossible. Some averag-
ing should come into play. Indeed, the ratio of partial length ∆/r and partial area
A are again clearly observed in (5.20), and the remaining factor p/r2 constitutes
a uniform averaging over the z-dimension and a linearly weighted averaging over
the x- or y-dimension depending on the Cartesian component. As such, it upholds
the linear-tangent/constant-normal nature of the Whitney two-forms used in the
finite-element derivation.

Update equations analogous to (5.8) can be constructed for the other electric field
components along the edges of the subgridded cell. For the coarse-grid magnetic
flux densities along the faces of the subgridded cell, the finite integrations reduce
to standard finite differences. The fields inside the bulk of the subgrid use the
standard FDTD update coefficients, which differ from the ones inside the bulk of
the main grid by a factor r. For the updates of the outermost fine-grid magnetic
flux densities, the adjacent coarse-grid electric field is extended uniformly along
its tangent direction and linearly along its normal direction, in agreement with the
underlying Whitney one-forms used in the finite-element derivation.

The proposed finite-integration insights allow to derive coupling weights for more
intricate cell-by-cell refinement schemes such as, for example, the one depicted
in Fig. 5.2. Here, the refinement is inhomogeneous and anisotropic: a triplet of
refinement ratios (rx , ry , rz) is assigned to every coarse cell. Via (5.19), they give
rise to triplets (vx , vy , vz). It is left as an exercise to the reader to verify that

ln =∆ (1− vy |nw − vy |ne) = 7∆/20 (5.21)

le =∆ (1− vx |ne − vx |se) = ∆/5 (5.22)

ls =∆ (1− vy |sw − vy |se) = 11∆/56 (5.23)

lw =∆ (1− vx |nw − vx |sw) = 5∆/12 (5.24)

A=∆2 (1− vx |nw vy |nw − vx |ne vy |ne

− vx |se vy |se − vx |sw vy |sw) = 1357∆2/2800 (5.25)

where again the cardinal directions are used to indicate each of the four coarse
cells. The corresponding coefficients that need to be inserted in (5.8) are (5.12)–
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Figure 5.2: More general cell-by-cell subgridding with inhomogeneous and anisotropic
refinement. The refinement triplet (rx , ry , rz) is mentioned for each of the four coarse cells.

(5.15) based on (5.21)–(5.25) and, with additional double summations,

β p
nw
= p/(r2

x
rz)|nw ×∆/A p = 1, ..., rx |nw − 1 (5.26)

β p
wn
= p/(r2

y
rz)|wn ×∆/A p = 1, ..., ry |nw − 1 (5.27)

β p
ne
= p/(r2

x
rz)|ne ×∆/A p = 1, ..., rx |ne − 1 (5.28)

β p
en
= p/(r2

y
rz)|ne ×∆/A p = 1, ..., ry |ne − 1 (5.29)

β p
se
= p/(r2

x
rz)|se ×∆/A p = 1, ..., rx |se − 1 (5.30)

β p
es
= p/(r2

y
rz)|se ×∆/A p = 1, ..., ry |se − 1 (5.31)

β p
sw
= p/(r2

x
rz)|sw ×∆/A p = 1, ..., rx |sw − 1 (5.32)

β p
ws
= p/(r2

y
rz)|sw ×∆/A p = 1, ..., ry |sw − 1 (5.33)

It can be verified that the weights pertaining to a Cartesian component of the flux
density balance each other out, e.g. for Bx

αw +

rx |nw−1∑

p=1

rz |nw∑

q=1

β p
nw
+

rx |sw−1∑

p=1

rz |sw∑

q=1

β p
sw

= αe +

rx |ne−1∑

p=1

rz |ne∑

q=1

β p
ne
+

rx |se−1∑

p=1

rz |se∑

q=1

β p
se
=∆/A , (5.34)

such that the discrete derivative of a constant flux density is indeed zero.



100 Chapter 5. 3-D Cell-by-Cell Subgridding based on Finite Elements

5.3 Numerical example: ridge waveguide

The transmission through the rectangular waveguide depicted in Fig. 5.3 is ex-
tracted from our novel FDTD subgridding approach via mode orthogonality, where
the modes are numerically computed by solving the symmetric eigenvalue problem
corresponding to the discrete Helmholtz equation in the waveguide’s cross section
[5, Eq. 4.19]. This yields the normalized discrete field distribution ETE10

x
(x , y) and

the cut-off wavenumber kTE10
c

of the TE10 mode. The latter is used to determine
the propagation constant

Γ (ω) =

r

ω2ǫ0µ0 −
�

k
TE10
c

�2
. (5.35)

The Ex(x , y) distribution recorded in the waveguide cross section is projected onto
ETE10

x
(x , y) at four different locations zk along the z-axis, as depicted in Fig. 5.4.

This is simply realized by computing the inner product

Vk(t) =
∑

i, j

Ex(zk, t)|i, j ETE10
x

|i, j k = 1, 2,3, 4 , (5.36)

where the summation runs over the x- and y-indices. Since all propagating and
evanescent modes inside the waveguide are orthogonal with respect to each other,
Vk(t) is the superposition of forward and backward propagating TE10 modes. Hence,
after application of a discrete Fourier transformation, we end up with the set of
equations

V1(ω) = A(ω) e−  Γ (ω) z1 + B(ω) e  Γ (ω) z1 (5.37)

V2(ω) = A(ω) e−  Γ (ω) z2 + B(ω) e  Γ (ω) z2 (5.38)

V3(ω) = C(ω) e−  Γ (ω) z3 + D(ω) e  Γ (ω) z3 (5.39)

V4(ω) = C(ω) e−  Γ (ω) z4 + D(ω) e  Γ (ω) z4 . (5.40)

As is shown in Fig. 5.4, we choose z2 = z1 +∆z and z4 = z3 +∆z. Now, we can
solve for the amplitudes of the forward propagating modes:

A(ω) =
V1(ω) e

 Γ (ω)∆z − V2(ω)

e  Γ (ω)∆z − e−  Γ (ω)∆z
e  Γ (ω) z1 (5.41)

C(ω) =
V3(ω) e

 Γ (ω)∆z − V4(ω)

e  Γ (ω)∆z − e−  Γ (ω)∆z
e  Γ (ω) z3 . (5.42)

Their ratio is the desired transmission scattering parameter

S21(ω) =
C(ω)

A(ω)
=

V3(ω) e
 Γ (ω)∆z − V4(ω)

V1(ω) e
 Γ (ω)∆z − V2(ω)

e  Γ (ω) (z3−z1) . (5.43)

Since the TE10 mode is propagating in the frequency range of interest, i.e. Γ (ω) ∈
R, the amplitude of the transmission in decibel units is given by

|S21(ω)|dB = 20 log10

∣

∣

∣

∣

∣

V3(ω) e
 Γ (ω)∆z − V4(ω)

V1(ω) e
 Γ (ω)∆z − V2(ω)

∣

∣

∣

∣

∣

. (5.44)
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Figure 5.3: Rectangular waveguide with E-plane ridge discontinuity (a = 19.050 mm,
b = 9.525mm, c = 81.280 mm, d = 38.100mm, e = 9.017 mm, w= 1.016 mm,
h= 7.620mm, l = 5.080mm). The PEC ridge (green) is discretized by 8 × 1 × 4
coarse cells. The waveguide is discretized by 10×19×64 coarse cells. Small nonuniformi-
ties in the y-dimension are needed to match the geometry. The waveguide is terminated
by 15 CFS-PML layers along the two planes normal to the z-axis. The inset on the right
indicates the refined cells (red) w.r.t. the ridge (green).
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Figure 5.4: Scattering parameter extraction via mode orthogonality for the rectangular
waveguide with ridge discontintuity. The electric fields in the cross section of the waveguide
are projected onto the TE10 eigenvector for four different z-coordinates; two on the left
and two on the right of the ridge. This allows to extract the amplitudes of the forward
propagating TE10 modes in both waveguide sections. Their ratio yields the transmission
S21.

This quantity is plotted in Fig. 5.5. The cells adjacent to the edges and corners
of the ridge, as shown in the inset of Fig. 5.3, are locally refined by a factor r.
The time step equals the Courant limit of the smallest cell occurring in the grid,
including the subgrids, and the total simulated time is 40 ns. Besides isotropic re-
finement, we also examine the effect of refinement solely in the direction normal to
the ridge faces, in a PML-like fashion with overlapping corners. The FDTD results
are compared to the experimental data from [6] and the subgridding algorithm
is clearly found to succeed in accurately capturing the field singularities near the
ridge.
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Figure 5.5: Transmission through the ridge waveguide shown in Fig. 5.3 for isotropic (top)
and PML-like anisotropic (bottom) refinement.

5.4 Conclusion

Alike Maslow’s hammer, the widely used finite differences are too limited to un-
ravel the physically correct interpolation rules required for subgridding. Therefore,
an accurate, easily implementable, cell-by-cell subgridding algorithm based on fi-
nite elements and interpreted in terms of finite integrations is described in this
chapter. Unlike many finite-difference-based approaches, this algorithm preserves
energy and charge by construction and is provably conditionally stable. The pro-
posed subgridding method is successfully validated on a waveguide example with
field singularity. Future work focuses on reducing the number of time samples in
the coarse grid with a local time stepping approach and the extension to other
coordinate systems alike [7].
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6
The Fully-Collocated Implicit

FDTD Method

“With four parameters I can fit an elephant,

and with five I can make him wiggle his trunk.”

John Von Neumann

⋆ ⋆ ⋆

This chapter elaborates on the fully-collocated implicit (FCI) FDTD method.

This method is very promising with regard to multiscale modeling of complex

materials. Despite its many great properties, it does not have a positive res-

onance in the finite-difference community. Much of the scepticism about the

method is believed to originate from an improper finite-element analysis that

expands the fields in discrete zero-forms (scalars) in the original paper [1].

This chapter proposes a correct finite-element derivation where the fields are

one-forms (polar vectors) in the 3-D space. This explains the excellent accuracy

of the results generated with this method in [1], [2]. Although the new finite-

element insights do not alter the finite-difference scheme itself, it is of utmost

importance with regard to hybridization techniques, e.g. subgridding. In view

of the latter, we shortly experiment with Huygens subgridding to embed a small

collocated grid in an overall Yee grid in 2-D. This method is used to examine

the shielding effectiveness of an anisotropic dielectric slab.
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6.1 Introduction

Although the FDTD method’s strength resides in its second-order accurate stag-
gered grid with explicit leapfrog time integration, this is, at the same time, its main
weakness as it imposes a stability limit on the time step, it downgrades the accuracy
to merely first order upon nonuniform gridding, it requires material parameters to
be averaged even across straight material boundaries, and it thwarts the numerical
modeling of the constitutive relations of complex media [3]. These inconveniences
are resolved by the fully-collocated implicit (FCI) FDTD method, presented in [1]
to simulate electromagnetic waves in fusion plasmas. In the FCI-FDTD method,
all electric and magnetic state variables are anchored to the nodes of a cubic grid
(see Fig. 3.2(a)), whereas the actual evaluation of Maxwell’s equations happens
in the centers of the cell faces by means of a correct mixture of interpolations and
differentiations. In contrast to virtually all other collocated schemes, the resulting
finite-difference stencil is second-order accurate without odd-even decoupling. In
fact, it even features enhanced accuracy compared to the traditional Yee scheme,
since the second-order accuracy is preserved for nonuniform discretizations. This
property makes the FCI-FDTD method attractive with regard to multiscale electro-
magnetic problems since the grid can be highly nonuniform without a restricting
grading ratio as is the case for the traditional Yee scheme. Also, its unconditional
stability enhances multiscale modeling. Especially in 3-D, however, the FCI-FDTD
method is computationally inefficient due to the large sparse matrix system that
needs to be solved.

