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INTRODUCTION AND OBJECTIVES 

Lipids, when exposed to air, become rancid and the known reaction responsible for this is 

oxidative degradation. Lipid oxidation mainly occurs in unsaturated fatty acids. On the other 

hand, use of unsaturated fatty acid oils has gained much attention with a view of their added 

health benefits. These oils are more prone to lipid oxidation; thus, a thorough understanding 

of lipid oxidation especially secondary lipid oxidation products formation is important. The 

reaction proceeds by production of hydroperoxides which are the primary products of lipid 

oxidation. They are relatively unstable such that they enter into numerous complex reactions 

involving substrate degradation and interaction, resulting in several compounds some of 

which have off-flavours at low thresholds and are toxic.  

Among the secondary oxidation products are the epoxy fatty acids (EFAs). These contain at 

least one epoxide group and have typically one double bound less compared to the parent 

fatty acid, while the number of carbon atoms is retained. Their natural occurrence in some 

seed oils is reported, although their biological function is not known. It is hypothesized that 

enzymatic processes in these plants are responsible for their biosynthesis. The formation of 

EFAs in foods has previously been shown in oil, but especially during high temperature 

frying. Remarkably, apart from those early reports, very limited information is available with 

respect to the formation of EFAs in foods via lipid oxidation. Similarly, limited data on the 

concentration levels at which this group of underinvestigated secondary lipid oxidation 

compounds occur in foods are available. Therefore, the main goal of this PhD was to 

explore these less known lipid oxidation products focusing on their analytics, 

occurrence, formation, reactivity and potential food safety risks.   

EFAs were identified by Gunstone in 1954 and research in this area has been ongoing. There 

have been reports of natural occurrence of these compounds in many seed oils but the known 

route of formation is through lipid oxidation. It was observed that there is a lot of old 

literature on EFA research and recent research seems to be missing. Therefore, in the first 

chapter, a review of the available scientific literature of full research papers published in 

peer reviewed journals so as to show the current knowledge and also point out the missing 

links in this important area of lipid chemistry was done (chapter 1). 



xiii 

 

During this review of literature, it was observed that the analysis of EFAs was challenging. It 

was complicated due to the presence of many structurally similar fatty acids which are polar, 

thus individual separation was sometimes impossible. Although gas chromatography flame 

ionization detector quantification methods were available, they were not well optimized to 

analyze EFAs in less oxidized oils like the fresh ones. On the other hand, no method was 

available to analyze EFAs in food matrices. This lead to our first objective, to develop and 

optimize a method for analysis of EFAs in oils (chapter 2) and another method to analyze 

EFAs in food matrices (chapter 3) since these two matrices require different techniques for 

the analyte extraction. 

Toxicity of some EFAs has been documented in different systems, although not enough data 

is available for other EFA isomers. Because of this we cannot estimate toxicity correctly 

however, we can extrapolate that the other EFAs exhibit similar toxicity. Despite the lack of 

enough toxicity data, concerns about the impact of the presence of these potentially reactive 

epoxy compounds on human health are raised. As no risk assessment with respect to the 

presence of these compounds has been done to date, our second objective was to do a risk 

assessment of these fatty acids in foods on the Belgian market (chapter 4). 

To date no research has been done about the behavior of these compounds in foods which is 

important if we must know the impact of EFAs in human bodies. This lead to our third 

objective of mechanistic studies to follow the formation of these compounds in different food 

system models. Since literature was missing in this area, the best system to begin with  was 

the simplest model of bulk oil. Oils of different fatty acid composition were subjected to 

different oxidation conditions and the formation of EFAs was followed with time (chapter 

5). Due to the nucleophilic character and the strained geometry of the epoxide ring, it is 

known that epoxides show a relatively high reactivity towards a variety of nucleophiles. In 

foods, proteins are suitable nucleophiles, which moreover can be present in the interface 

between the aqueous and lipid fraction of emulsified food systems. It can be hypothesized 

that in this interface the produced epoxy fatty acids might (partially) react with the 

nucleophilic amino acid residues present in the protein. Such potential reactions are relevant 

with respect to i) the use of EFAs as indicators for lipid oxidation, ii) the potential loss of 

protein bioavailability and iii) the potential toxicity of EFAs. To find out possible interactions 
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of EFAs in foods, their stability was evaluated in emulsions formed with whey and casein 

proteins and soybean oil (chapter 6). 

Finally, Chapter 7 presents the general discussions and conclusion, as well as the future 

perspectives in the analysis of EFAs and the gaps in our current knowledge in understanding 

EFAs formation and interactions with proteins. 

The general scheme of this PhD study is shown in Figure I. 
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Figure 1: Schematic outline of the objectives of the PhD study 

 

OBJECTIVE I 

Method development 

 

OBJECTIVE II 

Application of the developed methods 

 
Chapter 4 

Dietary exposure and risk assessment for EFAs 

 

OBJECTIVE III 

Mechanistic studies 

 
Chapter 5 

 
Insights into formation of EFAs 
 

Chapter 6 

EFA-protein interaction  

 

Chapter 7 

General discussions, conclusions and future perspectives 

 

Chapter 3 

 

Validation of a Bligh and Dyer 

method for the analysis of EFAs in 

various food matrices 

 

Chapter 2 

 

 
Improved method for the analysis 

of EFAs in oils 

 



xvi 

 

SUMMARY 

This PhD thesis contributes to lipid chemistry in general and specifically to the chemistry of 

EFAs through, (1) developing robust analytical methods, (2) a risk assessment study due to 

the presence of EFAs in foods and (3) elucidating the formation and interaction of EFAs. 

In chapter 1, in a literature review, a short background to EFAs is presented and a review on 

the classical mechanism of lipid oxidation is given plus the different factors affecting lipid 

oxidation have been explained. In the first part of chapter 1, an extensive literature review 

has been done and most of the recent advancements in this area of EFAs are discussed. The 

different gaps in the knowledge and especially in the analysis of EFAs were identified. The 

problem of coelution of EFAs during GC analysis was the main source of hindrance to 

research in this area. Finally, in the last part, an overview of the risk assessment procedure 

has been presented including the risk characterization using the Threshold of Toxicological 

Concern (TTC) concept.  

Chapter 2, includes the development of a gas chromatography flame ionization detector 

(GC-FID) analytical method. The method was specifically developed to analyse for C18 

EFAs in oil samples and it used a fatty acid methyl ester (FAME, C19:0) as an internal 

standard. The compounds were separated on a polar capillary column. This method was 

based on pre-separation of the fatty acids into polar and non-polar fraction and later partition 

the polar fraction by SPE to obtain the EFA fraction and the hydroxy-oxo fraction. The 

method was applied to fresh vegetable oils and it was seen to be accurate and repeatable. 

Regarding this method, it should be noted that because it uses a polar column and the 

analytes of interest are polar, use of a pre-column is important to guard the column and 

prolong its capacity. 

Chapter 3 presents yet another method which was specifically developed to analyse C18 

EFAs in food matrices based on the Bligh and Dyer oil extraction method. The method had 

an innovation in that instead of using a FAME as internal standard (IS), an epoxy FAME was 

synthesized by epoxidation reaction and used instead. This decreased the uncertainties in the 

analytical procedure because the IS could be introduced immediately at the start of the 

analysis. The method was validated in four food matrices, vegetable oils, potato chips, 
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unprocessed meat and the milk powder and low limits of detection were obtained at 2.8, 10.2, 

5.2 and 1.7 µg g-1 of sample respectively. 

In chapter 4, results of the analysis of the concentrations of EFAs in seventeen food 

categories (total samples = 390) available on the Belgian market are presented. By combining 

this information with the consumption data obtained from the Belgian national food 

consumption survey 2004 (BNFCS) of the Belgian population, a quantitative exposure 

assessment was performed. An evaluation of any potential risk related to the intake of the 

EFAs for the consumers of the specific food categories analyzed was made by applying the 

Threshold of Toxicological Concern (TTC) concept. Consumption of mayonnaise, butter-

margarine and ready to eat meals was found to contribute the most to the intake of EFAs. The 

lowest contribution to EFA intake was from consumption of cooked meat, smoked salmon 

and raw cured ham. It should be emphasized that a risk may be probable because of 

consumption of fourteen food groups out of those analyzed. 

A study to get insights into the formation of EFAs is presented in chapter 5. Therefore, three 

common unsaturated fatty acids (oleic (18:1), linoleic (18:2) and linolenic (18:3)), present in 

stripped oils were subjected to three different oxidation mechanisms: oxidation in the dark 

(autoxidation at 6°C), accelerated autoxidation (at 70°C) and oxidation under illumination 

(photooxidation at 6°C). These fatty acids were represented by olive oil, sunflower oil and 

linseed oil respectively. Because photooxidation requires a photosensitizer and yet the price 

of chlorophyll is prohibitive, the different oils were blended with virgin olive oil at a fixed 

ratio to obtain chlorophyll. This however necessitated control blends without chlorophyll but 

which had the same fatty acids composition. This was achieved by blending the same oils 

with refined olive oil. Results indicated that EFAs form in high amounts especially in these 

oils since they had low stability because of stripping. There was a cis isomers preference 

before the study which continually changed to the trans isomers with storage especially in the 

control blends. However, there was a faster decrease in the cis isomers during accelerated 

autoxidation probably implying heat induced isomerisation.  

Chapter 6 investigated possible interactions between EFAs with casein and whey proteins. 

Soybean oil at three oxidation levels (fresh, medium and highly oxidized) was used to 

prepare emulsions. Whey and casein proteins were used as the proteins in this study to 

investigate any possible interaction. The emulsions were incubated at 5°C for 24 hrs. and 
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were analysed for EFA content. In another experiment setup, pure EFA analyte (cis-9,10-

epoxystearate) was spiked into a C7-triglyceride (triheptanoin) and emulsions were made in 

the same way, incubated also for 24 hrs. at 5°C and analysed for the EFA content. 

Preliminary results did not show high reactivity that was expected, however some interaction 

appeared to have occurred. 

The general discussions, conclusions and future perspectives have been discussed in chapter 

7. 
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SAMENVATTING 

Deze doctoraatsthesis draagt bij tot de algemene vetzuurchemie en meer specifiek tot deze 

van de epoxyvetzuren door (1) de ontwikkeling van een robuust analytische methode (2) een 

risicobeoordeling op de aanwezigheid van epoxyvetzuren in voedingsmiddelen en (3) het 

ophelderen van de vorming en de interactie van epoxyvetzuren in voedingsmiddelen. 

Hoofdstuk 1 omvat een korte achtergrond over epoxyvetzuren en beoordeelt door middel van 

een review de klassieke vetzuuroxidatie mechanismen. Vervolgens worden de verschillende 

factoren die een invloed hebben op de vetzuuroxidatie toegelicht. Als laatste wordt een 

overzicht gegeven van de risicobeoordeling inclusief de karakterisering van het risico met 

behulp van het toxicologische drempelwaarde (TTC) concept. In het eerste deel van 

hoofdstuk 1 wordt een grondige literatuurstudie uitgevoerd waarin onder andere de meest 

recente ontwikkelingen omtrent de epoxyvetzuren besproken wordt. Het tweede deel 

beschrijft de verschillende gaten in de kennis, meer specifiek in de analytiek inzake de 

epoxyvetzuren. Tijdens de GC methode co-eluren de epoxyvetzuren, de grootste hindernis 

inzake de analytiek binnen dit vakgebied.  

Hoofdstuk 2 beschrijft de ontwikkeling van een gaschromatografie vlamionisatiedetector 

(GC-FID) analytische methode. De methode is speciaal ontwikkeld voor de analyse van 

epoxyvetzuren aanwezig in olie en gebaseerd op de scheiding van de vetzuren in een polaire 

en niet polaire fractie. De methode maakt gebruik van een vetzuurmethylester (FAME, 

C19:0) als een interne standaard. De componenten worden middels een polaire capillaire 

kolom van elkaar gescheiden. Voor de gaschromatografische scheiding is het noodzakelijk 

dat de polaire fractie van de olie wordt opgezuiverd via SPE om de epoxyvetzuren te 

scheiden van de hydroxy- en oxo-fractie. De methode werd toegepast op verse plantaardige 

oliën en bleek accuraat en herhaalbaar te zijn. Door het gebruik van een polaire kolom en de 

polaire karaktereigenschappen van de componenten is het gebruik van een pre-kolom 

noodzakelijk om de levensduur en de kwaliteit van de kolom te bewaken. 

Hoofdstuk 3 beschrijft de ontwikkeling van een andere methode die speciaal voor 

epoxyvetzuren in voedingsmiddelen ontwikkeld werd op basis van de Bligh & Dyer olie 

extractie methode. De innovatie in deze methode is het gebruik van een epoxy FAME in 

plaats van de standaard FAME als interne standaard. Deze interne standaard werd 
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gesynthetiseerd met behulp van een epoxidatie reactie. Door het gebruik van een epoxy 

FAME als interne standaard daalde de onzekerheden gedurende de analytische procedure. De 

methode werd gevalideerd in vier voedselmatrices: plantaardige oliën, chips, onverwerkt 

vlees en melk poeder. De verkregen detectielimieten waren zeer laag en bedroegen 

respectievelijk 2.8, 10.2, 5.2 en 1.7 µg g-1 monster.  

In hoofdstuk 4 worden de concentraties van epoxyvetzuren in zeventien voedselcategorieën 

(totaal aantal stalen = 390) beschikbaar op de Belgische markt beschreven. Door deze 

resultaten te combineren met de verbruikersgegevens van de “Belgian national food 

consumption survey 2004” (BNFCS) kon een kwantitatieve blootstellingsanalyse uitgevoerd 

worden. Daaraan gekoppeld werd een evaluatie gedaan met behulp van het ‘Threshold of 

Teoxicological Concern’ (TTC) concept van de potentiële risico’s voor de consumenten bij 

het innemen van epoxyvetzuren in gespecifieerde voedselcategorieën. Om deze informatie te 

kunnen gebruiken voor de gehele populatie werd gebruik gemaakt van het ‘IF scenario’ als 

consumptie data. Consumptie van mayonaise, boter, margarine en kant-en-klare maaltijden 

bleek bij te dragen tot de hoogste inname van epoxyvetzuren terwijl de laagste epoxy 

waarden terug gevonden werden in gekookte vleeswaren, gerookte zalm en rauwe ham. Bij 

de inname van de veertien andere voedselcategorieën is de kans op inname van 

epoxyvetzuren zeer waarschijnlijk.  

Hoofdstuk 5 beschrijft de studie waarin de vorming van epoxyvetzuren onderzocht werd. In 

deze studie werden de mechanismen auto-oxidatie, ‘versnelde’ auto-oxidatie en foto-oxidatie 

gevolgd voor de drie veel voorkomende onverzadigde vetzuren; oliezuur (C18:1), linolzuur 

(C18:2) en linoleenzuur (C18: 3) afkomstig uit gestripte oliën. Deze vetzuren werden 

vertegenwoordigd door respectievelijk olijfolie, zonnebloemolie en lijnzaadolie. Als 

fotosensitizer werd extra vierge olijfolie in een vaste verhouding toegevoegd, omdat zuiver 

chlorofiel zeer duur is. Hierdoor werden controlestalen meegenomen met een zelfde 

hoeveelheid olijfolie, waaruit het chlorofiel verwijderd werd. Resultaten toonden een sterke 

epoxyvetzuurvorming aan in deze oliën aangezien deze een lage stabiliteit hebben door de 

‘stripping’ van deze oliën. Er was een cis isomeren voorkeur voor de studie die voortdurend 

verandert in de trans isomeren met opslag, vooral in de controle mengsels. Er was echter wel 

een verlaging aan cis-isomeren te vinden gedurende de auto-oxidatie, mogelijk afkomstig 

door temperatuur geïnduceerde isomerisatie. 
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In hoofdstuk 6 werd de mogelijke interactie tussen de epoxyvetzuren met caseïne-en wei-

eiwitten onderzocht. Soja olie met drie verschillende oxidatie niveaus (laag, matig en hoog 

geoxideerd) werd gebruikt om de emulsies aan te maken. De emulsies werden gedurende 24u 

bij 5°C geïncubeerd waarna de epoxyvetzuurconcentratie bepaald werd. In een ander 

experiment, werden een zuiver epoxyvetzuur (cis-9,10-methyl-epoxystearate) gedopeerd in 

C7-triglyceride (triheptanoïne) welke geëmulgeerd werd in de aanwezigheid van caseïne- en 

wei-eiwitten. De emulsies werden nadien getest op hun EFA hoeveelheden. Pre-eliminaire 

data konden de verwachte hoge reactiviteit niet bevestigen, maar er werd wel interactie 

gevonden. 

In hoofdstuk 7 wordt deze thesis afgerond met de algemene discussie, de conclusies en de 

toekomstperspectieven. 
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1.1 GENERAL INTRODUCTION  

Lipids are any of a class of organic compounds that are fatty acids or their derivatives and 

substances related biosynthetically or functionally to these compounds. They are biological 

substances that are generally hydrophobic in nature and in many cases soluble in organic 

solvents. This group includes natural oils, waxes, terpenes, phospholipids, sphingolipids, and 

sterols (Akoh & Min, 2008). Naturally, fatty acids are the basic building blocks of lipids and 

they are carboxylic acids with long hydrocarbon chains attached (Damodaran, Parkin, & 

Fennema, 2007). When the fatty acids have an oxygen molecule incorporated into their 

structure, they are called oxygenated fatty acids. Oxygenated fatty acids are common in nature 

and are important industrial materials. The classes of oxygenated fatty acids well known are 

epoxy acids, hydroxy acids and keto acids. In Figure 1.1 examples of a non-oxygenated fatty 

acid (normal) and three representative oxygenated fatty acids are shown. Epoxy fatty acids 

(EFAs) are straight-chain aliphatic mono carboxylic acids containing one or more oxirane 

rings in the fatty acid chain. The basic structure of EFAs is the oxirane ring shown in Figure 

1.2 (Swern, 1955). This three-member ring consists of two carbon atoms joined to an oxygen 

atom. Hence they can be defined as cyclic ethers with three ring atoms (Chow, 2007). 

   

   

Figure 1.1: Structural formulas of selected fatty acids 

The carbons in an epoxide group are very reactive electrophiles, since substantial ring strain is 

relieved when the ring opens upon nucleophilic attack. Epoxide’s high reactivity is due to this 

ring-strain, inherent in the three-membered oxirane ring.  
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Figure 1.2: Oxirane ring structure 

Oxygenated fatty acids are attracting a lot of industrial interest since they provide renewable 

raw materials. The advantage of most oxygenated fatty acids is that they have higher melting 

points and are easier to crystallize than their corresponding non-oxygenated or unsaturated 

analogues, thus rendering them relatively easy to isolate. They are attractive substances for 

studies of position, geometrical and optical isomerism and the effect of position, type and 

number of functional groups on physical and chemical properties (Swern, 1955).  

Lipid oxidation is a major cause of chemical food deterioration which has been well studied 

and it is mainly associated with the loss of quality of foods. It is the process by which oxygen 

reacts with unsaturated lipids present in the foodstuff (Steele, 2004). Lipid oxidation may 

result in production of colour changes, undesirable flavours and toxic compounds which could 

represent a food safety problem. However, lipid oxidation (rancidity) flavours in some cases 

may be desirable (as in aged cheeses). Lipid oxidation includes oxidation of bulk oil (edible 

oil) and oxidation of lipids in emulsion type products (w/o emulsion like butter and margarine; 

o/w emulsion like milk, ice-cream, soup, sauces, mayonnaise, etc.). However, in some foods 

like biscuits, chocolate and French fries, part of the fat is in free form (free fatty acids) thus 

lipid oxidation is different. Free fatty acids are more susceptible to autoxidation than esterified 

fatty acids (Choe & Min, 2006). The free fatty acids can act as substrates for enzymes 

responsible for oxidative deterioration, e.g. lipoxygenase (Steele, 2004). Depending on the 

type of food system where lipid oxidation occurs, its contribution to food deterioration may 

differ. 

The drive recently has been to use polyunsaturated fatty acids because of their health benefits, 

but they are more prone to oxidation (Ruxton, Calder, Reed, & Simpson, 2005). To monitor 

the extent of lipid oxidation in foods, many biomarkers have been measured by well-

established analytical protocols. Among these lipid oxidation biomarkers, malondialdehyde 

(MDA), hydroxylated alkenals, hexanal and others, have attracted a lot of research in the 

recent past. EFAs as products of lipid oxidation could as well be measured to give an 

understanding of lipid oxidation in foods. Epoxides are not commonly mentioned by 

researchers, partly because epoxides are seldom measured due to lack of sensitive methods 
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and difficulty in detecting them (Schaich, 2013). Because lipid oxidation is a complex 

phenomenon (Kubow, 1992), the question is whether the focus on the short chain off-flavored 

volatile compounds (Aidos et al., 2002) is not an underestimation of lipid oxidation. This may 

require more lipid oxidation biomarkers to be able to realistically measure the extent of lipid 

oxidation reaction in food systems. Moreover, many researchers who have used the classical 

procedures to determine peroxide value (PV), p-anisidine value, MDA, 4-hydroxy-2-hexenal 

(HHE), 4-hydroxy-2-nonenal (HNE), acrolein and 2-butenal do agree that not always 

conclusive results can be obtained especially in complex food systems. This is mainly because 

of the alternative pathways that are involved in lipid oxidation as reported by some researchers 

(Frankel, 2005; Laguerre, Lecomte, & Villeneuve, 2007; Schaich, 2012). In addition, 

however, it was revealed that classical oxidation indicators such as MDA, used already for 

decades have shortcomings. For instance, MDA is very reactive hence its determination in 

food can be questioned whether it is a reliable indicator for the actual oxidative status of the 

food (Vandemoortele, Babat, Yakubu, & De Meulenaer, 2017; Vandemoortele & De 

Meulenaer, 2015). 

Therefore, the purpose of this section is to summarise the available literature on lipid 

oxidation and EFAs. Emphasis has been given to the formation, analytics, occurrence, the 

toxicity of EFAs and risk assessment all aimed at giving recent knowledge in this area. Giving 

an understanding of EFA science may help to increase research on this important topic of lipid 

chemistry and may also attract the attention of international standard bodies especially in food 

toxicology and safety to focus on this area. Although EFAs may be toxic, this evidence 

remains scanty (IARC/WHO, 1987) to merit their wider application in the sphere of 

toxicological and risk assessment studies. It is hoped that the exposure of such gaps will 

prompt more research on toxicological and analytical components as well. It should be 

emphasized that EFAs of differing chain length exist, but this study mainly reviews the C18 

chain family. This is mainly because their methods of analysis have been optimized and they 

occur more widely than other EFAs. 

1.2 LIPID OXIDATION MECHANISMS 

It has been proposed that lipid oxidation can be initiated and/or promoted by several 

mechanisms. These include the production of singlet oxygen via absorption of light by a 

photosensitizer, the enzymatic mechanism such as lipoxygenase and non-enzymatic 
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generation of partially reduced or free radical oxygen species (i.e. hydrogen peroxide, hydroxy 

radicals), active oxygen iron complexes and thermal or metal-mediated homolytic cleavage of 

hydroperoxides (Steele, 2004). 

1.2.1 Autoxidation 

The spontaneous reaction of molecular oxygen with radicals is what we normally refer to as 

autoxidation. The classical theory considers lipid oxidation, more specifically autoxidation as 

a free radical mechanism. This reaction between unsaturated fats and oxygen requires 

initiators such as metal, light and heat, but once started it is self-propagating. It involves three 

steps of development: initiation, propagation and termination as shown in Scheme 1-1.  

 Initiation: Formation of free radicals 

  
 

 Propagation: Free radical chain reaction 

 
 

Termination: Formation of non-radical products  

 
(R: lipid alkyl) 

Scheme 1-1: The classical lipid autoxidation mechanism 

The initiation stage of autoxidation of an unsaturated fatty acid involves the formation of the 

first free radical (ab initio radical). Free radical formation starts the chain reaction of lipid 

oxidation with hydrogen abstraction being the driving force. The free radicals then transfer 

radicals to new lipids and thereby propagate the chain. The process starts with loss of a 

hydrogen atom, usually from an α-methylene group (-CH2-), adjacent to a double bond (allylic 

position) which leads to formation of a free alkyl radical (R•). Although the process of lipid 

oxidation is highly favourable thermodynamically, the direct reaction between oxygen and 

even highly unsaturated lipids is kinetically hindered (Labuza & Dugan Jr, 1971). Ground 

state oxygen is in a triplet state when two free electrons in separate orbitals have the same spin 

direction, thus have a net positive angular momentum. The double bond is in a singlet state 

when no unpaired electrons exist, hence paired electrons are in the same orbital and have 
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opposite spin, thus have no net angular momentum. Quantum mechanics requires that spin 

angular momentum be conserved in reactions, so triplets cannot invert (flip spins) to singlet 

states. Reaction then demands that the double bond be excited into a triplet state, which 

requires prohibitive amounts of activation energy (Ea = 35–65 kJ/mole) (Schaich, 2005). 

Therefore, lipid oxidation is not a spontaneous reaction, and it requires initiators or catalysts to 

overcome this spin barrier. Hence an activating reaction is necessary to initiate free radical 

chain reactions. Initiation is difficult to control due to the multiple ways in which a free radical 

can be created. 

Propagation is the second stage of autoxidation in which the free radical chain reaction is fully 

developed. The formed radicals can directly react with triplet oxygen to form a lipid peroxy 

radical, which can abstract hydrogen from another lipid molecule to form a hydroperoxide 

(ROOH) and an alkyl radical (Frankel, 2005; Schaich, 2005). The triplet oxygen can react 

with the radical state of lipids (Choe & Min, 2006). Lipid hydroperoxides are readily 

decomposed in the presence of suitable conditions such as heat and metals. The homolytic 

cleavage of hydroperoxides (ROOH) between the two oxygen molecules is the most likely 

decomposition pathway (Schaich, 2005), yielding an alkoxyl (RO•) and a hydroxy radical 

(•OH). As illustrated in Scheme 1-2, the alkoxyl radical (RO•), which is more energetic than 

either the alkyl (R•) or peroxyl radical (ROO•), can enter into several different reaction 

pathways (Chaiyasit, Elias, McClements, & Decker, 2007; Schaich, 2013). The alkoxyl 

radicals can attack another unsaturated fatty acid, a pentadiene group within the same fatty 

acid or the covalent bonds adjacent to the alkoxyl radical. Hydrogen abstraction by lipid 

peroxyl and alkoxyl radicals occurs only at allylic or doubly allylic positions of unsaturated 

lipids, where the C-H bond energy is sufficiently weak. Propagation results in a buildup of the 

hydroperoxides. Rancidity in foods will occur when the alkoxyl radicals undergo homolytic 

decomposition and this is known as β-scission reaction. It is important to food quality as it can 

cause fatty acids to decompose into low molecular weight, volatile flavoured compounds like 

aldehydes, alkyl and olefinic compounds (Frankel, 2005).  

An expanded integrated scheme of lipid oxidation showing multiple pathways competing with 

the classical radical chain reaction is presented in Scheme 1-2. The different pathways show 

how complex the lipid oxidation reaction can be, which increases the complexity of both 

kinetics and product mixes. This eventually impact on how the lipid oxidation process is 
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organized, how products are generated and how lipid oxidation should be measured beyond 

hydrogen abstractions (Schaich, 2013). 

 

Scheme 1-2: An integrated scheme for lipid oxidation showing multiple reactions 

pathways. Dotted lines indicate paths for oxygen addition to secondary radicals formed 

in cyclic and addition products, with formation of new peroxyl radicals (Schaich, 2013) 

1.2.2 Photooxidation 

Photooxidation is the oxidation under light in the absence of photosensitizers while 

photosensitized oxidation is the oxidation under light in the presence of photosensitizers. The 

photooxidation mechanism seems to be a free radical chain reaction like autoxidation. Direct 

photooxidation is due to free radicals produced by ultraviolet light irradiation, which catalyses 

the decomposition of hydroperoxides (ROOH) and other compounds such as peroxides 

(ROOR), carbonyl compounds (RCOR), or other oxygenated unsaturated lipids.  
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Sensitized photooxidation requires the presence of a sensitizer such as chlorophyll, 

hematoporphyrins, myoglobin, reduced pyridine and riboflavin. Dyes, including erythrosine, 

tetrapyrroles (bilirubin), rose bengal and methylene blue also act as sensitizers as do heavy 

metals. The sensitizer must be activated by either visible or ultraviolet light (Scheme 1-3, 

reaction 1). It can then either react directly with the substrate in a one-electron transfer 

reaction, to produce a radical or radical ion in both the sensitizer and the substrate known as 

type I sensitizer (Scheme 1-3) or activate oxygen to the singlet state as type II sensitizer 

(Scheme 1-4) (Chacon, McLearie, & Sinclair, 1988; deMan, 1999; Frankel, 2005). 

 

Scheme 1-3: Type I photooxidation reaction (Shahidi & Zhong, 2010) 

Chlorophyll, for instance, enhances photooxidation by both mechanisms. A Type I sensitizer 

serves as a photochemically activated free radical initiator. The sensitizer in the triplet excited 

state reacts with the lipid substrate by hydrogen atom or electron transfer to form radicals, 

which can react with oxygen (Frankel, 2005). Formation of hydroperoxides during Type I 

photooxidation proceeds via a free radical or free radical ion route (Scheme 1-3, reaction 2). 

 

Scheme 1-4: Type II photooxidation reaction (Shahidi & Zhong, 2010) 

A Type II sensitizer in the triplet state interacts with oxygen by energy transfer to give a non-

radical singlet oxygen (1O2) (Scheme 1-4, reaction 2). This is a highly reactive species of 

molecular oxygen which reacts further directly with unsaturated lipids double bonds by 

addition (Scheme 1-4, reaction 3). Hydroperoxides are generated during singlet oxygen attack 

and this is accompanied by a shift of the double bonds in the molecules (Shahidi & Zhong, 

2010). This type of photosensitized oxidation is not inhibited by chain-breaking antioxidants 

(Frankel, 2005). 



10 

 

1.2.3 Enzymatic oxidation  

Enzymes like lipases and lipoxygenases native to plants and animals can initiate oxidation 

reactions. When plant or animal tissues are disrupted or injured, the endogenous hydrolytic 

and oxidative enzymes effect lipid oxidation in the raw materials. The most important and best 

known of these enzymes is lipoxygenase (linoleate: oxygen oxidoreductase, EC.1.13.11.12) 

(LOX). Enzymatic oxidation reactions generally proceed with great stereospecificity. For 

instance, lipoxygenase uses molecular oxygen to catalyze the oxidation of only lipids 

containing a cis, cis-1,4-pentadiene moiety. Thus, the preferred substrates for LOX are linoleic 

and linolenic acid for the plant enzyme and arachidonic acid for the animal enzyme. The 

enzyme-catalyzed oxidation start with the hydrolysis of the triacylglycerols to produce the 

polyunsaturated free fatty acids (pentadiene) which are then oxidized by lipoxygenases 

(Frankel, 2005; Shahidi, 2005). Non-specific LOX may occur for instance in legumes and they 

react directly with esterified substrate fatty acids. In contrast to specific LOX, they do not 

require prior release of fatty acids from the triglyceride by a lipase enzyme (Belitz, Grosch, & 

Schieberle, 2009). Both LOXs oxidizes the polyunsaturated fatty acids into hydroperoxides. 

The produced hydroperoxides may undergo non-enzymatic or enzymatic cleavage by 

hydroperoxide lyases to yield a variety of breakdown products, which are often responsible for 

the characteristic flavors in some foods (Fennema, 1996). Hydroperoxides degradation in 

animals and plants fatty acid differs significantly. In animal tissue, the enzyme glutathione 

peroxidase catalyzes a reduction of the fatty acid hydroperoxides to the corresponding 

hydroxy acids. In plants and mushrooms, hydroperoxide lyase (HPL), hydroperoxide 

isomerase, allene oxide synthase (AOS) and allene oxide cyclase (AOC) are involved (Belitz 

et al., 2009).  

1.3 FACTORS AFFECTING LIPID OXIDATION 

Lipid oxidation is affected by many factors such as temperature, light, oxygen presence, fatty 

acid composition, antioxidants and pro-oxidants (Choe & Min, 2006; Frankel, 2005). It is not 

easy to differentiate the individual contribution of each factor. However, some of the 

important factors that are known to affect the lipid oxidation are discussed below: 
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1.3.1 Energy 

Lipid oxidation is affected by energy input such as heat or light. High temperatures (160 – 

190°C) like those used during frying of oils, have the required energy to break C-C or C-H 

bonds in the acyl chain. Moderate temperatures (<100°C) are only capable of breaking O-O 

bonds of the hydroperoxides (Schaich, 2005). Autoxidation of oils and the decomposition of 

hydroperoxides increase as the temperature increases (Shahidi & Spurvey, 1996). An increase 

in temperature causes a very strong reduction in the length of the induction period (period 

during which very little oxidation of fatty acid occurs). In principle the rate of oxidation 

increases exponentially with an increase in temperature (Schaich, 2005; Steele, 2004). 

However, the effect of temperature is complicated by a reduction in oxygen solubility in 

liquids at increased temperature and by changes in partitioning of antioxidants between phases 

if more than one phase is present (Steele, 2004). Higher temperatures however complicate 

lipid oxidation as they may steer the reactions to cause both thermolytic and oxidative 

reactions (Min, Smouse, & Society, 1985; Velasco & Dobarganes, 2002). 

Visible, ultraviolet and γ-radiation are effective promoters of lipid oxidation, as discussed 

before in paragraph 1.2.2 (photooxidation). Light accelerates lipid oxidation especially in the 

presence of photosensitizers. Photosensitizers are normally in the singlet state (1Sen) and 

become excited on absorption of light energy in picoseconds (Choe & Min, 2006). Light of 

shorter wavelengths has more detrimental effects on oils than longer wavelengths. Reportedly, 

the effect of light on oil oxidation becomes less as temperature increases (Velasco & 

Dobarganes, 2002). 

1.3.2 Oxygen  

The rate of oxidation is independent of the headspace oxygen concentration above 5% at 

moderate temperatures (Choe & Min, 2006). At higher temperatures, the dependency of oil 

oxidation on oxygen concentration increases due to a decrease in the solubility of oxygen in 

the oil (Labuza & Dugan Jr, 1971). Oxygen and lipids can react more efficiently when the 

sample size is small, which is due to a high lipids surface to volume ratio (Choe & Min, 2006).  
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1.3.3 Fatty acid composition 

The rate of the reaction is strongly affected by the nature of the fatty acid (number, position 

and geometry of the double bonds). Abstraction of hydrogen during the propagation phase of 

the autoxidation takes place preferentially at carbon atoms where the bond dissociation energy 

is low. Lipids that are more unsaturated oxidize more quickly than the less unsaturated ones. 

Consequently, the rate of oxidation is much faster when mono unsaturated or poly unsaturated 

fatty acids are present in the food. The relative rate of oxidation of oleic acid (18:1) and 

linoleic acid (18:2) has been reported to be between 1:12 and 1:40 (Steele, 2004). Further 

increase in the rate with additional double bonds in the fatty acid is normally roughly in 

proportion to the number of methylene groups between pairs of double bonds. Thus, the 

relative rate of oxidation of polyunsaturated fatty acids, 18:2, 18:3 and 20:4 is roughly 1:2:3 

respectively (Frankel, 2005; Steele, 2004). 

1.3.4 Minor components present in the oil 

Several minor components present in edible oils before and after their commercial processing 

can affect the rate of lipid oxidation. These may include components such as, free fatty acids, 

mono- and diacylglycerols, phospholipids, carotenoids, tocopherols, chlorophylls and metals. 

Some of these minor components can act as antioxidants while others have a prooxidant effect 

(Choe, 2008).  

1.3.4.1 Metals  

Metals such as iron or copper in oil are very effective pro-oxidants even if present at part per 

million levels or less. Redox-active metals undergoing one electron transfer such as iron and 

copper are of greatest importance in lipid oxidation (Schaich, 2005; Steele, 2004). These 

metals can directly remove an electron from a double bond, or a labile H from a C-H bond in 

the lipid molecule (e.g. allylic hydrogen) to generate alkyl radicals. The lower valence metals 

(Cu+, Fe2+) form a complex with oxygen and then react directly with lipid molecules to 

generate alkyl and alkoxy radicals. In addition, they can also generate different reactive 

oxygen species such as a hydroxy radical, superoxide and 1O2. These reactive oxygen species 

are well known to further catalyze the lipid oxidation (Choe & Min, 2006; Schaich, 2005).  
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1.3.4.2 Antioxidants 

Oils naturally contain different antioxidants such as tocopherols, tocotrienols, carotenoids and 

phenolic compounds and sterols (Δ5-avenasterol and fucosterol). The phenolics with 

antioxidant activity include simple phenols (hydroxytyrosol, tyrosol); secoiridoids 

(oleuropein, the aglycone of ligstroside, and their respective decarboxylated dialdehyde 

derivatives) and the lignans (1-acetoxypinoresinol and pinoresinol) amongst others.  

Antioxidants are compounds that can extend the induction period of oxidation or slow down 

the oxidation rate of a substrate. Standard one-electron reduction potentials of alkoxy, peroxy 

and alkyl radicals of unsaturated fatty acids are 1600, 1000 and 600 mV respectively; that of 

antioxidants are generally below 500 mV (Buettner, 1993). This implies that antioxidants can 

easily react with these radicals by donating a hydrogen because of the low reduction potential 

and form antioxidant radicals that are stabilized by their resonance structures. The scavenging 

of lipid free radicals to produce less reactive species and hence interrupt the propagation stage 

of lipid autoxidation is the main antioxidant mechanism (primary antioxidants) by which 

phenolic antioxidants such as α-tocopherol act. During lipid oxidation, tocopherols act as 

hydrogen donors and react with free radicals (Chen, McClements, & Decker, 2011). However, 

metal chelation by antioxidants such as citric acid, phosphoric acid, ascorbic acid and EDTA 

(ethylenediaminetetraacetic acid) is also an effective mechanism (secondary antioxidants) of 

antioxidant action. Maillard browning reaction products also act as antioxidants by reducing 

metal complexing properties and free radical scavenging capacity (Frankel, 2005). 

Compounds such as vitamin C contribute to the total antioxidant potential of a food as well 

(Choe & Min, 2006; Steele, 2004). Antioxidants like carotenoids can reduce oxidation by light 

filtering, quenching the 1O2, inactivating the photo-sensitizer and scavenging of free radicals 

(Choe & Min, 2006).  

1.3.4.3 Free fatty acids and mono-and diacylglycerols 

Crude oil contains free fatty acids and oil refining decreases the free fatty acid content. They 

are removed from crude oils by neutralization and deodorization during the refining process. 

However, these refining processes do not remove 100% of the free fatty acids with 

commercial oils typically containing 0.05-0.70% depending on the type of oils and the 

refining process (Chaiyasit et al., 2007). Contradictions exist on the role of the free fatty acids 



14 

 

as prooxidants. It is believed that free fatty acids are strong prooxidants in bulk oils because of 

the presence of both hydrophilic and lipophilic groups in the same molecule, thus they prefer 

to concentrate on the surface of edible oils. The hydrophilic carboxyl groups of the free fatty 

acids will not easily dissolve in the hydrophobic oil (Choe & Min, 2006). When the free fatty 

acids concentrate at the surface, they decrease the surface tension of the oil and this in turn 

increases the diffusion rate of oxygen from the headspace into the oil, thus increasing lipid 

oxidation (Choe, 2008). It is also now known that free fatty acids’ prooxidant activity is due to 

the ability of the carboxylic acid group of free fatty acids to form complexes with transition 

metals and make them more prooxidative. Furthermore, the ability of the acid group to 

directly promote hydroperoxide decomposition as well as co-oxidise the triacylglycerol in the 

oil into free radicals (Kittipongpittaya, Panya, McClements, & Decker, 2014; Waraho, 2011).  

