
FPGA Structures for High Speed and Low Overhead Dynamic Circuit Specialization

FPGA-structuren voor dynamische circuitspecialisatie aan hoge snelheid en lage kost

Amit Kulkarni

Promotor: prof. dr. ir. D. Stroobandt
Proefschrift ingediend tot het behalen van de graad van
Doctor in de ingenieurswetenschappen: elektrotechniek

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-94-6355-035-2
NUR 959, 987
Wettelijk depot: D/2017/10.500/70

Examination Commission

Prof. Dr. Patrick De Baets, chairman
Department of Electrical energy, systems and automation
Faculty of Engineering and Architecture
Ghent University, Belgium

Prof. Dr. Guillaume Crevecoeur, secretary
Department of Electrical Energy, Metal,
Mechanical Structures and Systems
Faculty of Engineering and Architecture
Ghent University, Belgium

Prof. Dr. Michael Huebner
Chair for Embedded Systems Information Technology
Ruhr-University Bochum, Germany

Dr. Mohamed El-Hadedy
Research Scientist
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign, USA

Prof. Dr. Nele Mentens
Department of Electrical Engineering - ESAT
Faculty of Engineering Technology
Katholieke Universiteit Leuven, Belgium

Prof. Dr. Francis wyffels
Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture
Ghent University, Belgium

Em. Prof. Dr. Erik D’Hollander
Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture
Ghent University, Belgium

Prof. Dr. Dirk Stroobandt, advisor
Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture
Ghent University, Belgium

M.Sc. Amit Kulkarni

Tel.: +32-9-264.33.78
Fax.: +32-9-264.35.94
Email: Amit.Kulkarni@UGent.be

Advisor: Prof. Dr. Dirk Stroobandt

Ghent University
Faculty of Engineering and Architecture
Electronics and Information Systems (ELIS) department
Hardware and Embedded Systems (HES) research group
iGent, Technologiepark - Zwijnaarde 15, B-9052 Ghent, Belgium

Tel.: +32-9-264.34.01
Fax.: +32-9-264.35.94
Email: Dirk.Stroobandt@UGent.be

This work was supported by the European Commission in the context of the FP7
FASTER project (#287804) (www.fp7-faster.eu) and the H2020 EXTRA project
(#671653) (www.extrahpc.eu)

Dissertation submitted in fulfillment of
the requirements for the degree of
Doctor of Electrical Engineering

Department of Electronics and Information Systems
Chairman: Prof. Dr. Rik Van de Walle

Faculty of Engineering and Architecture
Academic year 2016 - 2017

Acknowledgements

First and foremost, I would like to thank Prof. Dr. Dirk Stroobandt for giving me
an opportunity to pursue the doctoral studies at the HES research group. His guid-
ance and reviews have guided me to follow right path during my research studies.
I would like to acknowledge Dr. Karel Bruneel and Dr. Karel Heyse for their sup-
port during my Ph.D. I would like to extend my gratitude to the jury members for
their valuable feedback on this work. I cherish memorable moments with friends
and colleagues: Abhishek, Ajeya, Alexandra, Andre, Ark, Brahim, Dries, Fatma,
Florian, Helena, Mohamed, Poona, Prasun, Samir, Shruti Soultana, Vijay, Yun,
and all the staff members of the ELIS department.

I would like to thank the Ghent University and the EU Commission for funding
my research work. My special thanks to the people and professors at the chair for
Embedded Systems Information Technology at the Ruhr-University Bochum for
sharing a great rapport during my internship days.

I would like to acknowledge Prof. Sébastian Bilavarn and Dr. Robin Bonamy from
the University of Nice, Sophia-Antipolis for their support for our research collab-
oration.

Many thanks to my family members who encouraged me to stand through thick
and thin situations.

I owe a big thank you to all the people in the research community whom I met at
the conferences and meetings in Austin, Chicago, California, Cancun, Stockholm,
Amsterdam, Amersfoort, London, Cambridge, Bochum, and Nice.

Last but not least, I want to thank everyone else involved in this thesis. This
includes you, the reader, for showing interest in the dissertation.

Ghent, August 19, 2017
Amit Kulkarni

Samenvatting

Een FPGA (Field Programmable Gate Array) is een programmeerbare digitale
elektronische chip. De FPGA wordt door de producent niet geleverd met een
vooraf gedefinieerde functie. De toepassingsontwikkelaar moet de functionaliteit
zelf nog bepalen door een digitaal circuit op de FPGA-basisblokken te implemen-
teren. Doordat de functionaliteit van een FPGA naar wens geherprogrammeerd
kan worden, kreeg de component de naam “in het veld programmeerbaar” (“Field
programmable”). FPGA’s zijn bruikbaar voor digitale elektronische producten die
in kleine oplage nodig zijn omdat het ontwerpen van een specifieke digitale chip
zo duur is. De functionaliteit van een FPGA wijzigen (wat ook “de FPGA con-
figureren” genoemd wordt) doet men door de configuratiebitstromen te wijzigen
die de functionaliteit van de FPGA definiëren. Deze bitstromen worden bewaard
in een FPGA-geheugen dat het configuratiegeheugen genoemd wordt. De SRAM-
cellen of opzoektabellen (LUT’s), Block Random Access Memories (BRAM) en
DSP-blokken vormen samen het configuratiegeheugen van een FPGA. De con-
figuratiedata kunnen aangepast worden aan de noden van de gebruiker om ge-
bruikersspecifieke hardware te implementeren. De eenvoudigste manier om het
configuratiegeheugen te programmeren, is om de bitstromen te downloaden via
de JTAG-interface. Moderne technieken zoals Partiële Herconfiguratie laten ons
toe een deel van het configuratiegeheugen tijdens het gebruik te configureren met
partiële bitstromen. De herconfiguratie gebeurt door partiële bitstromen in het
configuratiegeheugen op te laden via een configuratie-interface genaamd de In-
terne Configuratietoegangspoort (ICAP). De ICAP is een hardware-primitieve
(macro) die beschikbaar is in de FPGA en gebruikt wordt om intern toegang te
krijgen tot het configuratiegeheugen vanuit een ingebedde processor. De hercon-
figuratietechniek voegt flexibiliteit toe om gespecialiseerde circuits te gebruiken
die compacter en meer efficiënt zijn dan grotere algemene circuits. Een voor-
beeld van zo’n implementatie is het gebruik van gespecialiseerde vermenigvuldi-
gers in plaats van grote generische vermenigvuldigers in een FIR-implementatie
met constante coëfficiënten. Om dergelijke circuits te specialiseren en tijdens het
gebruik te herconfigureren, hebben onderzoekers van de HES-groep een nieuwe
techniek voorgesteld genaamd geparameteriseerde herconfiguratie. Deze tech-
niek kan gebruikt worden om Dynamische CircuitsSpecialisatie (DCS) efficiënt
en op een automatische manier te implementeren. De techniek bouwt verder op de
partiële herconfiguratiemethode en gebruikt de run-time-herconfiguratietechniek
die aangepast is om een geparameteriseerd ontwerp te implementeren. Een toe-
passing wordt geparameteriseerd genoemd als sommige van haar ingangswaarden

viii NEDERLANDSE SAMENVATTING

veel minder frequent veranderen dan de rest. Deze ingangswaarden worden para-
meters genoemd. In plaats van deze parameters te implementeren zoals normale
inputs, implementeren we ze in DCS als constanten en optimaliseren we de toepas-
sing voor deze constanten. Voor elke verandering in parameterwaarden wordt het
ontwerp dan geheroptimaliseerd (gespecialiseerd) tijdens de werking en geïmple-
menteerd door het geoptimaliseerde ontwerp te herconfigureren voor een nieuwe
set van parameterwaarden.

In de DCS-methode worden de bitstromen van het geparameteriseerde ont-
werp uitgedrukt als Boolese functies van de parameters. Voor elke infrequente
verandering in parameterwaarden, wordt een gespecialiseerde FPGA-configuratie
gegenereerd door de overeenkomstige Boolese functies te evalueren en wordt de
FPGA geherconfigureerd met de gespecialiseerde configuratie. Het primaire doel
van dit doctoraat is een gedetailleerde studie te maken van de overhead van DCS
en geschikte oplossingen te vinden om de overhead te verminderen door aange-
paste FPGA-structuren voor te stellen. Ik stel ook verschillende verbeteringen
voor aan de configuratiegeheugenarchitectuur van de FPGA. Na het aanreiken
van aangepaste FPGA-structuren, onderzocht ik ook de rol van DCS op FPGA-
overlays en het gebruik van aangepaste structuren om de overhead van DCS in
deze FPGA-overlays zo klein mogelijk te houden. Door dat te doen, hoop ik ont-
wikkelaars van toepassingen te overtuigen DCS (met een minimale kost) te ge-
bruiken in hedendaagse toepassingen. Ik begin het onderzoek over de overhead
van DCS met de implementatie van een adaptief FIR-filter gebruik makende van
DCS en voor drie verschillende FPGA-platformen van Xilinx: de Virtex-II Pro,
Virtex-5 en Zynq-SoC. De studie van het gedrag van DCS en de overhead die
ermee gepaard gaat in de evolutie van de drie FPGA-platformen vormt de niet-
triviale basis om de kosten van de DCS-methode te ontdekken. Daarna stel ik aan-
gepaste FPGA-structuren voor (herconfiguratiecontrollers en herconfiguratiedri-
vers) om de belangrijkste overhead van DCS (herconfiguratietijd) te verminderen.
Deze structuren verminderen niet alleen de herconfiguratietijd maar helpen ook
om het meest vermogenverslindende deel van het DCS-systeem te omzeilen. Na
deze hoofstukken bestudeer ik de rol van DCS op FPGA-overlays. Ik onderzoek
het effect van de voorgestelde FPGA-structuren op Virtuele Herconfigureerbare
Matrixstructuren met grove granulariteit (VCGRAs). Ik heb twee varianten
van VCGRA-roosters ontworpen voor HPC beeldverwerkingstoepassingen, met
name het MAC-rooster en Pixie.

Ten slotte probeer ik de herconfiguratietijdsoverhead aan de hardwarekant van
de FPGA neer te halen door het aanpassen van de configuratiegeheugenarchitec-
tuur van de FPGA. In dit deel van mijn onderzoek stel ik voor een parallelle
geheugenstructuur te gebruiken om de herconfiguratietijd van DCS drastisch te
verbeteren. Deze verbetering komt echter met een significante overhead op hard-
waregebruik die zal moeten opgelost worden in toekomstig werk op commerciële
configuratiegeheugenarchitecturen op FPGA.

Summary

A Field Programmable Gate Array (FPGA) is a programmable digital electronic
chip. The FPGA does not come with a predefined function from the manufacturer;
instead, the developer has to define its function through implementing a digital cir-
cuit on the FPGA resources. The functionality of the FPGA can be reprogrammed
as desired and hence the name “field programmable”. FPGAs are useful in small
volume digital electronic products as the design of a digital custom chip is expen-
sive.

Changing the FPGA (also called configuring it) is done by changing the con-
figuration data (in the form of bitstreams) that defines the FPGA functionality.
These bitstreams are stored in a memory of the FPGA called configuration mem-
ory. The SRAM cells of LookUp Tables (LUTs), Block Random Access Memories
(BRAMs) and DSP blocks together form the configuration memory of an FPGA.
The configuration data can be modified according to the user’s needs to imple-
ment the user-defined hardware. The simplest way to program the configuration
memory is to download the bitstreams using a JTAG interface. However, modern
techniques such as Partial Reconfiguration (PR) enable us to configure a part in
the configuration memory with partial bitstreams during run-time. The reconfigu-
ration is achieved by swapping in partial bitstreams into the configuration memory
via a configuration interface called Internal Configuration Access Port (ICAP).
The ICAP is a hardware primitive (macro) present in the FPGA used to access the
configuration memory internally by an embedded processor.

The reconfiguration technique adds flexibility to use specialized circuits that
are more compact and more efficient t han t heir b ulky c ounterparts. A n exam-
ple of such an implementation is the use of specialized multipliers instead of big
generic multipliers in an FIR implementation with constant coefficients. To spe-
cialize these circuits and reconfigure during the run-time, researchers at the HES
group proposed the novel technique called parameterized reconfiguration that
can be used to efficiently and automatically implement Dynamic Circuit Special-
ization (DCS) that is built on top of the Partial Reconfiguration method. It uses
the run-time reconfiguration technique that is tailored to implement a parameter-
ized design. An application is said to be parameterized if some of its input values
change much less frequently than the rest. These inputs are called parameters. In-
stead of implementing these parameters as regular inputs, in DCS these inputs are
implemented as constants, and the application is optimized for the constants. For
every change in parameter values, the design is re-optimized (specialized) during
run-time and implemented by reconfiguring the optimized design for a new set of

x SUMMARY

parameters.
In DCS, the bitstreams of the parameterized design are expressed as Boolean

functions of the parameters. For every infrequent change in parameters, a special-
ized FPGA configuration is generated by evaluating the corresponding Boolean
functions, and the FPGA is reconfigured with the specialized configuration.

A detailed study of overheads of DCS and providing suitable solutions with
appropriate custom FPGA structures is the primary goal of the dissertation. I
also suggest different improvements to the FPGA configuration memory archi-
tecture. After offering the custom FPGA structures, I investigated the role of DCS
on FPGA overlays and the use of custom FPGA structures that help to reduce
the overheads of DCS on FPGA overlays. By doing so, I hope I can convince
the developer to use DCS (which now comes with minimal costs) in real-world
applications.

I start the investigations of overheads of DCS by implementing an adaptive
FIR filter (using the DCS technique) on three different Xilinx FPGA platforms:
Virtex-II Pro, Virtex-5, and Zynq-SoC. The study of how DCS behaves and what
is its overhead in the evolution of the three FPGA platforms is the non-trivial basis
to discover the costs of DCS.

After that, I propose custom FPGA structures (reconfiguration controllers and
reconfiguration drivers) to reduce the main overhead (reconfiguration time) of
DCS. These structures not only reduce the reconfiguration time but also help curb-
ing the power hungry part of the DCS system.

After these chapters, I study the role of DCS on FPGA overlays. I investigate
the effect of the proposed FPGA structures on Virtual-Coarse-Grained Recon-
figurable Arrays (VCGRAs). I classify the VCGRA implementations into three
types: the conventional VCGRA, partially parameterized VCGRA and fully pa-
rameterized VCGRA depending upon the level of parameterization. I have de-
signed two variants of VCGRA grids for HPC image processing applications,
namely, the MAC grid and Pixie.

Finally, I try to tackle the reconfiguration time overhead at the hardware level
of the FPGA by customizing the FPGA configuration memory architecture. In this
part of my research, I propose to use a parallel memory structure to improve the
reconfiguration time of DCS drastically. However, this improvement comes with a
significant overhead of hardware resources which will need to be solved in future
research on commercial FPGA configuration memory architectures.

Table of Contents

Examination Commission i

Acknowledgements v

Samenvatting vii

Summary ix

1 Introduction 1
1.1 Introduction to Digital Integrated Circuits 1
1.2 Heterogeneous computing platforms 2
1.3 Reconfigurable Computing . 5

1.3.1 Field Programmable Gate Array 6
1.3.2 Coarse-Grained Reconfigurable Array 6

1.4 Reconfiguration techniques and types 7
1.4.1 Dynamic Partial Reconfiguration 8
1.4.2 Dynamic Parameterized Reconfiguration 9

1.5 Introduction to the research and overview of the chapters 11
1.5.1 My contribution to the research 12

2 FPGA architecture and the tool flow 17
2.1 FPGA architecture . 17

2.1.1 Xilinx commercial FPGA products 21
2.1.1.1 Xilinx 7 series FPGAs 22
2.1.1.2 Xilinx UltraScale and UltraScale+ FPGAs . . . 24
2.1.1.3 Xilinx all programmable System-on-Chip prod-

ucts . 24
2.1.2 Configuration bitstream . 25
2.1.3 Frame Structure . 25
2.1.4 Configuration Interfaces on Xilinx FPGAs 26

2.2 Conventional FPGA tool flow . 27
2.2.1 Synthesis . 27
2.2.2 Technology Mapping . 28
2.2.3 Packing . 28
2.2.4 Placement . 29
2.2.5 Routing . 29

xii TABLE OF CONTENTS

2.2.6 Bitstream generator . 29

3 Dynamic Circuit Specialization 31
3.1 What is DCS? . 31
3.2 Parameterized configuration . 32

3.2.1 Two-staged tool flow for parameterized configuration . . . 32
3.2.1.1 Synthesis . 33
3.2.1.2 Technology Mapping 33
3.2.1.3 Placement, Routing and Bitstream generation . 34

3.2.2 Micro-reconfiguration . 35
3.2.2.1 DCS on Xilinx FPGAs 35
3.2.2.2 The HWICAP driver “XhwIcap_setClb_bits” func-

tion . 36
3.2.3 DCS on a self-reconfigurable platform for the Zynq-SoC . 37

3.3 Examples of parameterized applications 38
3.4 Functional Density . 40

3.4.1 Functional density for generic implementation 40
3.4.2 Functional density for DCS implementation 40

3.5 Performance evaluation of DCS on Xilinx FPGAs 41
3.5.1 Boolean function evaluation time 44

3.5.1.1 Evaluation time - Hard-core Processors 44
3.5.1.2 Evaluation time - Soft-core Processors 44

3.5.2 Reconfiguration time . 45
3.5.3 PPC memory size . 48

3.6 Power measurement analysis of DCS 50
3.6.1 Power measurement setup 50
3.6.2 Zynq-SoC configuration setup 51
3.6.3 Power Characterization for DCS 51

3.6.3.1 Energy consumed by the reconfiguration state
on top of the idle state energy: 51

3.6.3.2 Relative power consumed by the reconfigura-
tion state compared to the run state: 52

3.6.4 Power measurements . 52
3.6.5 FPGA PL power drop during reconfiguration 53
3.6.6 Xilinx HWICAP with Clock gating 55
3.6.7 DCS Power Analysis . 56

3.6.7.1 Power consumption of a DCS versus static im-
plementation . 56

3.6.7.2 Power efficient DCS implementation and its re-
configuration rate 59

4 MiCAP and MiCAP - Pro 61
4.1 Why custom reconfiguration controllers? 61
4.2 Internal Configuration Access Port 62

4.2.1 ICAP architecture . 62

TABLE OF CONTENTS xiii

4.2.2 ICAP Commands . 64
4.3 MiCAP . 64

4.3.1 State machine . 66
4.3.2 MiCAP with single port RAM 66

4.4 MiCAP-Pro . 68
4.4.1 MiCAP-Pro architecture 69
4.4.2 AXI DMA Engine . 69
4.4.3 MiCAP-Pro interconnections 70

4.5 Results on reconfiguration controllers 71
4.5.1 Reconfiguration time . 71
4.5.2 Reconfiguration controller data throughput 74
4.5.3 Resource utilization . 76
4.5.4 Custom reconfiguration controllers and functional density 76
4.5.5 Power and Energy analysis of the reconfiguration controllers 78

4.6 Improving reconfiguration speed using placement constraints . . . 80
4.6.1 Custom reconfiguration drivers 80
4.6.2 Placement constraints to improve reconfiguration speed . 82

4.7 Results on custom reconfiguration drivers 83
4.7.1 Experiments with MRMW reconfiguration drivers and with-

out placement constraints 83
4.7.2 Experiments with MRMW reconfiguration drivers and with

placement constraints . 85
4.7.3 Experiments with MROMW reconfiguration drivers and

with placement constraints 86
4.7.4 Functional density curves 87

5 DCS for FPGA Overlay architectures 93
5.1 Introduction to Overlays . 93

5.1.1 Types of Overlays . 94
5.1.2 Benefits of Overlays . 95

5.2 Coarse-Grained Reconfigurable Arrays (CGRAs) 96
5.3 Virtual Coarse-Grained Reconfigurable Arrays (VCGRAs) 97

5.3.1 Conventional VCGRA tool flow 97
5.3.2 Partially parameterized VCGRA tool flow 100
5.3.3 Tool flow for parameterized configuration 101
5.3.4 Fully parameterized VCGRA tool flow 102
5.3.5 Limitation of parameterized VCGRAs 103
5.3.6 Advantages of parameterized VCGRAs 104

5.4 Fully Parameterized MAC VCGRA grid 104
5.4.1 Retinal Vessel Segmentation Application 106
5.4.2 VCGRA for the HPC application 107
5.4.3 Results on MAC grid . 108
5.4.4 Functional density curves of parameterized VCGRAs . . . 110

5.5 The heterogeneous VCGRA grid: Pixie 112
5.5.1 A fully Parameterized Processing Element (PE) 114

xiv TABLE OF CONTENTS

5.5.2 Fully Parameterized Virtual Channel (VC) 115
5.5.3 Building a VCGRA . 116
5.5.4 Edge Detection . 116
5.5.5 Results on Pixie . 118

5.5.5.1 Virtual Channel (VC) 119
5.5.5.2 Processing Element (PE) 119
5.5.5.3 A fully parameterized 4 × 4 heterogeneous VC-

GRA grid . 120
5.5.5.4 Sobel filter . 120
5.5.5.5 Compilation time 120

6 Custom FPGA configuration memory architecture for ultra-fast re-
configuration 123
6.1 Auxiliary hardware for the custom FPGA architecture 124

6.1.1 Polymorphic Register File 124
6.1.2 Network-on-Chip . 125

6.1.2.1 Network Simulator 126
6.1.2.2 Configuration Parameters 127
6.1.2.3 Evaluation Criteria 129

6.2 Proposed FPGA Architecture . 131
6.2.1 Crossbar-based parallel memory 131
6.2.2 NoC-based parallel memory 133
6.2.3 Butterfly NoC . 133
6.2.4 Flattened Butterfly NoC 135
6.2.5 Significance of the proposed architecture 136

6.3 Results . 137
6.3.1 Estimated hardware cost 137
6.3.2 Reconfiguration simulation results 140

7 Conclusions and Future work 143
7.1 Conclusions . 144

7.1.1 Overheads and custom FPGA structures 144
7.1.2 FPGA overlays and DCS 144
7.1.3 Custom FPGA configuration memory 145

7.2 Future work . 145
7.2.1 Secured DCS for space applications 145
7.2.2 Floating point overlay library 146

Bibliography 147

List of Figures

1.1 Asymmetric multi-core: ARM big.LITTLE 3
1.2 Zynq UltraScale+ MPSoC . 4
1.3 A spectrum of different computing platforms 6
1.4 Classification of FPGA based on configurability 7
1.5 Partial region-based Reconfiguration System 9
1.6 Tool flow for each PRM . 10
1.7 Parameterized Reconfiguration System 10

2.1 FPGA architecture . 18
2.2 Column-based FPGA architecture: Zynq-SoC 20
2.3 Schematic of a 6-input fracturable LUT 21
2.4 Schematic of the Slice-M (Xilinx Artix-7) 22
2.5 Schematic of the Slice-L (Xilinx Artix-7) 23
2.6 Frame structure of column-based Xilinx FPGA, Zynq-SoC (Artix-7) 26
2.7 Conventional tool flow for FPGAs 28
2.8 Intermediate results of the conventional FPGA tool flow 30

3.1 A parameterized configuration containing Boolean functions . . . 33
3.2 Two-staged tool flow for parameterized configurations 34
3.3 Dynamic Circuit Specialization on Xilinx FPGAs 36
3.4 Dynamic Circuit Specialization on a self-reconfigurable platform

for the Zynq-SoC . 38
3.5 16-tap, 8-bit FIR filter . 39
3.6 Functional Density curves for TCAM 41
3.7 Evaluation time comparison of hard-core processors 45
3.8 Evaluation time comparison of soft-core processors 46
3.9 Reconfiguration time comparison 47
3.10 PPC memory size comparison . 49
3.11 Current measurement schematics of Zynq-Soc on ZC702 board . . 50
3.12 Average power consumption of CPU and FPGA during run and

reconfiguration state . 54
3.13 Average power consumption of CPU and FPGA during Frame read

and Frame write activities . 54
3.14 Clock gating for the AXI-HWICAP 55

xvi LIST OF FIGURES

3.15 Relative Power ratio as a function of the number of FIR filter IP
instances . 56

3.16 Reconfiguration rate as function of number of FIR filter instances 60

4.1 ICAP primitive in Zynq-SoC . 63
4.2 ICAP commands . 64
4.3 MiCAP architecture . 65
4.4 MiCAP implementation on the Zynq-SoC 67
4.5 MiCAP with single port RAM . 68
4.6 MiCAP-Pro implementation on the Zynq-SoC 69
4.7 MiCAP-Pro interconnections . 70
4.8 Reconfiguration time for parameterized applications with different

reconfiguration controllers . 72
4.9 Data throughput of different reconfiguration controllers 75
4.10 Functional Density curves for adaptive FIR filter 77
4.11 Power activity of the reconfiguration controllers 79
4.12 Energy variations of the reconfiguration controllers 79
4.13 Reconfiguration time comparison between standard reconfigura-

tion driver and custom reconfiguration drivers 89
4.14 Functional Density curves for HWICAP with different reconfigu-

ration drivers . 90
4.15 Functional Density curves for MiCAP with different reconfigura-

tion drivers . 90
4.16 Functional Density curves for MiCAP-Pro with different reconfig-

uration drivers . 91

5.1 An overlay architecture for FPGA application development 94
5.2 A CGRA architecture . 96
5.3 A fragment of VCGRA grid with Processing Elements (PEs), Vir-

tual Switch Blocks (VSB) and corresponding settings registers (rect-
angles) . 98

5.4 Tool flow for CGRA implemented on an FPGA (conventional VC-
GRA) . 98

5.5 Implementation of applications on a partially parameterized VC-
GRA using the parameterized configuration tool flow 101

5.6 Implementation of applications on a fully parameterized VCGRA
using the parameterized configuration tool flow 103

5.7 A fully parameterized Processing Element (PE) containing Tun-
able LUTs (TLUTs) and Tunable Connections (TCONs) within a
single PE . 105

5.8 A connection multiplexer with configuration memory shown in
circles . 106

5.9 High level presentation of the processing steps for the retinal ves-
sel segmentation application . 107

5.10 Floating Point MAC Operator for Filter Applications 108

LIST OF FIGURES xvii

5.11 Functional density curves for a partially parameterized, fully pa-
rameterized and a conventional VCGRA implementation 111

5.12 An overview of a design for a parameterized VCGRA 113
5.13 Schematic of a Processing Element 114
5.14 Schematic of a Virtual Channel . 115
5.15 Task graph representation of a 3 × 3 filter mask 117
5.16 VCGRA grid for the Sober edge detection filter 117

6.1 Polymorphic Register File Architecture 125
6.2 Organization of buffers in a network 129
6.3 A crossbar-based parallel memory for custom FPGA configuration

memory . 132
6.4 A NoC-based parallel memory for custom FPGA configuration

memory . 133
6.5 Block diagram of the 3-ary 3-fly (top), and the corresponding 3-ary

3-flat (bottom) NoC topology . 134
6.6 Specialized data prefetch cycle . 137

List of Tables

2.1 Xilinx FPGA products classification (2017) 23
2.2 Xilinx SoC products classification (2017) 24

3.1 Xilinx FPGA device details . 43
3.2 PPC evaluation time in microseconds 44
3.3 Reconfiguration time in milliseconds 46
3.4 Normalized Reconfiguration time (FPGAs) 48
3.5 Normalized Reconfiguration time (hard-core processors) 48
3.6 PPC memory size in KB . 48
3.7 Normalized PPC memory size . 48
3.8 Normalized PPC memory size . 49
3.9 Average power consumed by the CPU and the PL fabric 52
3.10 FPGA PL Power gradient . 54
3.11 FIR power consumption comparison Static vs DCS 57
3.12 Differential Power Results . 58

4.1 Total reconfiguration time (ms) for different parameterized appli-
cations with different reconfiguration controllers 73

4.2 Reconfiguration time of a TLUT for different reconfiguration con-
trollers . 74

4.3 Data throughput of reconfiguration controllers 74
4.4 Resource utilization of the reconfiguration controllers 76
4.5 Average Power and Energy results of the reconfiguration controllers 78
4.6 Dimensions for the Placement Constraints 82
4.7 TLUTs cluster rate of 64-tap FIR filter in a single CLB column . . 83
4.8 FIR filter configurations . 83
4.9 Reconfiguration time distribution of a single TLUT 84
4.10 CLB columns - TLUTs placed without placement constraints . . . 84
4.11 Total Reconfiguration time without placement constraints 84
4.12 Total Reconfiguration time with placement constraints 85
4.13 Maximum clock frequency the design can support on the Zynq-SoC 86
4.14 Reconfiguration time using MROMW driver 87
4.15 Naming convention for reconfiguration controllers and their defi-

nitions . 88

xx LIST OF TABLES

5.1 Resource utilization and P&R results of a PE 109
5.2 Resource utilization and P&R results 119

6.1 NoC configuration parameters and results 139
6.2 Reconfiguration time comparison 141

List of Acronyms

A

ADAS Airborne Data Annotation System
ADC Analog to Digital Converter
AES Advanced Encryption System
AGU Address Generator Unit
AIG AND-Inverter-Graph
ALU Arithmetic and Logic Unit
ARM Advanced RISC Machine
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface

B

BBRAM Battery Backup Random Access Memory
BLE Basic Logic Element
BPI Byte Peripheral Interface
BRAM Block Random Access Memory
BUF Buffer

C

CAB Configuration Access Bus
CAM Content Addressable Memory
CB Connection Block
CGRA Coarse-Grained Reconfigurable Arrays
CLB Configurable Logic Block
CPU Central Processing Unit
CW Channel Width

xxii LIST OF ACRONYMS

D

D2PR-EDAC Dynamic Partial Reconfiguration with Error Detec-
tion and Correction

DCS Dynamic Circuit Specialization
DMA Direct Memory Access
DOR Dimension-Order Routing
DPR Dynamic Partial Reconfiguration
DRAM Dynamic Random Access Memory
DRC Design Rule Check
DSP Digital Signal Processing
DT Destination-Tag

F

FF Flip-Flop
FIFO First-In-First-Out
FinFET Fin Field-Effect Transistor
FIR Finite Impulse Response
FLIT FLow control digIT
FPGA Field Programmable Gate Array

G

GP General Purpose
GPU Graphic Processing Unit

H

HDL Hardware Description Language
HES Hardware and Embedded Systems
HP High Performance
HPC High Performance Computing
HWICAP Hardware Internal Configuration Access Port

LIST OF ACRONYMS xxiii

I

IBM International Business Machine
IC Integrated Chip
ICAP Internal Configuration Access Port
IOB Input Output Block
IP Intellectual Property
ISA Instruction Set Architecture
ITRS International Technology Roadmap for Semiconduc-

tors

J

JTAG Joint Test Action Group

L

LCD Liquid Crystal Display
LUT LookUp Table

M

MAC Multiply Accumulate
MAF Module Assignment Function
mCW minimum Channel Width
MiCAP Micro-reconfigurable Configuration Access Port
Min AD Minimal Adaptive
MM2S Memory Mapped to Stream
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MPSoC Multiprocessor System-on-Chip
MRMW Multi-Read-Modify-Write
MROMW Multi-Read once-Modify-Write
MUX Multiplexer

xxiv LIST OF ACRONYMS

N

NoC Network-on-Chip

O

OPB On-Chip Peripheral Bus

P

PCAP Processor Configuration Access Port
PCIe Peripheral Component Interconnect express
PE Processing Element
PL Programmable Logic
PLB Processor Local Bus
PLD Programmable Logic Device
PPC Partial Parameterized Configuration
PR Partial Reconfiguration
PRF Polymorphic Register File
PRM Partial Reconfigurable Module
PRR Partially Reconfigurable Region
PS Processing System

R

RAM Random Access Memory
RegEx Regular Expression
RISC Reduced Instruction Set Computer
RPU Real-time Processing Unit
RTL Register-Transfer Level

S

S2MM Stream to Memory Mapped
SB Switch Block

LIST OF ACRONYMS xxv

SCG Specialized Configuration Generator
SD Secure Digital
SIMD Single Instruction Multiple Data
SoC System on Chip
SPI Serial Peripheral Interface
SRAM Static Random Access Memory

T

TC Template Configuration
TCAM Ternary Content Addressable Memory
TCON Tunable Connection
TLUT Tunable LookUp Table
TLUTMAP Tunable LookUp Table Mapper
TPAR Tunable Place and Route
TPLACE Tunable Placer
TROUTE Tunable Router

U

UGAL Universal Globally-Adaptive Load-balanced

V

VAL Valiant
VC Virtual Channel
VCGRA Virtual Coarse-Grained Reconfigurable Arrays
VHDL Very-high-speed Integrated Circuit Hardware Descrip-

tion Language
VPR Versatile Placement and Routing
VSB Virtual Switch Block

W

WL Wire Length

1
Introduction

This chapter starts with a brief introduction to digital electronics and implemen-
tations on CPU, GPU, ASIC and FPGA. It compares one implementation form
over the other, with emphasis on the importance of heterogeneous computing and
the justification on why it has emerged as the most recent trend in electronic im-
plementations. Reconfigurability plays an important role in heterogeneous com-
puting and therefore, this chapter will focus most of the discussion on reconfig-
urable computing. Furthermore, a brief introduction to reconfiguration in FPGAs
and classification of the reconfiguration followed by introduction to Parameterized
Reconfiguration technique is presented. After, a brief overview of each chapter
presented in this theses. This chapter concludes with a description on the structure
of this dissertation.

1.1 Introduction to Digital Integrated Circuits

In today’s world digital electronics or electronic chips have made significant con-
tribution to the evolution of modern electronic devices. The electronic chips are
the brains of almost every electric device ranging from a digital thermometer to a
personal computer to an international space station.

Digital electronic chips (also called Integrated Chip - IC) consist of a network
of Boolean logic gates built from a basic building block called transistor. The tran-
sistor count in a typical IC could range from a few thousands to millions to billions
(depending on the functionality to be implemented) connected together to form a

2 CHAPTER 1

huge network of Boolean logic gates. The task of these networks is to process
digital signals, which are in the form of binary 0s or 1s, to produce a meaning-
ful output to the user. For example, consider a digital thermometer that can sense
the temperature using a thermal sensor. The data sensed by the thermal sensor
is converted into binary (using ADC) form 0s and 1s. A digital electronic chip
is designed in such a way that it takes the binary values as input and drives the
LCD unit to display the current temperature in a human readable format (either in
Celsius or Fahrenheit). The design of such IC is application specific and cannot
be used for any other purpose and hence they are called Application Specific Inte-
grated Circuit (ASIC). After fabrication, the function of an ASIC will remain the
same throughout its life span and cannot be changed at all.

The digital thermometer is a very simple example to illustrate the use of a
digital IC. However, there exist stringent performance requirements for the high-
performance computing applications that demand the processing of huge data
(petascale) within considerably less execution time. To handle such requirements
the technology has evolved towards heterogeneous computing platforms.

1.2 Heterogeneous computing platforms
A high-performance computing machine contains a digital brain called the micro-
processor built with billions of transistors dedicated to perform useful computa-
tions for the user. According to Moore’s law, the transistor count on chip doubles
every 18-24 months, leading to the prediction that the number of on-chip cores of
a processor (but not the performance) doubles for every two years [1].

Dennard scaling (also known as MOSFET scaling law) states that the power
density stays constant as transistor sizes become smaller hence the power use re-
mains in proportion with the area of the transistor [2].

In today’s transistor technology node, we cannot continue to ride the transistor
count growth curve as per Moore’s law since the Dennard scaling law on power
density has failed massively for the technology nodes below 65 nm. The princi-
pal challenge turns out to be the increase in power density that prevents all the
processor cores to be switched on at the same time. This phenomenon is called
dark silicon. Due to the failure of power density, embedding more transistors on a
single chip to work does no longer help therefore, we need a strategy to use them
more efficiently. This has led to the evolution of heterogeneous computing where
the transistors can be efficiently used as every problem gets its own optimized
implementation [3].

The heterogeneous computing architectures can be broadly classified into two
categories: performance heterogeneity and functional heterogeneity.

1. Performance heterogeneous multi-core. The multi-core architecture shares
a common Instruction Set Architecture but consists of cores with different

INTRODUCTION 3

Cortex

A15

Cortex

A15

Cortex

A15

Cortex

A15

L2

Cortex

A7

L2

Cortex

A7

Cortex

A7

Cortex

A7

Cache Coherent Interconnect

DRAM

Figure 1.1: Asymmetric multi-core: ARM big.LITTLE

power per performance characteristics. The distinct micro-architectural fea-
tures such as in-order vs out-of-order instruction execution will affect the
power performance of each core. Therefore, the complex core can pro-
vide high performance with the cost of high power while the simpler cores
can provide low performance with an advantage of low power consumption.
These cores can be further classified into static asymmetric multi-core and
dynamic asymmetric multi-core.

(a) Static asymmetric multi-core. In this type of architecture, the hetero-
geneity (mix of different cores) is fixed at fabrication time. For ex-
ample, ARM big.LITTLE [4] belongs to the asymmetric multi-core
category that has high-performance out of order cores integrated with
low-power in-order cores as shown in Figure 1.1. It consists a set of
high performance quad-core ARM Cortex-A15 RISC processors in-
tegrated with low power quad-core ARM Cortex-A7. This kind of
multi-core appears in Samsung’s Exynos 5 Octa SoC used in Samsung
galaxy S4 smart phones.
These multi-cores are introduced to accommodate software diversity
such as a mix of instruction level parallelism and thread level paral-
lelism and prove to be much better than homogeneous multi-cores. The
low-power (Cortex-A7) core can take care of uncomplicated applica-
tions such as handling the email client or a modest messenger. Keeping
the high-performance core off the shelf thus it proves the power effi-
ciency. However, the complex core Cortex-A15 is switched on only
when there is a demand to handle compute intensive tasks such as 3D
gaming, high stream video applications, etc. trading the energy with
the performance. The main drawback of such architecture is they are
not flexible enough to adjust themselves to the dynamic nature of a

4 CHAPTER 1

Zynq UltraScale+ MPSoC Processing System

Application Processing Unit Memory High-Speed
Connectivity

GIC-400 SCU CCI/SMMU 1MB L2 w/ECC

ARM®

Cortex™-A53

NEON™

Floating PointUnit

32KB
I-Cache
w/Parity

32KB
D-Cache
w/ECC

Memory
Mgmt
Unit

Trace
Macro
Cell

Real-Time Processing Unit

21
3

4

Graphics Processing Unit
ARM Mali™-400 MP2

Geometry
Processor

Two Pixel
Processors

Memory Management Unit

64KB L2 Cache

DDR4/3/3L, LPDDR4/3
ECC Support

256KB OCM
with ECC

DisplayPort

USB 3.0

SATA 3.1

PCIe Gen2

PS-GTR

2

GIC

ARM
Cortex-R5 Memory Protection Unit

Vector Floating Point Unit

128KB
TCM

w/ECC

32KB
D-Cache
w/ECC

32KB
I-Cache
w/ECC

Trace
Macro
Cell 1

Configuration &
Security Unit

Config AES
Decryption,

Authentication,
Secure Boot

DMA, Timers,

WDT, Resets,

Clocking, and Debug
TrustZone

Voltage/Temp
Monitor

Platform
Management Unit

System
Control

System
Management

Power

SD/eMMC

NAND

Quad SPI NOR

SPI

UART

CAN

GigE

Zynq UltraScale+ MPSoC Programmable Logic

Storage & Signal Processing

Block RAM

UltraRAM

DSP

General-Purpose I/O

High-Performance HP I/O

High-Density HD I/O

High-Speed Connectivity

GTH

GTY

Interlaken

100G EMAC

PCIe Gen4

Video Codec
H.265/H.264

System Monitor

General
Connectivity

Figure 1.2: Zynq UltraScale+ MPSoC [6]

workload.