In the remainder of this chapter, we first deduce the FCI-FDTD scheme starting
from a finite-element expansion in Whitney one-forms. In Section 6.3, the actual
finite-difference update equation is analyzed and some of the key properties of the
FCI-FDTD method are recapitulated, in order to convince the reader of the fact that
this method has a wide range of applications that reach far beyond the capabilities
of standard Yee-FDTD. In Section 6.4, a hybrid Yee/FCI-FDTD method is applied
to an anistropic dielectric slab in 2-D.

In the next chapter, a more efficient scheme with collocation along one instead of
three axes will be proposed, specially geared at multiscale problems that require a
higher resolution in only one dimension, e.g. thin conductive layers.

6.2 Finite-element derivation

The method proposed in [1] is essentially an (E,H)-scheme where the electric and
magnetic fields are expanded in nodal Whitney one-forms

N 1
x
|i, j,k =Π

⋆
i
(x)Λ j(y)Λk(z)

N 1
y
|i, j,k = Λi(x)Π

⋆
j
(y)Λk(z) (6.1)

N 1
z
|i, j,k = Λi(x)Λ j(y)Π

⋆
k
(z) , (6.2)
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Figure 6.1: Shifted (or dual) pulse function.

with the shifted pulse function (Fig. 6.1)

Π⋆
i
(x) =

{

1 x⋆
i−1 ≤ x < x⋆

i

0 elsewhere
. (6.3)

At this point, it is recommended to return to Fig. 3.4 in order to understand the
spatial indexing. In vectorized form, after the appropriate normalization of the
pulse functions by the associated dual-grid step, the finite-element expansion of
the fields reads

E(x , y, z, t) =
�

n̂1(x , y, z)
�T
∑

n

Π̂n(t) ˆ̂en (6.4)

H(x , y, z, t) =
�

n̂1(x , y, z)
�T
∑

n

Π̂n(t)
ˆ̂hn . (6.5)

In 4-D spacetime, the state variables are two-forms, which justifies the double-hat
notation. This simply means that the variable is rescaled by the product of two
lengths. For example, for one of the elements of the electric-field state vector ˆ̂en

pertaining to the x-component, we have

ˆ̂ex |
n
i, j,k =∆t êx |

n
i, j,k =∆t∆x⋆

i
ex |

n
i, j,k . (6.6)

Testing Faraday’s and Ampère’s law with ˆ̂w 2(x , y, z)Λn(t), which correctly spans
the range space of the curl and effectively evaluates Maxwell’s equations in the
face centers, yields
∫∫∫

ˆ̂w 2 ∇×
�

n̂1
�T

dx dy dz
∑

n′

∫

Π̂n′(t)Λn(t)dt ˆ̂en′

=

∫∫∫

ˆ̂w 2 [µ]
�

n̂1
�T

dx dy dz
∑

n′

∫

∂tΠ̂n′(t)Λn(t)dt ˆ̂hn′ , (6.7)

and
∫∫∫

ˆ̂w 2 ∇×
�

n̂1
�T

dx dy dz
∑

n′

∫

Π̂n′(t)Λn(t)dt ˆ̂hn′

=

∫∫∫

ˆ̂w 2 [ǫ]
�

n̂1
�T

dx dy dz
∑

n′

∫

∂tΠ̂n′(t)Λn(t)dt ˆ̂en′ , (6.8)
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respectively. The time derivative of the pulse function is shifted to the triangle
function by means of integration by parts. Hence, (6.7)–(6.8) give rise to

[⋆◦µ]
ˆ̂hn − ˆ̂hn−1

∆t
= [⋆◦

c
]

ˆ̂en + ˆ̂en−1

2
(6.9)

[⋆◦ǫ]
ˆ̂en − ˆ̂en−1

∆t
= [⋆◦

c
]

ˆ̂hn +
ˆ̂hn−1

2
, (6.10)

with

[⋆◦ǫ] =

∫∫∫

ˆ̂w 2 [ǫ]
�

n̂1
�T

dx dy dz (6.11)

[⋆◦µ] =

∫∫∫

ˆ̂w 2 [µ]
�

n̂1
�T

dx dy dz (6.12)

[⋆◦
c
] =

∫∫∫

ˆ̂w 2 ∇×
�

n̂1
�T

dx dy dz . (6.13)

The Hodge operators (6.11)–(6.13) are highlighted by a circle to indicate that
the collocated grid is most naturally terminated by periodic boundary conditions
(PBCs) in order to end up with a well-posed set of update equations. Nonetheless,
PEC and PMC boundary conditions are easily realized as well, but they require
an asymmetrical use of image theory [2, Sec. 3.5.4]. Also, the circle notation
facilitates the distinction between Yee- and FCI-operators.

Besides the triangle-triangle mass lumping (3.58), the occurring collocated pulse-
triangle inner products are also determined by means of the trapezoidal quadrature
rule applied to the primary-grid nodes. More specifically,

+∞∫

−∞

Π̂⋆
i1
(x)Λi2

(x)dx ≈
{

1 if i1 = i2 = i

0 else
. (6.14)

The staggered pulse-triangle inner products give rise to two-point interpolations

+∞∫

−∞

Π̂i1
(x)Λi2

(x)dx =

{

1
2 if i2 ∈ {i1, i1 + 1}

0 else
, (6.15)

as do the staggered pulse-pulse inner products

+∞∫

−∞

Π̂i1
(x) Π̂⋆

i2
(x)dx =

{

1
2∆x⋆

i2

if i2 ∈ {i1, i1 + 1}

0 else
. (6.16)
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The grid is assumed to consist of N = Nx Ny Nz cells terminated by PBCs. Then,
upon closer inspection of (6.13), it is found that

[⋆◦
c
] = [δ⋆] [⋆̃◦

c
] [δ⋆]−1 , (6.17)

with the mixed interpolation-differentiation curl operator

[⋆̃◦
c
] =





0 −INx
⊗A◦

y
⊗δ−1

z
D◦

z
INx
⊗δ−1

y
D◦

y
⊗A◦

z

A◦
x
⊗INy

⊗δ−1
z

D◦
z

0 −δ−1
x

D◦
x
⊗INy

⊗A◦
z

−A◦
x
⊗δ−1

y
D◦

y
⊗INz

δ−1
x

D◦
x
⊗A◦

y
⊗INz

0





3N×3N

, (6.18)

the diagonal step-size matrix

[δ⋆] =





δ⋆
x
⊗INy

⊗INz

INx
⊗δ⋆

y
⊗INz

INx
⊗INy

⊗δ⋆
z





3N×3N

, (6.19)

the circulant 1-D difference incidence matrix

D◦
d
=





−1 1
−1 1

...
−1 1

1 −1





Nd×Nd

d ∈ {x , y, z} , (6.20)

the circulant 1-D averaging operator

A◦
d
=

1

2





1 1
1 1

...
1 1

1 1





Nd×Nd

d ∈ {x , y, z} , (6.21)

and δd and δ⋆
d

the diagonal primary and dual step-size matrices of rank Nd . Despite
the use of the trapezoidal rule, the Hodge matrices (6.11)–(6.12) are not diagonal.
Moreover, the material matrices [ǫ] and [µ] are not necessarily diagonal either in
the case of anisotropic media. For example,

[⋆◦ǫ] = A[ǫ] =





INx
⊗A◦

y
⊗A◦

z

A◦
x
⊗INy

⊗A◦
z

A◦
x
⊗A◦

y
⊗INz









[ǫx x ] [ǫx y ] [ǫxz]

[ǫy x ] [ǫy y ] [ǫyz]

[ǫzx ] [ǫz y ] [ǫzz]



 . (6.22)

Each constituent block of [ǫ], e.g. [ǫx x], is diagonal. To derive (6.22), nine differ-
ent types of inner products were calculated, one for each block in [ǫ]. In fact, it
is stunning how simple (6.22) is, given the preceeding mathematical derivation,
which, indeed, shows that the FCI-FDTD method is well suited to model anisotropic
media. An expression similar to (6.22) exists for [⋆◦µ]. Interestingly, [⋆◦ǫ] and [⋆◦µ]
do not feature any information about the grid’s metric. This information is all col-
lected in [⋆◦

c
], even though this operator does not originate from a constitutive
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Figure 6.2: Resonances inside a cubic cavity of size 205mm filled with vacuum. The cavity
is divided into 20×20×20 cells of size 10 mm. The use of image theory, which is required to
construct the PEC boundary conditions, adds half a cell to the cavity. The cavity is excited by
an electric dipole current source with differentiated-gaussian time signature placed close to
its center. The highest frequency (3 GHz) corresponds to ten samples per wavelength. The
electric field component parallel to the dipole is recorded in a random point inside the
cavity. The time signal is multiplied by a Hanning window prior to the Fourier transform.
The resonance frequencies computed by the FCI-FDTD method (black) agree well with the
analytical solutions (green). No additional peaks owing to spurious solutions pop up.

relation. Nevertheless, the star notation is used for the curl operator [⋆◦
c
] to high-

light the metric content. It should be noted that, in contrast to the Yee scheme,
[⋆◦ǫ] and [⋆◦µ] are not symmetric. However, they are almost symmetric since

(A◦
d
)T = ST A◦

d
, (6.23)

with S the primary circulant matrix or circular upshift matrix [4, Fact 5.16.7].

Interestingly, this fully collocated method features the correct continuity of the tan-
gential electric and magnetic fields across material discontinuities. This last fact is
very important and cannot be deduced from the finite-element analysis based on
zero-forms performed in [1]. In contrast to conventional nodal finite elements that
are indeed based on zero-forms, there is no reason to doubt the physical correct-
ness of the FCI-FDTD method. From a theoretical perspective, the method is not
suspected to support spurious solutions. Indeed, this is corroborated by the numer-
ical computation of the resonance frequencies inside a vacuum cavity as depicted
in Fig. 6.2.