Free fatty acids could be important prooxidants in oil-in-water emulsions as well because they 

are surface active compounds. They are more polar than triacylglycerols due to the presence of 

an unesterified carboxylic acid groups. The surface activity of free fatty acids allows them to 

diffuse and concentrate at the water-lipid interface of the oil-in-water emulsions (Nuchi, 

Hernandez, McClements, & Decker, 2002). Free fatty acids in emulsions increase the negative 

charge of the emulsion droplets which increase metal-lipid interactions thus accelerating 

oxidation (Chen et al., 2011; Waraho, Cardenia, Rodriguez-Estrada, McClements, & Decker, 

2009; Waraho, McClements, & Decker, 2011). 

Mono and diacylglycerols exist in oils mainly because lipase activity leads to a partial 

hydrolysis of triacylglycerols. Monoacylglycerols and diacylglycerols are esters of glycerol in 

which one or two hydroxyl groups are esterified with fatty acids. Because of the surface 

activity property, mono and diacylglycerols are most commonly used as emulsifiers (Waraho, 

2011). They occur in oils at much smaller concentrations than triacylglycerols. Mono and 

diacylglycerols are surface active compounds due to the presence of both lipophilic (fatty 

acid) and hydrophilic (hydroxyl) groups. This causes them to be partially soluble in fat and 

water and reduce interfacial tension of the oil. This results in an increased diffusion rate of 

oxygen to the oil, accelerating lipid oxidation (Choe & Min, 2006). In emulsions however, 

mono- and diacylglycerols act as antioxidants with diacylglycerols being stronger. 

Diacylglycerols are effective antioxidant in oil-in-water emulsions perhaps due to their ability 

to form a liquid crystal phase which could form a physical barrier that decreases interactions 
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between unsaturated fatty acids in the emulsion droplet core and prooxidants or oxygen in the 

aqueous phase of the emulsion (Waraho, 2011).  

1.3.4.4 Phospholipids 

Phospholipids are components of biological membranes and thus present in all living species 

from which foods are derived. Phospholipids are a group of fatty acyl containing lipids with a 

phosphoric residue. Crude oils contain common phospholipids such as phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid 

(Chen et al., 2011). Phospholipids may act as antioxidants or prooxidants depending on their 

concentration and presence of metals ions. They exercise this dual role due to the presence of 

the polar and nonpolar ends (Choe & Min, 2006). Phospholipids are known to play an 

antioxidant activity through sequestering metals by the phosphate group. A mixture of α-

tocopherol with phosphatidylethanolamine exhibits higher antioxidant activity than with 

phosphatidylcholine. This difference is attributed to better regeneration of the tocopheroxyl 

radical to tocopherol by easier hydrogen transfer from the amino group of 

phosphatidylethanolamine to the radical (Frankel, 2005). Further still, phospholipids aid the 

radical scavenging activity of tocopherols via a physical mechanism that increases the 

accessibility of tocopherols toward chain initiating radicals in an aqueous microenvironment 

where lipid oxidation reactions are prevalent (Koga & Terao, 1994). Phospholipids containing 

an amino group (e.g. phosphatidylethanolamine (PE)) take part in Maillard type browning 

reactions. The reaction products of PE with the carbonyl substances are known to generate 

compounds with strong antioxidant activity (Shrestha & De Meulenaer, 2014; Shrestha, 

Gemechu, & De Meulenaer, 2013; Zamora & Hidalgo, 2005).  

On the other hand, the hydrophilic groups of the phospholipids such as choline or 

ethanolamine are on the surface of oil while the hydrophobic hydrocarbons are in the oil. This 

decreases the surface tension of oil and increases the diffusion rate of oxygen from the 

headspace to the oil which accelerates oil oxidation (Choe, 2008). Phospholipids themselves 

are also susceptible to lipid oxidation due to presence of unsaturated fatty acids especially in 

meat and dried milk products (Cui & Decker, 2016). Phospholipids in bulk oils form 

association colloids such as reverse micelles. The presence of phospholipid reverse micelles in 

bulk oils creates oil–water interfaces where hydrophilic (e.g. iron) and amphiphilic (e.g. lipid 
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hydroperoxides) prooxidants and triacylglyceride substrate come into close contact with 

increase in lipid oxidation (Cui & Decker, 2016; Kittipongpittaya et al., 2014).  

1.3.4.5 Photosensitizer 

As mentioned in section 1.2.2 various photosensitizers can be present in foods. We shall in 

this paragraph focus only on chlorophyll as we have used this compound and its degradation 

products in one of the experimental chapters (chapter 5) in order to evaluate the impact of 

photooxidation on the formation of EFAs. Chlorophylls and its degradation products are 

common pigments present in edible vegetable oil which are removed during refining. 

Chlorophylls are composed of porphyrin rings with magnesium ion at the centre and a long 

phytol side chain. Two classes of chlorophylls exist namely, chlorophyll a and b. Chlorophyll 

a contains methyl group as a side chain at C-3 position, whereas, chlorophyll b contains 

aldehyde group instead. Chlorophylls could undergo chemical or enzymatic degradation which 

produces derivatives such as pheophytins (magnesium free derivatives) and pheophorbides 

(dephytyllated derivatives) (Schelbert et al., 2009). It has been reported that virgin olive oil 

and rapeseed contain up to 10 ppm and 5 - 35 ppm chlorophyll respectively (Psomiadou & 

Tsimidou, 2002), while crude soya bean oils contains up to 0.30 ppm (Jung, Yoon, & Min, 

1989). Chlorophylls and their degradation products, pheophytins and pheophorbides, act as 

sensitizers to produce 1O2 in the presence of light and atmospheric 3O2 and thus accelerate the 

oxidation of oil. Pheophytins have a higher sensitizing activity than chlorophylls, but lower 

than that of pheophorbides. Although chlorophylls are strong prooxidants under light via 

acting as a sensitizer to produce 1O2, they act as antioxidants in the dark possibly by donating 

hydrogen to free radicals (Choe & Min, 2006). 

 

1.3.4.6 Water and water activity 

As water is removed from a food system, lipid oxidation rates generally decrease. In some 

foods, continued removal of water will result in an acceleration of lipid oxidation. Increased 

lipid oxidation at low water activity (aw≤ 0.3) is thought to be due to the loss of a protective 

water solvation layer surrounding lipid hydroperoxides (Damodaran et al., 2007). The water 

activity of a food is the ratio between the water vapor pressure of the food itself, when in a 

completely undisturbed balance with the surrounding air media and the vapor pressure of pure 

water under identical conditions (deMan, 1999). The water activity in dry foods increases with 
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temperature at constant moisture (Frankel, 2005). In dried foods with very low moisture 

contents (aw values of less than about 0.1), oxidation proceeds very rapidly. Increasing the aw 

to about 0.3 retards lipid oxidation resulting often to a minimum rate. This effect of small 

amounts of water may be due to the reduction of the catalytic activity of metal catalysts, 

quenching of free radicals and by delaying access of oxygen to the lipid (Fennema, 1996). At 

higher aw, oxidation is accelerated by an increased mobilization of components (catalysts and 

oxygen) that are made nonreactive at low water activities by being trapped or “encapsulated” 

within a matrix of nonreactive food components (Karel, 1980). 

1.3.5 Food structure 

The structure of foods will affect the lipid oxidation process as well. In this review, this aspect 

is especially considered for oil-in-water emulsions, considering especially their surface area 

characteristics. In oil-in-water emulsions, or in foods where oil droplets are dispersed into an 

aqueous matrix, oxygen must gain access to the lipid by diffusion into the aqueous phase and 

passage through the oil-water interface. The rate of oxidation will depend on several factors 

like type and concentration of emulsifier, size of oil droplets, surface area of interface, 

viscosity of the aqueous phase, composition and porosity of the food matrix and pH 

(Fennema, 1996; Waraho et al., 2011). Interactions between metals and hydroperoxides at the 

interface of emulsion droplets is important and suggests that emulsion droplet surface area is 

important to lipid oxidation (Chen, McClements, & Decker, 2013). It has been shown that the 

rate of lipid oxidation increases proportionally to the surface area of the lipid that is exposed 

to air. It is also true that as the surface-volume ratio is increased, a given reduction in oxygen 

partial pressure becomes less effective in decreasing the rate of oxidation (Fennema, 1996). In 

emulsions, the specific surface area (the surface per unit volume) increases rapidly with 

decreasing particle size (deMan, 1999), therefore, any condition that increases the surface area 

is expected to increase lipid oxidation. Small droplet size corresponds to a large surface area, 

implying a high chance of contact between diffusing oxygen, water-soluble free radicals and 

antioxidants and the interface (Lethuaut, Métro, & Genot, 2002; McClements & Decker, 

2000). However, conflicting reports about how surface area affects lipid oxidation exist (Chen 

et al., 2013). Some researchers have found lipid oxidation rates to be independent of surface 

area while others have reported an increase in the rate of lipid oxidation when the surface area 
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decreased. Others found an increase in lipid oxidation rates with increasing surface area 

(Lethuaut et al., 2002; Osborn & Akoh, 2004; Waraho et al., 2011).  

1.4 EPOXY FATTY ACIDS  

1.4.1 Nomenclature of EFAs 

EFAs are named similarly to cyclopropane fatty acids with the parent acid considered to have 

a substituted oxirane substituent. The EFAs are characterized by the presence of a cyclic bond 

between two carbons in the chain and one oxygen atom. The epoxy carbons are counted in the 

longest hydrocarbon chain and the acids are named accordingly (Chow, 2007). The common 

vernolic acid (cis-12,13-epoxy-octadec-cis-9-enoic acid) for example is named (using standard 

IUPAC nomenclature) as 11-(3-pentyloxiranyl)-9-undecenoic acid. In older nomenclature, 

where the carbon chain is carried through the oxirane ring, it would be called 12,13-

epoxyoleic acid or 12-13-epoxy-9 octadecenoic acid (Akoh & Min, 2008). The configuration 

of the oxirane ring substituents can be named in the cis/trans, E/Z, or R/S configuration 

systems (Akoh & Min, 2008). In Table 1.1 some common names of selected C18 mono EFA 

methyl esters and their systematic nomenclature names are shown.  

Epoxy carbons allow cis or trans conformations to occur, and this can be indicated as well. In 

common fatty acids, the cis or trans terms refer to the positions of atoms or groups connected 

to doubly bonded atoms. However, in EFAs, cis or trans is used to differentiate between the 

two geometrical (cis and trans) isomers of each oxirane ring which exist because of its 

inability to undergo free rotation. EFAs thus exhibit stereoisomerism. Stereoisomers differ in 

the spatial orientation of their component atoms and thus exist as optical isomers. Thus, the 

9,10-epoxystearic acid contains two asymmetric carbon atoms, thereby furnishing two 

racemates: In the cis stereoisomer, the acyl chains lie on the same side of the reference plane 

in the molecule, while in the trans isomer they are at the opposite sides of this plane (as 

illustrated in Table 1.1, structure, entry 1 and 2) (Swern, 1955). The nomenclature of 

absolute configuration (R/S system) is used to identify the exact structure of the fatty acid to 

distinguish between stereoisomers. The "right hand" and "left hand" nomenclature is used to 

name the enantiomers of a chiral compound. This was originated by three chemists: R.S. 

Cahn, C. Ingold, and V. Prelog and, as such, is also often called the Cahn-Ingold-Prelog rules 

(Akoh & Min, 2008).  
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In position isomerism (regioisomerism) a functional group or other substituent changes 

position on a parent structure. An example is coronaric acid (cis-9,10-epoxyoctadec-12Z-enoic 

acid) which is a regioisomer of vernolic acid (cis-12,13-epoxyoctadec-9Z-enoic acid) (Cui, 

Duke, & Duke, 2008a).  

1.4.2 Occurrence of EFAs  

The natural occurrence of EFAs in foods especially in oil seeds, in cutins, agricultural raw 

material and other matrices is described (Gunstone & Jacobsberg, 1972; Gunstone & Schuler, 

1975). A number of plants have been reported to have a high abundance of EFAs. The most 

promising prospective sources of high epoxy oils are: Euphorbia lagascae (family 

Euphorbiaceae) seed containing 42-50% oil, of which 58-62% is vernolic acid and Stokesia 

laevis, a member of the family Asteraceae, which produces an oil containing 74% vernolic 

acid. Occurrence of EFAs in Vernonia anthelmintica (Compositae) seed oil was confirmed by 

Gunstone and it is believed to be as high as 60 to 80% vernolic acid (Gunstone, 1954). 

Another EFA (which is an isomer of vernolic acid), named as coronaric acid was isolated from 

Chrysanthemum coronarium seed oil (Smith Jr, Bagby, Lohmar, Glass, & Wolff, 1960). Many 

researchers have further confirmed the natural occurrence of EFAs in many wild seed oils 

(Badami & Patil, 1980; Cahoon & Kinney, 2005; Cahoon, Ripp, Hall, & McGonigle, 2002; 

Earle, 1970; Gunstone, Harwood, & Dijkstra, 2007; Morris, Holman, & Fontell, 1961; Perdue, 

Carlson, & Gilbert, 1986; Smith, 1980; Tallent, Cope, Hagemann, Earle, & Wolff, 1966; 

Velíšek & Cejpek, 2006).  

EFAs are also manufactured in large amounts by epoxidation of appropriate alkene esters for 

industrial purposes. Epoxidized vegetable oils such as epoxidized soya bean oil (ESBO), 

epoxidized linseed oil (ELO) are used as plasticizers and stabilisers for PVC. Similarly, seed 

oils that are enriched in EFAs such as vernolic acid have commercial value as components of 

plasticizers for polymers (Bhardwaj, Hamama, & Dierig, 2007; Carlson & Chang, 1985; 

Gunstone, 2004; Mungroo, Pradhan, Goud, & Dalai, 2008). 
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Table 1.1:Structure and nomenclature of C18:1, C18:2 and C18:3 epoxy FAMEs in order of elution on a CP-Sil 88 column 

Order EFA common name IUPAC (Systematic) name Chemical structure 

1* Methyl trans-9,10-epoxyoctadecanoate Methyl 8-((2S,3S)-3-octyloxiran-2-yl)octanoate 

 

2* Methyl cis-9,10-epoxyoctadecanoate Methyl 8-((2S,3R)-3-octyloxiran-2-yl)octanoate 

 

3* Methyl trans-12,13-epoxy-octadec-9-enoate Methyl 11-((2S,3S)-3-pentyloxiran-2-yl)undec-9-enoate 

 

4* Methyl trans-9,10-epoxy-octadec-12-enoate Methyl 8-((2S,3S)-3-(oct-2-en-1-yl)oxiran-2-yl)octanoate 

 

5* Methyl cis-12,13-epoxy-octadec-9-enoate Methyl 11-((2S,3R)-3-pentyloxiran-2-yl)undec-9-enoate 

 

6* Methyl cis-9,10-epoxy-octadec-12-enoate Methyl 8-((2S,3R)-3-(oct-2-en-1-yl)oxiran-2-yl)octanoate 

 

7 
Methyl trans-12,13-epoxy-9,15-

octadecadienoate 
Methyl 11-((2S,3S)-3-(pent-2-en-1-yl)oxiran-2-yl)undec-9-enoate 

 

8 
Methyl trans-15,16-epoxy-9,12-

octadecadienoate 
Methyl 14-((2S,3S)-3-ethyloxiran-2-yl)tetradeca-9,12-dienoate 

 

9 Methyl cis-12,13-epoxy-9,15-octadecadienoate Methyl 11-((2S,3R)-3-(pent-2-en-1-yl)oxiran-2-yl)undec-9-enoate 

 

10 
Methyl trans-9,10-epoxy-12,15-

octadecadienoate 
Methyl 8-((2S,3S)-3-(octa-2,5-dien-1-yl)oxiran-2-yl)octanoate 

 

11 Methyl cis-15,16-epoxy-9,12-octadecadienoate Methyl 14-((2S,3R)-3-ethyloxiran-2-yl)tetradeca-9,12-dienoate 

 
12  

Methyl cis-9,10-epoxy-12,15-octadecadienoate 
 
Methyl 8-((2S,3R)-3-(octa-2,5-dien-1-yl)oxiran-2-yl)octanoate 

 

*Major EFAs that occur in foods
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Epoxidized vegetable oil (EVO) can act as a raw material for synthesis of a variety of 

chemicals including polyols and glycol (Gunstone, 2004; Saurabh, Patnaik, Bhagt, & Renge, 

2011). They are also used in adhesives, paints and composite materials (Hammarling, 

Gustavsson, Svensson, Karlsson, & Oskarsson, 1998). When ESBO and other epoxidized 

lipids are used in plastic food contact materials, potentially these compounds can migrate to 

the food. Several studies have been done to investigate the potential risk of this phenomenon 

(Castle, Mayo, & Gilbert, 1990; Fankhauser-Noti, Fiselier, Biedermann-Brem, & Grob, 2006; 

Pedersen et al., 2008). 

The occurrence of EFAs in foods as a result of lipid oxidation has been documented 

(Berdeaux, Marquez-Ruiz, & Dobarganes, 1999b; Dobarganes, 2009; Swern, 1955; Velasco, 

Berdeaux, Márquez-Ruiz, & Dobarganes, 2002). These reports mainly deal with the 

formation of EFAs at high temperatures, i.e. typically during frying operations. However, it 

has also been reported that EFAs form after prolonged storage of some seeds (Gunstone et 

al., 2007) which suggests that enzymatic oxidation by epoxygenases (a cytochrome P450 

acting on linoleic acid) may be involved in their formation. More details about the formation 

of EFAs during lipid oxidation, will be given in section 1.5. The major EFAs that occur in 

foods are reported in Table 1.1 indicated with an asterisk. Quantitative results on the 

occurrence of EFAs in vegetable oils and food matrices, are summarized in chapters 2-5. 

The quantitative data show that oils have high EFAs concentrations in the range of mg/g.  

The information on occurrence of EFAs is vital and may be used by international bodies such 

as the European Food Safety Authority (EFSA) and the Food and Drug Authority (FDA) to 

make firm conclusions on the EFA occurrence in different foods. When such information is 

combined with consumption data, it can lead to estimation of consumers and total population 

exposure to EFAs which can later be used in risk assessment studies. In cases where tolerable 

daily intakes are known, when the amounts consumed exceed those limits, then conclusions 

can be drawn as to whether the population is at a risk or not.  

1.5 FORMATION OF EFAs DURING LIPID OXIDATION 

During lipid oxidation, the normal fatty acids are modified by inclusion of oxygen atoms into 

their structure. Two main mechanisms are postulated that lead to the formation of EFAs 

during lipid oxidation (Dobarganes, 2009; Giuffrida, Destaillats, Robert, Skibsted, & Dionisi, 
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2004). The first mechanism involves 1, 2-addition of an alkoxy radical (LO•) to the adjacent 

double bond with formation of an epoxyallylic radical (Scheme 1-5) (Gardner, 1989; 

Schaich, 2005). In this mechanism, the alkoxyl –O• adds to the α carbon of the immediately 

adjacent double bond to form an epoxyallylic radical, with transfer of the free electron to the 

β carbon to generate epoxides. This is the dominant reaction in aprotic solvents, when lipids 

are at low concentration or highly dispersed at the surface and at low oxygen pressures 

(Schaich, 2013). Cyclization of LO• is stereospecific whereby the configuration of epoxides is 

fixed by the conformation of the fatty acid alkoxyl radical at the point of cyclization rather 

than post cyclization isomerization (Schaich, 2005). This is because allylic radicals are 

resistant to rotation and the final products largely reflect the geometry of the original 

configuration (Gardner, 1989). 

 

Scheme 1-5: 1,2 addition to the adjacent double bond of LO• radical (modified after 

Schaich, 2005) 

The second mechanism which is considered to be less probable, is the direct addition of a 

peroxy radical (LOO•) to an isolated or non-conjugated double bond which later undergoes 

1,3-cyclisation (Scheme 1-6) to form an epoxide with elimination of an alkoxy radical (LO•). 

 

Scheme 1-6: 1,3 cyclisation of the LOO• radical to the double bond (modified after 

Schaich, 2005) 
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During this mechanism, the LOO• adds to double bonds to form an initial dimer peroxy 

complex. At the beginning of oxidation, LOO• adds to isolated or non-conjugated double 

bonds, though not easily due to steric hindrance from the long acyl chain. A radical 

simultaneously forms on second carbon of the double bond, which reacts immediately with 

the peroxide adduct. The adduct undergoes 1,3-cyclization to form an epoxide, eliminating 

LO• in the process (Gardner, 1989).  

In a given reaction system both methods seem to contribute to the formation of EFAs. 

Cyclization is catalysed by metals, particularly Fe and Cu. Since presence of metals in foods 

is so common, Schaich hypthosesized that EFAs should always be a major product in 

oxidizing lipids (Schaich, 2013). However, the content of EFAs may be reduced since the 

same metals can cause other competing reactions to occur which yield other compounds like 

hydroxy compounds. 

It is also possible that EFA formation may occur via alkoxy (LO•) addition to the unsaturated 

fatty acid (Scheme 1-7). It has been reported that addition of LO• to double bonds occurs 

particularly in the absence of allylic hydrogens and conjugation (Schaich, 2013). 

 

Scheme 1-7: Alkoxy addition to the double bond 

Propagation of lipid oxidation by LO• addition is most active in catalysing chain branching 

during secondary stages of oxidation. LO• addition increases with cis configuration and 

asymmetrical substitution on double bonds (Schaich, 2013).  

1.6 SYNTHESIS AND REACTIVITY OF EFAS 

1.6.1 Synthesis of EFAs  

EFAs can be synthesized by a reaction known as epoxidation by use of peroxy acid or a 

peroxide with active oxygen on the corresponding olefinic acid (-C=C-). This adds an atom 

of oxygen and converts the -C=C- bond to the three-membered epoxide or oxirane ring 

group. The epoxidation reaction is important to those who use EFAs as industrial raw 
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materials (Heath, Di, Clara, Hudson, & Manock, 2005). The epoxidation reaction is 

stereospecific, whereby the geometrical configuration of the resulting epoxy acid is identical 

with that of the olefinic acid from which it is derived (Swern, 1955). Most epoxidations are 

effected by reaction of the olefinic acid, alkyl ester, or glyceryl ester with peroxy acids 

(RCOOOH) which are often preformed and used in situ for epoxidation, although some can 

be stored and used as required (EFSA, 2004). The peroxy acids are made by interaction of 

carboxylic acids (RCOOH), anhydrides or acid chlorides with hydrogen peroxide, with the 

first of these requiring an acidic catalyst, such as sulphuric acid or sulphonic acid. The most 

commonly used peroxy acids include aliphatic (peroxyformic, peroxyacetic, peroxy 

trifluoroacetic, peroxylauric), aromatic (peroxybenzoic, m-chloroperoxybenzoic) species as 

well as monoperoxy acids based on dibasic acids (succinic, maleic, phthalic) acids (Gunstone 

et al., 2007). The epoxidation with peracids (RCOOOH) proceeds via an ionic synchronous 

or concerted mechanism whereby bond breaking and making occurs at the same time, thus 

preserving the stereochemical information from the alkene (E to trans and Z to cis) (Scheme 

1-8). 

 

 

Scheme 1-8: General epoxidation reaction by peracids (RCOOOH) (EFSA, 2004) 

The reaction is exothermic thus use of a concentrated acid should be avoided and the 

products themselves are unstable towards acids (Gunstone et al., 2007). It is a rapid reaction 

at room temperature with good yields above 80%.  

On the other hand, epoxidation of double bonds or unsaturated fatty acids with alkyl 

hydroperoxides is a known reaction and may occur using the basic mechanism (Scheme 1-9) 

below. The epoxidation can be done on alkenes using molecular oxygen via a catalytic 

process. Since the direct epoxidation of alkenes with molecular oxygen, which lies in triplet 
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ground state, is inhibited, epoxidation using O2 is carried out in the presence of a compound 

like alkyl hydroperoxides which serves as an active oxygen carrier (Iwahama, Hatta, 

Sakaguchi, & Ishii, 2000). 

 

Scheme 1-9: Epoxidation of double bonds by alkyl hydroperoxides 

Epoxidation can as well be carried out enzymatically which has an advantage that no epoxy 

ring opening occurs (Gunstone et al., 2007). Soybean oil and linseed oil have been epoxidised 

by hydrogen peroxide with the lipase B from Candida antarctica yeast, available in 

immobilised form (Novozym 435) (Gunstone, 2004). The mechanism of chemo-enzymatic 

epoxidation of methyl esters involves a two-step reaction. First the lipase enzyme catalyses 

the peracid formation. Alternatively, the lipase catalyses the hydrolysis of the ester into the 

respective acid first and then it catalyses the formation of the peracid from the acid. Finally, 

the peracid spontaneously donates the oxygen to a double bond, to form the epoxide via a 

similar mechanism as shown in Scheme 1-8. Both free fatty acids and the methyl esters can 

undergo the epoxidation (Severiano, Hagström, Hatti-Kaul, & Da Fonseca, 2008). 

Immobilized oat peroxygenase enzyme was successfully used as well to epoxidise linoleic 

and linolenic acids (Piazza, Nunez, & Foglia, 2003a). 

1.6.2 EFA reactivity  

The highly strained geometry of this epoxy moiety with a strain energy of 114 kJ/mol 

accounts for its reactivity with many nucleophilic or electrophilic compounds (Gunstone, 

2004; Heath et al., 2005; Kent, 2013; Mungroo et al., 2008). The epoxide ring can be opened 

and the reaction involves either electrophilic attack on the oxygen atom or nucleophilic attack 

on one of the ring carbons. All the mechanisms are ionic (anionic or cationic) in presence of 

water so that the highly polar carbon-oxygen bond can be broken. The important reaction 

mechanism of epoxides that can be used to convert them to different products are shown 

(Scheme 1-10). It should be noted that both base and acid environments can promote the ring 

opening (Heath et al., 2005). 
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Scheme 1-10: Summary of the main reaction mechanism of the epoxy group (Roberts, 

Aptula, & Api, 2017) 

Epoxides can easily be hydrolyzed to a diol (or its monoester) by a nucleophilic substitution 

reaction, especially under acidic conditions. These reactions occur stereospecifically with 

inversion, so the cis and trans epoxides give the threo and erythro diols, respectively. An 

example is during heating with acetic acid (acetolysis) followed by hydrolysis of the 

monoacetate (Gunstone et al., 2007). In a basic or neutral condition, all ring opening 

reactions are similar and involve an attack by a nucleophile on one of the carbon atoms of the 

oxirane group. The mechanism is regarded as SN2 as illustrated in Scheme 1-11. 

 

Scheme 1-11: Epoxy reaction under basic conditions 

When an acid is involved, the reactions of most nucleophiles will be accelerated, through the 

formation of a reactive conjugated acid from the epoxide species, which involves proton 

attack on the ring’s oxygen atom (Scheme 1-12).   

 

Scheme 1-12: Epoxy reaction under acidic conditions 

Despite the high reactivity of the epoxy group, no information about the stability of EFAs in 

food matrices could be found in the literature. 
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1.7 ANALYSIS OF EFAS 

1.7.1 Introduction 

Analytics in some cases have limited our advancement in the knowledge of lipid oxidation. 

However, this has changed with the developments in the analytical techniques such as gas 

chromatography (GC), mass spectrometry (MS), high pressure liquid chromatography 

(HPLC), ultra-high-pressure liquid chromatography (UHPLC) and nuclear magnetic 

resonance (NMR) which can be even further hyphenated (Wilson & Brinkman, 2003). 

Hyphenation like in multi-dimensional gas chromatography (MDGC) has increased the 

separation power and our capacity to analyse more complex secondary oxidation products. 

Ever since research about EFAs was done in the 60s and the 70s (Earle, 1970), the focus by 

lipid analysts has been to come up with more robust analytical methods that can accurately 

quantify EFAs.  

1.7.2 Qualitative analysis of EFAs 

1.7.2.1 Paper chromatography and thin layer chromatography (TLC) 

Paper chromatography is a rare technique which was used in the past so it has become 

obsolete, while TLC is a handy technique which is frequently used as an additional separation 

step before GC analysis (Spitzer, 1999). The initial analysis of EFAs relied a lot on these two 

methods. It helps to isolate complex mixtures of compounds and to check the effectiveness of 

the column fractionation process during method development and optimisation. In EFA 

analysis, TLC application has been mainly qualitatively used to detect, separate and isolate 

them from other fatty acids (Morris & Wharry, 1965). Preparative TLC is used to separate the 

esters into FAMEs, epoxy and hydroxy fractions. Although it is not as sensitive as GC, it 

provides very useful information regarding the effectiveness of separation of closely related 

compounds.  

The epoxy FAMEs can be separated using different solvent systems per their retention factor 

(Rf) values. Normally TLC is performed on 0.25 mm pre-coated silica gel 60 plates, eluted 

with hexane–diethyl ether–acetic acid (80:20:1, v/v/v) (Tallent et al., 1966) or with hexane-

ether-acetone (33:4:3, v/v/v) (Gardner, Weisleder, & Nelson, 1984). TLC can reveal epoxy 

compounds by use of an acidic chromophore such as picric acid; presence of orange coloured 

spots indicate an epoxy group (Earle, 1970; Gray, 1978). Visualisation of the compounds can 
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be achieved by use of iodine or ultra violet light. However, to prevent alteration of the acid 

sensitive epoxy group, the contact time with acidic conditions must be as short as possible.  

1.7.2.2   HPLC, LC-MS and NMR 

High-performance liquid chromatography (HPLC) has widely been used as a preparative step 

by fractionating the different EFAs in question. Although these techniques can be used to 

quantify analytes, in EFA analysis, they have mainly been limited to qualitative analysis. 

Studies have been based on HPLC pre-separation of EFAs on a C-18 column using methanol-

water containing 0.05% acetic acid as a mobile phase (Gérard, Moreau, Fett, & Osman, 1992; 

Morales, Dobarganes, Márquez-Ruiz, & Velasco, 2010; Orellana-Coca, Adlercreutz, 

Andersson, Mattiasson, & Hatti-Kaul, 2005; Piazza et al., 2003a). HPLC coupled with 

different detectors such as refractive, evaporative light scattering detector, ultra violet and 

others, can be used to detect the different compounds which later can later be identified by 

either MS or proton nuclear magnetic resonance (1H NMR) (Fer et al., 2006; Giuffrida et al., 

2004). Use of liquid chromatography-mass spectrometry (LC-MS) has the added advantage 

that after separation, confirmation can be done on the MS. However, LC-MS and NMR are 

quite expensive analytical techniques although gaining a lot of applicability. Using normal-

phase HPLC, EFAs were separated according to the place of the epoxy group in the carbon 

chain and according to the degree of unsaturation of the fatty acid (Cui et al., 2008a; Cui, 

Duke, Tattam, & Duke, 2008b; Cui et al., 2009). 

Valuable qualitative and quantitative information can be given by NMR about lipid oxidation 

and the formed products. The NMR technique has the advantage that a sample is analysed by 

simply dissolving it in deuterated chloroform. Thus, a lipid can be studied without further 

alteration in its composition to give more sound information (Martínez-Yusta, Goicoechea, & 

Guillén, 2014). However, this technique has not received a lot of application probably 

because of the cost involved. During 1H NMR determination, correct assignment of the signal 

to the corresponding proton is important. As reported by some authors, most epoxy 

compounds have signals for the protons attached to the epoxidized carbons at 2.7 ppm for cis 

and 2.45 ppm for trans (Gunstone & Jacobsberg, 1972; Knothe). It should be noted that in 

NMR characterization, the signals for the α-methylenes in between an epoxide and a double 

bond are δH 2.2 ppm and 2.4 ppm and δC 26.2 ppm on a 300 MHz instrument. This signal is a 

good indicator for the presence and location of the monoepoxides (Cui et al., 2008a). 



29 

 

Quantitative NMR (qNMR) is almost as old as NMR itself and has not been popular. Because 

qNMR has been living in the shadow of the multifaceted and multidimensional qualitative 

NMR used in structure analysis, neither has it been used as widely and routinely. The method 

is limited by its sensitivity and chemical shifts may not be consistently determined. Reports 

regarding the achievable precision of quantitation are inconsistent, and some of them even 

tend to deny NMR as a precision method by estimating the error to be in the 10% range. 

(Pauli, Godecke, Jaki, & Lankin, 2012). However, the method is convenient, sample 

preparation is simple and rapid as no derivatization is needed for compound analysis. 

Recently quantitative methods have been validated and used to quantify the epoxy fatty acids 

in oils with reliable results (RSD of 1-4%)  down to 6.3 mmol/kg LOQ (Aerts & Jacobs, 

2004; Xia, 2017; Xia, Budge, & Lumsden, 2015; Xia, Budge, & Lumsden, 2016). 

1.7.3 Semi-quantitative determination epoxide by HBr uptake 

This is an AOCS method used to measure lipid oxidation by determining the presence of the 

epoxy groups semi quantitatively. This method has not found a lot of application in the 

analysis of EFAs in foods because it has limitations. However, it is used mainly by those in 

the plastic industry. It is particularly more useful in characterizing epoxidised soybean oil 

which as mentioned before is industrially produced to be applied as a plasticizer (Holser, 

2008; Kent, 2013; Kumarathasan, Rajkumar, Hunter, & Gesser, 1992). In this method, 

analysis is performed on the oil without derivatising it to methyl esters. The standard HBr 

titration method, AOCS Tentative Method Cd 9-57 (21) for oxirane determination was 

adopted after collaborative analyses conducted in five different laboratories (Gray, 1978). 

The epoxy groups are usually determined by reacting the compound with an excess of 

halogen in a suitable solvent (Scheme 1-13), the halogen consumed being a measure of the 

epoxide. The halide uptake can be measured directly, potentiometrically or by back titration. 

This method is only able to estimate the total epoxides present by measuring the uptake of 

hydrogen halide (Morris et al., 1961) and is nonspecific. Hence it cannot be used to identify 

and quantify the different isomers. 
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Scheme 1-13: A reaction of epoxide compound with hydrogen bromide 

The “epoxy value” indicates the percentage of total test substance mass which is attributed to 

the epoxy functional group and thus indicates the degree of epoxidation of the test substance. 

The method however, has a drawback as it is not sensitive, lacks specificity and a large 

sample size is needed if the oxirane percentage is below 5% (Morris et al., 1961). The results 

are expressed as hydrogen bromide equivalent (HBE) and calculated as epoxyoleic acid 

(Earle, 1970). Sometimes other compounds such as cyclopropenoid fatty acids could account 

for the hydrogen bromide equivalent observed during the titration unless it was carried out in 

the cold (Earle, 1970). Therefore, more sensitive methods were required for EFA detection 

and measurement. This led to development of more specific methods such as, IR 

spectrophotometry, HPLC, GC and NMR to analyse for EFAs. Recent advancements in 

analytics have enabled the determination of the different EFA isomers. 

1.7.4 Quantitative analysis of EFAs in oils and foods 

1.7.4.1  Introduction  

Because of their low volatility, EFAs must be methylated like any other fatty acids to be 

analysed quantitatively by GC methods (Table 1.2). Currently liquid chromatography (LC) 

methods are less used to analyse EFAs because of their limitations. As the epoxy group is 

very reactive to acids and sensitive to heat (Christie, 2011a; Kleiman & Spencer, 1973), the 

method of derivatisation involves room temperature base catalysed methylation in order to 

avoid ring opening. In the past, analysis of oils without derivatisation was tried out but it did 

not yield good results (Earle, 1970).  

During analysis of EFAs after methylation, FAMEs need to be pre-separated by solid phase 

extraction (SPE) to remove the non-polar fatty acid FAMEs which comprise the biggest 

percentage of the fatty acids. This is required because the non-polar fatty acids can coelute 

with the EFAs during GC analysis on a polar column (Mubiru, Shrestha, Papastergiadis, & 
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De Meulenaer, 2013). SPE pre-separation is important so that all the fatty acids are portioned 

as per their polarity, which is achieved by increasing the polarity of the eluting solvents. 

Normally hexane: diethyl ether of varying strength is the eluting solvent that is used to 

separate the different fatty acids. Use of diethyl ether at full strength to elute all polar fatty 

acids at once, is applied although it is not a good practice as this has a disadvantage of eluting 

even the polymeric compounds especially in frying oils. These polymeric compounds are not 

detectable on a GC capillary column and moreover, they stick to the column and hence 

reduce its capacity (Mubiru et al., 2013). 

1.7.4.2 Preparation of ester derivatives of FAs and EFAs  

The formation of methyl esters can be done from fatty acids (esterification) or directly from 

glycerol esters (ester exchange or transesterification). The common practice during ester 

preparation is that the triacylglycerols are saponified with a methanolic NaOH solution to 

liberate the fatty acids. Subsequently the fatty acids are esterified to increase the volatility 

during GC analysis. The ester derivatives are much less polar than the corresponding free 

fatty acid and do not tend to absorb or dimerize on the column, thus avoiding peak tailing, 

peak asymmetry and peak shouldering. Another requirement is that the derivatisation 

procedure should avoid artefact formation which would lead to overestimation of the analyte 

(Berdeaux, Marquez-Ruiz, & Dobarganes, 1999a). 

During ester preparation a catalyst is generally required which may be acidic, alkaline or 

enzymatic although alkaline catalysts cannot be used for the esterification of free acids 

(Berdeaux et al., 1999a). EFAs are very sensitive to acidic conditions and they react with 

opening of the oxirane ring. In presence of acids as a suitable catalyst, protonation of the 

epoxy oxygen leads to the opening of the epoxy ring and it is hydrolysed to hydroxyl fatty 

acids. For example, hydrogen chloride adds across the ring to form halogen hydrins, and 

boron trifluoride-methanol adds methanol across the ring to give a methoxy-hydroxy product. 

Epoxy acids are not harmed by basic conditions under normal circumstances, thus they can 

be transesterified safely with alkaline reagents. Hence the best method of transesterification 

used for EFAs is the base catalysed sodium methoxide methanolysis at room temperature 

(Christie, 2011b).  
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Esters, in the presence of base such as an alcoholate anion (A) (Scheme 1-14), form an 

anionic intermediate (B), which can dissociate back to the original ester or form the new ester 

(C). With excess of the alcohol from which the anion was derived, the equilibrium point of 

the reaction will be displaced until virtually the sole product is the new ester. 

 

Scheme 1-14: Base-catalysed transesterification of lipids (Christie, 2011b) 

However, the base catalysed reaction is not able to esterify the free fatty acids simply because 

the free fatty acid is converted to a carboxylate ion (RCOO-) in a basic solution. This ion is 

not subject to nucleophilic attack by alcohols or bases derived from them because of its 

negative charge. Hence, transesterification occurs by this mechanism with basic catalysis but 

esterification does not (Christie, 2011b). The reaction medium should be void of water to 

prevent dissociation to free fatty acids of the intermediate (B). In most methods, base 

catalysed methylation is achieved by use of sodium methoxide in methanol in excess using 

tert-butyl methyl ether (TBME) as a mediator solvent. The reaction is fast and it is normally 

achieved in 1 min. It is stopped by addition of an acid to neutralise the reaction medium and 

prevent potential further saponification (Suter, Grob, & Pacciarelli, 1997). 

