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   List of Abbreviations  
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Å angstrom, 10−10 metre or 0.1 nanometre 

ACN  acetonitrile  

AFM  atomic force microscopy  

AF488 Alexa Fluor 488 

AIBN  2,2’-azobisisobutyronitrile 

ATR-FTIR attenuated total reflection fourier transform infrared 

spectroscopy 

Au  gold  

AuNRs gold nanorods 

AuNPs gold nanoparticles 

BCE before the common era 
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C carbon 

C60 buckyballs 

CD circular dichroism spectrum 

CD4 T cells T helper cells 

CD8 T cells cytolytic T cells 

CDI 1,1’-carbonyldiimidazole 

CFSE carboxyfluorescein succinimidyl ester 

CNTs carbon nanotubes 

CNTs-COOH carboxylic acid functionalized carbon nanotubes 

CNTs-1 multi-wall CNTs with a length of 1-10 um 
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CNTs-2 single-wall CNTs with a diameter of 1.5nm and a length of     

1-5um 

CNTs-3 multi-wall CNTs with a diameter of 9.5 nm and a length of 

1.5um 

CNT-( OVA-AF488)  CNTs adsorbed with OVA-AF488 

CNT-protein  CNTs adsorbed with proteins 

CNTs-TA  CNTs which were pretreated by tannic acid 

CNTs-sonication CNTs which were pretreated by ultra-sonication  

-COOH carboxylic acids functional group 

CTA  chain transfer agent  

CTB-AF555 AlexaFluor555-labeled cholera toxin subunit B 

CTAB  cetyl trimethyl ammonium bromide  

CTLs cytotoxic T cells 

DC  dendritic cell  

DCM dichloromethane 

Demi Water (DI) deionized water 

DLS dynamic light scattering 

DMAc N,N-dimethylacetamide 

DMF  dimethylforamide  

DMSO  dimethylsulfoxide  

DNA deoxyribonucleic acid 

DP  degree of polymerization  

EDC-HCl N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride 

ESI electrospray ionization 

ESI-MS electron spray ionization-mass spectroscopy 

FA  formic acid  

FACS  fluorescent-activated cell sorting  

FBS  fetal bovine serum  

FCM  flow cytometry  

FITC  fluorescein isothiocyanate  
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FITC-BSA albumin–fluorescein isothiocyanate conjugate 

FL1-A+ the area under the fluorescence intensity curve by the first 

channel, FITC channel 

g-C3N4 graphitic carbon nitride 

GOx graphene oxide  

GOx~OVA graphene oxide coupling with OVA 

H hydrogen 

h hour  

HAuCl4  chloroauric acid  

h-BN hexagonal boron nitride 

HIV human immunodeficiency virus 

HPLC high performance liquid chromatography 

HPMA  N-(2-hydroxypropyl)methacrylamide  

HPMA-CI N-(2-hydroxypropyl)methacrylamide- carbonylimidazole 

HPMA-GA N-(2-hydroxypropyl)methacrylamide-glycolamide  

HSQC heteronuclear singular quantum correlation 

IFNγ interferon gamma 

IL13 interleukin 13 

IL17 interleukin 17 

K lysine 

LC-MS/MS  liquid chromatography–mass spectrometry / mass 

spectrometry  

LCST  lower critical solution temperature  

LEDs light-emitting diodes  

LYS lysozyme 

[M]  monomer  

M-GOx modified graphene oxide 

MHCI major histocompatibility complex class I molecules 

MHCII major histocompatibility complex class II molecules 

MIP maximum intensity projection 

MPLA mouse specific peripheral lymphocyte antigen 



LIST OF ABBREVIATIONS AND SYMBOLS 

4 

 

MRI magnetic resonance imaging 

MW-CNTs multi-wall carbon nanotubes 

N2 nitrogen 

NGO-PEG PEGylated nano graphene oxide 

NIR near infrared 

NMR  nuclear magnetic resonance  

NPs nanoparticles 

-OH hydroxyls functional group 

OT-I OVA-specific T-cell receptor transgenic CD8+ T cells 

OVA  ovalbumin  

OVA-AF488 AlexaFluor488 conjugated ovalbumin 

PAGE polyacrylamide 

PBS  phosphate buffered saline  

PEG polyethylene-glycol 

PMMA polymethylmethacrylate 

PSS poly(4-styrenesulfonic acid) sodium salt 

PVP polyvinyl pyrrolidone 

R arginine 

RAFT  reversible addition-fragmentation chain transfer  

R-GOx reduced graphene oxide  

RID refractive index detector 

RNA ribonucleic acid 

RT room temperature 

SEC size exclusion chromatography 

SEM scanning electron microscope 

SERS surface-enhanced raman scattering 

SPR surface plasmon resonance  

SW-CNTs single-wall carbon nanotubes 

TA  tannic acid  

TEM  transmission electron microscope  

TMDs transition metal dichalcogenides 
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UV-Vis  ultraviolet-visible  

0D zero dimensional 

1D one dimensional 

2D two dimensional 

3D three dimensional 
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The overall aim of this thesis is to investigate the potential biomedical applications of multi-

dimensional high-aspect ratio nanomaterials. 
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Part I 

General Introduction 

In the first part, the thesis provides a general introduction on the importance of materials 

science to our daily life. Particular attention is devoted to the biomedical applications of high-

aspect ratio nanomaterials such as carbon-derived multi-dimensional nanomaterials 

(fullerene, zero-dimension; carbon nanotubes, one-dimension; graphene and graphene oxide, 

two-dimension; graphite and diamond, three-dimension) and polymer-modified inorganic 

metal nanoparticles, i.e. gold nanorods. 

 

Part II 

The second part includes two chapters that deal with protein adsorption to high-aspect ratio 

carbon-derived nanomaterials, including One-Dimensional Carbon Nanotubes and Two-

Dimensional Graphene Oxide Nanosheets. 

Part II - chapter 1  

In the first chapter, carboxylic acid functionalized carbon nanotubes (CNTs-COOH) from 

different commercial sources will be evaluated. Ultra-sonication and tannic acid as a low 

toxicity dispersant will be tested to obtain stable CNT suspension that can further be used for 

protein adsorption. 

Part II - chapter 2  

The second chapter aims at the synthesis of water-soluble graphene derivative, i.e. graphene 

oxide nanosheets(GOx), that combines high-aspect ratio dimensions with hydrophilic 

functional groups such as hydroxyl and carboxyl groups. These GOx nanosheets will be 

investigated for their ability to adsorb the model protein antigens. Finally, we will investigate 

the interaction between antigen-adsorbed GOx nanosheets and dendritic cells in vitro.  
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Part III - chapter 3 

Part III of this thesis will investigate another type of high-aspect ratio nanomaterials, i.e. gold 

nanorods, that can be combined as an external light trigger to generate heat and induce 

phase transformation of a transiently thermo-responsive polymer. For this purpose, a 

synthetic bio-degradable polymer with upper critical solution temperature (UCST) behavior 

will be developed. 

 

In addition to the research chapters, this doctoral dissertation provides a prominent section 

to discuss the scientific findings in view of the broader international context of the conducted 

research and the future developments to be expected in this field. Additionally, this thesis 

will be concluded with a section that summarizes the overall findings.  
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Nano-materials 

Today, with the steady increase of our material life, from the basic necessities to the study of 

science and technology, we have become inseparable from materials and materials science. 

Even for the major historical periods of our society, we assorted them as stone age, bronze 

age, steel age (the industrial revolution) and polymer age, etc.. As the 21st century unfolds, 

we are not only striving to understand and modify the world around us but also looking 

forward to a better understanding, optimizing and application of advanced materials.  

 

 

Figure 1. Structural hierarchy of the gecko adhesive system. From macrostructure (A,B) to 
microstructure (C,D, and E). [1] 
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By suggesting the development of molecular machines, the seminal idea of “nanotechnology” 

was first proposed by Richard Feynman  at the meeting of the American Physical Society in 

1959.[2] The concept of “Nano” was then widespread used in most of the modern sciences. 

Decreasing the size into the nanoscale or assembling materials at nanoscale lead to a 

dramatic increase in the surface area, surface roughness and surface area to volume ratios 

which are important parameters that instigate material bulk properties.[3] Also in nature, 

many existing materials are nano-scaled such as cells, bacteria and viruses. Even some seem 

smooth materials to the naked eye, have intricate structures at the nanoscale, as shown in 

Figure 1.[1] The term ‘‘nanotechnology’’ was first used in a scientific publication “On the Basic 

Concept of 'Nano-Technology”  authored by Norio Taniguchi in 1974.[4] Thereafter, in parallel 

with the emergence of nanotechnology, the research on nanomaterials has also grown 

exponentially in the fields of materials science, biological and chemical science, biomedicine 

and drug delivery, etc..  

Nanomaterials, in principle can have any shape (e.g. nanoparticles, nanotubes, quantum dots, 

nanowires, nanofibers or nano-rods) and at least one dimension, including internal structure 

or surface structure, sized below 1000nm.[5] Although this field was in its relative infancy 

decades ago, at present, nanomaterials have already been used in a wide range of products 

such as sunscreens, composites, catalysts and medical devices.  

Comparing to the same material without nanoscale features, nanomaterials are developed to 

exhibit particular size and shape dependent properties such as unique optical, chemical 

reactivity, electronic conductivity and mechanical properties which are primary caused by 

surface and quantum effects.[6, 7] As nanomaterials are sufficiently small to confine their 

electrons and produce quantum effects, they often possess unexpected visual properties. For 

instance, different sizes gold nanoparticles appear deep red to black in solution.[8, 9] In the 

meantime, nanomaterials are also considered to be a bridge between bulk materials and 

atomic or molecular structures.[10] Today, we can easily synthesize a large amount of pure 

single composition nanomaterials but the ones that are found in nature are often 

agglomerated and with various compositions. Depending on the size of the agglomerate 

which is often occurred between the nanoscale materials, nanoparticles may behave as larger  
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entities. [11, 12] 

In the past, the general tendency was to consider all nanoparticles as being spherical in shape. 

However, since the advent of fibre toxicology of asbestos,[13] high-aspect ratio nanomaterials 

with a length many times of their width have attracted widespread attention by nanomaterial 

scientists. These fiber-like nanostructure can induce toxicity by casing lysosomal damage.[14] 

As a growth area in nanotechnology, elongated materials with nanometer length scales such 

as nanorods, nanowires, and nanotubes often result in inherent chemical, electrical, optical 

and magnetic anisotropy which make them attractive for biomedical applications.[13, 15, 16] 

Given their unique elongated shape, high-aspect ratio nanomaterials could interact with cells 

and biomolecules in fundamentally new ways.[17] By introducing multiple targeting units on 

their surface, one could enable multivalent interactions with receptors to enhance cellular 

internalization.[18, 19] Additionally, due to the magnetic anisotropy, high-aspect ratio 

nanomaterials could be used as improved contrast agents compared to their spherical 

analogues for the magnetic resonance imaging (MRI) applications.[20, 21] Both the length as 

well as aspect ratio of  high-aspect ratio nanomaterials play significant roles in their biological 

reactivity. Zhaoxia Ji and coworkers found that at lengths >200 nm and aspect ratios ≥ 22, 

CeO2 nanorods induced progressive pro-inflammatory effects and cytotoxicity in vitro.[14] In 

comparison, small nanorods or nanowires diameters (6-10 nm) with relatively low “critical” 

length and aspect ratio often possess strong van der Waals and dipole-dipole attractions 

which result in the formation of stacking bundles. The two main synthetic strategies for the 

preparation of the high-aspect ratio nanomaterials are often classified as direct synthesis and 

assembly method.[22-24] For the former route, tuning the reaction conditions or using 

templates could induced anisotropic growth. While, for the later assembly method, the 

anisotropy is achieved by assembly from individual building blocks. 

However, it is worth to point out that each material has its own advantages and 

disadvantages. Nanomaterials can offer exceptional new properties while also show signs of 

toxicity. Due to their small size, smaller than most of the cells and cellular organelles, they are 

clearly associated with health risks, some happened to be toxic to biological systems, some 

are relatively benign, while others confer health benefits.[5, 25-28] However, these toxic 
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properties of nanoparticles may be beneficial for medical diagnostics and treatment, as they 

are thereby able to fight disease at the cellular level, and hold potential of altering the 

interaction between therapeutic molecules and target cells or tissues to destroy cancerous 

cells. For example, chemical-functionalized fullerene can act as antioxidants[29, 30]. Carbon 

nanotubes and gold nanorods, the best known and studied of high-aspect ratio nanomaterials, 

owing to their fibrous shape with different nano-sized diameters, have the potential for 

human inhalation exposure.[14, 31, 32] 

Therefore, to limit the adverse health impacts of nanomaterials and drive their safety as well 

as utility to be better used in our biomedical applications, particular intelligent design and 

development of nanomaterials are urgently needed. Bearing this in mind, this thesis is 

focused on the biomedical applications of some high-aspect ratio nanomaterials such as 

carbon-derived multi-dimensional nanomaterials and polymer-modified inorganic gold-

nanorods.  
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Carbon-Derived Multi-Dimensional Nanomaterials 

Carbon, a very common element which comes from the Latin carbo for “coal and charcoal”,[33] 

is almost present everywhere in our universe such as atmosphere, crust and living organisms. 

By mass, it is the fourth most abundant element after hydrogen, helium, and oxygen in the 

universe and the second in our human body (about 18.5%) after oxygen.[34] Carbon has long 

been known and used, the earliest human civilizations known of carbon was in the forms 

of soot and charcoal in prehistory. In 1789, Antoine Lavoisier listed carbon as a chemical 

element with symbol C in the Periodic table of elements IV A.[35, 36] This element can form 

bonds by itself and has the ability to arrange and rearrange its atoms in chains and rings. The 

different ways carbon atoms arrange leads the different carbon substances.[37, 38] The use of 

carbon is almost unlimited for it is capable to be very soft as graphite or very hard as 

diamond.[39, 40] Therefore, the utilizing of carbon and its allotropes (the material is made of a 

pure substance or element with a few differences in atom formation) has grown exponentially 

in almost all of the industrial and academic fields.[41-43] 

 

Figure 2. Schematic structures of zero-dimensional material (0D), Fullerene(A); one-dimensional 
material (1D), Carbon Nanotube(B); two-dimensional material(2D), Graphene (C); and three-
dimensional materials(3D), Graphite(D) and Diamond(E). 
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In the 20th century, a series of exciting carbon-based nanomaterials are arising. Taking the 

number of their dimensions into account, carbon-derived nanomaterials could be classified, 

as shown in Figure 2., from zero-dimensional materials (0D) like fullerene to one-dimensional 

materials (1D) (including carbon nanowires, nanotubes and nanofibers), two-dimensional 

materials (2D) such as graphene and graphene oxide and three-dimensional materials (3D) 

which are rich in nanostructures but exceed the nanoscopic size in all of the three 

dimensions.[39] Their nano-level size and unique structures result in excellent mechanical 

strength, electrical and thermal conductivity, and optical properties. All of these 

advantageous properties have attracted tremendous attention and much of the research 

efforts have been focused on their utilizing. Additionally, due to their multi-functional nature, 

carbon-derived nanomaterials are regarded as highly attractive biomaterials for biomedical 

applications and breakthroughs.   
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Zero-dimensional (0D) carbon-derived nanomaterials.  

Zero-dimension (0D) starts form a point which is viewed as a geometric point. It has no size, 

no time and no dimension. Materials which are nano-scaled in all three dimensions are 

considered zero-dimensional (0D) nanomaterials including atomic-scale porosity, colloids, and 

free nanoparticles with various morphologies. 

Fullerenes, as their sphere structure, caged molecules and nanometer-scale diameter 0.7 nm, 

are classified as  zero-dimensional (0D) carbon-derived nanomaterials.[39] The first fullerenes 

molecule C60 was discovered by serendipity during laser spectroscopy experiments in 1985[44] 

and the discoverers Robert Curl, Harold Kroto and Richard Smalley received the Nobel Prize in 

Chemistry “for their discovery of fullerenes” in 1996.[45] These convex polyhedrons are 

composed of pentagonal and hexagonal surfaces.  The discovery of fullerenes greatly 

expanded the number of known carbon allotropes include hollow sphere, ellipsoid, tube, and 

many other shapes such as buckyballs (C60) and buckytubes (carbon nanotubes).[44, 46, 47] 

Fullerenes have been found not only in nature but  also in the outer space.[48, 49] The smallest 

fullerene is a regular dodecahedron molecule C20.[50] In the last two decades, a lot of research 

groups have contributed to this field to produce fullerenes and their derivatives in a mild and 

mass yielded method.[47, 51-56] 

Buckyball (C60) and its derivatives, owing to their lower cost and easy purification, are the 

most common and compelling zero-dimensional (0D) nanomaterials in the field of research 

and applications.[59-61] Fullerenes have been the subject of intense research for their unique 

chemistry and technological applications, especially in materials field, electronics, and 

nanotechnology.  

Fullerenes are chemical stable and sparingly soluble in many solvents such as toluene and 

chlorobenzene, but not totally unreactive. A chemical reaction to which they are often 

subjected is electrophilic addition at 6,6-double bonds, which reduces angle strain by 

changing sp2-hybridized carbons (120°) into sp3-hybridized ones (109.5°). Some fullerenes (e.g. 

C76, C78, C80, and C84) are inherently chiral for their D2-symmetric and research efforts have 

been devoted to the development of specific sensors for enantiomers.[57, 58]  
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Haddon and coworkers found that alkali-doped C60 exhibit superconductivity. [59] For example, 

in 1991, the potassium-doped C60 superconducting behavior at 18K was the highest molecular 

superconducting temperature to be found. Since then, a large amount of metal-doped 

fullerene superconductors have been identified. The superconducting conversion 

temperature will rise with the increase of the unit cell volume of alkali-doped fullerenes. 