(b) Dynamic asymmetric multi-core. This type of multi-core architecture
is designed to provide flexibility so that they can dynamically tailor
themselves according to the application demand. These architectures
are fabricated as a set of homogeneous cores. At run-time two or more
homogeneous cores are collated together to form one big complex vir-
tual core. Also, at run-time one complex virtual core can be split to
form two or more simple cores. An example of the dynamic asymmet-
ric multi-core architecture is the Bahurupi architecture [5].

2. Functional heterogeneous multi-core. This multi-core architecture com-
prises of cores with distinct functionality. The functionality of each core to-
gether introduces heterogeneity to meet the performance requirements under
a stringent power budget. For example, a Multi-Processor System-on-Chip
(MPSoC) used in embedded products consists of Central Processing Unit
(CPU) cores, Graphics Processing Unit (GPU) cores, Real-time Processing
Unit (RPU) cores, Digital Signal Processor (DSP) blocks and Programmable
Logic (PL) accelerators.

A commercially available functional heterogeneous computing platform for
embedded space (Xilinx Ultrascale + MPSoC) is depicted in Figure 1.2.

INTRODUCTION 5

The MPSoC platform is divided into two parts: Processing System (PS)
and Programmable Logic (PL). The PS mainly contains a quad-core ARM
Cortex-A53 RISC CPU running up to 1.5 GHz; a Mali-400 embedded GPU,
a dual-core ARM Cortex-R5 RPU with a clock running up to 600 MHz,
memory controllers, high speed connectivity interfaces, etc.

A Graphics Processing Unit is a specialized processor designed to han-
dle complex mathematical and geometrical calculations (vector processing,
floating-point operations and matrix operations) needed for graphics render-
ing. They excel in number crunching using extreme data parallelism built by
large-scale Single Instruction Multiple Data (SIMD) computer architectures.

A Real-time Processing Unit is used for time-bound computations. The pro-
cessor has to be active enough to receive the data, perform computation and
respond back within a fixed time frame. Such processors work indepen-
dently (without involving in dependencies with other sub-systems) and are
inherently fault tolerant.

Digital Signal Processing blocks are dedicated hardware used for efficient
signal processing of digital signals (mainly audio). They have a fixed arith-
metic data path that can handle a huge amount of numerical calculations. For
example, a DSP block contains a hard coded multiply-accumulate (MAC)
operator unit that is much more efficient and faster than a MAC operation
on a RISC processor.

The PL is a Field Programmable Gate Array (FPGA) fabric that contains up
to 1M logic elements, 1K DSP slices, a total block RAM of 35 Mb and other
high performance communication blocks such as gigabit transceivers. The
PL is used to implement application specific specialized hardware that is ef-
ficient to perform tasks requested by the PS in order to accelerate and obtain
real time responsiveness. Thus, the PL acts as an accelerator while the PS is
suitable for implementing the applications whose features or specifications
change frequently.

1.3 Reconfigurable Computing

Reconfigurable computing is a computer paradigm that combines the flexibility
a software program running an a CPU with the performance of dedicated hard-
ware [7]. All cores (except PL) described in the previous sections are traditional
fixed-function ASIC accelerators that provide high efficiency but offer zero flexi-
bility.

In a broader spectrum, on one end a general-purpose processor provide full
flexibility via software programming, but the performance and energy efficiency

6 CHAPTER 1

CPU

FPGA

ASIC

F
le

x
ib

ili
ty

Performance, Cost and Development time

VCGRA

Figure 1.3: A spectrum of different computing platforms

is much lower than in an ASIC; on the other end, an ASIC provides high perfor-
mance and energy-efficient implementations with no flexibility. Reconfigurable
computing fills the gap between the CPU flexibility and ASIC like performance as
illustrated in Figure 1.3.

1.3.1 Field Programmable Gate Array

An FPGA is a semiconductor fabric that allows users to change (configure) its
functionality (hardware behavior) not only at compile-time but also at run-time.
The configuration data (bitstreams) of an FPGA define the hardware functionality.
Therefore, the user can design the hardware and change it by modifying the bit-
streams for a given set of requirements. As shown in Figure 1.3, an FPGA fills the
gap between two ends (CPU and ASIC) in a spectrum of flexibility, development
cost and time similar to the reconfigurable architectures. Therefore, the FPGA is a
key player in the era of reconfigurable computing.

1.3.2 Coarse-Grained Reconfigurable Array

In Coarse-Grained Reconfigurable Arrays (CGRAs) each programmable logic com-
ponent are defined at a higher abstraction level. These components are called
Processing Elements (PEs) and the group of PEs along with the inter-connection
network form an architecture that enables ease of programmability and result in

INTRODUCTION 7

FPGA

One-time configurable

Actel - Antifuse
Reconfigurable

Global

Altera Cyclone or Stratix
Partial

Passive

Xilinx Spartan - 3

Active

Xilinx Virtex and 7-series

Figure 1.4: Classification of FPGA based on configurability [7]

low development costs. They enable the ease of use specifically in reconfigurable
computing applications. The smaller cost of compilation and reduced reconfigura-
tion overhead enables them to become attractive platforms for accelerating high-
performance computing applications. The CGRAs are ASICs and therefore, ex-
pensive to produce. However, Field Programmable Gate Arrays (FPGAs) are rel-
atively cheaper for low volume products but they are not so easily programmable.
Combining the best of both worlds leads to a Virtual Coarse-Grained Reconfig-
urable Array (VCGRA) on FPGA. VCGRAs are a trade off between FPGA and
ASICs.

1.4 Reconfiguration techniques and types

A reconfigurable device (chip) allows the user to change its functionality at any
time (including run-time) in the system. Such systems require no manual inter-
ventions while changing the functionality or destructing the existing functionality
of digital design. A CPU cannot be considered as a reconfigurable device since
the hardware structure of the CPU remains the same while only the instructions
change on a clock cycle basis. However, an FPGA is a reconfigurable device since
the digital implementation on the FPGA can be changed at anytime.

Depending on the configuration capability, an FPGA architecture can be clas-
sified as illustrated in Figure 1.4. At the top level, FPGAs can be divided between
one-time configurable devices (Antifuse-based) that can replace ASIC devices and
(re)configurable FPGAs. Configurable FPGAs (SRAM-based) can be then clas-
sified into globally and partially reconfigurable categories. A complete FPGA
configuration has to be swapped while performing global reconfiguration, which
leads to a change in the internal state of the hardware and thus the FPGA has to
restart its operation. This kind of reconfiguration is used for in-field updates. In
partial reconfiguration, the user can change the function of part of the FPGA de-

8 CHAPTER 1

vice (usually a region) while other sections remain operational. Furthermore, the
partial reconfiguration can be performed either passive (static) by stopping the op-
eration of the application (by disabling all clocks) or active (dynamic) where the
operation of the application can continue during the reconfiguration. Henceforth
we will focus only on active or dynamic partial reconfiguration.

1.4.1 Dynamic Partial Reconfiguration

Partial region-based reconfiguration [8] is the ability to modify a part of the logic
blocks of an FPGA while the rest remains active. The modification of the logic
is achieved by downloading partial bitstreams. The partial bitstreams represent
Partial Reconfigurable Modules (PRMs). The reconfiguration process is triggered
by the application software when a set of conditions at a given moment in time are
met.

The system for conventional Partial region-based Reconfiguration is depicted
in Figure 1.5. The system consists of a CPU (such as PowerPC, ARM Cortex-A9
or MicroBlaze, either on or off the chip), a configuration database (an SD card), a
configuration interface (such as HWICAP) and Programmable Logic (PL- such as
the logic blocks on an FPGA). A part of the PL region is segregated and dedicated
to implement the reconfigurable logic. The “F1” region shown in Figure 1.5 on the
FPGA is a dynamic region dedicated for reconfiguration and is also called Partially
Reconfigurable Region (PRR). The rest of the PL is called static region. The static
and reconfigurable regions are connected physically using primitives called bus
macros [9].1 The user chooses the PRR well before the bitstream compilation.
The remaining part of the FPGA is not a part of the reconfiguration and hence can
be regarded as a static region.

The application software running on the CPU triggers the reconfiguration by
sending a reconfiguration request to the configuration manager. The configuration
manager downloads an appropriate partial bitstream by fetching it from the config-
uration database. The partial bitstream is downloaded via a configuration interface
called Hardware Internal Configuration Access Port (HWICAP) [12]. The HW-
ICAP is responsible for orchestrating the swap of partial bitstreams.

A set of PRMs are compiled during the bitstream compilation of the design.
Each PRM has to undergo conventional FPGA toolflow steps: Synthesis, Technol-
ogy Mapping and Place and Route to compile into Partial Bitstreams (Figure 1.6).
These PRMs are stored in the configuration database which is located in a mem-
ory. The memory can be internal (DRAM) or it can be external to the FPGA (SD
card).

1In the modern FPGAs the bus macro connections are called partition pins. The partition pins are
the physical and logical connection between static logic and reconfigurable logic. Partition pins are
automatically created and placed by the design tool such as Vivado [10] for all PRR [11].

INTRODUCTION 9

Application

Software

Configuration

Manager

F1

Config.

DB

Reconfiguration

Request

CPU

F1

FPGAStatic

HWICAP

Configuration

Interface

Figure 1.5: Partial region-based Reconfiguration System

The run-time Partial region-based Reconfiguration can be used to save a sig-
nificant amount of silicon area and dynamic power by swapping only the required
design into the FPGA. However, if the costs of the PR such as reconfiguration time
and amount of memory needed to store the partial bitstreams is very high then the
advantage of using PR diminishes. For example, an adaptive FIR filter (16-taps,
8-bit) whose taps can be reconfigured for any set of filter coefficients requires 2128

different PRMs to be stored in the memory which is practically impossible and
therefore, PR is not feasible, even for such a simple application. Parameterized
Reconfiguration can be used in such situations to overcome the constraints im-
posed by the overheads.

1.4.2 Dynamic Parameterized Reconfiguration

Parameterized Reconfiguration is suitable to implement parameterized applica-
tions. A parameterized application contains a set of inputs whose values change
less frequently than the rest of the inputs [13]. These infrequently changing inputs
are called parameters. In this approach, a part of the FPGA configuration bit-
streams is expressed as Boolean functions of parameter inputs. For every change
in parameter input values, the Boolean functions are evaluated to generate spe-
cialized bitstreams at run-time and the FPGA is reconfigured with the specialized
bitstreams using partial run-time reconfiguration. This technique is also called
Dynamic Circuit Specialization (DCS) [13].

The parameterized reconfiguration system is depicted in Figure 1.7. The pa-

10 CHAPTER 1

Static HDL

Design
Synthesis

Technology

Mapping

Place

&

Route

Static

Config.

F1

HDL
Synthesis

Place

&

Route

F1

Config.

F2

HDL
Synthesis

Place

&

Route

F2

Config.

Technology

Mapping

Technology

Mapping

Figure 1.6: Tool flow for each PRM

Application

Software

Configuration

Manager

FIR

(2,8)

Config.

DB

Reconfiguration

Request

CPU

FIR

FPGAStatic

HWICAP

Configuration

Interface

Figure 1.7: Parameterized Reconfiguration System

rameterized reconfiguration is built on top of partial region-based reconfiguration
and hence most parts in the system remain the same. The application software

INTRODUCTION 11

running on the CPU monitors the parameterized inputs. Once a change in pa-
rameter value is detected, the specialization is performed by the configuration
manager by evaluating the Boolean functions (that are stored in the configuration
database) for given parameter values, thus generating the specialized bitstreams.
The stale frames of the FPGA are replaced with the specialized frames using
micro-reconfiguration.

The adaptive FIR filter (16-taps, 8-bit), can be efficiently implemented using
the parameterized reconfiguration technique. With this technique, an approximate
reduction of 42% of resource utilization can be achieved when compared against
generic (non-reconfigurable) implementation. [13]. The FIR filter contains fil-
ter taps containing multiplications that are parameterized. For every (infrequent)
change in the coefficient value, a specialized bitstream is generated (evaluating
the Boolean functions) and the filter taps containing multiplications are micro-
reconfigured accordingly.

1.5 Introduction to the research and overview of the
chapters

Although dynamic reconfiguration in FPGAs is an important feature that offers
design flexibility under low-cost silicon area and power budgets, this flexibility
comes with undesired overheads. One of the main overheads is the time taken
during reconfiguration that is too high for the reconfiguration technology to be
embraced as a standard. To handle the stringent performance requirements of fu-
ture High Performance Computing (HPC) applications, HPC systems need ultra-
efficient heterogeneous compute nodes. To reduce power and increase perfor-
mance, such compute nodes will require reconfiguration as an intrinsic feature [14],
so that the reconfiguration technology can help in optimal acceleration of a specific
part of the HPC application even if they regularly change over time [15].

This dissertation presents a detailed study of overheads of DCS. To overcome
the overheads I propose custom FPGA structures that are designed to implement
efficient reconfiguration for DCS. I also propose different improvements to the
FPGA architecture. To address the problems with ease of programming in FPGAs,
I also study VCGRA architectures using DCS.

FPGA architecture and the tool flow

The background of an FPGA architecture and the conventional tool flow to gen-
erate configuration bitstreams are discussed in Chapter 2. I describe more on the
reconfiguration infrastructure of the modern Xilinx FPGA followed by a compari-
son of key features of modern SoC FPGAs with their predecessors.

12 CHAPTER 1

1.5.1 My contribution to the research

The following chapters give brief details of my contribution to this dissertation.

Overhead evaluation and measurement of Dynamic Circuit Specialization

Chapter 3 is more focused on the state-of-the-art of Dynamic Circuit Specialization
and the tool flow used to generate parameterized configurations followed by an
explanation of micro-reconfiguration. I have evaluated the overheads of the DCS
technique and its performance on three different Xilinx FPGA platforms.

MiCAP and MiCAP-Pro

The reconfiguration controller (such as HWICAP) is a necessary component for
dynamic reconfiguration. However, using the conventional HWICAP proves to
be inefficient for DCS. Therefore, the custom reconfiguration controllers (MiCAP
and MiCAP-Pro) for DCS are designed in order to reduce the reconfiguration over-
heads. More details on these controllers are presented in Chapter 4.

DCS for FPGA Overlay architectures

FPGAs have proven their potential in accelerating High Performance Computing
(HPC) Applications. Conventionally such accelerators predominantly use FPGAs
that contain fine-grained elements such as LookUp Tables (LUTs), Switch Blocks
(SB) and Connection Blocks (CB) as basic programmable logic blocks. However,
the conventional implementation suffers from high reconfiguration and develop-
ment costs. In order to solve this problem, programmable logic components are
defined at a virtual higher abstraction level. This result is an intermediate virtual
architecture called FPGA overlays. FPGA overlays make the life of software pro-
grammers easier as they bypass the need to understand the hardware knowledge.
The abstraction helps to reconfigure the parts of the hardware faster at the interme-
diate level than at the lower-level of an FPGA. In Chapter 5, I focus on the DCS
technique for VCGRAs.

Custom FPGA configuration memory architecture for ultra-fast reconfigura-
tion

The reconfiguration time overhead produced by the conventional configuration
ports (such as ICAP) is too high for the reconfiguration technology to be embraced
as a standard. Furthermore, the current FPGA configuration memory architecture
restricts the access of configuration data to the frame level; this significantly de-
lays the reconfiguration process. A custom FPGA architecture for ultra-fast micro-
reconfiguration is presented in Chapter 6.

INTRODUCTION 13

Finally, the concluding remarks and the future work of the dissertation is pre-
sented in Chapter 7.

Publications

Journal Papers

• Amit Kulkarni and Dirk Stroobandt. “MiCAP-Pro: A high speed custom
reconfiguration controller for Dynamic Circuit Specialization”.
Design Automation for Embedded Systems, Vol. 20, Issue 4, pp. 341-359,
2016.

• Amit Kulkarni and Dirk Stroobandt. “How to Efficiently Reconfigure Tun-
able Lookup Tables for Dynamic Circuit Specialization”.
International Journal of Reconfigurable Computing, Vol. 2016, pp. 1-12,
2016.

• Mohamed El-Hadedy, Amit Kulkarni, Dirk Stroobandt and Kevin Skadron.
“Reco-Pi: A Reconfigurable Cryptoprocessor for π-Cipher”.
Journal of Parallel and Distributed Computing: Special issue on Reconfig-
urable Computing Through the Looking Glass (Accepted, 2017)

Conference Papers

• Amit Kulkarni, Poona Bahrebar, Dirk Stroobandt, Giulio Stramondo, Catalin
Bogdan Ciobanu, Ana Lucia Varbanescu. “A NoC-based custom FPGA con-
figuration memory architecture for ultra-fast micro-reconfiguration”.
In 2017 International Conference on Field-Programmable Technology. un-
der review (Submitted 2017)

• Alexandra Kourfali, Amit Kulkarni, Dirk Stroobandt. “SICDA: A Super-
imposed In-Circuit Debug Architecture for Virtual Coarse-Grained Recon-
figurable Arrays”.
In 2017 International Conference on Field-Programmable Technology. un-
der review (Submitted 2017)

• Alexandra Kourfali, Amit Kulkarni, Dirk Stroobandt. “SICTA: A Super-
imposed In-Circuit Fault Tolerant Architecture for SRAM-based FPGAs”.
In 2017 IEEE 23rd International Symposium on On-Line Testing and Robust
System Design (IOLTS) Proceedings, pp. 1-4, 2017.

• Amit Kulkarni, Andre Werner, Florian Fricke, Dirk Stroobandt and Michael
Huebner. “Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable
Array for high performance image processing applications”.

14 CHAPTER 1

In 3rd International Workshop on Overlay Architectures for FPGAs (OLAF),
Proceedings, pp. 1-6, 2017.

• Amit Kulkarni, Elias Vansteenkiste, Dirk Stroobandt, Andreas Brokalakis
and Antonios Nikitakis. “A fully Parameterized Virtual Coarse-Grained Re-
configurable Array for High Performance Computing applications”.
In 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops, Proceedings, pp. 265-270, 2016.

• Mohamed El-Hadedy, Amit Kulkarni, Hristina Mihajloska, Danilo Glig-
oroski, Dirk Stroobandt and Kevin Skadron. “A 16-bit Reconfigurable En-
cryption Processor for π-Cipher”.
In 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops, Proceedings, pp. 162-171, 2016. (Best paper award).

• Dirk Stroobandt, Ana Lucia Varbanescu, Catalin Bogdan Ciobanu, Muhammed
Al Kadi, Andreas Brokalakis, George Charitopoulos, Tim Todman, Xinyu
Niu, Dionisios Pnevmatikatos, Amit Kulkarni, Elias Vansteenkiste, Wayne
Luk, Marco D Santambrogio, Donatella Sciuto, Michael Huebner, Tobias
Becker, Georgi Gaydadjiev, Antonis Nikitakis and Alex JW Thom.
“EXTRA: Towards the exploitation of eXascale technology for reconfig-
urable architectures”.
In 2016 11th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC 2016) Proceedings, pp. 1-7, 2016.

• Amit Kulkarni, Vipin Kizheppatt and Dirk Stroobandt. “MiCAP: A cus-
tom Reconfiguration Controller for Dynamic Circuit Specialization”.
In International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Proceedings, pp. 1-6, 2015.

• Amit Kulkarni, Robin Bonamy and Dirk Stroobandt. “Power measure-
ments and analysis for Dynamic Circuit Specialization”.
In International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Proceedings, pp. 1-6, 2015.

• Amit Kulkarni, Tom Davidson, Karel Heyse and Dirk Stroobandt. “Im-
proving reconfiguration speed for Dynamic Circuit Specialization using place-
ment constraints”.
In International Conference on ReConFigurable Computing and FPGAs
(ReConfig), Proceedings, pp. 1-6, 2014.

• Amit Kulkarni, Karel Heyse, Tom Davidson, Dirk Stroobandt. “Perfor-
mance Evaluation of Dynamic Circuit Specialization on Xilinx FPGAs”.
In FPGAworld Conference, Proceedings, pp. 1-6, 2014.

INTRODUCTION 15

Abstract / Poster presentations

• Amit Kulkarni and Dirk Stroobandt, “Enabling HPC applications through
Virtual Coarse-Grained Reconfigurable Arrays”. In ICT.OPEN 2017.

2
FPGA architecture and the tool flow

In this chapter, I present a detailed explanation of the FPGA architecture, discuss
the conventional FPGA tool flow used to develop the FPGA configuration bit-
streams, and I explain possible methods to download the bitstreams from a com-
puter to the FPGA configuration memory. To discuss the evolution of commercial
FPGAs, I consider three main FPGA platforms and compare their architecture
specifications. These specifications are important factors that will affect the recon-
figuration infrastructure of each FPGA.

2.1 FPGA architecture

There exist two styles of FPGA architectures: island style and column-based style.
The island style architecture covers a general, basic version of the FPGA architec-
tures while the column-based style covers the modern commercial FPGA architec-
tures.

Island style. The main building blocks of FPGAs are Configurable Logic
Blocks (CLBs), Input/Output Blocks (IOBs) and a routing network. Typically, an
FPGA contains a grid of CLBs ranging from 10,000s to 100,000s (even millions
in today’s FPGAs) in number and hundreds to thousands of IOBs [16].

The CLBs include LookUp Tables (LUTs) and flip-flops that can be combined
to realize any digital circuit. Each LUT can implement any arbitrary Boolean
function for the given inputs depending on the truth table entries stored in the
configuration memory. The truth table entries of the LUT define the combinatorial

18 CHAPTER 2

IOB IOB IOB IOB

IOB IOB IOB IOB

IOB

IOB

IOB

IOB

CLB CLB

CLBCLB

IOB

IOB

IOB

IOB

(a) Schematic of a basic FPGA with 4 CLBs,
a routing network and IOBs

LUT

FF

LUT

FF

crossbar

(b) Schematic of a CLB with 4-input
LUT and two flip-flips. SRAM

configuration memory cells are shown
as ⊠ [17]

Number of pins

per side of CLB

(c) Schematic of a Connection block
(linking the channel wires to a CLB or
IOB) with programmable multiplexer.

SRAM cells are shown as ⊠

Number of tracks per channel

(d) Schematic of a Switch block (linking
wires of horizontal and vertical wire

channels) with programmable
multiplexer. SRAM cells are shown as ⊠

Figure 2.1: FPGA architecture

logic for different values of the inputs. The flip-flops are used to store the output
of a LUT and hence are used for implementing sequential logic.

The IOBs are connected to the external pins of the FPGA chip to establish
communication with the external world, and therefore they are placed along the
perimeter of the FPGA fabric.

The IOBs and the inputs and outputs of each CLB can be connected to each

FPGA ARCHITECTURE AND THE TOOL FLOW 19

other using the FPGA’s routing network. The network consists of a lot of wires
placed between the CLBs and form the routing channel width. Usually, the routing
channel width is more than 100 in the commercially available FPGAs [18]. These
wires are solely used for realizing the user applications and hence they do not
interfere with the clock tree routing. Separate clock tree routing resources are
provided to distribute the clock signal to each flip-flop in the CLBs. A schematic of
a stripped down FPGA is depicted in Figure 2.1a. In this small example, each CLB
has four inputs and two outputs and the routing channel width is two. The routing
network is a mesh with vertical and horizontal wire channels that run alongside the
CLBs and are meant to connect outputs of CLBs (or IOBs) to inputs of CLBs (or
IOBs).

As a part of the routing network, there are two primitives called Switch block
(SB) and Connection block (CB). The connections between wires are made using
multiplexers in the SBs (Figure 2.1d), and the connections between wires and IOBs
or CLBs are made using multiplexers in the CBs (Figure 2.1c).

As shown in Figure 2.1b, the CLBs contain crossbars to establish a connection
between the input of the LUTs and the output of the other LUTs in the same CLB.
The state of the multiplexers of CBs, SBs, and crossbars are also a part of the
configuration memory. The routing network consumes most of the silicon area of
the FPGA.

The configuration memory is a volatile memory, and hence the FPGA has to
be configured again every time at boot-up. The FPGA has special infrastructure to
write and read the configuration data from the configuration memory. Usually, the
configuration memory cells are implemented using Static Random Access Mem-
ory (SRAM) technology, hence the name SRAM-based FPGAs.

Column-based style. Today’s commercial1 FPGA architectures can be best
described with the column-based style. To understand better we will consider a
commercial FPGA from Xilinx called Zynq-SoC. The Programmable Logic of the
SoC is made up of an Artix-7 series FPGA. It contains an array of Configurable
Logic Blocks (CLB) which encapsulate LUTs, flip-flops and multiplexers. Each
CLB contains 8 LUTs and is capable of realizing combinatorial and sequential
logic. The array of CLBs is divided into a number of Clock Regions. Each clock
region contains CLB columns with a fixed number of CLBs and the height of the
CLB column remains the same in all the clock regions. There are multiple CLB
columns adjacent to each other thus forming CLB rows as shown in Figure 2.2.

Current Xilinx 7 series FPGAs and UtlraScale CLBs contain two types of slices
(SLICE-M and SLICE-L). Each slice includes 6-input LUTs (6-LUT) and 16 reg-
isters [19]. Each LUT is fracturable into two 5-LUTs. Therefore, each LUT has
two outputs; the extra output enables us to use a 6-LUT as two 5-LUTs sharing

1In my work, I focus on the commercial FPGAs from Xilinx because they have supported dynamic
reconfiguration for a longer time and better than Altera.

20 CHAPTER 2

ARM Cortex-A9

Dual core processor

C
L
B

 C
o

lu
m

n

B
R

A
M

 C
o

lu
m

n

D
S

P
 C

o
lu

m
n

Clock Region

X0Y0

Clock Region

X0Y1

Clock Region

X0Y2

Clock Region

X1Y2

Clock Region

X1Y1

Clock Region

X1Y0

Figure 2.2: Column-based FPGA architecture: Zynq-SoC

FPGA ARCHITECTURE AND THE TOOL FLOW 21

5-LUT

5-LUT

I0

I1

I2

I3

I4

I5

O5

O6

Figure 2.3: Schematic of a 6-input fracturable LUT

the same inputs or a combination of 6-input and 5-input function as shown in Fig-
ure 2.3.

Figure 2.4 shows the architecture of Slice-M. Each slice consists of four 6-
LUTs enumerated alphabetically (A,B,C and D). There is a carry chain used for
efficient implementation of adders and subtractors. The configuration memory
LUTs can be used as a small memory called Distributed RAM or as a shift register
LUT. The grey colored multiplexers in the figure are set via the configuration bits.

Figure 2.5 shows the architecture of Slice-L. This is the simple version of the
Slice that does not contain additional circuitry such as carry chains and they cannot
be used as Distributed RAM or shift registers. The grey colored multiplexers in
the figure are set via the configuration bits.

There are other heterogeneous primitives available in the commercial FPGAs
such as DSP (containing multiply accumulate operators) columns, Block RAM
(BRAM) columns, high speed IO protocols (PCIe, Gigabit Ethernet, etc.), clock
management resources, ADC. The most important primitive is the embedded pro-
cessor such as ARM Cortex-A9 which is more powerful and efficient than the
softcore processor (MicroBlaze) implemented on the programmable logic of the
FPGA. These primitives help to meet the stringent performance requirements for
a given application.

2.1.1 Xilinx commercial FPGA products

In this section, the Xilinx commercial FPGAs and their range of products are pre-
sented in order to understand the current reconfiguration architectures and see what
the problems are to be solved in this thesis. The Xilinx FPGA products along with
their technology node portfolios are listed in Table 2.1.

22 CHAPTER 2

A6:A1

D

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI2

O5

DI1

MC 31WEN

CK

DI1

MC 31WEN

CK

DI1

MC 31WEN

CK

DI1

MC 31WEN

CK

UG474_c2_02_110510

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

D

S R

CE

CK

D

S R

CE

CK

D

S R

CE

CK

D

S R

Q

CE

CK

CIN

0/1

WEN
WE

CK

A6:A1

O6
O5

C6:1

CX

D6:1

DI

A6:A1

O6
O5

B6:1

BX

A6:A1
W6:W1

W6:W1

W6:W1

W6:W1

O6
O5

A6:1

AX

S R

CE

CLK

CE
Q

CK S R

Q

Q

Q

D

CE
Q

CK S R

D

CE Q

CK S R

D

CE Q

CK S R

DI2

DI2

DI2

CI

BI

AI

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

LUT D

LUT C

LUT B

LUT A

Figure 2.4: Schematic of the Slice-M (Xilinx Artix-7) [19]

2.1.1.1 Xilinx 7 series FPGAs

The Xilinx 7 series offers four FPGA families: Spartan-7, Artix-7, Kintex-7, and
Virtex-7. The 7 series FPGAs address a range of system requirements ranging from
low cost to ultra high-end connectivity bandwidth and signal processing capability
for the high-performance applications [20]. The logic cell density of FPGAs rang-
ing from Spartan-7 to Kintex-7 scales by a factor of two. The Virtex-7 FPGA is
the largest FPGA among the 7 series FPGA family whose logic cell density is four

FPGA ARCHITECTURE AND THE TOOL FLOW 23

A6:A1

D
COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG474_c2_03_101210

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

D

SR

CE

CK

Flip-Flop

D

SR

CE

CK

D

SR

CE

CK

D

SR

Q

CE

CK

CIN

0/1

A6:A1

O6
O5

C6:1

CX

D6:1

A6:A1

O6
O5

B6:1

BX

A6:A1

O6
O5

A6:1

AX

SR

CE

CLK

CE
Q

CK SR

Q

Q

Q

D

CE
Q

CK SR

D

CE Q

CK SR

D

CE Q

CK SR

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

Flip-Flop

LUT B

LUT A

LUT C

LUT D

Figure 2.5: Schematic of the Slice-L (Xilinx Artix-7) [19]

Table 2.1: Xilinx FPGA products classification (2017)

7 series (28 nm) UltraScale (20 nm) UltraScale+ (16 nm)
Spartan7 Kintex UltraScale Kintex UltraScale+
Artix7 Virtex UltraScale Virtex UltraScale+

Kintex7
Virtex7

24 CHAPTER 2

times bigger than Kintex-7.

2.1.1.2 Xilinx UltraScale and UltraScale+ FPGAs

The Xilinx UltraScale and UltraScale+ FPGAs are high-performance FPGAs, the
architecture is optimized to focus on lowering the total power consumption (up to
40% lower power vs. 7 series generation) [21]. These device are built using both
monolithic and next-generation 3D IC technology. The UltraScale products are
fabricated with 20 nm technology and the UltraScale+ devices provide the highest
performance and integration capabilities in a FinFET 16 nm technology.

The Kintex UltraScale FPGA has the high-performance architecture with a fo-
cus on price per performance. They have numerous power options that can balance
between application requirements and the power envelope. The Virtex UltraScale
FPGA is the industry’s most capable high-performance FPGA. The Virtex families
are optimized to address key market and application requirements [21].

2.1.1.3 Xilinx all programmable System-on-Chip products

In recent years, Xilinx has released series of System-on-Chip (SoC) FPGA prod-
ucts called Zynq all programmable SoC. The product combines FPGA fabric with
a powerful embedded ARM processor, that can run a full-blown Linux OS. Thus,
the Zynq provides a very robust heterogeneous processing system. These products
can be classified based on their different range of applications: cost-optimized,
mid-range and high-end as tabulated in Table 2.2.

Table 2.2: Xilinx SoC products classification (2017)

Cost-optimized Mid-range High-end
Zynq 7000S (Artix-7) Zynq UltraScale+ MPSoC (CG) Zynq UltraScale+ MPSoC (EG)
Zynq 7000 (Artix-7) Zynq 7000 (Kintex-7) Zynq UltraScale+ MPSoC (EV)

The Zynq 7000S (Artix) product is the low-cost SoC FPGA product. It has a
single core ARM Cortex-A9 processor combined with the 28 nm Artix-7 FPGA
that can be used as a coprocessor on the same die. This is the lowest cost entry
point to the scalable Zynq-7000 platform. The product is suitable for industrial
IoT applications such as embedded vision and motor control [22].

The Zynq 7000 (Artix) product has a dual-core ARM Cortex-A9 processor
combined with the 28 nm Artix-7 or Kintex-7 FPGA for performance-per-watt
and maximum design flexibility. The product can be used for a wide range of
embedded applications including 4K2K Ultra-HDTV.

The Zynq UltraScale+ MPSoC devices come with more powerful 64-bit pro-
cessor scalability along with hardcore engines for real-time, graphics, video, wave-
form, and packet processing.

FPGA ARCHITECTURE AND THE TOOL FLOW 25

• The Zynq UltraScale+ MPSoC (CG) comes with a dual-core Cortex-A53
and a dual-core Cortex-R5 real-time processing unit combined with the 16 nm
FinFET+ FPGA. These devices are suitable for industrial motor control, sen-
sor fusion, and industrial IoT applications.

• The Zynq UltraScale+ MPSoC (EG) comes with a quad-core ARM Cortex-
A53 processor along with dual-core Cortex-R5 real-time processors and an
ARM Mali-400 MP2 embedded GPU. The powerful SoC is combined with
the 16 nm FinFET+ FPGA. The EG devices have specific processing ele-
ments that are suitable to implement next-generation wired and 5G wireless
infrastructure, cloud computing, and Aerospace and Defense applications.

• The Zynq UltraScale+ MPSoC (EV) is built on top of the EG device with
extra add-on integrated H.264 / H.265 video codec capable of handling high-
speed multimedia applications to encode and decode up to 4Kx2K (60 fps).
Therefore, the EV devices are suitable for multimedia, automotive ADAS,
surveillance, and embedded vision applications.

2.1.2 Configuration bitstream

The configuration bitstream is a stream of bits (0s and 1s) that set all the LUT
values and the multiplexer selection bits and thus define the functionality of a
digital circuit on an FPGA. Besides the configuration data, the stream contains
a set of commands that are used to orchestrate the programming of the FPGA.
For example, the header of the bitstream can include a location address where to
store the following configuration data. A detailed description of the construction
of Xilinx FPGA (7 series) bitstreams is presented in [23]. The bitstream size of
the largest Xilinx FPGA, Virtex-7 (7V2000T) is 56 MB.

2.1.3 Frame Structure

A frame of an FPGA is the smallest addressable element of an FPGA configu-
ration. It can be viewed as a vertical stack of a fixed number of bits spanning a
complete height of a row [24] [23]. A fixed data size of 2 words (1 word = 32
bits) are assigned to each CLB within the entire frame. This means that a set of
LUT entries present in one CLB can be configured within those 2 words. How-
ever, the complete configuration data of an entire CLB containing multiple LUTs
spans over multiple frames and each frame has its own unique frame address [24].
It should be noted that there exist one extra word called “HCLK config word” for
each column within one frame as shown in Figure 2.6.

A single frame can contain truth table entries of multiple LUTs which are
located in a single CLB column. In the Zynq-7000 family, there are 50 CLBs in
one column, so a total of 50 × 2 + 1 = 101 words exist in one frame. The frame

26 CHAPTER 2

031

031

HCLK
Config
word

031

031

031

031

Word 1
Word 2

031

031

Word 3
Word 4

031

031

Word 49
Word 50

031

031

Word 52
Word 53

Word 98
Word 99

Word 100

Word 101
CLB 50

CLB 49

CLB 25

CLB 24

CLB 2

CLB 1

Figure 2.6: Frame structure of column-based Xilinx FPGA, Zynq-SoC (Artix-7)

size plays an important role during the reconfiguration process. Since a frame is
the smallest addressable element, for every reconfiguration process, at least one
frame has to be accessed via the Hardware Internal Configuration Access Port
(HWICAP). A similar explanation applies for the previous versions of the Xilinx
FPGAs: Virtex-II pro and Virtex-5. The device parameters that affect run-time
reconfiguration for three different platforms of the Xilinx FPGA platforms are
listed in Chapter 3, Table 3.1.

2.1.4 Configuration Interfaces on Xilinx FPGAs

The configuration ports are used to load the configuration bitstreams from a master
onto an FPGA. There are multiple ports available on the FPGA chip.

• Serial, SPI, BPI and SelectMAP interfaces. These interfaces are used to con-
figure the FPGA at boot-up. Several communication protocols are available
through which an FPGA can be configured using an external master. For
example, a microprocessor present in the desktop computer can be a master
to program the FPGA. In some cases, an FPGA can act as a master itself and
fetch the configuration bitstreams from an external configuration database.

• JTAG interface. The JTAG is a standard debugging port used by the external
master. This port can be used for configuration and configuration read-back.

FPGA ARCHITECTURE AND THE TOOL FLOW 27

• ICAP/ICAPE2 interface. The ICAP interface is a primitive providing the
embedded processor (present on the same chip) access to the internal con-
figuration of the FPGA. Therefore, the ICAP is used for self-reconfiguration.
The ICAP is compatible with the external SelectMAP interface.

The HWICAP [25] is a hardware driver instantiated on the FPGA. It is built
with the regular FPGA resources and encapsulates the ICAP primitive. The
HWICAP connects the ICAP primitive with the bus so that it can be accessed
by the embedded processor.

• PCAP interface. The Processor Configuration Access Port (PCAP) [26] is a
reconfiguration controller used for Partial Reconfiguration on the Zynq-SoC.
The PCAP is accessed through a device configuration interface (DevC) that
has a DMA controller to transfer the bitstreams from the DRAM memory
to the PCAP for reconfiguration. The PCAP is a configuration interface
similar to the ICAP that is tightly coupled with the PS region of the Zynq-
SoC. With the appropriate software drivers, the PCAP supports configura-
tion read-back.

2.2 Conventional FPGA tool flow

Configuration bits define the functionality of FPGAs. Generating the right se-
quence of bitstreams is a crucial step in realizing the required digital circuit on
FPGAs. This is accomplished using an automated tool flow called FPGA tool
flow depicted in Figure 2.7. The corresponding intermediate results are shown in
Figure 2.8.

Implementing a desired digital circuit starts from describing the hardware us-
ing a Hardware Description Language (HDL)2 such as VHDL or Verilog. A
VHDL code description of a 4-to-1 multiplexer is shown in Figure 2.8a. The con-
ventional FPGA tool flow contains the following steps: Synthesis, Technology
Mapping, Packing, Placement, and Routing.

2.2.1 Synthesis

The synthesis step transforms an HDL description into a Boolean network of logic
gates (such as AND, NOT, flip-flop, etc.). The synthesis tool usually employs an
optimization criterion such as reduced number of logic gates, lower logic depth,
etc. The Boolean network of logic gates is represented by an AND-INVERTER-
Graph (AIG) [27] as show in Figure 2.8b. In some cases the HDL code containing

2The hardware can also be described in a sequential programming language such as C, C++, Sys-
temC, etc. Using suitable high-level synthesis tools, the sequential code is transformed into HDL.

28 CHAPTER 2

HDL design

Synthesis
Technology

Mapping
Packing Placement

Bitstream

Generator

Bitstreams

Routing

Figure 2.7: Conventional tool flow for FPGAs

concrete structures such as adders, multipliers or memory banks can be directly
inferred into predefined primitives using LUTs, carry chains, DSPs and BRAMs.

2.2.2 Technology Mapping

During the technology mapping stage, the synthesized Boolean network is mapped
onto the available resources of the target FPGA architecture such as LookUp Ta-
bles (LUTs) while optimization of circuit area and speed are being taken into con-
sideration. Other primitives, such as DSPs, BRAM blocks, etc. are directly in-
ferred from the HDL, and hence they are not mapped during technology mapping.