1.7.4.3    Chromatographic techniques 

1.7.4.3.1 GC-FID analysis of EFAs 

In quantitative analysis, the best analytical quality control approach would be to introduce the 

IS immediately at the start of the analysis. This has not been possible in some cases because 

of the limitation of the methylation procedure vis-à-vis the sensitivity of the epoxy ring. Lipid 

analysts had to choose between the use of a free EFA and an EFA methyl ester (FAME) as an 

internal standard (IS). Because free EFAs are not esterified by the base catalysed 

methylation, the use of a FAME standard as an internal standard is common (Table 1.2) and 

it is normally added after SPE. However, this may increase the level of uncertainty during 

analysis. Furthermore, a better method involving a two-step methylation procedure can be 

applied to overcome this problem. This starts with base catalysed transmethylation with 



33 

 

sodium methoxide in TBME which is followed by direct methylation of the carboxylic 

groups with diazomethane (Berdeaux et al., 1999b; Velasco et al., 2002; Velasco, Marmesat, 

Bordeaux, Márquez-Ruiz, & Dobarganes, 2004). However, this method is not preferred 

because of the limitations of diazomethane being explosive, toxic and the nitrosamides used 

to prepare it are carcinogenic (Christie, 2011a). Recently by epoxidation of FAMEs using 3-

chloroperoxybenzoic acid in chloroform at room temperature to EFA methyl esters, it was 

possible to synthesise methyl cis-10,11-epoxyheptadecanoate from methyl cis-10-

heptadecenoate (C17:1) which was used as an IS to quantify EFAs in oils and food matrices 

(Mubiru, Shrestha, Papastergiadis, & De Meulenaer, 2014). However, use of deuterated 

standards would have been an even better approach, but the cost of these stable isotopes is 

prohibitive. Moreover, this should require the use of GC-MS as an analytical method, while 

GC-FID works fine as well.  

1.7.4.3.2 GC-FID conditions 

GC-FID instrumentation is the most commonly used technique and provides good results for 

the analysis of FAMEs and EFAs (Aguirre, Dobarganes, Marmesat, & Ruiz Méndez, 2010; 

Dodds, McCoy, Rea, & Kennish, 2005; Gilbert, Shepherd, Startin, & Eagles, 1981). This may 

be attributed to its being an accessible technique to many analysts. During epoxy FAME 

analysis on a GC, the sample must be injected into the column where separation takes place 

and finally EFAs are detected by an appropriate detector. In the past, research was limited by 

the power of the available technology like columns. Currently, analysis of epoxy fatty methyl 

esters on different capillary columns by gas chromatography flame ionisation detector (GC-

FID) has been made possible (Delmonte, Kia, Hu, & Rader, 2009; Earle, 1970; Hammond, 

2002; Morales, Marmesat, Dobarganes, Márquez-Ruiz, & Velasco, 2012; Spitzer, 1999). For 

instance, Morris et al. could not separate the different epoxy isomers because of the column 

they used (Morris et al., 1961). However, currently there has been a lot of advancement in 

technology to separate different compounds using more robust columns. Many parameters 

can be changed to achieve the best results, more frequently the column is varied as can be 

seen in Table 1.2.  
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Table 1.2: Some examples of quantitative studies for EFAs analysis 

Sample preparation 
Analytical 

procedure  
Sample matrix Amounts detected Reference 

Room temperature 

base transmethylation 

using C13:0 and C15:0 

FAME as IS 

GC-FID; split-

splitless injector and 

HP Innowax column 

Heated Models of 

FAMEs and monoacid 

TAGs 

32.3 mg g-1 in methyl 

oleate; 19.3 mg g-1 in 

methyl linoleate; 35.7 mg g-

1in triolein and 18.3 mg g-1 

in trilinolein 

Berdeaux et al., 

1999 

Room temperature 

base trans methylation 

followed by 

diazomethane 

methylation using 

C13:0 and C15:0 acids 

as IS, two step SPE 

GC-FID using both 

split-splitless and 

COC injector on a 

DB-Wax column 

Sunflower and olive oil 

oxidised at 180°C 

10.88 mg g-1 in SFO and 

13.52 mg g-1 in olive oil 

Velasco et al., 

2002 

EFAs extracted after 

acidification in 

hexane: ether and 

methylated using BF3 

in methanol. 

GC-MS in single ion 

monitoring mode. 

Calculation as GC 

peak areas 

Blood plasma lipid 

samples of women 

Up to 0·08 mmol L–1 for 

diepoxy lipids and 0.18 

mmol L–1 for mono epoxy 

lipids 

Wilson et al, 

2002 

SPE silica on column 

transmethylation in 

methanol 

GC-FID; split-

splitless injector and 

Rtx 2330 column. 

Calculation as GC 

peak areas 

Thermoxidised FAMEs 1.46% in methyl oleate and 

1.75% in methyl elaidate 

Lercker et al., 

2003 

According to Velasco 

et al., 2002 

GC-FID; split-

splitless injector and 

HP Innowax column 

Themoxidised olive 

and sunflower oils 

14.24 mg g-1 in olive oil and 

9.44 mg g-1 in sunflower oil 

Velasco et al., 

2004 

Direct sample base 

transmethylation 

GC-FID COC 

injection on SP-

2560 column. 

Calculation as GC 

peak areas 

Food samples 40,300 mg kg-1 of sample 

(C18:1 EFA) and 10,200 mg 

kg-1 (C18:2 EFA) in biscuits 

oxidised for 3 days at 70°C 

Fankhauser-

Noti et al., 2006 

Room temperature 

base transmethylation 

using C21:0 FAME as 

IS 

GC-MS; split-

splitless injector 

using BPX70 SGE 

column 

Cotton seed, sunflower, 

palm and vegetable 

shortening oil heavily 

oxidised at 180°C 

1536 µg g-1in SFO fresh oils 

and 133.6 µg g-1 in CSO; 

172.4 -1140.8 µg g-1 in 

heavily oxidised oils 

Kalogeropoulos 

et al., 2007 

Room temperature 

base transmethylation 

using C21:0 FAME as 

IS after two step SPE 

GC-FID on split- 

splitless injector and 

DB-Wax column. 

Calculation as GC 

peak areas 

Thermoxidised 

sunflower oil 

LODs was 1.6, µg mL-1 for 

methyl trans-9,10 ES and 

detected up to 4.2 mg g-1 

Marmesat et al., 

2008 

Room temperature 

base transmethylation 

using C23 FAME as IS 

after two step SPE 

High temperature 

GC-FID on split- 

splitless injector and 

VF-5ht Ultimetal 

column 

Used frying fats and 

thermoxidised olive oil 

Results reported as 

percentage polar fatty acids 

Aguirre et al., 

2010 

Room temperature 

base transmethylation 

using C19:0 FAME as 

IS after three step SPE 

GC-FID on COC 

injector and CP Sil 

88 column. 

Calculation as GC 

peak areas  

Fresh plant oils LOD in µg g-1 of oil was 

1.45 and quantified 

concentration was 0.03- 2 

mg g-1 of oil 

Mubiru et al., 

2013 

Room temperature 

base transmethylation 

using C17:0 FAME 

epoxy as IS after three 

step SPE 

GC-FID on COC 

injector and CP Sil 

88 column. 

Calculation as GC 

peak areas 

Food matrices LODs determined in µg g-1 

sample were:2.8 (oil); 10.2 

(crisps); 5.2 (pork) and 1.7 

(milk) 

Mubiru et al., 

2014 

SFO, sun flower oil; CSO, cotton seed oil; IS, internal standard 
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Previously the commonly used chromatographic columns during epoxy FAME analysis were 

the nonpolar columns (Berdeaux et al., 1999a; Marmesat, Velasco, & Dobarganes, 2008; 

Velasco et al., 2002). This was mainly because on a nonpolar column, polar fatty acids could 

be analysed without any problem of sticking to the column. However, this approach suffers 

from the disadvantage of failure to separate the different isomers because of coelution. Also, 

it was not possible to separate the FAMEs based on the number of double bonds. But now it 

is possible to separate isomers on a polar column after a pre-separation step on a silica pre-

column. Recently a method was validated that involves the use of a polar column to analyse 

the different EFAs in oils and food matrices (Mubiru et al., 2013, 2014). The use of polar 

columns is a promising approach which will help most lipid chemists to do mechanistic 

studies on EFAs because various isomers can individually be separated and detected. The 

common injector used is the split-splitless (S/SL) injector, however because of its drawbacks 

such as sample discrimination the best alternative is the cool on column (COC) injector 

(Spitzer, 1999).  

1.7.4.3.3 GC-MS conditions 

Qualitative analysis is mainly based on mass spectrometry (MS) (Christie, 2012; Kleiman & 

Spencer, 1973). Structure elucidation has mainly been based on mass spectra using the inbuilt 

spectral libraries. A number of studies have done structural analysis of EFAs using GC-MS 

(Christie, 2012; Cui et al., 2008b; Gunstone & Jacobsberg, 1972; Kleiman & Spencer, 1973). 

During such studies, the mass selective detector is normally operated in electron ionization 

mode at 70 eV. However, to avoid excessive fragmentation of the esters, the ionization 

energy can be reduced accordingly to make interpretation of the mass spectra easier. Many 

researchers have complained about the complexity of the mass spectral data (Kleiman & 

Spencer, 1973; Orellana-Coca et al., 2005). For instance, at 16 eV, Gunstone and Jacobsberg 

obtained more information when they examined 31 isomers of EFAs than when they did it at 

70 eV (Gunstone & Jacobsberg, 1972).  

1.8  RISK ASSESSEMENT OF FOOD CHEMICALS 

1.8.1 Elements of risk assessment 

Chemical risk assessment is the process by which the potential (or probability of) adverse 

health effects of exposure are characterized (Williams, James, & Roberts, 2000). It is a 
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scientifically based process aimed at estimating the likelihood and the extent of adverse 

effects occurring to humans because of possible exposure(s) to hazards and it consists of the 

following steps: hazard identification, hazard characterization, exposure assessment and risk 

characterization as illustrated in Figure 1.3 (Derelanko & Hollinger, 2001). Risk assessment 

is often an uncertain process requiring considerable judgment and assumptions on the part of 

the risk assessor. The probability of harm can be expressed either qualitatively or 

quantitatively (Williams et al., 2000). Hazard identification can be considered as a qualitative 

risk assessment, i.e., it determines whether and to what degree it is scientifically correct to 

infer that toxic effects observed in one setting will also occur in other settings (De Vries, 

1996). On the other hand, quantitative risk assessment is based on numerical data and 

analysis which derives inputs from concentration and consumption data. 

To assess the health risks from food components, information on the components, estimation 

of the exposure to the components, the consumer and the interactions between the 

components and the consumer is needed. Quantitative risk assessment can be deterministic or 

probabilistic (De Vries, 1996). However, a criticism of quantitative risk assessments, 

specifically, risk assessments that produce a numerical estimate of risk, is that they often 

convey the impression of greater precision than exists. It is vitally important that risk 

assessments include qualitative information as well, such as a discussion of the uncertainties 

associated with the risk estimate and the extent to which evidence of a true human hazard is 

weak or controversial (Williams et al., 2000). Each step in the process of risk assessment is 

briefly discussed below. 

1.8.2 Hazard identification 

Biological, chemical and physical agents that are capable of causing adverse health effects 

and which may be present in a particular food or group of foods are identified before risk 

assessment can be done (Codex Alimentarius, 1999; WHO/FAO, 2009). This aims at 

evaluating whether the chemical has the potential to cause adverse health effects in humans 

by reviewing all available data on toxicity and the biological mechanism that leads to toxicity 

(Barlow et al., 2002). To assess the toxicity of chemical compounds, studies can be 

performed either on a whole animal (in vivo) or on cells (in vitro) or on parts of animals with 

minimal alteration (ex-vivo) and the data can be extrapolated to humans. From the range of 

studies and observations available, the nature of any toxicity or adverse health effects 

occurring and the affected target organs or target tissues are identified (WHO/FAO, 2009).  
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The risk assessment process involves extrapolation of dose-response data from animals to 

humans and quantitative estimates of human exposure. For this to be accomplished, a detailed 

understanding of interspecies differences, population diversity and environmental factors is 

critical. Comparative quantitative morphological, physiological and biochemical information 

is required for different species. The heterogeneity of exposed populations with respect to 

such factors as age, lifestyle and activity patterns must be characterized (Derelanko & 

Hollinger, 2001). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Elements of risk assessment process (Derelanko & Hollinger, 2001) 

EXPOSURE ASSESSMENT 

What exposures are experienced or 

anticipated under different 

conditions? 

 
• Identification of exposed populations 

• Identification of routes of exposure 

• Estimation of degree of exposure 

 

HAZARD IDENTIFICATION 

Does a chemical of concern cause an adverse effect? 

 

• Epidemiology 

• Short term assays 

• Animal studies 

• Structure/activity relationship 

RISK CHARACTERIZATION 

What is the estimated likelihood of the adverse effect occurring in a 

given population? 

 

• Estimation of the potential for adverse effects to occur 

• Evaluation of uncertainty 

• Risk information summarized 

DOSE-RESPONSE ASSESSMENT 

How is the identified adverse effect 

influenced by the level of exposure? 

 

• Quantitative toxicity information collected 

• Dose-Response relationships established 

• Extrapolation of animal data to humans 
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1.8.3 Hazard characterization  

Hazard characterization is the qualitative and wherever possible quantitative description of 

the inherent property of an agent or situation having the potential to cause adverse effects. 

This should, where possible, include a dose–response assessment and its attendant 

uncertainties (WHO/IPCS, 2004). The hazard characterisation concerns the actual 

toxicological research to the possible adverse health effect of a compound on a living 

organism. Ideally it is the process of determining whether exposure to a chemical agent, 

under any exposure condition can cause an increase in the incidence or severity of an adverse 

health effect such as cancer, birth defect, neurotoxicity, etc. (Williams et al., 2000). During 

this stage the dose response is evaluated and toxic doses are documented. The dose-response 

assessment is the determination of the relationship between the magnitude of exposure to a 

chemical (dose) and the severity and frequency of the associated health effects (response) to 

humans. The dose-response curve generally takes two forms: the first displays the distribution 

of an effect within a population as a function of changing exposure and the second indicates 

the degree of change of an effect in an exposed individual of a population as a function of 

changing exposure. 

Analysis of the dose-response curve can demonstrate average response, the degree of 

susceptibility within a population, and the range of exposure affecting hyper reactive 

individuals. The slope of the dose response curve categorizes the potency of the toxin and 

indicates the magnitude of effect associated with incremental increases in exposure 

(Derelanko & Hollinger, 2001).  

Non-carcinogenic adverse effects observed in animal or humans are characterized by a 

threshold dose, below which no adverse effects are observed. Two thresholds are normally 

used, the first is the lowest observed-adverse-effect level (LOAEL) (Lowest found 

concentration or amount of a substance, which causes an adverse effect). The second is the 

no-observed-adverse-affect-level (NOAEL) and is the highest dose in the most sensitive 

experimental animal species which causes no toxic effects for the non-carcinogens (De Vries, 

1996). The NOAEL can be divided by a safety factor to set a level which regulatory agencies 

have referred to as either an acceptable daily intake (ADI ) or tolerable daily intake (TDI) or 

reference dose (RfD) (Williams et al., 2000). The ADI/TDI/RfD is an estimate of the amount 

of a food substance, expressed on a body weight basis, that can be ingested daily over a 

lifetime without appreciable health risk (Barnes et al., 1988; De Vries, 1996). For genotoxic 
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carcinogens, a dose without a potential effect cannot be defined as it is assumed that there is 

no safe threshold (De Vries, 1996). Hence the previous advice of recommending that 

exposures should be reduced to As Low As Reasonably Achievable (ALARA) is considered 

to be of limited value (Benford et al., 2010). 

1.8.4 Exposure assessment 

To be able to know whether a population that consumes a certain type of food is at a risk, 

estimate of the chemical in question is done through exposure assessment. Exposure 

assessment is defined as the qualitative and/or quantitative evaluation of the likely intake of 

the hazard via food as well as exposure from other sources, if relevant (Codex Alimentarius, 

1999). For food, the level ingested will be determined by the levels of the agent in the food 

and the amount consumed. Dietary exposure assessment takes into consideration the 

occurrence and concentrations of the chemical in the diet, the consumption patterns of the 

foods containing the chemical and the likelihood of consumers eating large amounts of the 

foods in question (high consumers) and of the chemical being present in these foods at high 

levels. Usually a range of intake or exposure estimates will be provided (e.g. for average 

consumers and for high consumers) and estimates may be broken down by subgroups of the 

population (e.g. infants, children, adults) (WHO/IPCS, 2004). The process of exposure 

assessment cannot be complete without reliable concentration data. In all analytical 

procedures, there are uncertainties associated with the various steps and techniques. For 

quantitative food chemical determination, the uncertainty is addressed by data censoring, 

where the criteria used to treat the “non-detects”, values which fall below the limit of 

detection (LOD) is well explained. Accordingly, non-detects are considered as zero (lower 

bound scenario), ½ LOD (medium bound scenario) or LOD (upper bound scenario) 

(Medeiros Vinci et al., 2012; WHO/FAO, 1985). A similar approach is use for samples which 

fall below the limit of quantification (LOQ), but above the limit of detection. Estimation of 

exposure to a compound is obtained after combining concentration data obtained in foods 

with the data related to their consumption by a given population. The commonly applied 

methodologies for exposure assessment are: single-point estimates or deterministic approach 

and probabilistic analysis. 

The single-point or deterministic modeling involves using a single "best-guess" estimate of 

each variable within a model to determine the model's outcome(s). A deterministic approach 

to risk calculation is used where a single value is selected for each exposure variable and a 
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single risk estimate is produced. Sensitivities are then performed on the model to determine 

how much that outcome might vary from the model outcome. This is achieved by selecting 

various combinations for each input variable. These various combinations of possible values 

around the "best guess" are commonly known as "what if" scenarios. The model is often also 

stressed by putting in values that represent the best-case scenario and worst-case scenarios 

(Vose, 2008). The exposure assumptions are chosen to represent the plausible upper bound of 

exposure and the risk estimate is said to be associated with reasonable maximal exposure 

(RME) or high-end exposure (Williams et al., 2000). Normally the mean, the 95th or the 97.5th 

percentile of food consumption data is multiplied with the corresponding mean, 95th or 97.5th 

percentile of contamination data to obtain it. Conclusions from this approach are not always 

very accurate due to possible over or underestimation of the exposure levels. 

Probabilistic analysis involves describing variables in terms of distributions to characterize 

their variability and/or uncertainty. In some cases, it uses distributions of food intake but with 

a fixed value for the concentration (Costa & Kristbergsson, 2008). In probabilistic risk 

assessment, input variables are entered as probability density functions (PDFs) instead of 

single values. For example, instead of using a single body weight of 70 kg in the risk 

calculation, a distribution of body weights would be entered that reflects the variability in 

body weight of the exposed population. These PDFs are then combined in such a way as to 

yield a risk distribution, representing the range and frequency of risks anticipated to exist in 

the exposed population. One of the most commonly used techniques to combine PDFs is 

Monte Carlo simulation. With Monte Carlo simulation, a computer program creates a 

simulated population designed to resemble the exposed population in every key aspect. For 

each risk calculation, it takes a value from each input PDF and calculates a numerical risk. 

This process is repeated several times (iterated) and the resulting range of risk values is tallied 

in the form of a distribution. This distribution represents the risk distribution for the 

population. From this distribution, the variability in risk among individuals can be visualized 

and the risk level at various percentiles of the population determined (Williams et al., 2000). 

This gives a more complete exposure assessment since the whole distribution of the 

consumption and concentration data is considered. 

1.8.5 Risk characterization 

In this final stage of the risk assessment process, information from the three previous steps 

are evaluated to produce a determination of the nature and magnitude of human risk. The 
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integration of information from other steps to develop a qualitative or quantitative estimate of 

the likelihood that any of the hazards associated with the chemical(s) of concern will be 

realized. The risk assessment process is completed with a summary of the risk information. 

The information developed in the risk assessment process will be utilized in the risk 

management processing which decisions are made as to the need for, the degree of and the 

steps to be taken to control exposures to the chemical of concern (Derelanko & Hollinger, 

2001).  

The characterization of risk must often encompass multiple populations having varying 

exposures and sensitivities. A descriptive characterization of the nature, severity and route 

dependency of any potential health effects, as well as variation within the population(s) of 

concern should be considered. Any uncertainties and limitations in the analysis are described 

in the risk characterization, so that the strengths, weaknesses and overall confidence in the 

risk estimates can be understood (Williams et al., 2000). Based on the risk characterization, 

the need for and the degree of risk management will be determined. When threshold levels 

are available, the risk can be estimated by direct comparison of the outcome of exposure 

assessment with the thresholds such as ADI or TDI or RfD. In absence of the threshold, the 

following approaches can be applied: extrapolation of higher dose data from rodent 

carcinogenicity assays in which 25% of the animals develop cancer  (T25 value), application 

of the threshold of toxicological concern (TTC) approach as explained below  and calculation 

of the margin of exposure (MOE) as explained further (O’Brien et al., 2006). 

The threshold of toxicological concern (TTC) is a risk assessment tool for evaluating 

substances with few or no toxicity data. The TTC is a pragmatic risk assessment tool that is 

based on the principle of establishing a human exposure threshold value for all chemicals, 

below which there is a very low probability of an appreciable risk to human health (Cramer, 

Ford, & Hall, 1978; Kroes et al., 2004). It is to be considered as a screening tool for priority 

setting in an integrated testing strategy (Hennes, 2012). In absence of full toxicity database, 

the TTC concept uses the chemical structure of the chemical in question and the known 

toxicity of chemicals which share similar structural characteristics to set an exposure 

threshold value below which there is very low probability of a risk to human health (Kroes et 

al., 2004). The US FDA developed a so-called ‘threshold of regulation’ value, which is 

defined as 0.5 ppb in the diet corresponding to an exposure of 1.5 µg/person/day. Because 

EFAs are not known to be carcinogenic and they have unknown toxicity, this value can 
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tentatively be used for the EFAs in exposure assessment to characterize their risk to human 

consumers (Hennes, 2012). A decision tree provides a systematic structured approach for 

consistent application of the TTC principle to chemicals in food at low exposure. When 

chemicals are assessed using the TTC approach, a review of prior knowledge and use should 

always be performed preceding application of the decision tree (Kroes, Kleiner, & Renwick, 

2005). Chemicals are classified into three classes according to Cramer decision tree and the 

TTC values for chemicals belonging to Cramer class I, II and III are, 1800, 540, 90 μg person 

d-1 respectively (Cramer et al., 1978).  

Numerical estimates of the risk associated with the human exposure can be derived by 

extrapolation of the animal dose–response data or using the median toxic dose (TD50), or the 

dose giving a 25% incidence of cancer in an appropriately designed animal experiment (T25). 

However, this approach has a high level of uncertainty related to the mathematical models 

applied which do not always reflect the complexity of the biological phenomena involved and 

may not estimate the real risk for humans (Kroes et al., 2004). Validity of this approach 

depends on the quality of the data used to define the dose–response relationship, the exposure 

data and the relevance of the mathematical extrapolation model (O’Brien et al., 2006). 

The MOE approach can be applied to both the exposure to one individual substance or the 

aggregate exposures to a group of substances with a similar toxicological profile (Benford et 

al., 2010). The MOE is defined as the ratio of the no-observed-adverse-effect level (NOAEL) 

or benchmark dose lower confidence limit (BMDL) for the critical effect to the theoretical, 

predicted, or estimated exposure dose (WHO, 2009). It is not scientifically valid to identify a 

NOAEL for substances that are genotoxic and carcinogenic. Therefore, the MOE is calculated 

from a point of departure (PoD) (also known as a reference point) on the dose–response 

relationship curve. The benchmark dose (BMD) approach offers the best tool for deriving a 

suitable PoD. The dose that causes a low but measurable response (benchmark response or 

BMR, typically 5% or 10%) is designated as the BMD, and its lower 95% confidence limit is 

the BMDL. The BMDL is considered as the most appropriate PoD since it accommodates 

uncertainty in the data. A benchmark response (BMR) of 10% is preferred to 5%, since the 

modelling of lower responses generally results in greater uncertainty. If the data is 

insufficient to derive a BMDL10, then use of the T25 is the preferred option (Barlow et al., 

2006).  
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Interpretation of the MOE for a genotoxic carcinogen would be difficult for risk managers, 

without some advice about the uncertainties, assumptions and limitations present in the data 

used to derive the ratio. Risk managers should be informed of the magnitude of an MOE that 

could be considered to represent a low priority for risk management actions, after considering 

uncertainties related to the precision of the dose– response relationship and the quality of the 

human exposure data, which in some cases may be quite poor (O’Brien et al., 2006). The 

magnitude of the MOE reflects but does not attempt to define the possible magnitude of the 

risk (O’Brien et al., 2006; Williams et al., 2000). The EFSA Scientific Committee considers 

that a MOE of 10,000 or more, based on genotoxicity or animal cancer bioassay data, ‘‘would 

be of low concern from a public health point of view and might reasonably be considered as a 

low priority for risk management actions” (EFSA, 2005). Risk managers should be informed 

of the magnitude of an MOE that could be considered to represent a low priority for risk 

management actions, after considering uncertainties related to the precision of the dose– 

response relationship and the quality of the human exposure data, which in some cases may 

be quite poor (O’Brien et al., 2006). 

1.9 TOXICITY AND TOXICOLOGY OF EFAS 

There is a growing interest to EFAs as oxidation products due to their presumed high 

reactivity, high toxicity and possible absorption through diet (Goicoechea & Guillen, 2010). 

Toxicology studies performed on animals have shown that EFAs are toxic particularly cis-

9,10-epoxystearic acid, cis-9,10-epoxyoctadec-12-enoic acid and cis-12,13-epoxyoctadec- 9-

enoic acid (Chu et al., 1980; Le Quéré, Plée-Gautier, Potin, Madec, & Salaün, 2004). The last 

two compounds are commonly known as leukotoxin and isoleukotoxin respectively. They are 

called so because they produce their primary toxic effects against leukocytes (Hayakawa et 

al., 1986). These acids can be formed endogenously and can cause degeneration and necrosis 

of leukocytes and they are associated with multiple organ failure, breast cancer, cell 

proliferation in vitro and disruption of reproductive functions in rats (Goicoechea & Guillen, 

2010). It has been previously demonstrated that the observed toxicity of leukotoxin and 

isoleukotoxin is due to the metabolism of the epoxides to their corresponding diols by soluble 

epoxy hydrolase (Moghaddam et al., 1997). 

For a chemical to exert its potency, it must be absorbed into the blood stream. Although EFAs 

are absorbed in humans, their absorption has been reported to be poor which may lead to 

accumulation in the colon and this may be linked to colon cancer. Wilson et al, 2002, found 
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that dietary mono EFAs are absorbed intact and are not converted to vicinal dihydroxy fatty 

acids and that 17% was absorbed. However, mono EFAs were better absorbed than di-EFAs 

(Wilson et al., 2002). During in vitro studies, the toxicity of Leukotoxin and isoleukotoxin 

methyl esters to cells was further confirmed to be due to the enzyme soluble epoxide 

hydrolase (sEH) metabolizing the acids to more water soluble hydroxyl fatty acids (diols) 

(Greene, Newman, Williamson, & Hammock, 2000a; Greene, Williamson, Newman, 

Morisseau, & Hammock, 2000b; Halarnkar, Wixtrom, Silva, & Hammock, 1989) which are 

more toxic (Hayakawa et al., 1990; Moghaddam et al., 1997; Zheng, Plopper, Lakritz, 

Storms, & Hammock, 2001). Furthermore, it is believed that dietary EFAs could exert their 

toxic effects through their reactivity towards amines, SH-groups of proteins and DNA 

(Wilson et al., 2002). 

In a study on mice, a lethal concentration (LC50 = 0.040 – 0.126 mM) for the leukotoxin and 

isoleukotoxin in presence of human soluble epoxy hydrolase (hsES) was reported (Greene et 

al., 2000a). Whereas cytotocity studies done on rabbit renal tubule models using linoleic acid 

and linolenic acid monoepoxides and their diols showed toxicity at 100-500 µM 

concentrations (Moran et al., 2000). Additionally, the leukotoxin dose resulting in 50% 

mortality was approximately 400 mg/kg, whereas that of the diols of leukotoxin was around 

100 mg/kg (Zheng et al., 2001). A study on in vitro cytotoxicity performed in Spodoptera 

frugiperda (Sf-21) cells with human soluble epoxy hydrolase (hsEH) and β-galactosidase 

(Lac Z) as control enzymes also elucidated the toxicity of EFAs. This study showed that 

toxicity of EFAs to cells depends on several factors among which the hydrocarbon chain 

length was critical. Toxicity was observed to increase from C11-18 with exception of one 

isomer (Z)-6,7-epoxyoctadecanoic acid methyl ester and then it decreased with increase in 

chain length. Increasing ester length gradually decreased the toxicity of the compounds 

(Greene et al., 2000a). Cytochrome P450 is able to epoxidise linoleic acid to produce active 

epoxy metabolites which are associated with many pathological conditions which lead to 

renal failure (Le Quéré et al., 2004; Mitchell, Moran, & Grant, 2002; Moran et al., 2000; 

Moran, Mon, Hendrickson, Mitchell, & Grant, 2001). However, in a more recent study, 

cytotoxicity of epoxystearic acid has been investigated in human liver carcinoma cells 

(HepG2 cells). Results indicate that this could induce cytotoxicity, DNA damage, apoptosis, 

and oxidative stress (Liu, Cheng, Li, Wang, & Liu, 2018). 
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To judge toxicity hazards, acceptable daily intake (ADI) or tolerable daily intake (TDI) 

values are used, which are released by the Scientific Committee on Food and the European 

Food Safety Authority (EFSA). Toxicity data to set tolerable standards for EFAs has not been 

readily available. However, based on ESBO with a minimum 7% - maximum 8% oxirane 

oxygen content, the EFSA suggested a TDI (tolerable daily intake) of 1 mg/kg bw/day 

resulting in a maximum tolerated migration corresponding to the overall migration limit (60 

mg/kg) for a 60 kg adult (Hammarling et al., 1998).  

Two systems of classifying chemicals per their toxicity can be used to group EFAs. 

According to International Agency for Research on Cancer (IARC) studies, EFAs have not 

shown to be potent carcinogens. One EFA which is more abundant, cis-9,10-epoxystearic 

acid, is classified into class III a group for compounds that are not classifiable according to 

their carcinogenicity to humans (IARC, 1999; IARC/WHO, 1987). This classification 

however, does not consider toxicity of a chemical but only its probability to cause cancer. In 

addition, this approach does not allow deriving a health-based safety value.  

A second approach is typically used for chemicals for which limited toxicological studies are 

available or for which no health-based safety values were derived yet. As explained before, 

this approach is based on the chemical structure of the molecule and proposes, a structure-

dependent default tolerable daily intake, on basis of a decision tree (Toxtree version 2.5.4 

available online). As such, EFAs are classified as Class III substances which are highly toxic 

with a tolerable daily intake of 1.5 µg kg-1 bw day-1 taking a body weight of 60 kg. The 

decision tree classifies every structurally defined organic or metallo-organic chemical based 

on structure and biochemistry. This classification is concerned with oral toxicity (Cramer et 

al., 1978). Accordingly, Class III substances contain structural features that permit no strong 

initial presumptions of safety, or that may even suggest significant toxicity (Cramer et al., 

1978; Munro, Renwick, & Danielewska-Nikiel, 2008). These compounds have low reported 

threshold which implies that they deserve high priority for further investigation. This is 

particularly when per capita intake is high or a significant subsection of the population has a 

high intake. The implied hazard would then require the most extensive evidence for safety-in 

use (Cramer et al., 1978). 

In the proceeding chapters, development and validation of new methods for the analysis of 

EFAs will be discussed. Furthermore, studies on exposure assessment and characterization of 

the potential risk in the Belgian population in relation to consumption of specific food 

http://en.wikipedia.org/wiki/International_Agency_for_Research_on_Cancer


46 

categories will be discussed. Finally, the formation of EFAs under various conditions and its 

reactivity towards other biomolecules is investigated. 
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ABSTRACT 

In this study an improved method for analysis of epoxy fatty acids is reported. Data obtained 

from analysis of polar fatty acids has previously been presented, but due to the high number of 

compounds that co-elute in the polar fraction, the resultant chromatograms are complex which 

may lead to compromising the accuracy of the data. A three steps separation of fatty acid methyl 

esters (FAMEs) by solid-phase extraction (SPE) on a silica gel column to remove hydroxy fatty 

acid interferences was proposed. This approach is opposed to a two-step separation procedure 

that has been often used to prevent analytical interferences caused by non-altered fatty acids. A 

gas chromatograph with a flame ionisation detector (GC-FID) equipped with a polar CP-Sil 

88™ column was used. Quantification was based on the use of methyl nonadecanoate (C19:0), 

as an internal standard. Individual mono EFAs were well separated without co-eluting 

compounds. The optimised method was finally applied to screen EFAs in 37 fresh oil samples. 

Results obtained for the total EFAs were in the range 0.03 – 2 mg g-1 of oil with repeatability 

coefficient of variation (CV) ranging from 2.8 to 9.9% for duplicate analysis showing that the 

results obtained are repeatable.  

Keywords: Lipid oxidation, epoxy fatty acids, oxygenated polar fatty acids, GC-FID, FAMEs 
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2.1 INTRODUCTION 

Lipid oxidation is one of the most important chemical reactions in food which results in food 

deterioration. In addition, polar fatty acids with one or more oxygenated functional groups such 

as epoxy, keto and hydroxyl can be formed in at least one of the fatty acyl chains of the 

triacylglycerols. These compounds are believed to be stable final products that result from the 

decomposition of hydroperoxides (Berdeaux, Dutta, Dobarganes, & Sebeio, 2009). The major 

precursors of these oxygenated fatty acids are polyunsaturated fatty acids (PUFAs) (Cui et al., 

2008b; Dobarganes, 2009). Because the drive today is to enrich oils with polyunsaturated fatty 

acids thus making them more prone to oxidation, the need for sensitive methods for analysis of 

these compounds is timely. The analysis of oxygenated fatty acids has received less attention 

and yet they are reported to form in high amounts especially in thermally oxidised foods 

(Marmesat et al., 2008; Velasco et al., 2002; Velasco et al., 2004). Generally these oxygenated 

fatty acids have been reported to have toxic effects (Christie, 2012; Greene et al., 2000a), 

particularly the long chain epoxy compounds have been reported to be protoxins (Greene et al., 

2000a).  

The analysis of oxygenated polar fatty acids is generally based on the pre-separation of polar and 

non-polar fatty acid methyl esters (FAMEs) in a silica column followed by the gas 

chromatographic separation coupled with a flame ionisation detector (GC-FID). However, this 

analysis is challenging as revealed by the complex gas chromatograms reported earlier 

(Fankhauser-Noti et al., 2006; Kalogeropoulos, Salta, Chiou, & Andrikopoulos, 2007; Marmesat 

et al., 2008; Velasco et al., 2002) due to coelution and interference from other compounds 

especially the hydroxy fatty acids.  

The objective of the study was to improve the method of analysis of EFAs. Emphasis was put on 

the EFAs containing eighteen carbon atoms. To achieve this, a simple three steps SPE of the 

methyl esters on 10% moisture silica gel column has been proposed. The three steps SPE 

involved the use of three solvent systems of different polarity to partition the FAMEs. 
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2.2 MATERIALS AND METHODS 

2.2.1 Chemicals and materials 

Tert- butyl methyl ether (TBME) and 3-chloroperoxybenzoic acid (70-75%) were purchased 

from Acros Organics (Geel, Belgium). Sodium methoxide solution (25%), silica gel 60 for 

column chromatography (particle size = 0.063-0.100 mm), methyl 12-oxostearate and methyl 

12-hydroxystearate were purchased from Sigma Aldrich (St. Louis, MO, USA). Methyl oleate 

(C18:1), methyl linoleate (C18:2), methyl linolenate (C18:3), methyl nonadecanoate (C19:0) and 

a mixed GLC 68D standard were obtained from Nu-Chek-Prep. Inc (USA). All other chemicals 

and reagents were of analytical grade and obtained from the local suppliers.  

2.2.2 Oil samples 

A total of 37 fresh oil samples were purchased from five different local markets in Belgium. 

They were brought to the laboratory and analysed immediately. No details of their previous 

history were retrieved. 

2.2.3 Qualitative Standards 

Standards that were used for qualitative identification of EFAs on GC-FID were prepared by 

thermoxidising methyl oleate, linoleate, α-linolenate and sunflower oil in a Muffle furnace 

(Heraeus Instruments, Germany) for 10 hr at 180 ± 2°C. About 1 g of the FAMEs and sunflower 

oil was placed in a Duran test tube (GL 14) without a cap and put in a beaker containing glycerol 

to aid uniform transfer of heat to the samples. 

2.2.4 Synthesis of cis-9, 10-epoxystearate a quantitative standard 

The epoxy analyte was synthesized based on a method described by Gunstone and Jacobsberg as 

reported by Christie (Christie, 2011a). The methyl oleate was reacted with 3-

chloroperoxybenzoic acid in chloroform at room temperature for 4 hr. The epoxy ester was 

purified on silica gel column (25 g) by eluting the unreacted fatty acids with 200 mL hexane-

diethyl ether (98:2 v/v) as the mobile phase and the EFA with 300 mL of hexane-diethyl ether 

(90:10 v/v). Confirmation of the identity and purity of the synthesized compound was done by 

use of GC-MS. 
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2.2.5 Base-catalyzed- transmethylation with sodium methoxide at room temperature 

Transmethylation followed Berdeaux et al. method (Berdeaux et al., 1999a) with modifications: 

Briefly 500 mg oil sample was accurately weighed into 25 mL glass centrifuge tube and a 

volume of 5.0 mL of TBME was added. Then, 2.5 mL volume of 0.2 M sodium methoxide 

solution in methanol was added and vortexed for 1 min, and allowed to stand at room 

temperature for 2 min. For neutralization purposes and prevent saponification, a 0.17 mL volume 

of 0.5 M sulphuric acid was added and the mixture was vortexed for a few seconds. Finally, 5.0 

mL of water was added, vortexed for 30 s and centrifuged at 3600 ×g for 1 min. The organic 

layer was collected over a layer of sodium sulphate and the extraction was repeated two times 

with 5.0 mL of TBME. The organic layer was evaporated on a rotavap and finally dried under 

nitrogen. The resultant FAME was dissolved into 5.0 mL of n-hexane–diethyl ether (98:2, v/v) 

and accurately 2.0 mL was loaded onto the silica column. 

2.2.6 SPE column preparation and packing 

Silica gel was dried in a muffle furnace at 450°C for 12 hr and later cooled in a desiccator. 

Finally, the moisture content was adjusted to 10% and equilibrated on a shaker for 1 hr before 

use. An empty SPE cartridge column (6 mL, 6.5 x 1.3 cm) was filled with 2.0 mL of the elution 

solvent; n-hexane–diethyl ether (98:2, v/v). Silica gel slurry was prepared by mixing 1.0 g in 3.0 

mL of the elution solvent and poured into the column; care was taken to avoid trapping of air by 

tapping the column slightly to ensure uniform packing and finally a small amount of sand was 

added to protect the column. 

2.2.7 Optimisation of the column chromatography-partitioning 

An aliquot of 2.0 mL FAMEs was loaded onto the prepared silica column and the non-polar 

fraction which comprises of the non-altered FAMEs was eluted with 15.0 mL of n-hexane–

diethyl ether (98:2, v/v). The remaining polar compounds in the silica were eluted in two steps: 

polar fraction 1 comprising mainly of epoxy compounds was eluted with 15.0 mL of n-hexane-

diethyl ether (90:10, v/v) and 10 µg of methyl nonadecanoate (C19:0) prepared in iso-octane, 

was added as internal standard. The second fraction, polar fraction 2 mainly comprising of the 

hydroxy fatty acids was eluted with 25 mL of hexane-diethyl ether (70:30, v/v). Separation of 

the fractions was confirmed by thin-layer chromatography (TLC) as per Marmesat (Marmesat et 
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al., 2008), using a plate of silica gel 60 (5 cm×10 cm plates, 0.25 mm thickness). The plate was 

deliberately overloaded, developed with hexane–diethyl ether–acetic acid (80:20:1, v/v/v) and 

visualized with iodine vapour. Results from TLC showed that the non-polar, the polar fraction 1 

and the polar fraction 2 were clearly separated. 