Fullerenes have also been extensively used for biomedical applications such as the design of 

high-performance MRI and X-Ray imaging contrast agents, photodynamic therapy, drug and 

gene delivery.[60] Although cancer radiotherapy has been used for many years in the clinic,[61-

65] photodynamic therapy is gaining increase popularity. 

The solubility of fullerenes can be increased by functionalization with L-phenylalanine, folic 

acid, and L-arginine. [62, 63] When internalized by cancer cells and exposed to light radiation, 

C60-derivatives can transform molecular oxygen into reactive oxygen which could trigger 

apoptosis of these cancer cells and minimize the damage to surrounding tissues. Once the 

light radiation treatment is finished, the fullerenes will reabsorb the free radicals to prevent 

damage of other tissues.[65] 
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One-dimensional (1D) carbon-derived nanomaterials.  

One-dimension (1D) space is like a line between two points which only has length but no 

width or depth. One-dimensional (1D) nanomaterials are materials with two dimensions in the 

nanometer scale, including nanowires, nanotubes, nanobelts and nanorods which have a 

high-aspect ratio and large surface area.[66]  

Carbon nanotubes (CNTs) are cylindrical fullerenes, a new more deliberately fabricated "one-

dimensional" type of crystalline carbon nanoparticles that can be envisioned as rolled 

graphene.[67] The first important discovery of carbon nanotubes (CNTs) which brought them 

into the awareness of the scientific community was in 1991 by Lijima.[68] Since then, CNTs 

represent a new class of technological nanomaterial with innovative and unique electrical, 

optical and mechanical properties including their large surface areas and superior bundle 

strength[69-71] which make them suitable for many applications in biomedicine and 

pharmacology. To date, CNTs are still one of the most powerful one-dimensional 

nanomaterials in the world. In the meantime, CNTs possess a broad field of applications, 

including energy conversion, quantum nanowires, catalyst supports, etc.. 

Depending on the number of graphene layers, CNTs are classified as single-wall carbon 

nanotubes (SW-CNTs)[72-76] and multi-wall carbon nanotubes (MW-CNTs).[68, 77, 78] Additionally, 

based on the morphology, there are also some other types of CNTs such as end-closed and 

end-opened carbon nanotubes, carbon nanobuds, carbon peapod, graphenated carbon 

nanotubes and extreme carbon nanotubes which could improve the composite’s mechanical 

or chemical properties.[79-86] 

As be envisioned as rolled graphene, CNT) could have different properties by the different 

rolling angles and curvatures.[87, 88] But unlike graphene being semimetal, CNTs are either 

semiconducting or metallic along the tubular axis.[89] CNT are only few nanometers wide, but 

in length can range from micrometers to millimeters. Measured for their tensile strength and 

elastic modulus, CNT are the strongest and stiffest materials,[90-92] but by Young's modulus, 

they are in fact very soft in the radial direction.[93-95] CNTs are good thermal conductors along 

the tube but insulators lateral to the tube axis. Additionally, the quality of CNTs can be 



PART I          GENERAL INTRODUCTION 

22 

 

changed by numerous synthesis parameters intentionally or unintentionally which could be 

characterized by their absorption, photoluminescence (fluorescence), and Raman 

spectroscopy properties. Related to the typical nanomaterials, all of the properties of CNTs 

are anisotropic (directionally dependent) and tunable which are favorable for various 

applications. 

CNTs can be functionalized to equip them with specific properties. Covalent reactions and 

non-covalent coating are the two main methods for CNTs functionalization.[77, 96-102] CNTs are 

hydrophobic and trend to agglomerate and sediment in water due to strong Van der Waals 

interaction forces along their length axis.[90, 91, 96, 103-105] The bundles or aggregates of CNTs can 

reduce the final composite’s mechanical performance. Also the CNT surface can be modified 

to reduce the hydrophobicity and improve interfacial adhesion. [106, 107] 

The quality of CNT can be quickly and non-destructively characterized by its special 

absorption, photoluminescence (fluorescence), and Raman spectroscopy properties.[108-110] 

Furthermore, based on the CNT anisotropic (directionally dependent) and tunable properties, 

they are potentially useful in optics and photonics, especially for light-emitting diodes 

(LEDs)[111, 112] and photo-detectors.[113] Their narrow selectivity in the wavelength of emission 

and detection of light have already been used in bolometer and optoelectronic memory 

devices.[114, 115] Compared to copper which is well known for its good thermal conductivity 

(transmits 385 W•m−1•K−1), CNTs have a higher room-temperature thermal conductivity 

along its axis (transmits 3500 W•m−1•K−1).[116] 

Thanks to the high surface area[17, 87, 103, 117] and rich electronic poly-aromatic structure, CNTs 

are able to adsorb or conjugate to a wide variety of therapeutic and diagnostic agents (drugs, 

genes, DNA, enzymes, vaccines, antibodies, biosensors, etc.).[97, 118-121] Furthermore, they 

have been explored as a vehicle for drug delivery by directly penetrating the cells membrane 

or even nuclear membrane,[122-124] and keeping the drug intact during transport. Compared to 

traditional methods, agents linked to CNTs  can be delivered more safely into cells which open 

a new way for drug formulation.[67, 125]  
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The state-of-art progress on the potential applications of CNT have excited the interest of 

scientists in fields of pharmacy and medicine, not only for drug and gene therapies[126, 127] but 

also for immunotherapy, tissue regeneration, catalyst supports, enantiomer separation of 

chiral drugs and diagnosis of different ailments.[67, 128-130] 

By the high Van der Waals interaction forces along the length axis, CNTs  are hydrophobic and 

trend to agglomerate and sediment in water.[125, 131] Therefore, CNTs must be functionalized 

(covalent reactions and non-covalent coating by amphiphilic molecules) to afford water 

solubility and biocompatibility in view of biomedical applications. Addition of dispersants such 

as sodium dodecyl sulfate (SDS), Triton X-100 and polyvinyl pyrrolidone (PVP)[127, 132] could 

help to stabilize CNTs  suspensions but if the excess of stabilizing molecules are removed 

these carbon nanotubes will aggregate and deposit. The ideal CNT for biomedical applications 

should have high water solubility, good biocompatibility, stable nanotube structure and 

functional groups for further bio-conjugations. [77] Given their unique structural features and 

outstanding properties, in the near future, CNTs will find broad applicability in a wide variety 

of disciplines both for industry and academic. 
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Two-dimensional (2D) carbon-derived nanomaterials. 

If we draw a rectangle on paper, the inside of this rectangle will look like a two-dimensional 

(2D) space. The objects in two-dimensional space have a width and a length, but no depth. 

Two-dimensional (2D) nanomaterials have only one dimension in the nano-scale such as 

ultrathin 2D nano-films and surface coatings. The lateral size of these sheet-like structures is 

larger than 100 nm while the thickness is only single- or few-atoms thick, so called 

monolayers. In the past decade, given their unique structural features, the research area of 

ultrathin 2D nanomaterials has led to an emerging class of nanomaterials and has grown 

exponentially in the fields of condensed matter physics, material science, chemistry, and 

nanotechnology.  

Graphene and Graphene oxide (GOx)  

As one of the most famous ultrathin two-dimensional (2D) carbon-derived nanomaterials in 

the 21th century, graphene,[39, 133] a two-dimensional single layer of carbon atoms like 

hexagonal lattice, is named by Hanns-Peter Boehm as a combination of "graphite" and the 

suffix ‘ene’ in 1962.[134, 135] It was originally observed on metal surfaces by electron 

microscopy. Graphene was discovered by Andre Geim and Konstantin Novoselov in 2004 at 

the University of Manchester[136] and  awarded the 2010 Nobel Prize in Physics.[137, 138]   

 

 

Figure 3. Schematic structures of Graphene (A) and Graphene oxide (B). 
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Graphene can be considered as a flat "infinite alternant" polycyclic aromatic hydrocarbon 

composed of six-member carbon rings. Due to its tightly packed carbon atoms and the sp2 

orbital hybridization, graphene has several exciting chemical and mechanical properties.[139-142] 

For example, it is a semi-metallic or zero-gap semi-conductor.[143] Although the theoretical 

thickness of graphene is only 0.335 nm and it is nearly transparent to visible light, it is  about 

200 times stronger than the strongest steel.[144, 145] Furthermore, graphene can be modified 

with oxygen- and nitrogen-containing functional groups. 

The research into its applications includes solar cells, light-emitting diodes (LED), the touch 

sensor in touch panels and smart windows or phones.[146, 147] In addition, graphene and 

modified graphene have also been applied in the biomedical field as they could pierce the cell 

membranes via sharp and jagged points.[148] Meanwhile, the shape, size, purity and the dose 

of administration or exposure times of graphene determines its toxicity.[149, 150]  

Moving on from the graphene, its oxidation derivative, the water-soluble graphene derivative 

graphene oxide (GOx) [151-153]has also been explored for a wide range of potential applications. 

Figure 3. shows the schematic structures of graphene and graphene oxide. 

Graphene oxide (GOx) is the single-layer form of graphite oxide which was first prepared by 

Oxford chemist Benjamin C. Brodie in 1859.[154] And then in 1957, the famous Hummers' 

method, a much safer, quicker, and more efficient process was developed by Hummers and 

Offeman.[151] Graphite powder was reacted with the strong oxidizing agents potassium 

permanganate (KMnO4), concentrated sulfuric acid (H2SO4) and sodium nitrate (NaNO3). 

Exactly, "oxide" is an incorrect but historically established name. GOx is known for its 

particularly high-aspect ratio and surface area which is almost 10-fold of other nanomaterials 

and favorable for various applications. This planar structure, with a 2D atomic layer composed 

of crumpled sheets of sp2- and sp3- hybridized carbon atoms,[155-158] is enriched with epoxides, 

hydroxyls (-OH) and carboxylic acids  (-COOH) functional groups.[159-162] The thickness of GOx 

layers are about 1.1 ± 0.2 nm but the detailed structures are still unclear due to the strong 

disorder and irregular packing of the layers.[163, 164] 
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Owing to all of the aforementioned unique structures and functional groups, GOx is 

hydrophilic.[165] It can be easy dispersed in water and other organic solvents, and it is a good 

surfactant material to stabilize various emulsion systems. Once removing most of the 

functional oxygen groups, the reduced graphene oxide (R-GOx) is tended to aggregate and 

more difficult to disperse.[166, 167]  

For a long time, graphite oxide, i.e. multilayered GOx, has attracted much interest as a 

possible route for the large-scale production and manipulation of graphene at a low cost. 

Being hydrophilic, graphite oxide can be easily dispersed in water, breaking up into 

macroscopic flakes, mostly one layer thick GOx. The reported interlayer distance in dried state 

of graphite oxide is about 6-7 Å while in water it increases to about 11-13 Å at room 

temperature. However, it is difficult to mass produce graphene sheets with the same quality 

by mechanical exfoliation.[168] Different qualities of the precursor, GOx, and different chemical 

reductions may lead to graphene sheets of different qualities.[169-173] In the future, if this issue 

could be overcome, we can expect a much more widely used of graphene in medical, 

commercial and industrial applications.  

The first reports on biomedical applications of graphene and GOx as nanocarrier for drug 

delivery have emerged in 2008 by Dai and co-workers.[174] They functionalized GOx 

nanosheets with branched polyethylene-glycol (PEG) to obtain a biocompatible GOx-PEG 

conjugate which is stable in various biological solutions and could be used for attaching 

hydrophobic aromatic molecules. Since then, a lot of work has been carried out to explore the 

use of graphene and GOx in the biomedical field, from drug/gene delivery, antibacterial 

materials, biological sensing and imaging to cancer therapy, and biocompatible scaffolds for 

cell culture.[175-178] For example, GOx with a size of a few hundreds of nanometers in the 

planar direction, can destabilize the membrane of bacteria[122, 123, 148] which could render GOx 

an attractive nano-carrier for intracellular delivery of therapeutic molecules.[179, 180] Utilizing 

the intrinsic near-infrared (NIR) optical absorbance, the GOx can be applied photothermally 

for antitumor treatment.[181, 182] 

In addition, the theoretical load of GOx is up to 200%, for both sides of it have aromatic 

structures and oxygen-containing functional groups that can be used for covalent and non-
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covalent modification by van der Waals force, π-π conjugation, hydrophobic effects, hydrogen 

bonding and electrostatic interaction.[155-157]  

GOx can be fundamentally changed by functionalization and used for multiple applications.[153, 

183, 184] For example, introduction of amines could increase its dispersibility in organic solvents. 

GOx nanosheets can spontaneously adsorb proteins by a combination of interactions without 

the requirement of additional reagents.[165] After that, the GOx nanosheets adsorbed proteins 

could efficiently destabilize the lipid membranes and be internalized by dendritic cells then 

promote antigen cross-presentation to CD8 T cells[122, 148, 165] which is a hallmark in the 

induction of potent cellular antigen-specific immune responses against intracellular 

pathogens and cancer. 

Without a doubt,  the current research on two-dimensional (2D) nanomaterials has prompted 

several exciting developments, but most still remain to be explored in more depth and far 

from the criteria which are required for industry or commercialization, especially those 

beyond Graphene and Graphene oxide(GOx) such as Hexagonal Boron Nitride(h-BN),[185-187] 

Graphitic Carbon Nitride(g-C3N4)[188] and Transition Metal Dichalcogenides(TMDs)[189, 190]. 
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Three-dimensional (3D) carbon-derived nanomaterials.  

The space which we all live in, with length, width and height, is the three-dimensional (3D) 

space. In another word, bending the two-dimensional space, we could get a three-

dimensional space. 

Owing to the different array of carbon in each matter, carbon could produce the softest 

material (Graphite) and the hardest substance (Diamond). 

Graphite is an allotrope of carbon aside from diamond and amorphous carbon which means it 

is one of carbon’s pure forms with its atoms arranged in big sheets of hexagonal rings.[191, 192] 

This block form of graphene, has a layered, planar structure and can be easily broken down. 

[191] Under standard conditions, graphite is the most stable form of crystalline of carbon. 

Diamond, is one of the highest hardness and oldest materials found on earth.[193, 194] The 

natural diamond is irregular in shape and its formation requires very specific conditions like 

high temperature (900 to 1,300 °C), high pressure (45 to 60 kilo bars) and at depths of 140 to 

190 kilometers in the Earth's mantle.[195] Because of the strength and directionality of sp3 

hybrid carbon bonding, diamond is the hardest natural substance so to speak.[196, 197] The 

element carbon arranged in a tetrahedral crystalline fashion, each carbon atom is 

surrounding with four neighboring carbon atoms with strong covalent bonding between them 

which is a fancy way of describing the state of covalent bonding in carbon.[198, 199] 
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Polymer Modified  Inorganic Metal Nanomaterials 

--- The gold nanorods with Poly(HPMA-

Glycolamide) 

Gold (with symbol Au in the periodic table), is one of the most inert chemical elements and a 

transition metal element.[200] To date, gold is still a popular noble metal[201, 202] and precious 

material used for money, jewelry[203, 204] and arts,[205-207] due to its relatively scarce, unique 

color and corrosion resistance.[208, 209] Given all of the aforementioned unique properties, gold 

has mainly been utilized as corrosion-resistant electronic connectors in all types of electronic 

equipment.[210] Additionally, it is also developed to shield infrared, produce colored glass and 

gold foil.[211] In medicine, gold is often used to repair teeth, and some gold salts can be 

exploited as anti-inflammatory agent.[212-215] The properties of colloidal gold, i.e. suspensions 

of gold nanoparticles (1 to 100 nm),  strongly depend on both nanoparticles size and 

shape.[216] High-aspect ratio (length divided by width) gold nanoparticles, in particular gold 

nanorods (AuNRs), are attractive for a range of biomedical applications, due to their modular 

functionality and anisotropic structural, optical, electronic, magnetic and catalytic properties. 

[217-221]   

Fabrication of AuNPs is dated back to 1857 by Faraday while the synthesis of colloidal AuNRs 

emerged only during the past decade.[222, 223] Several strategies for AuNR synthesis have been 

reported and comprise both bottom-up and top-down approaches.[229, 254-256] To date, the 

one-step seedless method and the seed-mediated growth method are two of the most simple 

and reproducible bottom-up techniques. 

In the one-step seedless method, sodium borate is directly added to the growth solution in 

the presence of ascorbic acid, cetyltrimethyl ammonium bromide (CTAB) as surfactant and 

silver ions to initiate particle nucleation and growth.[224] Changing the amount of sodium 

borate or adjusting the reaction temperature can control the aspect ratio of the obtained 

nanorods. In the meantime, the seed-mediated growth method is originated in 2001 by Jana 
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et al.[221] AuNRs were prepared by the addition of citrate-capped small gold nanospheres to a 

bulk HAuCl2 growth solution which was obtained by the reduction of HAuCl4 with ascorbic acid 

in the presence of CTAB as surfactant and ions.[225] The introducing of silver ions (lower 

reduction potential than gold) to the growth solution could help ascorbic acid to reduce gold 

ions into metallic gold as a catalyst for the reduction reaction. Furthermore, a three-step 

procedure in the absence of silver nitrate was proposed by the same group for the synthesis 

of AuNRs with an aspect ratio of 25.[221, 225-227] In this typical procedure, first-stage AuNRs 

were used as seeds for second growth, and sequentially be used as seeds for the next growth. 

Finally, simple centrifugation can be used to stop the overgrowth and remove the free CTAB. 

With slight modifications in the preparation conditions (eg. carefully control of the solutions 

temperature, stirring speed, ratio of seed to metal salt, etc…), the aspect ratio of the AuNRs 

can be tuned. In the growth solution, the amount of ascorbic acid mainly influences how 

many gold ions will be reduced, and the number of seeds determine how to divide the 

intrinsic growth rate in width and length.   