6.3 Properties

First of all, it should be noted that, after switching from the state variables (ˆ̂en, ˆ̂hn)

to (en, hn), the FCI-FDTD scheme derived in previous section is found to be equiv-
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Figure 6.3: Material mapping in the fully collocated grid. Each node of the cubic grid is
an anchor point for all six state variables (Ex , Ey , Ez , Hx , H y , Hz). Materials are assigned to
cuboid volumes such that each grid node is exactly in the center of a cuboid material piece.
Hence, material boundaries are right in the middle between grid nodes, where Maxwell’s
equations are effectively evaluated. Moreover, the updated fields are aligned to the material
boundaries such that tangential field continuity is guaranteed.

alent to the scheme proposed in [1], [2]. More specifically, the update equation
reads 



A[ǫ̃]
∆t − [⋆̃

◦
c
]

2

[⋆̃◦
c
]

2
A[µ̃]
∆t








en+1

hn+1



 =





A[ǫ̃]
∆t

[⋆̃◦
c
]

2

− [⋆̃
◦
c
]

2
A[µ̃]
∆t








en

hn



 , (6.24)

with rescaled dielectric tensors

[ǫ̃] = [δ⋆]−1 [ǫ] [δ⋆] (6.25)

[µ̃] = [δ⋆]−1 [µ] [δ⋆] , (6.26)

which only differ from the original tensors [ǫ] and [µ] if anisotropic media with
non-zero off-diagonal blocks are considered. The dual-grid steps in [δ⋆] determine
the size of the discretized material voxels (see Fig. 6.3). The FCI-FDTD method
displays the well-known Crank-Nicolson time integration scheme, which is very
inefficient for large problems, especially in 3-D, as the system matrix scales pro-
portionally with the total number of cells N . As a matter of fact, the spatial inter-
polations present in A and in [⋆̃◦

c
] constitute a spatial analog of the Crank-Nicolson

scheme, which makes the system matrix less sparse than its Yee-grid counterpart.
However, owing to the structured cubic grid, it should be possible to build an effi-
cient iterative solver with proper preconditioner.

The interpolations and differentiations that happen under the hood of the FCI-
FDTD method are visualized in Fig. 6.4. In the center of each face of the FCI
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Figure 6.4: Visualization of the interpolations (green) and differentiations (orange) used
in Faraday’s law µ∂t H y = ∂x Ez − ∂z Ex , which is evaluated in the center of a face of the
collocated cell normal to the y-axis (blue).

cell, the normal electric and magnetic field components are updated. Hence, these
updated components, corresponding to the time-differentiated fields in Maxwell’s
equations, are spatially interpolated along their two normal directions. The re-
maining fields that circulate the updated field according to Maxwell’s curl equa-
tions, are differentiated along their normal direction and interpolated along their
tangential direction such that the spatial derivatives occurring in Maxwell’s equa-
tions are evaluated in the face center as well. To evaluate the updated field and
the circulating fields at the same time instance, the latter need to be interpolated
in time as well, such that, eventually, every field component is differentiated once
and interpolated twice with respect to different dimensions per update equation.
Since both central differences and central interpolations are second-order accu-
rate, the FCI-FDTD method is unconditionally second-order accurate, i.e. even for
nonuniform gridding. Besides, owing to the collocation, axis-aligned materials are
inserted unambiguously without requiring additional material averaging along the
boundaries. As is depicted Fig. 6.3, the boundaries of the piecewise medium after
discretization cross the face centers. As such, they are aligned with the updated
fields in their evaluation point, i.e. after the double spatial interpolation, such
that, indeed, the FCI-FDTD method guarantees tangential electric and magnetic
field continuity, as could be expected from the expansion in one-forms. Hence,
in contrast to the (E, B) Yee-FDTD method, which ensures the continuity of three
components, the (E, H) FCI-FDTD method has four continuous components, which



6.4. Numerical example: 2-D anisotropic slab 113

again improves the accuracy.

The numerical dispersion relation of the fully-collocated implicit FDTD method
with homogeneous isotropic medium and uniform grid is

� tan
�
ω∆t

2

�

c∆t

�2

=

� tan
�

k̃x∆x

2

�

∆x

�2

+

� tan
� k̃y∆y

2

�

∆y

�2

+

� tan
�

k̃z∆z

2

�

∆z

�2

, (6.27)

which converges to its continuous counterpart for dense discretizations. Owing to
the infinite range of the tangent function, the FCI-FDTD method is stable for any
time step. A rigorous stability proof for general nonuniform grids with different
kinds of boundary conditions is provided in [2, Sec. 3.5.5].

In summary, the main advantages of the FCI-FDTD method are

• unconditional stability,

• unconditional second-order accuracy yielding huge geometrical flexibility,

• enhanced modeling of anisotropic materials,

• enhanced modeling of axis-aligned material boundaries,

• tangential electric and magnetic field continuity,

whereas the main disadvantages are

• inefficiency due to a CN-like implicit update scheme,

• PEC boundary conditions use image theory which cannot be directly applied
to anisotropic media [5],

• large code refactoring cost for commercial FDTD solvers based on the Yee
scheme.

6.4 Numerical example: 2-D anisotropic slab

By way of example, the shielding effectiveness of an anistropic slab with off-axis
dielectric tensor is resolved by means of the FCI-FDTD method, embedded in an
overall Yee grid via Huygens subgridding (HSG) [6], and compared to the solution
obtained by a full Yee grid where the geometry is rotated to align the dielectric
tensor with the Cartesian axes (Fig. 6.5).

For the HSG-FCI method, the spatial resolution of the Yee grid is ∆x = ∆y =

2.5 mm and the time step is chosen to be the 2-D Courant limit ∆t = 5.897ps.
The collocated subgrid is nonuniform and resolves the slab by ∆x = 1 mm and
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∆y = 1.25 mm. The axis-aligned 10mm-slab is characterized by the dielectric
tensor

ǫfci
r
=

�
10 6
6 10

�

. (6.28)

The simulation counts Nt = 1500 iterations. For the conventional Yee-FDTD sim-
ulation, we used ∆x =∆y = 0.707mm, ∆t = 1.668 ps and Nt = 2400. The slab
is rotated by 45◦ such that its boundary is staircased but the dielectric tensor is
axis-aligned, i.e.

ǫyee
r
=

�
16 0
0 4

�

. (6.29)

The magnetic line source produces a Gaussian-modulated sine wave with sufficient
spectral content in the 0-26 GHz frequency band, and it is located 50 mm in front
of the slab. The magnetic field is recorded in the observation point at the back of
the slab, as is indicated in Fig. 6.5. Two simulations are run: one where the slab
is made of the anistropic dielectric and one where it is made of vacuum (as is the
ambient medium). The ratio of the discrete Fourier transfroms of the two recorded
signals yields the shielding effectiveness (SE). Fig. 6.6 shows that the SE obtained
by both approaches coincides perfectly for frequencies lower than 6 GHz. It has
to be noted that at f = 6 GHz, the spatial resolution reaches twenty samples per
wavelength. Hence, beyond this frequency, numerical dispersion largely affects
the solution.

The Huygens subgridding technique does not fit in the “keep it simple” spirit. We
refer the reader to [7] for some extra explanation. Moreover, it is believed that
with the finite-element analysis provided in Section 6.2, a better hybridization of
the Yee- and the FCI-FDTD method should be possible. In fact, this is achieved for
collocation in one direction in the next chapter.
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Figure 6.5: Two numerical approaches to compute the shielding effectiveness of an
anisotropic slab illuminated by a near-field magnetic line source. Left: The slab is resolved
by the FCI-FDTD method, which can easily handle the non-diagonal dielectric tensor. Right:
The entire geometry is rotated such that the dielectric tensor is aligned with the coordinate
axes to allow a straightforward modeling via the traditional Yee-FDTD method. The obser-
vation point is indicated by a green dot.
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Figure 6.6: Magnitude of the shielding effectiveness of an anisotropic dielectric slab located
in the near field of a magnetic line source.
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7
The Unidirectionally-Collocated

Hybrid Implicit-Explicit FDTD
Method

“Shut up and calculate!”

David Mermin

⋆ ⋆ ⋆

This chapter proposes a novel hybrid implicit-explicit (HIE) FDTD method with

collocation in the direction of implicitization. In this direction, the method

features increased accuracy, the reason being twofold: 1) the applied combi-

nation of interpolations and differentiations preserves second-order accuracy

upon nonuniform discretization; 2) material boundaries are more accurately

approximated by the grid. The proposed unidirectionally collocated HIE-FDTD

method is specifically geared at multiscale problems that require refinement in

one dimension, such as thin conductive layers. The method is extended with

a uniaxial perfectly matched layer (UPML) to mimic open space, an auxiliary

differential equation (ADE) to model dispersive Drude media, and the possi-

bility to hybridize with the classical Yee scheme. The method’s stability and

accuracy are verified by several numerical examples, such as a 3-D microstrip

line, a metal grating scatterer, and a graphene shield.
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7.1 Introduction

The proposed unidirectionally collocated hybrid implicit-explicit (UCHIE) FDTD
technique eliminates one of the spatial dependencies from the time step’s stability
limit at the expense of more computational complexity. This is most lucrative when
simulating planar multilayered structures which indeed require a higher sampling
density in one dimension. The plethora of documented HIE methods, e.g. [1]–[8],
stick to the conventional Yee cell, though this discretization scheme is merely first-
order accurate if applied nonuniformly. Furthermore, its staggering introduces
additional errors when approximating material boundaries. We cope with these
inconveniences by projecting the Yee cell onto a plane normal to the direction
of implicitization, such that we get a layered discretization scheme which accu-
rately resolves the material boundaries. This is demonstrated in Fig. 3.2(b) for
implicitization in the x-dimension. Using an interpolation strategy similar to [9],
second-order accuracy is preserved upon nonuniform discretization in this partic-
ular direction. Furthermore, using an interfacing rule similar to the one proposed
in [10] in 1-D, the UCHIE-FDTD method can be hybridized with the traditional
Yee-FDTD method.

In this chapter, the UCHIE-FDTD method is first briefly sketched in terms of fi-
nite elements. Then, in Section 7.3, the interfacing with the classical Yee scheme
is established. Next, in Section 7.4, Drude media and a UPML are added. In
Section 7.5, the stability of the UCHIE method is discussed by means of complex-
frequency analysis (CFA). The stability of the 2-D UCHIE subgridding scheme is
numerically validated. Section 7.6 elaborates on the numerical dispersion error of
the UCHIE-FDTD method, which is not unexpectedly found to be an anisotropic
mixture of the dispersion errors occurring in the conventional FDTD method and
the FCI-FDTD method. Finally, in Section 7.7, several numerical examples are pro-
vided to demonstrate the accuracy and stability of the proposed method. The nu-
merical reflections arising from the UPML and from the interface between UCHIE
grid and Yee grid are both quantified. Furthermore, the SE of a thin conductive
layer and a graphene sheet are compared to their analytical solution. The charac-
teristic impedance of a 3-D microstrip line and the far-field scattering pattern from
a metal grating are compared to the solution of an in-house MoM solver.