2.2.8 SPE recoveries and silylation of the FAMEs 

Recoveries of the analytes were determined on a model system consisting of a mixture of methyl 

trans-10-heptadecanoate, methyl cis-9,10-epoxystearate, methyl 12-oxostearate and methyl 12-

hydroxystearate in iso-octane at the same concentration level of 100 µg mL-1. The mixture (1.0 

mL) was separated on the silica columns in triplicate and the recoveries were calculated. The 

quantification was based on methyl nonadecanoate as an internal standard. The recovery was 

calculated as the ratio of the concentration of analyte remaining after the separation divided by 

the analyte’s initial concentration in the mixture before partitioning (Harvey, 2000). The 

fractions were silylated using 10% trimethylchlorosilane (TMCS) in N, O-bis (trimethylsilyl) 

trifluoroacetamide (BSTFA). The FAMEs to be silylated were dried under nitrogen using a 

nitrogen generator (Domnick Hunter, Parker, Cleveland, USA) and the silylating reagent was 

added in excess (100 µL). The reaction could proceed at room temperature for 20 min, the 

reagent was evaporated under nitrogen and then the analytes were dissolved in iso-octane prior 

to GC injection.  

2.2.9  Analytical methods 

2.2.9.1 Gas chromatography-FID conditions 

The FAMEs were analyzed by GC-FID using an Agilent 6890N series gas chromatograph 

(Agilent, USA). The samples were dissolved in iso-octane, and 0.1 µL was injected directly into 

the column using a cold on column injector (COC); separation was performed in a CP-Sil 88™ 

for FAME (60 m x 0.25 mm I.D) capillary column coated with a 0.2 µm film. Deactivated fused 

silica pre-column 3 m x 0.25 mm i.d. (Agilent, Belgium) was fitted to protect the column. The 

oven temperature program was set as follows; 50°C hold for 4 min, then ramp to 225°C at 12°C 

min-1, and hold for 25 min. The flame ionization detector temperature was set at 300°C. The 

detector flow rates for hydrogen, air and helium (makeup) was 40, 400 and 20 mL min-1 

respectively. The column flow rate of helium as a carrier gas was 1 mL min-1. Identification of 

individual FAMEs was carried out by comparison of retention times with those of authentic 
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standards (GLC 68D, Nu-Chek Prep, Inc, and USA). The epoxy FAMEs were confirmed by use 

of GC-MS and for quantification the response factor based on epoxystearate was used.  

2.2.9.2 Gas chromatography-mass spectrometer conditions 

A GC-MS was used for the qualitative identification of the polar FAMEs. The FAMEs were 

injected in an Agilent 7890A GC equipped with a 5975C Mass Spectrometer (Agilent 

Technologies, Palo Alto, CA). Chromatographic conditions and column were the same as those 

applied on GC-FID. The injection volume was 1 µL and the PTV injector was kept at 53°C for 

0.2 min. then ramped to 200°C at a rate of 700°C min-1. The MSD conditions were: capillary 

direct interface temperature, 250 oC; ionization energy, 70 eV; operating in a scan mode between 

m/z 30 and m/z 600; scan rate 3.64 cycles sec-1. 

2.2.9.3 Fatty acid composition and peroxide value (PV) analysis 

Fatty acid composition was determined after preparation of FAMEs according to American Oil 

Chemists’ Society (AOCS) Official Method (Ce 1b-89) (AOCS, 1990). The peroxide value was 

determined according to AOCS official method (Cd 8b-90) (AOCS, 2011). 

2.2.10 Statistical analyses 

Analytical determinations were carried out in duplicate unless otherwise indicated. Evaluation of 

the standard deviation from duplicate results for reliability testing was performed according to 

Synek (Synek, 2008).  

2.3 RESULTS AND DISCUSSION 

2.3.1 Optimisation of the SPE separation and spectral peak identification 

FAMEs obtained after transesterification of the thermally oxidised sunflower oil were separated 

into polar and non-polar FAMEs using the extensively applied two steps SPE method (Berdeaux 

et al., 2009; Kalogeropoulos et al., 2007; Marmesat et al., 2008; Velasco et al., 2002; Velasco et 

al., 2004). The gas chromatograms of these fractions analysed on a CP-Sil 88™ GC column are 

shown in Figure 2.1. As the hydroxy compounds, do not elute easily from this column, resulting 

in the formation of broad peaks, the polar fraction was analysed only after silylation. 

Identification of the peaks was based on the results obtained from mass spectrometry data and 
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are shown in Table 2.1. Spectral data interpretation in this table was done by consulting study 

reports (Berdeaux et al., 2012; Christie, 2012; Esselman & Clagett, 1969; Kleiman & Spencer, 

1973; Neff, Frankel, Scholfield, & Weisleder, 1978), reference to the NIST library and 

evaluating the fragmentation pattern of these compounds. Normally it is difficult to identify cis 

or trans isomers by mass spectrometry, but the CP-Sil 88™ GC column used has a known 

elution order of trans isomers first. Correct elution order and peak identification corresponded 

well with the previous studies (Kalogeropoulos et al., 2007; Marmesat et al., 2008; Velasco et 

al., 2002) except for Velasco et al, (2004) who had a different elution order on an Innowax 

fused-silica capillary column. 

In Table 2.1, two peaks of saturated EFA isomers from oleic acid, namely methyl trans-9,10-

epoxystearate (trans-9,10-ES, peak 1) and methyl cis-9,10-epoxystearate (cis-9,10-ES, peak 2) 

were confirmed. Four unsaturated EFAs peaks (3-6) from linoleic acid namely methyl trans-

12,13-epoxyoleate (trans-12,13-EO, peak 3), methyl cis-12,13-epoxyoleate (cis-12,13-EO, peak 

5), methyl trans-9,10-epoxyoleate (trans-9,10-EO, peak 4) and methyl cis-9,10-epoxyoleate (cis-

9,10-EO, peak 6) were confirmed as previously reported (Berdeaux et al., 1999b; Marmesat et 

al., 2008; Velasco et al., 2002).  

In Figure 2.1, a peak corresponding to cis-9,10-ES is visibly distorted, while there are 

interfering compounds eluting together with trans-9,10-ES. These interfering compounds were 

not observed when the polar fraction was injected without silylation, inferring that they were 

because of hydroxy compounds. The interference due to silylated hydroxy compounds was 

further confirmed in GC-MS by studying the characteristics ions (m/z 73 and 75) due to 

silylation. It is not recommended to inject polar FAMEs containing such hydroxy compounds 

without silylation in this column, as these hydroxy compounds either stay on the column and 

shorten the column life or emerge very late as broad tailing peaks which would increase the 

analysis time. Furthermore, silylating agents can also quickly foul and eventually plug the GC 

injector inserts. To prolong column life, Christie (Christie, 2003) recommends a cleanup step 

after silylation by liquid-liquid extraction with hexane and water and then drying the organic 

phase over sodium sulphate. This extra step increases the analysis time and may also affect 

recoveries. In this way, such chromatographic interferences due to hydroxy compounds could 

present both qualitative and quantitative analytical problems for epoxy compounds and reduce 

the reliability of the results obtained. 
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To reduce the interferences, hydrogenation of the polar fatty acids to saturate them and reduce 

the number of peaks has been preferred by many researchers. Although it can partially solve the 

problem, quantification of the individual unsaturated polar fatty acids becomes impossible, as 

they would be converted into saturated ones. During this study, when the polar FAMEs from the 

thermoxidised methyl linoleate were hydrogenated, methyl trans-9,10-ES and methyl trans-

12,13-ES co-eluted as a single peak, while methyl cis-9,10-ES and methyl cis-12,13-ES were 

separated individually. In this way, hydrogenation was not a solution for a better analytical 

method of EFAs as we would lose information not only about unsaturation, but also on the 

positional isomer distribution. 

To remove the interferences due to hydroxy and oxo fatty acids, a three steps separation of 

FAMEs in a silica SPE column so as to collect the non-polar fatty acids, EFAs and hydroxy fatty 

acids in three different fractions was developed and has been described in the method. The 

developed method is based on the differences in polarity of the oxygenated fatty acids as 

Figure 2.1: Chromatograms of the non polar and silylated polar fraction of sunflower oil 

FAMEs after two steps SPE showing distorted peaks on GC-FID coupled with a CP Sil 88 

column. Peaks 1-18 see Table 2.1 
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described previously by different researchers (Berdeaux et al., 1999a; Berdeaux et al., 1999b; 

Marmesat et al., 2008; Neff, Frankel, & Weisleder, 1981; Velasco et al., 2002; Velasco et al., 

2004). The method was optimized using the mixture of thermally oxidised methyl oleate, methyl 

linoleate and methyl linolenate. Results of the GC-FID chromatograms obtained after a three 

steps SPE separation on silica gel column are shown in Figure 2.2. The GLC 68D standard has 

also been presented on the same Figure 2.2A to evaluate the interference that could be expected 

from the neutral fatty acids.  

Table 2.1: Mass spectral ions of some of the polar fatty acid methyl esters identified in the 

different fractions after SPE separation 

 Name of compound 

 

Peak  

 

Spectral ions; m/z (relative abundance%) 

Methyl 9,10-epoxyoctadecanoate 1 (trans) 

2 (cis) 

312 (ND), 281 (1), 155 (70), 199 (10), 294 (7), 171 (11), 109 (29), 97 

(41), 83 (44), 55 (100) 

Methyl 12,13-epoxy-octadec-9-enoate 3 (trans)  

5 (cis) 

310 (1), 279 (3), 164 (20), 207 (4), 167 (18), 149 (11), 136 (21), 123 

(23), 99 (45), 95 (57), 81 (89), 74 (25), 55 (100) 

Methyl 9,10-epoxy-octadec-12-enoate 4 (trans)  

6 (cis) 

310 (1), 279 (2), 200 (4), 155 (26), 185 (12), 168 (9), 135 (10), 109 (25), 

95 (44), 81 (70), 67 (70), 55 (100) 

Methyl 12,13-epoxy-9,15-

octadecadienoate 

7 (trans)  

9 (cis) 

308 (1), 277 (2), 189 (5), 171 (6), 151 (6), 239 (2),207 (11), 111 (38), 

161 (9),189 (5) ,211 (1), 147 (18),123 (17), 108 (10), 95 (47), 83 (61), 81 

(77), 67 (100) 

Methyl 15,16-epoxy-9,12-

octadecadienoate 

8 (trans) 

11 (cis) 

308 (1), 279 (1), 189 (2), 250 (1), 236 (10), 247 (1), 207 (2), 189 (2), 121 

(20), 107 (37), 79 (100), 67 (49) 

Methyl 9,10-epoxy-12,15-

octadecadienoate 

10 (trans) 

12 (cis) 

308 (ND), 185 (4), 155 (17),108 (52), 167 (1), 93 (42), 79 (100), 67 (23) 

Methyl 9-hydroxyoctadecanoate 

trimethylsilylether 

13 386 (ND), 371 (1), 355 (2), 339 (4), 229 (89), 259 (100),155 (16), 129 

(28), 103 (14), 75 (56), 73 (85) 

Methyl 10-hydroxyoctadecanoate 

trimethylsilylether 

14 386 (ND), 372 (1), 355 (3), 339 (7), 215 (100), 273 (95),129 (3), 103 

(13), 75 (33), 73 (55) 

Methyl 12-hydroxy-octadec-9-enoate 

trimethylsilylether 

15 384 (ND), 369 (1), 353 (1), 337 (2), 187 (100), 299 (3), 270 (11), 129 (4), 

103 (15), 97 (7), 81 (6), 75 (14), 73 (52) 

Methyl 10-hydroxy-octadec-12-enoate 

trimethylsilylether 

16 384 (ND), 369 (1), 353 (1), 337 (2), 213 (5), 273 (100), 185 (23), 173 (9), 

169 (17), 129 (18), 103 (8), 97 (5), 81 (25), 75 (28), 73 (82) 

Methyl 9-hydroxy-octadec-12-enoate 

trimethylsilylether 

17 384 (ND), 369 (3), 353 (1), 337 (5), 227 (45), 259 (42), 294 (19), 155 

(27), 130 (32), 103 (11), 97 (12), 81 (56), 75 (57), 73 (100) 

Methyl 13-hydroxy-octadec-9-enoate 

trimethylsilylether 

18 384 (ND), 369 (2), 353 (1), 337 (6), 173 (75), 313 (17), 130 (28), 103 

(22), 97 (10),81 (45), 75 (61), 73 (100) 

 

ND, not detected.  

Italics: the common fragment M; M-15, M-31, M-43, M-47 for all silylated methyl esters; M-31 for EFAs.  

Bold: The characteristic or identifier ions and the other most abundant fragments are presented in normal font. 

 

Six mono epoxy FAMEs (peaks 1-6) from methyl oleate and methyl linoleate were observed in 

polar fraction 1 as shown in Figure 2.2B. The identification of these peaks using GC-MS has 

already been discussed. Additionally, six mono epoxy FAMEs (peak 7-12, Table 2.1) from 
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methyl linolenate were also observed in the same fraction, out of which coelution of peak 9 and 

10 was confirmed by GC-MS. 

 

These epoxy FAMEs eluted according to their polarity with the less polar one first (Cui et al., 

2008b) in the order 12,13- epoxide, 15,16-epoxide and 9,10-epoxide. It is already reported that it 

is not easy to explain the fragmentation pattern of the methyl epoxy octadienoates on positive 

EI-mode (Kleiman & Spencer, 1973; Orellana-Coca et al., 2005), however, some characteristic 

ions were present to confirm the identity of the different EFAs. Methyl trans-12,13-epoxy-9,15-

octadecadienoate (peak 7) and methyl cis-12,13-epoxy-9,15-octadecadienoate (peak 9) were 

confirmed by use of the molecular ion (m/z = 308) and the characteristic ions with m/z values 

207 after loss of mass m/z =69 and methanol (m/z =32) on one side, and 111 which forms after 

loss of mass m/z =197 on the other side of the epoxy group. Methyl trans-15,16-epoxy-9,12-

octadecadienoate (peak 8) and methyl cis-15,16-epoxy-9,12-octadecadienoate (peak 11) were 

confirmed by use of the molecular ion (m/z = 308) and the characteristic ions with m/z values 

247 after loss of methanol and 236 which form after the cleavage on both sides of the epoxy 

group. Methyl trans-9,10-epoxy-12,15-octadecadienoate (peak 10) and methyl cis-9,10-epoxy-

12,15-octadecadienoate (peak 12) were confirmed by use of the molecular ion (m/z = 308) and 

the characteristic ions with m/z values 108 and 155 which form after the cleavage on both sides 

of the epoxy group. Also ion m/z = 185 due to cleavage inside the epoxy ring was characteristic 

to these isomers (Orellana-Coca et al., 2005). When the polar fraction 1 was injected in GC-FID 

after silylation, the interfering hydroxy FAMEs were not detected in the chromatogram, 

confirming their removal from this fraction. The polar fraction 2 was injected in GC-FID after 

silylation to reveal the hydroxy FAMEs and has been shown in Figure 2.2C. In Table 2.1, two 

hydroxy trimethylsilyl ether derivatives which were partially separated on GC were identified as 

monohydroxyoctadecanoates (peak 13&14). Two isomers, 9-OH (peak 13) and 10-OH (peak 14) 

were confirmed by the base peak at m/z = 259. Four peaks, (15-18) eluting very closely were 

found to be the positional isomers of hydroxyoctadecenoates. These were confirmed to be 12-

hydroxyoactadecenoate (peak 15), 10-hydroxyoctadecenoate (peak 16), 9-hydroxyoctadecenoate 

(peak 17) and 13-hydroxyoctadecenoate (peak 18) as previously reported (Neff et al., 1978).  
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 Figure 2.2: Chromatograms of a GLC 68D standard and a mixture of C18:1, C18:2 and C18:3 thermoxidised FAMEs 

after three steps SPE showing well resolved peaks on GC-FID coupled with a CP Sil 88 column. (A) GLC 68D standard, 

(B) polar fraction 1 and (C) the silylated polar fraction 2. For peak identity, see Table 2.1 
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The results displayed in Figure 2.2 demonstrate that the interferences observed after the two 

steps SPE separation (Figure 2.1) in the epoxy region can be removed by application of the 

proposed separation method. Use of three steps separation on silica column separated the 

hydroxy and other polar FAMEs, which led to obtaining high resolution chromatograms with 

well separated peaks of epoxy compounds. The interferences caused by some of the unmodified 

FAMEs such as C22:0, C24:0 and C24:1 as reported by different authors (Berdeaux, Velasco, 

Márquez-Ruiz, & Dobarganes, 2002; Kalogeropoulos et al., 2007; Velasco et al., 2002) were not 

observed because these unmodified FAMEs eluted earlier than the epoxy FAMEs. The only 

possible interference would come from methyl ester of docosahexaenoic acid (DHA) 22:6 a 

common fatty acid on fish oil which was not present in vegetable oils used in this study. Another 

advantage of the three steps SPE separation is that minor quantities of the unmodified FAMEs 

(C18:0, C18:1 and C18:2; Figure 2.2B) remaining in the silica column after elution of non-polar 

FAME fraction, would be completely removed during elution of polar fraction 1. Those FAMEs 

could otherwise interfere with quantification of hydroxy FAMEs if all the polar compounds 

would have been collected together in one fraction as reported previously in a two steps SPE 

separation.  

The use of a three steps SPE separation and a polar FAME column CP-Sil 88™ enabled 

individual separation of each of the six EFA isomers obtained from C18:1 and C18:2 fatty acids 

that are common in most oils. Such well resolved peaks can be used in studies to determine 

isomeric distribution of EFAs in oxidised fats. It was found that at temperatures >180°C (data 

not shown), the trans isomers were dominating and in methyl oleate their percentage was 65%. 

The two trans isomers in methyl linoleate were both present at 30% each. Methyl linolenate 

although had two peaks co-eluting, their percentages were: 21% for trans-12,13-epoxide and 

22% for trans-15,16-epoxide. The two peaks that co-eluted namely trans-9,10-epoxide and cis-

12,13-epoxide were present at 3%. The two cis peaks namely cis-15,16-epoxide and cis-9,10-

epoxide were present at 13% each. 

2.3.2 Calibration curves, linearity, LOD, LOQ and recoveries 

As commercial epoxy standards are not readily available, the analyte used in the recovery study 

was synthesized. The response factor used to quantify all the isomers was based on C19:0 as an 

internal standard and the synthesized cis-9,10-epoxystearate because similarity of the analytical 

response of saturated and unsaturated EFAs on GC-FID has been reported (Velasco et al., 2002). 
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The working range was 0, 20, 40, 60, 80 and 100 µg mL-1 and the internal standard was kept at 

50 µg mL-1 in all cases. The response factor was calculated by linear regression of area ratio of 

the analyte to the internal standard (y axis) versus the concentration ratio of the analyte to the 

internal standard in iso-octane. The linearity obtained was satisfactory at this range with R2 = 

0.9992. The response factor obtained was 1.04 and this is what was used in all the calculations. 

The LODs and LOQs were determined by a method based on two variable regression of the 

calibration curve, LOD = 3 (SE / Slope) and LOQ = 2 x LOD; where SE is the standard error of 

the intercept. The LOD and LOQ were found to be 1.45 and 2.9 µg g-1 of oil respectively. 

To assess the efficiency of the separation step, and to ascertain that there were no losses of the 

analytes of interest during separation, the developed method was evaluated for recoveries as this 

is critical in quantification. Good recoveries for all the analytes were obtained and with each 

compound being recovered in the fraction as expected (not shown). The percentage recoveries 

were in the range of 98% and above in all the three analytes (epoxy, oxo and hydroxy FAMEs) 

showing that the SPE conditions used were optimal. Silylation was done to confirm that there 

were no hydroxy compounds remaining in the epoxy fraction and the chromatograms obtained 

did not show any new peaks (data not shown). 

2.3.3 Application of the developed method on fresh oil samples 

To evaluate the developed method, 37 different fresh oil samples bought from the Belgian 

market were analysed EFA content. The results of the analyses are summarized in Table 2.2, 

where also the unsaturated fatty acids relevant in the production of EFAs are shown. To measure 

the extent of oxidation in the samples, the peroxide value (PV) was determined. Results showed 

that all the oils analysed were fresh as indicated by the very low peroxide values ranging from 0 

to 12.55 meq O2 kg-1. However, it should be noted that some oils had a low percentage of fatty 

acids < 80% which is normally attributed to a high content of unsaponifiable matter or due to 

being oxidized. The latter is because during oxidation fatty acids undergo polymerisation and 

oxygenation reactions resulting in compounds which are not eluting from the column despite the 

use cool on-column injector. Repeatability was checked for the duplicate analysis and the CV 

was found to be 9.9% for EFAs in the range 0 -10, 6.9% for 11- 49, 4.8% for 50 - 249 and 2.8% 

for oils with EFA content of > 250 µg g-1 of oil.  
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Table 2.2: Epoxy fatty acids (µg g-1 of oil), PV (meq O2 kg-1 of oil) and fatty acid 

composition (g 100 g-1 of oil) in fresh oils obtained from Belgian markets 

Type of oil PVa 

Epoxy fatty acid composition 

(µg g-1 of oil) a 

Fatty acid composition 

(g 100 g-1 of oil) 

trans- 

9,10-ES 

cis- 

9,10-

ES 

trans- 

12,13-EO 

trans- 

9,10-

EO 

cis-  

12,13-

EO  

cis – 

9,10-EO C18:1 C18:2 C18:3 Others 

Arachid 1.5 22.8 685.0 10.3 6.9 65.7 350.1 43.7 7.5 0.0 10.4 

Arachid 2.4 13.1 172.1 7.2 4.6 32.0 125.9 44.9 16.0 0.2 14.0 

Colza 4.4 15.1 25.7 9.5 0.8 7.3 6.5 43.9 14.8 7.7 6.6 

Colza 2.5 8.7 19.5 6.5 0.4 4.5 6.9 39.1 13.2 6.4 5.5 

Colza 2.3 21.9 64.7 0.9 0.9 24.8 67.2 45.6 14.6 7.2 6.0 

Colza 4.0 7.7 19.0 2.6 2.1 7.5 7.7 54.2 16.9 8.9 7.7 

Colza 3.6 6.7 12.2 6.1 0.4 3.5 2.5 59.1 19.1 9.4 8.8 

Corn 1.8 12.1 59.8 19.3 9.1 48.6 79.7 28.1 46.8 0.9 12.4 

Corn 0.9 7.4 75.6 13.1 3.8 59.1 107.7 28.9 54.0 0.9 13.0 

Corn 0.0 9.1 61.0 14.0 3.9 46.8 92.3 24.5 46.1 0.8 11.2 

Corn 3.1 9.4 118.1 15.8 16.6 98.1 161.9 18.7 32.5 0.6 8.3 

Corn 1.8 12.9 92.0 18.6 10.3 67.9 123.1 29.7 49.9 1.2 13.2 

Frying 3.7 9.2 179.4 7.5 7.2 44.5 570.1 36.0 41.0 0.9 15.4 

Frying 3.3 7.4 78.2 6.7 5.3 24.1 173.8 37.9 38.9 2.5 14.4 

Frying 5.3 8.9 60.4 6.6 3.4 23.6 161.4 33.7 48.0 2.7 11.8 

Frying 2.2 14.8 315.8 2.2 7.8 66.4 485.8 33.0 34.1 1.4 10.7 

Frying 3.7 9.6 177.3 4.0 7.9 54.7 576.1 24.5 38.4 0.8 11.9 

Frying 5.2 6.9 34.1 1.7 1.9 9.5 52.6 50.6 22.0 3.7 12.8 

Frying 5.2 6.5 125.3 1.6 3.8 31.2 391.1 27.3 43.7 0.1 8.5 

Frying 3.3 11.2 60.7 8.8 2.8 24.0 138.6 42.7 37.6 3.8 9.8 

Mixture 4.5 13.7 95.3 9.3 2.9 24.5 109.6 43.5 23.3 3.8 7.8 

Mixture 2.6 9.8 56.5 5.1 2.0 16.0 109.3 42.7 19.9 3.6 6.7 

V.Olive 5.2 9.5 218.3 5.3 0.0 7.6 10.7 72.8 4.3 0.6 15.2 

V.Olive 6.9 9.9 221.5 4.5 0.0 8.6 16.7 75.8 4.5 0.7 15.5 

V.Olive 8.8 9.0 165.3 7.5 0.8 13.5 20.3 51.4 7.4 0.5 13.4 

V.Olive 6.0 6.8 218.3 0.0 0.3 9.3 12.0 55.9 3.4 0.5 12.1 

R.Olive 12.4 6.8 214.6 0.0 0.4 13.1 18.2 52.7 5.5 0.5 10.8 

V.Olive 12.6 7.9 134.7 6.8 0.7 11.4 16.1 47.3 6.3 0.5 12.6 

V.Olive 5.8 4.3 76.5 4.1 0.0 3.3 6.4 75.1 8.1 0.8 12.5 

Plant oil 8.2 5.6 7.5 4.3 3.4 4.7 4.8 47.8 14.4 7.5 8.5 

Salad 1.7 8.0 38.5 5.2 5.3 16.7 99.8 33.6 33.5 3.5 8.0 

Soya 5.9 7.6 3.7 12.5 3.1 3.3 19.5 15.1 31.3 3.2 10.2 

Sunflower 2.1 10.9 231.0 8.4 8.5 54.7 747.5 34.4 50.7 0.1 10.7 

Sunflower 2.2 33.2 414.3 15.7 10.2 102.2 1434.0 23.8 60.8 0.1 10.7 

Sunflower 1.8 12.8 397.7 5.7 13.4 110.4 1393.3 20.3 51.7 0.1 9.1 

Sunflower 4.8 8.2 223.9 4.2 9.6 68.8 759.3 18.9 47.7 0.1 8.4 

Sunflower 3.1 8.8 239.3 9.5 10.1 69.6 826.0 22.6 58.8 0.1 10.6 

 

Abbreviations: ES, epoxystearate; EO, epoxyoleate; PV, peroxide value; Mixture, (Rape seed, high oleic sunflower, 

grape seed and corriander oil); Plant oil, (ω-3 enriched); Soypro, (liquid cooking margarine made from soy); 

V.Olive, virgin olive oil; R.Olive, refined olive oil; aValues are means of duplicate analyses. 
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Fatty acid composition results showed that most of the oils were rich in C18:1 and C18:2, 

except for colza and the plant oil which had significant amount of C18:3 fatty acids. 

Generally, all the oils had higher amounts of unsaturated EFAs corresponding to the original 

high amounts of unsaturated fatty acids and in all cases the cis isomers dominated. However, 

more trans fatty acids have been reported to form in thermally oxidized samples mainly due 

to the conversion of the cis isomers to more stable trans isomers at elevated temperatures that 

are normally used during deodorization of oils.  

On average, sunflower oil had the highest amount of EFAs while colza oil had the lowest, 

despite the comparable PV values. Results of higher amounts of unsaturated EFAs in fresh oil 

samples are in a similar range as those obtained by Fankhauser-Noti et al. (2006). It was 

interesting to note that sunflower oil had comparable amounts of epoxy stearate to olive oil 

despite the low levels of C18:1 fatty acids in sunflower oil. This seems to suggest that in oils 

rich in PUFAs, the formation of epoxy stearates from oleic acid is facilitated.  

To explain the observed trend of EFA content, correlations were performed and results are 

presented in Figure 2.3 and 2.4. There was a strong correlation (p < 0.001; r= 0.97; n = 37) 

between the fatty acids ratio (C18:1/C18:2) and the ratio of the amount of EFAs (ES/EO) 

formed. Also, a strong correlation (p < 0.001; r = 0.99; n = 28) exists between the total 

saturated and unsaturated EFAs of colza, corn, frying, mixture, plant, salad, soya and 

sunflower oils which had comparable amounts of C18:1 and C18:2. The strong correlation 

observed indicate that the rate of formation of the EFAs may be related to the amount of 

unsaturated fatty acids present in oil. However, there was no correlation (p> 0.05; r = -0.310; 

n = 37) between the EFAs formed with the peroxide value. The occurrence of high amounts 

of EFAs in fresh oil samples and the lack of correlation between PV and the EFAs may be 

because of multiple reasons: 1) PV is an unspecific method and it does not give any 

information about the concentration of the different peroxides present. 2) Probably be an 

indication that there is another more specific route of formation for EFAs apart from the 

breakdown of the hydroperoxides (Cahoon et al., 2002; Earle, 1970; Orellana-Coca et al., 

2005). However, the known processes of formation of EFAs are through direct oxygen 

addition either at the site of the double bond or nearby it (Neff & Byrdwell, 1998). Also 

during thermal oxidation at 80°C it is reported that 9,10-epoxyoctadecanote can be formed by 

the reaction between oleate and oleate hydroperoxide (Frankel, 2005; Neff et al., 1978).  
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Figure 2.3: Regression of the ratio of EFAS and the ratio of major 18C fatty acids of fresh oils, 

(n=37). (ES) epoxystearate; (EO), epoxyoleate. 

 

Figure 2.4: Regression of total saturated and unsaturated EFAs for oils (colza, corn, frying, 

mixture, plant, salad, soya and sunflower) with comparable amounts of C18:1 and C18:2 fatty 

acids (n =28) 

Epoxidation can as well occur when a peracid reacts with hydroperoxides but in all these 

routes of formation, epoxidation happens by replacing the point of unsaturation in the fatty 

acid (Christie, 2012; Dobarganes, 2009). The total amounts of EFAs present in fresh oils 

varied between 0.03 – 2 mg g-1 of oil. Based on these amounts detected in the fresh oils, the 

safety issue of EFAs is being underestimated. However, due to lack of toxicity and intake 

data, the risk posed by these fatty acids cannot be inferred. Although it has not been possible 

to determine from this study how these fatty acids form in the oils that have been analysed, 
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the study has been able to separate the co-eluting hydroxy fatty acids thus accurately quantify 

the EFAs in oils.  

2.4 CONCLUSIONS 

The innovation of this method is the three steps SPE separation technique of the different 

fatty acids on silica gel which has improved the analysis of the EFAs. This purification step 

separates the co-eluting hydroxy fatty acids and thus better peaks are obtained on a polar 

FAME CP Sil 88™ GC column. After this step, it is possible to determine polar fatty acids in 

less oxidised samples because of increased sensitivity. The need to hydrogenate the FAMEs 

to avoid the coelution of hydroxy and fatty acids has been overcome thus determine each 

compound in its original form. Strong correlations were illustrated, between the ratios of fatty 

acids to the ratio of EFA formed and between saturated and unsaturated EFAs. The new 

approach exhibits excellent chromatographic performance with well resolved peaks and low 

detection limits. 
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ABSTRACT 

A reliable and suitable method for the determination of epoxy fatty acids in various food 

matrices based on the Bligh and Dyer lipid extraction procedure was developed and validated. 

The method involves the use of a methylated EFA as internal standard (IS), extraction of the 

analytes from the matrices followed by room temperature methylation, a three-step solid phase 

extraction (SPE) separation of the fatty acid methyl esters (FAMEs) and detection with gas 

chromatography flame ionisation detection (GC-FID). The method was validated in four 

different food matrices chosen as model systems namely, vegetable oils, unprocessed pork, fried 

potato crisps and infant formula. The extraction technique allows the method to be applied for 

routine analysis of many samples. Intra-day repeatability ranged from 1 to 19% and inter-day 

reproducibility ranged from 2 to 9%. The limit of quantification (LOQ) ranged from 3.32 to 

20.47 µg g-1of sample with recoveries ranging from 94 to 115%. The results verify the accuracy 

and reproducibility of the analytical technique and its ability to provide reliable quantification of 

EFAs. Finally, levels of EFAs in several food products on the Belgian market were screened and 

presented. 

Keywords: Lipid oxidation, epoxy fatty acids, fatty acid methyl esters, transesterification, Bligh 

and Dyer  
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3.1 INTRODUCTION 

In a bid to provide convenient foods and to prolong their shelf life, food processing and 

packaging have been used more frequently. However, during food processing and storage, 

exposure to high temperatures, light, metal ions and oxygen makes foods susceptible to lipid 

oxidation and formation of its associated products (Cardenia, Waraho, Rodriguez-Estrada, 

McClements, & Decker, 2011; Choe & Min, 2006). Usually precautions such as active 

packaging, modified atmosphere packaging, vacuum packaging and many other techniques have 

been taken to prevent lipid oxidation (Tian, Decker, & Goddard, 2013). When lipid oxidation 

occurs in a food, it impacts on nutritional and safety of a food through, flavour deterioration and 

sometimes production of toxic compounds (Frankel, 2005).  

To improve the analytics of EFAs in oils, a sensitive and accurate method used two internal 

standards and this required two methylation steps (Velasco et al., 2002; Velasco et al., 2004). 

Fankhauser-Noti et al., (2006) used a direct methylation method developed by Suter et al., 

(1997) to analyse EFAs without SPE column separation. This direct transesterification method in 

food matrices has a drawback that sometimes it involves use of pre-treatment steps which differ 

per food matrix and this limits its universal applicability to all food matrices (Suter et al., 1997).  

To analyse EFAs from food samples, a method which can reliably extract oil from the food 

matrix is required. A good method for extraction of lipids from various food matrices should be 

able to overcome the interaction between the lipid and tissue matrix (Christie, 2003). In this 

study a universal method for extraction of EFAs from different fat containing food matrices 

based on a modified Bligh and Dyer method was validated and implemented. This method uses a 

synthesized epoxy FAME IS at the beginning of the analysis which reduces analytical variation 

within and between samples and has proved to be a robust and successful approach.  

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals and reagents 

Methyl cis-10-heptadecenoate (C17:1), and a mixed FAME GLC 68D standard were obtained 

from Nu-Chek-Prep. Inc. USA. Dichloromethane (99% purity) was bought from Chem-Lab NV 

(Zedelgem, Belgium) and methanol was obtained from Fischer Scientific (Tournai, Belgium). 

Other reagents are described in Chapter 2 section 2.2.1. 
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3.2.2 Standards 

3.2.2.1 Synthesis of methyl cis-10,11-epoxyheptadecanoate (IS) and cis-9,10-epoxystearate  

Both epoxy FAMEs of the IS and the cis-9,10-epoxystearate (analyte) were synthesized based on 

a stereospecific method described by Gunstone and Jacobsberg (1972). Briefly, the 

corresponding FAMEs of the IS and the analyte were reacted with 3-chloroperoxybenzoic acid 

in chloroform at room temperature for 4 h with periodic agitation. The formed epoxy esters were 

purified on dry activated silica gel column (25 g) by eluting the unreacted fatty acids with 200 

mL hexane-diethyl ether (98:2 v/v) as the mobile phase and the epoxy FAMEs were collected 

with 300 mL of hexane-diethyl ether (90:10 v/v). Confirmation of the identity and purity of the 

synthesized compounds was done by use of Gas chromatography–mass spectrometry (GC-MS). 

3.2.2.2    Standard preparations 

The synthesized IS and analyte at a concentration of 20 mg mL-1 each was prepared in isooctane. 

Stock solutions at a concentration of 10 mg mL-1 each were also prepared in isooctane, and all 

stored at -20°C. From the individual stock standard solutions, working solutions were prepared 

by making dilutions in isooctane to obtain a calibration range of 40, 80, 120, 160, 200 and 200, 

400, 600, 800, 1000 µg mL-1 for the lower and upper range respectively. The upper range was 

diluted ten times before injection on GC-FID. All necessary precautions were taken to avoid 

photo-degradation of the light sensitive standards, such as wrapping the standard solutions and 

the extracts with aluminium foil and by storing them in the dark. 

3.2.3 Samples 

Validation was based on the following samples namely, coconut oil, crisps, milk powder (infant 

formula) and pork samples which were purchased from a supermarket in Belgium. Normally the 

samples would be brought to the laboratory on the day of analysis and analysed immediately. 

Several different food samples here referred to as market samples were screened for EFAs 

namely, mayonnaise, crisps, biscuits, peanuts, minced beef, cooked ham, butter-margarine and a 

special biscuit known as speculoos were bought from supermarkets in Belgium and analysed. 
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3.2.3.1  Sample preparation  

Validation samples: Ground and homogenized sample (except oil) of 500 ± 0.50 mg was 

weighed into a 250-mL glass centrifuge tube and spiked with epoxy analyte at different 

concentrations (0- 200 µg g-1 of sample). A fixed concentration (50 μg) of the IS was always 

added. Water was adjusted to have a final water content of 14.5 g as determined by the initial 

water content of the sample. Thereafter, 26 mL of methanol and 11 mL of dichloromethane were 

added and homogenised using an Ultra-Turrax blender (Janke & Kunkel, IKA-Werk, Staufeb, 

Germany) for 1 min at 14000 rpm. Another 15 mL of dichloromethane was added and then 

homogenised for 30 s and finally 15 mL of water (pH ≤ 2) was added and homogenised for 30 s. 

The tubes were centrifuged at 3600 x g for 10 min using a centrifuge (Rotina 380R Heltich 

Zentrifugen, Germany), the pH of the aqueous layer was checked to be less than two, if not, it 

was adjusted by using 5 M hydrochloric acid. The top aqueous layer was siphoned off and the 

organic layer was dried on sodium sulphate over a 150 mm filter paper. The solvents were 

removed using a rotary evaporator and finally dried on nitrogen.  

Market samples: When applying the extraction procedure to screening market samples, a 

weight (depending on the amount of lipid in the sample) that does not exceed 200 mg of oil was 

taken. The IS amount always added was 10 µg and the same extraction procedure above was 

followed. 

3.2.4 Transmethylation and SPE separation 

3.2.4.1 Transmethylation  

The base catalysed transmethylation procedure followed is described in chapter 2 section 2.2.5. 

3.2.4.2  SPE separation and column chromatography partitioning  

The SPE separation procedure is described in chapter 2 section 2.2.6. 

3.2.5 Instrumentation 

3.2.5.1  Gas chromatography-FID and GC-MS conditions 

The epoxy FAMEs were analyzed by GC-FID using an Agilent 6890N series gas 

Chromatograph (Agilent, USA) as described in chapter 2 section 2.2.9.1 and 2.2.9.2. 
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3.2.6 Method validation 

The analytical method here presented was optimised using four different food matrices covering 

a wide category of common foods as indicated under the samples section. Although foods were 

analysed to obtain blank samples, it was not possible to obtain one without a signal of the 

analyte, however the IS did not have any interfering signal. In-house validation procedures were 

followed as recommended by the Commission Decision 2002/657/EC (European Commission, 

2002; Ricard, Alicia, Jordi, & Rius, 2002). Performance criteria assessed included: linearity, 

matrix effect, limit of detection (LOD), limit of quantification (LOQ), repeatability (intra-day; 

RSDr) and reproducibility (inter-day; RSDR) and stability. Because there are no certified 

reference materials available for EFAs, trueness of the obtained results was assessed using 

spiked samples (Ricard et al., 2002). The concentration levels used to spike the different food 

matrices were decided on after considering the epoxy levels obtained in fresh oil samples 

(Mubiru et al., 2013).  

3.2.6.1  Intra-day repeatability, inter-day reproducibility and stability 

Precision of the method was assessed by repeatability and the intermediate precision called inter-

day reproducibility. The repeatability was assessed by spiking the epoxy standard solutions to 

the different food matrices at five different concentration levels with three replicates at each 

level (n=3) and analysing on the same day on GC-FID. Inter-day reproducibility was determined 

by repeating the experiment on two different days for all the matrices. Stability was evaluated by 

storing the extracts at -20°C and analysing them after four months of storage.  