Alongside, CTAB can promote the growth of gold seeds in one dimension to produce rods and 

provide their surface with a positive surface charge which prevents the  aggregation in water 

via electrostatic repulsion.[228-230] Due to the affinity of thiols for gold, CTAB can also be ion-

exchanged with other sulfur-containing compounds. The growth at the ends of AuNRs can be 

further tuned by changing the amount of silver nitrate or the reaction temperature. Silver 

ions do not directly influence rod length or width.[231] However, freshly prepared silver nitrate 

and ascorbic acid solutions are also important for good yield and high shape purity mono-

dispersity of AuNRs.[232] 
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Figure 4. Schematic structures of AuNRs. (A, B) Two possible cross-sections of the AuNRs and the 

corresponding profiles of crystal thickness variation across the rods. (C) A structural model of AuNRs. 
Reproduced from ref. [233] 

 

As shown in Figure 4., prismatic-structured gold nanoparticles could have (111), (100) and (110) 

facets. The different growth rates of different faces and the different facets’ combination will 

form different shapes of nanocrystals. Short AuNRs are dominated by (110) and (100) facets, 

long AuNRs are dominated by (110) and (111) facets, and spherical gold nanoparticles with 

equivalent mass to the short rods are dominated by (100) and (111) facets with shapes of 

truncated octahedra, icosahedra and decahedra.  Furthermore, the unique (110) facets of 

AuNRs are expected to have particular surface properties.[233] 

Due to their exceptional radiative and nonradiative properties, the strong plasmonic 

properties of AuNRs and their tunability have prompted their application in the biomedical 

field (such as biosensing, biomedical imaging, gene and drug delivery, disease detection, 

diagnosis, and therapy).[9, 200, 234] To date, surface plasmon resonance (SPR) is the most 

appealing optical feature of metallic nanoparticles which consists of a collective oscillation of 

the conduction electrons.[235-237] In addition, the SPR in gold nanoparticles enhances locally 

the light electric field several orders of magnitude. For spherical gold nanoparticles, their SPRs 

lead to a  light absorption in the visible range of the spectrum (~ 525 nm) which overlaps with 
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some biological tissues and molecules such as hemoglobin in the bloodstream. Since the 

optical spectrum is directly correlated to the aspect ratio of the particles, the above-

mentioned limitation can be overcome by the synthesis of non-spherical AuNRs which 

possess two SPR bands. One associated with their cross-section, falls approximately in the 

same area of spherical nanoparticles, and the other with the excited longitudinal rod axis, 

shifts its perpendicular SPR to higher wavelengths (i.e.750-1200 nm) into the near-infrared 

region (NIR) where biological tissues and blood scarcely absorb.[238]  

Given that, standard UV–vis–NIR spectroscopy can easily monitor the formation of different 

aspect ratios AuNRs in solution. As the absorbance band changes with the refractive index of 

local material, AuNRs are considered excellent candidates for biological sensing and allow for 

extremely accurate sensing.[7] For example, the red-shift in the spectrum has been used to 

detect antigen by antibody functionalized AuNRs.[239, 240] 

AuNRs are electron dense and can be directly visualized by transmission electron microscopy 

(TEM) without the need of staining.[224, 241-244] The photothermal properties of AuNRs can be 

used to either directly kill cancer cells upon illumination or promote the release of 

therapeutic agents.[242, 245, 246] To prevent desorption and reduce toxicity , the surface of 

CTAB-coated AuNRs can be modified by replacing or covering with biocompatible compounds. 

For example, a thiolated DNA can be used to ‘displace’ the CTAB bilayer to form DNA-

modified AuNRs.[247] In addition, the CTAB bilayer can also be replaced first by a nonionic 

surfactant, and then exchanged with a cationic phospholipids. RNA can then further be 

associated to AuNRs through electrostatic complexation.[248]  

AuNRs can also be coated with a thermo-sensitive shell, for example based on poly (N-

isopropylacrylamide)[224, 249] that exhibits  lower critical solution temperature (LCST)[250-253] or 

upper critical solution temperature (UCST) behaviour[254, 255]. Irradiating these gold nanorods 

with NIR light can generate heat and induce a phase transition to releases the entrapped drug 

molecules. Meanwhile, the generated heat can also increase the efficacy of the released drug. 
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ABSTRACT 

Carbon nanotubes (CNTs) are prone to aggregation. In this chapter, we report in stable CNTs 

suspensions obtained by either ultra-sonication or by the use of tannic acid as dispersant.  

We found all of these CNTs could absorb bovine serum albumin (BSA) and ovalbumin (OVA).  
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INTRODUCTION 

 As a growth area in nanotechnology, high-aspect ratio nanomaterial carbon nanotubes 

(CNTs),[1-5] since their discovery in 1991,[6] have stimulated intense interest in their unique 

optical, electrical, magnetic anisotropy and biological properties which make them possess 

broad application prospects.[7-12] Depending on its number of graphene layers, CNT can be 

classified as single-wall carbon nanotubes (SW-CNTs)[13-17] and multi-wall carbon nanotubes 

(MW-CNTs).[6, 18, 19] They are only few nanometers wide, but in length can range from 

micrometers to millimeters.  Rated by elastic modulus, CNT are almost the strongest and 

stiffest materials, but by Young's modulus, they are soft in radial direction.[20-22] Both the 

length as well as aspect ratio play significant roles in their biological activity. Bare CNTs are 

hydrophobic and trend to agglomerate and deposit in aqueous medium due to high Van der 

Waals interaction forces along their length axis, leading to the formation of stacking 

bundles.[3, 23-27] Therefore, for biomedical applications, CNTs must be stably separated and 

then functionalized to afford water solubility and biocompatibility.[18] Moreover, an ideal 

functional CNT should possess minimal damage of the nanotube structure and contain 

available functional groups for further bio-conjugation.  

Among the methods that have been developed to disperse CNTs, there are two major 

functionalization strategies: covalent reactions[28-30] and non-covalent coating by amphiphilic 

molecules. [18, 26, 31-33] For example, with the addition of dispersants[34] such as sodium 

dodecyl sulfate (SDS), Triton X-100 or polyvinyl pyrrolidone (PVP), the CNTs suspension will 

aggregate and deposit if the excess coating molecules are removed. In addition, several 

dispersants have an ill-defined structures and exhibit neurotoxicity. Therefore, in this chapter 

we seek to explore more benign strategies for CNT stabilization and further bio-

functionalization. 
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Figure 1. Chemical scheme structure of tannic acid (TA).[35] 

 

RESULTS AND DISCUSSION 

Three different batches of carboxylic acid functionalized carbon nanotubes (CNTs-COOH) 

from different commercial sources were used: (1) multi-wall CNTs with a length of 1-10 µm 

(CNT-1), (2) single-wall CNTs with a diameter of 1.5nm and a length of 1-5µm, (CNT-2), (3) 

multi-wall CNT with a diameter of 9.5 nm and a length of 1.5µm (CNT-3). In dry state, we 

found by scanning electron microscopy (SEM) that all of these CNTs possess wider diameters 

than reported by the manufacturers (Figure 2.). Furthermore, attenuated total reflection 

fourier transform infrared spectroscopy (ATR-FTIR) in Figure 3.A showed that CNT-1, 

compared to graphite powder and the other two types of CNTs, had a distinct different 

spectrum, indicating the presence of carboxylic acid functional groups.[36, 37] 
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Figure 2. Scanning electron microscope (SEM) images of three different batches of carboxylic acid 

functionalized carbon nanotubes (A) CNT-1, (B) CNT-2, and (C) CNT-3. The numbers (1,2) in the upper 

left corner refer to carbon nanotubes in powder (1) and drying-state of dispersed carbon nanotubes 

in tannic acid (2). Scale bars are shown under each image. 

 

 

Figure 3. ATR-FTIR spectra of (A) Graphite powder and three different batches of CNTs. The marked 

blue areas on the spectrum are the characteristic absorption peaks of –OH stretch (3400~3000nm) 

and -C=O stretch (1650~1740nm); (B) Carbon nanotubes in tannic acid (CNT-TA);  
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Next, we attempted to obtain stable CNT dispersions in deionized water or phosphate buffer 

saline (PBS) with or without the use of ultra-sonication. The role of ultra-sonication is to 

promote disentangling and exfoliation of the aggregated CNT bundles.[38-40] Without the help 

of ultra-sonication, CNT-1 could be well dispersed in both deionized water and PBS, whereas 

CNT-2 could only be well dispersed in deionized water and CNT-3 could not be dispersed in 

neither deionized water nor PBS (Figure 4.). This confirms our hypothesis that only CNT-1 

contained sufficient numbers of carboxylic acid groups to be well-dispersed with the help of 

ultra-sonication.  

As an alternative, we explored the use of a relative simple and low toxic natural surface-

active compound, i.e. tannic acid (TA; Figure 1.), to aid in the dispersion of CNTs without the 

using of ultra-sonication.[41] CNTs were mixed with TA, stirred for 2 or 3 days and dialyzed to 

remove the excess TA. This procedure allowed to obtain stable CNT suspensions from a batch 

of dry powder CNTs. SEM images (Figure 2.) of dried CNT-TA, showed that the CNTs were 

present as individual nanotubes due to the effect of tannic acid. ATR-FTIR (Figure 3.B) also 

illustrated that all of these CNT-TA batches contained TA. CNTs may be firstly coated with a 

monolayer of  tannic acid through interaction of the aromatic rings that could adsorb onto 

the surface carbon rings by π-π stacking,[18, 42] then further adsorb tannic acid by hydrogen 

bonds and other polar interactions.[41, 43-45] Therefore, we hypothesize that TA provides steric 

and/or electrostatic repulsion between the unfolded individual CNTs, hence preventing 

aggregation.[41, 46, 47] 
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Figure 4. Photographs (left) and corresponding optical microscopy images (right) of dispersion of CNTs, 

(A) CNT-1, (B) CNT-2, and (C) CNT-3. The numbers (1,2 and 3) in the upper left corner refer to carbon 

nanotubes in tannic acid (1), in deionized water (2) and in phosphate buffer saline(PBS) (3). Scale bar 

represents 80µm. CNT-1 can be dispersed in a tannic acid (TA), deionized water and phosphate buffer 

saline(PBS); CNT-2 can be dispersed in a TA solution and deionized water but not in PBS buffer; CNT-3 

can only be dispersed in a TA solution, and precipitates in deionized water and PBS buffer.  

 

Once stable aqueous CNT suspensions were obtained, we subsequently aimed at 

investigating the interaction between these CNTs and model protein antigens (i.e. bovine 

serum albumin (BSA) and ovalbumin (OVA)).[48] BSA is a 66 kDa protein with an isoelectric 

point of 5.0-5.6 and OVA which is isolated from chicken egg white is a 43 kDa protein with an 

isoelectric point of 4.3. The concentration of CNT in suspensions was measured by UV-Vis 

spectrophotometry at 800nm[12, 18, 41, 49, 50] which showed good linearity in the 1 to 50µg/ml 

range and did not show interference with TA or BSA/OVA.  

First, we attempted to covalently conjugate BSA to blank carbon nanotubes (CNT) and tannic 

acid pretreated carbon nanotubes (CNT-TA) using carbodiimide chemistry reagent in 

different mediums.[13, 18, 51-55] Stable CNT suspensions were mixed with N-(3-

Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC.HCL) and sulfo-N-

hydroxysulfosuccinimide sodium salt (sulfo-NHS) in 2-(N-morpholino)ethanesulfonic acid 

(MES) buffer (pH 5.5). The excess EDC.HCL/sulfo-NHS/MES was subsequently removed by  
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centrifugation. After redispersion, the CNT and CNT-TA were reacted overnight with BSA in a 

1:1 weight ratio. Several washing and centrifugation cycles were performed to remove 

unbound proteins and concentrate the samples. Alternatively, we also mixed CNT with BSA 

without addition of carbodiimide coupling reagent. ATR-FTIR spectroscopy confirmed the 

presence (indicated by the blue area) of BSA in the respective CNT-BSA samples (Figure 5.A 

and Figure 5.B). 

 

 

Figure 5. ATR-FTIR spectra of (A) Bovine serum albumin (BSA); (B) BSA adsorbed onto CNT-TA. The 

marked blue area on the spectra originates from BSA. 

 

To allow for visualization by Fluorescence microscopy and confocal microscopy, fluorescently 

labeled BSA (FITC-BSA) was used. Figure 6. and Figure 7. showed a bright fluorescence 

emerging from the samples, whereas the bare CNTs under the same illumination and 

detection settings were found to be non-fluorescent. Figure 6. shows that FITC-BSA could 

spontaneous adsorb on CNT-3. The confocal microscopy images in Figure 7. also indicates 

that the FITC-BSA were capable to adsorb to these tannic acid pretreated CNTs in the 

absence of carbodiimide reagent. However, the use of carbodiimide reagent induces 

aggregation of CNTs. 

To assess the protein adsorption efficiency, the unbound FITC-BSA in the supernatant of the 

first centrifugation cycle was loaded onto polyacrylamide (PAGE) gels and subjected to 
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electrophoresis. Optical integration of Coomassie-stained gels was used to quantify the 

unbound protein content as demonstrated in Figure 8.A. CNT-1 exhibited a better coupling 

efficiency in the presence of carbodiimide reagent, whereas CNT-2 and CNT-3 displayed 

almost the same coupling ability in the presence or absence of carbodiimide reagent.  The 

same trends was also found by fluorescence spectroscopy, as shown in Figure 8.B. Moreover, 

the BSA absorbed CNT samples which were produced using carbodiimide reagent are 

aggregated.   

 

 

Figure 6. Fluorescence microscopy image of FITC-BSA adsorbed on CNT-3 that was pre-treated with 

ultra-sonication. The white appearances represent the bundled FITC-BSA. Scale bar represents 20µm. 
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Figure 7. Confocal microscopy images of different CNT-TA suspensions, (A) CNT-1, (B) CNT-2, and (C) 

CNT-3 coupled to FITC-BSA in the presence (1) or absence (2) of carbodiimide reagent. The areas 

indicated by arrows and red circles show aggregations of CNTs by the use of carbodiimide reagent. 

Scale bars represent 20µm. 

 

 

Figure 8. SDS-PAGE (A) and fluorescence spectroscopy (B) measurements of the unbound fraction of 

FITC-BSA. 
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To verify whether the high extent of protein adsorption to CNT in absence of carbodiimide 

reagent is unique for BSA, we also tested the adsorption of OVA. Figure 9. illustrated a similar 

tendency as observed for BSA. CNTs were previously treated with TA (CNT-TA) or ultra-

sonication (CNT-sonication). After reacting with AlexaFluor488 conjugated OVA (OVA-AF488) 

in a 1:1 weight ratio, CNT-1 in both situations (Figure 9.B, 1+ and 2+), CNT-2 and CNT-3 in TA 

(Figure 9.B, 3+ and 5+) were more stable than the other samples. Measuring the unbound 

protein fraction by SDS-PAGE and fluorescence spectroscopy (Figure 10.) gave further proof 

of the successful spontaneous adsorption of proteins on CNT-TA and CNT-sonication.  

 

 

Figure 9. (A) photographs of cuvettes containing CNTs in tannic acid and deionized water: (1) CNT-1-

TA; (2) CNT-1; (3) CNT-2-TA; (4) CNT-2; (5) CNT-3-TA; (6) CNT-3. Only CNT-3 in deionized water clearly 

deposited. (B) photographs of cuvettes containing corresponding CNTs with OVA (+): (1+) CNT-1-TA-

OVA; (2+)CNT-1-sonication-OVA; (3+)CNT-2-TA-OVA; (4+)CNT-2-sonication-OVA; (5+) CNT-3-TA-OVA; 

(6+) CNT-3-sonication-OVA.  
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Figure 10. SDS-PAGE(A) and fluorescence spectroscopy(B) measurements of the unbound fraction of 

OVA. 

 

Subsequently, we investigated the in vitro uptake of CNT-BSA/OVA by the immortalized 

mouse dendritic cell line DC2.4.[56-58] Dendritic cells (DCs) were incubated overnight with the 

different CNT-BSA/OVA samples and measured by flow cytometry. Figure 11. & Figure 12. 

showed analogous trend to the aforementioned Fluorescence Spectrum and SDS-PAGE 

results. Although in presence of carbodiimide reagent, CNT and CNT-TA showed more 

efficient adsorption and cells uptake, the reagent disturbed the samples stability and caused 

aggregation. In addition, previously treated CNT with either ultra-sonication or tannic acid 

could spontaneous adsorb OVA. Ultra-sonication pretreatment could not only disperse CNTs, 

but also slice them and decrease their aspect ratio. That could be why the ultra-sonication 

treated CNT-OVA showed a little higher cells uptake behavior than the ones which were 

pretreated by tannic acid.  
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Figure 11. FACS analysis of DC2.4 cells which cultured with CNT-OVA, in the presence or absence of 

tannic acid. 

 

 

Figure 12. FACS analysis of DC2.4 cells which cultured with CNT-OVA, in the presence or absence of 

tannic acid. 
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Then, confocal microscopy was used to investigate whether these CNT-BSA/OVA were 

internalized by the DCs or merely bound with their surface. To be easily visualized, we used 

AlexaFluor555-labeled cholera toxin subunit B (CTB-AF555) to mark the cells membrane, 

while the cell nuclei were stained with Hoechst.[59] From both the staining cells images and 

the differential interference contrast(DIC) images(from Figure 13. to Figure 18.), it is clear 

that CNT-BSA/OVA were located inside cells as well as stuck to the cell membrane.  
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Figure 13. Confocal microscopy images of DC2.4 cells incubated with different CNT-1-FITC-BSA 

samples. (A) CNT-1-TA coupled with FITC-BSA, (B) CNT-1-sonication coupled with FITC-BSA, and (C) 

CNT-1-TA coupled with FITC-BSA in the presence of carbodiimide reagent. The numbers (1,2) in 

the upper left corner refer to the staining cells images (1) and differential interference contrast (DIC) 

cells images (2). Scale bars represent 20 µm. (Note that, the staining cells images and DIC images are 

form the same samples but not from the same area or cells.) 
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Figure 14. Confocal microscopy images of DC2.4 cells incubated with different CNT-2-FITC-BSA 

samples. (A) CNT-2-TA coupled with FITC-BSA, (B) CNT-2-sonication coupled with FITC-BSA, and (C) 

CNT-2-TA coupled with FITC-BSA in the presence of carbodiimide reagent. The numbers (1,2) in the 

upper left corner refer to the staining cells images (1) and differential interference contrast (DIC) cells 

images (2). Scale bars represent 20 µm. (Note that, the staining cells images and DIC images are form 

the same samples but not from the same area or cells.) 