7.2 Finite-element interpretation

The UCHIE-FDTD method is a mixed (E, B)-(D, H) scheme with, for collocation in
the x-dimension, the following set of 4-D spacetime finite-element expansions:



7.2. Finite-element interpretation 121

Bx(x , y, z, t) =
∑

i, j,k,n

ˆ̂bx |
n
i, j,kΛi(x) Π̂ j(y) Π̂k(z)Λn(t) (7.1)

Ey(x , y, z, t) =
∑

i, j,k,n

ˆ̂ey |
n
i, j,kΛi(x) Π̂ j(y)Λk(z) Π̂n(t) (7.2)

Ez(x , y, z, t) =
∑

i, j,k,n

ˆ̂ez |
n
i, j,kΛi(x)Λ j(y) Π̂k(z) Π̂n(t) (7.3)

Dx(x , y, z, t) =
∑

i, j,k,n

ˆ̂dx |
n
i, j,kΛi(x) Π̂

⋆
j
(y) Π̂⋆

k
(z)Λn(t) (7.4)

H y(x , y, z, t) =
∑

i, j,k,n

ˆ̂hy |
n
i, j,kΛi(x) Π̂

⋆
j
(y)Λ⋆

k
(z) Π̂n(t) (7.5)

Hz(x , y, z, t) =
∑

i, j,k,n

ˆ̂hz |
n
i, j,kΛi(x)Λ

⋆
j
(y) Π̂⋆

k
(z) Π̂n(t) . (7.6)

The Maxwell equations that differentiate x-components with respect to time are
satisfied in the strong sense, resulting in two Yee-like explicit update equations.
A weak formulation of Maxwell’s equations is solved for the remaining y- and z-
components. Similarly to the FCI-FDTD method, this is achieved by means of the
face-centered two-form testing functions, which correctly model the range space
of the curl:

Tez
(x , y, z, t) = Thy

(x , y, z, t) = Π̂i(x)Λ j(y) Π̂k(z)Λn(t) (7.7)

Tey
(x , y, z, t) = Thz

(x , y, z, t) = Π̂i(x) Π̂ j(y)Λk(z)Λn(t) . (7.8)

Hence, the update equations for Ey , Ez , H y and Hz are again evaluated in the
face centers of the cell, giving rise to tangential field continuity across material
discontinuities in the x-dimension, as could also be expected from the fact that all
fields are expanded in linear triangle functions along the x-axis.

To avoid repetition, the update equations are not yet written down in this section,
but they will in Section 7.4.2 with inclusion of Drude media and a UPML. In a nut-
shell, the UCHIE-FDTD method organizes the electromagnetic field components
in unidirectionally collocated cells such as the one depicted in Fig. 3.2(b). It re-
tains the conventional central differences, but it evaluates the Maxwell equations
that contain a derivative with respect to the direction of collocation (here the x-
dimension) right in the middle between two adjacent samples in that direction by
means of linear interpolations. To end up with a consistent update scheme, similar
field interpolations are needed in time. This principle is exemplified in Fig. 7.1. In
the end, the two field components along the direction of collocation, i.e. Dx and Bx ,
are updated explicitly, whereas the remaining four field components are updated
implicitly. Unlike traditional collocated finite-difference methods, the proposed
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Figure 7.1: Visualization of the interpolations (green) and differentiations (orange) used
by the UCHIE-FDTD method with collocation along the x-dimension. Electric and magnetic
components are denoted by arrows and square arrows respectively. Differently colored
markers are staggered in time. Faraday’s law µ∂t H y = ∂x Ez − ∂z Ex is evaluated in the center
of a face normal to the y-axis (blue). Similar interpolation-differentiation schemes exist
for the three other (dual) faces indicated on the bottom row. The two remaining updates
occurring in the faces normal to the x-axis do not require interpolations and are essentially
conventional (Yee scheme) central-difference updates.

scheme ensures second-order accuracy, albeit at the cost of computationally more
involved implicit update equations.

In the remainder of this chapter, we will use Ex and Hx instead of Dx and Bx ,
which is a straightforward change of variables since the permittivity and perme-
ability matrices are diagonal (after mass lumping). Also, we adopt the “half-integer
notation” to enhance the readability.
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A B

D C

∆y

∆x

d

Figure 7.2: Embedding of the UCHIE subgrid, denoted by the rectangle ABCD, in a Yee
grid in the 2-D TE case, i.e. the dots denote Hz variables and the arrows denote Ex and
Ey variables. The gray-colored area indicates a conductor of thickness d, comprising four
UCHIE cells in this example. The blue and red markers are discretized half a time step apart.

7.3 UCHIE/Yee hybridization

Below, the 2-D TE UCHIE-FDTD method is hybridized with the traditional Yee
scheme for optimal efficiency. A dual 2-D TM scheme exists as well (see [11]). The
typical configuration we want to tackle is depicted in Fig. 7.2. A thin, e.g. highly
conductive, slab is embedded in a classical FDTD grid. This slab can be substan-
tially smaller than the Yee cell of the global FDTD grid in one dimension, here the
x-dimension, i.e. d ≪∆x , although, it encompasses several Yee cells in the other
dimension.

To integrate the UCHIE grid into the classical FDTD grid, two sets of interfaces
occur:

• the left and right interfaces, which require the transition from staggered,
explicitly updated (Ey ,Hz) values to collocated, implicitly updated (Ey ,Hz)
values, similar to the 1-D scheme described in [10];

• the upper and lower interfaces, which are only affected by explicit updates
in main grid and subgrid, and which exhibit edge termination.
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Figure 7.3: Visualization of the coupling scheme at the right interface. The synchronous
update of Hz(x0, y0) and Ey(x0, y0) on the right edge of the subgrid requires input from the
adjacent Ey(x0 +

∆x

2 , y0) in the Yee grid. In return, the explicit update of Ey(x0 +
∆x

2 , y0)

requires input from Hz(x0, y0).

The first set of interfaces needs to be included in the UCHIE update matrices as
to retrieve a well-posed system. The necessary interface updates are obtained by
testing Faraday’s law, in the Yee part expanded in the traditional Whitney elements
(3.44)–(3.45) and in the UCHIE part in the mixed Whitney elements (7.1)–(7.6),
with the testing function (7.8), where the interpolatory character of the basis is pre-
served, i.e. the basis functions are zero in all points except for one. After some ex-
tensive calculations with mass lumping of triangle-triangle and collocated triangle-
pulse inner products, and substitution of the update equation for Hz(x0+∆x , y0),
this eventually yields the first-order accurate interface equation

µ

∆t

�

Hz |
t0+

∆t
2

x0 ,y0
− Hz |

t0− ∆t
2

x0 ,y0

�

=
1

∆y

�

Ex |
t0

x0 ,y0+
∆y
2

− Ex |
t0

x0 ,y0−
∆y
2

�

− 1

∆x

�

2Ey |
t0

x0+
∆x
2 ,y0
− Ey |

t0+
∆t
2

x0 ,y0
− Ey |

t0− ∆t
2

x0 ,y0

�

. (7.9)

The interested reader is referred to [12, Sec. 5.3] for similar calculations. Equa-
tion (7.9) is visualized in Fig. 7.3. The upper and lower interface use a standard
reciprocal coupling scheme: the update of the fine-grid Ex requires a standard lin-
ear interpolation of the nearest coarse-grid Hz . The corresponding interpolation
matrix is transposed and normalized to yield the restriction matrix needed for the
updates of the adjacent coarse-grid Hz .

The UCHIE subgridding technique is easily added to existing FDTD codes. In case
of a vertically oriented slab (see Fig. 7.2), the final subgridding algorithm obeys
the following leapfrog time iteration scheme. First, Hz is updated in the FDTD
region. This step uses input from the Ex located at upper and lower edges of the
UCHIE region. Next, Ey and Hz are simultaneously updated in the UCHIE region
with inclusion of the left and right interface conditions alike (7.9). Here, Ey values
next to the interface are inserted into the implicit calculation. Then, Ex is explicitly
updated in the UCHIE region. Along the upper and lower interface, this requires
an interpolation of Hz values as explained before. Finally, Ex and Ey are updated in
the FDTD region. The latter uses input from Hz along the left and right interface.
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7.4 Drude media and uniaxial PML

7.4.1 Continuous equations

Drude medium

At optical frequencies, the electron motion inside metals interacts with the elec-
tromagnetic waves in a nonnegligble manner and is most efficiently taken into
account by means of a dispersive Drude model

σ(ω) =
σDC

1+  ωγ
, (7.10)

where σDC is the conductivity at ω = 0. Drude media are typically incorporated
into Maxwell’s equations by means of an auxiliary differential equation describ-
ing the time-domain behavior of the conduction current density J [13, Eq. 9-56c].
Thus, a set of three differential equations needs to be solved, namely

µ0 ∂t H = −∇× E (7.11)

ǫ0 ∂t E + J =∇×H (7.12)

γ∂t J + J = σDC E . (7.13)

The substitutions

E = Z0 Ẽ (7.14)

τ= c0 t (7.15)

σ̃DC = Z0σDC (7.16)

γ̃= c0 γ , (7.17)

simplify (7.11)–(7.13) to

∂τH = −∇× Ẽ (7.18)

∂τẼ + J =∇×H (7.19)

γ̃ ∂τJ + J = σ̃DC Ẽ . (7.20)

UPML

In order to perform simulations in open space, a UPML is added [14]. Thereto, the
electric and magnetic field each require one auxiliary equation to model the dis-
persive PML medium. Moreover, the electric field requires an additional auxiliary
equation to prolong the Drude medium inside the PML. We highlight these auxil-
iary unknowns by single and double dots. The final set of equations, including all
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these considerations, is

κ[yzx] ∂τḢ + σ̃[yzx] Ḣ = −∇× Ẽ (7.21)

κ[zx y] ∂τH + σ̃[zx y]H = κ[x yz] ∂τḢ + σ̃[x yz] Ḣ (7.22)

∂τ
¨̃E + J =∇×H (7.23)

γ̃ ∂τJ + J = σ̃DC
¨̃E (7.24)

κ[yzx] ∂τ
˙̃E + σ̃[yzx]

˙̃E = ∂τ
¨̃E (7.25)

κ[zx y] ∂τẼ + σ̃[zx y] Ẽ = κ[x yz] ∂τ
˙̃E + σ̃[x yz]

˙̃E , (7.26)

where a shorthand notation was adopted for the tensors, e.g.

κ[yzx] =

� κy

κz

κx

�

σ̃[yzx] = Z0

�σy

σz

σx

�

, (7.27)

with for the ith PML layer

κd = 1+ (κmax
d
− 1)(i/npml)

m (7.28)

σd = σ
max
d
(i/npml)

m d ∈ {x , y, z} . (7.29)

This is the so-called polynomially graded PML with number of layers npml and
power m. Here, we always choose the standard values npml = 10 and m= 4. Also,
from [14, Eq. 38], we borrow the optimal value

σmax
d
=

m+ 1

150π∆d
d ∈ {x , y, z} , (7.30)

where ∆d is the spatial step in the d-dimension (i.e. ∆x , ∆y or ∆z). The UPML
is mathematically perceived as a complex stretching of the Cartesian coordinates
(and the fields) ensuring impedance matching across its interface. In other words,
it is a reflectionless lossy medium. The real-stretch parameter κd aims to absorb
the evanescent waves, whereas the imaginary-stretch parameter σd is responsible
for the absorption of the traveling waves. They are one and zero respectively inside
the simulation region of interest, and they are polynomially graded according to
(7.28)–(7.29) inside the PMLs normal to the d-dimension. In the next section,
(7.21)–(7.26) are discretized, giving rise to the UCHIE-FDTD update equations.