3.2.6.2   Calibration curves, LOD, LOQ and recoveries 

Linearity and working ranges were evaluated by the correlation coefficient of standard 

calibration curve and by plotting the residuals for the curve. Because EFAs are occurring at a 

wide concentration range, two calibration curves with uniformly spaced ranges were used in the 

beginning, 0-200 and 200-1000 µg g-1 of sample. The calibration curve was obtained by directly 

injecting to the GC the mixture of IS and analyte. The calibration and standard addition curves 

were constructed by plotting area ratios of analyte to IS (y) versus the concentration ratios of the 

analyte to that of the IS (x). During standard addition, the same concentrations as those in the 

calibration curve were used and known amounts of the epoxy analyte were added to a fixed mass 
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of each matrix separately. Regression of the calibration curve using the general linear regression 

model was performed to obtain the calibration curve equation (R2, slope and intercept). LOD and 

LOQ were determined from the standard addition curves using the linest function of Microsoft 

Office Excel 2007 program. LOD was defined as the concentration equal to 3 (SE / Slope) and 

LOQ = 2 x LOD; where SE is the Standard error of the intercept (Ricard et al., 2002). Because 

certified reference materials are not available, it is acceptable that trueness of measurements is 

assessed through apparent recovery of additions of known amounts of the element to the 

unknown samples (European Commission, 2002). The same addition curves (spiked samples) 

used to calculate the LOD were further used to obtain the apparent recoveries of the method. 

Apparent recovery is defined as the quantity observed value/reference value, obtained using an 

analytical procedure that involves a calibration graph (Burns, Danzer, & Townshend, 2002). 

Quantification of the validation samples was based on external calibration curve and for real 

samples it was based on the response factor of epoxystearate.  

3.2.6.3   Matrix effect evaluation 

The matrix effect was assessed by comparing the slopes of the calibration curve with that of the 

standard addition curves (Papastergiadis, Mubiru, Van Langenhove, & Meulenaer, 2013). Where 

there was no matrix effect, the same slope was obtained. 

3.2.7 Statistical analyses 

Analytical determinations were conducted in triplicate and where duplicate analysis was 

performed, evaluation of precision was done according to Synek (2008). Comparison of the 

calibration and addition curve slopes was done by performing a one-way ANCOVA test carried 

out using GraphPad Prism 6 2012 program.  

3.3 RESULTS AND DISCUSSION 

3.3.1 Method development 

During method development and validation both the Folch method and Bligh and Dyer method 

were applied and the recovery results (not shown) for both methods were not different. Because 

Bligh and Dyer method has an advantage of using less solvent (Iverson, Lang, & Cooper, 2001), 
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it was chosen to reduce on the use of expensive and hazardous solvents (Cequier-Sánchez, 

Rodríguez, Ravelo, & Zárate, 2008).  

An important factor during method development was to optimise the solvent ratios of the liquid-

liquid extraction procedure. The possible extraction agents are dichloromethane and chloroform. 

Because dichloromethane is less hazardous it was preferred in the extraction. As a quality note, 

high quality solvents should be used and where such a quality is not achievable, the solvents 

should be distilled and use of glassware is highly recommended.  

Since the Bligh and Dyer method was initially developed using chloroform, it was required to 

optimise the use of dichloromethane. The ternary diagram of water + methanol + 

dichloromethane (Bligh & Dyer, 1959; Merzougui, Hasseine, Kabouche, & Korichi, 2011) was 

used to optimise both sample and the solvent ratios required during extraction. The water content 

of dry samples had to be adjusted as indicated below because this had a bearing on the phase 

separation which is the basis of this method. Addition of solvent mixtures in the following ratio 

and in the following order was optimal; water 29 mL (considering water in the sample), 

dichloromethane (22 mL) and methanol (52 mL). The system should be monophasic, there 

should not be phase separation if the solvent ratio is correct and if sufficient homogenization is 

done. Addition of 30 mL of dichloromethane to the mixture, followed by addition of 30 mL of 

acidic water (pH ≤ 2 acidified with 6 M hydrochloric acid) and homogenizing again with an 

Ultra-Turrax blender for 30 s allowed phase separation. Methanol is a poor solvent for 

triacylglycerols but is fully miscible with water in all proportions. It can thus serve to strip away 

the hydrating water and allow dichloromethane, to dissolve the polar fatty acids. The water in 

the system causes the dichloromethane to separate cleanly, with the methanol component 

retaining the water and suppressing emulsion formation (Christie, 2003).  

Because epoxy standards are not available from commercial sources (Mubiru et al., 2013), the IS 

and epoxy analyte used during this study were both synthesized by use of a solvent based 

epoxidation procedure described by Gunstone and Jacobsberg (1972). Although it is possible to 

synthesize epoxides using hydrogen peroxide based catalytic epoxidation, the ‘‘Tetrakis’’ 

phosphotungstate catalyst and by lipase-mediated reactions (Orellana-Coca et al., 2005; Poli, 

Clacens, Barrault, & Pouilloux, 2009), the internal standard used was prepared by using the 

method reported by Gunstone and Jacobsberg (1972). The method had a yield of >90% which is 

a sign of purity. The synthesized compounds were confirmed by mass spectral data after GC-MS 
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analysis. It is well known that during analysis of EFAs, the method of sample preparation must 

consider the fact that the highly reactive epoxide ring can be opened by heat or chemicals 

(Piazza, Nunez, & Foglia, 2003b). Thus, the methylation procedure adopted for formation of 

FAMEs during the study was the room temperature methylation. However, this has a 

disadvantage that a free fatty acid cannot be used as an IS during the analysis of EFAs. As 

observed by Suter et al. (1997), that methylation and saponification reactions both compete in 

the presence of water, care had to be taken that the reaction mixture was not kept for 

unnecessarily long for the formed methyl esters to be saponified. Use of acidified water also 

helped to stop the possibility of saponification. The FAMEs were extracted twice in MTBE to 

increase the efficiency of the extraction procedure. During this study, the use of a methylated IS 

was evaluated by calculating the area ratios of both the analyte and the methylated IS. It was 

found that there was no change in the ratios; furthermore, during validation, the analyte and the 

IS were both epoxy FAMEs which reduced variability during the analysis. However, it is 

important to note that care should be taken during the evaporation step not to lose the IS, so 

finally after the rotary evaporation step, extracts were always dried under a gentle stream of 

nitrogen. The use of an epoxy FAME IS has made this method more sensitive and accurate 

because analytical variations can be corrected by the IS added at the beginning of the extraction 

as recommended by the Commission Decision 2002/657/EC (European Commission, 2002). In 

analytical methods where the IS may not be added at the start of the analysis, control of 

analytical variations is not possible.  

3.3.2 Method validation 

3.3.2.1  Linearity, LOD, LOQ and recovery 

Because the EFAs occur over a wide range, in the beginning of method development, two 

calibration ranges were chosen, the low and the high range. Six concentration levels (0, 40, 80, 

120, 160, 200 µg g-1) plus the blank were used during method development and validation. In 

both ranges the linearity was evaluated by plotting the residuals and linear regression (R2) 

values. It must be emphasized that concentrations of the high range calibration curve, could not 

be injected directly onto the GC–FID as they would overload the column, so they were diluted 

ten times. In all the two ranges, there was no sign of detector saturation which would cause loss 

of linearity, so a good linear range was observed in both calibration curves. When the two 

concentration range data were pooled, and plotted into one calibration curve, still good linearity 
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with a regression coefficient of 0.9994 and a slope of 1.23 was obtained. The calibration curves 

showed a measure of goodness-of-fit of linear regression (R2) ranging from 0.9979-0.9999. 

Whereas the standard addition curves showed coefficients (R2) ranging from 0.9959-0.9973 in 

oil, 0.9885-0.9927 in crisps, 0.9990-0.9994 in milk powder and 0.9915-0.9995 in pork. The 

curves with R2 ≥ 0.995 are considered linear (Van Loco, Elskens, Croux, & Beernaert, 2002) and 

these results show how well the developed method can estimate EFAs in the different matrices. 

Mean percent recoveries based on spiked samples for the EFAs in the different matrices were in 

the range 94 to 115 (Table 3.1). The values are the mean of three replications of analysis 

performed on two different days. 

Table 3.1: Intra-day precision (RSDr), inter-day precision (RSDR) expressed as relative 

standard deviation (%) and apparent recovery obtained for oil, crisps, pork and milk 

powder at five concentration levels of cis-9,10-epoxystearate analyte 

 

 

Matrix 

Concentration 

(µg g-1) 

RSDr 

(%) 

RSDR 

(%) 

Apparent recovery 

(%) 

 Oil 40 3 9 100 

  80 4 4 100 

  120 6 5 101 

  160 8 5 101 

    200 2 3 101 

 Crisps 40 19 3 115 

  80 1 5 99 

  120 3 2 95 

  160 4 6 97 

    200 5 6 97 

 Pork 40 10 7 96 

  80 1 8 94 

  120 2 3 96 

  160 7 9 99 

    200 5 6 96 

 Milk powder 40 3 4 98 

  80 2 5 98 

  120 2 6 99 

  180 3 3 101 

    200 2 5 102 
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The LOD was determined according to the definition given by IUPAC and the regression of the 

calibration equation using the linest method was used. Accordingly, the LOD values (µg g-1 of 

sample) determined for the different matrices validated were 2.75 in oil, 10.23 in crisps, 1.66 in 

milk powder and 5.16 in pork. The lowest LOD was obtained in milk (Table 3.2). 

Table 3.2: Limit of detection (LOD) and Limit of quantification (LOQ) obtained for the 

different matrices in µg g-1 of sample 

 Oil Crisps Pork Milk powder 

LOD 2.8 10.2 5.2 1.7 

LOQ 5.5 20.5 10.3 3.3 

 

The matrix effect on the recovery of the analytes was evaluated by comparing the slopes of the 

calibration curves with those of the addition curves. The comparison was done by using a 

statistical tool in GraphPad Prism to obtain a p value. The results of the statistical evaluation of 

the slopes of the calibration and addition curves are shown in Table 3.3. Only crisps samples 

appear to have a statistically significant matrix effect (p=0.0002). The observed matrix effect in 

crisps could be attributed to the high signal of EFAs that is detected in the blank samples. 

Normally a good evaluation of matrix effect is obtained if a sample without the analyte of 

interest (blank) is obtained, but in all cases, it was not possible to get one. However, in other 

matrices for which the signal was low, it was possible to objectively evaluate whether it is the 

matrix interfering with the analysis or not.  

Table 3.3: Matrix effect evaluation by statistical comparison of the calibration curve with 

the standard addition curve 

                  Calibration curve Addition curve 

p value  Slope R2 Slope R2 

Oil 1.209 0.9999 1.222 0.9973 0.6019 

Crisps 1.180 0.9987 0.986 0.9885 0.0002* 

Pork 1.174 0.9998 1.185 0.9998 0.2615 

Milk powder 1.180 0.9987 1.200 0.9994 0.3498 

 

An asterisk indicates a statistical difference within rows between the two slopes (p < 0.05). 
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3.3.2.2   Intra-day precision (repeatability) and inter-day precision (reproducibility) and  

                stability 

Results for intra-day and inter-day precision measures are presented in Table 3.1. These results 

are presented as percent relative standard deviations in both cases as a measure of precision. The 

repeatability values presented are the highest that were obtained during the validation study. 

Although it was not possible to vary all factors that may affect precision as recommended in 

method validation studies (European Commission, 2002; Ricard et al., 2002), the relative 

standard deviations obtained, revealed that accurate estimation of precision was obtained. In the 

lower concentration ranges, higher variations of up to 19% were observed in crisps. The stability 

of the extracts was evaluated by reinjection of the same extracts after storage. Results after 

reinjection of the same extracts for all the three matrices used did not show any degradation after 

four months of storage. This was true with the calibration standards which when re-injected after 

four months, the slopes obtained did not differ significantly. This is a clear indication that EFA 

extracts can be stored at -20°C for some good time without any degradation.  

3.3.3 Application of the method on market samples 

After validation and optimization of the analytical method, it was applied on commercially 

available samples collected from Belgian supermarkets. The fatty acid composition was not 

analysed and their history was not known. For each sample, the analytical determination was 

performed in duplicate. The results of the analysis are summarised in Table 3.4. The food 

samples analysed were chosen to cover a wide range of samples of fat origin with differing 

physical and chemical composition. It was important to note that for samples which had a high 

dry matter content, their weight during analysis was reduced significantly as to avoid the solid 

matter covering the organic layer. Furthermore, depending on the fat content of the sample, the 

sample weight and the solvent ratio were increased to be able to recover enough amount of fat. 

The results obtained indicate that the EFAs are occurring in high amounts in most samples 

although beef samples had less. The coefficient of variation for duplicate analysis ranged from 

13.9 to 14.1%. It was generally observed that on fat basis, biscuits had the highest total epoxy 

content. There is no clear relationship between the sample type and the total EFAs determined. 

However, the levels of EFAs are expected to depend on the amount of unsaturated fatty acids 

present which are the precursors of EFAs (chapter 2, section 2.3.3), sensitivity to oxidation and 

the level of oxidation. 
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Table 3.4: Epoxy fatty acid levels analysed in different food samples from Belgium supermarkets 

 

Sample Name 

 

Epoxy fatty acid content (µg g-1 of sample) 

 

  

*Fat 

content 

(%) 

trans-           

9,10-ES 

cis- 

9,10-ES 

trans- 

12,13-EO 

trans- 

9,10-EO 

 

cis- 

12,13-EO 

cis- 

9,10-EO 

Total epoxy 

(µg g-1 of 

sample) 

Total epoxy 

(µg g-1 of fat) 

Biscuit 12 14.90 13.92 3.89 1.03 27.40 12.67 73.81 615.08 

Speculoos A 19 3.58 19.16 1.06 0.76 39.13 10.80 74.49 392.05 

Speculoos B 19 2.91 17.55 1.11 0.97 34.63 9.41 66.58 350.42 

Speculoos C 19 3.49 12.28 1.11 1.15 22.12 6.80 46.95 251.07 

Speculoos D 17 4.04 13.96 1.25 1.94 24.58 7.99 53.76 308.97 

Mayonnaise A 80 10.92 9.50 4.15 7.00 7.27 5.25 44.09 54.91 

Mayonnaise B 81 17.33 7.87 4.49 6.54 6.96 5.97 49.16 60.69 

Mayonnaise C 81 10.15 5.14 3.74 4.65 4.31 4.61 32.6 40.05 

Peanuts A 51 9.42 129.41 4.39 4.34 4.69 18.53 170.78 334.86 

Peanuts B NI 4.70 47.10 2.29 3.37 2.76 14.09 74.31 ND 

Butter-Margarine 82 53.66 16.79 18.30 0.00 9.38 17.21 115.34 140.66 

Cooked ham 3 0.75 0.66 0.47 0.00 0.48 0.88 3.24 115.71 

Minced beef 30 1.48 1.09 1.72 0.00 0.66 0.63 5.58 18.60 

Walnuts 65 4.27 6.42 3.68 1.84 25.60 7.07 48.88 75.20 

 

Abbreviations: ES, epoxystearate; EO, epoxyoleate; NI, not indicated; ND, not determined. 

 * Fat content as reported on the package label.
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3.4 CONCLUSIONS 

The method presented and validated is accurate and reproducible and can be applied in the 

determination of EFAs in a wide range of food samples of fat origin. The well resolved and 

clean chromatograms obtained on real sample matrices indicate the reliability of the method 

for confirmatory purposes. The method developed is robust and can be applied to such a wide 

coverage. High recoveries for the EFAs and the low LOD and LOQ levels indicate that the 

method is sensitive and can be used in risk assessment studies.  
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ABSTRACT 

Epoxy fatty acids (EFAs) are secondary oxidation products formed from unsaturated fatty acid 

hydroperoxides. Seventeen food categories were analyzed for C18 mono-EFAs of food 

products available on the Belgian market. A quantitative exposure assessment was performed 

based on deterministic and probabilistic approaches combining these concentration data with 

consumption data obtained from the Belgian National Food Consumption Survey of 2004. A 

preliminary evaluation of any potential risk related to the intake of the studied EFAs through 

the studied foods was performed by applying the Threshold of Toxicological Concern (TTC) 

concept. Three food categories out of seventeen foods, mayonnaise, butter-margarine and 

ready to eat meals were found to contribute most to the intake of EFAs. According to 

probabilistic determination, these foods had a P50 intake of 0.41, 0.33 and 0.30 mg kg-1 bw 

day-1 respectively. They had a P99.5 intake of 3.72, 2.79 and 38.61 mg kg-1 bw day-1 

respectively. The intake below the TTC value was from consumption of cooked meat, smoked 

salmon and raw cured ham, with a P50 intake of 0.0006, 0.0007 and 0.0011 mg kg-1 bw day-1 

respectively and the other foods were above the TTC value. Based on the TTC concept a risk 

to human health could be identified related to the consumption of cheese, snacks foods, plant 

oils, French fries, dry nuts, chips, cured minced raw meat, cookies, fresh and frozen salmon 

and bacon. 

Keywords: Lipid oxidation, epoxy fatty acids, fatty acid methyl esters, threshold of 

toxicological concern, risk assessment, exposure assessment 
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4.1 INTRODUCTION 

Long chain EFAs have gained a lot of interest mainly because they are more abundant in 

nature. They can be manufactured in large amounts by epoxidation of appropriate alkene 

esters for industrial purposes (Gunstone & Jacobsberg, 1972; Gunstone & Schuler, 1975). 

EFAs are potential toxic compounds to humans which is attributed to their high reactivity 

because of the presence of the oxirane ring in their structure. This under conducive conditions 

can react with proteins and DNA, consequently leading to structural damage and alteration of 

their functionality (Greene et al., 2000b; Gunstone et al., 2007). Specifically, the 9,10-

epoxyoctadec-12-enoic acid and its isomer 12,13-epoxyoctadec- 9-enoic acid are leukotoxic 

and isoleukotoxic respectively. The EFAs have been reported to have low absorptivity in the 

body a property which suggests that high levels may be detected in the colon. Although there 

has not been strong link of EFAs to health risks, some studies have suggested that they may 

cause cancers (Wilson et al., 2002). To date there is no available robust toxicological data of 

EFAs and there is a limited knowledge concerning the dietary exposure of humans to these 

compounds except for an experimental study on women (Wilson et al., 2002). In absence of 

this specific toxicological data, a risk assessment can be done based on the Threshold of 

Toxicological Concern (TTC) concept.  

Exposure assessment studies on secondary lipid oxidation products which are potentially toxic 

to humans are missing except a recent study done on malondialdehyde (MDA), 4-hydroxy-2-

hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) (Papastergiadis et al., 2014). During this 

study, it was reported that consumption of the specific foods did not pose a risk to most 

Belgian consumers based on the TTC concept. However, exposure to MDA through 

consumption of especially dry nuts was significant and 3.8% of the population consuming 

cured and minced raw meat products was found to be at a risk of HNE exposure 

(Papastergiadis et al., 2014). The objective of this study therefore was to determine EFAs in 

specific foods available on the Belgian market and then perform a quantitative exposure 

assessment of dietary intake of the EFAs for the Belgian population both consumers and total 

population using the food consumption data of the Belgian National Food Consumption 

Survey (BNFCS) of 2004. Finally, evaluation of the potential risk due to total EFAs 

consumption was performed by comparing the estimated intakes with the corresponding TTC 
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value of the EFAs (class III) and discussed against the earlier reported findings of other 

secondary lipid oxidation products (MDA, HHE and HNE) by Papastergiadis et al. (2014). 

4.2 MATERIALS AND METHODS 

4.2.1 Supplies and reagents 

The reagents used are described in chapter 3 section 3.2.1. 

4.2.2 Sampling plan for EFA determination in foods 

The choice of study foods (Table 4.1) was adapted from a recent study done by Papastergiadis 

et al (2014), this is a directed or risk-based sampling where specific foods were sampled per 

their potential risk to be contaminated with secondary oxidation products (Kroes et al., 2002). 

Fat content and the degree of unsaturation of the fatty acids were considered. Foods were 

divided into three groups including foods of plant origin, foods of animal origin and chilled 

cooked meals (containing multiple ingredients) respectively (Papastergiadis et al., 2014). Two 

other food groups, mayonnaise, butter-margarine were included based on their importance in 

the normal diet of most Belgian consumers. A total of 390 samples were purchased from 

supermarkets in the region of Ghent, Belgium, excluding French fries and fried snacks that 

were purchased from local fast food restaurants. Foods were purchased and always analyzed 

immediately upon delivery to the laboratory. For purposes of obtaining a representative 

sample, all the components of the foods which were homogenised using a waring stick blender 

prior to taking the required weights before analysis. 

4.2.3 Determination of EFAs in foods 

The samples were extracted using the validated method described in chapter 3 section 

3.2.3.1. Base catalysed transmethylation procedures and the SPE separation steps followed 

have previously been described in chapter 2 sections 2.2.5 and 2.2.6. The LODs of the 

method considered were determined previously in Table 3.2. 

4.2.4 Consumption data 

Food consumption data were obtained from the Belgian National Food Consumption Survey 

(BNFCS) of 2004 the aims and the methodology are described by De Vriese et al., (2005). 
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Dietary intake was collected from 3245 individuals of fifteen years old and above, residing in 

Belgium (Vandevijvere et al., 2009). The survey was based on two non-consecutive 24 h 

recalls combined with a self- administered food frequency questionnaire. Consumption 

information of the specific foods were extracted from the BNFCS database based on their 

description (food category and food name data) as included in Table 4.1. The usual food 

intake was determined from the total data set by correcting for intra person variability using 

the Multiple Source Method (MSM) program (German Institute of Human Nutrition Potsdam-

Rehbrücke (DIfE), 2013; Harttig, Haubrock, Knueppel, Boeing, & Consortium, 2011; 

Haubrock et al., 2011). All subjects were considered habitual consumers of the foods and food 

intake data were expressed in kg of food as kg-1 bw day-1 using the body weight (bw) data 

collected in the survey. The food consumption database used does not contain information 

about cooked chilled meals (bought as ready-to-eat products). As such a discrete function was 

used to model their intake which was obtained from a consumer survey data conducted by 

Daelman et al. (2013) where a total of 679 individuals of fifteen years and above were 

interviewed on their consumption behavior of ready-to-eat meals during the spring of 2011.  

Table 4.1: Description of the foods analysed 

Food group Food category Food description 

Foods of plant 

origin 

Chips Chips with different flavours salted and non-salted 

Cookies Biscuits, waffles, cakes, speculoos 

Dry nuts Roasted, peeled and non-salted peanuts, walnuts, 

hazelnuts, almond, pistachios, cashew 

French fries Fries with different sauces (mayonnaise, tartar, 

andalouse) 

Plant oils Refine (corn, sunflower, arachis, colza, soya, salad, 

frying, a mixture) and extra virgin oils 

Foods of animal 

origin 

Bacon Salted and smoked and non-smoked 

Butter-Margarine Salted and non-salted 

Cheese Gouda and cheddar 

Cooked meat Grilled or boiled Paris sausage, frankfurter 

Mayonnaise Normal, light and similar sauces 

Milk Full fat pasteurized and sterilized milk 

Raw Ham Salted and ripened  

Cured minced raw meat Dry sausage, salami  

Smoked salmon Filleted and stored at 4°C 

Fresh and frozen salmon Stored at -20°C 

Snacks foods Boulet, chicken finger, hamburger, fish sticks 

Cooked chilled 

food 

Ready to eat meals Lasagna, spaghetti, chicken fillets, fried rice, stewed 

beef, pasta, pork meat balls, burgers 

 

This survey was based on frequency of consumption where respondents had to answer the 

question 'how often do you eat a ready-to-eat meal?' and seven answers were possible: 5-7 
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times a week, 2-4 times a week, once a week, 3-5 times a month, once a month, once a year 

and never. These responses were first converted to a daily consumption by a conversion factor 

(i.e. 5-7 times a week corresponded to 1/day; once a week corresponded to 1/7 days; 3-5 times 

a month corresponded to 4/30 days, once a month corresponded to 1/30 and once per year 

corresponded to 1/365), followed by a multiplication of the average weight of all analyzed 

products. The outcome was divided with the average body weight of 60 kg (Kroes et al., 

2005). At this point it should be mentioned that the total weight of each packaging was 

considered as a whole single personal portion (Daelman et al., 2013; Papastergiadis et al., 

2014).  

For those data in Table 4.2, a risk discrete function has been attributed, with the first argument 

in the discrete function expressing the consumption of ready-to-eat meals is the set of possible 

values (relative respondents), and the second is the set of corresponding probabilities. By 

application of this function, the consumption dataset of kg ready-to-eat meals kg-1 bw day-1 

was obtained. To obtain information about the total intake of the population including 

consumers and non-consumers, the IF function was applied to the consumers distributions, 

because the percentage of consumers was known, random intake values could be returned that 

were used to infer for the population intake. 

4.2.5 Exposure assessment 

During EFA analysis no concentrations were below LODs (non detects), so no data censoring 

was considered during exposure assessment (Kroes et al., 2002; Picot & Roudot, 2012; 

WHO/FAO, 1985). For the exposure assessment, foods were divided into seventeen 

categories: plant oils, dry nuts, potato crisps, French fries, cookies, fried snacks, frozen and 

fresh salmon, smoked salmon, full fat milk, cheese, cured and cooked meat products, bacon, 

cured raw ham, cured minced raw meat products, mayonnaise, butter-margarine and ready to 

eat meals (Table 4.1).  

4.2.6 Deterministic exposure assessment 

Dietary exposure of the consumers and total Belgian population to the EFAs was initially 

performed using the deterministic approach, this refers to using a model with no uncertainty 

and variability consideration which may not give a full estimate of the intakes. Estimated 
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intakes were calculated by multiplication of a fixed mean of EFA contamination data with the 

mean, maximum or P99.5 percentile of the consumption data of each food category. This 

approach was deemed necessary to minimise the risk to the consumers (Vromman et al., 

2010). Deterministic analysis could not be applied to the cooked chilled meals because of the 

nature of the consumption data. 

4.2.7 Probabilistic exposure assessment 

Best fit distributions for both consumption and contamination data of each food category were 

determined. The best fit distributions were defined based on chi square statistics, probability-

probability plots (P-P) and the quantile-quantile plots (Q-Q). Distribution fitting was feasible 

when at least five positive data were available (Medeiros Vinci et al., 2012; Vose, 2008). 

Monte Carlo simulations were performed for each food category to develop the exposure 

model considering uncertainty and variability. The probability of existence of EFAs in the 

different foods, its level in those foods and the probability of human exposure were all the 

outputs of the mathematical model. The estimated daily intake (mean, standard deviation, 

maximum and percentiles) was expressed in mg kg-1 bw day-1 of EFA. Distribution fitting and 

Monte Carlo simulations were performed with the @Risk for Microsoft Excel software 

version 5.7.1 (Palisade Corporation, USA), with 50 000 iterations and three simulations. 

4.2.8 Threshold of Toxicological Concern 

Chemicals are classified into three classes according to Cramer decision tree and the TTC 

values for chemicals belonging to Cramer class I, II and III are 1800, 540, 90 μg person day-1 

respectively taking the normal body weight to be 60 kg (Cramer et al., 1978). The decision 

tree comprises a sequence of questions such that compounds with structures indicative of a 

high potential for toxicity are assigned to structural class III (Kroes et al., 2004). Classification 

of the compounds based on the Cramer decision tree was carried out with Toxtree (Version 

2.5.4) software available online by the German Institute of Human Nutrition, Potsdam-

Rehbrücke. EFAs were confirmed to be grouped under class III. 
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Table 4.2: Best fit distribution functions used, the minimum, mean and maximum concentration of EFAs (mg kg-1) and food intakes of of Belgian 

consumers (mg kg-1 bw day-1) 

EFA epoxy fatty acids methyl esters 

Food categories Variable Function Min Mean Max % Consumers 

Chips Food intake RiskExpon(0.0000429428;RiskShift(-0.0000000132662)) 0 0.00004 +∞ 10 

 EFA content RiskTriang(55.347;55.347;934.61) 55.35 348.43 +∞  

Cookies Food intake RiskExpon(0.0000392046;RiskShift(-0.0000000121414)) 0 0.00004 +∞ 12 

 EFA content RiskLoglogistic(53.82;85.797;3.7601) 53.82 150.48 +∞  

Dry nuts Food intake RiskExpon(0.0000301116;RiskShift(-0.0000000094246)) 0 0.00003 +∞ 5 

 EFA content RiskGamma(1.3566;393.79;RiskShift(152.76) 152.76 686.98 +∞  

French fries Food intake RiskExpon(0.00032186;RiskShift(-0.0000000993093)) 0 0.00032 +∞ 25 

 EFA content RiskExtvalue(98.855;50.892) −∞ 128.23 +∞  

Plant oils Food intake RiskExpon(0.00029172;RiskShift(-0.0000000900938)) 0 0.00029 +∞ 36 

 EFA content RiskExpon(380.31;RiskShift(19.814) 19.81 400.12 +∞  

Bacon Food intake RiskExpon(0.0000630029;RiskShift(-0.0000000195116)) 0 0.0001 +∞ 9 

 EFA content RiskTriang(7.2532;7.2532;210.85) 7.25 75.12 +∞  

Butter-Margarine Food intake RiskInvgauss(0.0012506;0.0038708;RiskShift(-0.00011301)) -0.0001 0.00114 +∞ 91 

 EFA content RiskInvgauss(331.75;577.04) 77.18 408.93 +∞  

Cheese Food intake RiskExpon(0.00045229;RiskShift(-0.000000139467)) 0 0.00045 +∞ 45 

 EFA content RiskExtvalue(248.63;105.24) −∞ 309.38 +∞  

Cooked meat Food intake RiskExpon(0.0000890779;RiskShift(-0.0000000275017)) 0 0.00010 +∞ 10 

 EFA content RiskExtvalue(9.0545;5.4844) −∞ 12.220 +∞  

Mayonnaise Food intake RiskGamma(2.4914;0.00063544;RiskShift(0.00031812)) 0.0003 0.00190 +∞ 44 

 EFA content RiskLognorm(159.21;240.26) 135.84 295.05 +∞  

Milk Food intake RiskExpon(0.0078497;RiskShift(-0.00000242049)) 0 0.00785 +∞ 64 

 EFA content RiskLogistic(36.963;11.249) −∞ 36.96 +∞  

Raw ham Food intake RiskExpon(0.0000362156;RiskShift(-0.0000000112192)) 0 0.00004 +∞ 11 

 EFA content RiskExpon(50.159;RiskShift(13.407) 13.41 63.57 +∞  

Cured minced raw meat Food intake RiskExpon(0.0000536806;RiskShift(-0.0000000166194)) 0 0.00005 +∞ 14 

 EFA content RiskLoglogistic(-23.764;211.55;3.7606) -23.7600 214.55 +∞  

Smoked salmon Food intake RiskExpon(0.0000188984;RiskShift(-0.00000000591313)) 0 0.00002 +∞ 4 

 EFA content RiskInvgauss(66.628;139.396;RiskShift(2.4924) 2.4900 69.12 +∞  

Fresh & frozen salmon Food intake RiskExpon(0.0000838218;RiskShift(-0.0000000263756)) 0 0.00008 +∞ 4 

 EFA content RiskExtvalue(54.337;47.07) −∞ 81.5100 +∞  

Snack foods Food intake RiskGamma(0.94776;0.0016524) 0 0.00160 +∞ 3 

 EFA content RiskLogistic(190.92;38.031) −∞ 190.9200 +∞  

Ready to eat meals Food intake RiskDiscrete(0.003.0.022.0.138.0.415.0.239;0.855.0.427.0.142.0.066.0.033.0.003) 0.0030 0.03800 0.4153 78 

 EFA content RiskLoglogistic(17.1;29.533;2.0843) 17.1000 61.7000 +∞  
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4.2.9 Statistical analysis 

One-way analysis of variance (ANOVA) was applied to detect differences in the mean of the 

total concentrations of the EFAs between different food categories. In case of lack of 

homogeneity of data, a logarithmic transformation was applied prior to statistical analysis to 

achieve homoscedasticity. For significant differences, a Student-Newman-Keuls test of mean 

comparisons was applied at a p value of 0.05. Calculations were performed with SPSS 22 

statistical package (IBM, SPSS, Inc). 

4.3 RESULTS AND DISCUSSION 

4.3.1 Occurrence of EFAs in foods on Belgian market 

Results of the concentrations of EFAs for a total of 390 food samples analysed are presented 

in Table 4.3. In the table, the total EFA content is shown, but in most cases the total 

comprises of 12 mono EFA isomers especially cis isomers. The method used to analyse EFAs 

in food matrices and oils were previously in-house validated (chapters 2 and 3) and it should 

be noted that, free EFAs cannot be analysed by these methods. Only EFAs that are still 

attached to triglyceride backbone are analysed. EFAs were detected in high amounts in most 

of the food samples especially those in the plant foods category. There were no non-detects 

(below LODs) in all the samples.  

 

According to published data (Fankhauser-Noti et al., 2006; Mubiru et al., 2013, 2014), EFAs 

can be found in food samples up to mg levels and twelve isomers of C18:1, C18:2 and C18:3 

fatty acids are known to occur of which the cis-9,10-epoxystearate is the most abundant 

isomer. All the foods could be categorised into three groups according to the amount of EFAs 

determined, low EFA (< 100), medium EFA (100-200) and high EFA (> 200) mg kg-1 of 

sample. Generally, animal based foods had low levels of EFAs compared to plant foods 

ranging from 12 to 82 mg kg-1 of sample and specifically these were found in cooked meat, 

chilled cooked meals, raw ham, smoked salmon, fresh and frozen salmon, milk and bacon. 

These low levels seem to be related to the types of fatty acids that are common with animal 

based foods as they have low content of C18:1 and C18:2 fatty acids. Foods which had > 200 

mg kg-1 of EFAs were, plant oils, butter-margarine, cheese, mayonnaise, chips, cured minced 

raw meat (salami), cookies. Cured minced raw meat, a category of sausages, had higher 
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incidence of EFAs up to 209 mg kg-1 of sample compared to the raw meat which had 66.9 mg 

kg-1. This may be linked to the further ripening and drying treatment which is given to the 

meat during processing.  

Table 4.3: Total C18 epoxy fatty acid concentrations (mg kg-1) in the different foods 

analysed 

 

Values with different superscripts along the column are significantly different p <0.05  

 

Among the plant category foods, dry nuts had the highest EFA content of 687 mg kg-1. This 

high incidence may not be surprising because some oil seeds have been reported to have 

naturally occurring EFAs to a level of 60 to 80% (Gunstone, 1954). This observation could 

partly be attributed to the high content of oleic and linoleic fatty acids found in most of plant 

based foods based on fat and fatty acid content. Coupled to this observation, some of the seeds 

could further be processed by roasting and salting which may affect the EFA content. 

However, a correlation between roasting and its effect on the production of EFAs is not 

known but may probably be due to further treatments of nuts which can increase the incidence 

of EFAs since high temperatures are involved which may accelerate the rate of lipid oxidation.  

Although butter is obtained from milk which had a low EFAs content, the butter-margarine 

category had a high content of EFA as high as 409 mg kg-1 on average. This is probably 

because margarine which is in the same category as butter is made by fractionation or 

Food categories N Mean SD Max 

Chips 24 297.71def 218.46 872.27 

Cookies 29 148.22cd 43.65 263.16 

Dry nuts 24 686.98g 513.19 2,117.43 

French fries 19 128.50c 92.42 360.32 

Plant oils 36 410.68def 427.67 1,933.26 

Bacon 25 73.49b 53.52 187.74 

Butter-Margarine 27 408.93f 229.30 1,028.96 

Cheese 24 309.59ef 138.96 668.54 

Cooked meat 22 12.54a 8.17 34.72 

Mayonnaise 25 309.61def 318.47 1,754.00 

Milk 17 40.22b 24.37 118.75 

Raw ham 22 65.85b 68.41 225.95 

Cured minced raw meat 26 208.98cde 106.48 488.59 

Smoked salmon 21 69.12b 40.33 146.24 

Fresh & frozen salmon 9 82.25b 62.23 178.73 

Snack foods 20 186.06cde 65.96 325.27 

Ready to eat meals 20 59.37b 38.56 150.85 

Total 390    
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hydrogenation of plant oils that may already have a high epoxy content with fats. The higher 

level of EFAs in butter could be also due to the greater interfacial area created due to 

emulsification. However, when compared separately margarine had a higher EFA content than 

butter. However, the relationship of EFA content between cheese and milk vis-a-vis the fat or 

fatty acid content is not clear. But what is clear is that irrespective of the fatty acid content, 

foods that are further processed had higher EFAs when compared to those that remain in the 

‘raw’ form.  

Most of the vegetable oils used in this study were fresh and refined with very low initial 

peroxide values (data not shown), possibly because of the refining process. It was observed 

that big standard deviations in some data sets could be obtained; this may be an indicator of 

the heterogeneity of the distribution of EFAs in the different food matrices. This problem can 

be overcome by increasing the number of samples which can help to reduce this cause of 

variation and increase the validity of the results (Kroes et al., 2002). 

4.3.2 Consumption data 

The total sample of 3245 individuals included in the BNFCS provided useful information on 

the consumption of the analyzed samples from the Belgian population. The highest number of 

consumers was obtained from the butter-margarine food group with 91% consumers. This 

high percentage may be attributed to the wide range of foods that fall under this category 

especially the margarine which all contribute to the daily intake. The rest of the foods with the 

percentage number of consumers are shown in Table 4.2, foods consumed by > 25% of the 

Belgian respondents were, milk (64%), mayonnaise (44%), cheese (45%) and plant oils 

(36%). Foods that were consumed by between 10% to 25% of consumers included, French 

fries (25%), cured processed meat products (14%), cookies (12%), cured unprocessed meat 

products (11%), cooked and processed meat products (10%) and chips (10%). Foods that were 

found to be consumed by < 10% of the individuals included bacon (9%), dry nuts (5%), frozen 

and fresh salmon (4%), smoked salmon (4%) and fried snacks (4%). Ready to eat meals were 

consumed by 78% of the participants as reported (Daelman et al., 2013). 

4.3.3 Deterministic exposure assessment 

In Table 4.4 the estimated intakes (mg kg-1 bw day-1) by the Belgian adult consumers for the 

different foods are presented. Initial estimation of the exposure to EFAs through consumption 
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of each individual food category was based on a deterministic approach. Deterministic 

analysis for the chilled cooked meals could not be applied because of the nature of the 

available consumption data. 

Table 4.4: Deterministic analysis of C18 epoxy fatty acid estimated intake (Mean, P99.5, 

Max) in mg kg-1 bw day-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/A, not applicable 

Food categories that had the lowest contribution to the mean intake of EFAs were cooked 

meat products followed by smoked salmon, raw cured ham, bacon, cookies and fresh and 

frozen salmon with levels of 0.0011, 0.0013, 0.0024, 0.0046, 0.0058 and 0.0068 mg kg-1 bw 

day-1 respectively. Since no toxicological reference values exist for EFAs, the TTC value of 

0.0015 mg kg-1 bw day-1 was used to estimate the risk towards human health. This is the US 

FDA ‘threshold of regulation’ set value, which is defined as 0.5 ppb in the diet corresponding 

to 1.5 μg/person/day (FDA, 1995). The lowest exposure to EFA was through consumption of 

cooked meat, this can be attributed to the lowest mean contamination levels (12.54 mg kg-1) 

combined with the low average daily meat intake (1.0 x 10-4 kg of food kg-1 bw day-1). 