PART II 

72 

 

 

Figure 15. Confocal microscopy images of DC2.4 cells incubated with different CNT-3-FITC-BSA 

samples. (A) CNT-3-TA coupled with FITC-BSA, (B) CNT-3-sonication coupled with FITC-BSA, and (C) 

CNT-3-TA coupled with FITC-BSA in the presence of carbodiimide reagent. The numbers (1,2) in 

the upper left corner refer to the staining cells images (1) and differential interference contrast (DIC) 

cells images (2). Scale bars represent 20 µm. (Note that, the staining cells images and DIC images are 

form the same samples but not from the same area or cells.)  
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Figure 16. Confocal microscopy images of DC2.4 cells incubated with different CNT-1-OVA-AF488 

samples. (A) CNT-1-TA coupled with OVA-AF488 and (B) CNT-1-sonication coupled with OVA-AF488. 

The numbers (1,2) in the upper left corner refer to the staining cells images (1) and differential 

interference contrast (DIC) cells images (2). Scale bars represent 20 µm.  
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Figure 17. Confocal microscopy images of DC2.4 cells incubated with different CNT-2-OVA-AF488 

samples. (A) CNT-2-TA coupled with OVA-AF488 and (B) CNT-2-sonication coupled with OVA-AF488. 

The numbers (1,2) in the upper left corner refer to the staining cells images (1) and differential 

interference contrast (DIC) cells images (2). Scale bars represent 20 µm.  
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Figure 18. Confocal microscopy images of DC2.4 cells incubated with different CNT-3-OVA-AF488 

samples. (A) CNT-3-TA coupled with OVA-AF488 and (B) CNT-3-sonication coupled with OVA-AF488. 

The numbers (1,2) in the upper left corner refer to the staining cells images (1) and differential 

interference contrast (DIC) cells images (2). Scale bars represent 20 µm. 
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CONCLUSIONS 

In summary, stable CNT suspensions could be obtained both by ultra-sonication and by 

treatment with TA, which provides steric and/or electrostatic repulsion between individual 

CNTs, thus preventing aggregation.[46, 47] However, in order to protect the nanotubes 

structure and aspect ratio, tannic acid pretreatment is more reliable than ultra-sonication 

and the use of carbodiimide reagent. We postulate that the bio-conjugation of CNTs and 

proteins will open new possibilities to utilize their properties for multifunctional subcellular 

targeting applications.  
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EXPERIMENTAL SECTION 

Materials 

Graphite and Multi-Wall CNT (CNT-1) were purchased from PlasmaChem GmbH, with the 

length 1-10µm. Single-Wall CNT (CNT-2) was purchased from NANO LAB, with the diameter 

1.5nm and length 1-5µm. Multi-Wall CNT (CNT-3) was purchased from Sigma-Aldrich, with 

the diameter 9.5nm and length 1.5µm . Cell culture media and additives, AlexaFluor488 

labeled ovalbumin (OVA-AF488), AlexaFluor555 labeled cholera toxin subunit B (CTB-AF555), 

Hoechst and propidium iodide were purchased from Life Technologies. 2-Mercaptoethanol, 

laemli sample buffer (4x), Coomassie blue stain (G-250) were purchased from Bio-rad. All 

other chemicals and solvents were purchased from Sigma- Aldrich. Deionized water was used 

for all experiments. 

 

Instrumentations 

Scanning electron microscopy (SEM) images were recorded on a quanta FEG FEI 200 

apparatus. Samples were deposited onto a silicon wafer and dried under a gentle nitrogen 

stream at room temperature. Prior to imaging, the samples were sputtered with a gold 

coating. 

Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). ATR-FTIR 

spectra were recorded on a Thermo Scientific Nicolet iS 5 FT-IR spectrometer. 

UV-VIS spectroscopy, UV-VIS spectra were acquired with a Shimadzu UV-1650PC 

spectrophotometer. CNTs suspension, Tannic acid solution and proteins solutions were 

placed in the cuvettes and spectral analysis was performed in a 200 to 1000nm range at 

room temperature. CNTs suspension, either Tannic acid nor protein, showed absorbance 

value at 800nm wavelength.  UV-VIS spectra was used to evaluate the final concentration of 

CNTs in the CNT~protein samples. The concentration of CNTs and the absorbance value 

showed a good linear relationship between 1~ 50µg/ml. 
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Fluorescence microscopy 

Fluorescence microscopy was performed on a Leica DM2500P microscope equipped with a 

40x objective. 

Confocal laser scanning microscopy. 

Images were recorded on a Leica DMI6000B inverted microscope equipped with a 63× (1.4 

NA) oil immersion objective and connected to an Andor DSD2 confocal scanner. 

DC2.4 cells were plated a density of 5 000 per well in a small well (20µl * 25 000) and 

incubated overnight with samples. Cells were fixated with paraformaldehyde; cell nuclei were 

stained with Hoechst, and the cell membrane stained with CTB-AF555.  

Sodium Dodecyl Sulfate-polyacrylamide Gel Electrophoresis (SDS-PAGE).  

SDS-PAGE was performed with a 4-20 % polyacrylamide gradient gel using the Mini-PROTEAN 

Tetra Cell from Bio-Rad, at 180 V for 45 min. The unbound proteins samples which were 

contained in the supernatant of the first centrifugation cycle and the coupling samples were 

loaded onto polyacrylamide (PAGE) gels and applied an electric current. The samples were 

diluted with a 1:9 β-mercaptoethanol:laemli sample buffer solution (4×). After the run, 

visualization of the protein bands was obtained by incubated the gels into Coomassie blue 

stain. BIO-RAD Gel DOCTM EZ and Image Lab 5.2.1 were used to scan the gals and calculate 

the results. 
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Methods 

The stability of CNTs’ suspension. 

Respectively dispersed our Carbon nanotubes in 0.5mg/ml original concentration of Tannic 

Acid solution(TA), stirred for 2 days and then dialyzed against deionized water 3 days by 

changing  the water every half-day to remove the excess Tannic Acid. Testing by the UV-Vis, 

Tannic Acid (TA) could help to disperse CNTs even with a very low final concentration in CNT-

TA suspension. These CNT-TA suspensions are stable at 4-7°C. And we also used ultra-sonic 

instrument to help these Carbon nanotubes dispersed in deionized water, the same CNTs 

final concentration as in CNT-TA suspension. 

Coupled CNTs with proteins. 

1 mg/mL of stock solution of BSA, FITC-BSA (when using fluorescence-based assays), OVA or 

OVA-AF488 (when using fluorescence-based assays) were prepared in phosphate buffer 

saline (PBS). 

Efficient Two-Step Coupling Protocol 

Firstly, parallel mixed different CNTs suspension with N-(3-Dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDC.HCL) and N-Hydroxysulfosuccinimide sodium salt 

(sulfo-NHS) in 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH≈5.5) for 15min, then 

removed  the excess EDC.HCL/sulfo-NHS/MES by high speed centrifugation (20 min at 25.000 

G). Next, the re-dispersed CNTs suspensions were mixed with proteins in a 1:1 weight ratio 

and reacted overnight at 4-7°C. Several washing and high speed centrifugation (20 min at 

25.000 G) cycles were performed to remove unbound proteins and obtain the concentrated 

solution of CNT~adsorbed proteins.  

One-Step Coupling Protocol 

The one-step coupling protocol quitted the first step above, directly mixed different CNTs 

suspensions with proteins in a 1:1 weight ratio by overnight stirring at 4-7°C then performed 
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several washing and high speed centrifugation(20 min at 25.000 G) cycles to remove 

unbound proteins.  

In Vitro Cell Culture Experiments.  

DC2.4 Cell Line.  

The immortalized mouse dendritic cell line DC2.4 was a kind gift from Prof. Dr. Ken Rock 

(Dana-Farber Cancer Institute, Boston, MA, USA). Cell culturing was done in RPMI-glutamax, 

supplemented with 10% FBS, 1 mM sodium pyruvate, Glutamine, and antibiotics (50 units/Ml 

penicillin and 50 μg/mL streptomycin). Cells were incubated at 37 °C in a controlled, sterile 

environment of 95% relative humidity and 5% CO2. 

Cell Uptake Studies.  

DC2.4 cells were pulsed overnight with the CNT~protein samples, which containing FITC-BSA 

or OVA-AF488 and subsequently analyzed by FACS and Confocal Microscopy. Flow Cytometry 

was performed on a BD Accuri C6 flow cytometer. For Confocal Microscopy, cells were 

fixated with paraformaldehyde; cell nuclei were stained with Hoechst, and the cell 

membrane stained with CTB-AF555, both according to the supplier’s instructions. Images 

were recorded on a Leica DMI6000B inverted microscope equipped with a 63× (1.4 NA) oil 

immersion objective and connected to an Andor DSD2 Confocal Scanner. 
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ABSTRACT 

Nanomaterials hold potential of altering the interaction between therapeutic molecules and 

target cells or tissues. High-aspect ratio nanomaterials in particular have been reported to 

possess unprecedented properties and are intensively investigated for their interaction with 

biological systems. Graphene oxide (GOx) is a water-soluble graphene derivative that 

combines high-aspect ratio dimension with functional groups that can be exploited for 

bioconjugation. Here, we demonstrate that GOx nanosheets can spontaneously adsorb 

proteins by a combination of interactions. This property is then explored for intracellular 

protein vaccine delivery, in view of the potential of GOx nanosheets to destabilize lipid 

membranes such as those of intracellular vesicles. Using a series of in vitro experiments, we 

show that GOx nanosheet adsorbed proteins are efficiently internalized by dendritic cells 

(DCs: the most potent class of antigen presenting cells of the immune system) and promote 

antigen crosspresentation to CD8 T cells. The latter is a hallmark in the induction of potent 

cellular antigen-specific immune responses against intracellular pathogens and cancer. 
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INTRODUCTION 

Carbon-based nanomaterials offer a wide variety of potential applications, including those in 

the biomedical field. [1-4] Graphene oxide (GOx) is currently emerging as a multifunctional 

material, derived from graphene by oxidative treatment. [5-7] The planar structure, a water-

soluble graphene derivative with a 2D atomic layer composed of crumpled sheets of sp2− and 

sp3− hybridized carbon atoms, [8-11] is enriched with oxygen-containing groups such as 

epoxides, hydroxyls, and carboxylic acids that render GOx its hydrophilic properties.[12-15] 

Graphene oxide (GOx) is known for its particularly high-aspect ratio and surface area which is 

almost 10-fold of other nanomaterials.[16] High-aspect ratio materials are intriguing materials 

with respect to their interaction with living cells as they have been reported to pierce or 

destabilize lipid bilayer membranes.[17] This ability has been ascribed to carbon nanotubes,[18] 

and recently, Tu et al.[19] reported that GOx nanosheets, which is GOx with a size of a few 

hundreds of nanometers in the planar direction, can destabilize the membrane of bacteria. 

These features could render GOx an attractive nanocarrier for intracellular delivery of 

therapeutic molecules.[20, 21] 

In this paper, we aim at evaluating the potential of GOx nanosheets to enhance vaccine 

delivery efficiency. Nanomaterials hold excellent opportunities in vaccination,[22, 23] such as 

enhancing antigen uptake and presentation by dendritic cells (DCs) to T cells, and thereby 

could stimulate antigen-specific humoral and cellular immunity.[24, 25] Systems that are both 

of nanoparticulate nature and possess the ability to destabilize the membrane could be 

highly interesting. DCs are the sentinels of our immune system and continuously sample 

antigens that, in case these are accompanied by an appropriate “danger” signal, leads to 

activation of T cells and subsequently an antigen specific adaptive immune response.[26, 27] 

Soluble extracellular antigens, including administered vaccine antigens, are presented 

predominantly to CD4 T cells that play among others a role in conferring the antibody 

mediated humoral immune response.[28-30] However, to induce potent cellular immune 

responses, including the activation of cytotoxic T cells (CTLs) that can recognize and eradicate 

infected and malignant cells, the antigen needs to be presented to the CD8 T cells, which 

under normal conditions is only the case for intracellular cytoplasmatic antigens.[31, 32] Thus, 

strategies that could delivery protein antigens into the cytoplasm of dendritic cells are of 



CHAPTER 2        Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient 

Intracellular Vaccine Protein Delivery 

91 

 

interest for vaccination against intracellular pathogens (e.g., HIV, malaria, tuberculosis)[33-36] 

and for tumor-associated antigens in view of anticancer vaccination.[37-39] Besides this, 

extracellular antigens that have a particle-shape morphology can also be presented by DCs to 

CD8 T cells, which is called cross-presentation.[25], [40-42] 

In view of these considerations, we put a particular focus in this paper on investigating the 

interaction between GOx nanosheets and proteins and the effect on protein uptake and 

presentation by DCs. Contrary to several other strategies reported in the literature to bind 

therapeutic molecules to GOx via a linker strategy, [24], [43-46] we strive in this paper to 

elucidate a facile method to formulate vaccine antigens with GOx without the requirement of 

additional reagents.  
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RESULTS AND DISCUSSION 

GOx was prepared via a modified Hummers’ method involving oxidative treatment of 

graphite powder. [5-7] To produce nanosheets, the GOx suspension was extensively dialyzed 

until a neutral PH was reached and then ultrasonicated by a tipsonicator. To remove the 

fraction of nonexfoliated material, a centrifugation step at moderate force was applied and 

the final GOx nanosheet material was isolated in a dry state by lyophilization. This product 

could be readily resuspended in an aqueous medium to form a highly transparent solution, 

which was indicative of the presence of hydrophilic hydroxyl and carboxyl groups. 

Furthermore, the GOx nanosheets suspension remain colloidally stable for several days, 

indicating the lower micron to nanorange dimension of the material. Characterization by 

ATR-FTIR and AFM gave further proof of successful formation of GOx nanosheets (Figure 1.). 

The ATR-FTIR spectrum in Figure 1.A depicts the presence of functional groups introduced by 

the oxidative treatment. [15] Table 1. lists the annotated peaks. AFM (Figure 1.B) shows the 

formation of sheet-like structures with planar dimensions of a few hundreds of nanometers 

and a thickness of a few nanometers, suggesting the presence of only a monomolecular layer. 

[15], [47] 
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Figure 1. (A) ATR-FTIR spectrum of native graphite and GOx obtained by oxidative treatment of 

graphite. (B1, B2) AFM images at different magnification of GOx nanosheets and corresponding height 

profile (B3) along the dotted line in panel B2. 
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Table 1. List of functional groups in the ATR-FTIR spectrum of GOx nanosheets.  

wavenumber ( cm-1) peak assignment 

3400-2500, 1430, 950-900 -OH stretch 

1740-1650 -C=O stretch 

1300 -C-O 

1280-1230 epoxide ring stretch 

950-815 epoxide asymmetric ring deformation 

 

Next, we aimed at investigating the interaction between the GOx nanosheets and proteins. 

For this purpose, we used ovalbumin (OVA) which is albumin obtained from chicken egg 

white. It is a 43 kDa protein with an isoelectric point of 4.3, and it is widely used as model 

antigen in vaccine formulation research. Its amino acid composition is listed in Table 2.[48] 

where we have divided the amino acids into hydrophilic but neutral charged, acidic (i.e., 

negatively charged at neutral PH), basic (i.e., positively charged at neutrally PH), and 

hydrophobic. We also listed the full amino acid sequence of ovalbumin in Table 3.. Several 

other groups have covalently or nonspecifically modified GOx with linker chemistry to attach 

proteins. [24], [43-46] However, we reasoned that the presence of the remaining hydrophobic 

aromatic groups on the GOx surface could favor hydrophobically driven protein adsorption 

whereas the presence of epoxide moieties could allow covalent reaction with lysine units. 

 



CHAPTER 2        Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient 

Intracellular Vaccine Protein Delivery 

95 

 

 

Table 2.  Different Amino Acids and the number of them which contained in OVA  

Hydrophilic 

neutral charged 

Acidic 

negatively charged 

at neutral pH 

Basic 

positively charged 

at neutral pH 

Hydrophobic 

(non-polar) 

Glycine Gly G 19 Asparticacid Asp D 14 Arginine Arg R 15 Alanine Ala A 35 

Serine Ser S 38 Glutamate Gln Q 15 Lysine Lys K 20 Valine Val V 31 

Threonine Thr T 15     Histidine His H 7 Leucine Leu L 32 

Cystine Cys C 6           Isoleucine Ile I 25 

Tyrosine Tyr Y 10         Phenylalanine Phe F 20 

Asparagine Asn N 17         Trytophan Trp W 3 

Glutamine Glu E 33         Methionine Met M 17 

Proline Pro P 14             
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Table 3.  The Full Amino-Acid Sequence of Ovalbumin 

1-10 

MGSIGAASME 

11-20 

FCFDVFKELK 

21-30 

VHHANENIFY 

31-40 

CPIAIMSALA 

41-50 

MVYLGAKDST 

51-60 

RTQINKVVRF 

61-70 

DKLPGFGDSI 

71-80 

EAQCGTSVNV 

81-90 

HSSLRDILNQ 

91-100 

ITKPNDVYSF 

101-110 

SLASRLYAEE 

111-120 

RYPILPEYLQ 

121-130 

CVKELYRGGL 

131-140 

EPINFQTAAD 

141-150 

QARELINSWV 

151-160 

ESQTNGIIRN 

161-170 

VLQPSSVDSQ 

171-180 

TAMVLVNAIV 

181-190 

FKGLWEKAFK 

191-200 

DEDTQAMPFR 

201-210 

VTEQESKPVQ 

211-220 

MMYQIGLFRV 

221-230 

ASMASEKMKI 

231-240 

LELPFASGTM 

241-250 

SMLVLLPDEV 

251-260 

SGLEQLESII 

261-270 

NFEKLTEWTS 

271-280 

SNVMEERKIK 

281-290 

VYLPRMKMEE 

291-300 

KYNLTSVLMA 

301-310 

MGITDVFSSS 

311-320 

ANLSGISSAE 

321-330 

SLKISQAVHA 

331-340 

AHAEINEAGR 

341-350 

EVVGSAEAGV 

351-360 

DAASVSEEFR 

361-370 

ADHPFLFCIK 

371-380 

HIATNAVLFF 

381-386 

GRCVSP 

 

 

To roughly assess this possibility, both nonultrasonicated and ultrasonicated GOx were mixed 

with AlexaFluor488 conjugated OVA (OVA-AF488) in a 1:1 weight ratio, centrifuged at high 

speed (10 min at 10.000 G), and washed with deionized water to remove unbound OVA-

AF488 and imaged by confocal microscopy. The reason that we also used nonultrasonicated 

GOx is that its larger size affords better visualization of a full GOx flake, whereas GOx 

nanosheets have diffraction limited dimensions. The images in Figure 2. show a bright 

fluorescence emerging from both samples, whereas blank GOx images under the same 

illumination and detection settings were found to be nonfluorescent (data not shown). This 

provides a strong indication that OVA-AF488 is capable of spontaneously adsorbing onto GOx. 