A LUT is a basic primitive of an FPGA that can implement any Boolean func-
tion of its input bits. The size of a LUT depends on the number of inputs and its
truth table entries. Figure 2.8c shows the technology mapped netlist of the 4-to-
1 multiplexer. In this example we used 3-input LUTs for clarity but commercial
FPGAs use 4-input LUTs or 6-input LUTs.

2.2.3 Packing

In this step, the LUTs and flip-flops are clustered into CLBs without changing
the interconnection structure. The packer tries to condense the interconnections
between the LUTs so that they are grouped into the same CLBs (resulting in
faster connectivity between LUTs) while it minimizes the interconnections be-
tween CLBs, which are relatively slower. The packed netlist after technology
mapping is shown in Figure 2.8d.

In the Xilinx’ latest tool flow, the packer is a part of the placement step [10].

FPGA ARCHITECTURE AND THE TOOL FLOW 29

2.2.4 Placement

In the placement step, the packed CLBs are placed or associated to specific blocks
of the target FPGA architecture. Extensive optimization is considered so that in-
terconnect wire length and interconnect delay are minimized. This is the most
time consuming step in the FPGA tool flow. Figure 2.8e shows the result after the
placement step.

2.2.5 Routing

The router configures the physical switch blocks and connection blocks to achieve
the required interconnect according to the circuit netlist. The routed netlist will
determine the critical path delay of the circuit. Therefore, multiple iterations of
routing are performed by the router to meet the given timing constraints. For a
large FPGA, the routing step can consume a huge amount of time. Figure 2.8f
shows the result of the placed and routed circuit.

2.2.6 Bitstream generator

In the bitstream generation step, a series of bits (0s and 1s) is generated that corre-
sponds to the exact implementation of the placed and routed circuit. The bitstream
is called the configuration. The generated bitstream also consists of FPGA plat-
form specific commands and settings that orchestrate the FPGA programming.
The result of this step is a configuration bitstream.

30 CHAPTER 2

--
entity multiplexer is
port (

I : in std logic vector (3 downto 0);
S : in std logic vector (1 downto 0);
O : out std logic

);
end multiplexer;

architecture behavior of multiplexer is
begin

O <= I(conv_integer(S));
end behavior;
--

(a) HDL design: 4-to-1 multiplexer
described in VHDL

a10

a8 a9

a4 a5 a6 a7

a0 a1 a2 a3I0 I1 I2 I3

S0 S1

O

(b) After Synthesis: AIG of 4-to-1
multiplexer

I3 I2

S1 S0

I1 I0

O

LUT LUT LUT LUT

LUT

LUT

(c) After Technology Mapping: 4-to-1
multiplexer mapped on to 3-input LUTs

CLB

1

CLB

2

CLB

3

O

I1 I0 S0 I2 I3

S1

(d) After Packing

CLB

1

CLB

2

CLB

3

I
0

I
1

I
2

I
3

S0

S1

O

(e) After Placement [17]

CLB

1

CLB

2

CLB

3

I
0

I
1

I
2

I
3

S0

S1

O

(f) After Routing [17]

Figure 2.8: Intermediate results of the conventional FPGA tool flow

3
Dynamic Circuit Specialization

This chapter presents a novel technique for run-time FPGA reconfiguration called
Dynamic Circuit Specialization (DCS). It is invented at the Hardware and Embed-
ded Systems research group of Computer Systems Lab at Ghent University. DCS
is suitable to implement parameterized applications on FPGAs. I also give the
background of micro-reconfiguration and parameterized configuration that helps
to understand DCS more precisely. My contribution to this technique begins by
evaluating the performance of DCS on different Xilinx FPGA platforms, its power
measurement, and analysis, and finally, I present a range of parameterized appli-
cations that could benefit from this novel technique.

3.1 What is DCS?

Dynamic Circuit Specialization (DCS) is a technique used to optimize parts of a
parameterized application and switch between the specialized parts for the current
specific conditions utilizing Partial Reconfiguration (PR) at run-time [28] [29].
This technique improves the functional density1 of the FPGA.

The application is said to be parameterized when some of its inputs, called
parameters, are infrequently changing compared to the other inputs. Instead of im-
plementing these parameter inputs as regular inputs, in the DCS approach, these
inputs are implemented as constants, and the design is optimized for these con-

1The functional density is defined as the number of computations that can be performed per unit
area and unit time (for more details refer Section 3.4).

32 CHAPTER 3

stants. When the parameter values change, the design is re-optimized for the new
constant values by reconfiguring the FPGA.

In order to implement DCS for parameterized applications, I will present two
intermediate steps: parameterized configuration and micro-reconfiguration. These
steps are derived from the conventional FPGA implementation.

3.2 Parameterized configuration

A parameterized configuration contains bits that are not only static binary (0’s and
1’s) but also multi-valued Boolean functions of infrequently changing parameters
as depicted in Figure 3.1. For specific parameter values, we can instantly derive
specialized configurations by evaluating the Boolean functions for the given pa-
rameter values. In practice, the SRAM cells of the FPGA can hold only binary bits
(0’s or 1’s). Therefore, the Boolean functions have to evaluated well before recon-
figuring the FPGA configuration memory.2 Thus, the functionality and property
of the parameterized application can be instantly specialized using parameterized
configuration once the parameter values are known.

For every change in parameter input values of a parameterized application, the
functions are evaluated resulting in specialized bitstreams. Therefore, multiple
specialized configurations can be generated by evaluating the Boolean functions
instead of compiling the bitstreams from scratch using the conventional FPGA
tool flow. This results in lower compilation costs per configuration and reduces
the amount of storage needed in the configuration database. Generating a special-
ized configuration does not need to undergo time-consuming steps of the flow and
to solve computationally hard problems such as placement and routing as is the
case in the conventional tool flow. These problems are already solved when the
parameterized configuration is generated.

3.2.1 Two-staged tool flow for parameterized configuration

The conventional FPGA tool flow cannot be used to generate parameterized con-
figuration. Therefore, a new two-staged tool flow is needed [13]. The two-staged
tool flow for generating a parameterized configuration is depicted in Figure 3.2
and consists the generic stage and the specialization stage.

In the generic stage, a HDL design with parameterized inputs (annotated by
“-PARAM” in VHDL) is processed to yield a partial parameterized configuration.
A Partial Parameterized Configuration (PPC) is a part of a FPGA configuration that
contains bitstreams expressed as Boolean functions of parameters. In the special-
ization stage, these Boolean functions are evaluated for specific parameter values

2Parameterized configurations can be generated and used on existing FPGA hardware without the
need of changes to the FPGA architecture.

DYNAMIC CIRCUIT SPECIALIZATION 33

Specialized configuration: a=1, b=0

Parameterized configuration

...1 a 1 0 1 0 a|b 0 0 1 0 a&b 1 1 1 !b 0...

...1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0...

Specialized configuration: a=0, b=1

...1 0 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0...

Figure 3.1: A parameterized configuration containing Boolean functions of two
parameters ‘a’ and ‘b’ with two derived specialized configurations

to generate a specialized configuration. The following tool flow steps explain the
generic stage and are adapted from the conventional tool flow.

3.2.1.1 Synthesis

In this step, the HDL design is converted into a network of logic gates. The pa-
rameter inputs described in the HDL are annotated parameter inputs and this an-
notation makes the difference between parameter inputs and regular inputs. The
parameter inputs are also a part of the Boolean network of logic gates produced
after synthesis and are not treated differently in the synthesis step.

3.2.1.2 Technology Mapping

During the mapping stage, the synthesized Boolean network is mapped onto the
available resources of the target FPGA architecture such as LookUp Tables (LUTs),
DSP blocks and BRAMs while optimization of circuit area and speed are being
taken into consideration. The conventional mapping tool would map to the static
LUTs and hence it would result in the conventional bitstreams after place and
route. To generate a parameterized bitstream, authors of [13] change the conven-
tional mapping tool to a tunable version, TLUTMAP, so that the Boolean functions
of parameter inputs are mapped on to Tunable LookUp Tables (TLUTs). These are
virtual LUTs that differ from conventional LUTs in the fact that their lookup en-
tries are defined as the Boolean functions of the parameter inputs instead of static
ones and zeros.

Presently, the parameterization of BRAM and DSP blocks is not yet possible
but parameterization of the routing switches called TCONs3 is established at the
virtual FPGA level. However, the practical implementation in commercial FPGAs

3Parameterization of interconnect switches is achieved by using the TCONMAP [30] mapper.

34 CHAPTER 3

Parameterized

HDL design

Technology

Mapping

TLUT / TCONMAP

Synthesis

Bitstream

Generator

Packing Placement Routing

Partial

Parameterized

Configuration

(PPC)

Template

Configuration

(TC)

Evaluate

Boolean

function

Specialized

Configuration

Parameter

values

Specialization

stage

Generic

stage

Figure 3.2: Two-staged tool flow for parameterized configurations

is yet to be done [30]. The TLUTMAP mapping algorithm is described in [13] and
can be integrated with the conventional Xilinx tool flow which is explained in [31].

• A TLUT is a virtual LUT of which the truth table entries are defined as
Boolean functions of parameters instead of ones and zeros.

• A TCON is a point-to-point connection which can be made or broken de-
pending on the value of a Boolean function of parameters. It is implemented
using the FPGA’s routing network (i.e., the reconfigurable switch blocks and
connection blocks). The parameterized configuration of the used switch and
connection blocks will be derived from the Boolean function.

3.2.1.3 Placement, Routing and Bitstream generation

In the placement step, the mapped resources are placed or associated to specific
blocks of the target FPGA architecture. Extensive optimization is considered so
that interconnect wire length and interconnect delay is minimized. The router con-
figures the physical switch blocks to achieve the required interconnect according
to the circuit. As the parameters are already included in the LUT functionality
through the Boolean functions, they are no longer present in the physical imple-
mentation of the netlist so the entire netlist can be placed and routed as if the

DYNAMIC CIRCUIT SPECIALIZATION 35

parameters where not present. Therefore, a conventional placer and router can be
used.

The placed and routed netlist is used by the conventional Bitstream generator
to generate FPGA configuration bitstreams.

The final output of the generic stage is the Template Configuration (TC) and
Partial Parameterized Configuration (PPC). TC is a static bitstream which contains
static ones and zeros, which are used for configuring during the start of the FPGA.
The PPC contains sets of multi-output Boolean functions of the parameter inputs.
The PPC needs to undergo the specialization stage, along with parameter values to
produce an efficient specialized configuration.

The specialization stage consists of a Specialized Configuration Generator
(SCG). The SCG takes the PPC and the parameter values as inputs and evaluates
the Boolean functions of parameter inputs for given parameter values to produce
a specialized configuration. After that, all the TLUTs are reconfigured by down-
loading the specialized configuration during run time and thus accomplishing run
time reconfiguration. The SCG can be implemented on a hard-core embedded pro-
cessor in the FPGA such as the ARM Cortex-A9, on a soft-core processor such as
a MicroBlaze or on a custom processor (CP) which is more specifically designed
to evaluate Boolean functions only. Different types of SCG implementations and
their details are described in [32].

The SCG reconfigures the FPGA via a configuration interface called the In-
ternal Configuration Access Port (ICAP) by swapping the specialized bitstreams
into the FPGA configuration memory. The configuration controller such as the
HWICAP (in a conventional DCS implementation, the HWICAP is used as a re-
configuration controller) encapsulates the ICAP primitive (port) of the FPGA and
forms a controller that orchestrates the swapping of specialized bitstreams via the
interface port ICAP. The bitstreams are accessed in the form of frames and a frame
is defined as the smallest addressable element of the FPGA configuration data.
Each frame contains reconfiguration bits of tens of LUTs and has its unique frame
address that can be used to point to the frame during the reconfiguration.

3.2.2 Micro-reconfiguration

Micro-reconfiguration is a technique to change the configuration of minor or few
resources of the FPGA. Therefore, micro-reconfiguration is the main application
of DCS. The micro-reconfiguration can be best explained with the implementation
of DCS on commercial FPGAs such as Xilinx’ Zynq-SoC.

3.2.2.1 DCS on Xilinx FPGAs

The implementation of DCS on the Xilinx FPGAs, such as the Zynq-SoC, is shown
in Figure 3.3. The SCG is realized on an embedded processor (ARM Cortex-A9

36 CHAPTER 3

Figure 3.3: Dynamic Circuit Specialization on Xilinx FPGAs

dual core processor or a MicroBlaze soft core processor).
The PPC Boolean functions are stored in the memory such as DRAM memory

of the Zynq-SoC. The ICAP is used as a configuration interface. The HWICAP
reconfiguration controller is responsible for orchestrating the replacement of the
stale frames with specialized frames present in the configuration memory of the
FPGA.

3.2.2.2 The HWICAP driver “XhwIcap_setClb_bits” function

The HWICAP supports a software driver function called “XhwIcap_setClb_bits”
to perform the reconfiguration. This function accepts two crucial function argu-
ments:

1. Location co-ordinates of a LUT: this information is used to generate the
frame address that is used to point to the frame that contains truth table
entries of the TLUT that is implemented on this physical LUT.

2. Truth table entries: these are the specialized bits generated after the special-
ization stage of the DCS tool flow. The LUT truth table entries need to be
overwritten with these specialized bits.

The reconfiguration takes place in 3 steps:

1. Read frames: using the frame address, a set of four consecutive frames con-
taining the previous specialized truth table entries of a TLUT are read from
the configuration memory.

2. Modify frames: the previous truth table entries of a TLUT are replaced by
the specialized bits. The modified frames contain specialized bitstreams.

DYNAMIC CIRCUIT SPECIALIZATION 37

3. Write-back frames: using the same frame address, the modified four frames
are written back to the configuration memory, thus accomplishing the micro-
reconfiguration.

Micro-reconfiguration is a fine-grained form of reconfiguration used for DCS.
Therefore, a reconfiguration controller in this case should be capable of reading,
modifying and writing the frames from the configuration memory and a processor
should take care of executing the cycle of read, modify and write-back of frames.

The micro-reconfiguration incurs 4 major costs compared to a generic, non-
reconfigurable implementation. These costs are major drawbacks of DCS:

1. PPC memory size: memory space required to store all the Boolean functions
of the parameterized application.

2. Evaluation time: time taken by the SCG to evaluate the Boolean function
for a specific set of parameter values.

3. Reconfiguration time: time taken to update all the TLUTs of a parameterized
design with the specialized bits. In other words, time taken to accomplish
the micro-reconfiguration.

4. Power consumption: the idle (static, independent of whether or not we are
reconfiguring) and dynamic (during the micro-reconfiguration) power con-
sumed by the reconfiguration infrastructure.

The performance of DCS is entirely dependent on the trade-off between the
benefits and the costs of micro-reconfiguration. The changes in the FPGA archi-
tecture directly influence the micro-reconfiguration costs. Therefore, it is impor-
tant to understand how this trade-off for DCS evolves with the evolution of Xilinx
FPGA platforms.

3.2.3 DCS on a self-reconfigurable platform for the Zynq-SoC

The self-reconfigurable platform is a soft layer on the FPGA configured to real-
ize a DCS system on the Zynq-SoC. The self-reconfigurable platform consists of
four main components: an embedded processor (ARM Cortex-A9 or a MicroB-
laze), a reconfiguration controller (or reconfiguration interface), a parameterized
application and a system bus to connect all these components.

Figure 3.4 shows a self-reconfigurable platform implemented on the Zynq-SoC
for an adaptive parameterized FIR filter application. The PPC Boolean functions
are stored in the DRAM memory of the Processor System (PS), and all the ac-
tions of the micro-reconfiguration are controlled by the ARM Cortex-A9 processor
(clocked at 667 MHz). Therefore, the user can use a simple program to run soft-
ware on the processor to monitor and measure the reconfiguration activity. The

38 CHAPTER 3

Reconfiguration

Controller

ARM

Cortex-A9
DRAM

Parameterized

FIR filter

AXI

Figure 3.4: Dynamic Circuit Specialization on a self-reconfigurable platform for the
Zynq-SoC

whole system is connected using the AXI bus (clocked at 100 MHz) for the data
transfer.

3.3 Examples of parameterized applications

This section presents a set of applications that benefit from DCS.

• Ternary Content-Addressable Memory (TCAM): a regular Content-Addressable
Memory (CAM) is a memory where a piece of data (bits) can be efficiently
located. This means that, for a given input of data, the CAM returns the
address of the data if the data is present in the memory. The TCAM [33] can
contain not only the bits, but it can also store don’t care values.

A parameterized 16-bit TCAM memory with 32 entries was implemented
using DCS. The data content of the TCAM memory change infrequently
and therefore, the data can be considered as the parameters for a DCS im-
plementation. Therefore, to change the content of the memory, the FPGA
is reconfigured with the new data entry (specialized data). A 32-bit TCAM
implemented with 128 entries showed a 35% reduction in LUT resources
and 40% increase in clock frequency over the conventional implementation
of the same TCAM [13].

• Multiply and Accumulate (MAC): the MAC operator is used as a basic Pro-
cessing Element (PE) of the Virtual Coarse-Grained Reconfigurable Array
(VCGRA) grid. The VCGRA grid is designed to implement a high per-
formance computing filter application [34]. Each PE has a settings regis-
ter that configures the function of the PE. The PE was implemented using

DYNAMIC CIRCUIT SPECIALIZATION 39

parameterized configuration with the settings register value as a parameter
input and thus, for every change in settings value the FPGA is reconfig-
ured with the new settings. In [34], a fully parameterized implementation of
a floating-point MAC operator PE showed a reduction of 30% in LUT re-
sources compared to the conventional implementation of the MAC operator.
The maximum clock frequency was increased by 13% when implemented
on the Zynq-SoC. A detailed explanation on VCGRA and examples of VC-
GRA grids is presented in Chapter 5.

• Advanced Encryption Standard (AES) encoder: the AES encoder [35] is a
streaming encryptor that encrypts 128 bits of data per clock cycle. We used
a pipelined implementation of 10 rounds of AES encryption. We used DCS
to optimize the AES encoder for a specific encryption key. The encoder is
specialized for every change in key (parameter) input. The parameterized
AES encoder is useful if a large amount of data needs to be encoded with
the same the encryption key. In [36] several implementations of the AES
encoder are presented. The parameterized AES encoder implemented with
DCS (on Virtex-II pro) showed a maximum LUT resource saving of 20.3%
and 5.6% of increase in clock frequency.

• Encryption processor for π-Cipher: the processor encrypts 16-bit user input
messages using a π-function. The key generator module of the processor is
implemented in a parameterized configuration. The user key input is a pa-
rameter value for the key generator, for every change in user key, a detailed
explanation of the parameterized key generator module is described in [37].

Figure 3.5: 16-tap, 8-bit FIR filter

• Finite Impulse Response (FIR) filter: an adaptive 16-taps, 8-bit FIR filter
(Figure 3.5) is implemented using DCS. The filter taps are parameterized.
Hence, for every infrequent change in coefficient input values, a specialized

40 CHAPTER 3

bitstream is generated. The FIR filter is built with sixteen 8-bit multipliers
(implemented using LUTs of the device), and they consume 384 TLUTs of
the Zynq-SoC FPGA. This filter can be used for a DSP application in which
FIR filters are used to realize the filtering of unwanted bandwidth of signals.
If the frequency of the bandwidth is required to change infrequently, then
a parameterized FIR implementation would suit better than the classic FIR
implementation. In [13], a resource reduction of 42% in the LUT resources
and 23% increase in clock frequency is obtained. In the remaining chapters,
unless stated otherwise, I use the FIR filter as the main application for my
experiments.

3.4 Functional Density

To compare DCS overheads and gain (optimized implementation) we use a metric
that combines performance and cost of the design. The metric is called Functional
density [38].

The functional density (Fd) is defined as the number of (useful) computations
(N) that can be performed per unit area (A) and unit time (T) as shown in Equa-
tion 3.1.

Fd = N

A × T (3.1)

I elaborate this equation for a design implemented with and without DCS tech-
nique.

3.4.1 Functional density for generic implementation

For a design implemented without DCS (generic implementation), the functional
density simply results in:

F generic
d = N

Acirc × Texec (3.2)

where Texec is the time it takes to perform N computations using the total
resource cost of the circuit Acirc.

3.4.2 Functional density for DCS implementation

For a design implemented with DCS technique, the functional density results in:

FDCS
d = N

(A′

circ +ADCS) × (T ′exec + nDCS × TDCS) (3.3)

DYNAMIC CIRCUIT SPECIALIZATION 41

100 101 102 103 104 105 106 107 108 109 101010111012

Parameter re-use (clock cycles)

0

1

2

3

4

5

6
Fu

n
ct

io
n
a
l
d
e
n
si

ty
(O

p
s/

s
/

LU
T
) DCS

No DCS

x105

Figure 3.6: Functional Density curves for TCAM

where TDCS is the time overhead of one reconfiguration procedure (time taken
to evaluate Boolean functions and reconfigure the TLUTs of the design) andADCS

the cost of hardware overhead of DCS (this mainly includes, FPGA resources uti-
lized to implement SCG and reconfiguration controller). The variable nDCS repre-
sents the number of times the DCS design needs to be optimized for new conditions
while running the parameterized application.

Also, T ′exec can be smaller than Texec if the optimized design can be clocked
at higher clock frequency. A′

circ is smaller than Acirc since the optimized circuit
needs fewer resources.

The overall gain is achieved only if F generic
d < FDCS

d . Therefore, it is very
important to minimize ADCS and TDCS .

The functional density curve for the parameterized TCAM is depicted in Fig-
ure 3.6. The functional density is plotted against the rate of change of parameter
values (i.e., the number of clock cycles in between two parameter changes as the
reconfiguration overhead strongly depends on how many times a reconfiguration
is needed). The functional density shows the efficiency of the implementation as a
function of how fast the parameter values change.

Clearly, the magnitude of the functional density of the DCS implementation
is higher that that of the generic implementation (no DCS) when the average time
between parameter change is more than 105 clock cycles.

3.5 Performance evaluation of DCS
on Xilinx FPGAs

In this section I present the evaluation of the performance of DCS on three dif-
ferent Xilinx FPGA architectures: Virtex-II Pro, Virtex-5 and Zynq SoC. Each of

42 CHAPTER 3

these architectures has their own pros and cons. Our main objective is to evalu-
ate how DCS will perform under the new Xilinx FPGA architectures. I evaluate
the reconfiguration time, the specialization time and the size of the memory occu-
pied by the design while using DCS on the three Xilinx FPGA architectures and
compare them accordingly.

We used a 16-tap FIR filter with 8-bit wide coefficient values as a parameter-
ized design for showing the benefits of DCS. All coefficients are parameterized
inputs and hence for each infrequent change in the coefficient value, a specialized
bitstream is generated and the filter taps containing multiplications are reconfig-
ured accordingly.

The multiplications for the FIR filter are designed for a (T)LUT implementa-
tion keeping in mind that they should suit for all three FPGAs. Since Virtex-II Pro
has a LUT input size of 4, we make use of 4-bit multiplications only. The filter
requires 16 8-bit multiplications. Two 4-bit multiplications are combined to form
one 8-bit multiplier and therefore, a total of 32 4-bit multiplications were used to
build a complete FIR filter design. It is known that a 4-bit multiplier is mapped
onto 12 TLUTs, therefore 1-tap of the FIR filter contains 24 TLUTs [32].

Table 3.1 shows the device names and the corresponding boards we used for
our experiments. The number of inputs to a LUT for the corresponding FPGAs is
also present in the same table. The number of inputs will influence the memory
size of the PPC functions and the time taken to evaluate the Boolean functions
within the LUT entries.

The embedded processors of both type (soft-core and hard-core) and their re-
spective clock configurations, that are used in the Xilinx FPGAs are tabulated in
Table 3.1. These processors are used to generate specialized configurations by
evaluating the Boolean functions. To describe the specialization procedure, we
use a standard C program with Xilinx SDK.

The ARM Cortex-A9 processor within the Zynq SoC is a dual core processor
but we use only a single core. It has instruction and data caches each of size
32 KB [22]. The PowerPC processor for both Virtex-II Pro and Virtex-5 was
configured with instruction and data caches each of size 32 KB [39] [40]. The
MicroBlaze can also be configured to enable instruction and data caches. However,
these caches in a softcore processor are just a reserved memory space in BRAMs
and are not an actual or physical dedicated cache memory. Since the PPC functions
already reside in BRAMs we did not enable caches for the MicroBlaze.

The HWICAP is used as a configuration interface and is responsible for load-
ing the specialized bitstreams into the FPGA configuration memory. Table 3.1
shows the configurations for the HWICAP that we used for our experiments. The
HWICAP throughput is also tabulated and it shows the rate at which the frames are
read from the configuration memory and the rate at which the frames are written
into the configuration memory.

DYNAMIC CIRCUIT SPECIALIZATION 43

Table 3.1: Xilinx FPGA device details

Virtex-II Pro
(XC2VP30) Virtex-5 Zynq SoC

Device
name

XC2VP30
-FF896-7C

XC5VFX70T
-FFG1136

XC7Z020
-CLG484-1

Board
name

XUPV2P
Development System

ML507
Evaluation Platform ZedBoard

LUT
inputs (k) 4 6 6

LUT
entries 16 64 64

Hard-core
Processor

PowerPC
405 Core

PowerPC
440 Core

ARM
Cortex-A9

Soft-core
Processor

MicroBlaze
(6.00.b)

MicroBlaze
(8.20.b)

MicroBlaze
(8.40.a)

Hard-core
CPU

clock (MHz)
300 400 667

Soft-core
CPU

clock (MHz)
100 100 100

HWICAP
type

OPB HWICAP
(1.00.b)

XPS HWICAP
(5.01.a)

AXI HWICAP
(2.03.a)

HWICAP
clock (MHz) 66.67 100 100

HWICAP
throughput
(non-DMA)

(MB/s)

10 19 19

HWICAP port
width (bits) 8 32 32

Frame size
(32-bit words) 206 41 101

Bus
type OPB + PLB PLB AXI

Bus clock
(MHz) 66.67 100 100

44 CHAPTER 3

Table 3.2: PPC evaluation time in microseconds

Virtex-II Pro Virtex-5 Zynq SoC
Hard-core Processor 6.6 4.6 1.7
Soft-core Processor 18.7 28.3 28.9

The size of one frame for an individual FPGA and the bus that we used to
connect our parameterized design on a self reconfigurable platform, are tabulated
in Table 3.1. The size of a frame describes the minimum number of words (1 word
= 32 bits) in a bitstream that needs to be replaced for each reconfiguration process
and has a direct influence on the reconfiguration time. For the Virtex-II Pro family,
the frame size is not the same for the entire family and varies for different FPGA
devices [41]. The specification of the bus can be seen in [42] [43] [44] and the
bus interconnections in a typical embedded design are described in [31]. In the
following sections, I present the results of my experiments and compare them to
evaluate the TLUT-based DCS.4

3.5.1 Boolean function evaluation time

Table 3.2 shows the time taken by the processors to evaluate the Boolean functions
for one multiplier (one coefficient) during the specialization phase.

3.5.1.1 Evaluation time - Hard-core Processors

We compare the performance of evaluating Boolean functions on all 3 hard-core
processors - PowerPC of Virtex-II Pro, PowerPC of Virtex-5 and ARM Cortex-
A9 of the Zynq SoC. Figure 3.7 shows the plots and it is clear that the ARM
Cortex-A9 takes the least amount of time compared to both PowerPCs and hence
it can claim to be very efficient. The PowerPC in a Virtex-5 is more efficient than
the PowerPC in a Virtex-II Pro, showing the improvements in the newer processor
architectures with higher clock frequency support. It is to be noted that the number
of Boolean functions that needs to be evaluated increases for the Zynq SoC and
the Virtex-5 compared to the Virtex-II Pro because of an increase in LUT inputs
and corresponding LUT entries.

3.5.1.2 Evaluation time - Soft-core Processors

We also compare the performance of evaluating Boolean functions on all 3 soft-
core processors - MicroBlaze of Virtex-II Pro, MicroBlaze of Virtex-5 and Mi-
croBalze of Zynq SoC. Figure 3.8 shows that the efficiency of the MicroBlaze of

4The tool flow to implement TLUT-based DCS can be accessed at [45].

DYNAMIC CIRCUIT SPECIALIZATION 45

0 1 4 8 12 16
0

20

40

60

80

100

120

Number of Coefficients

T
im

e
in

 m
ic

ro
se

co
nd

s

Evaluation time for hardcore processors

ARM Cortex A9

PowerPC of Virtex−5

PowerPC of Virtex−II Pro

Figure 3.7: Evaluation time comparison of hard-core processors

both the Virtex-5 and the Zynq SoC are almost the same. Interestingly, the Mi-
croBlaze in the Virtex-II Pro consumes less time and hence proves to be a very
efficient soft-core processor. However, the main reason for this behaviour is that
the number of LUT entries for the Virtex-II Pro (16) is smaller than for the Virtex-5
and Zynq SoC (64).

Comparing the hard-core processor with the soft-core processor in each FPGA
shows that hard-core processor is always more efficient than the soft-core. The
main advantage of using the hard-core processors is that they support a very high
clock frequency which influences the evaluation of Boolean functions and also
slightly the reconfiguration time. However, in some FPGAs it is inevitable to use
soft-core processors due to the lack of availability of embedded hard-core proces-
sors in their FPGA architecture.

3.5.2 Reconfiguration time

Table 3.3 shows the time spent during reconfiguring one multiplier of the FIR filter
which is composed of 12 TLUTS.

46 CHAPTER 3

0 1 4 8 12 16
0

100

200

300

400

500

Number of Coefficients

T
im

e
in

 m
ic

ro
se

co
nd

s

Evaluation time for softcore processors

MicroBlaze of Zynq

MicroBlaze of Virtex−5

MicroBlaze of Virtex−II Pro

Figure 3.8: Evaluation time comparison of soft-core processors

Table 3.3: Reconfiguration time in milliseconds

Virtex-II Pro Virtex-5 Zynq SoC
Hard-core Processor 0.5 1 2.8
Soft-core Processor 1.89 1.4 4.0

The reconfiguration time is defined as the time required to update the con-
figuration of all TLUTs using new specialized bitstreams. The updating process
involves read, modify and write steps as explained in Section 3.2.2.2. Figure 3.9
shows the bar graph of the reconfiguration time for the 3 different FPGAs using
respectively hard-core and soft-core processors. The normalized values are tabu-
lated in Table 3.4, the normalization is with respect to FPGAs mentioned in the
parenthesis. It is clear that the reconfiguration time overhead is not the same for
Virtex-II Pro and Virtex-5. The resources that influence the reconfiguration time
overhead are the frame size, interconnect bus speed, HWICAP port width and HW-
ICAP clock. The Virtex-II Pro has a lower capacity of these resources compared
to the Virtex-5. However, the number of frames to be reconfigured for a TLUT

DYNAMIC CIRCUIT SPECIALIZATION 47

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

PowerPC 405

MicroBlaze

PowerPC 440

MicroBlaze

ARM Cortex-A9

MicroBlaze

Reconfiguration time in milliseconds

P
ro

c
e

s
s
o

rs
Z

y
n
q

-S
o

C
V

ir
te

x
-5

V
ir
te

x
-I

I
P

ro

Figure 3.9: Reconfiguration time comparison

also has a direct influence on the reconfiguration time and should be considered
during the comparison. Clearly, the number of frames to be reconfigured in the
Virtex-5 is higher than for the Virtex-II Pro and therefore it consumes more time
during reconfiguration.

The reconfiguration time overhead of the Zynq SoC is almost double the over-
head of the Virtex-5. The main reason for the increase in reconfiguration time is
the increase in the number of words per frame for the Zynq SoC compared to the
Virtex-5. It is to be noted that the interconnect bus speed, HWICAP port width
and HWICAP clock frequency are the same for the Virtex-5 and the Zynq SoC.
The same note applies to the MicroBlaze results in all 3 FPGAs. The maximum
clock frequency of the HWICAP that can be used for a reliable implementation
is shown in Table 3.1. The HWICAP proves to be the bottleneck for the recon-
figuration process. The hard-core processor clock speed is much higher than for
the HWICAP, so obviously the HWICAP cannot process and synchronize directly
with the processor. The processor will stall some clock cycles until the frames
are swapped in and out of the configuration memory at the speed of the HWICAP
clock.

Observing these results, we see that the DCS tool flow encounters a higher
reconfiguration time overhead for the newer Xilinx FPGA architectures. In order
to reduce the reconfiguration time overhead, one would have to improve the bus
architecture and the HWICAP speed. The hard-core processors are fast enough
to reduce the evaluation time and processing the frames during read, modify and
write-back operation during reconfiguration, even when considering the increase
in the LUT entries size. The Virtex-II Pro has a reconfiguration time overhead that
is relatively smaller compared to the Virtex-5 and the Zynq SoC but it has a lower
number of LUT entries compared to the newer FPGAs.

Normalizing the reconfiguration time with respect to the respective hard-core
processors in all 3 FPGAs, shows that the use of hard-core processors is more
efficient in reconfiguration than using the respective soft-cores. Table 3.5 shows

48 CHAPTER 3

Table 3.4: Normalized Reconfiguration time (FPGAs)

Virtex-II Pro Virtex-5 Zynq SoC
Hard-core Processor(Virtex-II Pro) 1 2 5.6
Soft-core Processor (Virtex-II Pro) 1 0.7 2.1

Hard-core Processor (Virtex-5) 0.5 1 2.8
Soft-core Processor (Virtex-5) 1.35 1 2.8

Table 3.5: Normalized Reconfiguration time (hard-core processors)

Virtex-II Pro Virtex-5 Zynq SoC
Hard-core Processor 1 1 1
Soft-core Processor 3.5 1.4 1.4

Table 3.6: PPC memory size in KB

Virtex-II Pro Virtex-5 Zynq SoC
Hard-core Processor 7 10 11
Soft-core Processor 8 11 12

the normalized values of the reconfiguration time with respect to their hard-core
processors.

3.5.3 PPC memory size

Table 3.6 shows the PPC memory size values. These values are the size of PPC
functions only. They are compiled with “-O2” optimization and without debug
option.

Figure 3.10 shows the bar graph of the memory size of the PPC functions. The
normalized values with respect to the corresponding FPGAs shown in parenthesis
are tabulated in the Table 3.7. We believe that the increase in PPC memory size
of the Virtex-5 and the Zynq SoC compared to the Virtex-II Pro is caused by the
increase in number of LUT entries from 16 to 64 for individual LUTs. It is also
observed that the code density of the PowerPC is almost the same as that of the
ARM Cortex-A9.

Table 3.7: Normalized PPC memory size

Virtex-II Pro Virtex-5 Zynq SoC
Hard-core Processor(Virtex-II Pro) 1 1.4 1.6
Soft-core Processor (Virtex-II Pro) 1 1.4 1.5

Hard-core Processor (Virtex-5) 0.7 1 1.1
Soft-core Processor (Virtex-5) 0.7 1 1.1

DYNAMIC CIRCUIT SPECIALIZATION 49

0 2 4 6 8 10 12 14

PowerPC 405

MicroBlaze

PowerPC 440

MicroBlaze

ARM Cortex-A9

MicroBlaze

PPC memory size in KB

P
ro

ce
ss

o
rs

V
ir
te

x
 –

 I
I
P

ro
V

ir
te

x
 -

 5
Z

y
n

q
-S

o
C

Figure 3.10: PPC memory size comparison

Table 3.8: Normalized PPC memory size

Virtex-II Pro Virtex-5 Zynq SoC
Hard-core Processor 1 1 1
Soft-core Processor 1.1 1.1 1.1

The normalized PPC memory size with respect to the hard-core processor is
tabulated in Table 3.8. It reveals that the code density of the hard-core processors
is a little bit higher than that of the soft-core processor which is in agreement
with [46]. It can be seen that the increase in LUT entries affects the PPC memory
size, reconfiguration time and the evaluation time. This effect can be negated
by using an efficient bus structure, high speed HWICAP and highly sophisticated
processor architecture.

From the results, it is clear that newer FPGA architectures tend to include more
LUT resources and features. The added features increase the size of the LUT en-
tries and the frame size. This creates additional overhead in reconfiguration time,
evaluation time and the PPC memory size. The MicroBlaze soft-core processor
proves to be inefficient in newer FPGA architectures for DCS because the pro-
cessor clock speed, memory and ISA are limited and do not compete with those
of hard-core processors. However for the edge cases, MicroBlaze in old FPGA
architecture such as Virtex-II pro would be more suitable to implement the DCS.

50 CHAPTER 3

ARM ARM

PL

ZYNQ
1V

Shunt

5 mΩ

1V
5 mΩ

ZC702

+

-
×200

+

-
×200

1

Figure 3.11: Current measurement schematics of Zynq-Soc on ZC702 board

3.6 Power measurement analysis of DCS

In this section, I present the power measurement analysis of the DCS technique
used to implement a parameterized adaptive FIR filter described in Section 3.3.
Due to the lack of power estimation tools for the Partial Reconfiguration technique,
the authors of [47] proposed power consumption models for Dynamic Partial Re-
configuration (DPR). Similarly, I analyze the energy needed for Dynamic Circuit
Specialization and compare this to the energy required to run the parameterized
design. I also consider the static FPGA implementation of the same parameterized
application and compare the power consumption by performing a power analysis.
Defining the energy models for DCS and comparing the power behavior between
the static and the DCS FPGA implementations, are the main contributions in this
section.

3.6.1 Power measurement setup

The Xilinx ZC702 board is used for the power measurements and the DCS ap-
proach is implemented on the XC7Z020 Zynq-SoC. Ten power rails are present
on this platform. Each rail is equipped with a shunt resistor on which current con-
sumption can be monitored. Two channels are more interesting for the experiment.
They separately supply the ARM cores and the Programmable Logic core. An ex-
ternal board is designed for power measurement purposes and two high-precision
amplifiers are used to enhance the signal levels. The amplified signals are then
sent to a digital oscilloscope for visualization and power trace analysis as shown
in Figure 3.11. With this procedure, it is possible to measure power consump-
tion variations as low as 0.1mW . This accuracy is good enough for our energy
analysis.

DYNAMIC CIRCUIT SPECIALIZATION 51

3.6.2 Zynq-SoC configuration setup

To obtain the energy models for DCS we used a clock frequency of 100MHz to
drive the Programmable Logic (PL) and the same clock frequency of 100MHz for
the HWICAP. The HWICAP is configured to be of the FIFO type with read and
write buffer depth of 128 bytes. We used these parameters as a default project
configuration in our following experiments.

The Specialized Configuration Generator (SCG) is implemented on the ARM
Cortex-A9 dual core processor that operates at a clock frequency of 667 MHz.
Therefore the evaluation of Boolean functions is expected to be faster than any of
the tasks in the DCS.

3.6.3 Power Characterization for DCS

Using the power measurement setup we were able to measure the average power
values on the Zynq ZC702 platform with the default project configuration ex-
plained in Section 3.6.2. There are three different power consumption parts that
we need to consider:

1. The FPGA Idle Power is the power consumed by the silicon area of the
FPGA even if it is unused and this state of the FPGA is called the idle state.

2. The FPGA Run Power is the power consumed by the silicon area of the
FPGA when the FIR filter was triggered to execute the filter function and
this state of the FPGA is called the run state.

3. The FPGA Reconfiguration Power is the power consumed by the silicon
area of the FPGA during DCS reconfiguration and this state of the FPGA is
called the reconfiguration state.

It is to be noted that both the CPU and the PL part of the Zynq-SoC consume
power in all of the above three states.