Exposure due to the consumption of milk appears higher although EFA content is low (mean 

concentration 40 mg kg-1), which is mainly because higher amounts are consumed daily by the 

individuals (mean consumption 8 x 10-3 kg of food kg-1 bw day-1). The highest exposure for 

the consumers was found to originate from the consumption of mayonnaise, butter-margarine, 

Food categories Mean P99.5 Max 

Chips 0.0128 0.3434 2.6425 

Cookies 0.0058 0.1478 0.8570 

Dry nuts 0.0204 0.6198 9.9099 

French fries 0.0413 0.8774 1.8511 

Plant oils 0.1196 1.6808 2.6300 

Bacon 0.0046 0.1716 0.4262 

Butter-Margarine 0.4652 1.6243 2.9110 

Cheese 0.1400 2.1054 5.5076 

Cooked meat 0.0011 0.1716 0.4262 

Mayonnaise 0.5887 1.7289 2.0754 

Milk 0.3156 3.5879 8.8297 

Raw ham 0.0024 0.0584 0.4254 

Cured minced raw meat 0.0112 0.2711 0.8130 

Smoked salmon 0.0013 0.0579 0.3388 

Fresh and frozen salmon 0.0068 0.4164 1.1062 

Snack foods 0.0089 0.2744 3.0166 

Ready to eat meals N/A N/A N/A 
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fried snacks, cheese and plant oils. The highest exposure to the EFAs is specifically attributed 

to mayonnaise and butter-margarine as the most significant sources of mean EFA intake 

estimated at the levels of 0.589 and 0.465 mg kg-1 bw day-1 respectively. Although dry nuts 

are not consumed in large amounts (3 x 10-5 mg kg-1 bw day-1), a high mean daily intake of 2 

x10-2 mg food kg-1 bw day-1 was observed and this is due to the high contamination levels (687 

mg kg-1 of nuts). Concerning chips and cookies which are important snacks among the 

consumed foods in Belgium even with preschool children (Huybrechts et al., 2008), the 

exposure was approximately 9 and 4 times higher than the TTC value. Considering P99.5 and 

max intake EFAs in all the foods using a deterministic approach, high levels of exposure were 

registered and confirmed that the portion of the consumers who are consuming highly 

contaminated specific foods in large amounts are more exposed to high amounts of EFAs than 

the average consumer. This maximum intake of EFAs in all foods is of concern and because 

there was exceedance of the intake by the consuming population, use of probabilistic approach 

was deemed necessary to calculate further the exposure and the risk to consumers. 

4.3.4 Probabilistic exposure assessment 

More accurate determinations of exposure are obtained during probabilistic analysis because 

each possible value that each variable can take and the possible probabilities of its occurrence 

are considered (Vose, 2008). Consumption and contamination data for the different food 

categories were fitted to the best distributions which were defined based on the lowest chi 

square statistics and P-P plots attributed in @Risk software (Table 4.2). Before quantitative 

analysis using the fitted distributions, stability and reproducibility were tested, whereby three 

simulations with 50000 iterations were made and the results were found to be consistent and 

reproducible. In Table 4.2 the best fit distribution functions are shown and the parameters 

describing them. The accompanying statistics that are required for the calculation (min, mean 

and max) are shown. These are random values chosen by @Risk after considering the 

uncertainty in the two data inputs (concentration and consumption) to represent the minimum, 

mean and maximum values the concentration of EFAs and the consumption of the foods in 

question can have within the defined distributions. Results from the probabilistic estimates of 

the intake (mean, standard deviation, maximum, percentiles) resulting from the consumption 

by both the consumers and the total population of each food category are presented in Table 

4.5.  
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Food ranking according to the percentage exceeding the TTC show that butter-margarine, 

mayonnaise and ready to eat meals had 100% of the consumers above the TTC value which 

corresponded to 50% of the total population in butter-margarine and mayonnaise. Other foods 

in decreasing order of exceedance were ranked as follows: cheese, snacks foods, plant oils, 

French fries, dry nuts, chips, cured minced raw meat, cookies, fresh and frozen salmon, bacon, 

raw cured ham, smoked salmon, and cooked meat. At P50, it can be concluded that the highest 

contribution to the intake of EFAs comes from mayonnaise, butter-margarine and the ready to 

eat meals which is 0.41, 0.33 and 0.30 mg kg-1 bw day-1 respectively. The probabilistic 

approach had a higher mean intake via ready to eat meals (2.52 mg kg-1 bw day-1) by a 

magnitude of eight times compared to the median (P50) (0.3 mg kg-1 bw day-1) because of the 

high positive skewness in the distributions. 

Both the deterministic and probabilistic approach had nearly the same mean estimation of the 

intake except in the snack foods where the deterministic approach overestimated the intake by 

3%. The P99.5 estimate of the deterministic approach had higher exposure values by a 

magnitude of 2-7 times in other foods, however, cooked meat estimate was 21 times higher 

(Table 4.4 and Table 4.5). Similar observations were made by Papastergiadis et al. (2014) 

when they studied intake of aldehydes in similar food categories, where the deterministic 

approach had similar mean estimation and it tended to overestimate the intake at both P99.5 

and at the maximum intake. This observation mainly depends on the type of distribution that 

are fitted to the data, highly skewed distributions tend to have higher means and P99.5 

estimates (Papastergiadis et al., 2014). 
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Table 4.5: Estimated intakes (mg kg-1 bw day-1) of C18 epoxy fatty acids from different foods using a probabilistic approach 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

a, The population was obtained from the survey conducted by (Daelman et al., 2003); TTC, Threshold of Toxicological Concern

Food categories  Mean StDev P50 P75 P90 P97.5 P99.5 Max % >TTC 

Chips Consumers 0.0150 0.0196 0.0081 0.0191 0.0377 0.0705 0.1113 0.3330 86 

 Total population 0.0075 0.0155 0.0000 0.0081 0.0232 0.0528 0.0907 0.3095 43 

Cookies Consumers 0.0059 0.0065 0.0038 0.0079 0.0139 0.0233 0.0362 0.1002 76 
 Total population 0.0029 0.0055 0.0000 0.0038 0.0092 0.0185 0.0304 0.1002 38 

Dry nuts Consumers 0.0207 0.0286 0.0112 0.0256 0.0499 0.0981 0.1686 0.5925 90 

 Total population 0.0103 0.0228 0.0000 0.0113 0.0309 0.0717 0.1350 0.5925 45 

French fries Consumers 0.0413 0.0511 0.0243 0.0538 0.0989 0.1809 0.2966 0.8278 95 

 Total population 0.0208 0.0415 0.0000 0.0246 0.0652 0.1384 0.2452 0.7068 48 

Plant oils Consumers 0.1165 0.1929 0.0483 0.1343 0.2989 0.6488 1.1498 4.9023 97 
 Total population 0.0583 0.1500 0.0001 0.0481 0.1700 0.4553 0.9220 4.9023 48 

Bacon Consumers 0.0047 0.0064 0.0024 0.0060 0.0120 0.0227 0.0370 0.1117 62 

 Total population 0.0024 0.0052 0.0000 0.0024 0.0074 0.0173 0.0313 0.1117 31 
Butter-Margarine Consumers 0.4656 0.4460 0.3328 0.5751 0.9489 1.6584 2.7921 8.6917 100 

 Total population 0.2337 0.3944 0.0370 0.3336 0.6588 1.2757 2.2471 8.6917 50 

Cheese Consumers 0.1395 0.1642 0.0866 0.1844 0.3292 0.5826 0.9543 2.6107 99 
 Total population 0.0702 0.1367 0.0002 0.0871 0.2176 0.4498 0.7973 2.4784 50 

Cooked meat Consumers 0.0011 0.0014 0.0006 0.0014 0.0027 0.0050 0.0083 0.0263 23 

 Total population 0.0005 0.0011 0.0000 0.0006 0.0017 0.0038 0.0069 0.0263 12 
Mayonnaise Consumers 0.5616 0.6026 0.4085 0.6527 1.0491 1.9647 3.7183 22.1083 100 

 Total population 0.2821 0.5122 0.0750 0.4076 0.7404 1.4665 2.9125 18.3956 50 

Milk Consumers 0.2899 0.3663 0.1712 0.3917 0.7187 1.3009 2.0624 5.8169 96 
 Total population 0.1438 0.2929 0.0000 0.1724 0.4670 0.9877 1.6630 4.2087 48 

Raw ham Consumers 0.0023 0.0034 0.0011 0.0028 0.0057 0.0115 0.0211 0.0534 42 

 Total population 0.0011 0.0027 0.0000 0.0012 0.0033 0.0084 0.0168 0.0534 21 
Cured minced raw meat Consumers 0.0115 0.0151 0.0067 0.0146 0.0272 0.0513 0.0872 0.4979 84 

 Total population 0.0057 0.0121 0.0000 0.0067 0.0176 0.0382 0.0710 0.2834 42 

Smoked salmon Consumers 0.0013 0.0018 0.0007 0.0016 0.0031 0.0060 0.0108 0.0306 27 
 Total population 0.0007 0.0014 0.0000 0.0007 0.0020 0.0045 0.0085 0.0306 14 

Fresh and frozen salmon Consumers 0.0068 0.0098 0.0035 0.0087 0.0174 0.0338 0.0563 0.1811 69 

 Total population 0.0034 0.0078 0.0000 0.0034 0.0106 0.0251 0.0471 0.1811 34 
Snack foods Consumers 0.2982 0.3411 0.1869 0.4032 0.7171 1.2255 1.8712 6.5076 99 

 Total population 0.1478 0.2794 0.0000 0.1854 0.4713 0.9679 1.5586 4.0098 49 

Ready to eat mealsa Consumers 2.5223 10.3656 0.2997 1.3978 7.0671 17.4940 38.6068 961.2216 100 
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4.3.5 Risk characterization 

Due to the lack of toxicological data on EFAs the TTC principle was applied. Based on the 

Cramer decision tree, EFAs were grouped in class III and therefore, a TTC level of exposure 

of 0.0015 mg kg-1 bw day-1 was considered in evaluating the intake take data that was 

obtained from the probabilistic analysis. The average body weight used was 60 kg (Kroes et 

al., 2005). Based on the probabilistic analysis of the consumption and the contamination data 

it can be suggested that, the consumers of the studied food categories may be at risk, because 

exposure was far above the defined TTC. The exception was the cooked meat, smoked 

salmon and raw cured ham which were below the TTC value with a P50 intake of 0.0006, 

0.0007 and 0.0011 mg kg-1 bw day-1 respectively. This corresponded to 77, 73 and 58% of the 

consumers of these specific food groups exposed to EFAs at levels below the TTC value 1.5 

mg kg-1 bw day-1 respectively. The rest of the consumers of the other foods were exposed to 

high levels which were up to 200 times far above the TTC value with 100% of the consumers 

of mayonnaise, butter-margarine and ready to eat meals at a risk. Thus, a potential risk may 

occur for this portion of consumers frequently consuming these specific food categories.  

4.3.6 Uncertainty evaluation of the exposure assessment 

There are always uncertainties related to exposure assessments that should be considered for 

the interpretation of the results. The BNFCS used in this study was conducted in 2004, and it 

is known that eating habits might change over time, therefore it is not clear if the dietary 

intake of the Belgian population has currently changed, this might lead to some uncertainties 

during result interpretation. However, a new evaluation study was conducted in 2014 by the 

Public Health Authority and the results are not yet out. A possible under or overestimation of 

the consumption of the studied food groups resulting from misreporting during consumption 

data collection (e.g. inaccuracies on consumed quantities reported, foods reported in wrong 

food groups) could be some of the limiting factors in the precision of the estimated intakes 

for the EFAs. Despite this, the 24 h recall is usually the best recommended method used to 

estimate dietary food intake in big consumption surveys in Europe (de Boer et al., 2011). For 

the chilled cooked meals, the consumption data does not represent the total population 

residing in Belgium, thus deviations could be expected from the national consumption of 

these products. The current calculations and interpretations are performed for the individual 



 

100 

 

food categories, no inference can be made for the total exposure resulting from consumption 

of other foods of the Belgian consumers. 

Uncertainty from the concentration data is that the risk from the exposure to EFAs is 

evaluated as total but not as individual isomers. In view of their structure differences in terms 

of unsaturation, this may lead to reactivity differences for each isomer which may imply that 

a combined estimation of all the EFAs could be an underestimation of the possible risk that 

they can cause depending on the individual isomer behaviour in the body. However, on the 

other hand it is also possible that a combined exposure of all the twelve isomers would lead 

to an overestimation of the risk that may be posed and lead to wrong conclusions that many 

consumers are at risk as predicted from such a study that does not consider the individual 

isomer exposure. In case of salmon which is rich in omega-3 fatty acids such as 

eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA; C22:6), there could be 

an underestimation since the method of analysis only determined C18 EFAs. The best 

estimation can be provided if the concentration data is obtained after hydrogenation to obtain 

all the EFAs present, but then again potential reactivity differences between the different 

isomers are neglected. This study also considered only mono-epoxy fatty acids, while it is 

probable that in foods rich in polyunsaturared fatty acids, also di- or triepoxy fatty acids may 

be present.   

4.4 CONCLUSIONS 

This is the first study concerning exposure assessment of a population to EFAs through 

consumption of specific foods. The exposure related to the consumption of the specific food 

categories and the resulting potential risk has been reported. Results indicate that consumers 

of the studied food categories are exposed to high levels of EFAs. Based on the TTC 

principle as a preliminary risk characterization approach, results suggest that a risk could 

exist due to the consumption of these foods for the vast majority of the consumers. Since the 

TTC is a preliminary approach, it is recommended that extensive toxicity testing and safety 

evaluation of EFAs be done to fully characterise the risk involved especially in plant-based 

foods.  

An aggregate exposure approach for lipid oxidation compounds to assess the potential risk 

should be done. In such a study, EFAs should be combined with those oxidation products 
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(MDA, HNE and HHE) presented by Papastergiadis et al. (2014), to get a total picture of the 

toxic oxidation compounds which consumers may be exposed to. It is also known that EFAs 

once formed cannot be removed and highly nutritious foods like nuts have been seen to 

contribute significantly to the intake of EFAs. Therefore, it can be advised that reduction of 

intake of EFAs through prevention of lipid oxidation is needed. This can be achieved by 

taking precautions to prevent lipid oxidation in foods especially during processing and 

storage, which may lower consumption of such oxidised foods. 
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CHAPTER  

5 INSIGHTS INTO THE FORMATION OF EPOXY FATTY 

ACIDS DURING AUTOXIDATION AND PHOTOOXIDATION OF 

VEGETABLE OIL MODELS 
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ABSTRACT 

Formation of epoxy fatty acids (EFAs) from oleic, linoleic and linolenic acid was 

investigated in different oil blends during photosensitized oxidation (at 6°C in the presence of 

chlorophyll and its degradation products), photoxidation (at 6°C) and autoxidation (at 70°C). 

Progressive lipid oxidation was observed in all experimental conditions on basis of the 

peroxide value and the conjugated diene content. In most of the samples, the occurrence of 

these oxidation markers was followed by the occurrence of EFAs. The EFA content of the 

samples were comparable with earlier reports on the presence of EFAs in fresh oils and 

increased upon progressive oxidation. Formation of EFA proved to occur in a stereospecific 

manner and in addition only specific place isomers of EFA were formed. On basis of these 

observations, it was suggested that EFA are most likely produced as a result of a 1,3 

cyclisation of the hydroperoxide radical or alkoxy radical to the double bond of the oxidizing 

fatty acid, resulting initially in the formation of cis stereoisomers. Upon progressive oxidation 

a radical supported cis-trans isomerization is suggested resulting into an increasing trans/cis 

ratio. 

Keywords: Lipid oxidation, epoxy fatty acids, fatty acid methyl esters, transesterification, 

photooxidation 
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5.1 INTRODUCTION 

In the previous chapters, analytical methods were developed to quantitatively analyse the C18 

mono EFAs in oils and fats and more complex food matrices. These methods were applied to 

determine the concentration of these understudied lipid oxidation products in a variety of oils 

and foods. Surprisingly, in several blends relatively high concentrations were found despite 

the classical lipid oxidation parameters indicated a low oxidation status. In addition, no 

information is currently available with respect to the formation of EFAs as a result of 

photooxidation.  

Photosensitized oxidation involves the oxidation in presence of a photosensitizer which is a 

molecule able to capture the energy from visible photons in order to become sensitized. The 

molecule is then able to transfer this energy to the lipid directly enabling it to form a radical 

which will react with triplet atmospheric oxygen leading to the formation of hydroperoxides 

as in the autoxidation reaction (type I photooxidation). Alternatively, the sensitized molecule 

can transfer its energy to triplet oxygen, due to which the significantly more reactive singlet 

oxygen is generated which will directly react with unsaturated fatty acids to form 

hydroperoxides (type II photooxidation). Naturally present pigments such as chlorophyll, 

pheophytin, myoglobin, hemoglobin, protoporphyrins and riboflavin act as sensitizers as do 

dyes, including erythrosine, xanthenes, anthraquinone, rose Bengal and methylene blue 

(Gunstone et al., 2007; Shahidi, 2005). The only fat soluble photosensitizers in foods are 

chlorophyll and its degradation products pheophytin, pyropheophytins and pheophorbide 

(Daun, 2012; Usuki, Endo, & Kaneda, 1984). Chlorophyll as a photosensitizer produces both 

free radicals and singlet oxygen with the dominant reactions depending on substrate and 

reaction conditions (Yam, 2009). Chlorophyll pigments are extracted into the oil where they 

undergo several transformations resulting in crude oil containing mostly pheophytins and 

pyropheophytins (Daun, 2012). It has been reported that pheophytins and pheophorbides have 

a higher prooxidant activity than chlorophyll (Usuki et al., 1984). Apart from photosensitized 

oxidation, photooxidation can be induced by UV-light and proceeds in a similar way as the 

autoxidation reaction.  

As outlined before, upon decomposition of the lipid hydroperoxides, the formed alkoxy 

radicals can lead to the formation of EFAs by replacing a site of unsaturation or adding 

nearby it (Neff & Byrdwell, 1998). Till now the formation of EFAs has mainly been 
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documented and related to oxidation at high temperatures, typically during frying (Berdeaux 

et al., 1999b; Kalogeropoulos et al., 2007; Marmesat et al., 2008; Velasco et al., 2002; 

Velasco et al., 2004). Yet it is well known that thermal oxidation (frying temperatures) due to 

the amount of energy involved leads to the production of high amounts of secondary 

oxidation products including EFAs. Data presented in Chapter 2 and 3 however suggest that 

also at moderate (elevated) temperatures EFAs can be generated via autoxidation. Previous 

studies have also reported high amounts of EFAs in fresh and oxidised foods (Fankhauser-

Noti et al., 2006).  

Therefore, the objective of this study was to investigate the extent to which EFAs form 

during the common lipid oxidation mechanisms, i.e. photosensitized induced oxidation, 

photooxidation and autoxidation using bulk oil blends that are rich in the three unsaturated 

fatty acids C18:1 (predominately present in olive oil), C18:2 (predominately present in 

sunflower oil) and C18:3 (predominately present in lineseed oil). It was hypothesized that 

each of the lipid oxidation mechanisms leads to EFA formation however the amounts may 

differ in each case. As in each case of oxidation specific geometrical hydroperoxides are 

formed, it was expected that this would be reflected in the final isomeric distribution (ID) of 

the formed EFAs as well.  

Photosensitized oxidation was carried out using a fat soluble fotosensitizer (chlorophyll and 

its degradation products as present in virgin olive oil) at refrigerated temperatures as before 

we have showed that in riboflavin containing emulsions, oxidation proceeded readily at 6°C 

(Mestdagh et al. 2011). Virgin olive oil was blended with three different types of stripped oil. 

Stripped oils, void of antioxidants was used, to ensure oxidation occurred during storage, 

because virgin olive oil does not only contain chlorophyll and its degradation products as a 

pro-oxidant, but also a number of potent anti-oxidants. Control experiments were included 

respectively considering blends void of the photosensitizer (and the antioxidants present in 

the virgin olive oil) and all the blends stored without illumination. These additional blends 

were obtained by stripping olive oil in order to remove the chlorophyll and its 

photosensitizing degradation products.  

Autoxidation studies at moderately elevated temperatures, relevant for pasteurized foods or 

foods stored for a particular time at a higher temperature were carried out at 70°C using the 

similar oil blends as used during the photooxidation studies for consistency. Non-stripped 



 

108 

 

blends were included as well in these experiments, as it was expected that the oxidation in the 

stripped blends would proceed too fast to be really representative.  

5.2 MATERIALS AND METHODS 

5.2.1 Reagents and chemicals 

Aluminum oxide activated, basic, Brockmann I (150 mesh) was purchased from Sigma-

Aldrich (Bornem, Belgium) and the other reagents and chemicals used are fully described 

under chapter 2 and 3 sections 2.2 and 3.2 respectively. 

5.2.2 Stripping of oils and oil blend preparation 

The triacylglycerols (TAGs) were isolated from olive, sunflower and linseed oil according to 

a modified method (Mariod, Matthäus, & Hussein, 2011). Briefly, 25 g of oil were dissolved 

in 30 mL of petroleum ether and loaded onto a glass column containing 25 g of activated 

silica. The oil was eluted with 50 x 3 mL of petroleum ether and then recovered by 

evaporating the solvent off under a vacuum in a rotating evaporator (Heidolph Instruments 

GmbH & Co, Schwabach, Germany) operating at 30 oC. Furthermore, a total of 100 g of 

activated aluminum oxide was packed in another glass column. The oil obtained from the 

previous step was then dissolved in 60 mL of petroleum ether, loaded onto this column and 

eluted with 2 x 50 mL of hexane. The solvent was later evaporated on a rotating evaporator as 

above and the oils were further used for the preparation of the oil blends. More residual 

solvents were removed by flushing the oils with nitrogen for 12 hr. Further oil oxidation 

during and after stripping was prevented by limiting direct exposure to light, flushing with 

nitrogen and cold storage at -20°C. 

5.2.3 Experimental setup 

5.2.3.1 Blending of the oils 

Oils were blended together using an Ultra-Turrax blender (Janke & Kunkel, IKA-Werk, 

Staufeb, Germany) for 1 min at 14000 rpm and later sonicated to ensure homogeneity. The 

oils were always protected from light by wrapping in an aluminum foil. The specific 

composition of the blends studied is outlined in Table 5.1 and Table 8.1 in Appendix. 
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5.2.3.2 Oxidation studies at 6°C under illumination and in the dark 

Six oil blends were considered for this study, identified as blends A - C and D - F (Table 8.1 

in Appendix). The first blends (A - C) were prepared by mixing the stripped oil (respectively 

refined olive, sunflower and linseed oil) to a fixed amount of non-stripped virgin olive oil in a 

ratio 2:1 to obtain a chlorophyll level of about 11 mg kg-1 oil. The second group of blends (D 

- F) were prepared by mixing the same stripped oils (refined olive, sunflower and linseed oil) 

to a fixed amount of stripped refined olive oil (by stripping the refined olive oil used to 

prepare blends A and C) in a ratio 2:1. Consequently these blends (D-F) did not contain any 

chlorophyll (or its degradation products).  

Four mL of each blend was introduced in 20 ml transparent SPME vials. Samples were 

placed in a cold room equipped with two 40 W cool white fluorescent lights (Philips TL-D 

36W/840 fluorescent tubes) which were suspended at 0.5 m above the surface of the oil 

containers. The illumination intensity measured at the level of the bottlenecks using a Lux 

meter (PAR-cell 532; 400 − 700 nm, Skye Instruments, Llandrindod Wells, UK) was 2630 

Lux and the temperature inside the cold room was at 6 ± 1°C. In parallel, samples in similar 

amber SPME vials were stored in a cardboard box to prevent any possible exposure to light. 

Sampling was done at 0, 12, 19, 27, 43 and 54 days, except that for the samples stored in the 

dark, no sample was taken at 12 days of storage. 

5.2.3.3 Oxidation studies at 70°C 

For this study, twelve different oil blends were considered. The first six blends were the same 

as those used in the oxidation studies at 6°C, albeit originating from a different batch. In 

addition to these blends, three additional blends (A’-C’) were prepared by mixing the original 

non-stripped oil (refined olive, sunflower and linseed oil) to a fixed amount of virgin olive oil 

in a ratio 2:1. Blends E’-F’ were of the same composition but only differed by replacing the 

non-stripped virgin olive oil with non-stripped refined olive oil (Table 8.1 in Appendix). 

Sampling for elevated temperature was done at 0, 1, 3 and 5 days since the reaction was 

proceeding very fast. 
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5.2.4 Analytical methods 

5.2.4.1 Peroxide value determination 

The PV in meq O2 kg-1 oil was determined using an iron based spectrophotometric method as 

described previously (Shantha & Decker, 1994). A calibration curve was constructed just 

before measurement of the peroxide value of the sample was done. The calibration curve was 

constructed using a standard iron (III) chloride solution as described in the same method. A 

six-point calibration in the range of 5 to 30 µg of iron (III) was done in duplicate. A R-

squared value of more than 0.99 for the calibration was always obtained.  

5.2.4.2 Conjugated dienes and conjugated trienes measurement 

Spectrophotometric determination of conjugated dienes (CD) and trienes (CT) by UV 

absorption at 232 nm and 268 nm was carried out according to AOCS standard method 2.501 

(AOCS, 1998). Briefly accurately 0.01 to 0.05 g oil sample was weighed into a 10-mL 

volumetric flask and dissolved in isooctane, mixed thoroughly and brought to volume. An 

Ultra-Turrax was used to aid in sample dissolution. To measure the CDs, absorbance was set 

at a wavelength of 233 nm. Measurements of absorbance of the dissolved oil sample was 

done using a quartz cuvette. An increase in absorbance suggests that the sample is oxidizing, 

where the absorbance of the sample was greater than 1, the sample was further diluted in the 

same solvent and measured again. This procedure was repeated at an absorbance of 268 nm 

for CT determination. To facilitate comparison between CD and CT, their content was 

calculated based on molecular extinction coefficient of 29000 M-1cm-1 (Frankel, 2005). 

5.2.4.3 Chlorophyll pigments and fatty acid composition measurement 

The determination of the total chlorophyll pigments content was based on absorption 

spectrophotometry of the oil according to the IUPAC commission standard method (Pokorny, 

Kalinova, & Dysseler, 1995). In fact, chlorophylls can absorb light in the UV/visible region 

because of the delocalization of the π electrons throughout the porphyrin system which is the 

chromophore for these pigments. The absorbance reading for chlorophylls was made at 630, 

670 and 710 nm. The total chlorophyll content was expressed in mg of pheophytin kg-1 of oil.  

Fatty acid composition was determined after preparation of fatty acid methyl esters (FAMEs) 

as described in chapter 2 (section 2.2.9.3). 
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5.2.4.4 Transmethylation and SPE separation for EFAs 

Base catalysed transmethylation procedures and the solid-phase extraction (SPE) separation 

steps followed, have previously been described in chapter 2 section 2.2.5 and 2.2.6. 

5.2.4.5 Gas chromatography-FID conditions for fatty acids and EFAs 

GC analysis for both EFAs (EFAs) and fatty acid methyl esters (FAMEs) was performed on a 

GC-FID Agilent 6890N series gas chromatograph (Agilent, USA) as described in chapter 2 

section 2.2.9.1. 

5.2.5 Statistical analysis 

Comparison of the means of EFAs, PV, CD and CT of different experimental studies was 

done using one-way ANOVA test applying a significance level of p < 0.05. Normality was 

checked with a Shapiro-Wilk test and the Levene test was applied to confirm the 

homogeneity of variances. Logarithmic transformations of the different data sets which 

violated normal distribution were carried out before statistical analysis to have 

homoscedasticity in some cases. The statistics package used was SPSS 22. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Fatty acid composition of the various blends 

The oils blends used in this study (Table 8.1 in Appendix) were composed in such a way that 

they contained varying amounts of the three fatty acid precursors of the EFAs considered in 

this study (Table 5.1). Therefore olive, sunflower and linseed oil were selected, known to be 

major sources of C18:1, C18:2 and C18:3 fatty acids, respectively. Since different feedstocks 

were used for respectively the photo- and autoxidation study, the fatty acid composition was 

separately determined. There were small variations between the different stocks used.  

Stripped oils were used in order to ensure that oxidation actually would occur, especially 

during the photosensitized oxidation study. Virgin olive oil was added as a source of 

chlorophyll (and its degradation products), as photosensitizer. Virgin olive oil however also 

contains a number of potent antioxidants. By stripping, non-glyceride minor components like 
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tocopherols, chlorophylls, phytosterols, squalene, waxes, metals, pigments, free fatty acids 

and lipid oxidation products are removed (Khan & Shahidi, 2002; Mariod et al., 2011). 

Considering the photooxidation study at 6°C, blends D-F were considered as chlorophyll free 

‘control’ samples of the homologous blends A-C. For consistency, the same blends (A-F) 

were considered for the autoxidation study at 70°C, but non-stripped homologous blends (A’-

F’) were included as well because it was expected that the oxidation would proceed 

unrealistically fast in the stripped blends. The fatty acid composition of blends A’-F’ were 

not significantly different from the stripped blends A-F (not shown) and were therefore not 

included in Table 5.1 for clarity.  

Table 5.1: Fatty acid composition (g 100 g-1 fatty acid) of the stripped oil blends used for 

the study  

Oil blend1 

Fatty acids for samples at 6°C  Fatty acids for samples at 70°C 

C18:1   C18:2 C18:3 others  C18:1 C18:2 C18:3 others 

A 64.0 10.6 0.7 18.2 
 

71.0 9.6 0.6 18.9 

B 34.7 29.5 0.4 9.2  46.4 39.7 0.4 13.5 

C 30.4 9.0 26.4 10.2  39.9 12.3 34.3 13.5 

D 44.2 9.6 0.5 14.8  68.4 11.0 0.6 19.9 

E 31.3 31.4 0.4 10.3  43.4 41.5 0.5 14.6 

F 25.2 10.2 24.2 10.1  37.3 13.7 34.2 14.8 

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = 

stripped linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped 

refined olive oil; F = stripped linseed + stripped refined olive oil 

5.3.2 Oxidation studies at 6°C under continuous illumination 

As mentioned before, the photooxidation study at 6°C included two sets of control 

experiments. A first ‘control’ consisted of a set of homologous blends void of chlorophyll 

(and its degradation products) as fat soluble photosensitizer (blends D-F). All blends were 

exposed to light and in parallel were stored in the dark, which consisted of the second group 

of control experiments, identified as ‘dark’ experiment further on.  

Virgin olive oil as a source of the photosensitizer was chosen as chlorophyll in its pure state 

is expensive. It should be noted that the use of virgin olive oil not only added chlorophyll 
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(and its degradation products), but also added other minor oil components, especially the 

antioxidants present with it. By stripping, these are also removed. This could have changed 

the dynamics of the oxidation process. Therefore, it is clear that blends D-F cannot be 

considered strictly as true controls of blends A-C. The only way in which a true control can 

be obtained is by the addition of pure chlorophyll, which was not feasible. Chlorophyll 

isolates of a lower purity cannot be considered either because they are known to contain a 

number of carotenoids. In addition, it should be noted that in blends D-F the stripped olive oil 

used was obtained from a refined olive oil and not from the virgin olive oil used as a 

chlorophyll source in blends A-C. This is reflected in the small differences in fatty acid 

composition of the blends as reported in Table 5.1.  

Table 5.2: Changes in chlorophyll content (mg pheophytin kg-1 oil) in stripped oil blends 

during oxidation under illumination and in the dark at 6 ± 1°C  

  Oil blend1 

Time        Darka Illuminatedb 

(days)      A     B     C   D    E    F      A     B    C   D  E  F 

0 11.1 11.2 10.5 <LOD <LOD <LOD 11.2 11.3 10.5 <LOD <LOD <LOD 

12 ND ND ND ND ND ND 6.41 4.79 <LOD <LOD <LOD <LOD 

19 11.2 11.4 11.3 <LOD <LOD <LOD 4.69 3.33 <LOD <LOD <LOD <LOD 

27 11.2 11.3 11.3 <LOD <LOD <LOD 2.72 2.16 <LOD <LOD <LOD <LOD 

43 11.2 11.3 11.3 <LOD <LOD <LOD 1.26 0.83 <LOD <LOD <LOD <LOD 

54 11.2 11.3 11.3 <LOD <LOD <LOD 1.27 0.85 <LOD <LOD <LOD <LOD 

 

ND, not determined; LOD, limit of detection (1 mg/kg of oil as reported by Pokorny et al., 1995) 

aSamples stored in the dark at 6 ± 1°C; bSamples stored under continous illumination (2630 lux) at 6 ± 1°C 

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = stripped 

linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped refined olive oil; F = 

stripped linseed + stripped refined olive oil.  

The impact of this particular element on the oxidation process is however expected to be 

minor compared to the impact that in the ‘control’ blends D-F, apart from chlorophyll (and its 

degradation products) also the antioxidants present in virgin olive oil are absent. Results for 

total chlorophyll pigments and their evolution throughout the storage experiment, are 

presented in Table 5.2. The blends D-F did not contain chlorophyll in detectable amounts 

(LOD 1 mg/kg) as expected. 
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The chlorophyll content of the samples was monitored throughout the storage experiments at 

6°C. For samples stored in the dark, it did not change significantly and thus chlorophyll and 

its degradation products could not act as sensitizer to promote lipid oxidation. In contrast, it 

could have acted as an antioxidant (Gutiérrez-Rosales, Garrido-Fernández, Gallardo-

Guerrero, Gandul-Rojas, & Minguez-Mosquera, 1992). For samples, which were 

continuously illuminated, a time dependent degradation (exponential decay for blends A and 

B) was observed which moreover was more intensive in the more unsaturated oil blends.  

The course of the oxidation reaction was monitored using the peroxide value, the conjugated 

diene and triene content in parallel to the EFA content of the respective blends as a function 

of incubation time (Table 5.3). Although it is known that photooxidation is faster than 

autoxidation, the kinetics of EFA formation under both mechanisms is not detailed in this 

study. The set up in such a study would require an EFA free sample that cannot be obtained 

even after stripping. EFA results were expressed as total EFAs to enable meaningful 

comparison of the amount formed during the storage time. Considering first the control 

experiments during which the samples were stored in the dark, Blend F was the only one 

which showed a clear trend of progressive oxidation for all parameters considered. For Blend 

C, characterized with a similar fatty acid composition, but containing virgin olive oil, the 

peroxide and CD content varied significantly as function of time, but no clear trend could be 

observed. On basis of these results it can be concluded that only in Blend F, significant 

autoxidation occurred, despite that the samples were stored in the dark and at refrigerated 

temperatures. The fact that this particular sample, containing only stripped oils, proved to be 

very prone to oxidation can be attributed to the combination of its high content of 

polyunsaturated fatty acids, in particular alpha-linolenic acid, and the absence of any 

antioxidants, which were actually present in its homologue, Blend C, as this one contained 

virgin olive oil.  

For the samples exposed to light, a consistent progressive oxidation occurred in all samples, 

considering the PV, CD and CT, although the changes in CT were quite limited except in 

sample F. The PVs for Blends B, D and E, showed some remarkable jumps, but in view of 

the consistent increase in CDs, which normally are well correlated to the PV’s (Shrestha et 

al., 2013), it seems plausible to assume indeed that also for these samples progressive 

oxidation occurred. For the blends containing initially chlorophyll (and its degradation 

products) (A-C), the increase in PV and CD levelled off near the end of the storage 
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experiment, while in the homologous blends, void of chlorophyll (and its degradation 

products) (D-F), a progressive increase was observed. Although it is known that the PV of 

oils normally increase and later give a plateau (Shrestha et al., 2013), it should be noted that 

chlorophyll (and its degradation products) decreased throughout the storage experiment 

(Table 5.2) which implies that the photosensitized induced oxidation was tempered. Due to 

the progressive increase in CD of the chlorophyll-free blends (D-F), this indicator became in 

fact higher compared to their respective homologues A-C throughout the storage experiment. 

This was not expected but can be explained by the phenomenon of chlorophyll degradation, 

as already described, and the fact that blends D-F did not contain the olive oil antioxidants 

present in blends A-C. So, blends D-F were in fact subjected to a photooxidation process, 

while blends A-C were initially subjected to a photosensitized oxidation process, which due 

to degradation of chlorophyll, transformed into a photooxidation process.  

Comparing the EFA concentrations of the A-C vs the homologous D-F blends (Table 5.3) it 

is obvious that by stripping the oils, a major part of the original EFA present in the oils was 

removed. Given the fact that all blends stored in the dark (except blend F) did not show 

progressive oxidation, it was not surprising that no significant trends in their EFA content 

was observed either (Table 5.3). Contrary, for blend F, a parallel increase in its EFA content 

was observed.  

With respect to the EFA content for the blends stored under continuous illumination, a 

progressive and significant increase was observed as function of storage time. Only for Blend 

C, a remarkable drop after 27 days of storage was observed, which could not be explained. 

As on the further days of sampling, a further increase in EFA was observed, an artefact on 

day 27 is not excluded. For Blend A a restricted drop in EFA content was observed after 43 

days of storage, followed by a further limited decrease at the end of the experiment. No clear 

explanation can be found for this observation, although it was shown to be repeatable (1446 

and 1651 µmol g-1 oil). As the main EFA present in this blend is ES and thus does not contain 

any additional double bound, a further oxidation of this particular EFA seemed unlikely. 
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Table 5.3: EFAs (EFA; µmol kg-1), peroxide value (PV; meq O2 kg-1 oil), conjugated 

dienes and trienes (CD and CT; µmol g-1 oil) content of stripped oil blends during 

oxidation in the dark and under illumination at 6 ± 1°C 

 

Blend1 

 Darkb Illuminatedc 

Storage time 

(days) 
PV CD CT Total EFA PV CD CT Total EFA 

A 

 

0 8.3 3.3 0.8 776.9 8.3 3.3 0.8 776.9 
12 ND ND ND ND 13.8 11.3 1.1 1073.9 

19 10.8 5.7 0.9 624.6 14.6 12.9 1.0 1278.2 

27 9.1 6.0 1.0 470.3 17.0 15.5 1.2 1758.3 
43 9.6 6.4 1.0 676.7 25.8 18.2 1.4 1651.4 

54 8.8 5.8 1.0 658.1 23.0 18.2 1.4 1549.0 

p valuea 0.003 0.000 0.001 0.008 0.002 0.000 0.000 0.116 

B 

 

0 11.4 4.6 2.5 834.5 11.4 4.6 2.5 834.5 

12 ND ND ND ND 12.6 20.6 3.2 1281.4 

19 10.6 8.0 3.1 728.6 20.0 27.9 3.2 1452.4 

27 8.4 7.2 3.2 541.1 17.8 32.5 3.2 1461.4 
43 9.7 8.8 3.1 768.5 23.1 45.7 3.2 1677.3 

54 8.4 7.3 3.1 834.2 30.4 47.3 3.3 1813.7 

p valuea 0.373 0.000 0.000 0.076 0.020 0.000 0.001 0.001 

C 

 

0 11.7 3.2 0.4 748.1 11.7 3.2 0.4 748.1 

12 ND ND ND ND 9.4 18.9 0.6 1563.8 

19 14.1 6.3 0.3 820.5 22.5 25.4 0.5 1558.6 
27 13.1 5.7 0.3 510.8 11.9 30.0 0.7 1375.3 

43 15.5 7.8 0.4 942.7 15.6 37.1 0.9 1621.9 

54 16.1 7.3 0.4 843.1 19.1 44.3 1.2 1967.0 
p valuea 0.004 0.000 0.195 0.195 0.043 0.000 0.001 0.000 

D 
 

0 0.9 2.7 1.0 105.1 0.9 2.7 1.0 105.1 

12 ND ND ND ND 11.8 8.8 1.2 412.3 
19 1.8 5.9 1.3 107.5 6.3 15.1 1.0 476.9 

27 1.6 4.8 1.2 80.9 6.0 19.1 1.1 652.9 

43 1.5 6.2 1.2 80.1 7.1 32.3 1.3 1167.6 

54 1.7 5.3 1.3 84.1 16.6 45.0 1.3 1347.7 

p valuea 0.004 0.001 0.002 0.926 0.000 0.000 0.019 0.001 

E 
 

0 1.3 4.2 2.7 187.5 1.3 4.2 2.7 187.5 

12 ND ND ND ND 10.2 10.2 3.3 400.3 
19 2.1 7.3 3.4 141.3 6.2 21.0 3.0 459.5 

27 2.2 6.4 3.3 117.0 7.4 34.7 2.6 807.6 

43 2.9 7.8 3.3 115.5 20.9 65.4 2.2 1325.5 
54 3.0 7.7 3.4 163.8 22.7 91.8 2.1 1560.1 

p valuea 0.000 0.001 0.001 0.366 0.000 0.000 0.002 0.000 

F 

0 5.4 2.9 0.6 296.4 5.4 2.9 0.6 296.4 
12 ND ND ND ND 7.5 23.1 0.9 971.1 

19 9.2 12.5 0.7 507.6 12.8 40.6 1.7 947.7 

27 8.5 16.4 0.8 644.4 17.7 59.0 3.2 1449.0 
43 16.3 36.8 1.6 950.0 31.7 104.9 9.3 2325.7 

54 17.4 56.1 2.7 1517.7 35.9 126.8 13.7 2926.9 

p valuea 0.088 0.001 0.011 0.011 0.000 0.000 0.000 0.000 

All the data are expressed as the mean of two independent replicates. ND, not determined. 

ap value <0.05 is significant according Tukey test in one-way ANOVA in every blend over time.  

b Samples stored in the dark at 6 ± 1°C, c Samples stored under continous illumination (2630 lux) at 6 ± 1°C,  

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = stripped 

linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped refined olive oil; F = 

stripped linseed + stripped refined olive oil.  
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Similar as observed with the classical oxidation parameters, PV and CD, for the blends A-C 

originally containing chlorophyll (and its degradation products) as photosensitizers, it is 

observed that the increase of EFA as function of time occurred especially in the first 12 days 

of the experiment, while in the chlorophyll void homologues (D-F) a more equilibrated 

increase as function of time was observed. As explained before, this can be explained by the 

fact that for blends A-C the photosensitized oxidation diminished as a result of the 

chlorophyll degradation and moreover olive oil antioxidants were present. This explains also 

the increase in the EFA content of the stripped oil blends D-F, void of the photosensitizers 

and antioxidants, showed to be stronger and more consistent. 