7.4.2 Update equations

In line with conventional ADE schemes, the electric current density components
have the exact same discretization as their associated electric field components.
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Hence, we get the following set of explicit update equations
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ẽz |
n+ 1

2

i, j+1,k+ 1
2

− ẽz |
n+ 1

2

i, j,k+ 1
2

�

+
1

∆z

�
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(7.31)
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z
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(7.32)

for the magnetic field and
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α+ jx |
n+1
i, j,k = α

− jx |
n
i, j,k + σ̃DC (¨̃ex |

n+1
i, j,k +

¨̃ex |
n
i, j,k) (7.34)
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(7.35)

β+
z

ẽx |
n+1
i, j,k = β

−
z

ẽx |
n
i, j,k + β

+
x

˙̃ex |
n+1
i, j,k − β−x ˙̃ex |

n
i, j,k (7.36)

for the electric field. Here, we used the notation

α± =
2γ̃

∆τ
± 1 (7.37)

β±
d
=
κd

∆τ
± Z0σd

2
d ∈ {x , y, z} . (7.38)

There are two implicit update equations, i.e. (7.43) and (7.44). The PEC boundary
conditions at the back of the PMLs require the exterior tangential electric fields to
be zero. Consequently, for nx cells in the x-dimension, there are nx − 1 electric
field and nx + 1 magnetic field samples in (7.43)–(7.44). The bracket notation is
used to denote diagonal matrices whose rank is nx − 1 or nx + 1 depending on
whether they act on electric or magnetic field components respectively. We also
introduced the x-interpolators

A1 =





1
1 1

...
1 1

1





nx×(nx−1)

(7.39)

A2 =

� 1 1
...

1 1

�

nx×(nx+1)

, (7.40)
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and the x-differentiators

D1 =

�∆x1

...
∆xnx

�−1




1
−1 1

...
−1 1
−1





nx×(nx−1)

(7.41)

D2 =

�∆x1

...
∆xnx

�−1 �−1 1

...
−1 1

�

nx×(nx+1)

. (7.42)

As suggested by the time-indices of the field samples, the time-stepping algorithm
alternately performs sets of explicit and implicit updates. As one possible valid
implementation, we opted to treat the update equations in the same order as they
occur in this section.

7.4.3 Efficient solution method

In this section, an efficient strategy to solve the sparse linear system (7.43) is
pointed out. First, the matrix in the l.h.s., which we will call M from now on,
is partitioned as follows

M =

h
M11 M12

M21 M22

i

=












[α+] −[σ̃DC] 0 0 0 0
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2
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z
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z
] 0 [β+

y
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0 0 0 −[β+
y
] 0 [β+

x
]












. (7.45)

Its inverse is given by [15, Prop. 2.8.7]

M−1 =

�
S−1 −S−1 M12 M−1

22

−M−1
22 M21S−1 M−1

22 +M−1
22 M21S−1 M12 M−1
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�

, (7.46)

with

M−1
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x
]−1[β+

y
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x
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 , (7.47)

and Schur complement
S = M11 −M12M−1

22 M21 , (7.48)

which is, in turn, partitioned as follows

S =
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Analogously, the inverse of the Schur complement is given by
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such that, in the end, solving the large sparse system (7.43) only requires the
inversion of the rank-2nx matrix
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11 S12
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The reordering matrix

[R]i j =































1 i = 1 , j = nx

1 i = 2k , j = k

1 i = 2k+ 1 , j = nx + k

1 i = 2nx , j = 2nx

0 else

(7.52)

k = 1, ..., nx − 1

together with the rank-2nx primary circulant matrix C , i.e. the circulant matrix
whose first row has second element one and all other elements zero, allows to
construct a banded matrix

B = C R SsR
T , (7.53)

which has four elements per row arranged in a staircase pattern. For example for
nx = 5, its sparsity pattern is












× × ×
× × ×
× × × ×
× × × ×

× × × ×
× × × ×

× × × ×
× × × ×

× × ×
× × ×












. (7.54)

The LU factorization with row and column pivoting of B, i.e.

P B Q = L U , (7.55)

is obtained at negligible cost. Once all necessary matrices are precomputed, (7.43)
is updated via forward-backward substitutions and some sparse-matrix multipli-
cations. More specifically, the final algorithm to update (7.43) inside the time-
stepping loop goes as follows:
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1. Compute the vector in the r.h.s. of (7.44) and split it into two parts v1 and
v2 conforming to the partitioning applied in (7.45).

2. Compute p = v1 −M12M−1
22 v2 and split this vector into two parts p1 and p2

conforming to the partitioning applied in (7.49).

3. Use forward and backward triangular sweeps to compute

[¨̃ey , ḣz] = RTQ U−1 L−1P C R (p2 − S21S−1
11 p1) .

4. Compute jy = S−1
11 (p1 − S12[¨̃ey , ḣz]).

5. Compute [˙̃ey , hz , ẽy] = M−1
22 (v2 −M21[ jy , ¨̃ey , ḣz]).

For clarity, we omitted the transposition superscripts above, because it should be
quite clear that all occurring vectors are column vectors. Note that some matrix
products can be computed prior to time-stepping. Compared to the conventional
HIE-FDTD method [2], the proposed UCHIE-FDTD method requires the inversion
of two pentadiagonal matrices of rank 2nx instead of two tridiagonal matrices of
rank nx . Hence, the improved accuracy of the UCHIE-FDTD method comes at a
slightly higher computational cost.

7.5 Numerical stability

7.5.1 Complex-frequency analysis for standalone UCHIE

Substituting the discrete plane-wave solution in the update equations related to
one vacuum UCHIE cell, yields the numerical dispersion relation
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� = 1 (7.56)

with the 1-D Courant numbers

sx =
∆τ

∆x
, sy =

∆τ

∆y
, sz =

∆τ

∆z
. (7.57)

Now, substitute
1

tan2(ω∆t
2 )
=

1

sin2(ω∆t
2 )
− 1 (7.58)
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into (7.56) and move all ω-dependency to one side of the equation. This yields

sin2(
ω∆t

2
) =

s2
x

tan2(
k̃x ∆x

2 ) + s2
y

sin2(
k̃y ∆y

2 ) + s2
z

sin2(
k̃z∆z

2 )

s2
x

tan2(
k̃x ∆x

2 ) + 1
. (7.59)

Hence, the dispersion relation only has real-valued solutions for ω if the r.h.s. re-
mains smaller than one. This requirement is clearly guaranteed for

s2
yz
= s2

y
+ s2

z
< 1 , (7.60)

which is the Courant condition of the regular Yee grid in the 2-D space perpendic-
ular to the direction of implicitization.

7.5.2 Numerical matrix stability analysis for UCHIE subgridding

Complex-frequency analysis is not a sufficient proof for the stability of the 2-D
UCHIE subgridding technique. The Yee-FDTD method in the coarse grid and the
UCHIE-FDTD method in the fine grid are both stable if the time step obeys the 2-D
Courant limit, but yet, nothing is said about the effect of the interfacing between
both grids.

As is the case for all linear time-domain methods, it is possible to express the
UCHIE subgridding method in terms of one single time-stepping operator. This
is a matrix A, also called the amplification or iteration matrix, that operates on a
column vector v n that contains all unknowns at a specific time instant t = n∆t,
or better said, after a specific number of iterations (since not all unknowns are
discretized at the same point in time). The “future” quantities can then be found
calculating

v n+1 = Av n + s n , (7.61)

where s n is a column vector representing the sources. This describes a linear sys-
tem, which is known to be exponentially stable if none of the eigenvalues of A lie
outside the unit circle. Eigenvalues inside the unit circle stem from losses, for ex-
ample due to the presence of a non-perfect conductor. Eigenvalues with a small
phase angle correspond to temporally well-resolved phenomena, i.e. with many
∆t per period.

The matrix A can be extracted from a simulation as follows:

1. Assign the unit vector with only the ith element being non-zero to v n.

2. Do the necessary calculations to advance one time step.

3. Store the resulting vector v n+1 in the ith column of A.

4. Repeat steps 1 to 3, iterating over all i.
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Figure 7.4: Eigenvalues λ of the iteration matrix A for the configuration of (a) with (b)

sx y = 1; (c) sx y = 1 and vacuum everywhere; (d) sx y = 0.5; (e) sx y = 1.03.
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Fig. 7.4(b) shows a plot of the eigenvalues λ of the amplification matrix A for the
test case depicted in Fig. 7.4(a). The overall FDTD grid measures 7 by 8 cells
with ∆x = 0.30 m and ∆y = 0.25 m. This grid is terminated by PEC and PMC
boundaries. The UCHIE grid covers 4 cells in the y-direction and is positioned
centrally in the overall grid. In turn, a thin copper plate (ǫr = 1, σ = 5.8e7 S/m)
of thickness 10 µm is itself positioned slightly towards the right of the center of
the UCHIE grid (at a fraction 0.6 of the UCHIE region’s width). The discretization
step in the x-direction for this plate is chosen to be 0.2 µm (50 divisions along the
plate thickness). It should be emphasized that the aspect ratio of the refinement
in the x-direction exceeds 106! For this example, the matrix A in (7.61) has rank
859. The time step is chosen such that the 2-D Courant number,

sx y =∆τ

√
√ 1

∆x2
+

1

∆y2
, (7.62)

equals one.

For the other plots, the following modifications were made: σ = 0 (vacuum) in
Fig. 7.4(c), a smaller Courant number (sx y = 0.5) in Fig. 7.4(d) and a larger one
(sx y = 1.03) in Fig. 7.4(e). For the vacuum simulation, all eigenvalues are on the
unit circle. For a smaller Courant number, i.e. for smaller∆t, the eigenvalues shift
towards lower phase angles, whereas for a Courant number larger than one the
simulation becomes unstable, since some eigenvalues are outside the unit circle.

7.6 Numerical dispersion

The numerical dispersion relation of the UCHIE-FDTD method in vacuum is given
by (7.56). It exhibits tangent functions for the collocated-implicit dimension and
sine functions for the staggered-explicit dimensions, conforming to the numerical
dispersion relations of the conventional Yee-FDTD method (3.75) and the FCI-
FDTD method (6.27). For all three methods, the numerical wavevector k̃ is trans-
formed to spherical coordinates and its magnitude is iteratively computed with the
Newton-Raphson root-finding routine. The relative phase error, defined as

ṽ − c0

c0
=

k0

k̃
− 1 , (7.63)

is plotted for different polar and azimuthal angles in Fig. 7.5 and for different
sampling densities in Fig. 7.6. The phase error is anisotropic for all three finite-
difference methods with the highest errors occurring along the cell edges and the
lowest errors along the cell diagonals. In the Yee scheme, the numerical waves
propagate slower than the real waves, whereas, in the FCI-FDTD method, they
propagate faster with a relative error that is about twice as big. This can be ex-
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Figure 7.5: Relative phase error for a uniform grid with ten samples per wavelength in each
dimension and a time step equal to the Courant limit: (a) the conventional Yee scheme, (b)

the FCI-FDTD method, and (c) the UCHIE-FDTD method.
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Figure 7.6: Absolute value of the relative phase error along the cartesian axes, again for a
time step equal to the Courant limit.

plained by investigating the second term in the Taylor expansions

sin(x) = x − x3

6
+

x5

120
+ ... (7.64)

tan(x) = x +
x3

3
+

2x5

15
+ ... . (7.65)

The UCHIE phase error is found to behave identically to the Yee phase error along
the staggered-explicit dimensions and identically to the FCI phase error along the
collocated-implicit dimension. For all three methods, the numerical phase velocity
converges to the speed of light with increasing sampling density.