I propose an energy analysis that is based on the energy required for reconfig-
uring one TLUT. For this, we need to consider the time τtlut needed to reconfigure
one TLUT. According to our experiments, τtlut = 230µs.

3.6.3.1 Energy consumed by the reconfiguration state on top of the idle state
energy:

If Etlut
reconf denotes the energy consumed during the reconfiguration of a TLUT, on

top of the idle state energy then,

Etlut
reconf = (PCPU

reconf − PCPU
idle + PFPGA

reconf − PFPGA
idle) × τtlut (3.4)

where, PCPU
reconf is the average power consumed by the CPU during DCS reconfig-

uration to perform the read, modify and write-back cycles of the frames. PCPU
idle

52 CHAPTER 3

Table 3.9: Average power consumed by the CPU and the PL fabric

Notation Average Power (mW)

CPU idle PCPU
idle 291

CPU run PCPU
run 384.1

CPU reconfiguration PCPU
reconf 390.3

FPGA idle PFPGA
idle 73.3 (45.6)

FPGA run PFPGA
run 74.7 (46.8)

FPGA reconfiguration PFPGA
reconf 68.7

Note: Power values after gating the HWICAP clock are mentioned be-
tween brackets.

is the power consumed by the CPU during its idle state. PFPGA
reconf is the average

FPGA reconfiguration power and PFPGA
idle is the FPGA idle power. The idle power

is defined as the power used when no reconfiguration, nor application execution is
performed.

3.6.3.2 Relative power consumed by the reconfiguration state compared to
the run state:

I also propose a relative power ratio between the reconfiguration state and the run
state. If Rp denotes the relative power ratio then,

Rp =
(PCPU

reconf − PCPU
idle) + (PFPGA

reconf − PFPGA
idle)

(PCPU
run − PCPU

idle) + (PFPGA
run − PFPGA

idle)
Rp = Preconf

Prun

(3.5)

where Prun is the power consumed by the run state on top of the idle state power
and depends on the size of the parameterized application. Indeed for a large pa-
rameterized design the value of Prun is much larger than Preconf where, Preconf

is the power consumed by the reconfiguration state on top of the idle state.

3.6.4 Power measurements

From our measurements, I was able to extract the average power consumption of
the Programmable Logic (PL) and the ARM Processor (CPU) of the Zynq-SoC.
The average power values are tabulated in Table 3.9.

From equation 3.4 the estimated average energy Etlut
idle is 21.8 mJ. And the

relative power ratio Rp (equation 3.5) is 4.1. Since the relative power ratio is

DYNAMIC CIRCUIT SPECIALIZATION 53

greater than 1, the power consumption during the reconfiguration is higher than
the power consumption during the execution of the FIR filter function. This is not
a desired situation and I will further investigate this ratio later.

3.6.5 FPGA PL power drop during reconfiguration

Interestingly, in Table 3.9, the FPGA reconfiguration power is smaller than the
FPGA idle power. In order to understand this phenomenon, the power curve is
extracted and is shown in Figure 3.12. The reconfiguration happens between time
units 0 and 90. Before and after that time, the system is running the FIR filter
application. Clearly, the CPU power increases during the reconfiguration phase
because the CPU has to perform the Boolean evaluation and the reconfiguration
by swapping the specialized frames into the FPGA configuration memory via the
HWICAP.

However, for the FPGA PL power we notice a significant power drop during
the DCS reconfiguration phase compared to the FIR run state. An average power
drop of 6.2 mW was observed. Further investigation revealed that there is a power
drop only during frame read activity of the DCS reconfiguration as shown in Fig-
ure 3.13.

During the frame read activity, the configuration data (bitstream) is fetched
from the FPGA configuration memory. The fetched bitstreams are first stored in
the HWICAP read FIFO buffer. The maximum data that the read FIFO buffer can
hold is a user configurable parameter and in our experiment it is set to 128 bytes.
Once the read FIFO buffer is full, the ICAP has to wait until all the data in the FIFO
buffer is received by the CPU via the AXI bus. This waiting state is established
by turning off the ICAP’s clock. Once the ICAP clock is turned off there will
be no transaction of data between the ICAP port and the FPGA’s configuration
memory. Turning off the ICAP’s clock causes the significant drop in the FPGA
PL power and therefore it proves to be the main reason for the power fluctuations
as depicted in Figure 3.13. The power drop is hence due to a mismatch between
the computation bandwidth and the communication bandwidth (communication
bandwidth limited design).

As a communication limited design (with wait cycles for data movement) in-
creases the total time needed for the reconfiguration, the power drop does not
necessarily result in a lower energy usage as well. Indeed, the increased time in
fact results in a higher energy usage.

The best solution to avoid the HWICAP to stall is to increase the FIFO depth
and clock the AXI bus much faster than the HWICAP. To simulate this situation,
I performed the experiments with the HWICAP clock of 20 MHz. The average
power gradient for the different configurations of the HWICAP clock, FIFO depth
and the PL fabric is tabulated in Table 3.10. We observe that the AXI bus (with

54 CHAPTER 3

-60 -40 -20 0 20 40 60 80 100 120 140

350

360

370

380

390

400

410

60

70

80

90

100

110

120

ARM/PL power

ARM Power PL Power

Time (ms)

A
R

M
 p

o
w

e
r

(m
W

)

P
L

 p
o

w
e

r
(m

W
)

Figure 3.12: Average power consumption of CPU and FPGA during run and
reconfiguration state

-0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2
-2

0

2

4

Time (ms)

Read/Write Trigger (V)

-0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2
370

375

380

385

390

395

400

Time (ms)

ARM Power (mW)

-0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2
50

55

60

65

70

75

80

Time (ms)

PL Power (mW)

Read Write WriteRead

Processing Processing

Figure 3.13: Average power consumption of CPU and FPGA during Frame read and
Frame write activities

Table 3.10: FPGA PL Power gradient

PL fabric
AXI bus clock (MHz)

HWICAP
clock (MHz)

FIFO
depth

Average Power
gradient (mW)

100 100 128 - 6.2
100 20 128 + 0.07
100 100 256 - 3
100 20 256 + 1

Note: a “+” indicates an increase in power consumption and a “-” indi-
cates a decrease in power consumption.

DYNAMIC CIRCUIT SPECIALIZATION 55

Figure 3.14: Clock gating for the AXI-HWICAP

100 MHz) is fast enough to receive the data from the HWICAP so the read FIFO
is less likely full, therefore the HWICAP fetches the data as fast as possible. Also,
the average power gradient values are halved for the experiments with the FIFO
depth 256. This confirms the reason for the PL power drop during the frame read
activity.

During the frame write activity, the HWICAP does not stop the ICAP’s clock
because the HWICAP constantly expects the ICAP’s attention and makes it receive
the data from the write FIFO buffer irrespective of whether the write FIFO buffer
is full or not.

The Xilinx AXI-HWICAP IP consumes a huge idle power of 31.2 mW be-
cause the IP lacks clock gating and is active even if the reconfiguration process is
unused. Therefore, to make DCS functional an extra power of 31.2 mW is required
irrespective of whether or not the HWICAP is used for reconfiguration during the
operation of the FIR filter. In order to make DCS more power efficient, we include
the clock gating technique to the AXI-HWICAP IP and reduce the HWICAP idle
power.

3.6.6 Xilinx HWICAP with Clock gating

The clock of the AXI-HWICAP IP is gated with the help of a user AXI-lite periph-
eral. The required clock gating for the AXI-HWICAP is depicted in Figure 3.14.
The CE line is controlled by a user accessible AXI slave register. The slave register
is software controlled and hence we can turn ON/OFF the HWICAP clock during
the power measurements. After gating the AXI-HWICAP clock, we were able to
reduce the idle power of the AXI-HWICAP with 27.9 mW (31.2 - 3.3 = 27.9) (≈
90%). The HWICAP still consumes a power of 3.3 mW during its idle state as
tabulated in Table 3.12. The corresponding FPGA idle power was reduced to 45.6
mW.

The relative power ratio of equation 3.5 changes after introducing the clock
gating for the HWICAP, and can be expressed as a function of the number of FIR

56 CHAPTER 3

Figure 3.15: Relative Power ratio as a function of the number of FIR filter IP instances

filter instances NFIR.

Rp = Preconf + PHWICAP
idle

Prun ×NFIR

(3.6)

As shown in Figure 3.15, an increase in the number of FIR IP instances de-
creases the magnitude of the ratio Rp.

3.6.7 DCS Power Analysis
3.6.7.1 Power consumption of a DCS versus static implementation

In this section, I investigate how DCS affects the global power consumption of
the system. The main objective of this experiment is to compare the global power
consumption of the FIR using two different implementations:

1. FIR with static implementation: the FIR was implemented without using
the reconfiguration technology. Instead, the coefficient inputs of the FIR are
connected directly to the slave registers of the AXI bus and with the help
of the CPU, the user can change the coefficient values at the software level.
Therefore, I do not make use of the HWICAP and the DCS reconfiguration
technology.

2. FIR with DCS implementation: the FIR (of one IP instance) was imple-
mented using the reconfiguration technology. We use the DCS reconfigu-
ration technology to change the FIR coefficients by reconfiguring the mul-
tiplications of the filter taps. Therefore, the user can change the coefficient
values of the FIR filter using the CPU at the hardware level.

DYNAMIC CIRCUIT SPECIALIZATION 57

Table 3.11: FIR power consumption comparison Static vs DCS

Row no. Project
PCPU
run

(mW)
PCPU
reconf

(mW)
PFPGA
run

(mW)
PFPGA
reconf

(mW)

1
No FIR,

No HWICAP
382.8 Nil 39.5 Nil

2
Static FIR,

No HWICAP
383.1 Nil 45.4 Nil

3
DCS FIR,

No HWICAP
383.4 Nil 43.3 Nil

4
DCS FIR,
HWICAP

384.1 390.3 74.5 68.5

5

DCS FIR,
HWICAP with

clock gating
(Clock OFF)

384.1 390.3 46.6 68.5

To get a clear picture of the comparison, I measured the power consumption of
the CPU and the PL for projects with different configurations given in Table 3.11.
The differential power and the energy consumption of the idle and run power com-
bined together are tabulated in Table 3.12. These values are the difference in power
values between different rows of Table 3.11. For example, the static FIR (idle +
run) power is obtained by the difference in corresponding power values of row
no.2 and row no.1 of Table 3.11.

The power consumed by the HWICAP during the reconfiguration process is
obtained by the difference between PFPGA

reconf of row no.4 and PFPGA
run of row no.3

of Table 3.11 i.e. (68.5 - 43.3 = 25.2 mW). The CPU power consumption during
interaction with HWICAP is obtained by the difference between PCPU

reconf of row
no.4 and PCPU

run of row no.1 i.e. (390.3 - 382.8 = 7.5 mW). Therefore total HW-
ICAP reconfiguration power consumption is 32.7 mW (25.2 + 7.5 = 32.7). The
DCS FIR power together with HWICAP reconfiguration power is obtained by the
difference PFPGA

reconf of row no.5 and PFPGA
run of row no.1 of Table 3.11 i.e. (68.5 -

39.5 = 29 mW). The CPU power is obtained by the difference between PCPU
reconf of

row no.5 and PCPU
run of row no.1 i.e (390.3 - 382.8 = 7.5 mW).

To investigate the power consumption by the DCS FIR (LUTs) compared to
the static FIR (LUTs), I have removed the HWICAP from the DCS implementa-
tion and measured the power consumption. The FIR with DCS implementation
consumes less FPGA idle and run power without HWICAP compared to the static
FIR implementation. We observe a difference of 2.3 mW (6.1 - 3.8 = 2.3) (≈ 36%).

58 CHAPTER 3

Table 3.12: Differential Power Results

Extracted Power Results
CPU
(mW)

PL fabric
(mW)

Total Energy
(µJ)

Static FIR, idle + run power
(without HWICAP)

(row no. 2 - row no. 1)
0.3 6.1 0.06 (1.86)

DCS FIR without HWICAP,
idle + run power

(row no. 3 - row no. 1)
0.6 3.8 0.044

HWICAP idle power,
with Clock OFF

(row no. 5 - row no. 3)
0.7 3.3 NA

HWICAP idle power,
with Clock ON

(row no. 4 - row no. 3)
0.7 31.2 NA

HWICAP
reconf power

7.5 25.2 2838.3

DCS FIR (run)
with HWICAP idle

(row no. 5 - row no. 1)
1.3 7.1 0.08 (1.72)

DCS FIR with HWICAP,
reconf power

7.5 29 3175.7

Note 1: The energy values for 3 FIR filter instances are mentioned between
brackets.
Note 2: The row numbers mentioned in the table are the row numbers of Ta-
ble 3.11 .

This difference is because of the reduction in FPGA resources (LUTs) utilized by
the FIR filter. However, there is a huge FPGA reconfiguration (PL + CPU) power
difference of 30.1 mW (29-6.1 + 7.5-0.3) between the static FIR (without any re-
configuration) and the FIR with DCS which proves to be an unavoidable overhead.
During the reconfiguration process, the CPU consumes a maximum of 7.5 mW and
this power is considered to be an overhead.

The corresponding average energy consumption (CPU + PL) is also listed. For
one FIR IP instance the DCS implementation consumes more energy (0.02µJ) than
the static FIR filter implementation. The HWICAP consumes extra energy in the
DCS implementation (plus 0.036µJ) and this energy is constant irrespective of the
number of FIR IP instances. Therefore, we need bigger designs (more FIR filter
implementations) before the energy calculations start to be in favor of reconfigu-

DYNAMIC CIRCUIT SPECIALIZATION 59

ration. We investigated that DCS becomes energy efficient for 3 or more FIR IP
instances and the corresponding energy values are shown within the brackets in
Table 3.12. We observe an energy gain of 0.14µJ. More details are discussed in
Section 3.6.7.2.

3.6.7.2 Power efficient DCS implementation and its reconfiguration rate

The results from the previous section show that the reconfiguration process using
the HWICAP is power-hungry. However, the reconfiguration process is triggered
only if the parameters (coefficients of the FIR filter) change. It is interesting to
investigate the reconfiguration rate (expressed as the reconfiguration time over the
total execution time), allowed under the constraint that the DCS energy is less than
or equal to the static energy as a function of number of the FIR filter IPs. On the
one hand only 950 LUTs are used to implement the FIR filter with DCS, and on
the other hand 2525 LUTs are used for the static FIR filter implementation.

There are two important parameters that need to be considered to evaluate the
global average energy (Estatic and EDCS): the number of FIR filter IPs (NFIR)
and the relative amount of time spent for reconfiguration (the reconfiguration rate
Rrate) which is Rrate = Treconf

Treconf+Trun
, where Treconf is the time taken to recon-

figure all the TLUTs of the FIR filter and Trun is the time taken to execute the FIR
filter function. Accordingly, we deduce equation 3.7 and equation 3.8 for the en-
ergy needed for the execution of the implementation for a single round of constant
coefficient values.

Estatic = NFIR × P static
FIR × T static

run + Pcoef × Tcoef (3.7)

EDCS = NFIR × PDCS
FIR × TDCS

run + Preconf × Treconf
+PHWICAP

idle × (Treconf + Trun)
(3.8)

where, Preconf and Pcoef are the power consumption during the change of coeffi-
cient values for the DCS and static implementation of the FIR respectively. Tstatic

run

and TDCS
run are the time taken to execute the filter functions for the FIR with static

and DCS implementations respectively.
Assuming Pcoef is negligible, we can solve for the variable Rrate for a worst

case scenario5 where Tstatic
run = TDCS

run .

Rrate =
(P static

FIR − PDCS
FIR) − (PHWICAP

idle

NFIR
)

(P static
FIR − PDCS

FIR) + (Preconf

NFIR
)

(3.9)

This ratio provides the reconfiguration rate as a function of the number of FIR IP
instances (reconfigured) for the condition that the average energy of DCS and static

5the DCS implementation usually runs about 20% faster than the static implementation.

60 CHAPTER 3

Figure 3.16: Reconfiguration rate as function of number of FIR filter instances

implementations are equal. Accordingly, we can plot a graph shown in Figure 3.16.
Clearly, for less than 3 FIR IP instances DCS is inefficient in energy since the
reconfiguration rate is negative. The DCS reconfiguration is energy efficient for 3
or more FIR IP instances if it has a reconfiguration rate within the shaded region.
For example, suppose if the reconfiguration rate is 0.3, then we need to run at least
10 FIR filter IPs before the DCS reconfiguration becomes energy efficient. Vice
versa, if we have 10 FIR filters, the reconfiguration time should not take more than
30% of the total time in order to remain energy efficient.

In a broader spectrum, the reconfiguration time is the backbone of power dis-
sipation during the micro-reconfiguration. The larger the reconfiguration time the
more power is dissipated and hence the more energy consumption.

In the next chapter, I propose custom reconfiguration controllers: MiCAP and
MiCAP-Pro. These controllers are light weight, faster and much more energy
efficient than the HWICAP.

4
MiCAP and MiCAP - Pro

In this chapter, I introduce custom reconfiguration controllers designed specifically
to implement a DCS system on a self-reconfigurable platform for the Zynq-SoC.
The results of the design of custom controllers are presented and compared with
the standard reconfiguration controller HWICAP. The power measurement results
of the controllers and the trade-off between their reconfiguration speed and area
(resource utilization) are also explained. With the existing Xilinx FPGA column-
based architectures, I propose to reconfigure multiple LUTs at the same time. To
do this I propose to use design placement constraints to cluster the bits that have
to be changed in the same reconfiguration columns and customizing the standard
“XhwIcap_setClb_bits” function. This gives us a significant improvement in re-
configuration speed.

4.1 Why custom reconfiguration controllers?

In contrast to other FPGAs, Xilinx FPGAs have been partially reconfigurable since
quite some years. The FPGA architectures contain a set of components to execute
the reconfiguration, such as the Internal Configuration Access Port (ICAP), a data
access bus (Processor Local Bus or Advanced eXtensible Interface bus) and an
embedded processor (PowerPC or ARM Cortex-A9). The ICAP is a built in hard-
ware macro, which has direct access to the configuration memory and it requires
a reconfiguration controller that is built as part of the design to manage bitstream
movement between the ICAP macro and the processor. The Hardware Internal

62 CHAPTER 4

Configuration Access Port (HWICAP)1 is a reconfiguration controller that con-
tains a complex state machine and a First In First Out (FIFO) buffer designed to
access the bitstreams from the configuration memory of the FPGA. The efficiency
of these components affects the reconfiguration speed of DCS. The “LUT recon-
figuration speed” is defined as the number of Look Up Tables (LUTs) reconfigured
per unit of time. Conversely, the “LUT reconfiguration time” is the time taken by
the system to reconfigure a single LUT in a design. Investigations have shown
that reconfiguration time is a major limiting factor for the DCS implementation on
a Xilinx FPGA [48]. The main reason for the slow reconfiguration speed is the
complexity of the HWICAP architecture and the lower communication bandwidth
between the processor and the ICAP controller, resulting in a data throughput of
19 MBps [12]. We proposed a novel idea for improving the reconfiguration speed
of DCS using placement constraints in [49]. However, this improvement comes
at the cost of the application’s performance (the maximum clock the application
design can support); an average of 6% of the application’s performance needs to
be compromised. This approach may not be suitable if the application’s perfor-
mance is an important metric. Therefore, in order to improve the reconfiguration
speed of DCS without affecting the application’s performance I propose custom
reconfiguration controllers: MiCAP [50] and MiCAP-Pro [51], built on a Xilinx 7
series FPGA (Zynq-SoC).

4.2 Internal Configuration Access Port

The Static Random Access Memory (SRAM) cells of LUTs, Switch blocks, Con-
nection blocks, Block Random Access Memory (BRAM) blocks and Digital Sig-
nal Processing (DSP) blocks together form the configuration memory of an FPGA
fabric. The Xilinx ICAP primitive provides internal access to the configuration
memory of the FPGA. This interface can be used to download configuration data
into the configuration memory during run-time. It is also possible to read the con-
figuration data from the configuration memory. The ICAP can also be used for
reading the status register of the configuration memory. The structure of the ICAP
interface with the FPGA configuration memory is depicted in Figure 4.1.

4.2.1 ICAP architecture

The ICAP primitive contains two separate data ports for reading (O) and writing (I)
the data. Each bus supports a data width of 32-bits. It has a clock input (CLK) and
an active-low ICAP enable (CSIB) input. The ICAP primitive can support a max-
imum clock frequency of 100 MHz for a reliable implementation. The CSIB is an
active-low, chip enable signal used to turn the ICAP ON/OFF. There is a read/write

1HWICAP is an Intellectual Property block provided by Xilinx

MICAP AND MICAP - PRO 63

Figure 4.1: ICAP primitive in Zynq-SoC

select input signal (RDWRB) used to select the direction of the data. By setting
the “RDWRB” signal to high, the data can be read from the configuration memory
and to write the data back to the configuration memory one has to set the signal to
low. The data is written at the rising edge of the clock. Therefore, the writing of
configuration data can be controlled by either the clock or the CSIB signal. There
is no “Busy” signal, in contrast to the ICAP primitive present in the Virtex-5 and
Virtex-6. The validity of the read data is checked deterministically [23].

To access the configuration bitstreams of an FPGA, a series of commands has
to be written to the ICAP’s input for every rising edge of the clock cycle. These
commands help the user to orchestrate the ICAP to read the configuration data or
write the configuration data to the configuration memory. Therefore, to start the
access (either read or write) of the configuration frames, it is mandatory to send the
ICAP commands first. Therefore, the access begins with the ICAP write activity.
The frame address is placed at a certain location in between these commands to let
the ICAP know which frames have to be accessed.

With a clock input of 100 MHz and a data width of 32 bits, the maximum
throughput of the ICAP is 400 MBps [52]. However, the HWICAP that encap-
sulates the ICAP port supports only 19 MBps due to its inefficient architecture
that contains a complex state machine and a communication overhead between
the ICAP and the processor which is unnecessary for DCS. Therefore, we need a
lite-weight controller to improve the reconfiguration and overall performance of
DCS.

64 CHAPTER 4

Write

command

head

Valid

frames

(404 words)

Dummy

Frame

(101 words)

Write

command

tail

1 word = 32 bits

Read

command

head

Dummy

Frame

(101 words)

Valid

frames

(404 words)

Read

command

tail

Frame Address Frame Address

1 word = 32 bits

ICAP write command structure ICAP read command structure

Figure 4.2: ICAP commands

4.2.2 ICAP Commands

To access the configuration memory of an FPGA, a series of commands have to
be written to the ICAP’s input for every rising edge of the clock cycle. The ICAP
read command consists of a read command header that contains the frame address
to point to the corresponding frame and a read command tail to desynchronize
and safely close the ICAP after reading the bitstreams. Therefore, to read the
bitstreams, an ICAP read command header has to be sent to the ICAP and then
capture the bitstream data followed by sending the ICAP read command tail to
desynchronize the ICAP.

Similarly, the ICAP write command consists of a write command header that
contains the frame address and a write command tail to desynchronize the ICAP.
To write the configuration data into the configuration memory, an ICAP write
command header has to be sent to the ICAP. Next, the ICAP is ready to accept
the frames that are to be written into the FPGA configuration memory. Finally,
we close the ICAP by sending the write command tail. Figure 4.2 shows a brief
overview of the ICAP commands.

4.3 MiCAP
The basic architecture of MiCAP is shown in Figure 4.3. MiCAP consists of 4
major parts: two asynchronous FIFO buffers, an ICAP state machine and the ICAP

MICAP AND MICAP - PRO 65

ICAP
State machine

Input Buffer
(FIFO)

Output Buffer
(FIFO)

ICAPE2
Macro

Din [31:0] Dout [31:0]

Dout [31:0]

Rd_en

Wr_en Din [31:0]

Wr_en

Rd_en

R
D

W
R

B

C
S

IB

O
 [3

1:
0]

I [
31

:0
]MiCAP_en

MiCAP_rd_en

MiCAP_rd_wr_done

Parameterized
bitstreams
(Frames)

ICAP
commands

+
Specialized
Bitstreams

Figure 4.3: MiCAP architecture

primitive. All the elements of MiCAP are synchronized by a common clock with
a frequency of 100 MHz.

1. Input Buffer: this is an asynchronous FIFO buffer that holds the ICAP read
and write commands along with specialized configuration data which are
to be written into the configuration memory. The application software is
responsible to store all the configuration data into the input buffer before
triggering the write activity of MiCAP. Therefore, the input buffer acts as
the configuration data source for MiCAP’s write activity.

2. Output Buffer: this is also an asynchronous FIFO buffer that holds the con-
figuration data fetched by the ICAP primitive during the read activity. All
the data read from the configuration memory via the ICAP is stored in the
output buffer. Therefore, the output buffer acts as a sink to MiCAP’s read
activity. Once the data is ready, the processor has to read the frames from
the output buffer.

3. ICAP primitive: this is a design element that gives access to the configura-
tion data of the FPGA. Using this element the commands and data can be
read or written into the FPGA configuration memory. The ICAP primitive
architecture of the Zynq-SoC is explained in Section 4.2.

66 CHAPTER 4

4. ICAP State machine: this is the brain of MiCAP. It contains multiple states
that orchestrate MiCAP’s read and write activity. The state machine contains
3 major states: a wait state, a read state and a write state. The description
of each of the states is as follows.

4.3.1 State machine

a) Wait state: in this state, the MiCAP’s state machine waits until all the data
(frames + ICAP commands) are filled into the input FIFO.

b) Read state: MiCAP’s read activity is triggered by the processor by setting
“MiCAP_en” and “MiCAP_read_en” signals to high. In this state, first the
RDWRB signal is set to high and then the ICAP primitive is enabled by setting
the CSIB signal to a low value. The read command present in the input buffer
is fetched and written to the ICAP’s input port. The command is written for
every rising edge of the clock. Once the read command is sent, the ICAP starts
fetching the configuration data. The frames fetched from the ICAP are written
into the output buffer. Once the read activity is completed, the ICAP is disabled
by setting the CSIB signal to high. The “MiCAP_rd_wr_done” signal is set to
high once MiCAP’s read activity is accomplished.

c) Write state: MiCAP’s write activity is triggered by the processor by setting
the “MiCAP_en” signal to high and the “MiCAP_read_en” signal to low. In
this state, first the RDWRB signal is set to low and then the ICAP primitive
is enabled by setting the CSIB signal to low. The write command is fetched
from the input buffer and the command is written to the ICAP’s input port.
Once the write command is sent, the ICAP believes that next incoming data
is the configuration data that has to be written into the configuration memory
of the FPGA. Now the state machine reads the data from the input buffer and
writes the data into the ICAP input port. The ICAP continues to write the data
sent from the input buffer into the configuration memory until the input buffer
is empty. The “MiCAP_rd_wr_done” signal is set high once MiCAP’s write
activity is accomplished.

The MiCAP architecture implemented on the Zynq-SoC platform is depicted
in Figure 4.4.

4.3.2 MiCAP with single port RAM

The improved version of MiCAP contains an extra single port RAM that holds
the ICAP read and write commands well before the data transaction begins. These
commands are non-volatile in contrast to the data in the input buffer, hence MiCAP
can make use of these commands multiple times as needed. Therefore, the input

MICAP AND MICAP - PRO 67

State

MachineICAPE2

In
p

u
t R

e
g

is
te

r
C

o
n

tro
l R

e
g

is
te

r
O

u
tp

u
t R

e
g

is
te

r

MGP0

In
p

u
t

B
u

ffe
r

(F
IF

O
)

O
u

tp
u

t

B
u

ffe
r

(F
IF

O
) ARM

PSPL

AXI-lite

DRAM

Controller

Figure 4.4: MiCAP implementation on the Zynq-SoC

buffer (FIFO) is used to hold only the specialized bitstreams (frames) that replace
the stale frames present in the configuration memory. This saves a significant
amount of time during the reconfiguration since only the configuration frames are
transferred between Processing System (PS) and PL of the Zynq-SoC.

Figure 4.5 shows MiCAP with single port RAM. The state machine handles
the multiplexing of data between the frames from the input buffer and the ICAP
commands from the single port RAM to establish the proper reconfiguration pro-
cess. However, this version of MiCAP utilizes more FPGA resources (LUTs and
FFs) compared to the basic MiCAP.

The HWICAP and MiCAP use the GP port of the Zynq-SoC to transfer the
data between PS and PL and therefore, the controllers suffer from a data-transfer
bottleneck during reconfiguration resulting in a reduced throughput by a factor 20×
compared to the throughput the ICAP can handle. To overcome the data-transfer
bottleneck we propose a DMA-based reconfiguration controller called MiCAP-
Pro.

68 CHAPTER 4

ICAP
State machine

Input Buffer
(FIFO)

Output Buffer
(FIFO)

Single-port RAM
ICAP RD-WR Commands

ICAPE2
Macro

Din [31:0] Dout [31:0]

Dout [31:0]

Rd_en

Wr_en Din [31:0]

Wr_en

Rd_en

Din [31:0]
(Frame Address)

Address
Counter [31:0]

Dout [31:0]Wr/Rd

R
D

W
R

B

C
S

IB

O
 [3

1:
0]

I [
31

:0
]MiCAP_en

MiCAP_rd_en

MiCAP_rd_wr_done

Figure 4.5: MiCAP with single port RAM

4.4 MiCAP-Pro

The implementation of MiCAP on the Zynq-SoC is shown in Figure 4.4. Clearly,
MiCAP uses a master general purpose (MGP0) port to transfer the data between
PS and PL regions. There are 3 memory mapped registers for the data transfer. The
input register is used to send the ICAP commands and the specialized bitstreams
to swap the configuration data into the configuration memory through ICAPE2.2

The command register is used to issue read/write commands to MiCAP and the
output register is used to receive the read frames from the configuration memory.

An AXI-lite bus establishes interconnect between MiCAP and the memory
mapped registers. The data transfer between MiCAP and the DRAM memory of
the PS region is performed via a low communication bandwidth MGP0 port. This
was one of the reasons for the slow reconfiguration speed and hence the MGP0
acts as a bottleneck during the data transfer. To eliminate this bottleneck we make

2ICAPE2 is the advanced version of the ICAP primitive present in Xilinx 7-series FPGAs

MICAP AND MICAP - PRO 69

State

MachineICAPE2

MGP0

In
p

u
t

B
u

ffe
r

(F
IF

O
)

O
u

tp
u

t

B
u

ffe
r

(F
IF

O
)

PSPL

AXI-lite

DMA Controller

(AXI-DMA Engine)

GPIO

ARM

DRAM

Controller

HP0
AXI4

AXI-Stream

AXI-Stream

MiCAP-Pro

Figure 4.6: MiCAP-Pro implementation on the Zynq-SoC

use of HP ports. MiCAP-Pro is an extended version of MiCAP that makes use
of the HP port to establish a high speed data transfer between PS and PL regions
during the reconfiguration.

4.4.1 MiCAP-Pro architecture

MiCAP-Pro is an improved version of MiCAP in the sense that it inherits almost
all parts of the architecture from MiCAP but overcomes the bottleneck during the
configuration data transfer between the processor and the ICAPE2 by making use
of the high performance port (HP0) of the Zynq-SoC. Since the HP ports can be
accessed only by a master from the PL region, we use a DMA controller that acts
as a master to the high performance ports. The data transfer occurs through the
HP0 port of the Zynq-SoC, thus establishing a very high speed data transfer that
contributes to the faster reconfiguration speed. The architecture of MiCAP-Pro is
depicted in Figure 4.6.

4.4.2 AXI DMA Engine

The AXI Direct Memory Access (DMA) provides a high bandwidth data transfer
between the DRAM controller present in the PS and the AXI-Stream type peripher-
als implemented on the Programmable Logic [53]. The initialization, management

70 CHAPTER 4

AXI DMA

ControllerMiCAP

(AXI-Stream generator)

AXI

Interconnect
DRAM

Controller

ARM

Cortex A9

dual core

Zynq PS

HP0

S_AXI

GP0

M_AXI

AXI

GPIO

S_AXI

S_AXIS

M_AXIS

S_AXI_LITE

S_AXIS_S2MM

M_AXIS_MM2S

M_AXI

AXI4

MiCAP - Pro

AXI - LITE

Figure 4.7: MiCAP-Pro interconnections

and status registers of the DMA engine can be accessed using an AXI-lite inter-
face. The DMA comes with an optional scatter-gather capability that can offload
the data transaction completely from the processor in a processor based system.

The high speed data movement between the PS and the peripheral target (on
the PL) is achieved through a burst-capable AXI4 bus. The DMA supports high
speed data transfer between Memory mapped to Stream (MM2S) type and the
Stream to Memory mapped (S2MM) type target peripherals. The data transfer is
achieved by using full duplex communication and therefore allowing MM2S and
the S2MM transfers in parallel. Some of the typical applications such as high
speed data transaction between the System and the Ethernet can be achieved by
using AXI DMA for efficient data transfer.

4.4.3 MiCAP-Pro interconnections

The interconnections of MiCAP-Pro are shown in Figure 4.7. Clearly, MiCAP-Pro
makes use of two interfaces, a general purpose port (GP0) and a high performance
port (HP0) of the Zynq-SoC. The control registers of the AXI DMA engine are
programmed by the processor through the AXI-lite interface via the GP0 port.
The status registers of the DMA can be read with the help of the same interface.

MICAP AND MICAP - PRO 71

The interface is also used for implementing the handshake signals between the
state machine of MiCAP and the processor using I/O pins of the AXI GPIO.

The configuration data that needs to be read from or written into the config-
uration memory is accessed in the form of a data stream by the DMA controller.
Therefore, in this case MiCAP acts as a stream generator. The generated stream
is interfaced with the DMA engine using full duplex communication through the
AXI-stream bus. Each of the AXI-stream buses has a master (the port of the master
is represented as a black square) and a slave (the port of the slave is represented as
a black circle). The Master initiates the data transfer while the slave waits for the
master’s command.

The AXI stream generator encapsulates MiCAP’s state machine, the ICAPE2
and the input/output FIFO buffers. The state machine takes care of filling up the
configuration bitstreams streaming from the DMA controller into the input buffer
before it triggers the ICAPE2 to write the bitstreams (present in the input buffer)
into the FPGA configuration memory. The data is transferred from the DMA to the
input buffer via the MM2S port. The bitstreams read by the ICAPE2 are initially
stored in the output buffer. Once the DMA controller is ready to accept data, the
state machine triggers the streaming of data from the output buffer to the DMA
controller via the S2MM port.

The bitstream transfers occur between the DMA engine and the HP port through
the burst-capable AXI4 bus. The data is transferred via an AXI interconnect [54]
that acts as a slave to the DMA engine and a Master to the HP port. Thus the AXI
interconnect is used as a data synchronizer. The data is accessed by the DRAM
controller via the HP port which is capable of providing high speed data transfer.
The configuration data can be temporarily stored in the off chip DRAM memory
and the ARM processor can access these data by requesting access to the DRAM
controller.

4.5 Results on reconfiguration controllers

In this section, we present the results of the experiments with different reconfig-
uration controllers. I compare the results and study the overall effect of using
custom reconfiguration controllers on a DCS system. We measured the reconfig-
uration speed of a single TLUT of a parameterized design using soft-timers (AXI
Timer v1.03a). We also evaluated the total time to reconfigure all the TLUTs of
the parameterized design (total reconfiguration time).

4.5.1 Reconfiguration time

The total reconfiguration time of different parameterized applications implemented
with different reconfiguration controllers is tabulated in Table 4.1 and the graph

72 CHAPTER 4

0

50

100

150

200

250

300

350

AXI-HWICAP
(non DMA)

MiCAP MiCAP
(with RAM)

AXI-HWICAP
(with DMA)

PCAP MiCAP-Pro

R
e

c
o

n
fi

g
u

ra
ti

o
n

 t
im

e
 (

m
s
)

Reconfiguration controllers

TCAM

Encryption processor
for Pi-Cipher

Adaptive FIR filter

MAC operator (PE)

AES encoder

Figure 4.8: Reconfiguration time for parameterized applications with different
reconfiguration controllers

that illustrates the comparison is depicted in Figure 4.8. Clearly, the DCS system
using MiCAP-Pro has the lowest reconfiguration time. The worst reconfiguration
time can be seen for the DCS with AXI-HWICAP. The basic MiCAP and MiCAP
with single port RAM show an improvement in the reconfiguration time by ≈ 10%
and ≈ 17% respectively compared to the AXI-HWICAP.

MiCAP-Pro’s reconfiguration time is drastically improved by a factor of ≈ 3

compared to AXI-HWICAP. There are 3 main reasons for the improvement:

1. Buffers: MiCAP-Pro has I/O buffers whose depth is large enough to hold all
the required data during the reconfiguration. Therefore, the data transaction
is not stalled during the reconfiguration process in contrast to case of the
AXI-HWICAP.

2. Optimized state machine: the state machine of MiCAP-Pro is simple and it
does not need logic to handle the reconfiguration stall phenomenon since the
I/O buffers never get full.

3. High Performance ports: the data transaction between PS and PL regions
occurs through HP ports of the Zynq-SoC. These ports are fast enough to
provide high speed communication bandwidth between PS and PL regions.

The measured reconfiguration time for one TLUT is tabulated in Table 4.2.
These values are linearly proportionate with the total reconfiguration time listed in
Table 4.1.

MICAP AND MICAP - PRO 73

Ta
bl

e
4.

1:
To

ta
lr

ec
on

fig
ur

at
io

n
tim

e
(m

s)
fo

r
di

ffe
re

nt
pa

ra
m

et
er

iz
ed

ap
pl

ic
at

io
ns

w
ith

di
ffe

re
nt

re
co

nfi
gu

ra
tio

n
co

nt
ro

lle
rs

A
pp

lic
at

io
n

#T
L

U
T

s
A

X
I

H
W

IC
A

P
(n

on
D

M
A

)
M

iC
A

P
M

iC
A

P
w

ith
R

A
M

A
X

I
H

W
IC

A
P

(w
ith

D
M

A
)

PC
A

P
M

iC
A

P-
Pr

o

T
C

A
M

36
8.

2
7.

5
6.

9
6.

06
4.

4
2.

3
M

A
C

op
er

at
or

(P
E

)
52

6
12

0.
9

11
0.

4
10

2.
04

88
.6

65
.2

33
.7

A
E

S
E

nc
od

er
14

44
33

2.
1

30
3.

2
28

0.
1

24
3.

3
17

9.
05

92
.5

E
nc

ry
pt

io
n

pr
oc

es
so

r
fo

rπ
-C

ip
he

r
10

8
24

.8
22

.6
20

.9
18

.1
13

.3
6.

9

A
da

pt
iv

e
FI

R
fil

te
r

38
4

88
.3

80
.6

74
.4

64
.7

47
.6

24
.1

74 CHAPTER 4

Table 4.2: Reconfiguration time of a TLUT for different reconfiguration controllers

Reconfiguration
Controller

TLUT
Reconfiguration time (µs)

AXI-HWICAP (non-DMA) 230
MiCAP 210

MiCAP with single port RAM 194
AXI-HWICAP (with DMA) 168.5

PCAP 124
MiCAP-Pro 64.1

4.5.2 Reconfiguration controller data throughput

The measured data throughput of each reconfiguration controller is tabulated in
Table 4.3. The other reconfiguration controllers used for Partial Reconfiguration
such as ZyCAP [55], PCAP [26] and FaRM [56] controllers are also considered
for the data throughput comparison. Figure 4.9 shows the comparison of the data
throughput between each of the reconfiguration controllers. The controllers are
distinguished depending upon the capability to implement a DCS system on the
Zynq-SoC platform.