In Table 8.2 and Table 8.3 (in Appendix), the data for each individual EFA present in the 

studied samples are given. Not surprisingly, a good correspondence between the main fatty 

acids present in the original blends and the main EFAs produced throughout the incubation 

experiments (both in the dark and in the light) were observed.  

Although care should be taken in comparing the homologous blends among each other (for 

instance blend A vs D), as the feedstocks used to prepare them are different and also because 

the initial amount of EFAs was considerably different, some interesting observations can be 

made considering illuminated blends. If the net amount of ES (including both isomers) 

produced throughout the storage period was compared between blend A vs blend D, it was 

observed that considerably more ES was produced in the stripped oil (blend D). This was also 

the case for the other homologous pairs (B vs E and C vs F). For EO, again considering all 

isomers, however, the net produced amounts in blend A vs C were comparable, while again 

for blend B vs E and blend C vs F, overall more EO was produced in the stripped oils. 

Finally, with respect to EOL, only considering blends C and F (as the alfa-linolenic acid 

concentration in the other blends was smaller than 1%), a similar observation was made. 

These observations again suggest that the stripped blends were more prone to oxidation then 

their virgin olive oil containing homologues, despite the fact that the latter ones were 

subjected to chlorophyll induced photosensitization. 

As outlined before, EFAs exhibit stereoisomerism. In an attempt to get more insight in the 

mechanistics of EFA formation, the isomeric distribution of each individual type of EFA (ES, 

EO and EOL) was computed on a molar basis. Results are presented in Table 5.4. The 

isomeric distribution for each respective EFA was expressed as a percentage of the total 
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stearate, oleate or linoleate EFA isomer content. Two EFA isomers originating from linolenic 

fatty acid, cis-12,13 and trans-9,10-epoxylinoleate co-eluted thus their isomeric distribution 

could not accurately be determined. As the EFA formation in the dark was restricted, these 

were not considered in this analysis.  

In general, cis isomers dominated in all oil blends before storage. In the blends E and F, only 

containing stripped oils, a somewhat higher portion of trans-EFA were present, especially for 

ES, but due to the stripping the overall EFA content of these blends prior to incubation was 

quite low (Table 5.3). During incubation of the blends containing virgin olive oil (A-C), the 

cis/trans ratio hardly changed, for all EFAs considered. Also, for cis-12,13 and trans-9,10-

epoxylinoleate, it seems reasonable to suppose that the cis stereoisomer was and remained 

dominant, in view of the observations for the other epoxylinoleate isomers. So, it can be 

concluded that especially the cis stereoisomers were formed. In the blends containing only 

stripped oils (D-F), which were proven to be considerably more susceptible to oxidation 

(Table 5.3), it was obvious that the trans stereoisomers of all considered EFA were 

predominately formed. At the end of the incubation period considered, the ratio of both 

stereoisomers was almost 1:1 (for ES and EO, and probably for EOL as well, although this 

could not be concluded with certainty). 

Thus, it seems that in absence of antioxidants and chlorophyll (and its degradation products) 

as photosensitizer, photoinduced oxidation favored the formation of trans stereoisomers. 

Despite the fact that in the first series of experiments, the oxidation is both due to 

photosensitized photooxidation (as long as chlorophyll is present) and photooxidation, the 

formation of cis stereoisomers is preferred. The formation of trans EFAs in blends D-F is 

more explained in section 5.3.4, in which we hypothesize that trans EFAs are formed from 

the initially formed cis EFA upon progressive oxidation via a radical mechanism. This 

hypothesis is in line with the observation in samples D-F, where trans isomers become 

dominant at longer incubation times (i.e. more progressed oxidation). This hypothesis also 

concurred with the observation that samples A-C containing virgin olive oil with antioxidants 

contained less trans isomers as the oxidation reaction was somewhat modulated.  
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Table 5.4: Percentages isomeric distribution (ID) of ES, EO and EOL on mole basis of the 

different stripped oil blends during oxidation under continuous illumination at 6°C  

 

ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate; LOD, limit of detection; 1Blend: A = stripped refined olive + virgin olive oil; B = 

stripped sunflower + virgin olive oil;  

C = stripped linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped refined olive oil; F = stripped linseed 

+ stripped refined olive oil; 

a As% total of the originating fatty acid for the EFA. 

5.3.3 Oxidation study at 70°C for stripped and non-stripped samples  

For the autoxidation study at 70°C, similar oil blends were used as in the photoxidation 

experiment, but oils from a different batch were used. As it was expected that the oxidation 

process would proceed very fast because stripped oils were used, the set of blends was 

extended with a similar set of blends, but with non-stripped oils. This increased the total 

number of studied blends to 12 

Blend1 

 

 

Stora

ge 

Time 

(days) 

Isomeric distribution 

Oleic acida Linoleic acida Linolenic acida 

trans-

9,10- 

ES 

cis- 

9,10- 

ES 

trans-

12,13-

EO 

cis-

12,13-

EO 

trans-

9,10-

EO 

cis-

9,10-

EO 

trans-

12,13-

EOL 

cis-12,13 

& trans-

9,10-EOL 

cis-

9,10-

EOL 

trans-

15,16-

EOL 

cis-

15,16

–EOL 

A 

0 8 92 <LOD 39 <LOD 61 <LOD 77 11 <LOD 13 
12 6 94 <LOD 36 13 51 3 44 36 <LOD 17 

19 4 96 <LOD 31 14 55 8 24 60 <LOD 8 
27 7 93 2 32 25 41 5 25 28 29 14 

43 10 90 <LOD 36 20 44 <LOD 23 49 28 <LOD 

54 11 89 <LOD 31 28 41 <LOD 30 48 23 <LOD 

B 

0 5 95 <LOD 43 <LOD 57 <LOD 100 <LOD <LOD <LOD 
12 6 94 1 36 4 59 14 36 32 <LOD 18 

19 8 92 1 31 9 59 16 33 19 <LOD 32 

27 12 88 3 31 16 50 20 26 24 30 <LOD 
43 7 93 4 34 9 54 <LOD 20 51 28 <LOD 

54 8 92 3 33 10 53 <LOD 40 33 27 <LOD 

C 

0 8 92 <LOD 42 <LOD 58 <LOD 33 34 <LOD 33 

12 8 92 3 31 4 62 4 26 41 2 28 
19 9 91 2 31 14 54 3 26 41 2 28 

27 12 88 2 33 12 53 3 28 39 4 27 

43 11 89 9 26 13 52 5 28 35 4 27 
54 10 90 3 30 9 58 4 29 37 4 26 

D 

0 9 91 <LOD 36 <LOD 64 <LOD <LOD <LOD <LOD <LOD 

12 17 83 8 33 9 50 <LOD 29 35 <LOD 35 

19 29 71 15 24 19 41 <LOD 4 70 <LOD 25 
27 36 64 19 26 19 36 4 9 70 4 13 

43 45 55 22 24 22 32 <LOD 7 80 <LOD 13 

54 49 51 28 17 27 28 <LOD <LOD 94 <LOD 6 

E 

0 22 78 <LOD 39 <LOD 61 <LOD <LOD <LOD <LOD <LOD 
12 6 94 3 31 7 58 <LOD 20 13 <LOD 67 

19 24 76 11 28 11 50 <LOD <LOD <LOD <LOD <LOD 

27 29 71 15 26 17 41 <LOD <LOD 100 <LOD <LOD 
43 36 64 18 25 20 36 <LOD <LOD <LOD <LOD <LOD 

54 41 59 21 22 22 35 <LOD <LOD <LOD <LOD <LOD 

F 

0 18 82 <LOD 39 <LOD 61 6 27 33 4 30 

12 29 71 16 27 12 45 7 28 30 8 27 
19 34 66 21 22 16 41 10 31 24 13 22 

27 40 60 20 24 22 34 14 29 23 15 20 

43 50 50 26 23 25 26 18 31 16 20 15 
54 48 52 25 23 25 29 17 29 19 19 16 
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Table 8.1 in Appendix). The data with respect to the evolution of the PV, CD, CT and total 

EFA content are shown in Table 5.5 

From these data it could be observed that especially in the blends solely composed of stripped 

oils (D-F), excessive oxidation occurred. Typically, the PV reached its maximum before the 

end of the incubation study and attained extremely high levels (> 100 meq kg-1
 oil). A similar 

observation was made for the CD content, which is as mentioned before, normally strongly 

correlated to the PV. By substituting the stripped refined olive oil for virgin olive oil in these 

blends (blends A-C), only for the linseed oil containing blend C, such high PV were observed 

as well, although they were considerably smaller compared to blend F. Again, also in blends 

A-C the maximum PV was reached before the end of the incubation period. It can be 

concluded that the addition of virgin olive oil attenuated the autoxidation process to some 

extent, as was also observed in the photoxidation studies.  

For the non-stripped blends (A’-F’), the PV’s of all blends showed a significant and 

consistent increase as function of time, as was the case for the CD content. For these blends 

substituting virgin olive oil by refined olive oil did not impact the dynamics of the considered 

parameters between the homologous blends. PV’s obtained were comparable as for blends A 

and B and were comparable with those obtained in the photooxidation study. On basis of all 

these data, it can be concluded that in all samples studied, autoxidation occurred and that in 

absence of antioxidants in the blends due to stripping of the oil, the oxidation process was 

quite excessive. 

As for the evolution of the total EFA content in the blends solely containing stripped oils (D-

F) it was obvious that also excessive amounts were produced, exceeding 10 mmol per kg of 

oil in blends D and F. In contrast to the drop in PV and CD content during prolonged storage, 

the EFA content still increased significantly for all these blends. For the blends containing 

stripped oils and virgin olive oil (A-C), also a significant increase of the EFA content as 

function of time was observed and levels obtained were comparable as those observed in the 

photooxidation studies. The increase after 1 day of incubation was still restricted, but was 

obvious after 3 days, while for the PV, an increase was already observed after 1 day of 

incubation.  
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Table 5.5: EFAs (EFA, µmol kg-1), peroxide value (PV; meq O2 kg-1 oil), conjugated 

dienes and trienes (CD and CT; µmol g-1 oil) content of stripped and non-stripped oils 

blends during autoxidation at 70 ± 1°C 

  Stripped oil  Non- stripped oil 

Storage time 

(days) 

 

Blend1 PV CD CT 

Total 

EFA Blend2 PV CD CT 

Total 

EFA 

0 

A 

6.6 3.7 0.7 318.6 

A' 

7.0 6.3 1.5 906.2 

1 8.0 4.4 0.9 304.1 6.7 6.4 1.7 1050.2 
3 51.0 7.2 1.1 484.8 8.2 7.1 1.5 899.8 

5 34.1 4.0 0.5 494.2 10.2 7.6 1.6 1060.7 

p valuea 0.000 0.000 0.000 0.000 0.000 0.001 0.285 0.421 

0 

B 

7.5 5.4 0.5 379.3 

B' 

4.5 10.9 1.7 5637.2 

1 12.9 5.9 0.5 412.8 5.6 11.1 1.9 5826.8 

3 80.8 15.5 0.9 947.1 19.2 18.1 1.8 5688.8 

5 45.3 10.6 0.5 1032.3 40.0 26.2 1.9 5929.0 

p valuea 0.000 0.000 0.000 0.271 0.000 0.000 0.151 0.072 

0 

C 

7.8 2.5 0.3 433.7 

C' 

4.4 5.9 0.7 1996.5 
1 21.5 7.0 0.4 556.5 5.5 6.6 0.5 2147.6 

3 142.4 18.8 1.7 1844.6 27.3 14.6 0.9 2257.7 

5 203.6 17.2 1.9 3265.0 53.8 25.6 2.0 3038.0 
p valuea 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.104 

0 

D 

0.5 3.4 1.0 26.6 

D' 

4.0 6.3 2.0 971.9 

1 20.4 9.7 0.7 649.1 4.0 6.4 2.0 1052.0 
3 329.3 46.6 1.8 6973.9 5.5 7.5 2.0 923.5 

5 274.3 31.7 1.6 12134.7 9.3 8.1 2.2 1009.8 

p valuea 0.000 0.000 0.001 0.000 0.000 0.000 0.302 0.404 

0 

E 

2.4 4.6 0.7 79.1 

E' 

2.4 11.4 2.4 5869.7 
1 25.3 24.5 0.7 1044.3 3.1 11.6 2.2 5764.4 

3 537.9 120.4 3.6 6769.1 14.8 17.4 2.3 6082.1 

5 498.1 70.8 3.9 9050.3 37.2 24.8 2.5 6269.8 

p valuea 0.000 0.000 0.000 0.007 0.000 0.000 0.014 0.319 

0 

F 

3.1 3.0 0.5 79.8 

F' 

1.8 6.1 1.3 2156.5 

1 21.9 21.1 1.4 1549.5 2.6 6.9 1.1 2319.5 

3 656.6 69.9 12.0 8904.6 26.0 15.5 1.4 2482.7 
5 280.9 44.6 13.0 16273.6 54.6 23.1 2.5 3222.9 

p valuea 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 

 

All the data are expressed as the mean of three independent replicates.  

ap value <0.05 is significant according Tukey test in one-way ANOVA in every blend over time. 

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = stripped linseed + virgin 

olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped refined olive oil; F = stripped linseed + stripped 

refined olive oil. 

2Blend: A' = refined olive oil + virgin olive oil; B' = sunflower oil + virgin olive oil; C' = linseed oil + virgin olive oil; D' = 

refined olive oil; E' = sunflower oil + refined olive oil; F' = linseed oil + refined olive oil 

This suggests that hydroperoxides should be formed first before EFA can be produced. This 

is in line with the formation mechanisms suggested earlier.  

Considering the non-stripped oils (A’-F’), it was obvious that the initial EFA content for 

some blends was really high. Although the PV content was not < 1 meq O2 kg-1 oil as could 

be expected for a fresh oil, the PV’s were not exceptionally high either (all < 10 meq O2 kg-1 

oil) These results are in line with the observations made in Chapter 3. As for the EFA 
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evolution as function of time no significant changes in any of the samples, except in sample 

F, were observed, which was on basis of its composition the most vulnerable for oxidation. It 

should be noted however that for this sample, it was only because at the last day of incubation 

that such a significant increase was observed. In fact, for the homologous blend C’, such an 

increase at the last incubation day was observed, but because of the variability of the data it 

was for this blend not statistically significant. These results contrast with the fact that on basis 

of the PV and CD data, clearly oxidation did occur in these samples in a time consistent way. 

In view of the observations made for blends A-C, it can be concluded that although 

hydroperoxides were building up in blends A’-F’, the subsequent formation of EFAs was 

delayed due to the presence of a variety of anti-oxidants present in the non-stripped blends.  

Comparing the stripped blends containing virgin olive oil amongst each other (blends A-C) 

with respect to the net amount ES formed considering the content of oleic acid in the 

respective blends (Table 8.4 in Appendix), it could be concluded that on a relative basis 

more ES was formed in the more unsaturated blends. This was also the case for EO, 

considering the linoleic acid content of the respective blends. This indicates that due to the 

higher vulnerability of oils rich in alfa-linoleic acid for oxidation, also linoleic and oleic acid 

are more prone to oxidation and conversion to their respective EFAs. A similar observation 

was made in chapter 2 table 2.2. 

Finally, also the percentage isomeric distribution of the considered EFA for the blends A-F 

was considered (Table 5.6). For the sake of completeness, the data with respect to the non-

stripped blends (A’-F’), are included in Appendix (Table 8.6), but as only in the most 

unsaturated blends a significant formation of EFAs was observed at the end of the storage 

period, these data will not be discussed in detail.  

Before the start of the incubation, again the cis stereoisomer for each EFA was predominant 

in all samples (also in Blends A’-F’). Upon progressive oxidation the trans stereoisomers’ 

contribution to the total EFA content became more important, similarly as observed during 

the photoxidation study for blends D-F. In the photoxidation study it was observed that in the 

samples containing photosensitizers and antioxidants, the cis stereoisomer remained 

dominant, but this was not the case in the autoxidation study 
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Table 5.6: Percentage isomeric distribution (ID) of ES, EO and EOL on mole basis of 

the different stripped oil blends during autoxidation at 70 ± 1°C 

Isomeric distribution 

  Oleic acida Linoleic acida Linolenic acida 

Blend1 

Storage 

time 

(days) 

trans-

9,10-

ES 

cis-

9,10-

ES 

trans-

12,13-

EO 

cis-

12,13-

EO 

trans-
9,10-

EO 

cis-

9,10-

EO 

trans-

12,13- 

EOL 

cis-12,13 

& trans-

9,10-

EOL 

cis-

9,10-

EOL 

trans-

15,16-

EOL 

cis-

15,16- 

EOL 

A 

0 4 96 <LOD 39 <LOD 61 <LOD <LOD <LOD <LOD <LOD 

1 6 94 <LOD 40 <LOD 60 <LOD <LOD <LOD <LOD <LOD 

3 10 90 6 30 16 48 <LOD 100 <LOD <LOD <LOD 

5 15 85 9 38 <LOD 53 <LOD 100 <LOD <LOD <LOD 

B 

0 6 94 <LOD 42 <LOD 58 <LOD <LOD <LOD <LOD <LOD 
1 13 87 <LOD 43 <LOD 57 <LOD <LOD <LOD <LOD <LOD 

3 29 71 12 32 13 44 <LOD 100 <LOD <LOD <LOD 

5 28 72 16 30 17 37 <LOD 100 <LOD <LOD <LOD 

C 

0 6 94 <LOD 40 <LOD 60 <LOD 34 36 <LOD 30 
1 27 73 16 27 17 40 11 37 21 12 19 

3 39 61 20 24 24 32 15 33 20 16 17 

5 42 58 25 24 27 24 18 32 16 19 15 

D 

0 <LOD 100 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
1 67 33 35 13 35 17 <LOD <LOD <LOD <LOD <LOD 

3 72 28 35 13 39 13 16 39 30 6 9 

5 70 30 35 16 36 12 14 43 29 5 8 

E 

0 <LOD 100 <LOD 38 <LOD 62 <LOD <LOD <LOD <LOD <LOD 

1 61 39 32 15 32 20 <LOD <LOD <LOD <LOD <LOD 

3 60 40 33 16 34 17 11 43 35 5 6 
5 55 45 31 19 32 18 <LOD 100 <LOD <LOD <LOD 

F 

0 <LOD 100 <LOD <LOD <LOD 100 <LOD 30 42 <LOD 28 

1 63 37 34 14 35 17 23 33 11 24 9 

3 48 52 28 23 27 22 20 33 14 20 14 
5 40 60 24 27 24 25 17 31 18 17 17 

 

LOD, level of detection; ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate. 

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = stripped 

linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped refined olive oil; F = 

stripped linseed + stripped refined olive oil. 

a As% total of the originating fatty acid for the EFA. 

5.3.4 Potential implications with respect to the formation mechanism of epoxy fatty 

acids  

Considering the suggested most probably reaction pathway in which EFA are formed, 

outlined in Scheme 1-5 (1,2 addition to the adjacent double bond of LO• radical), the 

formation of a mixture of various EFAs from oleic acid can be rationalized as shown in 

Scheme 5-1. 
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Scheme 5-1. Different ES isomers potentially formed from oleic acid after 1,2 addition 

to the adjacent double bond of LO• radical 

From the data obtained throughout the experiments in this chapter and also from the 

observational data reported in the preceding experimental chapters, it is obvious that the 

plethora of isomers suggested to be potentially formed, is not supported by experimental 

evidence. Indeed, only the 9,10-ES could be detected in all samples analysed. This implies 

that the suggested reaction scheme should be questioned. The experimental data support more 

the reaction pathways shown in Scheme 5-2. The problem however with this pathway is the 

fact that it only leads to the production of cis stereoisomers, while throughout several 

oxidation studies carried out in this chapter, it was shown that trans stereoisomers are 

preferentially formed.  
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Scheme 5-2. 1,3 cyclisation of the LOO• or LO• radical to the double bond 

 

Scheme 5-3. Alternative formation pathway of trans stereoisomers of EFA (which on 

basis of experimental data seems not probable) 

The possibility of the occurrence of another pathway via a hydroxyl transfer from the 

hydroperoxide to an unsaturated fatty acid, leading to the trans stereoisomer as shown in 

Scheme 5-3, could not be supported by experimental evidence as tertiary-butyl 

hydroperoxide added to soybean oil in various amounts and incubated respectively at room 

temperature and at 60°C did not result in a significant increase of the EFA content of the oil. 

This reaction pathway is however described in literature, but requires a strong catalyst (eg 

molybdenum-based metal catalyst) which is not present in oils or foods (Iwahama et al., 

2000). Given the fact that the 1,3 cyclisation of the LOO• or LO• radical to the double bond is 

retained as the most likely reaction pathway, it can be rationalized that initially the cis-

stereoisomer should be formed, which further on can isomerise to the trans-stereoisomer. 
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This isomerization can be accomplished via a radical reaction scheme as outlined in Scheme 

5-4 for ES and in Scheme 5-5 for EO. These mechanisms would require more intensive 

oxidation conditions, which is actually in line with the observations made in this chapter.  

 

 

Scheme 5-4. Suggested cis - trans 

isomerization scheme of epoxystearate 

Scheme 5-5. Suggested cis - trans 

isomerization scheme of epoxy oleate 

 

5.4 CONCLUSIONS 

It can be concluded that EFAs are formed via photosensitized oxidation in oils containing 

chlorophyll and its degradation products at cold temperatures. In absence of antioxidants and 

a photosensitizer, oils were however even more sensitive to EFA formation if exposed to 

light. During storage at elevated temperatures (70°C, during 5 days), EFA formation was 

only apparent if the oil blends contained stripped oils, i.e. had a lower content of anti-

oxidants or if the non-stripped oil blends contained a high (>30%) content of alfa-linolenic 

acid. A stereospecific formation of EFAs was observed, suggesting a radical supported 

isomerization of the initially formed cis to the trans stereosoisomers in more challenging 

oxidation conditions. 
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 CHAPTER  

6 INSIGHTS INTO THE INTERACTION OF EPOXY FATTY 

ACIDS WITH CASEIN AND WHEY PROTEINS IN OIL-IN-WATER 

EMULSIONS 
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ABSTRACT 

In foods, lipids will oxidize in the presence of other food components. Due to this, co-

oxidation with the present proteins may occur. Reactive carbonyl species originating from 

lipid oxidation are known to react readily with proteins leading to substantial changes in the 

proteins. In view of their reactive oxirane ring, it is expected that also EFAs are prone to 

interact with proteins. To verify this hypothesis, oxidized soybean oils containing a varying 

amount of EFAs were emulsified in the presence of respectively casein and whey proteins. 

Remarkably, an overall increase in the EFA content of the lipid phase was observed. 

Therefore, an additional experiment was performed in which cis-9,10-epoxystearate 

dissolved in triheptanoin was emulsified excluding any additional EFA formation due to 

progressive oxidation, as a fully saturated oil was used. Emulsions were prepared in the 

presence of dairy proteins, and in presence and absence of Tween 20. In none of the 

emulsions however, a significant decrease in the cis-9,10-epoxystearate concentration could 

be noted after incubation. This preliminary study suggests an unexpected absence of 

reactivity of EFAs towards the studied proteins. 

Keywords: Lipid oxidation, epoxy fatty acids, fatty acid methyl esters, co-oxidation 
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6.1 INTRODUCTION 

In food systems, lipid oxidation generally occurs simultaneously with “co-oxidation” 

phenomena, which affects other molecules. Especially the interaction with proteins and 

oxidizing lipids is of interest in view of earlier observed strong protein aggregation in the 

presence of oxidizing lipids (Cucu, Devreese, Mestdagh, Kerkaert, & De Meulenaer, 2011) or 

during the co-oxidation of lipids and proteins (Mestdagh, Kerkaert, Cucu, & De Meulenaer, 

2011). This interaction may lead for instance to a decreased protein digestibility (Obando, 

Papastergiadis, Li, & De Meulenaer, 2015). The strong interactions between lipids and 

proteins in foods can cause the oxidation reactions to be transferred easily from lipids to 

proteins (Viljanen, Kivikari, & Heinonen, 2004). Proteins and lipids are prone to oxidation 

but it is not known which one occurs first (Karel, 1973; Schaich, 2008). Amino acids such as 

methionine, histidine, tryptophan, tyrosine and cysteine are known to be more susceptible to 

oxidation compared to the other amino acids (Andersen et al., 2006; Cucu et al., 2011; 

Gardner, 1979). As described before, during the oxidation of unsaturated fatty acids, primary 

and secondary oxidation products are produced. Both can interact with proteins, together with 

a variety of fatty acid radicals which will be present. Thus, it was recently shown that the use 

of malondialdehyde as a generally accepted lipid oxidation indicator should be done with 

caution (Vandemoortele & De Meulenaer, 2015). Within proteins it is expected that 

especially the sulfhydryl, amino, guanidyl and imidazole functional groups are involved in 

the interaction with these reactive lipid oxidation products. Considering the secondary 

oxidation products, it is especially accepted that reactive carbonyl species are involved. 

However, Schaich suggested earlier the involvement of EFAs by binding to proteins to form 

adducts as well (Schaich, 2005, 2008). According to the reactivity of the epoxy ring, EFAs 

reactions may involve either electrophilic attack on the oxygen atom or a nucleophilic attack 

on one of the ring carbon atoms (Heath et al., 2005). Depending on the degree of unsaturation 

of the carbon chain (Frankel, 2005), reactivity of EFAs is expected to be similar to that of 

fatty acids whereby the polyunsaturates > monounsaturates > saturated EFAs. In presence of 

proteins, nucleophilic amines (–NH2), sulfhydryl (–SH) or hydroxyl (–OH) groups could 

open the epoxy ring leading to formation of lipid-protein adducts (Cucu et al., 2011; 

Mestdagh et al., 2011) as illustrated in Scheme 6-1. If such a reaction occurs, a decrease in 

the EFAs content is expected to be observed.  
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Scheme 6-1: Potential adduct formation route during EFAs protein interactions 

The objective of this study was to have an insight into the interaction between proteins and 

EFAs in protein stabilised and Tween 20 stabilised emulsions containing proteins as well. In 

Tween 20 stabilized emulsions it is expected that proteins are nearly absent in the water-oil 

interface at the surface of the oil droplets which could affect the potential interaction between 

EFAs and proteins. It was hypothesized that there is a significant decrease in the amount of 

EFAs due to their reaction with proteins present in the emulsions. Emulsions were made 

using three oxidation levels of oils, originating from the same type of oil but oxidized to a 

different extent before making the emulsion. Because the epoxy ring is known to be very 

reactive and since EFAs were already present in the emulsions, in this study the incubation 

time was limited to 24 hrs.  

6.2 MATERIALS AND METHODS 

6.2.1 Supplies and reagents 

Potassium phosphate buffer (0.1 M, pH 7.4) consisted of K2HPO4 and KH2PO4 (Chem-Lab, 

Zedelgem, Belgium). Phosphate-buffered saline (PBS; pH 6.8) consisted of 0.135 M NaCl, 

1.5 mM KH2PO4, 8 mM NaH2PO4·12H2O and 2.7 mM KCl. Tween 20® was supplied by 

Sigma-Aldrich (Bornem, Belgium).  

Whey protein isolate (Lacprodan DI-9224) and sodium caseinate (Microdan 30) were 

provided by Acatris Food Belgium (Londerzeel, Belgium) and Arla Foods (Wageningen, The 
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Netherlands). Soybean oil was purchased from a local store. The rest of the chemicals used 

are described in chapter 2 section 2.2.1 and chapter 3 section 3.2.1. 

6.2.2 Oil stripping 

Triacylglycerols (TAGs) were isolated from soybean oil using a modified method as already 

described in chapter 5 section 5.2.2. To retard lipid oxidation during stripping, the collected 

triacylglycerols were held in an ice bath, which was covered with aluminum foil. The amount 

of C18:1, C18:2 and C18:3 in the soybean oils was as follows: 25.0, 51.6 and 6.4 g/100 g 

total fatty acids. 

6.2.3 Thermoxidation of oil  

For the oxidation of the soybean oil, samples (70 g) of stripped oil were weighed into a Pyrex 

heavy duty crystallizing dish (100 mm diameter x 50 mm height), placed in an oven and then 

heated at 60°C for maximum 14 h. The oils were analysed for the peroxide value (PV) and p-

anisidine value (p-AV) as described below.  

6.2.4 Preparation of casein and whey protein-stabilized emulsion 

The emulsions were prepared using 6 mg mL-1 of protein in 0.1 M potassium phosphate 

buffer (K2HPO4, KH2PO4; pH = 7.4) (final concentration 3% oil), as described by (Waraho et 

al., 2009). A total of 200 mL of coarse emulsion (premix) was prepared by mixing with an 

Ultra-Turrax (Janke & Kunkel, IKA-Werk, Staufeb, Germany) for 2 min at 9200 rpm. The 

coarse emulsion was further homogenised in an APV-1000 homogeniser (SPX Flow 

Technology, Germany), at 250 bars in the first stage and 50 bars in the second stage to 

produce an emulsion of a more stable and uniform particle size. A total of 100 mL of 

emulsion was placed in a 250 mL transparent Schott glass bottle closed with a PTFE septum 

cap and stored in a cold room in the dark at 5°C for 24 h. Each emulsion preparation was 

prepared in triplicate. As oils, in a first set of experiments, soybean oils at three different 

levels of oxidation were used. In a second set of experiments, triheptanoin was used. The C7 

triglyceride was spiked with a known amount of methyl cis-9,10-epoxystearate before 

making the emulsions. 
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6.2.5 Preparation of Tween 20-stabilised emulsion containing proteins 

The preparation of these protein containing emulsions (respectively caseins and whey 

proteins at 6 mg mL-1) followed the same protocol as above using triheptanoin as oil. The C7 

triglyceride was spiked with 281.1 µg g-1 of oil of methyl cis-9,10-epoxystearate before 

making the emulsions. Tween 20 (0.3%) was added to prepare the pre-emulsion. A total of 

10 mL of emulsion was placed in transparent SPME glass vials of 20 mL volume, closed 

with a PTFE septum cap and incubated at 5°C for 24 h. Each emulsion preparation was done 

in triplicate.  

6.2.6 Peroxide and p-anisidine determination 

The PV and p-AV of the oils prior to emulsification were determined. The PV was 

determined using an iron based spectrophotometric method as described previously in chapter 

5 section 5.2.4.1. The p-AV measurement was according to the AOCS official method Cd 18-

90 (AOCS, 1990). 

6.2.7 EFA determination 

6.2.7.1 EFA determination in oils 

For determination of EFAs, the method followed is described in chapter 2 section 2.2.5. 

6.2.7.2 EFA determination in emulsions 

A sample of 8 mL of emulsion was accurately pipetted into the glass centrifuge tubes 

containing the previously dried internal standard (20 µg). Water was adjusted so as to reach a 

final water content of 14.5 g as determined by the initial water content of the sample. 

Thereafter, 26 mL of methanol and 11 mL of dichloromethane were added and homogenized 

using an Ultra-Turrax blender for 1 min at 14000 rpm. Another 15 mL of dicholoromethane 

was added and then homogenized for 30 s, and finally 15 mL of water (pH ≤2) was added 

and homogenized for 30 s. The tubes were centrifuged at 3500 rpm for 10 min, the pH of the 

aqueous layer was checked to be < 2; if not, it was adjusted by using 5 M hydrochloric acid. 

The top aqueous layer was siphoned off, and the organic layer was dried on sodium sulfate 

over a filter paper (Whatman no.1). The solvents were removed using a rotary evaporator and 

finally dried using nitrogen. 
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The C18 EFAs determination was based on a base-catalyzed transmethylation with sodium 

methoxide in methanol at room temperature. Finally, EFAs were analyzed using a gas 

chromatograph with flame ionization detector (GC-FID) after SPE pre-separation. 

6.2.8 Statistical analysis 

Results correspond to the mean of three replicates calculated from the collection of individual 

data obtained in three emulsions prepared independently. To test if the means of the different 

emulsions are statistically different, one-way ANOVA and post-hoc Turkey test were 

performed using SPSS 22 statistical package (IBM, SPSS, Inc). The significance level used 

was p < 0.05.  

6.3 RESULTS AND DISCUSSION 

6.3.1 Experiments with soybean oil based emulsions 

In this study, EFAs were determined in the oils before making the emulsions and after 

incubating the emulsions for 24 h at 5°C. Stripped soybean was oxidized in an oven at 60°C 

and thus oils with different amounts of primary and secondary oxidation products, as assessed 

using the PV and p-AV were obtained (Table 6.1). In general, each oil was oxidized to have 

distinct PV and especially p-anisidine values. Although the p-anisidine value is typically 

related to the concentration of reactive carbonyl species, it was also expected that the more 

oxidized oils were characterized with a higher EFA content. This was confirmed (Table 6.2) 

and similar as in Chapter 5, it was obvious that because of the thermal oxidation a more 

equilibrated mix between the cis and trans isomer of each EFA was formed in the oils, while 

due to photooxidation a preference for the formation of cis EFAs was noticed. 

Remarkably, no specific trend in the EFA content of the emulsions could be observed upon 

comparing with the initial EFA of the original oils. It was observed however that in case the 

low oxidation oil was used also the lowest levels of EFA was obtained in the emulsions. 

Similarly, the high oxidation degree oil resulted in the highest EFA amount.  
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Table 6.1: Initial peroxide (meq oxygen kg-1 oil) and p-anisidine values of soybean oils 

prior to emulsification 

Oxidative status of oil PV p-AV 

Fresh 0.50 0.17 

Medium 21 50 

High 26 97 

Abbreviations: PV, peroxide value; p-AV, p-anisidine value 

For instance, for the low oxidized soybean oil-based emulsion, cis-9,10-epoxystearate (44.1 

µg g-1 of oil) dropped upon emulsification with casein and whey proteins to 20.5 and 21.9 µg 

g-1 of oil respectively, while the corresponding trans isomer increased. To the contrary, the 

same cis isomer increased to different levels in case of the medium and highly oxidized 

soybean oil. Trans-12,13-epoxylinoleic acid levels however in soybean oil-based emulsions 

dropped upon emulsification with casein or whey proteins irrespective of the initial oxidation 

status of the oils. No consistent trends and especially not a generally decreasing trend in the 

EFA content of the emulsified oils could be observed.  

These observations can be explained by two potentially parallel occurring phenomena. The 

first is the ongoing oxidation process, which of course may have been influenced by the 

addition of proteins and the emulsification process. Recently in our research group it was also 

observed that because of emulsification of oil in the presence of dairy proteins and a short (24 

h) storage period at 4°C, the concentration of specific secondary oxidation products such as 

malondialdehyde and hexanal tended to further increase as well (Obando, Soto, & De 

Meulenaer, 2018). A second phenomenon which could have occurred is that because of the 

competition between the other reactive secondary oxidation products present in the oils, the 

expected interaction between EFAs and proteins did not occur or only occurred to a limited 

extent, because of a too high competition for the reactive groups. It should be realized in this 

respect that the low molecular weight reactive carbonyls are expected indeed to be much 

more mobile compared to an EFA still attached to the triacylglycerol backbone. This 

phenomenon could be relevant however in the case of the medium and high oxidized oil but 

seems less likely in the case of the oil with the lowest oxidation level. Despite the fact that for 

this oil, a decrease for some EFAs was observed, others seemed to be formed. 
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Table 6.2: EFA content (µg g-1 of oil) in the original oils and the emulsion (after 24 h incubation in the dark) 

 

 

 

 

 

 

 

 

 

All the data are expressed as the mean of two independent replicates 

ap value <0.05 is significant according Tukey test in one-way ANOVA in every oxidation level for all the models.  

Abbreviations: ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate. 

  Epoxy fatty acids 

Oxidation 

level Model 

trans-

9,10-

ES 

cis- 

9,10-

ES 

trans-

12,13-

EO 

cis-

12,13-

EO 

trans-

9,10-

EO 

cis-

9,10-

EO 

trans-

12,13- 

EOL 

cis-12,13 

&trans-

9,10-EOL 

cis-

9,10-

EOL 

trans-

15,16-

EOL cis-15,16-EOL 

Low 

Oil 3.3 44.1 44.6 11.5 8.0 9.0 5.6 0.0 0.0 8.2 0.0 

Casein-Emulsion 14.9 20.5 15.4 25.4 16.5 22.7 2.7 4.1 5.3 5.1 3.5 

Whey-Emulsion 16.8 21.9 27.7 28.3 26.4 34.3 2.3 7.4 9.9 2.2 11.6 

p valuea 0.346 0.926 0.783 0.509 0.871 0.426 0.938 0.686 0.677 0.989 0.353 

Medium 

Oil 192.7 141.1 238.5 371.3 320.5 144.3 85.9 42.6 21.4 33.1 29.3 

Casein-Emulsion 314.5 215.2 546.8 244.1 627.8 196.2 60.2 61.3 41.8 53.5 25.3 

Whey-Emulsion 345.6 182.4 606.9 231.2 607.3 231.0 65.1 103.6 45.2 61.7 25.5 

p valuea 0.127 0.269 0.125 0.77 0.043 0.149 0.883 0.148 0.338 0.072 0.954 

High 

Oil 285.8 365.1 401.2 463.9 471.3 376.4 258.2 61.2 46.6 44.3 68.0 

Casein-Emulsion 519.9 606.2 892.2 634.3 928.8 572.1 90.1 147.2 91.7 84.6 68.7 

Whey-Emulsion 486.5 551.3 865.1 560.0 923.1 535.3 83.8 145.8 74.8 74.4 47.4 

p valuea 0.106 0.125 0.008 0.55 0.025 0.158 0.888 0.009 0.178 0.133 0.874 
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Consequently, it was concluded the experimental setup proved to be unsuitable to evaluate 

potential interactions between epoxy fatty and proteins and that a different approach was 

necessary.  

6.3.2 Experiments with methyl cis-9,10-epoxystearate in C7-triglycerol oil 

Because there was no definite trend in the behaviour of the EFAs that were being detected, a 

further experiment was performed which involved spiking a known amount of a single 

saturated EFA (cis-9,10-epoxystearate) isomer in a C7 triglyceride (triheptanoin). The 

systems investigated involved oil-in-water emulsions (3 vol% C7 triglyceride) stabilised by a 

mixture of either commercial sodium caseinate or whey protein isolate. A second set of 

emulsions was prepared as well containing the same proteins and the non-ionic emulsifier 

polyoxyethylene sorbitan monolaurate (Tween 20). The initial EFA content of the 

triheptanoin was analysed and it was found not to have any C18-EFAs. The results obtained 

in this experiment are shown in Table 6.3. 