Further proof of OVA adsorption on GOx nanosheets was obtained by ATR-FTIR spectroscopy. 

These experiments were performed using native, thus without fluorescent dye, OVA, and 

several washing and centrifugation steps were performed to remove unbound OVA. Figure 3. 
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depicted the ATR-FTIR spectrum of GOx~OVA in drying state after lyophilization. The 

characteristic bands at 1550 cm−1 (amide II band: C−N stretching vibraPon and N−H bending 

vibration) of OVA and 1750 cm−1 (−C=O stretch; left shoulder marked with green arrow in 

Figure 3.A) of GOx can be observed in the spectrum of GOx~OVA, indicating the presence of 

OVA on the GOx nanosheets. To investigate whether the secondary structure of OVA changes 

upon adsorption to GOx, we measured the circular dichroism (CD) spectrum for OVA mixed in 

different ratios to GOx. The reduction of the negative band at 222 nm that corresponds to a-

helix formation shown Figure 3.B indicates that the higher the ratio of GOx to OVA, the more 

OVA undergoes conformation changes and possibly denaturation. Of note is that, for 

enhancing T cell responses, the antigen needs to be processed into peptide fragments by 

dendritic cells (DCs) which does not depend on the structural integrity of the concerned 

protein. Liquid chromatography with tandem mass spectrometry/mass spectrometry 

detection of trypsin-digested OVA and GOx~OVA (2:1 ratio) was used to detect differences in 

the peptide composition after GOx adsorption. Figure 4. depicts a heat map of the abundancy 

of the peptide sequences that could be annotated by the mass spectrometer. Overall, a much 

lower total ion count was obtained from the GOx~OVA sample which indicates that GOx 

adsorption reduces to a certain extent the availability of the protein to be cleaved by trypsin 

(i.e., after lysine (K) and arginine (R) residues). Furthermore, significant differences in the 

abundancy of the different peptide sequences were observed. However, it remains elusive 

whether this is due to covalent, hydrophobic, or other interactions between GOx and OVA. 
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Figure 2. Confocal fluorescence microscopy images of (A) nonultrasonicated GOx and (B) 

ultrasonicated GOx nanosheets mixed with OVA-AF488. The main panel depicts a maximum intensity 

projection (MIP), with corresponding orthogonal XZ and YZ panels. 

 

 

Figure 3. (A) ATR-FTIR spectra of GOx, OVA, and GOx~OVA after removal of unbound OVA. 

Characteristic bands of GOx and OVA are highlighted in the respective spectra. (B) CD spectrum of 

OVA mixed with different ratios of GOx. The OVA concentration was kept constant at 1 mg/mL. 
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Next, we aimed to quantify the extent of GOx~OVA adsorption and to gather insight in 

whether the OVA is bound with the GOx via merely electrostatic interaction or also in part by 

covalent interaction. GOx and OVA were mixed in different weight ratios for 24 h, and 

subsequently, the GOx~OVA mixture and the supernatant after centrifugation was loaded 

onto polyacrylamide (PAGE) gels. By applying an electric current, GOx-bound OVA is 

separated from unbound OVA by electrophoresis. As the samples were first mixed with 

sodium dodecyl sulfate (SDS), we hypothesize that, in the case of the GOx~OVA mixture, 

most of the electrostatic and hydrophobic bonds will be broken and the fraction that will 

remain bound to the GOx will be predominantly covalently bound. Optical integration of 

Coomassie stained gels was used to quantify the free protein content, as illustrated in Figure 

4. As shown in Figure 5A., maximal GOx~OVA adsorption is reached at a 1:1 GOx:OVA ratio, as 

for this ratio onward no free OVA was detected in the supernatant anymore. However, at this 

and even higher GOx:OVA ratio, free OVA does become detected when the GOx~OVA 

mixture is loaded onto the SDS-PAGE. We attribute this to a fraction of weakly bound OVA 

that is released from the GOx nanosheets by the SDS and/or the electric current. We also 

assessed the effect of incubation time on protein adsorption and found (Figure 5.B) that 

incubation times shorter than 24 h led to a decrease in protein adsorption, although 

saturation emerged from 4 h onward.  
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Figure 4. Schematic illustration of the procedure to measure OVA binding to GOx. (A) Sample 

preparation by mixing stock solution of GOx (orange sheets) and OVA (green dots), followed by 

sampling respectively the GOx~OVA mixture and the supernatant after centrifugation. (B) Sample 

analysis by SDS-PAGE. Strongly - presumably covalently - bound OVA will be retained in the wells, 

whereas the weakly - presumably non-covalently - bound OVA will be able to migrate in the gel due to 

the applied electric current. 
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Figure 5. Adsorption efficiency of (A) OVA and (B) lysozyme to GOx nanosheets as a function of (A1, B1) 

the GOx:proteins weight ratio and (A2, B2) mixing time. 
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To verify whether the high extent of protein adsorption to GOx nanosheets is unique for OVA 

but also valid for other proteins, we investigated the GOx adsorption behavior of lysozyme 

(LYS). LYS is a 14 kDa protein with an isoelectric point of 11.35. Taking into account the 

negative zeta-potential of −37 ± 1 mV of GOx, LYS is expected to strongly interact with GOx 

through electrostatic interaction. This is confirmed by the experimental data in Figure 5.B, 

which show that, contrary to OVA, LYS is almost fully (B1) and rapidly (B2) bound to GOx at a 

GOx:protein ratio of 1:2. Interestingly, when analyzing the GOx~LYS mixture by SDS-PAGE, a 

large fraction of the LYS appears to be released from the GOx nanosheets. This suggests that 

the presence of the SDS can efficiently break the electrostatic interactions between LYS and 

GOx. Such influence of SDS on electrostatically bound macromolecules is well-known and not 

unexpected. However, the resilience of the GOx~OVA complexes against high surfactant 

concentrations is attributed to the strong nature of the interaction between both 

components. The nature of these interactions, however, remains elusive. On the one hand, 

the 20 lysine residues in OVA give more likeliness for covalent interaction with epoxy groups 

on the GOx surface than the 6 (of which 3 are hidden within the 3D structure) lysines 

residues of LYS. On the other hand, the fact that 163 out of 386 amino acid residues of OVA 

are hydrophobic, whereas only 44 out of 129 for LYS, might also contribute to the likeliness of 

hydrophobic interactions to be the driving force for GOx~OVA complexation. 

In a subsequent series of experiments, we investigated the in vitro interaction between OVA-

AF488 loaded GOx nanosheets and dendritic cells (DCs). For this purpose, we used the 

immortalized mouse dendritic cell line DC2.4. DCs were incubated overnight with GOx~(OVA-

AF488) nanosheets and subsequently measured by flow cytometry. A dose-dependent 

cellular-association of OVA-AF488 is observed with a 1:1 ratio yielding the highest extent of 

cell association (Figure 6.). Confocal microscopy was used to investigate whether the 

GOx~(OVA-AF488) nanosheets were internalized by the DC or merely bound with their 

surface. To mark the cell membrane, we used AlexaFluor555-labeled cholera toxin subunit B 

(CTB-AF555) while cell nuclei were stained with Hoechst. The images in Figure 7. consist of a 

confocal section in combination with the orthogonal XZ and YZ planes and a maximum 

intensity projection (MIP), to provide a maximum of information. From the orthogonal planes, 

it is clear that the GOx~(OVA-AF488) nanosheets are located inside cells as well as stuck to 



CHAPTER 2        Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient 

Intracellular Vaccine Protein Delivery 

103 

 

the cell membrane. Control experiments with soluble OVA yielded a punctuated pattern of 

green fluorescence inside the cells with no OVA being located on the cell membrane. 

 

 

Figure 6. Flow cytometry analysis (A) histograms exemplified for 0.08 μg/mL ova and (B) mean cell 

fluorescence of cellular association of GOx~(OVA-AF488) after overnight incubation with different 

doses and ratios of GOx:OVA. Note that, for the different GOx:OVA ratios, the concentration of OVA 

was kept constant in the respective experiments. 
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Figure 7. Confocal microscopy images of DC incubated with (A) GOx~(OVA-AF488) nanosheets and (B) 

soluble OVA-AF488. Cell membrane was stained red fluorescent with cholera toxin subunit B, and cell 

nuclei were stained with Hoechst. The lefts panels represent a confocal section and the 

corresponding orthogonal planes; the right panels represent a maximum intensity projection (MIP). 
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Due to the diffraction limit of light, optical microscopy does not offer sufficient resolution to 

investigate in detail the intracellular behavior of the GOx~OVA nanosheets; transmission 

electron microscopy (TEM) was performed after osmium staining and embedding of the cells 

in epoxy resin followed by ultramicrotomy. The resulting TEM images are shown in Figure 8. 

for DCs pulsed with GOx~OVA, whereas Figure 9. also depicts TEM images of blank DCs, DCs 

pulsed with OVA, and DCs pulsed with GOx without OVA. The panels at higher magnification 

in Figure 8B−D highlight the different intracellular behavior of the nanosheets that is 

observed for both GOx and GOx~OVA. Nanosheets are found both inside and outside vesicles; 

the latter ones can be endosomes or phagosomes and are also found to be piercing through 

vesicle membranes. This gives proof that GOx is to a certain extent capable of destabilizing 

endo/lysosomal membranes and thus holds the potential to promote release of a GOx-

associated payload into the cytoplasm of the cell. It is also of note that even though the DCs 

contain fairly large amounts of nanosheets this does not have a severe effect on their 

morphology. 
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Figure 8. Transmission electron microscopy (TEM) images of DCs pulsed with incubated with 

GOx~OVA. (A) Overview, (B) zoomed image depicting nanosheets inside a vesicle, (C) zoomed image 

depicting nanosheets outside vesicles, and (D) zoomed image depicting nanosheets piercing through 

the membrane of a vesicle. White arrows indicate the events of interest. 
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Figure 9. TEM images of blank DCs (A) and DCs pulsed with (B) OVA and (C) GOx. 

 

Finally, we aimed to investigate the immunobiological behavior of GOx in terms of enhancing 

antigen presentation by DCs to CD8 T cells. First, we investigated to which extent GOx 

induces toxicity and maturation of DCs. For this purpose, mouse bone marrow DCs were 

pulsed in vitro with different concentrations of GOx, followed by flow cytometry analysis of 

the cell viability (Figure 10.A) and upregulation (Figure 10.B) of the surface maturation 

markers MHCII and CD86. GOx by itself does not lead to significant DCs activation even up to 

toxic concentrations, which is in line with several other studies on nanoparticulate materials 

that without addition of specific immune-modulating compounds (such as, e.g., Toll-like 

receptor ligands) do not spontaneously activate DCs.[17] To investigate the effect of GOx on 

antigen presentation, mouse bone marrow derived DCs were pulsed with different 

concentrations of soluble OVA or GOx~OVA at different GOx:OVA ratios. Note that when 

preparing these samples, the OVA concentration was kept constant and the amount of GOx 

was varied. Subsequently, the DCs were cocultured with CFSE-labeled (CFSE: 

carboxyfluorescein succinimidyl ester) OT-I cells. The latter are CD8 T cells from transgenic 
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mice that carry the transgenic CD8 T cell receptor for the complex of MHCI with the OVA CD8 

peptide epitope SIINFEKL. Upon proliferation, the CD8 T cells divide their fluorescence over 

their daughter cells which allows measuring cell proliferation by flow cytometry analysis. Two 

ratios (i.e., 1:5 and 1:20) of DCs response, on both the T cells and cytokine level. Relative to 

soluble OVA, T cell proliferation is increased in the case of the GOx:OVA 1:1 and GOx:OVA 2:1 

formulations to a moderate extent whereas the GOx:OVA 1:2 formulation does not enhance 

T cell proliferation. This could suggest that the presence of an excess of GOx is favorable for 

enhancing antigen presentation rather than the presence of an excess of OVA. At the 

cytokine level (Figure 10.C) in the supernatant of the DC-T cell cocultures, very apparent 

trends can be observed, showing all three of the GOx~OVA formulations strongly promote 

DCs to secrete effector cytokines. These effects are not supported by large differences in 

proliferated T cells but are due to an enhanced capacity of the proliferating T cells to 

differentiate into effector T cells. The latter is an important aspect for future in vivo 

application of GOx-based vaccine formulations aiming for the induction of cytotoxic T cells, as 

has been observed in our previous work.[23] 
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Figure 10. (A1) In vitro cell toxicity of GOx measured by flow cytometry. (A2) Dendritic cell maturation, 

measured by flow cytometry. (B) OVA specific CD8 T cell proliferation. (C) Cytokine (C1: IFNγ; C2: IL13; 

C3: IL17) IFNγ secretion in cell culture medium measured by ELISA. The colored bars in B−C represent 

the level of T cell division, and respectively cytokine secretion, at that specific OVA dose. 
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CONCLUSIONS 

In conclusion, we have shown in this paper that GOx nanosheets can be used for adsorption 

of proteins, without the requirement of any additional linker strategy. When bound with GOx, 

ovalbumin, which was used as model protein antigen in this study, could still be internalized 

by dendritic cells. Importantly, we demonstrated in vivo in mice that GOx adsorption strongly 

enhances the antigen presentation in vitro. In view of these findings, GOx nanosheets could 

be attractive nanocarriers for vaccine formulation. GOx adsorption could, e.g., facilitate the 

formulation of vaccine antigens containing hydrophobic domains that would otherwise lead 

to macroscopic precipitation in pure aqueous medium. In addition, GOx could also be used 

for coformulation of molecular adjuvants[24] (e.g., the hydrophobic lipid derivatives MPLA and 

Pam-3-Cys) that can stimulate Toll-like receptors that are present on DCs and are potent 

stimulators of cellular immunity. These opportunities are currently being investigated in our 

laboratories. 

Besides that, it is important to highlight the current challenges regarding the use of GOx for 

biomedical applications. In addition to the uncertainty on the long-term fate of GOx and 

possible nanotoxicity issues, important work needs to be done in standardizing GOx 

production, especially in obtaining GOx with reproducible dimensions. However, owing to the 

unique features of GOx, in particular its planar ultrathin morphology and protein-adsorbing 

capacity, we do believe GOx merits the effort of being further investigated for intracellular 

delivery applications. 
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EXPERIMENTAL SECTION 

Materials 

Graphite was purchased from PlasmaChem GmbH. Cell culture media and additives, 

AlexaFluor488 labeled ovalbumin (OVA-AF488), AlexaFluor555 labeled cholera toxin subunit 

B (CTB-AF555), Hoechst and propidium iodide  were purchased from Life Technologies. 2-

Mercaptoethanol, laemli sample buffer (4x), Coomassie blue stain (G-250) were purchased 

from Bio-rad. All other chemicals and solvents were purchased from Sigma- Aldrich. Purified 

Milli-Q grade water was used for all experiments. 

 

Instrumentations and Characterizations 

Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). ATR-FTIR 

spectra were recorded on a Thermo Scientific Nicolet IS 5 FT-IR spectrometer. 

Atomic Force Microscopy (AFM).  

AFM images were recorded on a Bruker Innova in dry state. The morphology of the graphene 

oxide nanosheets was investigated by tapping mode AFM. Air-dried films were deposited 

onto silicon wafers. Bruker Innova (a 100 μm scanner, a nominal spring constant of 3 N/m, 

and a frequency of 75 kHz) was used to obtained the samples’ images in tapping mode under 

ambient conditions in air. 

Transmission Electron Microscopy (TEM) 

Carbon-coated Cu grids (200-mesh) were used in all experiments. For TEM, a drop of GOx 

solution or GOx~OVA solution (at different GOx:OVA ratios) were allowed to air-dry onto a 

grid, and visualized using 80 keV TEM (Jeol 1010, Japan).  
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CD Spectrometry.  

CD spectra were recorded on a Jasco J-1100 CD spectrometer at an constant OVA 

concentration of 1 mg/mL (Figure 11.).  

Liquid Chromatography−Mass Spectrometry/Mass Spectrometry (LC-MS/MS).  

Extraction and digestion of OVA and GOx~OVA was performed as previously described.[49] 

Dried peptides were dissolved in 0.1% formic acid (FA) in water (buffer A), and half of the 

sample was injected on a reversed phase nanoHPLC column (Pepmap C18 column 15 cm, 

particle size 3 μm, 0.3 mm internal diameter by 150 mm; Dionex, Sunnyvale, CA, USA) using a 

linear gradient of 97:3 buffer A/buffer B to 20:80 buffer A/buffer B at 300 nL min−1 over 70 

min (buffer B: 80% ACN/0.1% FA). The different peptides were analyzed on a TripleTOF 5600 

(ABSciex, Framingham, MA, USA) in a data dependent mode. Data analysis was performed 

with Mascot Daemon (Matrix Science, London, UK) (peptide mass tolerance: 15 ppm; 

fragment mass tolerance: 0.3 Da; fixed modification: carbamidomethyl (C); variable 

modifications: carbamidomethyl (N-term), oxidation (M), deamidation (NQ)). 
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Methods 

 Synthesis of GOx Nanosheets. 