Table 4.3: Data throughput of reconfiguration controllers

Reconfiguration
Controller

Data
throughput (MBps)

Allow DCS ?

AXI-HWICAP (non-DMA) 19 Yes
AXI-HWICAP (with DMA) 67 Yes

PCAP 128 No
FaRM (only on PLB) 174 No

ZyCAP 382 No
Open-source controller D2PR-EDAC 319.9 No

MiCAP 22 Yes
MiCAP with single port RAM 23 Yes

MiCAP-Pro 272 Yes

The ZyCAP has the highest throughput among all of the reconfiguration con-
trollers. The open-source controller with D2PR-EDAC capability has the second
highest throughput. However, both controllers lack the configuration data read-
back capability and hence they are suitable only for Dynamic Partial Reconfigura-
tion (DPR) but not for Dynamic Circuit Specialization (DCS). The configuration

MICAP AND MICAP - PRO 75

0

50

100

150

200

250

300

350

400

AXI-HWICAP
(non-DMA) AXI-HWICAP

(with DMA) PCAP

FaRM (only on
PLB) ZyCAP

D2PR-EDAC
MiCAP

MiCAP with
RAM MiCAP-Pro

D
a
ta

 T
h

ro
u

g
h

tp
u

t
(M

B
p

s
)

Reconfiguration controllers

Figure 4.9: Data throughput of different reconfiguration controllers

read-back capability is a very essential feature required for DCS.

MiCAP-Pro has the third highest throughput among all of the reconfiguration
controllers but remains the fastest reconfiguration controller that is suitable to im-
plement DCS. The controller has the configuration read-back feature and is de-
signed specifically to implement parameterized designs using DCS. Since the con-
troller has I/O buffers, a significant delay is introduced before streaming the data
into the ICAP port and therefore, throughput of MiCAP-Pro is 90 MBps lower
compared to the ZyCAP. The buffers are necessary during configuration read-back
so that the frames are not lost during the read procedure.

The FaRM controller has the configuration read-back capability but it is sup-
ported only on the Processor Local Bus (PLB) [43]. Therefore, the controller can-
not be used on the Zynq-SoC unless major modifications are made. However, the
throughput of the FaRM controller is not as high (≈ 100 MBps) as the throughput
of MiCAP-Pro.

The throughput of the PCAP is less than half of that of MiCAP-Pro. Therefore,
the reconfiguration speed using PCAP is lower than the reconfiguration speed us-
ing MiCAP-Pro. The estimated reconfiguration time of one TLUT using the PCAP
is ≈ 124 µs.

The rest of the reconfiguration controllers has almost the same throughput as
the AXI-HWICAP.

76 CHAPTER 4

Table 4.4: Resource utilization of the reconfiguration controllers

Reconfiguration Controller FF LUTs BRAMs

AXI-HWICAP (non-DMA) 675 500 1
PCAP 0 0 0

MiCAP 221 290 0
MiCAP with single port RAM 234 330 0

MiCAP-Pro 2154 2032 2
Note : For a reliable implementation, each reconfiguration controller can support up to maximum 100 MHz.

4.5.3 Resource utilization

The FPGA resources utilized by each of the reconfiguration controllers to imple-
ment DCS are tabulated in Table 4.4. The PCAP does not utilize any of the PL
region (FPGA) resources since the AXI-PCAP bridge is a part of the PS region of
the Zynq-SoC [26]. The basic MiCAP utilizes the lowest FPGA resources com-
pared to the rest of the controllers that are implemented on the PL region. The
AXI-HWICAP utilizes about twice as much resources than MiCAP and MiCAP
with single port RAM.

However, MiCAP-Pro needs about ≈ 10×more resources than MiCAP and ≈ 4
times more than the AXI-HWICAP. The main reason for this very high resource
utilization is the usage of the DMA controller and the AXI stream bus to provide
the interface with the region via HP ports. Therefore, MiCAP-Pro comes at the
cost of extra FPGA resources for high speed reconfiguration for DCS. The trade-
off of resources with improved speed will be further explored using the functional
density.

4.5.4 Custom reconfiguration controllers and functional den-
sity

The effect of using high and low speed reconfiguration controllers on the overall
system implemented using DCS can be best explained using the Functional Den-
sity explained in Chapter 3, Section 3.4.

The functional density curves for an adaptive FIR filter implemented using
DCS with different reconfiguration controllers is shown in Figure 4.10. The x-
axis represents the average time (in clock cycles) between two parameter value
changes. The Generic implementation (FIR3 filter implemented without DCS)
has no variation in the functional density since it uses a fixed number of FPGA
resources. It has the highest functional density if parameter values change fre-
quently. The functional density for DCS approaches is higher than for the generic

3The functional density curves for other parameterized applications exhibit similar variations

MICAP AND MICAP - PRO 77

103 104 105 106 107 108 109 1010 1011 1012

Parameter re-use (clock cycles)

0

200000

400000

600000

800000

1000000

Fu
n
ct
io
n
a
l
d
e
n
si
ty

(O
p
s/
s
/
LU

T
)

HWICAP

Basic MiCAP

MiCAP with RAM

Generic

MiCAP-Pro

Figure 4.10: Functional Density curves for adaptive FIR filter

implementation as long as the parameters do not change values too frequently. So
at the right side of the cross-over point (longer times between parameter changes)
the DCS implementation is more beneficial. The curve for DCS implemented with
MiCAP-Pro rises well before all other curves because of the drastic improvement
in the reconfiguration speed. Thus, it allows the parameter values to change faster
at the cost of extra implementation area. The DCS with MiCAP-Pro utilizes more
implementation area (LUTs) which is why the magnitude of the functional density
is lower for infrequent reconfigurations than with all other implementations except
the generic implementation.

The curve for DCS implemented with basic MiCAP rises before the conven-
tional DCS (with HWICAP) because of the improvement in the reconfiguration
speed and hence the parameter values are allowed to change faster than before
with the same gain in area. Similarly, the functional density curve for the DCS im-
plementation using MiCAP with single port RAM rises just before the functional
density curve with basic MiCAP due to the slight improvement in reconfiguration
speed. The DCS with basic MiCAP and MiCAP with single port RAM uses less
implementation area (less number of LUTs). Therefore, the functional density of
each of these is much higher than that of DCS with HWICAP.

In conclusion, the functional density shows that the area-time trade-off of
MiCAP-Pro is most beneficial with an average frequency of parameter value changes
(between 107 and 108 clock cycles). For very infrequent parameter changes, the
basic MICAP provides more gain as it takes less area and the reconfiguration time
overhead has less impact.

78 CHAPTER 4

Table 4.5: Average Power and Energy results of the reconfiguration controllers

Reconfiguration
Controller

Idle
Power
(mW)

Reconfiguration
Power
(mW)

Energy
(µJ)

AXI-HWICAP(non-DMA) 3.3 25.2 2838.3
MiCAP 0.6 3.9 314.5 (11.1%)

MiCAP-Pro 1.6 30.1 740.1 (26.1%)
Note 1: the reconfiguration controllers have a gated clock and the idle power is measured while the clock is turned off.
Note 2: the value between brackets show the percentage of power compared to the HWICAP.

4.5.5 Power and Energy analysis of the reconfiguration con-
trollers

In this section I present the power and energy analysis of the reconfiguration con-
trollers. I use the same power measurement setup explained in Chapter 3, Sec-
tion 3.6.1 and the measurement bench shown in Figure 3.11 for the Xilinx ZC702
development board.

The idle and reconfiguration power of each reconfiguration controller is tab-
ulated in Table 4.5. Clearly, the AXI-HWICAP consumes the highest idle power
compared to the rest of the controllers. MiCAP is a lightweight controller4 and
therefore, it consumes much lower power compared to the other two controllers.
MiCAP-Pro utilizes ≈ 4 times more functional resources than the AXI-HWICAP.
Therefore, the power consumption during reconfiguration is higher than the AXI-
HWICAP and MiCAP.

The energy consumption values show that MiCAP is 9 times more energy effi-
cient than the AXI-HWICAP due to its lightweight feature. However, MiCAP-
Pro’s energy consumption is 4 times lower than the AXI-HWICAP due to in-
creased reconfiguration speed and hence it proves to be more energy efficient than
the AXI-HWICAP.

The power consumption during frame read, modify and write back activity is
depicted in Figure 4.11. Clearly, the variation of power of MiCAP-Pro is moder-
ately higher than the AXI-HWICAP while MiCAP has lowest variation of power
during the micro-reconfiguration activity.

Since the reconfiguration time of the custom reconfiguration controllers is
lower than for the AXI-HWICAP, the energy variation of MiCAP and MiCAP-
Pro is much lower than for the AXI-HWICAP as shown in Figure 4.12. MiCAP
proves to be the most energy efficient reconfiguration controller for DCS.

The source code of MiCAP and MiCAP-Pro can be accessed at [57] and [58]
respectively.

4the data throughput of MiCAP is 17% better than that of the AXI-HWICAP

MICAP AND MICAP - PRO 79

0

5

10

15

20

25

30

35

IDLE READ WRITE IDLE

Po
w

er
 (m

ill
iw

at
ts

)

Power Activity

AXI-HWICAP

MiCAP

MiCAP-Pro

MODIFY

Activity

Figure 4.11: Power activity of the reconfiguration controllers

0

0.5

1

1.5

2

2.5

READ WRITE

En
er

gy
 (m

ill
ijo

ul
es

)

Energy Variation

AXI-HWICAP

MiCAP

MiCAP-Pro

MODIFY

Activity

Figure 4.12: Energy variations of the reconfiguration controllers

80 CHAPTER 4

4.6 Improving reconfiguration speed using placement
constraints

The Xilinx HWICAP driver function “XhwIcap_setClb_bits” described in Chap-
ter 3 Section 3.2.2.2 is used to reconfigure the truth table entries of a single LookUp
Table (LUT) during run time. However, with existing Xilinx FPGA column based
architectures, we propose to reconfigure multiple LUTs at the same time. We
do this by using design placement constraints to cluster the bits that have to be
changed in the same reconfiguration columns and customizing the reconfiguration
driver function: “XhwIcap_setClb_bits”. This gives us a significant improvement
in reconfiguration speed. However this improvement comes at the cost of a slight
reduction in the performance of the design.

4.6.1 Custom reconfiguration drivers

In this section, I propose two different principles to modify the reconfiguration
drivers of the corresponding reconfiguration controllers. These modifications op-
timize the read activity during the micro-reconfiguration.

• MRMW: Multi - Read - Modify - Write: The conventional drivers follow the
read-modify-write back principle to reconfigure every TLUT separately. In
order to exploit the advantage of the existing frame structure that is imposed
by the column based Xilinx FPGA architecture, we propose to modify truth
table entries of multiple TLUTs within a single read activity. If multiple
TLUTs of a parameterized design are placed in a single column then each
of these TLUTs has a certain set of truth table entries that are located in the
same frame. However, all 64 entries of a single TLUT are spread over 4
different frames. We have modified the reconfiguration process (into driver
MRMW) that takes place in 3 steps:

1. Read multiple frames: with the help of the frame address, four frames
containing all the truth table entries of a column of TLUTs and LUTs
are read from the configuration memory. If there are multiple TLUTs
placed in a single column, the truth table values of multiple TLUTs are
read with a single read activity.

2. Modify frames: before modification, the function locates the truth ta-
ble bits of all the TLUTs that are present in the frame. The current truth
table entries of these TLUTs are replaced with the specialized truth ta-
ble bits, which are generated by the SCG. Thus multiple TLUTs are
specialized in a single attempt.

3. Write-back frames: with the help of the same frame address, the modi-
fied or specialized truth table values are updated in all the TLUTs of the

MICAP AND MICAP - PRO 81

column by swapping in multiple frames into the configuration memory
of the FPGA. This updates all the truth table entries of multiple TLUTs
that are placed in a single column.

Hence for a single read frames activity, multiple TLUTs can be reconfigured
and this proves to be efficient since reading and writing back the frames for
each TLUT can be avoided in contrast to the case of the conventional driver.

If the number of TLUTs in a parameterized design is higher than what fits
in a single CLB column then multiple CLB columns containing multiple
TLUTs can be used in order to achieve the gain in reconfiguration speed.

The TLUTs can be forcibly placed in a single column by using design place-
ment constraints. However, the main concern with using the placement con-
straints is the design performance. Strict placement constraints would lead
to hindrance of the design performance. There will be a trade-off between
the reconfiguration speed and the design performance which is investigated
in Section 4.7.2.

• MROMW: Multi - Read once - Modify - Write: the MRMW reconfiguration
driver can be further optimized at the cost of DRAM memory. The memory
is used as a cache to store the frames that are read during a reconfiguration.
We have optimized the read frame activity for future reconfiguration of the
same TLUTs.

1. Read frames once: with the help of the frame address, four frames
containing all the truth table entries of a column of TLUTs and LUTs
are read from the configuration memory. If there are multiple TLUTs
placed in a single column, the truth table values of multiple TLUTs are
read with a single read activity. Once the frames are read, each frame
is stored in DRAM memory of the Zynq-SoC. If the processor has to
reconfigure the same TLUTs at a later time, it can directly access the
frames from the DRAM memory instead of requesting the same frames
from the configuration memory via the ICAP. Since the data access
from the DRAM memory is faster than the configuration memory, the
read frame activity can be bypassed for the future reconfigurations of
the same TLUTs.

The rest of the reconfiguration steps: multi-modify and write-back frames
remain unchanged. However, the bitstream’s cache is updated for every
write-back activity in order to keep the cached bitstream consistent with the
actual configuration of the FPGA.

82 CHAPTER 4

Table 4.6: Dimensions for the Placement Constraints

16-tap FIR 32-tap FIR 64-tap FIR

Number of TLUTs
to be clustered

384 768 1536

Zynq-SoC 50 × 5 50 × 11 50 × 14
Virtex-5 20 × 13 20 × 27 20 × 38

Note: Above dimensions are in the form of Length ×Width of the CLB columns.

4.6.2 Placement constraints to improve reconfiguration speed

The main aim of using placement constraints is to force multiple TLUTs to cluster
all their truth table entries in a minimal number of frames. The placement con-
straints are used to restrict where the design’s logic is placed. It forces the placer
to use a certain area of the FPGA. We have described the correlation between the
CLB columns and the frame structure in Chapter 2 Section 2.1.3. Our approach is
to force more TLUTs to be placed in a single CLB column so that their truth table
entries can be reconfigured with a minimal number of frame accesses.

We have used the “AREA_GROUP” constraint [59]. This constraint allows us
to specify that certain parts of the design can only be placed in a pre-determined
rectangular region of the FPGA’s CLBs. To determine the exact size of this rect-
angular region the maximum length of the CLB column and minimum width of
the CLB rows have to be considered. The maximum length of the CLB column
is equal to its height (50 for the Zynq-SoC) in a given clock region and it ensures
that more TLUTs can fit the specified area, while the minimum CLB rows ensures
that we use the minimal number of CLB columns possible.

The exact area constraint differs for both targeted FPGAs. We first used the
constraint to place the TLUTs in an exact minimum number of CLB columns de-
termined by the number of LUTs present in it. For example, in the Zynq-SoC each
column has 200 LUTs. Therefore to place the 64-tap FIR filter (1536 TLUTs), it
is sufficient to use 8 columns. However with 8 columns, the router was not able to
route the design. Hence we increased the width of the rectangular area by increas-
ing the number of columns until the router was able to route the whole design. The
width of the rectangular area in terms of CLB columns for different configurations
of the FIR filter is tabulated in Table 4.6.

For a 64-tap FIR filter, the average number of TLUTs clustered in a single
CLB column of the Zynq-SoC is 110 which is 52% of the total LUTs available
in a single CLB column and there are a maximum of 156 TLUTs clustered in a
single column which is 75%, remaining LUTs are not a part of the reconfiguration
process and hence they are used for the non-reconfigurable parts of the problem.
Table 4.7 shows the percentage of TLUTs clustered.

MICAP AND MICAP - PRO 83

Table 4.7: TLUTs cluster rate of 64-tap FIR filter in a single CLB column

Zynq-SoC
Average Maximum

Clustered TLUTs 52% 75%
Remaining LUTs 48% 25%

Table 4.8: FIR filter configurations

Taps Multipliers TLUTs

16 32 384
32 64 768
64 128 1536

4.7 Results on custom reconfiguration drivers
In this section, I present the results of our experiments on custom reconfigura-
tion drivers: MRMW and MROMW. Table 4.9 shows the reconfiguration time
distribution of a TLUT using three different reconfiguration controllers. Clearly,
MiCAP-Pro is the fastest reconfiguration controller between all three controllers.
In order to evaluate the effect of using custom reconfiguration drivers on the three
controllers, we consider the total reconfiguration time (time taken to reconfigure
all the TLUTs of the DCS system).

There were 3 different experiments conducted on each of the reconfiguration
controllers:

1. Experiments with MRMW reconfiguration drivers and without placement
constraints.

2. Experiments with MRMW reconfiguration drivers and with placement con-
straints.

3. Experiments with MROMW reconfiguration drivers and with placement con-
straints.

4.7.1 Experiments with MRMW reconfiguration drivers and
without placement constraints

In this experiment, we have not used placement constraints and hence the TLUTs
were automatically placed by the placer without constraints from the user. The
placer tool had full freedom to choose its own place for the TLUTs in different
CLB columns.

84 CHAPTER 4

Table 4.9: Reconfiguration time distribution of a single TLUT

Reconfiguration
controller

Micro-reconfiguration
task Time (µs)

TLUT
Reconfiguration

time (µs)
Read Frames 111.5

HWICAP Boolean Evaluate and Modify 18 234
Write back Frame 100.5

Read Frames 97
MiCAP Boolean Evaluate and Modify 18 210

Write back Frame 95
Read Frames 23

MiCAP-Pro Boolean Evaluate and Modify 18 64.1
Write back Frame 23.1

Table 4.10: CLB columns - TLUTs placed without placement constraints

16-taps FIR 32-taps FIR 64-taps FIR
No. of TLUTs
to be clustered 384 768 1536

CLB Columns 25 42 50

Table 4.10 shows the number of columns in which the TLUTs were placed by
the placer without any placement constraints. Further investigations have shown
that there were multiple TLUTs placed for a given CLB column and therefore, we
can still use the principle of modifying multiple TLUTs for a single read activity

The TLUTs of the parameterized FIR filter design were reconfigured with 3
different reconfiguration controllers. We used custom reconfiguration drivers of
MRMW. The corresponding time required to reconfigure all the TLUTs of the pa-
rameterized design and the Improvement Factor (IF) is tabulated in Table 4.11.

Table 4.11: Total Reconfiguration time without placement constraints

FIR
filter taps TLUTs Reconfiguration

controller
Total

reconfiguration
time (ms)

Improvement
factor

HWICAP 88.3/ 7.4 12
16 384 MiCAP 80.6 / 6.9 12

MiCAP-Pro 24.6 / 3.3 8
HWICAP 176.6 / 13.1 13

32 768 MiCAP 161.2 / 12.2 13
MiCAP-Pro 49.2 / 6.2 8
HWICAP 353.2 / 18.4 19

64 1536 MiCAP 322.4 / 17.4 19
MiCAP-Pro 98.4 / 12.1 8

Note: above timing values are in the form of normal reconfiguration drivers / custom MRMW reconfiguration drivers.

MICAP AND MICAP - PRO 85

Table 4.12: Total Reconfiguration time with placement constraints

FIR
filter taps TLUTs Reconfiguration

controller
Total

reconfiguration
time (ms)

Improvement
factor

HWICAP 88.3/ 4.4 20
16 384 MiCAP 80.6 / 4.3 19

MiCAP-Pro 24.6 / 3.1 8
HWICAP 176.6 / 9 20

32 768 MiCAP 161.2 / 8.7 19
MiCAP-Pro 49.2 / 6 8
HWICAP 353.2 / 16.4 22

64 1536 MiCAP 322.4 / 16.1 20
MiCAP-Pro 98.4 / 9.6 10

Note: above timing values are in the form of normal reconfiguration drivers / custom MRMW reconfiguration drivers.

Clearly, there was a drastic reduction in the reconfiguration time compared to the
standard reconfiguration drivers. The reconfiguration speed was improved drasti-
cally, at least by a factor of 12 for the HWICAP and MiCAP. Similarly, the im-
provement in reconfiguration speed by a factor of ≈ 8 was observed for MiCAP-
Pro. This improvement was achieved since we overcome the reading of the same
frames that contain configuration of multiple TLUTs. The data transfers between
PS and PL regions of the Zynq-SoC are the major bottleneck for the HWICAP and
MiCAP. Therefore, bypassing the frame read activities in the driver contributes a
lot to the reconfiguration speed and is the major reason for the improvement in the
reconfiguration speed. Since we did not use any placement constraints, the overall
performance of the DCS system remains unchanged.

4.7.2 Experiments with MRMW reconfiguration drivers and
with placement constraints

In this experiment, we force the placer tool to place the maximum possible number
of TLUTs in an exact minimum number of CLB columns by using “AREA_GROUP”
placement constraints. Table 4.6 shows the minimum CLB columns in which the
TLUTs were placed. The parameterized design was reconfigured using MRMW
drivers using three different controllers. The total reconfiguration time is tabulated
in Table 4.12.

Clearly, the reconfiguration speed was even further improved by at least a fac-
tor ≈ 20 for the HWICAP and MiCAP. The reconfiguration speed was improved
at least by a factor ≈ 8 for MiCAP-Pro. The improvement is due to the place-
ment of TLUTs in a reduced number of CLB columns compared to the previous
experiment.

With the help of the placement constraints, the truth table entries of multiple
TLUTs were clustered in a single CLB column. Therefore, this method gives an

86 CHAPTER 4

Table 4.13: Maximum clock frequency the design can support on the Zynq-SoC

16-taps FIR 32-taps FIR 64-taps FIR
No. of TLUTs 384 768 1536

Clock frequency
in MHz 108.6 / 102.8 108.6 / 102.2 108.6 / 101.2

Note: above clock frequency values are in the form of without placement constraints / with placement constraints.

advantage of modifying more TLUTs for a single frame read activity. The MRMW
driver exploits the advantage and reconfigures multiple TLUTs thereby reducing
the reconfiguration time.

The improvement in the reconfiguration speed comes at the cost of a reduc-
tion in the design performance. Introducing the placement constraints causes the
design to have a longer critical path then the conventional implementation. This
causes a decrease in the maximum clock frequency the design can support as ob-
served in Table 4.13. Clearly, an increase in the number of TLUTs decreases the
design performance. The overall average deterioration in design performance is
about 6 MHz (or a deterioration of ≈ 6%). A similar experiment on clustering the
dynamic bits for multi-mode circuits [60] (design with different configurations)
for an adaptive FIR filter is presented in [61]. A maximum of 30% increase in
wire length is observed.

4.7.3 Experiments with MROMW reconfiguration drivers and
with placement constraints

In this experiment, we used a custom reconfiguration driver of MROMW. Intro-
ducing the placement constraints reduces the number of CLB columns in which the
TLUTs are placed. When using a custom driver of MROMW, the frames that con-
tain TLUT truth table entries are stored in the DRAM of the Zynq-SoC after they
are read during the reconfiguration of the TLUTs for the first time. The DRAM
acts as a cache so that we can reuse the truth table entries for reconfiguring the
same TLUTs in future requests. Therefore, we bypass the frame read activity and
hence the reconfiguration time is reduced. Table 4.14 shows the reconfiguration
time of the DCS system after using the MROMW reconfiguration driver. Clearly,
we observe an improvement in reconfiguration speed by 12% compared to the
MRMW driver. However, this small improvement comes at the cost of memory
that is used to store the frames for reconfiguring the TLUTs. The DRAM should
store at least 404 words (1 word = 32 bits) of the frame data to reconfigure multiple
TLUTs present in a single CLB column.

We limit the use of the MROMW driver to the experiments with placement
constraints only. This is because the number of frames that contain truth table
entries of TLUTs is small compared to the number of frames without placement

MICAP AND MICAP - PRO 87

Table 4.14: Reconfiguration time using MROMW driver

FIR
filter taps TLUTs Reconfiguration

controller
Total

reconfiguration
time (ms)

HWICAP 4.4 / 3.8
16 384 MiCAP 4.3 / 3.8

MiCAP-Pro 3.1 / 2.8
HWICAP 9 / 7.7

32 768 MiCAP 8.7 / 7.7
MiCAP-Pro 6 / 5.4
HWICAP 16.4 / 14.7

64 1536 MiCAP 16.1 / 14.7
MiCAP-Pro 9.6 / 9

Note: Above values are in the form of custom MRMW drivers/ MROMW drivers.

constraints and therefore it is worth to store minimum possible frames rather than
storing the frames that contain TLUTs which are wide spread across the multiple
clock regions of the FPGA.

For a 64-taps parameterized FIR filter, in order to store all the frames (that
contain truth table entries of 1536 TLUTs) in the DRAM memory, we need a
memory space of 5656 words (14×404 = 5656) or ≈ 23 KB in the DRAM memory.
The comparison of the reconfiguration time of the parametrized FIR filter with 64-
taps implemented using DCS using different reconfiguration controllers is depicted
in Figure 4.13. The naming conventions used in the following figures is described
in Table 4.15.

Clearly, the TLUTs of the parameterized design are reconfigured efficiently
with less overhead of reconfiguration time using custom reconfiguration controllers
when used along with custom MRMW and MROMW reconfiguration drivers.

4.7.4 Functional density curves

The functional density curve was plotted against the rate of change of the input
parameters for the adaptive FIR filter with three different configurations: 16, 32,
and 64 taps. We have plotted the functional density curve for each reconfiguration
controller and observed the variation in functional density of the DCS system af-
ter using standard, custom MRMW without placement constraints, MRMW and
custom MROMW drivers with placement constraints.

The functional density curves for the HWICAP, MiCAP and MiCAP-Pro are
depicted in Figure 4.14, Figure 4.15 and Figure 4.16 respectively. The naming
conventions for the reconfiguration controllers are listed in Table 4.15. The x-
axis represents the average time (in clock cycles) between two parameter value
changes. We observe a similar behavior of functional density curves in the DCS

88 CHAPTER 4

Table 4.15: Naming convention for reconfiguration controllers and their definitions

Reconfiguration
controllers Definition

(Reconf_controller)1
DCS system with (Reconf_controller) and

standard reconfiguration driver.
(read, single modify, write)

(Reconf_controller)2

DCS system with (Reconf_controller)
with custom MRMW

reconfiguration driver and
without placement constraints.

(Reconf_controller)3

DCS system with (Reconf_controller)
with custom MRMW

reconfiguration driver and
with placement constraints.

(Reconf_controller)4

DCS system with (Reconf_controller)
with custom MROMW

reconfiguration driver and
with placement constraints.

Note: (Reconf_controller) can be HWICAP, MiCAP and MiCAP-Pro in the above naming convention.

systems implemented using three different reconfiguration controllers.
The functional density for the DCS with custom MRMW driver (without place-

ment constraints), rises well before the functional density of the DCS that uses the
standard reconfiguration driver, introducing the placement constraints for MRMW
and MROMW custom drivers improves the reconfiguration speed furthermore and
hence the corresponding functional density curves rise earlier compared to the
functional density curve with standard reconfiguration drivers. This shows that
improving the reconfiguration speed allows the parameters to change faster with
the same gain in area compared to DCS whose reconfiguration speed is slow.

However, since the design performance is slightly reduced due to placement
constraints, the magnitude of the functional density curves is relatively lower com-
pared to the DCS without placement constraints forming the main trade-off. The
HWICAP and MiCAP have similar functional density curves (except MiCAP has
a higher magnitude of functional density) since they have approximately equal
throughput [62]. Using the custom reconfiguration drivers improves the reconfig-
uration speed drastically. However, the functional density curves for MiCAP-Pro
only show a small improvement in reconfiguration speed after using MRMW and
MROMW reconfiguration drivers. Since the data throughput of MiCAP-Pro is
very high, the effect of using custom reconfiguration drivers to improve the recon-
figuration speed is relatively lower. The impact of using placement constraints can
be also seen in the functional density curves of MiCAP-Pro.

Commercial applications such as TCAM used for packet classification in net-
work routers [63] can benefit from DCS. A content of the memory is an infre-

MICAP AND MICAP - PRO 89

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

R
e
c
o

n
fi
g

u
ra

ti
o

n
 t
im

e
 i
n

 m
ill

is
e
c
o

n
d

s

Reconfiguration Controllers

Figure 4.13: Reconfiguration time comparison between standard reconfiguration driver
and custom reconfiguration drivers

Note: the naming conventions are explained in Table 4.15

quently changing input value and therefore, can be used as a parameter input.
However, in the network routing if the content of the TCAM has to be updated
then the reconfiguration speed plays an important role. If the reconfiguration speed
is too slow then it affects the network router’s performance. The parameterized
TCAMs can benefit from our proposed methods and overcome the barrier of the
reconfiguration time without affecting the router’s performance.

Until now I have presented my work on the fine-grained level of FPGA. In
the next chapter, I evaluate the effect of custom reconfiguration controllers and
custom reconfiguration drivers on coarse-grained reconfigurable arrays realized
on the FPGAs.

90 CHAPTER 4

×105

10
5

10
6

10
7

10
8

10
9

10
4

10
11

10
10

Parameter reuse (clock cycles)

HWICAP2

HWICAP1 HWICAP3

HWICAP4

0

2

4

6

8

Fu
nc

tio
na

l d
en

si
ty

 ((
O

ps
/s

)/L
U

T)

Figure 4.14: Functional Density curves for HWICAP with different reconfiguration drivers

×105

10
5

10
6

10
7

10
8

10
9

10
4 10

11
10

10

Parameter reuse (clock cycles)

0

2

4

6

8

10

Fu
nc

tio
na

l d
en

si
ty

 ((
O

ps
/s

)/L
U

T)

MiCAP1

MiCAP2 MiCAP4

MiCAP3

Figure 4.15: Functional Density curves for MiCAP with different reconfiguration drivers

MICAP AND MICAP - PRO 91

×105

0

1

2

3

4

5

6

7

Fu
nc

tio
na

l d
en

si
ty

 ((
O

ps
/s

)/L
U

T)

10
5

10
6

10
7

10
8

10
9

10
10

10
4

Parameter reuse (clock cycles)

MiCAP-Pro2

MiCAP-Pro3MiCAP-Pro1

MiCAP-Pro4

Figure 4.16: Functional Density curves for MiCAP-Pro with different reconfiguration
drivers

5
DCS for FPGA Overlay architectures

A software programmer with limited knowledge of hardware will encounter vari-
ous hurdles to develop applications that run on FPGAs. Indeed, software program-
ming is a very different experience than realizing the applications on an FPGA
architecture. This usually results in lower design productivity for software engi-
neers and creates a huge gap between what resources the application requires and
what resources the FPGA fabric actually provides when the same application is
implemented optimally. This design gap can be alleviated by bringing the FPGA
implementation closer to a programming model through the use of FPGA over-
lays. FPGA overlays are larger functions that are implemented efficiently on the
FPGA fabric and are programmable through software programming methods. In
this chapter, I present basics of FPGA overlays and their characteristics. The role
of DCS in FPGA overlays is an important aspect of my research, and hence an
efficient implementation for FPGA overlays (using DCS) is presented as well.

5.1 Introduction to Overlays

An FPGA overlay is a virtual architecture that overlays on top of the physical
FPGA fabric [64]. Adding reconfigurability enables customization of the applica-
tions and supports more than one application. The overlay can then be a virtual
FPGA or a computing architecture called Virtual Coarse-Grained Reconfigurable
Array (VCGRA) specifically designed to realize an application at hand. The appli-
cations are described using high-level languages that can be easily compiled and

94 CHAPTER 5

HDL

C/C++/

Python

Netlist

Virtual

FPGA

VCGRA

Processor-like

overlay

LUTs

BRAMs
DSPs

Hardcore

ProcessorFlip flops

Application Mapping

Overlay Mapping

Application

Overlay

FPGA

Figure 5.1: An overlay architecture for FPGA application development [64]

mapped on to the virtual overlay layer without knowing the details of the low-level
FPGA hardware (Figure 5.1).

5.1.1 Types of Overlays

The FPGA overlays can be grouped into three types: Virtual FPGAs, Virtual
Coarse-Grained Reconfigurable Arrays (VCGRAs) and Processor-like overlay.

1. Virtual FPGAs are built virtually or physically on top of the off-the-shelf
FPGA fabrics. The virtual FPGA overlays have different configuration and
features than the typical FPGA device. Therefore, having a virtual FPGA
layer over an FPGA fabric improves the application portability and com-
patibility. The virtual architectures proposed in [65] [66] [67] and [68] are
examples for virtual FPGAs.

DCS FOR FPGA OVERLAY ARCHITECTURES 95

2. VCGRAs are the Coarse-Grained Reconfigurable Arrays (CGRAs) enable
ease of programmability and result in low development costs. They en-
able the ease of use specifically in reconfigurable computing applications.
The smaller cost of compilation and reduced reconfiguration overhead en-
ables them to become attractive platforms for accelerating high-performance
computing applications such as image processing. The CGRAs are ASICs
and therefore, expensive to produce for low-volume products. However,
FPGAs are relatively cheaper for low volume products but they are not so
easily programmable. The combination of the best of both worlds results
in implementing a Virtual Coarse-Grained Reconfigurable Array (VCGRA)
on top of the fine-grained FPGA fabric. This coarsens the granularity of
an FPGA from its physical fine-grained configurable fabric (LUTs, FFs,
BRAMs, DSPs, etc.). VCGRAs provide a trade-off between performance
of the hardware and the flexibility of a software program for compute inten-
sive parts of the applications. Therefore, VCGRAs are suitable to accelerate
compute intensive kernels. The overlays presented in [34] [69] [70] are the
examples of VCGRAs. There also exist an example for overlay on an over-
lay (superimposed virtual architecture) called SICTA. This is mainly used
for online debugging of VCGRA and supports on-demand three level fault-
mitigation [71].

3. Processor-like overlays are processor-like intermediate layers built on top
of the FPGA fine-grained FPGA fabric. The compatibility and usability of
processor-like overlays are developed in the user’s perspective. Therefore,
customized soft-processors with user defined ISA fall under this category.
These overlays provide a high degree of control and extensive data paral-
lelism to make them suitable for data acceleration. The fine-grained vector
processors presented in [72] [73] [74] [75] are examples of processor-like
overlay architectures.

5.1.2 Benefits of Overlays

The overlays bridge the gap between the applications and the FPGA fabric. The
virtualization inherits many benefits to the software programmer from a software
programming model and hence software programmers can expect similar benefits
as with CPU virtualization such as compatibility, portability and isolation. Apart
from these benefits employing FPGA overlays has proven to offer high speed com-
pilation thereby improving the designer’s productivity with better debugging sup-
port [64].

My research contributions are situated in the area of VCGRAs and therefore,
in the following I will emphasize more on VCGRAs. To understand VCGRAs in
detail, I first describe about CGRAs in the following section.

96 CHAPTER 5

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Instruction Memory

D
a

ta
 M

e
m

o
ry

SR SR SR

SR SR SR SR

SR SR SR SR

SR SR SR SR

SR

Figure 5.2: A CGRA architecture

5.2 Coarse-Grained Reconfigurable Arrays (CGRAs)

The FPGAs provide high flexibility but they suffer from low efficiency (compared
to ASICs) due to fine bit-level granularity reconfiguration that results in longer
reconfiguration penalty. The CGRAs serve as the promising alternatives between
FPGAs and ASICs.

As the name suggests, CGRAs comprise of coarse-grained processing ele-
ments (PEs) or functional units (FUs) connected via mesh-like interconnect as
shown in Figure 5.2. Each PE is associated with a settings register (SR) (also called
control register) that decides the functionality1 of the PE and can be programmed
on a per cycle basis. The PEs are capable of performing complex functions and
hence they are more powerful than the LUTs of an FPGA.

1Each PE is multiplexed with different functionality, the select lines that decide the function of each
PE are connected to the settings register. Therefore, the settings register decides the function of each
PE.

DCS FOR FPGA OVERLAY ARCHITECTURES 97

5.3 Virtual Coarse-Grained Reconfigurable Arrays
(VCGRAs)

The programming of the FPGAs (called configuration) is usually done starting
from the RTL that describes a circuit in the lower abstraction level (gate level) and
therefore the compilation time is high, thus resulting in a slow design cycle. How-
ever, this limitation is not present for processing units (CPUs, GPUs and DSPs)
since they can be easily programmed at a higher abstraction level and hence they
have very low development cost and shorter time-to-market [76]. Although a de-
signer can choose between Processors and ASICs for his design implementation,
processors have high flexibility but the performance is often too low and especially
the performance per Watt. The ASICs cost too much for low-volume products. FP-
GAs provide high flexibility and low-cost (price) targeting low-volume products,
but they suffer from a longer development cycle which becomes inevitable for the
designer.

To overcome such limitations for the FPGAs, a CGRA can be realized on an
FPGA. This type of implementation is called Virtual Coarse-Grained Reconfig-
urable Array (VCGRA). The programming model for the VCGRAs is different by
the fact that the code can be written on a higher abstraction level. This reduces the
compilation time by several orders of magnitude as compared to the fine-grained
FPGA, thus VCGRAs act as intermediate virtual fabrics [67] to curb the develop-
ment costs. Figure 5.3 shows a fragment of a VCGRA. The architecture consists of
groups of coarse-grained processing elements connected using virtual connection
blocks and switch blocks forming a communication network (inter-connect). The
processing elements are powerful and more complex than the LUT of an FPGA.
The complexity of the processing elements can range from a simple ALU to a fully
capable RISC processor.

Each PE has a settings register used to configure a function of the PE. With the
proper connection settings (configured in the settings register of the VSB - Virtual
Switch Block), every application that uses these PEs can be implemented. The
settings registers are realized on FFs and are updated using a dedicated bus that
enables us to program the settings of the PEs and VSBs.

5.3.1 Conventional VCGRA tool flow

The tool flow to implement a conventional VCGRA2 is depicted in Figure 5.4. The
tool flow is obtained by combining the standard FPGA tool flow (left hand side)
with the VCGRA tool flow (right hand side).

The right hand side of the tool flow describes the mapping of an applica-
tion on a given (V)CGRA architecture. This is also called Spatial programming.

2A standard CGRA implemented on an FPGA is called conventional VCGRA.

98 CHAPTER 5

VSB

VSB

PE

PE

VSB

VSB

PE

PE

Figure 5.3: A fragment of VCGRA grid with Processing Elements (PEs), Virtual Switch
Blocks (VSB) and corresponding settings registers (rectangles)

VCGRA Programming Stage

HDL Design of VCGRA

Synthesis

Placement and Routing

VCGRA Configuration VCGRA Settings

Application
Design

VCGRA
Architecture

Programmed VCGRA

FPGA Configuration tool flow VCGRA tool flow

Synthesis*

Technology Mapping*

 Placement and Routing*

Technology Mapping

Figure 5.4: Tool flow for CGRA implemented on an FPGA (conventional VCGRA)

Note: * indicates steps considering PEs (and VSBs) as a basic programmable component

There are different approaches to solve the CGRA mapping problem described
in [77] [78] [79]. Since the application has to be mapped on the coarser PEs,

DCS FOR FPGA OVERLAY ARCHITECTURES 99

the compilation time is much shorter than the mapping of an application on the
fine-grained bit-level. The VCGRA tool flow generates the settings for the PEs
and VSBs as a result. In conventional VCGRAs, these settings are loaded (pro-
grammed) into the settings register using a dedicated bus.