Table 6.3: Methyl cis-9,10-epoxystearate (µg g-1 of oil) content in 3% C7-triglyceride 

emulsions incubated in the dark at 5°C for 24 h 

Sample        EFAs 

Original EFA spiked 281.1 ± 2.77ab 

Casein emulsion 254.4 ± 18.60b 

Casein-Tween 20 emulsion 271.2 ± 16.59ab 

Whey emulsion 300.1 ± 18.94a 

Whey-Tween 20 emulsion 280.9 ± 18.10ab 

Values with different superscripts in a same column are significantly different (p < 0.05) 

As can be observed for none of the emulsions a significant decrease in the cis-9,10-

epoxystearate content could be observed. It should be noted that also no other EFAs were 

observed in the chromatograms. In case of the Tween 20 stabilized emulsions less interaction 

between the EFAs and proteins was expected, as competitive displacement of for instance 

caseins by Tween 20 from interfaces in emulsions has been demonstrated (Courthaudon, 

Dickinson, & Dalgleish, 1991; Courthaudon, Dickinson, Matsumura, & Clark, 1991; 

Dickinson & Gelin, 1992; Mackie, Gunning, Wilde, & Morris, 2000; Wilde & Clark, 1993). 



 

138 

 

In absence of Tween 20 however, proteins are present in the interphase and as such should 

indeed be able to interact with the epoxystearate. No significant reduction however was 

observed, either using caseins or whey proteins. This observation was not expected based on 

the generally reported reactivity of epoxides as discussed in Chapter 1 (section 1.6.2, Scheme 

1-10).  

However, by a more detailed literature search with respect to the reactivity of epoxides, the 

observations could be explained. The reactivity of epoxides and other potentially electrophilic 

oxidized species originating from organic molecules has been carefully studied in the 

framework of allergic contact dermatitis towards organic components present in fragrances. 

Contact dermatitis develops after a primary sensitization of the skin to the compounds of 

interest. As the molecules involved are not immunogenic as such, because of their low 

molecular weight, they should enter the epidermis and react with the proteins present, due to 

which a hapten is produced. These immunogenic haptens trigger then the sensitization 

reaction, after which the contact allergy develops. A key element determining the allergic 

potential of the low molecular weight organics is consequently their reactivity to proteins 

(Karlberg, Bergström, Börje, Luthman, & Nilsson, 2008; Nilsson, Bergström, Luthman, 

Nilsson, & Karlberg, 2005; Roberts et al., 2017).  

Proteins can be considered as nucleophiles, because of the presence of a variety of 

nucleophilic side chains in the amino acids: SH group (in cysteine), NH2 group (in lysine and 

arginine), OH group (in tyrosine, threonine and serine) and the ε-NH group (in histidine). 

Therefore, it is obvious that the stronger the electrophilic character of the organic molecule 

present in for instance a fragrance, the more potent it can be as a contact allergen (Karlberg et 

al., 2008). Consequently, an LC-MS based assay was developed to evaluate the reactivity of a 

model peptide to chemicals in order to have an in vitro prediction of their skin sensitization 

potential (Natsch & Gfeller, 2008). Recently a quantitative mechanistic model has been 

developed as well specifically for epoxides to evaluate their structure-potency relationship in 

allergic contact dermatitis (Roberts et al., 2017). This model was based on plenty of 

experimental data from literature. These data allowed to derive the following conclusion with 

respect to the reactivity of epoxides towards proteins. 

As already explained in Scheme 1-10 (chapter 1, section 1.6.2), epoxides are typically SN2 

electrophiles and although the ether oxygen is a poor leaving group, its reactivity is enhanced 
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by the tension in the ring. Electronegative substituents however will also enhance the 

reactivity, because the developing negative charge on the oxygen atom during the 

nucleophilic substitution reaction is stabilized. Therefore, and also because of steric reasons, 

the reactivity is higher at primary carbons, compared to secondary and tertiary carbon atoms. 

In EFAs, the reactive carbon center is secondary. More important even is the observation that 

especially in open chain compounds, allylic (and benzylic) carbon centers are more reactive 

than saturated ones (Roberts et al., 2017). This can be illustrated with one particular example 

taken from the study of (Bergström, Luthman, Nilsson, & Karlberg, 2006), who evaluated the 

sensitizing capacity of a number of monoterpenes or similar compounds and their oxidation 

products (Scheme 6-2). 

   

Scheme 6-2: Classification of various epoxides according to their skin sensitizing 

capacity. (7R)-7-isopropenyl-4-methyl-1-oxaspiro[2.5]oct-4-ene (1), (4S)-1,2-epoxy-4-

isopropenyl-1-methyl-6-methylene-cyclohexane (2), 6-Isopropyl-1-oxa-spiro[2.5]octane 

(3), (+)-limonene oxide (4) and (4R,7R)-7-Isopropenyl-4-methyl-1-oxa-spiro[2.5]octane 

(5) (based on Bergström et al., 2006). 

These observations most likely imply as well that the allylic epoxide in Scheme 6-3 is much 

more reactive than the homo allylic epoxide. Saturated epoxides are probably even less 

reactive.  

 

Scheme 6-3: Supposed reactivity of allylic, homo allylic and saturated epoxides towards 

nucleophiles 

Given that the epoxy fatty acid evaluated in this study was a fully saturated one, it is probably 

not surprising that its reactivity to proteins in the model system used, was not significant.  

Similarly, in view of the EFAs formed and detected in all the samples investigated in this 
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study, it could be suggested that the EFAs formed in foods from most of the unsaturated fatty 

acids are expected to be rather stable towards proteins. The only exception could be the EFA 

which can be formed from conjugated linoleic acid, which would give rise indeed to a more 

reactive allylic epoxide. 

6.4 CONCLUSIONS  

Unexpectedly, methyl cis-9,10-epoxystearate present in triheptanoin proved to be stable when 

emulsified in the presence of proteins. If an oxidized oil was emulsified in the presence of 

proteins, an overall increase in the EFA content of the lipid phase was observed, although it 

should be noted that for some particular EFAs a decrease was observed. However, as 

observed also in other studies in our research group, the oxidation process is proceeding upon 

emulsification of an (oxidized) oil, so this experimental approach was considered unsuitable 

for its purpose.  

In view of the studied reactivity of other epoxides present in biological matrices, i.e. 

produced during the oxidation of terpenes present in fragrances, the observed lack of 

reactivity of a fully saturated EFA towards proteins is however not surprising. In fact, allylic 

epoxides are only expected to show a high reactivity, which suggests that also unsaturated 

EFA, which are mostly homo allylic epoxides, would be rather stable in the presence of 

proteins. This seems to be in line with the relatively high levels of EFA observed in 

composite food matrices as reported in Chapters 3 and 4. Additional experiments using a 

similar experimental approach as the one used for the saturated EFA, but using instead an 

unsaturated, homo allylic EFA should corroborate this hypothesis. 
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CHAPTER  

7 GENERAL DISCUSSION, CONCLUSIONS AND 

PERSPECTIVES
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GENERAL DISCUSSION, CONCLUSIONS AND PERSPECTIVES 

In the first part of this research the available literature on EFAs was evaluated and after a 

critical review of the available data and information it was found that there are many missing 

links especially in the area of analysis and mechanistic studies of EFAs in foods. These fatty 

acids occur naturally and some are produced during lipid oxidation as secondary products. In 

chapter 1, it was noted that EFAs had been identified in 1954 by Gunstone. It was observed 

that the available research about EFAs was old and yet reports indicate that these compounds 

form in high amounts during lipid oxidation especially at frying temperatures. It was also 

observed that the epoxidation reaction which leads to the synthesis of these fatty acids was a 

well-established and a simple reaction to perform at laboratory level. However, analytical 

methods available in literature indicated the necessity for improving the available methods. 

Although toxicity of these compounds had been elucidated by some researchers, no risk 

assessment study had been done. There was no mechanistic study on the formation and the 

reactivity or interaction of the EFAs identified. Based on these identified gaps, it was decided 

that the study should concentrate on development of better analytical methods and perform 

some mechanistic studies to investigate the formation and interaction of EFAs with other 

food components. Sensitive and reliable analytical methods would be a pillar in this study 

area which is still open to further research and this would facilitate investigations into the 

behavior of these compounds.  

As described in Chapter 2, the developed improved analytical method was based on room 

temperature transmethylation using sodium methoxide of the fatty acids with a FAME as an 

IS, because the epoxy ring is known to be sensitive to acid and heat which lead to its opening. 

This was followed by a three step SPE separation of all the methyl esters present in order to 

remove the big part of the non-oxidized FAMEs which could co-elute with the EFAs and thus 

lead to over estimation of the analytes. Instrumentation for the analysis of EFAs was based on 

GC-FID with a polar capillary column equipped with a precolumn which reliably separated 

EFAs in fresh oils and led to accurate quantification. Qualitative analysis was based on a GC-

MS full scan in electron ionization mode operating in nearly the same conditions as those of 

the GC-FID. The outcome was an accurate and reproducible analytical method that could 

provide reliable quantification data of analytes at low concentrations. Twelve C18 mono EFA 

isomers were well separated and could be identified on GC-MS. Thus, the separation proved 

to be isomer (place and stereochemistry) specific. Results obtained for the total EFAs content 
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in fresh oils were in the range 0.03-2 mg g-1 of oil with repeatability coefficient of variation 

(CV) ranging from 2.8 to 9.9% for duplicate analysis. Such a reliable method would be 

important in further studies focusing on the formation of specific isomers which would allow 

getting information on how EFAs form. Although this study was mainly aimed at quantifying 

EFAs, it laid a good foundation for the analysis of other oxygenated fatty acid especially 

hydroxyl and oxo fatty acids. Whereas EFAs could be analysed on a polar capillary column 

without further derivatisation, hydroxyl fatty acids required silylation to be analysed. Due to 

the presence of polar polymerized fatty acid methyl esters, it was always necessary to use a 

pre-column to protect the capillary column.  

The presented method is expected to be easily extended to the analysis of other mono-EFAs. 

Especially the analysis of EFAs originating from long chain polyunsaturates present in fish 

and algae oil could be very interesting. Extension of the method to EFAs with multiple epoxy 

groups in their chain would require a more substantial elaboration. It is expected that the 

column used, would be too polar and thus multi-epoxy fatty acids would require very long 

elution times. Thus, the use of a less polar column would probably be necessary. In addition, 

it is expected that a further elaboration of the SPE cleanup procedure is required. 

In Chapter 3, a universal analytical method that could analyse EFAs in different food 

matrices was developed. This was based on the Bligh and Dyer analytical method for the 

extraction of lipids from different matrices. The initial Bligh and Dyer method was meant to 

use chloroform, but due to the limitations of this compound which includes being toxic and 

carcinogenic, the method was optimised for use of dichloromethane which is a less toxic 

chemical. As an improvement from the first method which used a FAME as an IS, this 

method used a synthetic EFA methyl ester (C17:0), which was in-house synthetized using an 

epoxidation reaction. The advantage for using this IS was that more reliable analytical results 

could be got because the IS could be added at the beginning of the extraction process. This 

step would further correct all the analytical uncertainties. This method was in-house validated 

in several food matrices and it was judged as reliable. It is considered evident the approach 

presented would also fit for the purpose of analysing other oxygenated lipid species in foods, 

such as hydroxy or oxo-fatty acids, if appropriate internal standards are used.  

An exposure assessment was one of the main parts of this research as presented in Chapter 

4. To evaluate the dietary exposure of the population to the EFAs, consumption data of 
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specific food groups as well as their contamination levels in a representative and substantial 

number of samples were computed. Concentration data were obtained from analyzing 17 

food groups which were categorized as either of animal or plant origin, resulting in almost 

400 samples. Once the analytical methods were developed and validated, screening of 

specific food groups available on the Belgian market was performed and the amount of EFAs 

was computed. The analysed foods were purchased from the Belgian market as fresh when 

required. Consumption data were obtained from the Belgian National Food Consumption 

Survey (BNFCS) conducted in 2004. Based on the consumption data obtained from the 

BNFCS and the concentration data for each food, an exposure assessment was performed. At 

this point it should be noted that twelve isomers of mono EFAs can be detected in foods 

which originate from oleic, linoleic and linolenic fatty acids. This fact coupled with the 

natural occurrence of EFA already reported, may explain the high amounts of EFAs that can 

be quantified especially in oils that have more C18:1 and C18:2 fatty acids. The EFAs 

consisted especially of cis stereoisomers (these detailed results were not shown in the 

particular chapter). 

Food categories with the highest contribution to the intake of EFA were mayonnaise, butter-

margarine and ready to eat meals. On the other hand, consumption of meat products 

especially cooked meat, smoked salmon and raw ham had the lowest contribution to the 

intake. The intake from milk was high mainly because of the average consumption of milk 

which is high. Due to lack of specific toxicological data, the Threshold of Toxicological 

Concern value was applied to characterize the risk. EFAs are classified as group III 

compounds based on Cramers method and have a TTC value of 1.5 µg kg-1 bw day-1 which 

was used to infer about the risk posed. Based on the levels of exposure obtained from this 

approach, it was concluded that the consumers of the studied food categories might be at risk, 

because exposure was far above the defined TTC value for fourteen out of seventeen 

analysed foods. This study did not consider the presence of EFAs originating from very long 

chain PUFAs, which are expected to be present in fish and processed fish and similar 

products. It is obvious that this study revealed a potential safety concern with respect to the 

ubiquitous presence of EFAs in our diet, but it is obvious that a better insight in the 

toxicological properties of these compounds is necessary in order to come to more firm 

conclusions. Combined with the exposure of other lipid oxidation products however, it is 

obvious that lipid oxidation is a process of potential health concern.  
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To obtain an insight into the formation of EFAs in food systems, the study presented in 

Chapter 5 was carried out. In this study, formation of epoxy fatty acids (EFAs) from oleic, 

linoleic and linolenic acids was investigated in different oil blends during photosensitized 

oxidation (at 6°C in the presence of chlorophyll and its degradation products), photoxidation 

(at 6°C) and autoxidation (at 70°C). Results indicated that initially hydroperoxides were 

produced, followed by the production of the EFAs. Formation of EFA proved to occur in a 

stereospecific manner and in addition only specific place isomers of EFA were formed. On 

basis of these observations, it was suggested that EFA are most likely produced as a result of 

a 1,3 cyclisation of the hydroperoxide radical or alkoxide radical to the double bond of the 

oxidizing fatty acid, resulting initially in the formation of cis stereoisomers. Upon progressive 

oxidation a radical supported cis-trans isomerization is suggested resulting into an increasing 

trans/cis ratio. The generally accepted route of formation of EFAs could not be supported on 

basis of our experimental data.  

Many other lipid oxidation products especially aldehydes such as malonaldehyde are known 

to interact with biological materials to cause cellular damage by cross linking and reacting 

with amino groups of enzymes, proteins and DNA resulting in conjugated Schiff bases which 

lead to loss of functionality. Epoxy compounds are known to be highly reactive compounds 

due to the presence of the epoxy ring, so EFAs should further be investigated in some models 

especially where proteins are involved given their nucleophilic character. This will give 

insights into the reactivity of EFAs. In chapter 6 preliminary experiments into this area 

revealed that when proteins were added to oxidizing lipids containing EFAs, that the final 

EFA content could either increase or decrease. This indicates that proteins have an impact on 

the formation of EFAs from hydroperoxides, which implies that the lipid oxidation pathway 

in pure oils differs from the pathway occurring in composite foods. If a pure EFA was added 

to a saturated oil in which no EFA could be generated, no interaction between the EFA and 

proteins upon emulsification and storage could be observed. This could imply that EFAs are 

unexpectedly and potentially quite stable indicators for the oxidation process. 

As a future perspective, since the study focused on C18 mono EFAs, the optimisation of the 

analytical methods for determining C20 and longer chain EFAs is timely. Also, there is a 

need to develop a method that can analyse the free EFAs so as to be able to get the total EFAs 

that can be available in a food. Methods to analyse free fatty acids are available and these can 

be extended to free EFAs analysis. The challenge of separating these closely related 
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compounds can still be over come by optimizing the currently used solvent systems for the 

analysis of free fatty acids. The final quatification can be by GC analysis on a Nukol column 

without methylation or other columns after methylation.  

EFAs are potentially stable final products resulting from the decomposition of primary 

oxidation compounds. However, because of the presence of double bonds, they can undergo 

further oxidation. The method could be extended to modified EFAs, but also to hydroxy or 

oxo fatty acid analysis although this will involve optimisation of nearly all the analytical 

conditions. 

Furthermore, a great contribution for a more accurate risk assessment could be the 

availability of specific toxicological data, preferably involving in vivo and in vitro toxicity 

studies such that the final assessment is based on a more specific value than a TTC value. 

Since hydroxy fatty acids occur in high amounts according to literature, it would be 

interesting to do a risk assessment of these compounds and this can be extended to the oxo 

fatty acids as well. 

Another further perspective on formation of EFAs, it is recommended that more detailed 

studies in the area of EFA formation be done. Also, such studies should involve kinetic 

studies on pure fatty acids to try and validate the integrated lipid oxidation pathways already 

referred to in literature. The current approach in this study was to begin with simple models, 

i.e. oils. In Chapter 6 the first step towards studies in more complex matrices was made via 

the introduction of proteins in an emulsions system. It is clear that the formation of EFAs in 

such more complex systems via the various oxidation modes applicable is worthwhile to be 

investigated.  

It is still not clear why fresh oils contain generally a relative high EFA content. The oil 

refining process is one of the possible routes of formation which should be studied. A 

detailed investigation into the oil processing chain to be able to give a material balance along 

the chain is recommended. This may reveal interesting formation routes, whether the EFAs 

are endogenous or whether they form down the chain during processing. Steps like bleaching 

which involve use of activated clays are known to remove hydroperoxides from the crude 

feedstock. However, it is obvious that disappearing does not exist. It implies that 

hydroperoxides are adsorbed or converted to other compounds. Given however the acidic 
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character of these bleaching earths and the known sensitivity of EFA hydrolysis in acidic 

conditions, it remains unclear if the bleaching step is part of the origin or potentially part of 

the solution of the presence of EFAs in oils and fats. If toxicological research indicates that 

EFAs are indeed a relevant food safety issue, it is clear that refining technology is a potential 

key element in the solution of it.  

On interaction of EFAs with proteins, it is recommended that better experimental designs 

which should include factors like temperature, time, pH and antioxidants need to be 

investigated. The use of different pure EFAs isomers should be investigated separately since 

reactivity seem not only to depend on the position of the epoxy ring but also on the degree of 

unsaturation, position and type of other groups attached to the backbone fatty acid chain. 

Finally, a totally different outreach can be suggested given the straightforward way in which 

epoxy fatty acid standards were made in the laboratory throughout this study. 

Hydroperoxides (i.e. hydrogen peroxide and peracetic acid) are frequently used disinfectant 

reagents in various biocides. Residues of these highly reactive substances may come in 

contact with foodstuffs, or foods may be even treated directly with these agents for 

microbiological reasons. It is basically impossible to trace back the use these peroxides as in 

view of their high reactive character no residues of the substances as such are remaining in 

the food. It would be interesting to explore if EFAs are eventually produced as a result of 

such a treatment or the presence of a residual amount, and thus could be used as a relevant 

indicator. 
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Table 8.1: Composition of the oil blends studied in Chapter 5 

Sample type Sample code Composition 

Stripped blends 

A Stripped refined olive oil + virgin olive oil 

B Stripped sunflower oil + virgin olive oil 

C Stripped linseed oil + virgin olive oil 

D Stripped refined olive oil 

E Stripped sunflower oil + stripped refined olive oil 

F Stripped linseed oil + stripped refined olive oil 

Non-stripped blends 

A' Refined olive oil + virgin olive oil 

B' Sunflower oil + virgin olive oil 

C' Linseed oil + virgin olive oil 

D' Refined olive oil 

E' Sunflower oil + refined olive oil 

F' Linseed oil + refined olive oil 
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Table 8.2: EFAs content (µmol kg-1) of stripped oils blends during oxidation in the dark at 6°C 

 

LOD, level of detection; ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate. 

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = 

stripped linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped 

refined olive oil; F = stripped linseed + stripped refined olive oil. 

 

Epoxy fatty acids 

 Blend1 

Storage 

time 

(days) 

trans-

9,10-

ES 

cis- 

9,10-

ES 

trans-

12,13-

EO 

cis- 

12,13-

EO 

trans-

9,10-

EO 

cis-

9,10-

EO 

trans-

12,13- 

EOL 

cis -12,13 & 

trans- 9,10-

EOL 

cis- 

9,10- 

EOL 

trans- 

15,16- 

EOL 

cis-

15,16 -

EOL 

A 

 

0 47.4 542.6 <LOD 48.4 <LOD 77.1 <LOD 47.1 6.5 <LOD 7.8 

12 ND ND ND ND ND ND ND ND ND ND ND 

19 23.1 453.8 <LOD 36.8 5.2 60.6 <LOD 30.2 7.8 <LOD 7.1 

27 19.6 335.9 2.6 24.2 1.9 41.3 7.8 27.6 5.2 <LOD 4.2 

43 28.5 478.8 3.9 43.9 4.8 68.4 <LOD 33.8 9.4 <LOD 5.2 

54 26.9 455.4 6.5 40.6 4.5 79.4 <LOD 31.8 10.1 <LOD 2.9 

B 

 

0 23.4 411.5 <LOD 159.7 <LOD 207.4 <LOD 32.5 0.0 <LOD 0.0 

12 ND ND ND ND ND ND ND ND ND ND ND 

19 21.2 346.8 4.5 102.3 16.5 159.7 <LOD 33.4 0.0 <LOD 44.2 

27 34.0 270.2 <LOD 61.0 <LOD 111.6 25.0 39.3 <LOD <LOD <LOD 

43 26.0 394.2 <LOD 131.0 <LOD 185.8 <LOD 31.5 <LOD <LOD <LOD 

54 42.6 398.1 <LOD 127.4 <LOD 224.5 <LOD 41.6 <LOD <LOD <LOD 

C 

 

0 25.3 282.7 <LOD 36.8 <LOD 51.0 <LOD 115.9 118.5 <LOD 117.9 

12 ND ND ND ND ND ND ND ND ND ND ND 

19 31.1 301.0 1.9 33.9 2.6 56.5 5.8 121.8 134.1 6.5 125.3 

27 26.3 213.8 2.6 19.0 2.3 37.1 1.3 66.9 72.7 1.6 67.2 

43 35.3 343.6 3.1 40.9 2.5 66.5 4.9 139.8 152.4 8.4 145.3 

54 33.0 308.3 2.9 33.2 5.5 69.0 3.2 119.2 143.2 7.1 118.5 

D 

 

0 7 67.6 <LOD 11.0 <LOD 19.4 <LOD <LOD <LOD <LOD <LOD 

12 ND ND ND ND ND ND ND ND ND ND ND 

19 4 50.6 <LOD 6.8 <LOD 11.0 <LOD <LOD <LOD <LOD 35.1 

27 4 44.2 3.2 5.2 <LOD 9.7 11.0 3.6 <LOD 0.0 <LOD 

43 5 55.1 1.6 6.5 <LOD 11.9 <LOD <LOD <LOD <LOD <LOD 

54 6 51.6 <LOD 11.0 <LOD 15.5 <LOD <LOD <LOD <LOD <LOD 

E 

 

0 18 62.8 <LOD 41.3 <LOD 65.8 <LOD <LOD <LOD <LOD <LOD 

12 ND ND ND ND ND ND ND ND ND ND ND 

19 6 43.9 <LOD 24.8 <LOD 49.7 <LOD <LOD <LOD <LOD 16.9 

27 14 40.1 <LOD 23.2 <LOD 39.7 <LOD <LOD <LOD <LOD <LOD 

43 8 41.3 <LOD 28.1 <LOD 38.1 <LOD <LOD <LOD <LOD <LOD 

54 <LOD 59.6 <LOD 33.9 <LOD 70.3 <LOD <LOD <LOD <LOD <LOD 

F 

0 14 64.7 <LOD 22.3 <LOD 35.5 9.1 43.8 52.3 6.2 48.4 

12 ND ND ND ND ND ND ND ND ND ND ND 

19 30 86.5 10.3 21.6 12.3 41.6 16.6 86.0 92.9 22.1 87.7 

27 46 101.3 17.1 25.8 12.6 45.5 31.5 110.4 114.9 27.9 111.4 

43 84 133.0 32.6 36.5 31.9 51.9 63.3 162.3 151.0 74.0 129.5 

54 111 222.4 46.8 62.9 42.9 110.3 100.3 261.4 246.4 114.9 198.4 
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Table 8.3: EFAs content (µmol kg-1) of stripped oils blends during oxidation under 

illumination at 6°C 

Epoxy fatty acids 

Blend1 

Time 

(days) 

trans-

9,10-ES 

cis- 9,10-

ES 

trans-

12,13-EO 

cis- 

12,13-

EO 

trans-

9,10-EO 

cis-9,10-

EO 

trans-

12,13- 

EOL 

cis -12,13 

& trans- 

9,10-EOL 

cis- 

9,10- 

EOL 

trans- 

15,16- 

EOL 

cis-15,16 -

EOL 

A 

0 47.4 542.6 <LOD 48.4 <LOD 77.1 <LOD 47.1 6.5 <LOD 7.8 

12 37.8 583.3 <LOD 114.2 41.9 161.0 4.5 60.1 48.7 <LOD 22.4 

19 30.1 785.3 <LOD 83.5 36.8 147.7 15.9 47.1 115.9 <LOD 15.9 

27 66.3 921.5 7.1 145.2 117.4 191.0 14.3 76.0 87.0 89.6 42.9 

43 94.6 844.2 <LOD 144.2 80.3 175.2 <LOD 72.7 152.9 87.3 <LOD 

54 100.3 784.6 <LOD 122.3 107.7 158.7 <LOD 81.5 131.2 62.7 <LOD 

B 

0 23.4 411.5 <LOD 159.7 <LOD 207.4 <LOD 32.5 <LOD <LOD <LOD 

12 35.9 543.9 9.0 218.1 25.8 358.4 13.0 32.1 28.6 <LOD 16.6 

19 46.5 565.1 4.8 216.1 63.2 404.5 24.0 50.3 29.5 <LOD 48.4 

27 69.6 500.3 21.3 209.0 106.5 335.5 44.5 56.2 53.2 65.3 <LOD 

43 37.2 532.7 27.1 260.6 65.8 415.5 <LOD 69.2 173.1 96.1 <LOD 

54 51.0 605.8 30.0 337.4 103.9 538.4 <LOD 58.8 48.1 40.3 <LOD 

C 

0 25.3 282.7 <LOD 36.8 <LOD 51.0 <LOD 115.9 118.5 <LOD 117.9 

12 39.1 477.2 5.2 57.4 8.1 114.8 30.8 221.4 352.3 13.0 244.5 

19 42.6 454.2 3.9 65.8 29.4 114.2 24.4 223.1 346.1 17.2 237.7 

27 53.2 407.4 4.2 62.3 22.6 98.7 18.5 203.9 282.1 26.9 195.5 

43 62.5 485.3 20.3 59.0 29.4 118.7 44.8 239.0 300.0 32.1 230.8 

54 64.7 569.2 7.1 76.5 23.5 148.7 39.6 316.9 393.5 42.9 284.4 

 

D 

0 7.1 67.6 <LOD 11.0 <LOD 19.4 <LOD <LOD <LOD <LOD <LOD 

12 46.8 228.5 9.4 37.7 10.6 58.1 <LOD 6.2 7.5 <LOD 7.5 

19 77.2 192.0 18.7 29.4 23.2 49.7 <LOD 3.9 60.7 <LOD 22.1 

27 145.5 260.3 32.3 44.8 32.9 63.2 2.6 6.5 51.9 3.2 9.7 

43 325.0 397.4 67.1 71.6 66.8 98.4 <LOD 10.4 112.7 <LOD 18.2 

54 444.6 461.5 84.2 51.3 82.3 85.5 <LOD <LOD 129.9 <LOD 8.4 

 

E 

0 17.6 62.8 <LOD 41.3 <LOD 65.8 <LOD <LOD <LOD <LOD <LOD 

12 9.0 131.4 8.1 72.6 15.5 134.5 <LOD 5.8 3.9 <LOD 19.5 

19 41.7 131.7 30.6 80.6 32.3 142.6 <LOD <LOD <LOD <LOD <LOD 

27 69.9 175.0 68.4 117.4 78.4 187.1 <LOD <LOD 111.4 <LOD <LOD 

43 168.9 301.3 156.8 212.3 175.2 311.0 <LOD <LOD <LOD <LOD <LOD 

54 222.4 321.8 215.2 223.9 225.2 351.6 <LOD <LOD <LOD <LOD <LOD 

 

F 

0 14.1 64.7 <LOD 22.3 <LOD 35.5 9.1 43.8 52.3 6.2 48.4 

12 66.0 163.5 21.9 36.1 16.5 60.3 44.8 166.9 180.8 51.3 163.0 

19 78.5 149.4 29.4 30.6 22.6 58.1 57.1 178.9 139.9 75.6 127.6 

27 133.3 199.7 48.4 57.1 52.3 80.0 120.1 253.2 205.5 127.6 171.8 

43 267.3 271.8 107.7 94.2 101.6 108.4 248.1 424.0 225.0 270.5 207.1 

54 320.5 344.9 122.3 100.6 124.2 143.9 307.5 510.4 339.6 332.8 280.2 

 

LOD, level of detection; ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate. 

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = 

stripped linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped 

refined olive oil; F = stripped linseed + stripped refined olive oil. 
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Table 8.4: Epoxy fatty acids (µmol kg-1), of stripped oils blends during autoxidation at 

70°C 

LOD, level of detection; ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate. 

1Blend: A = stripped refined olive + virgin olive oil; B = stripped sunflower + virgin olive oil; C = 

stripped linseed + virgin olive oil; D = stripped refined olive oil; E = stripped sunflower + stripped 

refined olive oil; F = stripped linseed + stripped refined olive oil 

 

 Epoxy fatty acids 

 

Blend1 

Storage 

time 

(days) 

trans-

9,10-

ES 

cis- 

9,10-

ES 

trans-

12,13-

EO 

cis- 

12,13-

EO 

trans-

9,10-

EO 

cis-

9,10-

EO 

trans-

12,13- 

EOL 

cis -12,13 

& trans- 

9,10-EOL 

cis- 

9,10- 

EOL 

trans- 

15,16- 

EOL 

cis-

15,16 -

EOL 

A 

0 11.9 262.2 <LOD 17.4 <LOD 27.1 <LOD <LOD <LOD <LOD <LOD 

1 15.7 242.9 <LOD 18.1 <LOD 27.4 <LOD <LOD <LOD <LOD <LOD 

3 37.2 333.3 5.8 27.4 13.2 43.5 <LOD 24.4 0.0 0.0 <LOD 

5 59.3 334.3 6.5 26.1 <LOD 36.8 <LOD 31.2 <LOD <LOD <LOD 

B 

0 14.1 206.4 <LOD 66.5 <LOD 92.3 <LOD <LOD <LOD <LOD <LOD 

1 34.0 219.2 <LOD 69.0 <LOD 90.6 <LOD <LOD <LOD <LOD <LOD 

3 151.6 370.2 46.1 126.8 50.6 175.2 <LOD 26.6 <LOD <LOD <LOD 

5 136.2 342.3 71.6 130.3 74.8 164.8 <LOD 112.3 <LOD <LOD <LOD 

C 

0 11.2 184.6 <LOD 21.9 <LOD 33.2 <LOD 63.0 65.9 53.9 <LOD 

1 67.0 184.6 11.0 18.1 11.3 27.1 26.0 89.0 50.3 44.2 27.9 

3 244.2 387.5 51.9 62.6 60.6 81.3 140.3 314.3 193.8 159.4 148.7 

5 391.0 534.3 132.6 124.5 139.7 124.8 329.5 590.6 284.7 269.8 343.5 

D 

0 <LOD 26.6 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

1 330.1 162.5 54.2 21.0 54.2 27.1 <LOD <LOD <LOD <LOD <LOD 

3 3599.0 1415.1 542.3 202.9 611.6 196.5 64.0 159.1 121.4 36.7 25.3 

5 6184.3 2664.7 911.9 403.5 936.1 319.0 100.0 311.0 205.5 60.1 38.6 

E 

0 <LOD 30.1 <LOD 18.7 <LOD 30.3 <LOD <LOD <LOD <LOD <LOD 

1 268.6 173.4 193.9 90.0 195.5 122.9 <LOD <LOD <LOD <LOD <LOD 

3 1552.9 1050.3 1291.9 646.1 1332.9 666.1 26.0 97.4 79.5 14.0 12.0 

5 1928.2 1587.5 1676.8 1032.6 1713.2 952.6 <LOD 159.4 <LOD <LOD <LOD 

F 

0 <LOD 21.8 <LOD <LOD <LOD 9.7 <LOD 14.6 20.1 13.6 <LOD 

1 246.8 144.9 84.2 35.2 85.5 42.6 211.4 299.0 99.0 83.4 217.5 

3 1151.9 1226.3 442.6 369.7 437.7 342.9 984.1 1605.2 693.5 672.1 978.6 

5 1836.9 2754.2 679.0 781.3 677.4 703.5 1533.1 2752.3 1556.2 1471.8 1527.9 
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Table 8.5: Epoxy fatty acids  (µmol kg-1) of non stripped oil blends during autoxidation at 

70°C 

  

Epoxy fatty acids 

Blend 

Time 

(days) 

trans-

9,10-ES 

cis- 

9,10 

-ES 

trans-

12,13-EO 

cis- 

12,13-EO 

trans-

9,10-EO 

cis-9,10-

EO 

trans-

12,13- 

EOL 

cis -12,13 

& trans- 

9,10-EOL 

cis- 

9,10- 

EOL 

trans- 

15,16- 

EOL 

cis-15,16 

-EOL 

A' 

0 63.1 437.5 7.4 36.5 6.8 41.3 0.0 294.5 12.0 0.0 7.1 

1 68.9 505.8 8.1 50.0 3.9 51.9 0.0 314.9 13.3 0.0 33.4 

3 68.3 431.1 7.7 32.3 3.9 36.8 0.0 300.0 13.6 0.0 6.2 

5 75.3 549.4 7.4 43.2 4.2 48.1 0.0 308.4 17.2 0.0 7.5 

B' 

0 40.4 1559.0 15.8 389.7 16.8 3542.6 0.0 41.9 17.5 0.0 13.6 

1 53.2 1635.9 18.1 389.0 16.8 3615.5 0.0 71.1 16.6 0.0 10.7 

3 45.2 1576.3 20.6 371.9 22.6 3573.2 0.0 48.1 20.8 0.0 10.1 

5 66.3 1673.4 30.6 401.9 33.5 3636.8 0.0 50.3 22.1 0.0 14.0 

C' 

0 34.6 114.7 0.0 18.4 0.0 23.2 0.0 72.4 23.7 0.0 1709.4 

1 33.7 149.0 0.0 20.3 0.0 33.9 0.0 76.3 68.2 3.2 1763.0 

3 59.6 160.3 11.0 25.2 7.4 34.2 29.9 116.2 63.0 29.5 1721.4 

5 135.9 302.6 31.0 57.7 28.4 61.3 92.2 263.0 149.4 99.0 1817.5 

D' 

0 79.2 366.7 9.7 39.7 9.0 32.9 0.0 411.4 14.9 0.0 8.4 

1 84.6 367.0 8.7 38.1 4.8 38.1 0.0 422.4 17.9 0.0 70.5 

3 88.8 334.3 8.4 33.9 5.8 30.0 0.0 402.3 14.6 0.0 5.5 

5 102.2 351.3 11.9 36.8 7.4 35.2 0.0 444.5 15.3 0.0 5.2 

E' 

0 61.9 1589.4 16.1 351.9 19.4 3632.6 0.0 167.5 20.1 0.0 10.7 

1 65.1 1539.4 17.1 354.8 19.0 3580.3 0.0 159.4 18.5 0.0 10.7 

3 67.6 1638.1 22.3 359.0 24.5 3787.4 0.0 149.7 21.8 0.0 11.7 

5 92.3 1702.6 36.1 381.3 34.8 3814.5 0.0 174.0 22.4 0.0 11.7 

F' 

0 49.4 119.2 6.8 30.6 4.5 13.9 0.0 165.6 33.4 0.0 1733.1 

1 46.2 163.3 4.3 28.3 3.1 121.2 0.00 154.71 45.26 3.17 1631.3 

3 96.8 170.5 15.8 27.7 14.2 25.8 34.4 231.2 48.4 34.4 1783.4 

5 180.1 308.7 38.7 62.6 36.1 56.8 106.5 374.7 137.0 112.0 1809.7 

 

LOD, level of detection; ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate. 

1Blend: A' = refined olive oil + virgin olive oil; B' = sunflower oil + virgin olive oil; C' = linseed oil + 

virgin olive oil; D' = refined olive oil; E' = sunflower oil + refined olive oil; F' = Linseed oil + refined 

olive oil.
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Table 8.6: Percentage isomeric distribution (ID) of ES, EO and EOL on mole basis of 

the different non stripped oil blends during autoxidation at 70°C 

Isomeric Distribution 

  Oleic acida  Linoleic acida  Linolenic acida 

Blend1 

Storage 

time 

(days) 

trans-

9,10-

ES 

cis-

9,10-

ES  

trans-

12,13-

EO 

cis-

12,13-

EO 

trans-

9,10-

EO 

cis-

9,10-

EO  

trans-

12,13- 

EOL 

cis-

12,13 & 

trans-

9,10-

EOL 

cis-

9,10-

EOL 

trans-

15,16-

EOL 

cis-

15,16 -

EOL 

A' 

0 13 87  8 40 7 45  0 94 4 0 2 

1 12 88  7 44 3 46  0 87 4 0 9 

3 14 86  10 40 5 46  0 94 4 0 2 

5 12 88  7 42 4 47  0 93 5 0 2 

B' 

0 3 97  0 10 0 89  0 57 24 0 19 

1 3 97  0 10 0 90  0 72 17 0 11 

3 3 97  1 9 1 90  0 61 26 0 13 

5 4 96  1 10 1 89  0 58 26 0 16 

C' 

0 23 77  0 44 0 56  0 4 1 0 95 

1 18 82  0 38 0 63  0 4 4 0 92 

3 27 73  14 32 10 44  2 6 3 2 88 

5 31 69  17 32 16 34  4 11 6 4 75 

D' 

0 18 82  11 43 10 36  0 95 3 0 2 

1 19 81  10 42 5 42  0 83 3 0 14 

3 21 79  11 43 7 38  0 95 3 0 1 

5 23 77  13 40 8 39  0 96 3 0 1 

E' 

0 4 96  0 9 0 90  0 84 10 0 5 

1 4 96  0 9 0 90  0 85 10 0 6 

3 4 96  1 9 1 90  0 82 12 0 6 

5 5 95  1 9 1 89  0 84 11 0 6 

F' 

0 29 71  12 55 8 25  0 9 2 0 90 

1 22 78  21 31 18 30  0 9 2 0 89 

3 36 64  19 33 17 31  2 11 2 2 84 

5 37 63  20 32 19 29  4 15 5 4 71 

 

ES, epoxystearate; EO, epoxyoleate; EOL, epoxylinoleate.  

1Blend: A' = Refined olive oil + virgin olive oil; B' = Sunflower oil + virgin olive oil; C' = Linseed oil 

+ virgin olive oil; D' = Refined olive oil; E' = Sunflower oil + refined olive oil; F' = Linseed oil + 

refined olive oil.  

a As% total of the originating fatty acid for the EFA 
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