GOx was prepared by a modified Hummers’ method by reacting graphite powder with the 

strong oxidizing agent potassium permanganate (KMnO4) in concentrated sulfuric acid.[5], [50-

53] A typical procedure was as follows: 110 mg of graphite powder and 55 mg of sodium 

nitrate were added to 6 mL of concentrated sulfuric acid in a 50 mL round-bottomed flask 

which was chilled in an ice-bath to maintain the reaction temperature below 10 °C. The 

reaction mixture was stirred overnight. The next day, 300 mg of KMnO4 was slowly added and 

the reaction mixture again was stirred overnight. During this period, the solution changed in 

color from black to dark green. Then, a second 300 mg portion of KMnO4 was also slowly 

added and again stirred overnight. Note that all these reaction steps were performed on an 

ice-bath. 

After that, the ice-bath was removed; the mixture was stirred for 2 h, allowed to reach room 

temperature, then placed in an oil-bath at 40 °C, and stirred overnight. During this period, 

the reaction mixture thickened and changed to a brownish-gray color. Next, 7 mL of 

deionized water was added dropwise under vigorous stirring and heated to 98 °C. Then, 7 mL 

of a 30% aqueous hydrogen peroxide solution was added, and the mixture turned to bright 

yellow. The oilbath was removed, and the reaction mixture was allowed to reach room 

temperature. 

After removal of the heating source and cooling to room temperature, the mixture was 

centrifuged at 15 000g for 30 min. The supernatant was decanted, and the pelletized 

material was washed 3 times with 50 mL of 10% HCL followed by repeated washing with 

deionized water until the PH reached a value of 3~4. After that, the mixture was put into 

dialysis bags and dialyzed against deionized water for several days with repeated refreshing 

of the water. To obtain GOx nanosheets, the GOx was dissolved in deionized water at a 1 

mg/mL concentration and tip-sonicated 4 times during 30 s at a power output of 40%. The 

small remaining fraction of large nonexfoliated GOx was then removed by centrifugation for 

10 min at 1000g. Finally, GOx was isolated in dry form by lyophilization (Figure 12.). 
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Figure 12. Photographs of GOx nanosheets before (left) and after (right) lyophilization. 

 

Protein Adsorption to GOx Nanosheets. 

A stock solution of OVA (and OVA-AF488 in a 50:1 ratio, when using fluorescence-based 

assays) or LYS was prepared at a total concentration of 2 mg/mL in phosphate buffer saline 

(PBS). A stock solution of GOx nanosheets in deionized water was also prepared at 2 mg/mL. 

Different OVA~GOx formulations were prepared by mixing GOx and OVA in different ratios as 

listed in Table 4., followed by overnight stirring.  

Protein adsorption to the GOx nanosheets was assessed by polyacrylamide gel 

electrophoresis (SDS-PAGE). Samples were stained by a MIX (4×) buffer (β-

mercaptoethanol/laemli sample buffer solution (4×) = 1:9), incubated for 5 min at 95 °C, and 

loaded on 10−15% precast polyacrylamide gels. Gels were run for 35 min at 180 V and then 

stained with Coomassie Blue (Bio-Safe Coomassie Stain, Bio-Rad). Optical integration was 

performed using the ImageJ software package. 
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Table 4. Composition of the Respective GOx~OVA Formulations 

GOx:OVA GOx stock 

solution 

(2 mg/mL), 

mL 

OVA stock 

solution 

(2 mg/mL), 

mL 

deionized 

water, 

mL 

total 

volume, 

mL 

OVA 

conc, 

mg/mL 

1:2 0.5 1.0 3.5 5 0.4 

1:1 1.0 1.0 3.0 5 0.4 

2:1 2.0 1.0 2.0 5 0.4 

 

In Vitro Cell Culture Experiments.  

DC2.4 Cell Line. The immortalized mouse dendritic cell line DC2.4 was a kind gift from Prof. Dr. 

Ken Rock (Dana-Farber Cancer Institute, Boston, MA, USA). Cell culturing was done in RPMI-

glutamax, supplemented with 10% FBS, 1 mM sodium pyruvate, 10 mM HEPES buffer, 0.05 

mM 2- mercaptoethanol, MEM NEAM, and antibiotics (50 units/mL penicillin and 50 μg/mL 

streptomycin). Cells were incubated at 37 °C in a controlled, sterile environment of 95% 

relative humidity and 5% CO2. 

Cell Uptake Studies.  

DC2.4 cells were pulsed overnight with GOx~OVA nanosheets containing OVA-AF488 and 

subsequently analyzed by flow cytometry and confocal microscopy. Flow cytometry was 

performed on a BD Accuri C6 flow cytometer, and data were processed using the FlowJo 

software package. For confocal microscopy, cells were fixated with paraformaldehyde; cell 

nuclei were stained with Hoechst, and the cell membrane stained with CTB-AF555, both 
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according to the supplier’s instructions. Images were recorded on a Leica DMI6000B inverted 

microscope equipped with a 63× (1.4 NA) oil immersion objective and connected to an Andor 

DSD2 confocal scanner.[49] For transmission electron microscopy (TEM), cells were fixated in 

paraformaldehyde and glutaraldehyde and stained with osmium tetrachloride. Subsequently, 

the samples were embedded in epoxy matrix and ultramicrotomed. Images were recorded on 

a Jeol JEM 1010.  

CD8 T Cell Presentation Assay.  

Mouse bone marrow derived DCs were pulsed with different concentrations of soluble OVA 

and GOx~OVA formulations and subsequently cocultured with OVA specific transgenic CD8 T 

cells, according to previous protocols. [49] 
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ABSTRACT 

Transiently thermoresponsive polymers that exhibit a soluble-insoluble switch in response to 

temperature, but gradually loose this property in response to a hydrolysis reaction have been 

widely reported for polymers with LCST behavior. However, transiently responsive polymers 

with UCST behavior in a relevant context are fairly unexplored. Here, we design such polymers 

by modification of poly(N-hydroxypropylmethacrylamide) with primary amide moieties that 

are capable to form strong hydrogen bonds, through a hydrolysable carbonate ester linkage. 

The resulting polymer reveals UCST behavior with a clearance temperature of 42° C in aqueous 

medium. Hydrolysis of the carbonate esters in the polymer side chains, over time at 

physiological conditions or accelerated by an external trigger such as NIR light in presence of 

gold nanorods, alleviates the UCST transition temperature, yielding fully soluble polymers at 

physiological conditions. 
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CONTENT 

Stimuli-responsive polymers, also called ‘smart polymers’, respond to chemical or physical 

changes by a change in solution behavior.[1-3] This unique property has fuelled the interest in 

these materials for a number of applications, including drug delivery, tissue engineering, 

separation, catalysis, sensors, etc…[4-9] Amongst the most intensively studied stimuli-

responsive polymers are those that exhibit lower critical solution temperature (LCST) 

behavior.[10, 11] Such polymers are soluble at low temperature due to extensive hydrogen 

bonding with the surrounding water molecules and subsequent hindered polymer-polymer 

interactions, but become insoluble above the LCST at which these hydrogen bonds are 

disrupted due to entropic reasons and polymer-polymer interactions are favored leading to 

phase separation.[12-15] 

Compared to LCST behavior, upper critical solution temperature (UCST) behavior involves 

polymers being water-insoluble below the UCST and soluble above the UCST.[16] Unlike their 

LCST counterparts, polymers that exhibit UCST behavior in fully aqueous environment – i.e. 

without the requirement of co-solvents – and which exhibit a globule-to-coil transformation 

close to the physiological temperature of 37 °C – could be attractive for biomedical applications, 

but are much less reported.[17] Generally, UCST polymers exhibit thermoresponsiveness on the 

basis of cohesive enthalpic interactions between polymer chains, such as hydrogen bonds and 

electrostatic interactions.[18, 19] 

The latter are commonly based on polybetaines or zwitterionic polymers that lose their UCST 

behavior in physiological media due to screening of the electrostatic charges. Therefore, most 

examples of UCST polymers operating within a physiologically relevant context are based on 

hydrogen bond formation between amide- or urea-based repeating units in the polymer 

backbone.[20, 21] Furthermore, a certain degree of hydrophobicity should be present along the 

polymer chain, too. In this regard, polymers containing acrylamide, acrylonitrile moieties and 

in particular poly(N-acryloyl glycinamide) have mostly been studied.[22-24] However, biomedical 

applications require polymeric materials to be degraded into water-soluble products that can 

be cleared from the body. Whereas gelatin is a good example of a degradable natural 

macromolecular UCST system,[25] degradable synthetic UCST systems that operate within a 
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physiological window are extremely rare and only a few examples have been reported. Very 

recent work by Wurm et al. introduced an interesting class of phosphonate based copolymers 

that show UCST behavior in acid condition and degradability in alkaline condition.[26] However, 

due to the presence of ionizable groups these polymers cannot exhibit UCST behavior at 

physiological PH. 

 

 

Scheme 1. Transiently responsive UCST polymers. (A) Schematic representation of polymers that 

undergo a reversible temperature-induced coil to globule transition by UCST behavior and can 

irreversibly hydrolyze into fully water-soluble polymers. (B) Synthesis of HPMA-GA via CDI activation of 

HPMA. (C) Synthesis of poly(HPMA-GA) by RAFT polymerization. 
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In this study we choose poly(N-(2-hydroxypropyl) methacrylamide) (poly(HPMA)) as a 

polymeric scaffold owing to its biocompatible and non-immunogenic nature,[27, 28] and 

modified the hydroxyl-position with glycolamide through a degradable carbonate ester linkage. 

We reasoned that the resulting carbonate ester bond would contribute to both increased 

hydrophobicity and hydrogen bond formation, whereas the pending primary amide bond 

would be available for hydrogen bonding. Importantly, hydrolysis of the carbonate ester 

linkage should result in unmodified poly(HPMA) and loss of responsive behavior, i.e. water 

solubility (Scheme 1A.). The monomer synthesis is depicted in Scheme 1B, and is based on an 

utilization of our recently reported strategy for hydrophobic modification of HPMA.[29] In a first 

step, HPMA is activated with 1,1’-carbonyldiimidazole and, after purification, reacted with 

glycolamide. To avoid the formation of unwanted side-products by Michael-type addition 

between the methacrylamide moiety and the nucleophilic amine of the imidazole by-product, 

only twice excess of glycolamide was used. After careful purification by silica gel column 

chromatography, successful synthesis of HPMA-GA (note that GA refers to glycolamide) was 

evidenced by 1H, 13C, COSY, HSQC NMR and ESI mass spectroscopy (Figure 1.-5.). 

Next, we performed the polymerization of monomer 2 by reversible addition-fragmentation 

chain transfer (RAFT) polymerization targeting a degree of polymerization (DP) of 50 using 4-

cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid as chain transfer agent (CTA) 

and azobisisobutyronitrile (AIBN) as radical source (Scheme 1C). Triple precipitation of the 

resulting polymer into cold acetone, in which both CTAs as well as unreacted monomer of 

HPMA-GA are soluble but poly(HPMA-GA) is not, afforded the isolation of the pure polymer, 

as shown by 1H-NMR spectroscopy (Figure 6.) and size exclusion chromatography (SEC) (Figure 

7.). SEC also revealed a narrow molar mass distribution of 1.21 indicating good control over 

the polymerization reaction. Table 1. summarizes the properties of the obtained polymer. 
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 Table 1. Synthesis and structural details of poly(HPMA-GA). 

sample [M]:[CTA]:[AIBN] 

Temperature 

[�] 

Reaction  

time [h] 

Conversion 

[%] 

Mn  

[kg/mol] 

Ð 

poly(HPMA-GA) 50:1:0.2 70 70 75 8.0 1.21 

 

 

 

Figure 1. 1H-NMR (400 MHz, DMSO-d6) of HPMA-GA. 
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Figure 2. 13C-APT-NMR (100 MHz, DMSO-d6) of HPMA-GA. 
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Figure 3. 1H,1H-COSY-NMR (DMSO-d6) of HPMA-GA. 
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Figure 4. 1H,13C-HSQC-NMR (DMSO-d6) of HPMA-GA. 
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Figure 5. ESI-MS (acetonitrile) of HPMA-GA. 
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Figure 6. 1H-NMR (300 MHz, DMSO-d6) of poly(HPMA-GA). 

 

1000 10000 100000
0

20

40

60

80

100

120

M.W.

M
.W

. 
[%

]

 

Figure 7. SEC elugram (DMAc, PMMA-St.) of poly(HPMA-GA) 
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To investigate the thermoresponsive properties of the polymer, aqueous solutions of the 

polymer were prepared at a concentration of 5 mg/mL. At first instance, we observed that 

heating to elevated temperatures was required to solubilize the polymer, whereas lowering of 

the temperature resulted in the solution to become hazy again – a phenomenon that could be 

repeatedly cycled as evidenced both by visual interrogation (Figure 8.A1), as well as by dynamic 

light scattering (DLS) (Figure 8.A2). These observations clearly evidence the UCST-behavior of 

poly(HPMA-GA) in water. DLS was used to study the thermal phase transition behavior of the 

polymer in more detail. To limit degradation of the carbonate ester linkages in the polymer 

backbone, these experiments were performed in a 50 mM acetate buffer at a PH of 5. The 

polymer solution was heated to 60°C and cooled to 25 °C at a cooling rate of 1K per 8 min to 

ensure that the UCST phase transition is thermodynamic and not a kinetic phenomenon. As 

evidenced by Figure 8.B, upon cooling of the polymer solution, a sharp transition from low to 

high light scattering intensity occurs at 42 °C. This indicates aggregate formation by the 

polymer in aqueous solutions when sur passing the UCST cloud point temperature. This is 

further evidenced when measuring the size of the aggregates, which are 820 nm below the 

UCST phase transition whereas soluble unimers (3.5 nm) are measured above the UCST phase 

transition (Figure 8.C). As a control, we also synthesized a HPMA homopolymer and a random 

copolymer of HPMA and HPMA-GA containing 15% of unmodified HPMA. Both polymers were 

found to be fully solubilize in water between 0 and 100 °C. Apparently, the presence of a minor 

fraction of hydrophilic HPMA moieties interferes with the molecular attractions of HPMA-GA 

and alleviates the UCST behavior, providing a good basis for the hypothesized transient 

solubility of poly(HPMA-GA). 

  



PART III           

138 

 

 

Figure 8. UCST behavior. (A1) Photographs of poly(HPMA-GA) solutions upon repeated heating and 

cooling and (A2) corresponding light scattering intensity measured by DLS. (B) Evolution of the light 

scattering intensity as function of temperature upon cooling of a 5 mg/mL poly(HPMA-GA) solution 

solubilized at 60°. (C) Aggregate size below and above the UCST measured by DLS. 
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Proof of hydrolytic instability of the poly(HPMA-GA) was gained by incubating both the 

monomer and the polymer in water at PH 7.4 and 37 °C, with intermittent sampling and 

subsequent 1H-NMR spectroscopic analysis to measure the hydrolysis kinetics (Figure 9.). As 

depicted in Figure 10.A, both HPMA-GA and the corresponding polymer undergo hydrolysis 

under the applied conditions. Interestingly, we observed that the polymer degrades faster than 

the monomer. Although not yet fully understood, it may be speculated that the presence of 

hydroxyl groups in the partially hydrolyzed polymer may auto-catalyze the hydrolysis of 

neighboring HPMA-GA units as we recently demonstrated for acetal containing transiently 

soluble LCST polymers.[30] To assess the effect of polymer hydrolysis on the UCST behavior, we 

solubilized the polymer in HEPES buffer at PH 7.4 by heating it above the UCST followed by 

cooling to 37 °C where it remained in the globular agglomerated state. This mixture was then 

monitored in time by DLS (Figure 10.B) and showed within a few hours a gradual transition of 

the polymer from the aggregated state to a solution of unimers, which we ascribe to gradual a 

gradual decrease of the UCST transition temperature upon hydrolysis of the polymer side 

chains until it becomes lower than 37°C leading to solubilization of the polymer. This is an 

interesting finding as it indicates that despite the relatively slow degradation of the polymer, a 

rather rapid phase transition takes place at physiological temperature and PH. This we ascribe 

to the strong influence of the presence of hydrolyzed HPMA residues on the UCST behavior of 

the resulting polymer. Altogether, these data suggest that when the temperature is maintained 

at the physiological values of 37 °C, the polymer will be able to undergo a globule-to-coil 

transition upon hydrolytic cleavage of the carbonate ester moieties in the polymer side chain. 
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Figure 9. 1H-NMR spectra of HPMA-GA during hydrolysis of the carbonate ester. 