7.7 Numerical examples

7.7.1 Spurious PML reflections

To assess the PML performance, a 10× 10× 10-cell cavity fully covered by PMLs, is
excited by an electric source jx(t) located in the center of the cavity, and the elec-
tric field epml

x
(t) is recorded at the exact same position. A uniform discretization

∆x =∆y =∆z =∆ = 1 mm/
p
ǫr is adopted in combination with the largest sta-

ble time step∆t = 2.36 ps. The source jx(t) is a differentiated Gaussian pulse with
bandwidth 50 GHz. Each PML has five layers. The damping parameter (7.29) is
polynomially graded to the fourth power up to σmax = σopt = (30π∆

p
ǫr)
−1, cor-

responding to (7.30). Evanescent waves are not further damped by the PMLs, that
is, κmax = 1. A second simulation uses the same set-up but replaces each PML with
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Figure 7.7: PML reflection error for different background media.

90 extra cells terminated by PECs. The recorded field Eref
x
(t) serves as a refer-

ence. Both simulations execute 250 iterations. The two time signals are Fourier
transformed and the PML reflection coefficient, defined as

Rpml(ω) = 20 log10

∣

∣

∣

∣

∣

Epml
x
(ω)− Eref

x
(ω)

Eref
x
(ω)

∣

∣

∣

∣

∣

, (7.66)

is computed and plotted in Fig. 7.7 for three different homogeneous background
media. As could be expected according to [14, Eq. 37], the curves for vacuum and
dielectric background media coincide. At 30 GHz, the wavelength is resolved by 10
samples. Above this frequency, the PML performance is compromised by numerical
dispersion. Overall, the reflection is very low.

7.7.2 Spurious subgrid reflections

In analogy to [16], [17], the spurious reflections originating from the interface
between the coarse FDTD grid and the UCHIE subgrid are quantified by exciting
a vacuum parallel plate waveguide by a TEM pulse which propagates towards a
vacuum UCHIE subgrid. The configuration is shown in the inset of Fig. 7.8. The
separation between the two plates is 10 mm, the subgrid measures 4 mm in the
y-direction and has a thickness ∆x of one coarse FDTD cell. The UCHIE subgrid
consists of 50 subdivisions in the x-dimension with ∆x f = 0.2µm, completed by
two padding areas in order to obtain one ∆x . The subgrid reflection coefficient,

Rsg(ω) = 20 log10

∣

∣

∣

∣

∣

Hsg
z
(ω)− Href

z
(ω)

Href
z
(ω)

∣

∣

∣

∣

∣

, (7.67)

is plotted in Fig. 7.8 for two different coarse-grid cell sizes: ∆x =∆y = 0.5 mm
and ∆x = 2∆y = 2 mm. The field Hsg

z
(t) is recorded in an observation point P

placed five cells in front of the subgrid. An auxiliary simulation without subgrid
provides the reference field values Href

z
(t). Fig. 7.8 confirms that UCHIE subgrid-

ding can easily compete with other subgridding methods such as the conservative
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Figure 7.8: Quantization of spurious reflections: magnitude of the reflection coefficient of
a vacuum UCHIE subgrid in a vacuum parallel plate waveguide excited by its TEM mode.
The physical configuration is presented as an inset.

subgridding scheme described in [16]. Indeed, it was stated in [10] that the 1-D
hybrid staggered-collocated refinement scheme has no reflections for the magic
time step, that is, for the Courant number equal to one. Given the analogous in-
terface condition, this property holds in 2-D as well, but only for normally incident
plane waves and for the 1-D magic time step associated to the normal direction,
which cannot be picked in 2-D due to instability. Also, only two out of four inter-
faces have this accurate interface condition. The two remaining interfaces, which
exhibit edge termination, have less accurate standard subgridding interpolation
rules that cause additional reflections. This explains the very low but non-zero
amount of spurious reflections observed in Fig. 7.8. As the frequency increases,
the sampling density of the grid relative to the wavelength drops and the discrep-
ancy between the dispersion relations in both grids augments, which unavoidably
results in higher reflections. For the same reason, the coarser discretization of the
FDTD region results in a higher reflection coefficient.

7.7.3 Shielding effectiveness of a thin conductive layer

Consider the 2-D geometry of Fig. 7.9. A conducting slab with thickness d and
height h resides in free space. A magnetic line source g(t)uz illuminates the slab
in the near field. To validate our new UCHIE subgridding method on this 2-D TE
problem, simulation results are compared with the analytical results obtained by
extending the slab to infinity, i.e. h→∞. This analytical solution is derived using
a well-known frequency-domain approach [18] for layered media by introducing
a spatial Fourier transform of Maxwell’s equations along the y-coordinate. This
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Figure 7.9: A magnetic line source (orange) is shielded by a thin copper slab (gray) in 2-D.
The magnetic field is observed at three different locations at the back of the slab (green,
brown, blue).

yields the transmitted magnetic field at the back of the slab:

H t
z
(ω, y) =

1

2π

+∞∫

−∞

H t
z
(ω, ky) e

 ky y dky , (7.68)

with

H t
z
(ω, ky) = −

2Zs e−  Γ0 x0

(Z0 + Zs)
2 e  Γsd − (Z0 − Zs)

2 e−  Γsd
g(ω) , (7.69)

and g(ω) the time-domain Fourier transform of g(t). Furthermore, the impedances
Z0 and Zs are

Z0 =
Γ0

ωǫ0
Zs =

Γs

ωǫ0ǫr,eff
, (7.70)

whereas the wavenumbers Γ0 and Γs are given by

Γ0 =
Ç

k2
0 − k2

y
Γs =
Ç

k2
0 ǫr,eff − k2

y
. (7.71)

They depend on the vacuum wavenumber k0 and the effective relative permittivity
of the conductive slab

ǫr,eff = ǫr,s +
σs

 ωǫ0
. (7.72)

Both wavenumbers must have a phase angle in the fourth quadrant in order to en-
sure that the exponentials in (7.69) are damped. As a consequence, the integrand
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of (7.68) is discontinuous at ky -values for which Γ0 and/or Γs become zero. To re-
solve this behavior adequately, we use a tanh-sinh quadrature rule [19, Sec. 4.1].
In the case of a vacuum slab, the transmitted magnetic field of the line source is a
Hankel function [20, Eq. 11-15b]

H t
z0(ω, y) = −

k2
0

4ωµ0
H
(2)
0 (k0 r) g(ω) , (7.73)

with r the distance between the excitation and the observation point. From the
above, we derive the dimensionless shielding effectiveness:

SE(ω, y) = 20 log10

∣

∣

∣

∣

H t
z0(ω, y)

H t
z
(ω, y)

∣

∣

∣

∣

. (7.74)

For the numerical results discussed below, SE(ω, y) is first calculated using the new
UCHIE subgridding technique. This requires two different runs: one with conduc-
tive and one with vacuum slab. At every time step, the value of Hz is recorded
in different observation points located at the back of the slab. The data of both
runs are Fourier transformed with respect to t and then divided by each other.
The length h is chosen large enough as to ensure that the recorded fields are not
yet influenced by diffraction at the top and bottom of the slab. This implies that
the numerically obtained SE(ω, y) values can be compared to the corresponding
analytical values for h→∞ obtained by calculating (7.68).

The waveform g(t) is a differentiated Gaussian pulse with a bandwidth of 7.5 GHz.
The overall FDTD grid counts 40 by 1800 divisions with ∆x = ∆y = 4 mm. It is
terminated by a ten-cell split-field PML along its four exterior boundaries. The
UCHIE subgrid is positioned in the center of the overall FDTD grid. It comprises
one coarse cell in the x-direction, but extends along the full y-dimension from one
cell above the lower PML to one cell below the upper PML. The copper slab inside
the UCHIE grid has a width d = 10 µm and counts 60 uniform cells along the
x-axis. Hence, the slab is refined by a factor 24 000 in this direction. The UCHIE
subgrid exhibits two more segments along the x-axis as to pad one step ∆x in the
main grid. The slab’s left surface is exactly in the middle of the UCHIE grid such
that the source, which is placed two cells to the left of the UCHIE grid, is 10 mm
removed from the slab, i.e. x0 = 10 mm. The time step is the 2-D Courant limit
∆t = 9.4345 ps and the number of iterations is Nt = 2000. With these choices,
diffraction effects at the upper and lower edges of the slab do not influence the
presented data.

Fig. 7.10 shows that the shielding effectiveness of a thin copper slab, i.e., ǫr = 1
and σ = 5.8 107 S/m, is accurately computed for the frequency range that is cov-
ered by the source, even for f = 7.5 GHz corresponding to merely ten samples per
wavelength in the main grid. Additionally, the results for an infinitesimally thin
conductive layer with impedance network boundary condition (INBC), based on
[21], [22], are plotted. The cotangent and cosecant arising in the self-impedance
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Figure 7.10: Shielding effectiveness of a copper slab (d = 10µm, ǫr = 1, σ = 5.8 · 107

S/m) for a near-field magnetic line source at x0 = 10 mm. The three observation points are
indicated in Fig. 7.9.

and mutual impedance of the INBC, respectively, are expanded in their Taylor se-
ries, truncated after seven terms, and a partial fraction routine is applied to derive
the update coefficients, as is described in [21]. The H-node shift issue is resolved
by the spatially first-order accurate scheme proposed in [22]. In contrast to the
INBC approach, the UCHIE subgridding method is not restricted to good and ho-
mogeneous conductors (σ ≫ ωǫ), but can handle any type of material. Also, it
does not depend on the fact that a 1-D thin sheet approximation is introduced.
As could be expected, the INBC approach is unreliable for the higher frequencies
where the thin-layer assumption no longer holds.

Fig. 7.11 shows the SE for exactly the same configuration, except for the fact that
the slab is made of highly doped silicon with ǫr = 11.7 and σ = 103 S/m. Again,
the accuracy of the UCHIE subgridding technique is striking.

7.7.4 Skin effect

One of the purposes of the new subgridding method is to accurately model thin
good conductor effects. We again turn to the set-up of Fig. 7.9, but now with a finite
slab having h= 10 mm. The slab is made of copper and has thickness d = 10 µm.
It is discretized with a 0.2 µm increment in the x-direction. The FDTD cell dimen-
sions are ∆x = 0.253 mm and ∆y = 0.250 mm. The source is again placed at a
distance x0 = 10 mm in front of the copper slab. Fig. 7.12 displays the normalized
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Figure 7.11: Shielding effectiveness of a highly doped silicon slab (d = 10µm, ǫr = 11.7,
σ = 103 S/m). The three observation points are indicated in Fig. 7.9.

magnitude of the current density at 2.45 GHz in the normal cross section at the
height of observation point 1. At this frequency, the skin depth δskin is 1.3351 µm.
Two exponentials are fitted (in the least-squares sense) to the data points that lie
within one skin depth distance from the left and right conductor surface, resulting
in the dashed lines in Fig. 7.12. The fitting leads to the following numerical data
for the skin depth: δleft

skin = 1.3353µm and δright
skin = 1.3342µm, i.e. a relative error

of less than one per thousand.