The higher level VCGRA tool flow that produces these VCGRA settings con-
sists of a synthesis and a mapping tool in which the textual description of the
application design is parsed and converted into a netlist of Processing Elements
(PEs). Next, we perform placement of the synthesized netlist of PEs on to the
virtual PEs of the VCGRA architecture. The tool flow has to take care that all
the interconnection links of the VCGRA are implemented on the VCGRA archi-
tecture’s communication network. We make use of a router to establish optimal
connections between the placed elements of the VCGRA architecture. The Place
and Route (P&R) result determines what the functionality of each PE is and how
the communication network is exactly used and that is reflected in the VCGRA
settings.

Because the basic programmable element in the VCGRA tool flow is a PE, the
tools (synthesis, mapper, place and route) need considerably less complexity and
time to generate the settings values than the standard FPGA compilation would.
This is because the higher abstraction level reduces the problem size and there-
fore the tools are faster.3 If the application design specification changes with the
same VCGRA platform then we can generate the settings values much faster than
processing the new design with the standard FPGA tool flow.

As will be explained further, the settings registers, PEs and VSBs can be opti-
mized using the parameterized configuration tool flow that will result in a VCGRA
implementation using DCS. The level of parameterization within the PEs leads to
a classification of the VCGRA (implemented using DCS) into two types:

1. Partially parameterized VCGRA: in this type of VCGRA, the settings regis-
ter controls the programming of a PE , just as in the conventional VCGRA.
The PE contains an input (non parameterized) connected to the settings reg-
ister. The functionality of the PE is decided by the different combinations
of data present in the settings register. This is accomplished by multiplexing
different circuits within a PE. The multiplexers (intra-connects) within a PE
are not parameterized. However, for efficient implementation, the settings
registers themselves are implemented on LUTs. In the parameterized con-
figuration approach these LUTs are implemented using TLUTs, thus we can
get rid of the low speed bus needed to update the LUT memory values for
the settings register. Therefore, to update the settings register (implemented
using TLUTs) we reconfigure the truth table entries of the TLUTs using
one step micro-reconfiguration. Hence to reprogram a PE, it is sufficient to

3In my experiments, this is done using an ad-hoc tool but this can easily be generalized in the future.

100 CHAPTER 5

have a single level micro-reconfiguration i.e, changing the contents of the
settings register. For the VSBs the settings registers are optimized in the
same way as for the PE. However, with the help of TCONMAP mapper we
are able to map the virtual channels on to the TCONs. Hence all the virtual
interconnects that use LUTs (as in the case of conventional VCGRAs) are
optimized.

2. Fully parameterized VCGRA: in this type of VCGRA, not only the settings
register but also the intra-connects of a PE are parameterized. The param-
eterization is achieved by expressing the intra-connects of a PE as Boolean
functions of parameters present in the settings registers. Therefore, there
exist TLUTs and TCONs within a PE and to change the functionality we
need two levels of micro-reconfiguration: one to change the contents of the
settings register and the second to change the configuration of the intra-
connects of the PE based on the values in the settings register.

5.3.2 Partially parameterized VCGRA tool flow

Figure 5.5 explains the tool flow for the partially parameterized VCGRA design.
The VCGRA tool flow makes use of a VCGRA architecture that defines the gran-
ularity as well as the possible functionality of the PEs and describes the possible
ways the PEs are interconnected. The PEs are implemented using the standard
FPGA configuration tool flow (left hand side of Figure 5.5), hence no optimiza-
tion is expected. However, the settings registers and inter-connect VSBs are pa-
rameterized using the parameterized reconfiguration tool flow and is explained in
Section 5.3.3.

In the VCGRA tool flow (right hand side of Figure 5.5) is essentially same as
the VCGRA tool flow explained in the sub section 5.3.1, the user will determine
the VCGRA settings that will program the required programmable elements of the
partially parameterized VCGRA to realize the desired application. The program-
ming is accomplished via one step micro-reconfiguration of the VCGRA settings
registers with the VCGRA settings as parameters. The left hand side of the tool
flow is responsible for generating VCGRA structure in such a way that it results in
partially parameterized VCGRA configuration.

In the partially parameterized configuration tool flow, only the settings register
of each PE and VSB is parameterized (this is shown in the middle part of the
tool flow Figure 5.5). This will result in realizing settings register on TLUTs.
Therefore, once the specialized configuration is generated only one step micro-
reconfiguration is necessary to update the settings registers of PEs and VSBs.

Authors in [80] have shown that partially parameterized VCGRA implementa-
tions use LUTs of the FPGA to realize reconfigurable virtual switch blocks, virtual
registers and other virtual components. With the help of parameterized configu-

DCS FOR FPGA OVERLAY ARCHITECTURES 101

Specialization Stage

Specialized Configuration

VCGRA Programming

VCGRA Settings

Application
Design

VCGRA
Architecture

VCGRA
tool flow

Synthesis*

Technology Mapping*

 Placement and Routing*

HDL Design of VCGRA

Synthesis

Placement and Routing

VCGRA Configuration

FPGA Configuration
tool flow

Parameterized
Settings Register

+
Parameterized

VSB interconnects

Programmed VCGRA

Technology Mapping

Figure 5.5: Implementation of applications on a partially parameterized VCGRA using the
parameterized configuration tool flow

Note: * indicates steps considering PEs (and VCs) as a basic programmable component

ration, the authors were able to map the virtual components to the lower level
physical resources (settings registers were mapped onto configuration memory
and VSBs were mapped onto switch blocks) of an FPGA. This saves a significant
amount of functional resources (LUTs) of an FPGA.

In the next section, I will recap the tool flow for generating parameterized
configurations that was explained in Chapter 3, Section 3.2.

5.3.3 Tool flow for parameterized configuration

The VCGRA tool flow builds on top of the parameterized reconfiguration tool
flow, which provides a parameterized version of the settings registers and the inter-
connect VSBs (left side of Figure 5.5). The tool flow for generating parameterized
configuration was explained in Chapter 3, Figure 3.2. I will recap briefly the two
staged tool flow here.

There are two stages: a generic stage and a specialization stage. In the generic
stage, a HDL design with parameterized inputs (annotated with “-PARAM”) de-
scribes the application. The application is processed to yield a Template Configu-
ration (TC) and a Partial Parameterized Configuration (PPC). A detailed explana-
tion on each step of the generic stage is explained in [48].

The final output of the generic stage is the TC and PPC. The TC contains static
bits (0’s and 1’s) which are the non-reconfigurable parts of the implementation.

102 CHAPTER 5

The PPC contains multi-port Boolean functions of the parameter inputs. In order
to generate specialized bitstreams, the PPC has to go through the specialization
stage.

Upon a value change in parameter inputs, the configuration bits of the TLUTs
and TCONs are reconfigured with specialized bits that are thus generated after
evaluation of the Boolean functions for a specific set of parameter values.

In the specialization stage, for every change in parameter values, the Boolean
functions are evaluated by a Specialized Configuration Generator (SCG) to gener-
ate specialized bitstreams. The SCG takes a specific parameter value and evaluates
the Boolean functions to produce specialized bits. The SCG can be implemented
on an embedded processor (PowerPC, ARM or MicroBlaze) present in the FPGA.
With the help of a configuration interface such as HWICAP or MiCAP [50] [62],
the FPGA is reconfigured with the specialized bitstream.

This means that in the parameterized VCGRA approach, the settings registers
are mapped onto the configuration memory of the FPGA which is in contrast with
conventional implementations that map the registers to the flip-flops of a logic cell
present in the FPGA. Therefore, a significant amount of flip-flops can be saved.

As long as we are only reconfiguring LUTs, we are able to parameterize LUTs
on commercial Xilinx FPGAs. However, parameterization of other primitives such
as routing switches can be done only on a hypothetical FPGA but not on the com-
mercial FPGAs (because we do not have access to the low level routing reconfigu-
ration infrastructure). Hence, the tool flow explained above is used to generate the
parameterized configuration for a hypothetical FPGA.

5.3.4 Fully parameterized VCGRA tool flow

The work presented in the previous section was limited to parameterize the regis-
ters of the PEs and inter-connect (VSBs) of the VCGRA only, thus resulting in a
partially parameterized VCGRA. In this section, my main contribution is to param-
eterize not only the PEs and VSBs, but also the connections within each PE (intra-
connect) using Tunable Connections (TCONs) [81]. This is accomplished by using
TCONMAP mapper [30]. The parameterized intra-connections can be automati-
cally mapped to the lower level physical connection blocks and switch blocks of
the FPGAs, thus avoiding the use of LUTs to implement the intra-connect. There-
fore, we save an additional amount of physical LUT resources of the FPGA. How-
ever, this will add an extra micro-reconfiguration step that is needed to reconfigure
intra-connects of each PE as shown in Figure 5.6. Thus, the fully parameterized
VCGRA can be programmed using two steps micro-reconfiguration.

1. Micro-reconfiguration of a settings register: the settings register of each PE
can act as an input or a parameter for each PE and hence it is an inevitable
configurable part of the PE. Since the settings register content is part of the

DCS FOR FPGA OVERLAY ARCHITECTURES 103

Specialization Stage

Specialized Configuration

Specialization stage
+

VCGRA programming

VCGRA Settings

Application
Design

VCGRA
Architecture

VCGRA
tool flow

Synthesis*

Technology Mapping*

 Placement and Routing*

HDL Design of VCGRA

Synthesis

Placement and Routing

Fully Parameterized Configuration

Parameterized Configuration
tool flow

Technology mapping
(TCONMAP)

Parameterized
Settings Register

+
Parameterized

VSB interconnects

Programmed VCGRA

Figure 5.6: Implementation of applications on a fully parameterized VCGRA using the
parameterized configuration tool flow

Note: * indicates steps considering PEs (and VSBs) as a basic programmable component

FPGA configuration, we have to micro-reconfigure the frames that hold the
LUT for storing the contents of the settings register. Therefore, to change
only the input of a PE, we micro-reconfigure the settings register only.

2. Micro-reconfigurations of the TLUTs/TCONs of each PE: a fully param-
eterized VCGRA contains PEs with TLUTs and TCONs (Figure 5.7) that
needs to be micro-reconfigured with the VCGRA settings.To change the
functionality (intra-connects) of a PE we need to micro-reconfigure TLUTs
and TCONs of each PE.

To make it simple we combine the two levels of micro-reconfiguration and
present the whole reconfiguration time in our results. However, I will present
the difference between the two levels of micro-reconfiguration using a functional
density curves in Section 5.4.4.

5.3.5 Limitation of parameterized VCGRAs

In a conventional VCGRA implementation, the settings registers are updated using
a dedicated bus. However, in the parameterized (both partially and fully) VCGRA
implementation, the settings registers of each PE and the routing switches are up-
dated by reconfiguring each frame of the FPGA that contains setting bits of the
VCGRA. This is usually accomplished by read-modify and write back frames of
the FPGA (micro-reconfiguration [48]).

104 CHAPTER 5

For a VCGRA application that contains dynamic Network-On-Chips or PEs
that require cycle-by-cycle context switching, we cannot afford the cost of recon-
figuration time so often and therefore, such applications may not be suitable to be
handled by a parameterized VCGRA.

5.3.6 Advantages of parameterized VCGRAs

In the case of much less frequent reconfiguration needs, the parameterized recon-
figuration reduces the overhead of the conventional VCGRA as follows:

• The settings registers of the VCGRA are implemented on the TLUTs. There-
fore, the settings data (which is a part of the truth table entries of the TLUTs)
are mapped on the configuration memory and therefore, the need of a dedi-
cated bus to update the settings register is avoided.

• The PEs of the VCGRA are optimized by symbolic constant propagation
that is integrated within the parameterized configuration tool flow.

• Each VCGRA intra- and inter-connection is mapped onto lower level recon-
figurable routing switches (TCONs). Therefore, we reduce the utilization of
the LUTs for implementing the connection network.

Even with the limitations of VCGRAs we believe that a large number of VC-
GRA implementations [67] [82] [83] [84] in which cycle-by-cycle context switch-
ing is not needed, can benefit from the above advantages of the partially and fully
parameterized VCGRA implementation. Since my contributions in this chapter are
mainly on fully parameterized VCGRAs, in the following sections I will present
the fully parameterized VCGRA architectures that are suitable to implement a
high-performance image processing application (explained in Section 5.4.1).

5.4 Fully Parameterized MAC VCGRA grid
In the previous work on parameterized VCGRA implementations, authors of [80]
parameterized the LUTs and inter-connects of the VCGRA. They were able to save
50% of the LUT resources. However, they did not parameterize the intra-connect
of the VCGRA (connections within a single PE) since they had no automatic tech-
nology mapper to generate TCONs for the intra-connections. In order to overcome
this limitation we use an automatic technology mapper called TCONMAP [81]
that can generate TCONs and TLUTs simultaneously for a given parameterized
application.

In Figure 5.7, a fully parameterized PE is depicted. Each PE in the VCGRA
grid contains Tunable LookUp Tables (TLUTs) optimized to implement the re-
quired functions of the PE. The optimization is achieved by the method for opti-
mization for constant parameters as a result of parameterization of the LUTs. In

DCS FOR FPGA OVERLAY ARCHITECTURES 105

Settings register

BLE
(TLUTs)

BLE
(TLUTs)

BLE
(TLUTs)

BLE
(TLUTs)

TCON

TCON

TCON

TCON

TC
O
N

TC
O
N

TC
O
N

TC
O
N

Figure 5.7: A fully parameterized Processing Element (PE) containing Tunable LUTs
(TLUTs) and Tunable Connections (TCONs) within a single PE

this approach, instead of implementing the parameter inputs of the application as
regular inputs, they are implemented as constants and the functions of each TLUT
are specialized for these constants. For every change in parameter input values,
the function of the TLUT is re-optimized for new constant values by reconfiguring
the configuration of the TLUT. A group of TLUTs form a Basic Logic Element
(BLE) of the PE.

The BLEs of the PE are connected using virtual routing switches (connec-
tion blocks and switch blocks) within the PE that form an intra-connect. The PE
also contains a virtual routing network composed of wires that is responsible of
carrying required signals between the BLEs. A virtual routing switch consists
of connection multiplexers (Figure 5.8) with configuration memory. The routing
switch connects the wires between BLEs within the routing network depending
on the configuration values stored in the configuration memory of the switch and
therefore providing an opportunity to parameterize the routing network.

TCONMAP replaces the virtual routing switches with the TCONs. A TCON
consists of configuration memory that can be reconfigured depending on the pa-
rameter inputs. Therefore, a connection between two BLEs can be made or broken
depending on the values of the parameter inputs of a VCGRA application. Fur-
ther, with the help of TPLACE and TROUTE, these connections can be placed
and routed on to the lower-level physical routing switches thereby reducing the
PE intra-connect overhead on the physical LUTs of the FPGA. With the help of
TCONs, a significant reduction in routing resource consumption (at least by 40%)

106 CHAPTER 5

Figure 5.8: A connection multiplexer with configuration memory shown in circles

has been observed in the experiments of [85]. We aim at similar improvements by
using the TCON concept on a VCGRA implementation of a retinal vessel segmen-
tation application.

5.4.1 Retinal Vessel Segmentation Application

In this section, we present an HPC application that is used to investigate the ben-
efits of the fully parameterized VCGRA approach. We have designed the PEs of
the VCGRA based on the HPC application. Only those parts of the application
that will be implemented on the reconfigurable logic (hardware modules) for the
performance acceleration will be used for the VCGRA implementation.

In computer vision, segmentation refers to the process of partitioning a digi-
tal image in multiple segments in order to extract prominent features and locate
objects and/or boundaries. The particular application of interest - retinal vessel
segmentation - refers to the extraction of the vessel structure from the background
in fundus images. Vessel segmentation enables the extraction of morphological at-
tributes of retinal blood vessels, such as length, width and branching pattern, that
assist the diagnosis, screening, treatment and evaluation of various cardiovascular
and ophthalmologic diseases such as diabetes, hypertension, arteriosclerosis and
choroidal neovascularization.

The Retinal Vessel Segmentation application that we have implemented is
based on the concept of matched filters [86] and is presented in Figure 5.9. From
an initial 2D input retinal image (RGB image), the green channel is retained as it
contains most of the information. A preprocessing step is then applied in order to
provide a more suitable and clear image for the main filtering operations. The pre-
processing involves histogram equalization, optic disc removal and outer region
removal.

The resulting image goes through a denoising function by means of a Gaussian
filter to reduce the effect of high frequency noise (applying two sets of coefficients
of size 5×5 and 9×9 respectively). The main vessel detection function that follows,
involves filtering and thresholding the denoised image. Since the cross-section

DCS FOR FPGA OVERLAY ARCHITECTURES 107

Preprocessing
Denoise

Filter
Match
Filters

Texture
Processing

Hardware Modules

Gaussian
Filter Kernel

5x5/9x9

Steerable Filters
Kernels 16x16
(7 rotations)

Filter Kernel
16x16

Result
Image

Input
 Image

Software Tasks

Figure 5.9: High level presentation of the processing steps for the retinal vessel
segmentation application

of a vessel can be modeled as a Gaussian function, a series of Gaussian-shaped
filters can be used to “match” the vessels for detection. Steerable filters are used
(in the current implementation, seven directions are considered) to separate the
pixels with the strongest responses (7 different sets of 16×16 coefficients). The
problem with this approach is that not only vessels but also non-vessel edges can
be identified in the response image. To minimize this effect, a third processing step
that involves texture filtering is applied so as to retain in the final image only lines
of certain thickness and above. The vessels filtering is also applied in the form of a
modified filter applied many times in the image with different sizes depending on
the desired filtering effect (e.g 5×5, 9×9, 16×16). In general the number of filters
applied in the pipeline is a tunable parameter which depends on the quality of the
images and/or the imaging technology that is used.

Figure 5.9 presents an overview of the application. It should be noted that
the preprocessing steps are implemented in software, while all filtering operations
are implemented as hardware modules. All hardware modules employ the same
interfaces and are virtually the same in principle: they all share the same core
architecture and what changes is size and coefficients of the filter kernels. The
orientation of the filter is defined from the coefficients itself.

5.4.2 VCGRA for the HPC application

The filters (hardware modules) of the HPC application described above need to
be accelerated by realizing the filter actions on the reconfigurable logic. We use
our fully parameterized VCGRA approach to implement the filters on an FPGA.
We used a floating point Multiply-Accumulate (MAC) operator as a processing
element (Figure 5.10). We have used the “FloPoCo” [87] floating point library to
build the floating point addition and multiplication and thus, we use the FloPoCo

108 CHAPTER 5

×

+

Coefficients
Input

Samples

DFF
Accumulator

Product

Figure 5.10: Floating Point MAC Operator for Filter Applications

floating point format with a 6-bit exponent and a 26-bit mantissa. We have not used
any dedicated multipliers or adders while generating the floating point operators
using the “FloPoCo” library.

In the MAC operation, the image samples are multiplied with the filter coeffi-
cients. Later, they are added to the previously accumulated values after the multi-
plication. The coefficients of the filter determine the filter configurations such as
the noise level of the denoise filter of the vessel segmentation application.

The floating point multiplication is parameterized with the coefficient as a pa-
rameter input. The value of the coefficient input changes infrequently. For each
infrequent change in the coefficient value, a specialized bitstream is generated and
the multiplication is reconfigured accordingly. The settings register for each MAC
operator (PE) holds an integer value for the counter that decides the number of it-
erations the MAC operation should perform with a fixed coefficient value. There-
fore, in order to change the filter coefficients and counter values, each PE (MAC
operator) needs to be reconfigured.

5.4.3 Results on MAC grid

The Processing Element (PE) of the filter application (MAC operator) was de-
scribed using VHDL with annotated parameter inputs (“-PARAM”). The annota-
tion helps to differentiate between the regular inputs and the parameterized inputs.
With the help of Quartus II (v10.0), the PE was synthesized and later subjected
to logic optimization by using the ABC tool [88]. We used the TCONMAP map-
per [81] to generate TLUTs and TCONs.

The LUT resource utilization of a single PE is tabulated in Table 5.1. The
values are compared with the conventional VCGRA. Clearly, the total number of
4-input LUTs utilized by the PE with our VCGRA approach shows a significant
reduction by ≈ 30%. We also observe a difference in the logic depth level by 3 and
hence it contributes to the improvement in the performance of the PE.

All the TCONs (568) can be implemented on the physical switch blocks and

DCS FOR FPGA OVERLAY ARCHITECTURES 109

Table 5.1: Resource utilization and P&R results of a PE

VCGRA LUTs (of which TLUTs) TCONs
Logic
Depth
level

WL mCW

Conventional 2522(0) 0 36 27242 10
Fully

Parameterized
1802(526) 568 33 16824 10

Note : For the fully parameterized implementation the 526 TLUTs are included in the 1802 LUTs.

connection blocks, instead of LUTs, thus saving a significant amount of LUT re-
sources of the FPGA. In the conventional VCGRA implementation, the connec-
tions made by these TCONs are realized on the LUTs which is an overhead of
≈31% of the total LUTs of the parameterized VCGRA.

The synthesized PE was subjected to the TPaR Place and Route (P&R) tool [85].
We used 4LUT_sanitized FPGA architecture from VPR [89] to perform the P&R.
The results of P&R for a single PE (MAC operator) are tabulated in Table 5.1.
Clearly, the proposed method (fully parameterized VCGRA) has the total wire
length (WL) decreased by ≈ 31% as compared to the conventional VCGRA im-
plementation, thus saving a significant amount of routing wire resources of the
FPGA.

The experiments presented in [80] [85] show an increase in the minimum chan-
nel width (mCW) when using TCONs. However, our results show that the mini-
mum routing channel width of both implementations are the same. We observe no
overhead on the minimum channel width of the FPGA after using TCONs for the
inter- and intra-connections of the VCGRA.

A fully parameterized 4×4 VCGRA grid

The resource utilized by the grid contains 16 PEs and 9 VSBs, each of them has
a settings register and therefore, the conventional VCGRA would consume twenty
five 32-bit registers. In the conventional implementation, these registers are re-
alized using the FPGA’s logic-cell flip-flops. However, with the parameterized
VCGRA tool flow we map them to the configuration memory of the FPGA and
hence we reduce the flip-flops utilization to zero.

Also, in the conventional VCGRA implementation the routing switches (con-
nection blocks + switch blocks) that are needed to realize a 4×4 VCGRA grid is
41 (9 VSBs and 32 Virtual Connection blocks) and again these would have to be
realized on the LUTs of the FPGA. However, with our fully parameterized VC-
GRA implementation we can target physical routing resources and thereby reduce
the functional resource utilization (LUTs) to zero.

110 CHAPTER 5

With the use of parameterized VCGRA configurations, a significant reduc-
tion in FPGA resource utilization is observed. However, this gain does not come
for free. There is a reconfiguration overhead consisting of reconfiguration time,
Boolean function evaluation time and the PPC memory size [48]. The estimated
reconfiguration time depending on the number of TLUTs and TCONs for one PE
is 251 ms. The reconfiguration speed can be improved using the techniques de-
scribed in [49].

In the vessel segmentation application, the coefficients of the Gaussian filter
and the texture processing filter can be configured by the user but such change is
infrequent. Therefore, the reconfiguration time cost for these two filters is minimal.
For example, 1000 images (of the same size) can be denoised and texture processed
at the reconfiguration time cost of 251 ms per PE per 1000 images. Therefore, the
two filters benefit from the parameterized reconfiguration technique along with the
advantage of improved programmability in the VCGRA tool flow.

However, the matched filter needs to be reconfigured with 7 different sets of
coefficients (which is not an infrequent change in parameter values) for a single
image and hence the filter is reconfigured 7 times and incurs the expensive recon-
figuration time cost of 1.8 s per PE per image. The number of parameter changes
cannot at all be called infrequent, hence the matched filter does not benefit from
parameterized reconfiguration. However, it can still benefit from fast compilation
from the VCGRA tool flow since the mapping of filter on to the CGRAs requires
shorter compilation time compared to the standard FPGA implementations.

One way to overcome this limitation is to use 7 copies of the matched filter
configured with the required 7 different sets of coefficients and pipeline them.
This approach increases resource utilization cost by 7× the single matched filter
and hence there exists a trade-off between reconfiguration time cost and resource
utilization.

The reconfiguration time can be reduced by a factor up to 38 using the tech-
niques explained in Chapter 4.

5.4.4 Functional density curves of parameterized VCGRAs

In this subsection I present the functional density curves for partially and fully pa-
rameterized VCGRA of the MAC grid used to realize the HPC application. The
functional density curve is plotted against the rate of change of the input param-
eters. We plot the functional density of the VCGRA implementations in three
different forms:

1. Conventional VCGRA (VCGRA_Conv): A Virtual Coarse-Grained Recon-
figurable Array implemented using classic way without using parameterized
configuration technique.

DCS FOR FPGA OVERLAY ARCHITECTURES 111

103 104 105 106 107 108 109 1010 1011 1012

Parameter re-use (clock cycles)

0

200000

400000

600000

800000

1000000

Fu
n
ct

io
n
a
l
d
e
n
si

ty
(O

p
s/

s
/

LU
T
)

VCGRA_PP

VCGRA_FP

VCGRA_Conv

Figure 5.11: Functional density curves for a partially parameterized, fully parameterized
and a conventional VCGRA implementation

2. Partially parameterized VCGRA (VCGRA_PP): In a partially parameterized
VCGRA only settings register and inter-connect VSBs are parameterized
and hence it requires only one step micro-reconfiguration.

3. Fully parameterized VCGRA (VCGRA_FP): In a fully parameterized VC-
GRA not only the settings register and inter-connect VSBs but the intra-
connects of each PE are parameterized and hence it requires two steps micro-
reconfiguration.

Figure 5.11 shows the functional density curves for a partially parameterized,
fully parameterized and a conventional VCGRA implementation. In the conven-
tional VCGRA implementation there is no reconfiguration involved and hence the
design utilizes a constant resources. This kind of implementation is good if the set-
tings of a PE has to be changed frequently. The fully parameterized VCGRA en-
ables the designer to reconfigure both the settings register and the TLUTs/TCONs
within each PE. Therefore, the reconfiguration time overhead is higher than the
partially parameterized VCGRA (where only settings registers are reconfigured).
However, since the resource utilization is relatively low for the fully parameter-
ized VCGRA, the magnitude of the functional density is higher than the partially
parameterized VCGRA.

112 CHAPTER 5

5.5 The heterogeneous VCGRA grid: Pixie

In this section, I propose a general purpose heterogeneous (fully parameterized)
VCGRA grid suitable to implement digital image processing filters and other math
operations. The PEs of the proposed VCGRA grid are identical to each other.
However, the PEs can be configured to perform different arithmetic operations
such as Add, Sub, Mul, Div, etc. and hence they emulate heterogeneity in their
functions.

In [80] a specific VCGRA for regular expression matching is introduced, while
in the previous section I described a floating point MAC operator, which is spe-
cialized for image processing tasks. I describe a more generic VCGRA, which
includes basic processing elements and flexible virtual Channels (VC). In contrast
to the MAC-version described earlier, users are not restricted to MAC-operations
and different application data-flow graphs can easily be mapped onto the VCGRA.
Thus, it is not necessary to massively modify the application for acceleration. Hav-
ing a more general VCGRA offers another level of abstraction where the user can
evaluate the suitability of a VCGRA for different kinds of applications. In ad-
dition, as all processing elements are working in parallel, the processing of the
data can be pipelined as well as the proposed grid can be optimized for a specific
application class, which results in higher throughput. Our design is currently fo-
cused on task graph representations of data-flow-oriented applications. However,
we plan to extend the functionality of our hardware to also support designs which
contain more control-flow oriented code. For this reason the extension of the graph
representation with control flow operations is planned.

The methodology is programming language independent, because currently
the tool chain’s input is the data-flow graph of an application. Nodes of a graph
represent the processing element functions, while edges show the dependencies
and the data flow between the processing elements. Currently, the implementation
supports arithmetic operations (addition, subtraction, multiplication, division) as
well as comparison (greater than, equal to). In addition, a PE also has modes for
buffering a value and support for an idle state. Buffering is necessary for resolving
data dependencies between node inputs from different levels. Other operations
modulo and multiply and accumulate (MAC) are also supported.

The grid of processing elements is organized in levels, whereby two levels are
divided by one intermediate virtual channel (VC). This kind of design was cho-
sen to enable the use of pipelining in the architecture. Every level of processing
elements works as a pipeline stage. A specific kind of a VC is used as memory
interface. It connects the grid to a microprocessor, which controls the VCGRA ex-
ecution using any desired communication interface. The distribution of incoming
data to the first row of processing elements is controlled by an external configu-
ration signal. A synchronous start signal enables the execution in the first level

DCS FOR FPGA OVERLAY ARCHITECTURES 113

Figure 5.12: An overview of a design for a parameterized VCGRA

of processing elements, when all incoming data dependencies are fulfilled. The
start signal is to be controlled from outside the VCGRA, the other levels of PEs
are synchronized with their predecessors within the array. No additional control
from a microcontroller is necessary. When the input data has been processed by
the VCGRA, the processing system is notified to fetch the output data. The opera-
tion of the processing elements as well as the routing within the VC is realized by
reconfiguration using the TLUT/TCON tool flow. The example in Figure 5.12 also
shows opportunities for acceleration. If the grid is big enough, multiple instances
of the same graph can be implemented.

We created a tool that eases the task of designing VCGRAs with different
shapes. In addition to the rectangular style, where every row contains the same
number of PEs we support an arbitrary number of inputs and outputs at a VC
which leads to application specific grid designs if necessary. Automatic genera-
tion of these grids for a specific application class is currently work in progress.
The functionality of the processing elements is extendable. For instance, we also
experimented with PEs enabling floating point operations for addition and multi-
plication. The currently used PE structure has been optimized when compared to
the MAC-operator described in the previous section.

114 CHAPTER 5

Figure 5.13: Schematic of a Processing Element

5.5.1 A fully Parameterized Processing Element (PE)

The PE (Figure 5.13) is designed as a finite state machine containing three states:
AWAIT_DATA. PROCESS_DATA, VALID_DATA. Normally, it performs an opera-
tion on it’s two inputs, which is set by a parameterized configuration input. The
result is saved in an output buffer and is set to be valid for one cycle. To synchro-
nize the inputs of a PE the two inputs have to be enabled. This is done by using
the valid signal from a previous PE in an upper level. However, incoming values
are buffered in every clock cycle. The current grid with its PEs is designed to sup-
port pipelined data flow applications. Therefore, no temporary results are saved
within a processing element. We experiment with a MAC operation and design an
element with a buffer to save the accumulated result, but we do not support graph
mapping for that operation yet. The data bitwidths of input and output are config-
urable. However, the bitwidths of the two input values of a PE have to be equal.
As shown in Figure 5.14, the adjustment of the bitwidth is done within the virtual
channels.

If a PE is used as a buffer, the previous VC links the same data to both inputs
of a PE. Thus, both inputs are enabled by the same valid signal and the data is
copied to the output of the PE. If a processing element is unused in a configuration
it is configured with NONE. A VC can bind arbitrary data to a PE’s inputs. With
the NONE configuration, the PE does not generate any output or change the valid
signal to synchronize a successor.

The intra-connects of the PE are also parameterized and therefore, the recon-
figurable connections within the PE are also mapped on the tunable connections
(TCONs) using the TCONMAP mapper [81].

DCS FOR FPGA OVERLAY ARCHITECTURES 115

Figure 5.14: Schematic of a Virtual Channel

5.5.2 Fully Parameterized Virtual Channel (VC)

The architecture of a VC is shown in Figure 5.14. The implementation currently
needs a lot of routing resources (specifically connection multiplexers). However,
as the design is specially suited to be implemented using the TLUT/TCON tool
flow the huge amount of multiplexers and connections which are dependent on
a parameterized input are expected to need a significantly reduced amount of re-
sources in the implementation, compared to an implementation using vendor tools.

One multiplexer per output is used to connect one specified input with the
configured output. The select-input line of a multiplexer handles the specialization
and is set as a parameter for the TLUT/TCON tool chain. This allows the TCON
tool flow to distinguish which connections are used mutually exclusive in time. As
a result, these routing resources can be shared within the FPGA.

All inputs of the predecessors of a channel are buffered at the input of the
channel. The valid signals of all previous PEs are collected. Every input of a suc-
ceeding PE has a multiplexer with as many inputs as predecessors of the channel
and gets a signal vector of all validating signals. Depending on the configuration,
the output multiplexer routes the data value and the corresponding validating sig-
nal to an output buffer of the channel. A channel input can be routed to several
channel outputs. As symbolized with the different letters at the connections, the

116 CHAPTER 5

channel supports different bitwidths for data paths. The internal bitwidth is set to
the biggest data input, which can occur within a configuration,

N = max{A,B,C,D,⋯} (5.1)

while the bitwidth of the validation signal vector depends directly on the number
of predecessors.

M =#predecessors (5.2)

The bitwidth of the internal channel connections is known a priori during the anal-
ysis of the task graph and is currently not changeable. Moreover, the size of a
multiplexer and its bitwidth (bw) of a configuration word depend on the number
of inputs or predecessors and are also fixed during system generation.

bw = ⌈log2 {#predecessors}⌉ (5.3)

Nevertheless, the usage of the TCON tool flow shows promising results, which
are described in more detail in the results Section 5.5.5.

5.5.3 Building a VCGRA

The PE and VC are the basic elements of a VCGRA that provide flexibility re-
garding their functionality and data bitwidths. Describing the whole VCGRA grid
in VHDL is a time consuming task. Therefore we developed a tool that automat-
ically creates the VHDL top-level description of a VCGRA from a description of
the hardware structure. The only inputs needed are the number of input elements
from memory and the structure of the grid. The grid’s structure is described by the
number of processing elements in each level of the architecture and the elements’
input and output bitwidths. All other parameters (e.g. for the channels) are auto-
matically derived from the mentioned input data. The tool’s output is VHDL code
defining the hardware structure of the grid.

5.5.4 Edge Detection

For demonstration purposes we implemented the Sobel edge detection kernel on
the proposed VCGRA. The Sobel filter is used for edge detection. An algorithm
for the Sobel edge detection filter is shown in Algorithm 1.

The setpoint of the Sobel kernel is set to the midpoint of the mask. Every pixel
of an image is convolved with the kernel. The result of the convolution is saved
at the current position of the filter mask’s setpoint in the image. A task graph rep-
resentation of the algorithm is shown in Figure 5.15. It shows the kernel code of
the innermost loop. Blue nodes are pixel values, which lay underneath the kernel
mask; red nodes are the corresponding filter coefficients. A gray node symbolizes
an operation and is mapped to a corresponding PE. The edges are managed by

DCS FOR FPGA OVERLAY ARCHITECTURES 117

Pix_11 Co_11

× Co_12

×

Pix_20 Co_02

× Pix_12 Co_10

×

Pix_22 Co_00

× Pix_21 Co_01

×

Pix_00 Co_22

× Pix_01 Co_21

×

Pix_02 Co_20

×

+ + + +

+ +

+

+

outPix

Pix_10

Figure 5.15: Task graph representation of a 3 × 3 filter mask

Figure 5.16: VCGRA grid for the Sober edge detection filter

118 CHAPTER 5

Algorithm 1 Edge Detection
1: procedure SOBEL(image) ▷ grayscale image
2: center ← 0,0 ▷ setpoint of kernel
3: for all pixel in image do
4: pos← pixel_coordinates ▷ pixel position in image
5: sum← 0
6: for j ← −1,1 do
7: for i← −1,1 do
8: temp← sobel[center + j][center + i]
9: ×pixel[pos − j][pos − i]

10: sum← sum + temp
11: end for
12: end for
13: image[pos]← sum
14: end for
15: end procedure

the configuration of the virtual channels. At least, the green node symbolizes a
result of the convolution for a single pixel value. We used a small image process-
ing kernel for demonstration, because a task graph becomes very large for bigger
masks. However, we are also able to implement bigger kernels on a VCGRA.
The weighted pixel value of the multiplication on the right border of the array is
buffered in every stage of the array until it is used in the last addition. The size
of an array is arbitrary. For demonstration we choose an array which is as big
as needed to implement all levels of the task graph. However, it is also possible
to choose bigger or smaller arrays. For bigger arrays with more stages than nec-
essary, an output value has to be buffered in every stage until it reaches the data
output channel at the bottom. Bypassing of levels of the array is not supported.

The VCGRA grid for the Sobel edge detection application is depicted in Fig-
ure 5.16. The grid consists of 4 VCs and 45 PEs. For the simple implementation on
a hypothetical FPGA, we have considered to design the rectangular VCGRA grid
and hence we observe that the majority of the PEs are configured with the NONE
operation. However, this could be optimized by designing an inverted triangular
grid.

5.5.5 Results on Pixie

The VCGRA components described in the previous section were synthesized and
were subjected to the TPaR Place and Route (P&R) tool [85]. The P&R was per-
formed using the 4LUT_sanitized FPGA architecture from VPR [89]. The results
of P&R for the VCGRA and its components are explained in the following sub-
sections.

DCS FOR FPGA OVERLAY ARCHITECTURES 119

Table 5.2: Resource utilization and P&R results

LUTs (of which TLUTs) TCONs
Logic
Depth
level

WL mCW

VC
Conventional 176(0) 0 2 3186 7

VC
Fully

Parameterized
32(0) 72 1 782 4

PE
Conventional 408(0) 0 47 3832 8

PE
Fully

Parameterized
387(32) 22 47 3769 8

PE_FP
Conventional 2191(0) 0 47 23388 10

PE_FP
Fully

Parameterized
1668(584) 798 47 17676 10

Grid
Conventional 17066(0) 0 155 176200 14

Grid
Fully

Parameterized
16099(976) 561 153 169560 12

5.5.5.1 Virtual Channel (VC)

The Virtual Channel is described in VHDL. The channel has parameterized con-
nection multiplexers whose select lines are the parameter inputs. With the help of
the TCONMAP mapper we were able to map the VC on the TCONs. Therefore,
the major part of the VC does not need LUTs to make it reconfigurable.

The P&R results of the VC implementation are tabulated in Table 5.2. From
the top two lines of this table we observe that 82% of the logic is mapped on the
reconfigurable physical switches (TCONs) instead of the physical LUTs and mul-
tiplexers (as in the conventional implementation). We also observe a significant
decrease of 76% in wire length (WL) between conventional and parameterized im-
plementation due to the fact that the minimum channel width (mCW) is reduced
by 42%. This optimization can be achieved at the cost of a reconfiguration time of
4.6 ms (not shown in the table).

5.5.5.2 Processing Element (PE)

We have designed a Processing Element that comes with two different versions:
a fixed point PE and a floating point PE. The P&R results of the fixed point and
floating point PE are tabulated in Table 5.2.

The logic resources (LUTs) used by the fixed point PE are optimized by 5%
and we also observe a difference in wire length by 2%. This optimization can be
achieved by investing a reconfiguration time costs of 3.4 ms. The PE contains 13%

120 CHAPTER 5

of its resources (TLUTs + TCONs) that are responsible for the reconfigurability of
the processing element.

The floating p oint P E w as b uilt u sing a n o pen s ource fl oating po int library
called “FloPoCo” [87]. We used the FloPoCo4 floating point format with a 6-bit
exponent and a 26-bit mantissa. We have not used any dedicated multipliers or
adders while generating the floating point operators using the “FloPoCo” library.
The floating point PE implementation was optimized by 24% and a decrease in
wire length by 25% is also observed. This optimization can be achieved at the cost
of a reconfiguration t ime of 88.5 m s. There is no difference in logic depth level
and minimum channel width in both types of PEs. The PE contains 82% of its
resources (TLUTs +TCONs) that are responsible for the reconfigurable part of
the processing element. The proposed floating point PE consumes 13% less
resources compared to a MAC operator presented in Section 5.4.3.