 

 

 

Figure 10. (A) Hydrolysis kinetics of HPMA-GA and poly(HPMA-GA) measured by appearance of the peak 

at 1 ppm in the 1H-NMR spectrum. (B) Evolution of the light scattering intensity and aggregate size as 

function of time upon incubation of poly(HPMA-GA) at 37 °C in HEPES buffer at PH 7.4.  
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As final part of this study, we explored the possibility to accelerate the polymer hydrolysis by 

means of an external trigger. In this regard near infrared (NIR) light is attractive as it has a high 

penetration depth in living tissue and is relatively harmless.[31, 32] Moreover, NIR light can be 

converted into thermal energy by gold nanorods (AuNRs) that show – owing to their high 

aspect ratio – two plasmonic peaks, including one in the NIR region. This prompted us to 

investigate whether poly(HPMA-GA) hydrolysis could be accelerated fostered by the heat 

generated by NIR irradiation of AuNRs, pushing the temperature of the medium beyond the 

UCST and hence induce hydration and faster hydrolysis of poly(HPMA-GA). AuNRs stabilized by 

CTAB were synthesized according to literature[33] and transferred to the aqueous phase by 

extensive dialysis. The AuNRs were characterized by transmission electron microscopy (TEM; 

Figure 11.A1) and UV-vis spectroscopy (Figure 11.A2), which confirmed the successful 

formation of rod-shaped nanoparticles with plasmon peaks at 510 nm and 806 nm. Irradiation 

of an aqueous AuNRs solution with an NIR laser (808nm, 380mW) resulted in heating of the 

solution up to 50°C which could be cycled back to ambient temperature upon alternated on/off 

switching of the NIR laser light (Figure 12.). Control experiments in which NIR laser light was 

applied in absence of AuNRs only yielded a minor heating of the solution (Figure 13.). We also 

confirmed that an aqueous solution of poly(HPMA-GA) could be heated upon NIR laser 

irradiation in presence of AuNRs (Figure 11.B). Subsequently, AuNR were mixed with 

poly(HPMA-GA) in aqueous medium buffered at a PH of 7.4, followed by NIR laser irradiation. 

In parallel, the experiment was repeated in absence of AuNRs. After 1, 2 and 3h of irradiation 

samples were collected and analyzed by 1H-NMR spectroscopy to determine the extent of 

polymer hydrolysis. These measurements (Figure 11.C) revealed a much faster hydrolysis of 

the polymer in presence of AuNRs and NIR laser irradiation, thereby demonstrating a proof-of-

concept that hydrolysis of poly(HPMA-GA) can be triggered by an externally applied physical 

source.  
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Figure 11. (A1) TEM image of AuNR and (A2) corresponding UV-Vis spectrum. (B) Temperature of an 

aqueous poly(HPMA-GA) solution in absence (blue) or presence (red) of AuNRs in response to NIR 

irradiation. (C) NIR-induced degradation of poly(HPMA-GA) in absence (blue) and presence of AuNRs 

(red).  
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Figure 12. Change in temperature of an aqueous solution containing gold nanorods upon alternated 

ON/OFF switching of the laser light. 
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Figure 13. Change in temperature of aqueous solution with/without gold nanorods upon laser 

irradiation.  
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CONCLUSIONS 

In conclusion, we reported a transiently thermoresponsive UCST polymer that is operational 

within a physiologically relevant window in terms of temperature, ionic strength and PH. These 

polymers are obtained through modification of a well-established biocompatible polymer, i.e. 

poly(HPMA), through a degradable hydrolysis-sensitive carbonate linker. Carbonate hydrolysis 

alleviated the UCST behavior of the polymers, which could also be accelerated by addition of 

AuNRs and NIR laser irradiation. Taken together we believe that our findings represent a 

valuable addition to the armory of degradable responsive materials that form self-assembled 

structures at and below the physiological temperature and gradually go into solution upon 

spontaneous hydrolysis or by a noninvasive external stimulus. 
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EXPERIMENTAL SECTION 

Materials 

Monomer of N-(2-Hydroxypropyl) methacrylamide (HPMA) was purchased from polysciences, 

the inhibitor of  hydrochinon-monomethylether was obtained from Fluka. All other chemicals 

were purchased from Sigma Aldrich of at least ACS grade, and used as received.  

 

Instrumentations 

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 400MHz FT-NMR 

spectrometer using d6-DMSO as solvents. Chemical shifts (δ) are given in ppm relative to TMS. 

Electron spray ionization-mass spectroscopy (ESI-MS) was performed on a Waters LCT Premier 

XETM TOF mass spectrometer with a ZsprayTM source and ESI and modular LocksprayTM 

interface, coupled to a Waters alliance HPLC system. 

Size exclusion chromatography (SEC) was performed on a Shimadzu 20A system, equipped with 

a 20A ISO-pump and a 20A refractive index detector (RID). Measurements were executed in 

N,N-dimethylacetamide (DMAc) containing 50mM LiBr at 50°C with a flow rate of 0.700mL/min. 

Calibration of the 2 PL 5μm Mixed-D columns was done with polymethylmethacrylate (PMMA 

standards) obtained from PSS (Mainz). 

Ultraviolet-visible spectroscopy(UV-Vis) was performed on a Shimadzu UV-1650PC 

spectrophotometer. Gold nanorods were placed in plastic cuvettes, and spectral analysis was 

performed in the 350-1000nm range at room temperature. 
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Methods 

 Synthesis of HPMA-GA monomer 

The synthesis of monomer of HPMA-GA contains two steps. HPMA was firstly activated with 

CDI as reported previously.1 Briefly, 3.42g of 1,1’-carbonyldiimidazole (CDI) was dissolved in 

20mL of anhydrous DCM in a 100mL of round-bottom flask, and then 2.148g of HPMA was 

added into the obtained solution and kept reaction at room temperature under N2 atmosphere 

for 2.5h. Afterwards, the  organic phase was separated and washed with 50ml of water twice 

and dried over Na2SO4. Pure HPMA-CI was obtained as yellow oil by removing the solvents 

under reduced pressure. (yield 90%) 

The obtained activated monomer of HPMA-CI was mixed with excess of glycolamide (2 molar 

eqa.) and then dissolved in 20mL of anhydrous DMF under a nitrogen atmosphere. Prior to the 

reaction at 80°C for 24h under stirring, a small piece of inhibitor (hydroquinone monomethyl 

ether) was added into the solution to avoid auto-polymerization during this process.  The 

solvent was evaporated under reduced pressure and the pure monomer of HPMA-GA was 

obtained via passing through column with eluent of chloroform containing 3% of methanol 

(v/v).  (yield 85%) 

1H NMR (DMSO-d6, 400 MHz), δ[PPM]= 8.08 (t, J = 5.8 Hz, 1H, NH-C=O), 7.37 (d, J = 81.5 Hz, 

2H, NH2-C=O), 5.64 (dt, 1H, C=CH2), 5.33 (dt, J = 3.0, 1.5 Hz, 1H, C=CH2), 4.78 (pd, 1H, CH-

CH3), 4.42 (s, 2H, CH2C=O), 3.37 (m, 8H,CH-NH-), 3.21 (ddd, 1H, CH-NH-), 1.86 (dd, 3H, CH-

CH3), 1.17 (d, J = 20.1, 6.3 Hz, 3H, CH3-C=CH2). 

13C NMR (DMSO-d6, 400MHz), δ[PPM]= 168.41 (-CO-NH2); 167.93 (-CO-NH-); 153.85 (-COO-), 

139.72 (C=CH2); 119.29 (C=CH2); 73.66 (-CH-CH3); 64.62 (-CH2-CONH2); 42.91 (-CH2-NH-); 

18.60 (-CH-CH3); 17.34 (CH3-C=CH2). 

ESI-MS(acetonitrile): m/z=245.1122 [M+H]+; 267.0948 [M+Na]+; 283.0688 [M+K]+ 
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RAFT polymerization of HPMA-GA 

A Schlenk tubes with a stir bar was loaded with monomer of HPMA-GA, CTA and AIBN with 

molar ratio of 50:1:0.2. All compounds were dissolved in anhydrous DMAc with final monomer 

concentration of 1M. Then the obtained solution was degassed via 4 cycles of freeze-pump-

thaw, and then put into pre-heated oil bath at 70°C for 70h under vacuum. A 1H-NMR sample 

of the reaction mixture dissolved in DMSO-d6 was analyzed showing 75% monomer conversion. 

The resulting polymer was isolated by precipitation in acetone and centrifugation. After re-

dissolving in few mL of DMAc, this process was repeated three times. The precipitated polymer 

was dried for 12h at room temperature under vacuum, affording poly(HPMA-GA). 

UCST behavior of poly(HPMA-GA)  

The UCST behavior of poly(HPMA-GA) in aqueous solution was investigated by DLS. Briefly, the 

polymer was dissolved in preheated 50mM acetated buffer with a PH of 5 at a concentration 

of 5mg/mL. The sample was then cooled from 60 to 25°C using a 1 °C interval. During cooling, 

the size and scattering intensity were measured. The cloud point of the polymer was estimated 

as the onset on the X-axis obtained by extrapolation of the scattering intensity-temperature 

curve to intensity baseline.  

Hydrolysis of HPMA-GA  

1) hydrolysis of HPMA-GA monomer 

100mg of monomers were first dissolved in 0.5mL DMSO, followed by being added dropwise 

into 10mL of PBS at 37°C under stirring. At different time intervals (1h, 2h, 4h, 8h, 12h, 24h, 

96h,192h, 364h, 720h), 1mL of solution was taken out to be freeze-dried and then re-dissolved 

in DMSO-d6 for 1H-NMR measurement. 

2) hydrolysis of HPMA-GA polymer 

100mg of polymers, synthesized by RAFT polymerization as reported earlier, were first 

dissolved in 0.5mL DMSO, followed by being added dropwise into 10mL of PBS at 37°C under 

stirring. At different time intervals (1h, 2h, 4h, 8h, 12h, 24h, 96h,192h, 364h, 720h), 1mL of 



PART III           

148 

 

solution was taken out to be freeze-dried and then re-dissolved in DMSO-d6 for 1H-NMR 

measurement. 

Hydrolysis effect on UCST behavior 

To assess the effect of polymer hydrolysis on the UCST behavior of the polymer, the polymer 

was dissolved in 25mM Heppes buffer with pH7.4 at a concentration of 5mg/mL by heating it 

above the UCST. Followed by cooling to 37°C, the size and scattering intensity as a function of 

time was then monitored by DLS.  

Synthesis of CTAB@AuNR 

The gold nanorods (AuNRs) were synthesized as described before with a little modification.2 

All glass vials were first cleaned by aqua regia  (3:1 of HNO3: HCl) and then rinsed with MilliQ 

water several times prior to the synthesis. Firstly, 5mL of 1mM HAuCl4 was mixed with 5mL of 

0.2M CTAB aqueous solution, and the color turned orange immediately. 290µl of 4.0mM 

AgNO3 was added into the solution above and vortexed for 5 seconds, and then 8µl of 37% HCl 

was added and gently shaken for 5 seconds. 70µl of 78.8mM ascorbic acid aqueous solution 

was added and the solution became colorless during 10s under gently shaken. Afterwards,15µl 

of fresh prepared ice-cold 0.01M NaBH4 aqueous solution was added into the colorless solution 

without shaking and put into water bath at 30°C for 6h, allowing for the growth of gold 

nanorods. Excess of CTAB in AuNRs solution was removed by 3 cycles of centrifugation at 

15000rpm for 20min at room temperature, and the precipitated AuNRs were dispersed in 

MilliQ water and stored in fridge. The resulting gold nanorods had dimension of 27×5 nm, with 

an aspect ratio of ~5, and longitudinal plasmon absorption at 806nm.  

Near infrared radiation(NIR)- induced Hydrolysis of poly(HPMA-GA) 

120mg of poly(HPMA-GA) was dissolved in 0.6mL DMSO, and then 50uL of polymer DMSO 

solution was added into 1mL of PBS solution containing 66.7uL of gold nanorods stock solution 

with a  concentration of 1mg/mL, followed by NIR irradiation (wavelength: 808nm, power: 

380mW) for 1h, 2h, and 3h, respectively. The change in temperature of the solution during NIR 
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irradiation was monitored. Afterwards, samples were freeze-dried and then re-dissolved in 

DMSO-d6 for 1H-NMR measurement. 
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Broader International Context, 

Relevance and  

Future Perspectives 

 

High-aspect ratio nanomaterials, owing to their unique electrical, optical and mechanical 

properties, especially their large surface areas, are intensively investigated for their 

interaction with biological systems.[1-4] Such anisotropic nanomaterials also hold 

opportunities in an immune-oncological context, owing to their relatively efficient 

internalization by cancer cells, which often exhibit increased phagocytotic behaviour, and 

antigen presenting cells.[5-8]  

However, an important challenge that arises when envisioning the use of such nanomaterials 

as drug carriers is to keep the formulation simple and scalable, involving a minimum of steps 

and to avoid reactive chemistry and toxic organic solvents.[9, 10] Additionally, clinical 

applications of high-aspect ratio nanomaterials are still in their infancy. Therefore, there is 

still much work to be done. 

Different structures, sizes, charges, shapes and surface chemistry determine different 

biological activity of nanomaterials.[11] As a growth area in nanotechnology, high-aspect ratio 

carbon nanotubes (CNTs),[6, 12-15] since the first discovery in 1991,[16] have stimulated intense 

interest in their unique optical, electrical, magnetic anisotropy and biological properties 

which has offered exciting opportunities for a variety of applications. [17-22]  
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Bare CNTs are hydrophobic and trend to self-associate into micro-scale aggregates. Therefore, 

the goal of Chapter 1, was to devise a simple strategy for the debundling and bio-

functionalization of CNT. For this purpose, three different batches of carboxylic acid 

functionalized carbon nanotubes (CNTs-COOH) from different commercial sources were 

tested.  

There are two distinct approaches that have been reported in the literatures for dispersing 

carbon nanotubes: mechanical methods (ultra-sonication, refluxing and high shear mixing)[23-

26] and processing methods to alter the surface energy, i.e. physically (non-covalent 

adsorption)[23, 24, 26] and/or chemically (covalent treatment).[25, 27-29] However, mechanical 

dispersion methods could not only separate nanotubes from each other, but also slice them 

and  decrease their aspect ratio.[23, 24, 30, 31]  

Chemical treatments, aiming at surface functionalization of CNTs side wall or opening their 

ends to enhance the chemical compatibility and reduce their tendency to agglomerate.[23, 25, 

28, 32-36] Nanotube–polymer composite is a good example,[37-39] such as SWCNT–polystyrene 

composites made by latex technology,[40] SWCNT–polyimide[41, 42] and poly-

(phenyleneethynylene) functionalized SWCNT–polystyrene composites[43]. However, 

chemical methods often introduce structural defects (reduction in average length and 

sidewall disordering). Alternatively, non-covalent approaches by wrapping of surfactants or 

polymers is particularly attractive, without disturbing the π-π structure of CNT and preserving 

their intrinsic properties.[44-47] Hereto, we have chosen a mild mechanical method based on 

ultra-sonication and non-covalent adsorption of tannic acid to unbundle CNT and, at the 

same time, to minimize the tubes shortening. The obtained dispersions are stable, without 

precipitation, upon prolonged their storage(months) under ambient conditions. 

Thanks to the vehicle structure of CNT, they have been proven to possess the ability to pierce 

the cytoplasmic membrane and nuclear membrane of cells.[48-53] Moreover, partly due to the 

EPR effect,  CNT appears much more accumulation in cancerous tumour tissue than in 

normal tissues.[48] Given that, owing to their high surface area and rich electronic 

polyaromatic structure, CNTs are able to conjugate with a wide variety of ligands (drugs, 

proteins, peptides, polysaccharides, enzymes, etc.).[54-58] Bio-conjugation is a future tendency 
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on cancer treatment research. For example,  SWNTs can be efficiently burdened with 

aromatic chemotherapy drug doxorubicin (DOX) via supramolecular π-π stacking.[57, 58] 

Meanwhile, the antibody Herceptin that is specifically over-expressed on a wide range of 

human breast cancer cells,[59] was  first thiolated by Traut’s reagent to produce active thiol 

groups for bio-conjugation with CNTs.[60, 61] Also for siRNA, CNTs are first reacted with a 

bifunctional linker, Sulfosuccinimidyl 6-(3’-[2-pyridyldithio]-propionamido) hexanoate (Sulfo-

LC-SPDP) and then bio-conjugated with thiolated siRNA via a cleavable disulfide bond.[62-64] 

Additionally, the most common strategy for the bio-conjugation is still the protocol with the 

help of EDC/Sulfo-NHS,[58, 65-70] which could destroy the stability of CNT dispersions. 

Therefore, in this thesis, we directly used the obtained water-soluble CNT~TA to couple with 

model proteins (BSA and OVA) in absence of other linker strategies. 

Confocal microscopy showed that protein-adsorbed CNT were efficiently internalized by 

dendritic cells. This is in accordance to earlier reports by the Kotov’s group,[71] that CNTs 

showed fast and deep permeation into the tissue, which is often difficult to realize with 

anticancer agents. For the treatment of cancer and other diseases, understanding the 

transport of carbon nanotubes (CNTs) as nanocarriers within tissues and cells is essential for 

biomedical imaging and drug delivery.[72-74] Further controlling the subcellular delivery of 

CNTs is also important for the realization of safe and effective cellular therapies.[75-77] We 

postulate that the bio-conjugation of CNTs and proteins will open new possibilities to utilize 

their properties for multifunctional subcellular targeting applications. Xing-Jie Liang and co-

workers provided evidence that SWCNTs may be useful for the treatment of 

methamphetamine addiction.[21] Therefore, these nanotubes are expected to be further 

developed as a new approach for the treatment of drug abuse and addiction. Additionally, 

their environmental behaviour and ecological risk (toxicological studies) are also attracting 

great attentions.[78, 79] In future, more studies are required to address these issues. 

Besides these, due to the magnetic anisotropy, carbon nanotubes (CNTs) could be used as an 

improved contrast agent relative to other spherical nanomaterials for magnetic resonance 

imaging (MRI) applications [80, 81] and also hold promise for the construction of high-efficiency 

solar cells.[82, 83]  
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Graphene oxide (GOx) stands out among the graphene derivatives[84] and is generating great 

interest, not only from the point of view of academic curiosity, but also considering its 

potential applications in a wide range of areas.[85-87] This water-soluble material is highly 

transparent and combines high-aspect ratio dimension with hydrophilic functional groups 

such as epoxide, hydroxyl and carboxyl groups.[88-91] Due to these oxygen functional groups 

which are linked to the hexagonal carbon structure, the chemical versatility of GOx makes it 

relatively easy to be further modified with organic molecules or biological structures.[92, 93] In 

addition, GOx could also be reduced into graphene typically by chemical or thermal methods 

as intermediate species.[92, 93] Contrary to several other linker strategies which were reported 

to bind therapeutic molecules to GOx with the help of Tannic Acid,[94-97] gold or silver 

nanoparticles, etc.[96, 98-103], in Chapter 2 of this thesis a facile method was elucidated to 

formulate vaccine antigens with GOx without the requirement of additional reagents. 