7.7.5 Field solutions compared to MoM

For exactly the same setup as in Section 7.7.4, the magnetic fields along the left and
right surface of the copper slab are compared to the output of the noncommercial
MoM-solver described in [23]. Fig. 7.13 again confirms the accuracy of the UCHIE
subgridding technique.

7.7.6 Far-field radiation pattern of a metal grating

The scattering width (SW) of a five-strip metal grating is simulated, where each
conductive strip is modeled by a separate UCHIE subgrid. The total-field scattered-
field (TFSF) formalism is used in combination with an incident field array look-up
table to excite a sinusoidal TM-polarized plane wave with a frequency of 2.45 GHz
and an angle of incidence of 25◦. The whole simulation space is delimited by a five-
layer split-field PML [24]. A conventional near-to-far-field (NTFF) transformation
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Figure 7.12: Current density in the cross section of a thin copper slab (d = 10µm, h = 10
mm, σ = 5.8 · 107 S/m) at f = 2.45 GHz.
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Figure 7.15: Scattering width for several conductivities of the strips.

is used to project the scattered fields from a near-field rectangle in the SF region
to a far-field observation circle [25, Sec. 8.3.2]. The configuration of the grating is
depicted in Fig. 7.14: the strips measure 0.1 mm by 40 mm and extend infinitely
in the z-direction. They are separated by a 50 mm gap. The Yee grid employs a
uniform step size ∆x =∆y = 2.5 mm and runs at the Courant limit ∆t = 5.9 ps.
The strips contain 50 UCHIE cells in their smallest dimension in order to capture
the skin effect properly. This corresponds to a refinement factor of 1250. The SW,
which is defined as

σ2D = lim
ρ→∞

2πρ

∣

∣

∣

∣

Ez(ρ)

Einc

∣

∣

∣

∣

2

, (7.75)

is plotted in Fig. 7.15 for several values of the conductivity σ inside the strips. The
lion’s share of the radiation is reflected in the specular direction φs = 65◦. The ar-
ray factor reveals the presence of additional lobes at φs = arccos

�

sin(25◦) +mλ
a

�

,
where m is an integer, λ the wavelength of the incident wave, and a the pe-
riod of the grating, here 90 mm. This shows that more radiation is expected at
φs = 159.55◦, as is confirmed by Fig. 7.15. The red curve is produced by the non-
commercial MoM solver [23], which approximates the strips by PEC, i.e. σ =∞.
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7.7.7 Shielding effectiveness of a graphene sheet

Graphene, a carbon monolayer with honeycomb pattern, is a promising material
to manufacture high-speed transistors and other switching devices thanks to its
thinness, its mechanical strength and its extraordinarily high electron mobility.
Consequently, it has attracted lots of research interests, also with regard to the
development of CEM tools. At microwave and THz frequencies, the conductivity
of graphene is mainly attributed to intraband electron transitions. In that case, the
graphene sheet is typically characterized by a Drude model with effective relative
permittivity

ǫrg
(ω) = 1+

σg/  ωǫ0

1+  ω/2Γscat
, (7.76)

where the volumetric DC conductivity of graphene is (see e.g. [26])

σg =
q2kB T

π~2Γscatd
ln
�

2 cosh
� µc

2kB T

��

, (7.77)

with q the electron charge, ~ the reduced Planck constant, kB the Boltzmann con-
stant, T the temperature, Γscat the scattering rate, µc the chemical potential, and
d the sheet thickness. Note that (7.76) corresponds to (7.10) with γ= 1/(2Γscat).

The graphene sheet under investigation has d = 1 nm, T = 300 K, µc = 0.05 eV,
and Γscat = 0.5 THz. Hence, according to (7.77), the sheet has a DC conductivity
σg = 6.7 S/µm. In order to validate the stability and accuracy of the dispersive
3-D UCHIE-FDTD method with UPML, the shielding effectiveness is determined
for normal plane-wave incidence on an infinite graphene sheet. Thereto, a sim-
ilar configuration as the one in [7], [8] is adopted and depicted in Fig. 7.16. A
plane wave is generated by a TFSF surface placed at one side of the graphene
sheet, whereas the transmitted field Ezg

(t) is recorded in one point at the other
side of the sheet. The source is a differentiated Gaussian pulse with bandwidth
b = 0.55 THz, temporal width tw = 2/πb and delay td = 6 tw. The spatial in-
variance in the y- and z-dimension is fulfilled by imposing periodic boundary con-
ditions (PBCs). Both the transmitted and the back-scattered plane waves are ab-
sorbed by UPMLs with κmax

x
= 1. The overall grid is uniformly discretized with

steps ∆x =∆y =∆z ≈ 27µm, whereas the graphene sheet is locally resolved by
two small cells of size d along the x-axis as depicted in Fig. 7.17. The time step
equals the Courant limit in the yz-plane, more specifically

∆τ=
1
Ç

1
∆y2 +

1
∆z2

≈ 19µm , (7.78)

which is about 19 000 times larger than the time step that would have to be used by
the classical FDTD method. The recorder is placed 136µm beyond the graphene
sheet. The simulation performs 10 000 iterations. An auxiliary simulation uses the
same configuration, but replaces the graphene sheet by a vacuum layer as to record
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Figure 7.16: The TFSF plane (blue) excites a plane wave with non-zero components H y and
Ez which normally impinges upon a thin graphene sheet (hexagons) of thickness d = 1nm.
The electric field Ez is recorded a few cells behind the graphene sheet (red). Infiniteness in
the y- and z-dimension is mimicked by PBCs along four of the exterior faces. The remaining
two faces are covered by PMLs to absorb outgoing waves in the x-dimension.

the reference field Ez0
(t). The time-domain data are then Fourier transformed and

their ratio determines the shielding effectiveness

SEnum(ω) = 20 log10
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. (7.79)

The analytical solution for the SE is known to be

SEana(ω) = 20 log10
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, (7.80)

with R f the Fresnel reflection coefficient of a single vacuum-graphene interface

R f =
1−pǫrg

1+
p
ǫrg

, (7.81)

and wavenumber
kg =

ω

c0

Æ
ǫrg

. (7.82)

The resulting SEs are plotted in Fig. 7.18. Despite the enormous refinement ratio
of 27 000, the analytical and numerical curves are indistinguishable, confirming
the accuracy of the UCHIE-FDTD method. The shielding is mainly ascribed to
reflections from the two interfaces rather than to the skin effect. At 0.5 THz, the
skin depth, hereby meaning the thickness that the graphene sheet should have to
reduce the amplitude of a plane wave by 63%, is 360nm and this value increases
towards DC.

A similar simulation is repeated but this time a dipole of length ∆z is excited at
a distance ds = 409µm from the left side of the graphene sheet. All six exterior



7.7. Numerical examples 147

x

d

d

d

σg

∆x

Figure 7.17: Discretization along the x-axis. The vacuum part of the grid is uniformly
discretized with step∆x ≈ 27µm. The graphene sheet is approximated by two small UCHIE
cells of size d = 1nm. The graphene conductivity σg = 6.7 S/µm is solely assigned to
the single discretization point enclosed by these two small cells and does not need to be
averaged as is the case for the conventional Yee grid.
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Figure 7.18: Shielding effectiveness of the 1 nm graphene sheet illuminated by a normally
incident plane wave, an E-dipole and an H-dipole. The analytical plane-wave solution is
plotted as well.

faces of the grid are covered by UPMLs, this time with κmax
x
= κmax

y
= κmax

z
= 10 in

order to absorb the evanescent waves radiated by the dipole source as well as the
evanescent waves inside the graphene sheet. Indeed, the graphene sheet extends
inside the PMLs in order to exclude reflections from its outer edges, such that we
are again modeling an infinite graphene sheet. For the E-dipole, the SE is again
determined by recording Ez and taking the ratio defined in (7.79), whereas, for
the H-dipole, the dual definition of the SE is adopted where Ez is replaced by Hz .
The resulting SEs for both the E- and the H-dipole are shown in Fig. 7.18. Below
0.12 THz, which corresponds to k0ds < 1, the graphene sheet experiences the re-
active near field of the dipole. For this frequency range, the wave impedances of
the E- and H-dipole are approximately ZE = Z0/k0ds > Z0 and ZH = Z0k0ds < Z0

respectively. The graphene sheet behaves like a classical good conductor at low fre-
quencies. As such, it has a very low wave impedance. Consequently, the E-dipole
experiences a higher contrast resulting in more reflections, whereas the H-dipole
does the opposite. This is exactly what we observe in Fig. 7.18: At low frequen-
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cies, the E-dipole is better shielded by the graphene sheet due to strong reflections,
whereas the H-dipole does not even notice the graphene sheet because their wave
impedances have the same order of magnitude. At higher frequencies, both dipoles
are electrically further removed from the graphene sheet and, consequently, they
resemble a plane wave as demonstrated by the convergence of the three curves in
Fig. 7.18.

7.7.8 Characteristic impedance of a 3-D microstrip line

Finally, the new UCHIE-FDTD method is used to simulate the y-invariant mi-
crostrip line depicted in Fig. 7.19. The line is excited by a hard field source ap-
proximating a quasi-TEM pulse with Gaussian time signature at one end, and dis-
appears 10 mm further inside a UPML at the other end. This UPML’s damping
parameter σy is rescaled by the square root of the effective relative permittivity
of the microstrip line to yield better impedance matching. The remaining four
exterior boundaries of the simulation space are terminated with standard vacuum-
matched UPMLs. All UPMLs consist of five layers with κmax = 1 and σmax = σopt,
defined earlier in (7.30). The microstrip line is surrounded by five vacuum cells
in the xz-plane. The x-dimension is implicitized with ten divisions inside each of
the two conductors to accurately capture the skin effect, and five divisions inside
the dielectric to deal with this thin layer. To resolve the fringing fields, an area of
three times the strip width is sampled with a step∆z1 = 7.5µm. The remainder of
the microstrip is sampled with ∆z2 = 75µm, and the cells outside the microstrip
have ∆z3 =∆y = 500µm. The simulation runs for 105 iterations at 0.99 times
the 2-D Courant limit. A total of 108 banded matrices with rank 88 are LU factor-
ized prior to time-stepping, taking less than 0.0006% of the total CPU time. The
forward-backward substitutions inside the time-stepping loop only take 22.3 % of
the CPU time. At present, our Matlab script uses over 1.4 million unknowns, but
could be made more efficient by eliminating the auxiliary unknowns in the non-
PML region. Assuming quasi-static conditions, the voltage between the conductors
and the current inside the strip are computed at the end of the line using the usual
line integral over the electric fields and contour integral over the magnetic fields
respectively. They are Fourier transformed after which their ratio yields the char-
acteristic impedance Zc . The phase difference between two voltages shifted by one
step ∆y is used to determine the wavenumber k = β − jα. All relevant quantities
are plotted in Fig. 7.20, and are compared to the numerical solution of an in-house
solver leveraging the Dirichlet-to-Neumann (DtN) operator [27]. The high degree
of resemblance between the UCHIE and the DtN solution shows that all details,
including the thin layer and skin effect, are correctly predicted.