5.5.5.3 A fully parameterized 4 × 4 heterogeneous VCGRA grid

A fully parameterized 4×4 VCGRA grid was implemented using fixed point PEs
and VCs. The P&R results are tabulated in Table 5.2. The logic resources of the
whole grid are optimized by 6% and the wire length is reduced by 4% due to a
reduction in logic depth level by 2 and in minimum channel width by 2 as well.
This optimization can be achieved at the cost of a reconfiguration time of 98.5 ms.

5.5.5.4 Sobel filter

To implement the Sobel filter we need 45 PEs and 4 VCs. To reconfigure all the
processing elements and virtual channels it costs 156 ms and 18.4 ms of reconfig-
uration time respectively.

5.5.5.5 Compilation time

The time taken to map the Sobel edge detection application is less than one sec-
ond. The time taken to compile the hardware description of the VCGRA grid into
bitstreams is approx. 1200 seconds. In the conventional implementation for every
new image processing application, the development time would cost more than
1200 seconds. However, with the VCGRA approach, the total time to set up a new
image processing application is very minimal since it costs only the mapping time
and the total reconfiguration time.

In conclusion the proposed grid can be used as overlay architecture on a low
cost FPGA platform that does not consist of hard coded primitives such as DSP
blocks. We built the Sobel edge detection filter and the results show a promis-

4Another open source floating point library variant VFloat [90] [91] can be used.

DCS FOR FPGA OVERLAY ARCHITECTURES 121

ing improvement in the compilation times and thus bridging the gap between the
application and the FPGA fabric.

In the next chapter, I introduce a custom FPGA configuration memory that
overcomes the dependency on the ICAP port for reconfiguration and helps in
drastic improvement of the reconfiguration speed resulting in ultra-fast micro-
reconfiguration. For obvious reasons, the proposed custom configuration memory
results are based on simulations only.

6
Custom FPGA configuration memory

architecture for ultra-fast
reconfiguration

This chapter presents custom FPGA configuration memory architecture to drasti-
cally improve reconfiguration speed. The chapters 2 and 3 presents the importance
of run-time reconfiguration technique in FPGAs. It offers design flexibility under
low-cost silicon area and power budgets, at the cost of reconfiguration overhead.
The reconfiguration time overhead produced by the conventional configuration
ports (such as ICAP) is too high for the reconfiguration technology to be embraced
as a standard. Furthermore, the current FPGA configuration memory architecture
restricts the access of configuration data to the frame level; this significantly delays
the reconfiguration process. The work presented in this chapter explores the design
space of the configuration memory architecture that fits the design of large FPGA’s
and is suitable to accomplish needs for ultra-fast reconfiguration. Therefore, the
proposed method could be a stepping stone for next generation FPGA configura-
tion memory architectures. Our simulation results show a reconfiguration speed
gain of a factor of at least 1000 for substantially big parameterized applications
that comes with the cost of extra auxiliary hardware used on top of the column
based FPGA architecture.

124 CHAPTER 6

6.1 Auxiliary hardware for the custom FPGA archi-
tecture

The conventional run-time reconfiguration is too slow due to the sequential access
of configuration data (frames) via the ICAP port. To overcome this problem a par-
allel reconfiguration memory architecture has to be considered which leads us to
the design of a custom FPGA configuration memory. The parallel reconfiguration
memory architecture helps to overcome the dependency on ICAP port by providing
the required configuration data to each CLB columns independently. To establish
such a structure we need auxiliary hardware on top of the current column-based
FPGA architecture.

The auxiliary hardware that we used to design a custom FPGA configuration
memory architecture consists of a polymorphic register file (PRF).

6.1.1 Polymorphic Register File

A PRF is a novel register file organization (Figure 6.1) that is capable of dy-
namically creating a variable number of two-dimensional registers of arbitrary
sizes [92]. A detailed architecture of a PRF memory is described in the follow-
ing.

• Address Generator Unit: starting from upper left coordinates of the block
being accessed and the access type (e.g., row), the Address Generation Unit
(AGU) computes the individual coordinates of all PRF elements which are
accessed.

• The Intra-module Address Function: the Addressing Function A com-
putes the intra-module address using the individual coordinates of all the
elements which are being accessed. The coordinates are computed by the
AGU.

• Module Assignment Function: the Module Assignment Function (MAF)
M computes the index of the corresponding memory module starting from
the logical address which is being accessed. The index is then used by the
crossbar to rearrange the data items.

• Memory banks: the memory banks store the actual data of the parallel
memory. Each memory bank is assumed to be capable of producing one
data item per clock cycle.

• Crossbar: the crossbar rearranges the inputs according to the select signals.
The select signals are computed using the Module Assignment Function,
and specify the position of each output of the crossbar.

CUSTOM FPGA CONFIGURATION MEMORY 125

A - Function
Address Generator Unit (AGU)

Crossbar

Memory
bank

0

Memory
bank

1

Memory
bank

2

Memory
bank
N-2

Memory
bank
N-1

Crossbar

O0 O1 O2 ON-2 ON-1

Pattern
 i, j

(coordinates)

B

M-function

Data
(from CPU to PRF)

ARM
CPU

B B B B

Figure 6.1: Polymorphic Register File Architecture

We adapt the proposed PRF model to our requirements by removing the “Ad-
dress Generation Unit”, “M-function unit” and a second stage crossbar of the PRF.
This results in a simple parallel memory architecture that contains a crossbar and
parallel memory banks (hence increases the memory bandwidth) and is connected
to the embedded processor.

6.1.2 Network-on-Chip

The crossbar in the PRF is a bulk element that consumes most of the silicon area.
To overcome this limitation one has to consider alternatives to the crossbar unit
that is responsible for data distribution. The network-on-chip is the one of the
alternatives suitable to integrate within the PRF.

The current trends in technology scaling have enabled the integration of hun-
dreds of Intellectual Property (IP) cores1 in a single chip. However, the con-
ventional bus-based and ad-hoc interconnects cannot efficiently handle the heavy
communication demands required by such complex systems. As a result, on-chip

1An IP core is a pre-designed module that fulfills certain task(s). It can be a Processing Ele-
ment (PE), embedded memory block, custom logic, I/O device, etc.

126 CHAPTER 6

interconnection networks have emerged as a promising solution to connect various
micro-architecture IP cores.

A Network-on-Chip (NoC) is a shared and distributed interconnection network
of programmable routers (switches) connected by links integrated onto a single
chip. Using a NoC, the communication between the IP cores is realized by generat-
ing and forwarding packets through a network infrastructure. Thus, the bandwidth
can be shared and used more efficiently as opposed to the other communication
solutions [93] [94] [95].

Since a general System-on-Chip (SoC) platform is to be used for many differ-
ent applications, the NoC should be able to support a wide range of bandwidth and
Quality-of-Service (QoS) requirements [96]. One way to provide such flexibility
is to design a large generic NoC with an over-engineered technology [97]. How-
ever, NoCs devised on static configurations will rapidly become so complex that
designing them will be prohibitively inefficient. As a result, the design method-
ology of large-scale NoCs need to be fundamentally extended in order to develop
systems which are able to continually adapt to changes and tune themselves based
on the underlying dynamic environment. This can be best pursued by integrat-
ing reconfiguration techniques to NoCs in order to automatically orchestrate the
network activities so that the performance can be effectively maintained. In fact,
the next generation of NoCs are envisioned to be dynamically (run-time) recon-
figurable. The reconfigurable NoCs represent a new sets of benefits in terms of
area overhead, performance, power consumption, fault tolerance, and QoS com-
pared to the previous generation [97]. NoC-based reconfiguration is most often of
coarser granularity compared with the FPGAs. More precisely, the reconfigurable
resources in NoCs are the routers and communication links rather than wires [98].
Although the reconfiguration can be performed at different levels, the incorpora-
tion of reconfiguration into a NoC design mainly revolves around two intertwined
concepts: the routing method, and the network architecture. Finding techniques to
employ the routing configuration without deadlocks is a challenging task.

The design of a NoC begins with the specification of performance requirements
and cost constraints. These criteria then drive the design choices, such as topology,
flow control mechanism, and routing strategy for a particular network. Finally, the
performance of the network needs to be tested and evaluated through simulations
in order to guide the initial decisions for the network design aspects [93]. In the
following sub sections, a brief introduction on the network simulator and its con-
figuration parameters is presented followed by a brief discussion the evaluation
criteria.

6.1.2.1 Network Simulator

BookSim 2.0 interconnection network simulator [99] [100] [93] is used to conduct
the performance assessments in the current study. BookSim is a cycle-accurate

CUSTOM FPGA CONFIGURATION MEMORY 127

network simulator designed as a companion to [93]. BookSim models the network
at the flit-level and supports multiple topologies and routing algorithms due to its
modular design. Router pipeline delays and wire latencies for transmitting the
packets are also modeled in BookSim. It is written in C++ and is freely available
at [100].

BookSim runs a simulation in three phases: warm-up, measurement, and drain
in order to measure the steady-state of the network. First, the simulator is warmed
up for N1 cycles to bring the network to equilibrium. During the warm-up phase,
packets are not timed or counted because the network is not stabilized yet. Once
warm-up is complete, BookSim runs N2 measurement cycles during which pack-
ets entering the source queue are tagged with their start times. Finally, the drain
phase should be run long enough for all of the measurement packets to reach their
destination.2 It is important to mention that the latency measures are computed
from the start and finish times of all measurement packets, either they have arrived
at the destination during the measurement phase or during the drain phase. Al-
though the packets generated during the warm-up and drain phases are ignored,
they affect the measurement by providing the background traffic and interacting
with the measurement packets [93].

6.1.2.2 Configuration Parameters

Modeling a NoC requires the specification of a large set of configuration param-
eters, such as topology, routing algorithm, network size, buffer size, packet size,
number of Virtual Channels (VCs)3 per physical channel, etc. Some of these pa-
rameters [101] are briefly explained as follows:

1. Topology: the first step in the design of NoCs is selecting a topology that
optimizes the throughput, latency, and cost given the application demands
and communication constraints. A network is composed of a set of shared
routers and channels. The connection pattern of these routers and channels
defines the topology of the network which is usually modeled by a graph.
In fact, the topology of a NoC is analogous to a roadmap, such that the
channels (like roads) carry the packets (like cars) from the source to the des-
tination address [93]. The selection of the network topology has a significant
impact on the overall performance, area, and power consumption [102]. This
is due to the fact that the topology affects the number of hops4, and thereby,
the latency and energy consumption in the network. Moreover, the imple-
mentation complexity depends heavily on the topology.

2If a network is subject to starvation, the drain phase may never complete [93].
3VCs presented in this chapter are w.r.t NoC but not VCGRAs.
4The number of hops indicates the number of channels visited across the path from the source to

the destination [93].

128 CHAPTER 6

2. Routing Strategy: once a topology is chosen, there may exist several paths
(sequences of nodes and channels) that a message can take through the net-
work to reach its destination. The routing strategy determines which of
the possible paths the message has to take. A good routing decision tends
to minimize the length of the path while balancing the load placed on the
shared resources of the network. The latency of the message is affected by
the length of the path which is usually referred to as the number of hops [93].

3. Packet Size: in the Wormhole switching technique [93], a packet is decom-
posed into small units called FLITs (FLow control digIT) which are then
routed consecutively through the network. As a result, a flit is the basic unit
of bandwidth and storage allocation in the wormhole flow control mecha-
nism. The position of a flit in a packet determines whether it is a head flit,
body flit, or tail flit. A head flit is the first flit of the packet and carries the
packet’s routing information, namely the destination address. The head flit is
followed by zero or more body flits containing the actual payload of the data,
and ends with the tail flit. Unlike packets, body and tail flits have no routing
or sequencing information and thus must follow the head flit along its route
and remain in order. More precisely, once the head flit has been accepted
by a channel, the remaining flits must be accepted before the flits of any
other packet can be accepted. As a packet traverses a network, the head flit
allocates the channel and buffers, and the tail flit deallocates them [93, 94].

4. Virtual Channels (VCs): networks are composed of two types of resources:
communication channels and buffers. Typically, a single buffer is associ-
ated with each channel. Buffers are commonly operated as FIFO queues,
as shown in Fig. 6.2a. In wormhole-switched networks, when a head flit
arrives, a buffer will be assigned to the incoming packet, and is reserved
until the tail flit is transmitted [93]. This problem of idling channels due to
resource coupling can be overcome by exploiting Virtual Channels (VCs).
Note that incorporating additional physical wires is a very expensive and
inefficient solution. A VC consists of a buffer that can hold one or more
flits of a packet. Each group of VCs shares the bandwidth of a physical
communication channel. However, each VC requires its own queue. Virtual
Channels decouple the allocation of buffers from the allocation of channels
by providing multiple buffers5 for each channel in the network. In fact, each
VC operates as if it was using a distinct physical channel. Thus, by splitting
a single buffer storage with a 16-flit queue into four VCs with 4-flit queues
as depicted in Fig. 6.2b, virtually four paths are provided for the packets to
be routed [103]. The buffers in each lane can be allocated independently of

5Adding VCs to a network is analogous to adding lanes to a street [93].

CUSTOM FPGA CONFIGURATION MEMORY 129

(a) Without VCs (b) With VCs

Figure 6.2: Organization of buffers in a network [93]

the buffers in any other lane. Hence, a blocked message holds only a single
lane idle and can be passed using any of the remaining lanes [93] [104] [94].

6.1.2.3 Evaluation Criteria

There are different metrics to analyze the performance of a particular NoC. In the
absence of faults, the most important evaluation criteria is the latency [94] [93].
Moreover, NoCs must operate within tight power and area budgets. On the other
hand, supporting high-performance on-chip communication can be realized by ex-
ploiting power- and area-hungry network resources (such as wide interconnects
and their associated wide FIFOs, switches equipped with adaptive routing tech-
niques, etc.). As a result, NoC design is usually characterized by a power-area-
performance trade-off [105] [106]. The three metrics that we use as a base for
evaluation criteria is explained as follows:

1. Latency: is defined as the time6 elapsed from the initiation of the message
at the source node until the tail of the message is received at the destination
node. If the study only considers the network hardware, the initiation of
the message refers to the time when the message header is injected into the

6In BookSim, the simulator’s clock cycle is the unit of measurement.

130 CHAPTER 6

network at the source node. In our work, the time spent by the message in
the waiting queue before injection at the source node is also included in the
latency. This queuing time is usually negligible unless the network is close
to its saturation point [94].

The header latency, TH , is the time required for the header of the message
to traverse the network. As shown in equation (6.1), the header latency is
the sum of router delay, dR, and wire delay, dW , at each hop, multiplied by
the hop count, H [107]:

TH = (dR + dW)H (6.1)

The serialization latency, TS , is the time required for the message to cross
the channel. Given the message length, L, and the channel width, W , the
serialization latency can be expressed as [107]:

TS = L

W
(6.2)

The zero-load assumption is that a packet never contends for network re-
sources with other packets. Under this assumption, the zero-load latency,
TZ , is calculated as [93]:

TZ = TH + TS (6.3)

The zero-load latency gives a lower bound on the average latency of a mes-
sage through the network by ignoring the latency caused by contention of
the packets over shared resources [93]. However, measuring the latency
through simulations equips us with the real latency that the packets experi-
ence throughout the network, including the contention latency.

2. Power: the Orion 3.0 [108] power library was integrated in BookSim to
obtain the power consumption results. The power dissipation of the net-
work (including the communication channels, input buffers, router control
logic, and output control modules) were calculated using the ITRS 32nm
technology provided by CACTI [109] with the supply voltage of 0.9 V. The
leakage power is included for channels, buffers, and switches.

3. Area: the imposed area overhead of a router is of a great concern because
of the leverage that it brings to the implementation cost and power dissipa-
tion. To assess the area overhead, the router architectures were modeled in
Orion 3.0 using the technology parameters from the 32-nm 0.9 V ITRS-HP
process provided by CACTI [109]. As can be seen in Table 6.1, the data
width is fixed at 64 or 32 bits (flit size), and each input channel has a buffer
size of 1 or 2 flits, respectively. Four primary components of area overhead
including the input buffers, crossbar switch fabric and arbiter, routing unit,
and the communication channels are accounted for in our area model.

CUSTOM FPGA CONFIGURATION MEMORY 131

6.2 Proposed FPGA Architecture

The proposed architecture can be constructed by using the auxiliary hardware dis-
cussed in Section 6.1. In our design we propose two possible solutions (archi-
tecture topologies): a crossbar-based parallel memory and a NoC-based parallel
memory. However, our investigations revealed that the crossbar-based parallel
memory turns out to be infeasible due to over utilization of hardware resources.

The parallel memory boosts the data transfer to the SRAM cells of the LUTs
(configuration) during the reconfiguration. The proposed hardware can be inte-
grated into the prevailing column-based FPGA configuration memory to form a
custom FPGA architecture that can facilitate ultra-fast reconfiguration and thus
reduces the reconfiguration time overhead.

The proposed custom architecture contains a bus called Configuration Access
Bus (CAB). The bus contains configuration data (64 bit) lines, LUT address lines
(M) and a single line that can decide on a read or write operation of the LUT
SRAM cells. All the LUTs in the CLB column have access to the CAB. The LUT
address lines are used to choose one LUT at a time for a given clock cycle dur-
ing the reconfiguration. Hence all the LUTs in a CLB column are (re)configured
serially.

6.2.1 Crossbar-based parallel memory

The crossbar-based parallel memory used for (re)configuring the FPGA is depicted
in Figure 6.3 where M is the number of LUTs to be addressed, and N is the number
of CLB columns. The Polymorphic Register File described in the previous section
is adapted to facilitate the data access in parallel to all the CLB columns during
(re)configuration.

The memory banks store the configuration data well before the reconfiguration
process begins. The stale data in the SRAM cells of the LUTs are replaced with
the new configuration data stored in the memory banks. The data consist of a LUT
address, the read/write selection bit for scheduling followed by the configuration
data bits. The embedded processor (ARM Cortex-A9) is responsible to schedule
the configuration data into the memory banks in such a way that during every
clock cycle of the reconfiguration process the configuration data belonging to the
different CLB columns are made accessible to the different CABs. Therefore,
multiple LUTs located in different CLB columns can be reconfigured in a single
clock cycle.

In the adapted parallel memory, each CAB has access to a single memory bank
only. The crossbar is used to multiplex the data present in the memory banks so
that all CABs can access every memory bank. This ensures that if one memory
bank is full, the processor can fill the configuration data into another memory

132 CHAPTER 6

199

0

199

0

CLB column

199

0

199

0

Memory
bank

0

Memory
bank

1

Memory
bank

2

Memory
bank
N-2

Memory
bank
N-1

Crossbar

O0 O1 ON-2 ON-1

Crossbar
Select lines

ARM Cortex A9

199

0

199

0

199

0

199

0

Clock region
CLB column CLB column CLB column

64 + Log2(M) + 1 64 + Log2(M) + 1 64 + Log2(M) + 1 64 + Log2(M) + 1

Figure 6.3: A crossbar-based parallel memory for custom FPGA configuration memory

bank and configures the select lines of the crossbar so that the memory bank can
be accessed by the appropriate CAB.

With this architecture, we envision that the parallel memory with a crossbar is
not a suitable solution for the following two reasons:

1. For an efficient and faster reconfiguration, it is necessary to maintain the
number of memory banks proportional to the number of CLB columns (the
lower the number of memory banks is, the more the data are congested in
the parallel memory). Therefore, the crossbar-based parallel memory archi-
tecture becomes infeasible for larger numbers of CLB columns.

2. The processor has to program the crossbar (select lines of multi-stage mul-
tiplexers) for every new configuration data being pushed into the memory
banks.

To overcome this issue we propose a NoC-based parallel memory.

CUSTOM FPGA CONFIGURATION MEMORY 133

Memory
bank

0

Memory
bank

1

Memory
bank
N-2

Memory
bank
N-1

Network-on-Chip

O0 ON-2 ON-1

ARM Cortex A9

199

0

199

0

CLB column

199

0

199

0

CLB column

199

0

199

0

CLB column

R0

199

0

199

0

CLB column

199

0

199

0

CLB column

199

0

199

0

CLB column

R1

O1

199

0

199

0

CLB column

199

0

199

0

CLB column

199

0

199

0

CLB column

RN-1

Clock
region

64 + Log2(M) + 1 64 + Log2(M) + 1 64 + Log2(M) + 1 64 + Log2(M) + 1

Figure 6.4: A NoC-based parallel memory for custom FPGA configuration memory

6.2.2 NoC-based parallel memory

In the proposed architecture, we replace the crossbar of the adapted parallel mem-
ory with a NoC. The NoC has routers connected to multiple CABs. As shown in
Figure 6.4, for simplicity we connect 3 CABs to each NoC router thus reducing re-
sources. The main reason for using a NoC instead of the crossbar is to decentralize
the control of the configuration data after storing them in the memory banks. The
decentralization helps in improving the data transfer speed as the configuration
data can be transferred to the CABs in parallel.

The first step in the design of NoCs is selecting a topology that optimizes the
throughput, latency, and cost given the application demands and constraints [93].
We have explored two different NoC topologies to implement the proposed archi-
tecture.

6.2.3 Butterfly NoC

A butterfly or k-ary n-fly is a well-known NoC topology consisting of kn nodes
and n stages of crossbar routers. There are two groups of routers in a butterfly:
external and intermediate. The IP cores are connected to the external routers, while
the intermediate routers just handle the packet switching and cannot be exploited

134 CHAPTER 6

Output 0
Output 1
Output 2

3-ary 3-fly

o0
o1
o2

o4
o5

o3

o6
o7
o8

o11

o9
o10

o14

o12
o13

o17

o15
o16

o20

o18
o19

o23

o21
o22

o26

o24
o25

i26

i25

i24

i22

i21

i23

i20

i19

i18

i15

i17

i16

i12

i14

i13

i9

i11

i10

i6

i8

i7

i3

i5

i4

i0

i2

i1

4

5

6

7

8

0

1

2

3

13

14

15

16

17

9

10

11

12

22

23

24

25

26

18

19

20

21

3-ary 3-flat
Output 3
Output 4
Output 5
Output 6

i0

i2

i1

4 5

1 2

7 8

o0 o2o1

3

0

o3 o5o4 o6 o8o7

6

i0

i2

i1

o0 o2o1

R´7

R´4R´3 R´5

R´8R´6

R´1 R´2R´0

o0
o1
o2

o4
o5

o3

o6
o7
o8

o11

o9
o10

o14

o12
o13

o17

o15
o16

o20

o18
o19

o23

o21
o22

o26

o24
o25

i26

i25

i24

i22

i21

i23

i20

i19

i18

i15

i17

i16

i12

i14

i13

i9

i11

i10

i6

i8

i7

i3

i5

i4

i0

i2

i1

R4

R3

R2

R1

R0

R8

R7

R6

R5

R13

R12

R11

R10

R9

R17

R16

R15

R14

R22

R21

R20

R19

R18

R26

R25

R24

R23

Figure 6.5: Block diagram of the 3-ary 3-fly (top), and the corresponding 3-ary
3-flat (bottom) NoC topology

as the source/destination [93].

In order to implement the proposed NoC-based parallel memory architecture,
we have designed a 3-ary 3-fly network as shown in Figure 6.5. The NoC routers
are responsible for transferring the configuration data to the appropriate CABs. As
can be seen in Figure 6.4, each external router in the last stage is connected to
3 CLB columns (i.e. each output port to one CLB column). The configuration data
is serially transferred to the CABs once it arrives at the destination output port.

We have employed the Destination-Tag (DT) routing algorithm [93] for the
butterfly network in which the destination address is used to select the output port
at each stage of the network.

CUSTOM FPGA CONFIGURATION MEMORY 135

6.2.4 Flattened Butterfly NoC

The flattened butterfly topology is derived by combining (or flattening) the routers
in each row of a conventional butterfly topology while preserving the inter-router
connections. Therefore, the flattened butterfly is similar to a generalized hypercube
network. However, the concentration in the flattened butterfly significantly reduces
the wiring complexity of the topology, allowing it to scale more efficiently [110].

In our work, we collapsed the 3-stage radix-3 butterfly network of Figure 6.5
to construct the flattened butterfly illustrated in the bottom of the same figure. The
resulting flattened butterfly has nine radix-7 routers. Among the seven router ports,
four are used for inter-router connections: two for the connections in dimensionX
and two for the connections in dimension Y . Those connections are marked with
red arrows in the figure. The remaining three ports are used for the IP cores at-
tached to each router since the routers have a concentration factor of 3. Those
ports are shown for router 0 in the figure. Note that the input/output ports of the
remaining routers are not depicted in the figure for simplicity.

Routing in a flattened butterfly requires a hop from an IP core to its local router,
zero or more inter-router hops, and a final hop from a router to the destination IP
core [111]. Both minimal and non-minimal routing algorithms can be used for the
flattened butterfly topology [110].

We evaluated the proposed flattened butterfly NoC using the following three
routing algorithms:

1. Minimal Adaptive (MIN AD) routing algorithm: in the MIN AD routing
method, the XY or YX minimal routing direction is chosen adaptively such
that the packet is forwarded to the channel with the shortest queue [111]. At
least two Virtual Channels (VCs) [93] should be used in MIN AD to prevent
deadlock.

2. Valiant’s (VAL) routing algorithm [112]: the main objective of the VAL non-
minimal oblivious routing method is to balance the traffic load across the
network by converting any traffic pattern into two phases of random traf-
fic. First, a random intermediate node b is picked and the packets are routed
minimally from source to b. Then, the packets are routed minimally from
b to the destination. This approach is able to perfectly balance the load on
average, but at the cost of doubling the worst-case hop count. Any minimal
routing algorithm can be used for each phase. In this work, we have em-
ployed the Dimension-Order Routing (DOR)7 for both phases. Two VCs,
one for each phase, are required to avoid deadlock in this algorithm [111].

3. Universal Globally-Adaptive Load-balanced (UGAL) routing algorithm [113]:

7DOR routes the packets by crossing dimensions in an increasing order, nullifying the offset in one
dimension before routing in the next one.

136 CHAPTER 6

UGAL is a non-minimal adaptive routing method which chooses between
MIN AD and VAL on a packet-by-packet basis to minimize the estimated
delay for each packet. The delay is estimated based on the product of
queue length and hop count. For benign traffic patterns and at low loads,
UGAL routes the traffic minimally matching the performance of MIN AD.
However, for adversarial patterns at high loads, the traffic is routed non-
minimally matching the performance of VAL [111].

The NoC topology makes use of the address bits present in the data packet to
multiplex different CABs to the different memory banks. Therefore, the embedded
processor needs not participate during reconfiguration once the configuration data
are stored in the memory banks. Thus, we save significant amount of CPU clock
cycles.

6.2.5 Significance of the proposed architecture

1. The proposed architecture enables parallel reconfiguration of the LUTs lo-
cated in different CLB columns which is in contrast with ICAP based recon-
figuration. To reconfigure the SRAM cells of the interconnection we must
make sure parallel reconfiguration does not cause short circuits that may
lead to a DRC error. Therefore, as of now we consider to reset (reconfigure
with bit 0) the existing configuration of the switch blocks and the connection
blocks before reconfiguring the interconnection configuration.

2. The configuration data access at the frame level is completely eliminated.
The proposed architecture enables the processor to access the configuration
data in chunks as small as configuration bits of a single LUT. Therefore, if
it is required to reconfigure a single LUT then there is no need to access a
complete frame of 101 words.

3. The LUTs located in the same CLB column are reconfigured serially. How-
ever, reconfiguring each LUT does not consume much time and hence the
serial reconfiguration of multiple LUTs in the same CLB column is still
faster compared to the classic ICAP based reconfiguration.

4. In case of Dynamic Circuit Specialization, micro-reconfiguration enables
the processor to reconfigure a single LUT by accessing configuration in
terms of frames in three steps: read frames, modify and write-back frames.
However, with the help of the proposed architecture the processor can ac-
complish micro-reconfiguration in a single step by writing the configuration
data in a LUT directly. The specialized configuration data for each LUT is
generated after evaluating the Boolean functions. This evaluation is done for
the entire content of the truth table bits of a LUT and hence the read-back

CUSTOM FPGA CONFIGURATION MEMORY 137

Compute
Specialized Data

(Boolean function
evaluation)

Parallel memory write
(Processor to parallel

memory)

Parallel memory read
(parallel memory to

configuration memory)

Other processor
computations

Parallel memory read
(parallel memory to

configuration memory)

Prefetch the
specialized data

Initial
cycle

Future
reconfiguration

cycle

Figure 6.6: Specialized data prefetch cycle

frames and modify frames step are completely eliminated. The reconfigura-
tion time overhead reduces by at least by a factor of two.

5. The proposed architecture enables the processor to evaluate the Boolean
functions (assuming parameter values are available), keep the specialized
configuration data ready, and let the parallel memory prefetch the special-
ized data (assuming the memory banks are deep enough to hold multiple
specialized configuration data), all while the current reconfiguration cycle
is still under progress. Hence the processor need not wait for the current
reconfiguration process to end and then start the Boolean evaluation for the
next cycle of reconfiguration. Once the prefetch is done, the CPU cycles can
be used for other useful computations (Figure 6.6).

6. In case of modular region based reconfiguration, the configuration data is
written into the LUTs using the same approach as described above. The
only gain we can expect is high speed reconfiguration due to parallel recon-
figuration.

6.3 Results

The following describes the estimated hardware costs for the proposed architecture
and the simulated results obtained after running the experiments with the set of
parameterized applications.

6.3.1 Estimated hardware cost

The proposed configuration memory architecture comes at the cost of hardware
costs incurred by the auxiliary hardware. The costs for the new configuration
memory infrastructure mainly include:

138 CHAPTER 6

1. Configuration Access Bus: for a clock region X0Y0 of the Zynq-SoC (con-
sists of 25 CLB columns and each column consists of 50 CLBs), the pro-
posed architecture was configured to consist of 80 wires dedicated for re-
configuration in the routing channel. These lines are located in the routing
channel along with the interconnect lines. Supposing that 300 wires are
present in the Stratix IV architecture [114], an overhead of 27% can be a
reasonable estimate of wire overhead. We can overcome this overhead by
making use of existing wires in the channel and multiplexing their function-
ality for reconfiguration and for application execution.

2. Memory banks: Each memory bank corresponds to one Block RAM of a
commercial FPGA. Considering the Artix-7 FPGA, each memory bank can
hold upto 36 kB of configuration data. With the proposed NoC-based archi-
tecture we need 8 memory banks for the clock region X0Y0 of the Zynq-
SoC.

3. Circuits and wires: an additional circuit is needed in each slice of a CLB
that can access the CAB to read/write the configuration data from the LUT
SRAM cells. This part of the work is planned as a part of the future work.

4. Network-on-Chip: the performance of the proposed NoC architectures were
evaluated using the BookSim 2.0 interconnection network simulator [99].
The Orion 3.0 [108] which is an enhanced NoC power and area simulator
was also integrated in BookSim to evaluate the hardware overhead of the
proposed schemes. The butterfly and flattened butterfly topologies are sup-
ported by Orion models.

The configuration parameters and corresponding results for both 3-ary 3-fly
and 3-ary 3-flat networks are listed in Table 6.1. A packet can be decomposed
into several fixed length contiguous units called FLITs8 (FLow control digIT) that
are transmitted from the IP cores to the network and then routed consecutively
through the network [93]. The packet latency is defined as the number of cy-
cles spent between the generation of the message at the source until the tail flit
reaches the destination [115]. To ensure a fair comparison, the routers in all of
the configurations were equipped with equal entries for the buffer queues. The
router pipeline consists of three cycles for routing computation, switch allocation,
and switch traversal. The router pipeline for VC-based methods requires an addi-
tional cycle for VC allocation. The inter-router link traversal is fixed to one cycle
for all configurations. Moreover, the adopted traffic pattern exposes the inherent
communication behavior of the applications.

First, the simulator was warmed up for 100,000 cycles to be stabilized and then
the results were averaged over the next 1,000,000 cycles. The results from the

8Flit is the basic unit of bandwidth and storage allocation in the network.

CUSTOM FPGA CONFIGURATION MEMORY 139

Ta
bl

e
6.

1:
N

oC
co

nfi
gu

ra
tio

n
pa

ra
m

et
er

s
an

d
re

su
lts

N
et

w
or

k
To

po
lo

gy
C

on
fig

ur
at

io
n

pa
ra

m
et

er
s

R
es

ul
ts

C
ha

nn
el

w
id

th
(b

it)

Pa
ck

et
si

ze
(fl

it)

N
um

be
r

of V
C

s

B
uf

fe
r

si
ze

(fl
it)

R
ou

tin
g

al
go

ri
th

m
L

at
en

cy
(c

yc
le

)
Po

w
er

(W
at

t)
A

re
a

(m
m

2
)

3-
ar

y
3-

fly
64

2
2

1
D

T
26

8
0.

78
0.

06
4

32
3

2
2

D
T

20
9

0.
38

0.
02

7

3-
ar

y
3-

fla
t

64
2

2
1

M
IN

A
D

43
8

1.
05

0.
09

3
64

2
2

1
VA

L
87

2
1.

05
0.

09
3

64
2

2
1

U
G

A
L

61
9

1.
05

0.
09

3
32

3
2

2
M

IN
A

D
33

8
0.

49
0.

03
6

32
3

2
2

VA
L

65
3

0.
49

0.
03

6
32

3
2

2
U

G
A

L
45

7
0.

49
0.

03
6

140 CHAPTER 6

warm-up period are ignored because the network is not stabilized yet. Moreover,
all of the values reported in this section are obtained by averaging the results from
10 distinct simulation samples to ensure a fair comparison between the proposed
architectures.

For power and area of the interconnect, we used technology parameters from
the 32 nm 0.9 V ITRS-HP process provided by CACTI [109]. The area model ac-
counts for four primary components of area overhead: input buffers, switch fabric,
communication channels, and output buffers (Table 6.1).

6.3.2 Reconfiguration simulation results

We have created a reconfiguration time estimator tool based upon the proposed
architecture. The tool takes the location of each LUT (that needs to be reconfig-
ured) as the input and gives the estimation of the reconfiguration time. We have
used five parameterized applications as a benchmark to evaluate the improvement
in the micro-reconfiguration speed with the proposed architecture. The benchmark
includes parameterized applications explained in chapter 3, Section 3.3 along with
the parameterized threshold module used for the edge detection explained as fol-
lows.

Threshold for edge detection: an edge detection algorithm implemented in
hardware consists of a module that can be configured to adjust a threshold level.
Every pixel is compared with the threshold level to detect the edge of an image.
Since the threshold level value is an infrequently changing parameter, a total of
33 TLUTs were required to store the threshold value for an image edge detection
implementation. For every change in threshold values those 33 TLUTs are micro-
reconfigured.

Each of the benchmark applications was implemented on the Zynq-SoC with-
out any user constraints so that the placer tool can place the design on TLUTs
efficiently. The locations of all TLUTs were recorded and annotated to our recon-
figuration time estimator.

The NoC latency is also included in the reconfiguration time estimator so that
we can estimate the total time taken during the reconfiguration process. We con-
sider only the relevant NoC topology and their latency to evaluate the reconfigura-
tion time. As of now the estimated area and power only for the NoC (with different
topologies) can be obtained from the NoC simulator.

The reconfiguration time estimate based on the proposed NoC-based parallel
memory architecture is tabulated in Table 6.2. Clearly, the parameterized appli-
cations (FIR and MAC operator) that have a huge number of TLUTs can benefit
more from the proposed architecture. The reconfiguration speed is improved by at
least 1000×. This gain primarily comes from the parallel reconfiguration, as the
TLUTs are sparsely spread over different CLB columns. For smaller parameter-

CUSTOM FPGA CONFIGURATION MEMORY 141

Ta
bl

e
6.

2:
R

ec
on

fig
ur

at
io

n
tim

e
co

m
pa

ri
so

n

Pa
ra

m
et

er
iz

ed
B

en
ch

m
ar

ks
N

oC
N

et
w

or
k

To
po

lo
gy

N
oC

L
at

en
cy

(c
yc

le
s)

#
T

L
U

T
s

R
ec

on
fig

ur
at

io
n

tim
e

(c
yc

le
s)

C
on

ve
nt

io
na

l
R

ec
on

fig
ur

at
io

n
tim

e
(c

yc
le

s)

Im
pr

ov
em

en
t

fa
ct

or

FI
R

3-
ar

y
3-

fly
26

8
38

4
12

98
24

61
44

0
18

96
3-

ar
y

3-
fla

t
87

2
38

4
19

02
24

61
44

0
12

94

M
A

C
op

er
at

or
3-

ar
y

3-
fly

26
8

46
8

29
58

29
99

88
0

10
14

3-
ar

y
3-

fla
t

87
2

46
8

35
62

29
99

88
0

84
2

R
O

M
3-

ar
y

3-
fly

26
8

4
30

8
25

64
0

83
3-

ar
y

3-
fla

t
87

2
4

91
2

25
64

0
28

T
C

A
M

3-
ar

y
3-

fly
26

8
41

67
8

26
28

10
38

8
3-

ar
y

3-
fla

t
87

2
41

12
82

26
28

10
20

5
T

hr
es

ho
ld

m
od

ul
e

3-
ar

y
3-

fly
26

8
33

59
8

21
15

30
35

4
3-

ar
y

3-
fla

t
87

2
33

12
02

21
15

30
17

6

142 CHAPTER 6

ized applications, the reconfiguration speed gain is relatively smaller due to the
fact that some TLUTs are located in the same CLB column and hence they don’t
benefit from the parallel reconfiguration.

In the worst case, suppose for an application whose reconfigurable part is
mapped on to a single CLB column over all the LUTs (400) present in a CLB
column, the reconfiguration has to occur sequentially. In that case our estimated
gain could reach up to 160× compared to the fastest reconfiguration method used
in the micro-reconfiguration.

7
Conclusions and Future work

Dynamic Circuit Specialization (DCS) is an optimization technique used for im-
plementing a parameterized application on an FPGA. The application is said to
be parameterized when some of its inputs, called parameters, are infrequently
changing compared to the other inputs. Instead of implementing these parame-
ter inputs as regular inputs, in the DCS approach these inputs are implemented
as constants and the design is optimized for these constants. When the parameter
values change, the design is re-optimized for the new constant values by micro-
reconfiguring the FPGA. Therefore, the goal of DCS is to use simpler and opti-
mized circuits instead of a bulky generic version of the same circuit.

Micro-reconfiguration is a fine-grained form of partial reconfiguration tailored
to accomplish DCS. One has to consider the overheads of the micro-reconfiguration
while considering DCS implementations. The standard method of implementing
DCS incurs undesirable overheads and therefore, DCS suffers from diminishing
effects.

In order to conclude this dissertation I recapitulate the goal of the thesis:

A detailed study of overheads of DCS and providing suitable solutions with
appropriate custom FPGA structures is the primary goal of the dissertation. I also
suggest different improvements to the FPGA configuration memory architecture.
After offering the custom FPGA structures, I investigated the role of DCS on FPGA
overlays, and the use of custom FPGA structures that help to reduce the overheads
of DCS on FPGA overlays. By doing so, I hope I am able to convince the developer
to use DCS (which now comes with minimal overheads) in real-world applications.

144 CHAPTER 7

7.1 Conclusions

In this section, I present the overall conclusions of the research focusing on how
my goals are achieved for a given set of problems.