Confirmed by different techniques, we observed that GOx can be coupled to proteins 

spontaneously without the need for introducing specific linker strategies. The nature of these 

interactions, however, remains elusive. Owing to the random distribution of the oxygen-

containing functional groups, the precise atomic structure of GOx is still uncertain and yet 

remains to be fully elucidated.  

It was observed that, due to the high aspect ratio and surface area of GOx, which has been 

reported to pierce or destabilize lipid bilayer membranes of living cells and bacteria,[5, 104, 105] 

GOx nanosheet with adsorbed proteins could strongly promote DCs to secrete effector 

cytokines and antigen cross-presentation to CD8 T cells.[104, 105] The later one is a hallmark in 

the induction of potent cellular antigen-specific immune responses against intracellular 

pathogens(e.g. HIV, malaria, tuberculosis) and cancer. These features could render GOx an 

attractive nanocarrier for intracellular delivery of therapeutic molecules and enhance vaccine 

delivery efficiency.  

However, it is also important to highlight the current challenges regarding the use of GOx for 

biomedical applications. The large scale production of standardizing GOx,[106, 107] especially 

with reproducible dimensions, are still far from the criteria that are required for industry or 

commercialization with the satisfactory precision and reproducibility.[108] Furthermore, one 

hurdle preventing the widespread use of GOx is the lack of miscibility of the nanoplatelets 
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with functional polymer matrixes. Besides these, the uncertainty on the long-term fate of 

GOx and possible nanotoxicity issues are also restricting their potential applications. Bearing 

all of the aforementioned unique features and challenges of GOx in mind, in particular its 

planar ultra-thin morphology and protein-binding capacity, we do believe GOx merits the 

effort of being further investigated for intracellular delivery applications. 

To date, cancer is still a leading cause of dead. Although a large number of drugs and 

methods to relieve the negative impacts by cancer have been developed, off-target side 

effects are continuing disturbing the patients’ quality of life.[109] So there is a clear need for 

more efficient strategies for the delivery of anti-cancer drugs which should only be 

internalized by cancer cells and would not affect healthy cells and tissues.[110, 111] This has 

prompted the development of stimuli-responsive polymer-based delivery systems that can 

respond to a specific trigger and release a drug payload, preferably inside a cancer cell. 

Among the stimuli-responsive polymers which are also called ‘smart polymers’[112-114] and 

responding to chemical or physical changes by the change in solution behaviour, transiently 

thermoresponsive polymers exhibit a soluble-insoluble switch in response to temperature,[115, 

116] but gradually loose this property in response to a hydrolysis reaction in the polymer 

backbone or side-chain, are attractive biomaterials for the drug delivery.  

Compared to a rather common phenomenon lower critical solution temperature (LCST) 

behaviour which means the polymers are soluble at low temperature but become insoluble 

above LCST,[117-121] upper critical solution temperature (UCST)[122] behaviour is the inverse of 

LCST behaviour. This means that a polymer is insoluble below a critical temperature but 

becomes soluble above this temperature, which is a relative rare phenomenon in aqueous 

media. This unique property has fuelled the interest in these materials for a number of 

applications, including drug delivery, tissue engineering, separation, catalysis, bio-sensing 

etc..[123-125] For example, gelatine is a degradable natural macromolecular UCST system,[126, 127] 

whereas degradable synthetic UCST systems that operate within a physiological window are 

extremely rare and limited to only a few examples. Very recent work by the Wurm group 

introduced an interesting class of phosphonate based copolymers which show UCST behavior 

in acid condition and degradability in alkaline condition.[128] However, due to the presence of 

ionisable groups these polymers did not exhibit UCST behaviour at physiological pH. 
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Therefore, in Chapter 3, we chose poly(N-(2-hydroxypropyl)methacrylamide), owing to the 

biocompatible and non-immunogenic nature, as a polymeric scaffold to obtain a  

biocompatible and biodegradable transiently thermoresponsive homo-polymer,[129, 130] 

Poly(HPMA–glycolamide), through a degradable hydrolysis-sensitive carbonate ester 

linkage.[131] Most examples of UCST polymers operating within a physiologically relevant 

context are based on hydrogen bond formation between amide- or urea-based repeating 

units in the polymer backbone. Poly(HPMA–glycolamide) possesses upper critical solution 

temperature (UCST) behavior at 42°C in aqueous medium. Additionally, at a physiological pH, 

this polymer could undergo a globule-to-coil transition and gradually lose its UCST behaviour 

upon the hydrolytic cleavage of the carbonate ester moieties in the polymer backbone.  

AuNRs, owing to their high-aspect ratio, have two plasmonic peaks at 510 nm and 806 nm 

and  can convert the irradiation NIR laser into thermal energy. Near infrared (NIR) light is 

attractive as it has a high penetration depth in living tissue and is relatively harmless[132, 133]. 

AuNRs with poly(HPMA-glycolamide) in aqueous subjected to NIR laser irradiation could be 

heated and work as an external trigger to accelerate the hydrolysis of poly(HPMA-

glycolamide). Equally important, irradiating these AuNRs with NIR light could generate heat 

and induce a phase transition to release the payload drug.[134, 135] Meanwhile, the generated 

heat can also increase the efficacy of drug molecules which have been localized to the certain 

area.[122, 124] 

It is certainly interesting to investigate in future endeavours the influence of anisotropy on 

the interactive properties of polymer-functionalized gold nanoparticles. However, it is worth 

to point out that each material has its own disadvantages (such as issues of dosage, toxicity 

and potential risks to human health and the environment). Furthermore, our investigation on 

the biological interaction between polymer-functionalized gold nanoparticles and living cells 

were limited to in vitro settings. The behaviour of these systems in vivo still needs to be 

explored and recent findings by the Parak group have suggested that the presence of 

enzymes can strongly alter the in vivo fate of polymer coated gold nanoparticles.[136]  
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Summary and  

General Conclusions 

 

This PhD dissertation explores potential biomedical applications of three different high-

aspect ratio nanomaterials in three chapters, which are summarized below.  

In Part I, a general introduction was provided to discuss the importance of materials science 

to our lives, especially regarding biomedical applications of high-aspect ratio nanomaterials 

such as carbon-derived multi-dimensional nanomaterials (zero-dimensional fullerene; one-

dimensional carbon nanotubes; two-dimensional graphene and graphene oxide nanosheets; 

three-dimensional graphite and diamond) and polymer-functionalized inorganic metal 

nanoparticles, i.e. gold-nanorods. 

In Part II and Part III, three experimental chapters were presented. Structure, size, charge, 

shape and surface chemistry play key roles with respect to the bioactivity of nanomaterials.  

Carbon nanotubes (CNTs) are hydrophobic and trend to aggregate in aqueous media due to 

the high Van der Waals interaction forces along their length axis. Hence, for biomedical 

applications, CNTs must be functionalized to afford water solubility and biocompatibility. 

Furthermore, an ideal functional CNT should exhibit minimal damage of nanotube structure 

and have availability of functional groups for further bio-conjugation. 

In Chapter 1, three different batches of carboxylic acid functionalized carbon nanotubes from 

different commercial sources were chosen, with different diameters, length and number of 

walls. Ultra-sonication and tannic acid were used to render these CNTs dispersible in water. It 
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was found that tannic acid could efficiently stabilize CNTs, even in absence of sonication. 

ATR-FTIR proved that all of these CNTs had been covered by tannic acid. 

Next, we investigated the protein coupling ability of these CNT-TA and found that all of them 

could successfully spontaneous adsorb the model proteins, i.e. BSA and OVA.  

The aim of Chapter 2 was to investigate the potential of graphene oxide (GOx) nanosheets for 

intracellular delivery of proteins. GOx nanosheets were prepared by a modified Hummers’ 

methods, and ATR-FTIR and AFM gave further proof of successful formation of 

monomolecular layered GOx nanosheets which were highly transparent and combined high-

aspect ratio dimension (sheet-like structures) with hydrophilic functional groups such as 

epoxide, hydroxyl and carboxylic acids. 

Contrary to several other linker strategies which were reported to bind therapeutic 

molecules to GOx, we aimed in Chapter 2 to elucidate a facile method to formulate vaccine 

antigens with GOx without the requirement of additional reagents. Confirmed by ATR-FTIR, 

SDS-PAGE and fluorescence spectroscopy and microscopy, we observed that GOx nanosheets 

can be spontaneous coupled to proteins which were used as model protein antigens without 

the need for introducing specific linker strategies. When bound to GOx, we further 

investigated the interaction between protein (i.e. OVA) loaded GOx and dendritic cells in 

vitro. The obtained GOx~OVA could still be internalized by dendritic cells and promote 

antigen cross-presentation to CD8 T cells. The latter is a hallmark in the induction of potent 

cellular antigen-specific immune responses against intracellular pathogens and cancer. 

Apart from the carbon-derived multi-dimensional nanomaterials, in Chapter 3, we also 

elaborated on another type of high-aspect ratio nanomaterials, i.e. gold nanorods (AuNRs) as 

an external trigger in combination with a polymer that exhibits upper critical solution 

temperature (UCST) behaviour. In particular we were interested in developing a transiently 

thermoresponsive UCST polymer. Such polymer should exhibit a soluble-insoluble switch in 

response to temperature, but gradually loose this property in response to a hydrolysis 

reaction in the polymer backbone or side-chain. In Chapter 3, we developed a fully synthetic 

approach to obtain a biodegradable transiently thermoresponsive homo-polymer, i.e. 
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poly(HPMA–glycolamide), which possesses upper critical solution temperature (UCST) 

behaviour in aqueous medium.  

Hereto we have chosen a well-established biocompatible polymer poly(N-(2-

hydroxypropyl)methacrylamide) as a polymeric scaffold and modified the hydroxyl-position 

with glycolamide through a degradable carbonate ester linkage, thereby yielding HPMA-GA. 

Polymerization of HPMA-GA by reversible addition-fragmentation chain transfer (RAFT) 

polymerization resulted in a polymer with an UCST at 42° C, and that could be repeatedly 

cycled when alternatingly raising/lowering the temperature. Furthermore, at a physiological 

pH, when the temperature is maintained at the physiological values of 37 °C, the polymer 

undergoes a globule-to-coil transition upon hydrolytic cleavage of the carbonate ester 

moieties in the polymer backbone. 

AuNRs stabilized by CTAB were prepared via a one-step seedless method and transferred to 

the aqueous phase by extensive dialysis. Owing to their high-aspect ratio, these AuNRs have 

two plasmonic peaks, i.e. at 510 nm and 806 nm. These AuNRs can convert NIR light into 

thermal energy. Hence, mixed AuNRs with poly(HPMA-GA) in aqueous medium buffered at a 

pH of 7.4 and followed by NIR laser irradiation (808nm, 380mW) could accelerate the 

hydrolysis of poly(HPMA-GA). In other words, a much faster hydrolysis of poly(HPMA-GA) 

could be triggered in presence of AuNRs and NIR laser irradiation within a physiologically 

relevant window in terms of temperature and pH.  

 

 

 

 

 

 

 



SUMMARY AND GENERAL CONCLUSIONS 

174 

 

 

 

 

 



SAMENVATTING EN ALGEMENE CONCLUSIES 

175 

 

 

   Samenvatting en  

Algemene Conclusies 

 

Dit proefschrift handelt over potentiële biomedische toepassingen van drie verschillende 

high aspect ratio nanomaterialen in drie hoofdstukken, die hieronder worden samengevat. 

In Deel I werd een algemene inleiding gegeven om het belang van materiaalwetenschap 

m.b.t. ons dagelijkse leven te bespreken. Hierbij werd voornamelijk de focus gelegd op 

biomedische toepassingen van nanomaterialen met high aspect ratio zoals van koolstof 

afgeleide nanomaterialen (fullerenen, zero-dimensie, carbon nanotube , één -dimensie; 

graphene en graphene oxide, tweedimensionaal; grafiet, driedimensionaal) en polymeer-

gefunctionaliseerde anorganische metaalnanodeeltjes, dwz gold nanorods. 

In Deel II and Deel III werden drie experimentele hoofdstukken gepresenteerd. Structuur, 

grootte, lading, vorm en oppervlaktechemie spelen een sleutelrol m.b.t. de bioactiviteit van 

nanomaterialen.  

Carbon nanotubes (CNTs) zijn hydrofoob en aggregeren makkelijk in waterige media als 

gevolg van de sterke Van der Waals interactiekrachten langs hun lengteas. Vandaar dat voor 

biomedische toepassingen CNT's moeten worden gefunctionaliseerd om wateroplosbaarheid 

en biocompatibiliteit te verschaffen. Verder zou een ideale functionele CNT minimale schade 

aan de CNT-structuur moeten vertonen en over voldoende functionele groepen moeten 

beschikken voor verdere bio-conjugatie. 

In Hoofdstuk I werden drie verschillende batches CNT’s van verschillende commerciële 

bronnen gekozen, met verschillende diameter, lengte en aantal walls. Ultra-sonicatie en 

tanninezuur werden gebruikt om deze CNT's dispergeerbaar in water te maken. Er werd 
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gevonden dat tanninezuur efficiënt CTN kon stabiliseren, zelfs in afwezigheid van sonicatie. 

ATR-FTIR bewees dat al deze CNT's waren bedekt met tanninezuur. 

Vervolgens onderzochten we het eiwitkoppelingsvermogen van deze CNT-TA en ontdekten 

dat al deze CNT-TA spontaan de modelproteïnen BSA en OVA konden binden. 

Het doel van Hoofdstuk 2 was om het potentieel van graphane oxide (GOx) nanosheets voor 

intracellulaire levering van eiwitten te onderzoeken. GOx nanosheets werden bereid volgens 

een gemodificeerde Hummers-methode en ATR-FTIR en AFM gaven verder bewijs van 

succesvolle vorming van monomoleculaire gelaagde GOx nanosheets die een transparante 

oplossing in water gecombineerden met een high aspect ratio en met hydrofiele functionele 

groepen zoals epoxide, hydroxyl en carbonzuren. 

In tegenstelling tot verschillende andere linker-strategieën waarvan gerapporteerd werd dat 

ze therapeutische moleculen binden aan GOx, hebben we in Hoofdstuk 2 getracht een 

eenvoudige methode te ontwikkelen om vaccinantigenen met GOx nanosheets te formuleren 

zonder de behoefte aan extra reagentia. Bevestigd door ATR-FTIR, SDS-PAGE en 

fluorescentiespectroscopie en microscopie, hebben we waargenomen dat GOx nanosheets 

spontaan kunnen eiwitten kunnen adsorberen. Wanneer gebonden aan GOx nanosheets, 

onderzochten we verder de interactie tussen eiwit (nl. OVA) geladen GOx en dendritische 

cellen in vitro. De verkregen GOx:OVA kan nog steeds worden geïnternaliseerd door 

dendritische cellen en antigen cross-presentation aan CD8 T-cellen bevorderen. Het laatste is 

een kenmerk van de inductie van krachtige cellulaire antigeen-specifieke immuunresponsen 

tegen intracellulaire pathogenen en kanker. 

Afgezien van koolstof-afgeleide multidimensionele nanomaterialen, hebben we in Hoofdstuk 

3 ook met een ander type nanomaterialen met een high aspect ratio, namelijk gold nanorods 

als een externe trigger in combinatie met een polymeer dat upper critical solution 

temperature (UCST) gedrag vertont. In het bijzonder waren we geïnteresseerd in het 

ontwikkelen van een transiently thermoresponsive UCST-polymeer. Een dergelijk polymeer 

zou een soluble-insoluble switch moeten vertonen als reactie op temperatuur, maar 

geleidelijk aan deze eigenschap verliezen ten gevolgd van een hydrolysereactie in het 

polymeer backbone of in de polymeer zijketen. In Hoofdstuk 3 hebben we een volledig 
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synthetische benadering ontwikkeld om een bio-degraderebaar transiently thermoresponsive 

UCST-homopolymeer te synthetiseren, nl. poly (HPMA-glycolamide).  

Hiertoe hebben we een geked biocompatibel polymeer, nl. poly(N-(2-hydroxypropyl) 

methacrylamide) als een scaffold gekozen en de hydroxyl-positie te modificeren met 

glycolamide d.m.v. een afbreekbare carbonaatester verbinding, waardoor HPMA-GA werd 

verkregen. Polymerisatie van HPMA-GA door reversible addition-fragmenattion chain transfer 

(RAFT) polymerisatie resulteerde in een polymeer met een UCST van 42 °C. Verder 

ondergaat, bij een fysiologische pH, wanneer de temperatuur wordt gehandhaafd op de 

fysiologische waarde van 37 °C, het polymeer een overgang van goluble-to-coil ten gevolge 

van hydrolyse van de carbonaatester groepen in de polymeer zijketen. 

Gold nanorods gestabiliseerd door CTAB werden bereid via een one-step seedless methode 

en overgebracht naar de waterige fase d.m.v. dialyse. Vanwege hun high aspect ratio hebben 

deze gold nanorods twee plasmonische pieken, nl. bij 510 nm en 806 nm. Deze AuNR's 

kunnen NIR-licht omzetten in thermische energie. Daarom konden AuNR’s gemengd met 

poly(HPMA-GA) in waterig medium gebufferd bij een pH van 7.4 en in combinatie met NIR 

laserbestraling de hydrolyse van poly(HPMA-GA) versnellen. Met andere woorden, een veel 

snellere hydrolyse van poly (HPMA-GA) kon worden verkregen in aanwezigheid van AuNR's 

en NIR laserbestraling binnen een fysiologisch relevant venster in termen van temperatuur en 

pH. 
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