

Model-based analysis of the potential of macroinvertebrates as indicators for microbial pathogens in rivers

Rubén Jerves-Cobo, I. Nopens, P. Goethals

Ruben.JervesCobo@UGent.Be

13 February 2018

1-BACKGROUND AND OBJECTIVE (I)

- The quality of the water must accomplish standards.
 - drinking water, recreational purpose, Irrigation
- The indicators used to verify microbial contamination of water are:
 - total coliforms and fecal coliforms and/or Escherichia coli

1-BACKGROUND AND OBJECTIVE (II)

- Checking the fulfillment requires expensive and highly trained personnel in laboratories
- Biota works as a permanent monitor of water
- biological samples can :
 - reflect an increase in pollution.
 - predict average values of chemical parameters

Objective

 Introduce a quick way of checking the fulfillment of fecal coliforms standards using macrobenthos.

2- MATERIALS AND METHODS

LOCATION

GHENT

UNIVERSITY

DATA COLLECTION:

- Completed information on 33 locations

Physicochemical, hydraulic, microbiological

- Laboratory
 - BOD₅, COD, Nitrate + Nitrite, Ammonia, Organic Nitrogen, Phosphates, Total Phosphorus, Fecal and Total Coliforms, Real Color, Turbidity, Total Solids
- **Field:** Flow Velocity, Ph, Conductivity, Temperature, Dissolved Oxygen

Macrobenthos

39 families (taxa) found

Variables Variation

Ecuadorian Water Quality Regulation for Fecal Coliforms

Regulations	Water used to	Fecal Coliforms Limited Value MPN/100 ml		
Recreational	Recreational with primary contact	≤200		
Agriculture	Agriculture and Livestock	≤1,000		
Raw water	raw water previous to non-conventional treatment*	≤2,000		
* Conventional treatment refers to chemical addition, rapid mixing, flocculation and sedimentation				

BIOLOGICAL WATER QUALITY

- Biological Monitoring Working Party Index Col
- BMWP-Col = f(Sensitivity of Macrobenthos)
- Sensitivity -> 1-10 (Low High Sensitivity)

Class	Quality	BMWP	Color
I	Very Good	> 100	
Ш	Good	61 - 100	
Ш	Moderate	36 - 60	
IV	Deficient	16 - 35	
V	Bad	≤ 15	

Model development

Methodology Pruned Multi-target Clustering Trees (PMCT)

 Classification trees: searching for if-then rules (threshold values): 100% reliable and 'safe' models

Model Performance

- Models must be evaluated based on statistical and ecological criteria.
- Models must be as clear and simple as possible.

Settings

- Machine learning software: Waikato Environment for Knowledge Analysis (WEKA)
- Three, five, ten-fold cross validation (k fcv)
- Pruning process
 - Pruning confidence factors (PCF): 0.25, 0.10

Model Performance

- Confusion matrix from Decision Tree Models:

		Predicted Class	
		Yes	No
Observed	Yes	TP	FN
Class	No	FP	TN

- Correctly Classified Instances (CCI):> 0.70
- Cohen's Kappa Statistic: > 0.40
- False positive (FP = 0)

Model Optimization:

- Cost sensitive classifier (CSC): gives new weights in training instances FN, FP
- Overall confusion entropy of a confusion matrix (CEN): evaluates the confusion level of the class distribution of misclassified samples:

$$CEN = (P_1 + P_2)CEN_j$$

$$P_1 = \frac{TP + FN}{2(TP + FN + FP + TN)} \text{ and } P_2 = \frac{FP + TN}{2(TP + FN + FP + TN)}$$

Model Optimization:

$$CEN_{j} = -P_{FN}log_{2}P_{FN} - P_{FP}log_{2}P_{FP}$$

 $-P_j$: confusion probability of class j

 $- CEN_j$: confusion entropy of class *j*.

$$P_{FP} = \frac{FP}{FN + FP + 2TP} \text{ and } P_{FN} = \frac{FN}{FN + FP + 2TN}$$

- P_{FP} and P_{FN} are the misclassification probability of classifying the samples of class *i* to class *j* subject to class *j*
- Higher accuracy corresponds to lower confusion entropy

3- **RESULTS**

GHENT

UNIVERSITY

Fulfillment of Fecal Coliforms limits in relationship to water use

(a) Recreational with primary contact

(b) Agricultural - Livestock use and (c) raw water

Model Performance

First Model: Recreational water use with Primary Contact – Fecal Coliforms Regulation.

Model Optimization (1) Second Model: Recreational water use with Primary Contact – Fecal Coliforms Regulation.

Model Optimization (2)

Third model: Irrigation use and raw water previous to non-conventional treatment use - Fecal Coliforms Regulation.

- Three models were selected.
 - Two Models: fecal coliforms threshold in recreational with primary contact water use.
 - One Model: fecal coliforms limits in agricultural
 livestock water use, or raw water for drinking water treated with non-conventional processes.
- The cost-sensitive classifier (CSC) in the Weka can reduce false positives (FP) in the confusion matrix, improving the reliability of the resulting models.

Acknowledgement

- VLIR-UOS IUC Programme University of Cuenca
- VLIR Ecuador Biodiversity Network Project
- Council of the Machangara River Basin

Thank you

?