7.7. Numerical examples 149

z

x

1050 µm

72 µm

18 µm

18 µm

150 µm

ǫr = 3.2

σ = 5.8× 107 S/m450 µm
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8
Conclusion

“Our work is never over.”

Daft Punk

8.1 Comparative overview

Throughout this doctoral research, several hybrid implicit-explicit and collocated-
staggered techniques were proposed to improve the FDTD method’s performance
with regard to electromagnetic problems encompassing disparate geometric scales.
They are listed in Table 8.1, where they are compared to each other in terms of

1. Provable stability: Is it possible to analytically prove that the method is stable,
albeit under certain constraints such as a time step limit?

2. Accuracy: Does the numerical solution converge to the real solution within
several tenths of percents for a reasonably small number (e.g. 20 to 30) of
samples per wavelength?

3. Anisotropy: Does the method allow a natural discretization of complicated
constitutive relations such as those pertaining to anistropic media?

4. n-D refinement: Is it recommended to use the method for refinement in more
than one dimension?

5. Time efficiency: Does the method yield significant time savings compared to
the conventional FDTD method in the case of multiscale problems?

6. Memory efficiency: Does the method yield significant memory savings com-
pared to the conventional FDTD method in the case of multiscale problems?



158 Chapter 8. Conclusion

ch
ap

te
r

pr
ov

ab
ly

st
ab

le

ac
cu

ra
te

an
is

ot
ro

py

n
-D

re
fin

em
en

t

ti
m

e
ef

fic
ie

nt

m
em

or
y

ef
fic

ie
nt

pa
ra

lle
liz

ab
le

sc
al

ab
le

co
m

pa
ti

bl
e

FCI 6
UCHIE 7
NβHIE 4
CNHIE 4
ADHIE 4

2-D UCHIE-SG 7
2-D FCI-HSG 6
3-D FIT-SG 5

Table 8.1: Comparative overview of the proposed multiscale techniques. The methods
above the dashed line are mainly meant for nonuniform gridding, whereas the ones below
the dashed line are subgridding methods.

7. Parallelizability: Is it possible to divide the computations needed to advance
one time step into a number of parallel processes that scales with the number
of unknowns?

8. Scalability: Is the linear time complexity of the conventional FDTD method
preserved?

9. Compatibility: Is the method easily added to existing FDTD software based
on Yee’s scheme?

This is definitely not a rigorous exposition. The story is not always “black or white”
as is the case with the presence or absence of a check mark in Table 8.1. For
example,

• The NβHIE and CNHIE methods are both scalable as long as their use is
restricted to one-dimensional refinement.

• The UCHIE method is not scalable if the currently implemented standard LU
factorization is adopted to solve the pentadiagonal stencils, but less common
algorithms that resemble the well-known Thomas algorithm for tridiagonal
matrices, featuring linear time complexity exist as well [1].

• The NβHIE method could have check marks in the memory efficiency and
compatibility columns too, but these marks are left out because the CNHIE
method scores better for these properties. In fact, due to the three-level in-
stead of two-level update scheme and due to the wave impedance error as
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a consequence of the asymmetrical time integration of the curls, the NβHIE
method is always inferior to the CNHIE method in terms of accuracy, effi-
ciency and compatibility.

• The Yee-cell based methods rely on second-order supraconvergence, which
only occurs if a sufficiently small maximum grading ratio is imposed to the
sizes of adjacent cells. The FCI and UCHIE methods, on the other hand, fea-
ture unconditional second-order accuracy, such that they typically require a
much smaller number of cells to resolve the same multiscale problem with
the same level of accuracy. However, their update equations are less sparse
than the Yee-cell based ones, such that the memory efficiency comparison be-
tween staggered and collocated schemes is, in fact, dependent on the prob-
lem at hand.

• The FIT-SG method is fully explicit but does not allow to tune the time step
as is the case with all other presented techniques, which makes it difficult to
compare them to each other.

From Table 8.1, it is clear that the ADHIE-FDTD method is by far the best solution
to speed up FDTD simulations that encompass multiscale geometries. The FIT
subgridding method is also very promising, in particular if it could benefit from a
local time-stepping scheme for even better accuracy and efficiency.

It has to be emphasized that some of the numerical examples presented in this work
are infeasible to reproduce with the conventional FDTD method on a standard
computer due to memory shortage and/or an excessive number of iterations.

8.2 Overall conclusion

In this doctoral thesis, several approaches are proposed to improve the efficiency
of the finite-difference time-domain (FDTD) method when it comes to model-
ing multiscale problems arising in many present-day electronics products. Well-
known nonuniform gridding and subgridding techniques composed of traditional
Yee cells are extended with locally applied hybrid implicit-explicit time integration
(Newmark-β , Crank-Nicolson and alternating-direction implicit schemes) as to re-
move the smallest occurring cell sizes from the Courant stability limit, such that
the time dimension is not needlessly oversampled. Much care has been taken to
provide rigorous algebraic stability proofs for each of these methods, taking into
account the inhomogeneity of the background medium, the nonuniformity of the
grid, the boundary conditions, etcetera. Especially the newly developed leapfrog
alternating-direction hybrid implicit-explicit (ADHIE) method outshines in terms
of computational efficiency as the occurring matrices only scale with the number
of cells in one dimension. Since the ADHIE method is applied locally to features
that are much smaller than the relevant wavelengths, the splitting error, which is
proportional to the field gradient, is low.
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Since finite differences are not sufficient to understand the behavior of grid anoma-
lies such as subgridding, which are mostly the cause of many undesired numerical
artifacts (e.g. spurious reflections, spurious charges, instability, aliasing), much ef-
fort has been put in finite-integration and finite-element analysis throughout this
doctoral thesis. Their main asset, apart from being applicable to any type of grid, is
that they inherently comply to the differential-geometric principles that underpin
Maxwell’s equations, such that important physical conservation properties are pre-
served on the discrete level. A theoretically well-supported subgridding method,
based on Whitney brick elements and mass lumping, was found to be closely re-
lated to finite integrations, which allowed to extend the method to a very flexi-
ble cell-by-cell subgridding scheme for inhomogeneous and anisotropic refinement
without buffer zone.

Another part of this doctoral research has been devoted to the hybridization of the
classical Yee scheme with the fully-collocated implicit (FCI) FDTD method, which
features unconditional stability and unconditional second-order accuracy at the
cost of a large sparse matrix inversion. A more efficient unidirectionally-collocated
hybrid implicit-explicit (UCHIE) FDTD method was developed and hybridized with
the Yee grid in 2-D. It was found to be a very effective approach to model thin con-
ductive layers. A standalone 3-D version of the UCHIE-FDTD method was found
to be excellent in tackling geometries that are highly multiscale in one dimension
such as graphene sheets, and does this with a minimal number of variables, owing
to the unconditional second-order accuracy and the unambiguous discretization of
the material boundaries with the correct tangential-field continuity.

Most work presented in this doctoral thesis focuses on academic examples that
have an analytical solution, this to verify the accuracy of the proposed methods.
The emphasis of this work is thus on accuracy rather than efficiency, with the un-
derlying premise that the proposed techniques quickly outperform existing tech-
niques for problems that are highly multiscale.

8.3 Possible future work

8.3.1 FCI-FDTD

The fully-collocated implicit FDTD method naturally treats anisotropic media with-
out the need for additional interpolations. It should be possible to extend the
stability proof provided in [2] to anisotropic and even bianisotropic media. Then,
once a good anisotropic solver is at our disposal, transformation optics can be used
to transform complex geometries to complex materials. This could, for example,
be used to accurately model cylindrical through-silicon vias (TSVs) [3]. Here, the
unconditional stability of the FCI-FDTD method plays out very well, because the
double coordinate transformation could possibly introduce faster-than-light me-
dia, which require a lower time step. At that point, the inefficient matrix solution
should be tackled: since the grid is well-structured, it should be possible to con-
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struct an efficient iterative solver [4] with proper preconditioner. Another solution
could be to expand the Schur complement of the update matrix in a truncated
Neumann series [5, Eq. 7.2.45] (possibly accelerated with an Euler or Van Wijn-
gaarden transformation [6, Sec. 5.3.2]) or a truncated Euler series [5, Eq. 7.2.46]
that can be computed recursively, which essentially yields a fully explicit method
with a time step upper bound. Yet another avenue would be to find some ADI-type
solution. However, the occurring interpolators are believed to create overly large
splitting errors. At last, the adequate embedding of the FCI-FDTD method in an
overall Yee grid can be attempted. Moreover, the finite-element insights mentioned
in this dissertation are quite new and it is believed that they could lead to a robust
grid stitching scheme. One inconvenience, however, could be the well-possedness.
Also, the 2-D UCHIE-subgridding method could be extended to 3-D with the help
of the new finite-element insights.

8.3.2 Cell-by-cell subgridding

If the cell-by-cell subgridding algorithm with arbitrary refinement ratio [7] could
be extended with local time-stepping in a provably stable way, this would finally
put an end to the FDTD subgridding quest, thanks to its flexibility combined with
its strong physical backbone. First of all, however, the scheme should be tested
for simple dielectric and lossy media. From a finite-integration point of view, this
should work properly. It could be interesting to verify with Gershgorin’s circle the-
orem [8, Fact 4.10.16], if the coarse-grid updates next to the subgrid can become
unstable. The cell-by-cell subgridding scheme could be easily extended to other co-
ordinate systems (e.g. cylindrical and/or body-of-revolution systems [9]). Also, an
error measure could be defined such that the cell-by-cell subgridding method can
be used for adaptive mesh refinement purposes. At last, the hybrid implicit-explicit
methods developed in this dissertation go hand in hand with this subgridding al-
gorithm (one acts on space, the other on time, and this in a well-seperated man-
ner). Hence, a provably stable implicit subgridding method, for example based on
Crank-Nicolson time integration, could be constructed.

8.3.3 Graphene

In [10], graphene was examined in the microwave and THz regime. Only the
intraband electron interactions needed to be considered. At higher frequencies
such as the near infrared, however, also the interband interactions should be taken
into account. The frequency-domain characteristic for this contribution is not a
plain Drude model, though, and should thus be tweaked as to be suitable for the
FDTD method. As is proposed in [11], this could be achieved with Padé fitting. This
same strategy could be repeated for the UCHIE-FDTD method and is expected to
yield increased accuracy owing to the collocated grid and second-order accuracy.

The modeling of graphene by an intraband and an interband conductivity is based
on the Kubo formula and only holds in the non-ballistic regime. In the ballistic
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regime, e.g. for a graphene field-effect transistor (FET), a multiphysics approach
is necessary that harmonizes Maxwell’s equations and the Dirac equation [12].
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