7.1.1 Overheads and custom FPGA structures

In this dissertation, I presented four major overheads of the micro-reconfiguration:
Boolean evaluation time, PPC memory size, reconfiguration time, and the static
and dynamic power consumption. The Boolean evaluation time depends on the
capability of the SCG. A stack machine-based custom SCG was already proposed
in the previous work in [32]. The efficient configuration representation can lead
to a reduction in PPC memory size which is already proposed in [32]. However,
the reconfiguration time is the major overhead of all, and it influences the energy
consumed during micro-reconfiguration.

In Chapter 3, I investigated the impact of the evolution in (Xilinx) FPGA archi-
tectures on DCS implementations. The FPGA architecture for various platforms
plays a significant role in the micro-reconfiguration, and hence it influences the
corresponding overheads. The trend in the evolution of the Xilinx FPGA architec-
ture shows that there has been a minimal emphasis on the reconfiguration technol-
ogy. This could prove a major problem for implementing an HPC application that
requires reconfiguration as an intrinsic feature.

To improve the reconfiguration speed with existing FPGA architectures, in
Chapter 4 I have proposed custom reconfiguration controllers specifically designed
to implement DCS. I have also introduced two different reconfiguration drivers:
MRMW and MROMW that accelerate the reconfiguration speed of the micro-
reconfiguration controller. When used all together, we achieve an improvement
factor of 40. The custom controllers are power and energy efficient by factor of
four compared to the standard reconfiguration controller (HWICAP) IP provided
by Xilinx. The effect of the improvement in reconfiguration speed was explained
using functional density curves.

7.1.2 FPGA overlays and DCS

Conventional CGRAs suffer from high reconfiguration overhead and has no pa-
rameterization options. A strategy to implement efficient VCGRAs on FPGAs is
proposed in Chapter 5. The use of DCS on VCGRAs is studied on two VCGRA
grids: MAC grid and Pixie. These two grids are used to realize a real-world HPC
image processing application called Retinal Vessel Segmentation. In this disserta-
tion I have described two different variants of parameterized VCGRA implemen-
tations:

CONCLUSIONS AND FUTURE WORK 145

1. Partially parameterized VCGRA: A partially parameterized VCGRA imple-
mentation in which only the settings registers are optimized and realized on
TLUTs.

2. Fully parameterized VCGRA: A fully parameterized VCGRA implementa-
tion contains PE and virtual interconnects that are optimized by parameter-
izing the inter and intra-connects of each PEs and VSBs.

The implementation of MAC grid VCGRA in three styles was studied using a
functional density curve.

7.1.3 Custom FPGA configuration memory

One of the main reasons for the reconfiguration time overhead of the micro-reconfiguration
is the frame-level access of the FPGA configuration. To overcome the frame-
level access, I have proposed a parallel memory structure for each clock region in
Chapter 6. The parallel memory contains a configuration distribution network that
comes with two variants: cross-bar based and NoC-based.

The NoC-based parallel memory helps to decentralize the distribution of the
configuration data to different CLB columns. Our simulation results show the
proposed configuration memory structure can influence to drastically improve the
reconfiguration speed at least by a factor of 1000. However, the hardware resource
consumption for this structure is too high, but future work may be conducted to
optimize the hardware resources.

7.2 Future work

I conclude this dissertation with possible scope for the future research on DCS and
FPGA overlays.

7.2.1 Secured DCS for space applications

A system implemented with the state of the art DCS lacks two important features:
security and robustness. Thus, the current DCS may not be suitable for space
applications. In this context, I suggest for the future work to investigate all the
security vulnerabilities of a conventional DCS system and address them with ap-
propriate solutions. A custom reconfiguration controller with a capability to secure
the frames using cryptography-based solutions for secured reconfiguration is es-
sential. The controller should be equipped with a closed loop feedback system to
establish robust reconfiguration that assures any perturbations during reconfigura-
tion can be handled efficiently.

146 CHAPTER 7

The configuration bitstreams of a Static Random Access Memory (SRAM)
based Field Programmable Gate Array (FPGA) are prone to security risks if the
FPGA is used in non-encrypted mode [116] [117]. The risks could be bitstream
tampering, bitstream cloning, bitstream reverse engineering, etc. However, com-
mercial FPGA vendors such as Xilinx provide an option to use the FPGA in en-
crypted mode to secure a 7 Series FPGA bitstream. In this mode, a standard 256-
bit Advanced Encryption Standard (AES) [35] cryptographic system is used for
encryption and decryption of the FPGA bitstream [118]. The 7-series FPGA AES
system consists of software-based encryption. The encryption is performed with
a 256-bit encryption key. The encryption key can be programmed by the user and
then stored in a dedicated RAM memory, in a battery backed up RAM (BBRAM)
or in a eFUSE memory.

The encrypted bitstream has to be decrypted before it is programmed on to
the configuration memory and hence on-chip AES decryption logic is used before
the programming of the bitstreams on to the configuration memory. The on-chip
decryption logic can be utilized decrypting the FPGA bitstream only.

Using the FPGA in encryption mode for implementing secured DCS is practi-
cally impossible due to the limitations imposed by the Xilinx FPGAs that it does
not support encrypted configuration frame read back. The configuration read back
is a required step to specialize the configuration frames during run-time. To over-
come this limitation we propose a custom high-speed reconfiguration controller
that supports encrypted configuration read back.

In many cases, the parameterized applications have to be robust enough to
handle faults that can occur during reconfiguration. The current DCS does not
have fault-tolerant feature. Therefore, a robust reconfiguration method along with
a secured custom reconfiguration controller is needed to implement robust and
secured DCS systems.

7.2.2 Floating point overlay library

The Floating-point operator implemented on FPGAs proves to be an efficient ac-
celerator for image processing applications. There are many strategies to automati-
cally tune the precision of the floating operator for a given application [119] [120].
Therefore, I suggest an overlay library for floating point operations with automatic
tuning algorithms. The advantages of the VCGRA tool flow on reducing the devel-
opment costs can be used for realizing the floating point accelerators for different
precisions.

Bibliography

[1] G.E. Moore, “Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114
ff.” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 5, pp. 33–35,
Sept 2006.

[2] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R.
LeBlanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–
268, Oct 1974.

[3] T. Mitra, “Heterogeneous Multi-core Architectures,” IPSJ Transactions on
System LSI Design Methodology, vol. 8, pp. 51–62, Aug 2015.

[4] M. Pricopi, T.S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin,
“Power-performance modeling on asymmetric multi-cores,” in Proceedings
of the 2013 International Conference on Compilers, Architectures and Syn-
thesis for Embedded Systems, ser. CASES ’13. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 15:1–15:10.

[5] M. Pricopi and T. Mitra, “Bahurupi: A polymorphic heterogeneous multi-
core architecture,” ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp. 22:1–
22:21, Jan. 2012.

[6] L. Hansen, “Unleash the Unparalleled Power and Flexibility of Zynq
UltraScale+ MPSoCs,” White Paper: Zynq UltraScale+ MPSoCs, 2016,
accessed: 2017-03-21.

[Online]. Available: https://www.xilinx.com/support/documentation/
white_papers/wp470-ultrascale-plus-power-flexibility.pdf

[7] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and Ap-
plications. Springer Science & Business Media, 2012.

[8] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited Pa-
per: Enhanced Architectures, Design Methodologies and CAD Tools for
Dynamic Reconfiguration of Xilinx FPGAs,” in 2006 International Confer-
ence on Field Programmable Logic and Applications, Aug 2006, pp. 1–6.

https://www.xilinx.com/support/documentation/white_papers/wp470-ultrascale-plus-power-flexibility.pdf
https://www.xilinx.com/support/documentation/white_papers/wp470-ultrascale-plus-power-flexibility.pdf

148 BIBLIOGRAPHY

[9] M. Huebner, T. Becker, and J. Becker, “Real-time lut-based network topolo-
gies for dynamic and partial fpga self-reconfiguration,” in Proceedings of
the 17th Symposium on Integrated Circuits and System Design, ser. SBCCI
’04. New York, NY, USA: ACM, 2004, pp. 28–32.

[10] Xilinx UG892, “Vivado Design Suite User Guide,” accessed: 2017-04-13.

[Online]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2013_3/ug892-vivado-design-flows-overview.pdf

[11] Xilinx UG702, “Partial Reconfiguration User Guide,” accessed: 2017-08-
08.

[Online]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_1/ug702.pdf

[12] Xilinx DS817, “Xilinx LogiCORE IP AXI HWICAP (v2.02.a),” accessed:
2017-04-26.

[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/axi_hwicap/v2_02_a/ds817_axi_hwicap.pdf

[13] K. Bruneel, W. Heirman, and D. Stroobandt, “Dynamic Data Folding with
Parameterizable Configurations,” ACM Transactions on Design Automation
of Electronic Systems, vol. 16, no. 4, 2011.

[14] C.B. Ciobanu, A.L. Varbanescu, D. Pnevmatikatos, G. Charitopoulos,
X. Niu, W. Luk, M.D. Santambrogio, D. Sciuto, M.A. Kadi, M. Hueb-
ner, T. Becker, G. Gaydadjiev, A. Brokalakis, A. Nikitakis, A.J.W. Thom,
E. Vansteenkiste, and D. Stroobandt, “EXTRA: Towards an Efficient Open
Platform for Reconfigurable High Performance Computing,” in 2015 IEEE
18th International Conference on Computational Science and Engineering,
Oct 2015, pp. 339–342.

[15] D. Stroobandt, A.L. Varbanescu, C.B. Ciobanu, M.A. Kadi, A. Brokalakis,
G. Charitopoulos, T. Todman, X. Niu, D. Pnevmatikatos, A. Kulkarni,
E. Vansteenkiste, W. Luk, M.D. Santambrogio, D. Sciuto, M. Huebner,
T. Becker, G. Gaydadjiev, A. Nikitakis, and A.J.W. Thom, “EXTRA:
Towards the exploitation of eXascale technology for reconfigurable ar-
chitectures,” in 2016 11th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), June 2016, pp. 1–7.

[16] P. Lysaght and W. Rosenstiel, New algorithms, architectures and applica-
tions for reconfigurable computing. Springer, 2005.

[17] K. Heyse, “Improving the Gain and Reducing the overhead of Dynamic
Circuit Specialization and Microreconfiguration,” Ph.D. dissertation, Ghent
University, 2015.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_3/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_02_a/ds817_axi_hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_02_a/ds817_axi_hwicap.pdf

BIBLIOGRAPHY 149

[18] P.B. Minev and V.S. Kukenska, “The Virtex-5 Routing and Logic Architec-
ture,” Annual Journal of Electronics, vol. 3, pp. 107–110, 2009.

[19] Xilinx UG474, “7 Series FPGAs Configurable Logic Block,” accessed:
2017-04-12.

[Online]. Available: https://www.xilinx.com/support/documentation/user_
guides/ug474_7Series_CLB.pdf

[20] Xilinx DS180, “7 Series FPGAs Data Sheet: Overview (v2.4),” accessed:
2017-04-12.

[Online]. Available: https://www.xilinx.com/support/documentation/data_
sheets/ds180_7Series_Overview.pdf

[21] Xilinx DS890, “UltraScale Architecture and Product Data Sheet: Overview
(v2.11),” accessed: 2017-04-12.

[Online]. Available: https://www.xilinx.com/support/documentation/data_
sheets/ds890-ultrascale-overview.pdf

[22] Xilinx DS190, “Zynq-7000 All Programmable SoC Overview (v1.10),”
accessed: 2017-04-12.

[Online]. Available: https://www.xilinx.com/support/documentation/data_
sheets/ds190-Zynq-7000-Overview.pdf

[23] Xilinx UG470, “7 Series FPGAs Configuration User Guide,” accessed:
2017-04-10.

[Online]. Available: https://www.xilinx.com/support/documentation/user_
guides/ug470_7Series_Config.pdf

[24] Xilinx UG191, “Virtex-5 FPGA Configuration User Guide,” accessed:
2017-04-10.

[Online]. Available: https://www.xilinx.com/support/documentation/user_
guides/ug191.pdf

[25] Xilinx DS817, “Xilinx LogiCORE IP AXI HWICAP (v2.03.a),” accessed:
2017-04-19.

[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/axi_hwicap/v2_03_a/ds817_axi_hwicap.pdf

[26] C. Kohn, “Partial Reconfiguration of a Hardware Accelerator on Zynq-
7000 All Programmable SoC Devices (XAPP1159),” 2013, accessed:
2017-04-21.

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug191.pdf
https://www.xilinx.com/support/documentation/user_guides/ug191.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_03_a/ds817_axi_hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_03_a/ds817_axi_hwicap.pdf

150 BIBLIOGRAPHY

[Online]. Available: https://www.xilinx.com/support/documentation/
application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-
7000.pdf

[27] L. Hellerman, “A Catalog of Three-Variable Or-Invert and And-Invert Log-
ical Circuits,” IEEE Transactions on Electronic Computers, vol. EC-12,
no. 3, pp. 198–223, June 1963.

[28] P.W. Foulk, “Data-folding in SRAM configurable FPGAs,” in [1993] Pro-
ceedings IEEE Workshop on FPGAs for Custom Computing Machines, Apr
1993, pp. 163–171.

[29] M.J. Wirthlin and B.L. Hutchings, “Improving functional density through
run-time constant propagation,” in Proceedings of the 1997 ACM Fifth In-
ternational Symposium on Field-programmable Gate Arrays, ser. FPGA
’97. New York, NY, USA: ACM, 1997, pp. 86–92.

[30] K. Heyse, B. Al Farisi, K. Bruneel, and D. Stroobandt, “TCONMAP: Tech-
nology Mapping for Parameterised FPGA Configurations,” ACM Trans.
Des. Autom. Electron. Syst., vol. 20, no. 4, pp. 48:1–48:27, Sep. 2015.

[31] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically mapping ap-
plications to a self-reconfiguring platform,” in Design, Automation Test in
Europe Conference Exhibition, 2009. DATE ’09., April 2009, pp. 964–969.

[32] F. Mostafa Mohamed Ahmed Abouelella, K. Bruneel, and D. Stroobandt,
“Efficiently generating FPGA configurations through a stack machine,” in
Field Programmable Logic and Applications, 20th International confer-
ence, Abstracts, Milano, Italy, 2010.

[33] H. Gazit, “Ternary content-addressable memory,” Jun. 5 2012, US Patent
8,195,873.

[Online]. Available: https://www.google.com/patents/US8195873

[34] A. Kulkarni, E. Vansteenkiste, D. Stroobandt, A. Brokalakis, and A. Niki-
takis, “A fully parameterized virtual coarse grained reconfigurable array
for high performance computing applications,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops. IEEE xplore,
2016, pp. 265–270.

[35] F.I. Processing and S.P. 197, “Announcing the ADVANCED ENCRYP-
TION STANDARD (AES),” 2001, accessed: 2017-04-11.

[Online]. Available: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.
pdf

https://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
https://www.google.com/patents/US8195873
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

BIBLIOGRAPHY 151

[36] T. Davidson, F. Mostafa Mohamed Ahmed Abouelella, K. Bruneel, and
D. Stroobandt, “Dynamic Circuit Specialization for key-based encryption
algorithms and DNA alignment,” INTERNATIONAL JOURNAL OF RE-
CONFIGURABLE COMPUTING, vol. 2012, p. 13, 2012.

[37] M. El-Hadedy, H. Mihajloska, D. Gligoroski, A. Kulkarni, D. Stroobandt,
and K. Skadron, “A 16-bit Reconfigurable encryption processor for Pi-
Cipher,” in 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops. Chicago, USA: IEEE xplore, 2016, pp. 162–171.

[38] A. DeHon, “Reconfigurable Architectures for General-Purpose Comput-
ing,” Massachusetts Institute of Technology, Artificial Intelligence Labo-
ratory, Cambridge, MA, USA, Tech. Rep., 1996.

[39] Xilinx UG011, “PowerPC Processor Reference Guide (v1.3),” accessed:
2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/user_
guides/ug011.pdf

[40] Xilinx DS100, “Virtex-5 Family Overview (v5.1),” accessed: 2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/data_
sheets/ds100.pdf

[41] Xilinx UG012, “Virtex-II Pro and Virtex-II Pro X FPGA User Guide(v4.2),”
accessed: 2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/user_
guides/ug012.pdf

[42] Xilinx UG761, “AXI Reference Guide (v13.1),” accessed: 2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/ug761_axi_reference_guide.pdf

[43] Xilinx DS531, “LogiCORE IP Processor Local Bus (PLB) v4.6 (v1.05a),”
accessed: 2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/plb_v46.pdf

[44] Xilinx DS402, “LogiCORE IP On-Chip Peripheral Bus V2.0 with OPB
Arbiter (v1.00d),” accessed: 2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/opb_v20.pdf

[45] K. Bruneel, K. Heyse, and D. Stroobandt, “The TLUT tool flow,” 2011.

[Online]. Available: https://github.com/UGent-HES/tlut_flow

https://www.xilinx.com/support/documentation/user_guides/ug011.pdf
https://www.xilinx.com/support/documentation/user_guides/ug011.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
https://www.xilinx.com/support/documentation/user_guides/ug012.pdf
https://www.xilinx.com/support/documentation/user_guides/ug012.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf
https://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf
https://www.xilinx.com/support/documentation/ip_documentation/opb_v20.pdf
https://www.xilinx.com/support/documentation/ip_documentation/opb_v20.pdf
https://github.com/UGent-HES/tlut_flow

152 BIBLIOGRAPHY

[46] V. Weaver and S. McKee, “Code density concerns for new architectures,”
in Computer Design, 2009. ICCD 2009. IEEE International Conference on,
Oct 2009, pp. 459–464.

[47] R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys, “Power Consumption
Model for Partial and Dynamic Reconfiguration,” in Reconfigurable Com-
puting and FPGAs (ReConFig), 2012 International Conference on, Dec
2012, pp. 1–8.

[48] A. Kulkarni, K. Heyse, T. Davidson, and D. Stroobandt, “Performance Eval-
uation of Dynamic Circuit Specialization on Xilinx FPGAs,” in FPGAworld
Conference 2014, Proceedings. Association for Computing Machinery,
2014, pp. 1–6.

[49] A. Kulkarni, T. Davidson, K. Heyse, and D. Stroobandt, “Improving re-
configuration speed for Dynamic Circuit Specialization using Placement
Constraints,” in ReConFigurable Computing and FPGAs (ReConFig), 2014
International Conference on, Dec 2014, pp. 1–6.

[50] A. Kulkarni, V. Kizheppatt, and D. Stroobandt, “MiCAP: A custom Re-
configuration Controller for Dynamic Circuit Specialization,” in ReConFig-
urable Computing and FPGAs (ReConFig), 2015 International Conference
on, Dec 2015, pp. 1–6.

[51] A. Kulkarni and D. Stroobandt, “MiCAP-Pro: a high speed custom recon-
figuration controller for Dynamic Circuit Specialization,” Design Automa-
tion for Embedded Systems, vol. 20, no. 4, pp. 341–359, 2016.

[52] S. Hansen, D. Koch, and J. Torresen, “High Speed Partial Run-Time Recon-
figuration Using Enhanced ICAP Hard Macro,” in Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, May 2011, pp. 174–180.

[53] Xilinx PG021, “LogiCORE IP AXI DMA (v6.03a),” accessed: 2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/axi_dma/v6_03_a/pg021_axi_dma.pdf

[54] Xilinx PG059, “LogiCORE IP AXI Interconnect (v2.1),” accessed:
2017-04-11.

[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf

[55] K. Vipin and S. Fahmy, “ZyCAP: Efficient Partial Reconfiguration Manage-
ment on the Xilinx Zynq,” Embedded Systems Letters, IEEE, vol. 6, no. 3,
pp. 41–44, Sept 2014.

https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v6_03_a/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v6_03_a/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf

BIBLIOGRAPHY 153

[56] F. Duhem, F. Muller, and P. Lorenzini, FaRM: Fast Reconfiguration Man-
ager for Reducing Reconfiguration Time Overhead on FPGA. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2011, pp. 253–260.

[57] A. Kulkarni and D. Stroobandt, “MiCAP: Micro-reconfigurable Configura-
tion Access Port,” 2015.

[Online]. Available: https://github.com/UGent-HES/MiCAP

[58] A. Kulkarni and D. Stroobandt , “MiCAP-Pro: Pro version of
Micro-reconfigurable Configuration Access Port,” 2015.

[Online]. Available: https://github.com/UGent-HES/MiCAP-Pro

[59] Xilinx UG625, “Constraints Guide (v 13.4),” accessed: 2017-04-20.

[Online]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_4/cgd.pdf

[60] B. Al Farisi, K. Bruneel, J.M.P. Cardoso, and D. Stroobandt, “An auto-
matic tool flow for the combined implementation of multi-mode circuits,”
in Proceedings - Design, Automation, and Test in Europe Conference and
Exhibition, 2013, pp. 821–826.

[61] B. Al Farisi, “Techniques for Low-Overhead Dynamic Partial Reonfigura-
tion of FPGAs,” Ph.D. dissertation, Ghent University, 2015.

[62] A. Kulkarni and D. Stroobandt, “How to efficiently reconfigure Tunable
LookUp Tables for Dynamic Circuit Specialization,” INTERNATIONAL
JOURNAL OF RECONFIGURABLE COMPUTING, vol. 2016, pp. 1–11,
2016.

[63] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey,” IEEE Journal of
Solid-State Circuits, vol. 41, no. 3, pp. 712–727, March 2006.

[64] H.K.H. So and C. Liu, “FPGA overlays,” in FPGAs for Software Program-
mers. Springer International Publishing, 2016, pp. 285–305.

[65] R. Lysecky, K. Miller, F. Vahid, and K. Vissers, “Firm-core Virtual FPGA
for Just-in-Time FPGA Compilation (Abstract Only),” in Proceedings of the
2005 ACM/SIGDA 13th International Symposium on Field-programmable
Gate Arrays, ser. FPGA ’05. New York, NY, USA: ACM, 2005, pp. 271–
271.

[66] D. Grant, C. Wang, and G.G. Lemieux, “A CAD Framework for
Malibu: An FPGA with Time-multiplexed Coarse-grained Elements,” in

https://github.com/UGent-HES/MiCAP
https://github.com/UGent-HES/MiCAP-Pro
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/cgd.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/cgd.pdf

154 BIBLIOGRAPHY

Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM,
2011, pp. 123–132.

[Online]. Available: http://doi.acm.org/10.1145/1950413.1950441

[67] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for circuit
portability and fast placement and routing,” in Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International
Conference on, Oct 2010, pp. 13–22.

[68] D. Koch, C. Beckhoff, and G.G.F. Lemieux, “An efficient FPGA overlay
for portable custom instruction set extensions,” in 2013 23rd International
Conference on Field programmable Logic and Applications, Sept 2013, pp.
1–8.

[69] A. Kulkarni, D. Stroobandt, A. Werner, F. Fricke, and M. Huebner,
“Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable Array
for high performance image processing applications,” in 3rd International
Workshop on Overlay Architectures for FPGAs (OLAF2017), 2017, pp.
OLAF/2017/01:1–OLAF/2017/01:6.

[70] M. Al Kadi and M. Huebner, “Integer Computations with Soft GPGPU on
FPGAs,” in International Conference on Field-Programmable Technology
(FPT ’16), 2016.

[71] A. Kourfali, A. Kulkarni, and D. Stroobandt, “SICTA: A Superimposed
In-Circuit Fault Tolerant Architecture for SRAM-based FPGAs,” in 2017
IEEE 23rd International Symposium on On-Line Testing and Robust System
Design (IOLTS). IEEE, 2017, pp. 1–4.

[72] P. Yiannacouras, J.G. Steffan, and J. Rose, “Fine-grain Performance Scaling
of Soft Vector Processors,” in Proceedings of the 2009 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems,
ser. CASES ’09. New York, NY, USA: ACM, 2009, pp. 97–106.

[73] A. Severance and G. Lemieux, “VENICE: A compact vector processor for
FPGA applications,” in 2011 IEEE Hot Chips 23 Symposium (HCS), Aug
2011, pp. 1–5.

[74] A.K. Jain, X. Li, P. Singhai, D.L. Maskell, and S.A. Fahmy, “DeCO: A
DSP Block Based FPGA Accelerator Overlay with Low Overhead Inter-
connect,” in 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), May 2016, pp. 1–8.

http://doi.acm.org/10.1145/1950413.1950441

BIBLIOGRAPHY 155

[75] A.K. Jain, S.A. Fahmy, and D.L. Maskell, “Efficient overlay architecture
based on DSP blocks,” in Field-Programmable Custom Computing Ma-
chines (FCCM), 2015 IEEE 23rd Annual International Symposium on.
IEEE, 2015, pp. 25–28.

[76] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker, “A
Heterogeneous Multicore System on Chip with Run-time Reconfigurable
Virtual FPGA Architecture,” in Parallel and Distributed Processing Work-
shops and PhD Forum (IPDPSW), 2011 IEEE International Symposium on,
May 2011, pp. 143–149.

[77] M.A.A. Tuhin and T.S. Norvell, “Compiling parallel applications to coarse-
grained reconfigurable architectures,” in 2008 Canadian Conference on
Electrical and Computer Engineering, May 2008, pp. 001 723–001 728.

[78] R. Gnanaolivu, T.S. Norvell, and R. Venkatesan, “Mapping loops onto
coarse-grained reconfigurable architectures using particle swarm optimiza-
tion,” in 2010 International Conference of Soft Computing and Pattern
Recognition, Dec 2010, pp. 145–151.

[79] J.A. Brenner, S.P. Fekete, and J.C. van der Veen, “A minimization version
of a directed subgraph homeomorphism problem,” Mathematical Methods
of Operations Research, vol. 69, no. 2, pp. 281–296, 2009.

[Online]. Available: http://dx.doi.org/10.1007/s00186-008-0259-0

[80] K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt,
“Efficient implementation of virtual coarse grained reconfigurable arrays
on FPGAs,” in Proceedings of the 23rd International Conference on Field
Programmable Logic and Applications. Piscataway, NJ, USA: IEEE, 2013,
pp. 1–8.

[81] K. Heyse, B. Al Farisi, K. Bruneel, and D. Stroobandt, “TCONMAP: Tech-
nology Mapping for Parameterised FPGA Configurations,” ACM Trans.
Des. Autom. Electron. Syst., vol. 20, no. 4, pp. 48:1–48:27, Sep. 2015.

[82] J. Divyasree, H. Rajashekar, and K. Varghese, “Dynamically reconfigurable
regular expression matching architecture,” in Application-Specific Systems,
Architectures and Processors, 2008. ASAP 2008. International Conference
on, July 2008, pp. 120–125.

[83] L. Sekanina, “Virtual Reconfigurable Circuits for Real-world Applications
of Evolvable Hardware,” in Proceedings of the 5th International Conference
on Evolvable Systems: From Biology to Hardware, ser. ICES’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 186–197.

http://dx.doi.org/10.1007/s00186-008-0259-0

156 BIBLIOGRAPHY

[84] T. Miyoshi, H. Kawashima, Y. Terada, and T. Yoshinaga, “A Coarse Grain
Reconfigurable Processor Architecture for Stream Processing Engine,” in
Field Programmable Logic and Applications (FPL), 2011 International
Conference on, Sept 2011, pp. 490–495.

[85] E. Vansteenkiste, B. Al Farisi, K. Bruneel, and D. Stroobandt, “TPaR: Place
and Route Tools for the Dynamic Reconfiguration of the FPGA’s Intercon-
nect Network,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 33, no. 3, pp. 370–383, March 2014.

[86] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “De-
tection of blood vessels in retinal images using two-dimensional matched
filters,” IEEE Transactions on medical imaging, vol. 8, no. 3, pp. 263–269,
1989.

[87] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths
with FloPoCo,” Design Test of Computers, IEEE, vol. 28, no. 4, pp. 18–27,
July 2011.

[88] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-strength
Verification Tool,” in Proceedings of the 22Nd International Conference on
Computer Aided Verification, ser. CAV’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 24–40.

[89] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA, USA: Kluwer Academic Publishers,
1999.

[90] X. Wang and M. Leeser, “VFloat: A Variable Precision Fixed- and Floating-
Point Library for Reconfigurable Hardware,” ACM Trans. Reconfigurable
Technol. Syst., vol. 3, no. 3, pp. 16:1–16:34, Sep. 2010.

[91] X. Fang and M. Leeser, “Open-Source Variable-Precision Floating-Point
Library for Major Commercial FPGAs,” ACM Trans. Reconfigurable Tech-
nol. Syst., vol. 9, no. 3, pp. 20:1–20:17, Jul. 2016.

[92] C. Ciobanu, G. Kuzmanov, A. Ramirez, and G. Gaydadjiev, “A polymorphic
register file architecture,” 5th International Summer School on Advanced
Computer Architecture and Compilation for Embedded Systems, pp. 245–
248, 2009.

[93] W.J. Dally and B. Towles, Principles and Practices of Interconnection Net-
works. San Francisco, USA: Morgan Kaufmann Publishers, 2004.

BIBLIOGRAPHY 157

[94] J. Duato, S. Yalamanchili, and L.M. Ni, Interconnection Networks: An En-
gineering Approach. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2003.

[95] M. Daneshtalab and M. Palesi, Eds., Routing Algorithms in Networks-on-
Chip. New York, NY, USA: Springer Publishing Company, Inc., 2014.

[96] M.B. Stensgaard and J. SparsÃÿ, “ReNoC: A Network-on-Chip Architec-
ture with Reconfigurable Topology,” in Second ACM/IEEE International
Symposium on Networks-on-Chip (nocs 2008), April 2008, pp. 55–64.

[97] J.S. Shen and P.A. Hsuing, “Dynamic Reconfigurable Network-on-chip De-
sign: Innovations for Computational Processing and Communication,” SIG-
SOFT Softw. Eng. Notes, vol. 38, no. 6, pp. 42–43, Nov. 2013, reviewer-
Schaefer, Robert.

[98] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of
Network-on-chip,” ACM Comput. Surv., vol. 38, no. 1, Jun. 2006.

[99] N. Jiang, D.U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, J. Kim,
and W.J. Dally, “A detailed and flexible cycle-accurate Network-on-Chip
simulator,” in Proc. IEEE Int. Symp. Perf. Analysis Syst. Software (ISPASS),
2013, pp. 86–96.

[100] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W.J. Dally, Book-
Sim 2.0 User’s Guide, Stanford University.

[101] P. Bahrebar, “Adaptive routing methods for on-chip interconnection net-
works,” Ph.D. dissertation, Ghent University, Belgium, 2017.

[102] U.Y. Ogras and R. Marculescu, “Energy- and performance-driven NoC
communication architecture synthesis using a decomposition approach,” in
Proc. ACM/IEEE Design Automat. Test in Europe Conf. (DATE), 2005, pp.
352–357.

[103] A. Agarwal, C. Iskander, and R. Shankar, “Survey of Network on Chip
(NoC) architectures & contributions,” Journal of Eng., Comput. and Arch.,
vol. 3, no. 1, 2009.

[104] L.M. Ni and P.K. McKinley, “A survey of wormhole routing techniques in
direct networks,” Computer, vol. 26, no. 2, pp. 62–76, 1993.

[105] L. Benini and D. Bertozzi, “Network-on-Chip architectures and design
methods,” IEE-Proc. Comput. Dig. Techn., vol. 152, no. 2, pp. 261–272,
2005.

158 BIBLIOGRAPHY

[106] P.V. Gratz, “Network-on-Chip implementation and performance improve-
ment through workload characterization and congestion awareness,” Ph.D.
dissertation, The University of Texas at Austin, USA, 2008.

[107] B. Grot, J. Hestness, S.W. Keckler, and O. Mutlu, “Express cube topologies
for on-chip interconnects,” in Proc. IEEE Int. Symp. High Perf. Comp. Arch.
(HPCA), 2008, pp. 163–174.

[108] A.B. Kahng, L. Bin, and S. Nath, “ORION 3.0: A comprehensive NoC
router estimation tool,” IEEE Embedded Syst. Letters, vol. 7, no. 2, pp. 41–
45, 2015.

[109] S. Thoziyoor, N. Muralimanohar, J.H. Ahn, and N.P. Jouppi, “CACTI 5.1,”
Technical Report HPL-2008-20, HP Labs, Tech. Rep., 2008.

[110] J. Kim, J. Balfour, and W.J. Dally, “Flattened butterfly topology for on-chip
networks,” IEEE Comp. Arch. Letters, vol. 6, no. 2, pp. 37–40, 2007.

[111] J. Kim, W.J. Dally, and D. Abts, “Flattened butterfly: A cost-efficient topol-
ogy for high-radix networks,” in Proc. Int. Symp. Comput. Arch. (ISCA),
2007, pp. 126–137.

[112] L.G. Valiant, “A scheme for fast parallel communication,” SIAM Journal on
Comput., vol. 11, no. 2, pp. 350–361, 1982.

[113] A. Singh, “Load-balanced routing in interconnection networks,” Ph.D. dis-
sertation, Stanford University, USA, 2005.

[114] K.E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling large
and complex benchmarks in academic CAD,” in 2013 23rd International
Conference on Field programmable Logic and Applications, Sept 2013, pp.
1–8.

[115] É. Cota, A. de Morais Amory, and M. Soares Lubaszewski, Reliability,
Availability and Serviceability of Networks-on-Chip. Springer Science &
Business Media, 2012.

[116] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the Vulnerability of
FPGA Bitstream Encryption Against Power Analysis Attacks: Extracting
Keys from Xilinx Virtex-II FPGAs,” in Proceedings of the 18th ACM Con-
ference on Computer and Communications Security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 111–124.

[117] H. Kashyap and R. Chaves, “Compact and On-the-Fly Secure Dynamic Re-
configuration for Volatile FPGAs,” ACM Trans. Reconfigurable Technol.
Syst., vol. 9, no. 2, pp. 11:1–11:22, Jan. 2016.

BIBLIOGRAPHY 159

[118] Xilinx XAPP1239, “Using Encryption to Secure a 7-Series FPGA
Bitstream (v1.0),” 2015, accessed: 2017-05-02.

[Online]. Available: https://www.xilinx.com/support/documentation/
application_notes/xapp1239-fpga-bitstream-encryption.pdf

[119] C. Rubio-González, C. Nguyen, H.D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D.H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning as-
sistant for floating-point precision,” in 2013 SC - International Conference
for High Performance Computing, Networking, Storage and Analysis (SC),
Nov 2013, pp. 1–12.

[120] P. Panchekha, A. Sanchez-Stern, J.R. Wilcox, and Z. Tatlock, “Automati-
cally Improving Accuracy for Floating Point Expressions,” SIGPLAN Not.,
vol. 50, no. 6, pp. 1–11, Jun. 2015.

https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf

	titlepg_recto_verso_Kulkarni
	franse_pg_recto_Kulkarni_nieuw.pdf
	franse_pg_verso_Kulkarni.nieuw.pdf

	revised
	Examination Commission
	Acknowledgements
	Samenvatting
	Summary
	Introduction
	Introduction to Digital Integrated Circuits
	Heterogeneous computing platforms
	Reconfigurable Computing
	Field Programmable Gate Array
	Coarse-Grained Reconfigurable Array

	Reconfiguration techniques and types
	Dynamic Partial Reconfiguration
	Dynamic Parameterized Reconfiguration

	Introduction to the research and overview of the chapters
	My contribution to the research

	FPGA architecture and the tool flow
	FPGA architecture
	Xilinx commercial FPGA products
	Xilinx 7 series FPGAs
	Xilinx UltraScale and UltraScale+ FPGAs
	Xilinx all programmable System-on-Chip products

	Configuration bitstream
	Frame Structure
	Configuration Interfaces on Xilinx FPGAs

	Conventional FPGA tool flow
	Synthesis
	Technology Mapping
	Packing
	Placement
	Routing
	Bitstream generator

	Dynamic Circuit Specialization
	What is DCS?
	Parameterized configuration
	Two-staged tool flow for parameterized configuration
	Synthesis
	Technology Mapping
	Placement, Routing and Bitstream generation

	Micro-reconfiguration
	DCS on Xilinx FPGAs
	The HWICAP driver ``XhwIcap_setClb_bits'' function

	DCS on a self-reconfigurable platform for the Zynq-SoC

	Examples of parameterized applications
	Functional Density
	Functional density for generic implementation
	Functional density for DCS implementation

	Performance evaluation of DCS on Xilinx FPGAs
	Boolean function evaluation time
	Evaluation time - Hard-core Processors
	Evaluation time - Soft-core Processors

	Reconfiguration time
	PPC memory size

	Power measurement analysis of DCS
	Power measurement setup
	Zynq-SoC configuration setup
	Power Characterization for DCS
	Energy consumed by the reconfiguration state on top of the idle state energy:
	Relative power consumed by the reconfiguration state compared to the run state:

	Power measurements
	FPGA PL power drop during reconfiguration
	Xilinx HWICAP with Clock gating
	DCS Power Analysis
	Power consumption of a DCS versus static implementation
	Power efficient DCS implementation and its reconfiguration rate

	MiCAP and MiCAP - Pro
	Why custom reconfiguration controllers?
	Internal Configuration Access Port
	ICAP architecture
	ICAP Commands

	MiCAP
	State machine
	MiCAP with single port RAM

	MiCAP-Pro
	MiCAP-Pro architecture
	AXI DMA Engine
	MiCAP-Pro interconnections

	Results on reconfiguration controllers
	Reconfiguration time
	Reconfiguration controller data throughput
	Resource utilization
	Custom reconfiguration controllers and functional density
	Power and Energy analysis of the reconfiguration controllers

	Improving reconfiguration speed using placement constraints
	Custom reconfiguration drivers
	Placement constraints to improve reconfiguration speed

	Results on custom reconfiguration drivers
	Experiments with MRMW reconfiguration drivers and without placement constraints
	Experiments with MRMW reconfiguration drivers and with placement constraints
	Experiments with MROMW reconfiguration drivers and with placement constraints
	Functional density curves

	DCS for FPGA Overlay architectures
	Introduction to Overlays
	Types of Overlays
	Benefits of Overlays

	Coarse-Grained Reconfigurable Arrays (CGRAs)
	Virtual Coarse-Grained Reconfigurable Arrays (VCGRAs)
	Conventional VCGRA tool flow
	Partially parameterized VCGRA tool flow
	Tool flow for parameterized configuration
	Fully parameterized VCGRA tool flow
	Limitation of parameterized VCGRAs
	Advantages of parameterized VCGRAs

	Fully Parameterized MAC VCGRA grid
	Retinal Vessel Segmentation Application
	VCGRA for the HPC application
	Results on MAC grid
	Functional density curves of parameterized VCGRAs

	The heterogeneous VCGRA grid: Pixie
	A fully Parameterized Processing Element (PE)
	Fully Parameterized Virtual Channel (VC)
	Building a VCGRA
	Edge Detection
	Results on Pixie
	Virtual Channel (VC)
	Processing Element (PE)
	A fully parameterized heterogeneous VCGRA grid
	Sobel filter
	Compilation time

	Custom FPGA configuration memory architecture for ultra-fast reconfiguration
	Auxiliary hardware for the custom FPGA architecture
	Polymorphic Register File
	Network-on-Chip
	Network Simulator
	Configuration Parameters
	Evaluation Criteria

	Proposed FPGA Architecture
	Crossbar-based parallel memory
	NoC-based parallel memory
	Butterfly NoC
	Flattened Butterfly NoC
	Significance of the proposed architecture

	Results
	Estimated hardware cost
	Reconfiguration simulation results

	Conclusions and Future work
	Conclusions
	Overheads and custom FPGA structures
	FPGA overlays and DCS
	Custom FPGA configuration memory

	Future work
	Secured DCS for space applications
	Floating point overlay library

	Bibliography

