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Summary 

 

Zeb1 and Zeb2 are two highly homologous transcription factors (TFs)  that are mainly 

known for their role in epithelial-mesenchymal transition (EMT). EMT is a multistep 

process important during embryonic development and is aberrantly activated by tumor 

cells in order to disseminate and form distant metastasis. However, in recent years it 

has become clear that Zeb proteins do not solely function as EMT-TFs, but are also 

crucial for the homeostasis of several lineages of the hematopoietic system. Zeb2 has 

been shown to play a role in NK cell maturation and CD8+ T cell terminal differentiation, 

while Zeb1 is involved in early T cell development. The main objective of this thesis 

was to further unravel the role of Zeb proteins in the hematopoietic system, specifically 

focusing on dendritic cells (DCs) and macrophages. 

First we identified a crucial role for Zeb2 in dendritic cell development. DCs are divided 

into two main classes: plasmacytoid DCs (pDCs) and conventional DCs (cDCs), which 

are further subdivided in cDC1s and cDC2s. We found that Zeb2 regulates pDC 

commitment from the pre-pDC stage onward by directly repressing Id2, a TF important 

in pDC development. Additionally, we showed that Zeb2 acts as a cDC subset fate 

switch, with its absence skewing the cDCs toward the cDC1 lineage and its 

overexpression skewing the cDCs towards the cDC2 lineage. The mechanism behind 

this Zeb2 controlled fate switch again involved direct repression of Id2. Secondly, we 

discovered a role for Zeb1 in splenic mononuclear phagocytes. Loss of Zeb1 

expression specifically in cDC1s not only resulted in a reduction of splenic cDC1s, but 

also in a reduction of splenic macrophages, an increase in CD103 expression in the 

remaining splenic cDC1s and a loss of definition between ESAM+ and ESAM- splenic 

cDC2s. Work is ongoing to determine how Zeb1 in splenic cDC1s is governing the 

homeostasis of other splenic mononuclear phagocytes. Finally, we identified that high 

mRNA expression of TF Zeb2 is a conserved feature across murine tissue-resident 

macrophages and the removal of Zeb2 from fully differentiated macrophages in lung, 

spleen, colon and liver results in an altered phenotype and eventually leads to their 

disappearance. In conclusion, we found that Zeb1 and Zeb2 are master regulators of 

mononuclear phagocyte development and homeostasis. 
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Having shown a physiological role for Zeb1 and Zeb2 in dendritic cells and 

macrophages, it is not a surprise that genetic events changing the levels of Zeb 

proteins can have serious consequences and lead to the development of lymphomas 

and leukemias. As such it was previously shown that both Zeb1 and Zeb2 act as 

oncogenes in acute myeloid leukemia. Additionally, recurrent deleterious mutations in 

the Zeb2 gene locus suggest a role for Zeb2 as tumor suppressor in a rare leukemia 

called blastic plasmacytoid dendritic cell neoplasm (BPDCN), a disease that is believed 

to originate in pDC precursors. Currently the outcome for BPDCN patients is very poor 

and an appropriate clinically relevant mouse model would aid in the development of 

better targeted therapies. Therefore, we attempted to model the disease by 

simultaneously deleting Zeb2 and tumor suppressor p53 from dendritic cells. Although 

the mice developed a hematopoietic malignancy, unfortunately the disease did not 

resemble human BPDCN and thus further research is needed to develop a clinically 

relevant mouse model for this disease. 



iii 

 

Samenvatting 

 

Zeb1 en Zeb2 zijn twee homologe transcriptiefactoren die voornamelijk gekend zijn 

voor hun rol in epitheliale-mesenchymale transitie of EMT. EMT is een moleculair 

proces dat belangrijk is tijdens embryonale ontwikkeling. Daarnaast wordt het EMT-

proces misbruikt door kankercellen om zich los te maken van de primaire tumor om uit 

te zaaien en secundaire tumoren te vormen. De laatste jaren is echter duidelijk 

geworden dat Zeb-eiwitten niet alleen functioneren als EMT-inducerende 

transcriptiefactoren, maar ook cruciaal zijn voor de homeostase van verschillende 

hematopoëtische  cellen. Zo werd aangetoond dat Zeb2 een rol speelt in de maturatie 

van Natural-Killer cellen (NK cellen) en de terminale differentiatie van CD8+ T-cellen. 

Voor Zeb1 werd dan weer aangetoond dat het betrokken is in de vroege ontwikkeling 

van T-cellen in de thymus. Het verder ontrafelen van de rol die Zeb-eiwitten vervullen 

in het hematopoëtisch systeem, meer specifiek in dendritisch cellen en macrofagen,  

was dan ook het hoofddoel van deze thesis.  

In eerste instantie hebben we vastgesteld dat Zeb2 een cruciale rol heeft tijdens de 

ontwikkeling van dendritisch cellen (DCs). DCs worden ingedeeld in drie subgroepen, 

namelijk plasmacytoide DCs (pDCs), type 1 conventionele DCs (cDC1s) en type 2 

conventionele DCs (cDC2s). Experimenteel werk in deze thesis heeft aangetoond dat 

Zeb2 de ontwikkeling van pDCs reguleert en dit door de transcriptie te verhinderen van 

Id2, een transcriptiefactor belangrijk in pDC-ontwikkeling. Bovendien hebben we 

aangetoond dat Zeb2 functioneert als een schakelaar in cDC-ontwikkeling. Het is 

namelijk zo dat in de afwezigheid van Zeb2 de cDC-ontwikkeling wordt gestuurd in de 

richting van de cDC1s, terwijl aanwezigheid van Zeb2 de cDC-ontwikkeling in de 

richting van de cDC2s stuurt. Ook hier is de directe repressie van Id2 door Zeb2 in 

betrokken. In tweede instantie hebben we ontdekt dat Zeb1 een rol speelt in de 

homeostase van mononucleaire fagocyten in de milt. Verlies van Zeb1 expressie 

specifiek in cDC1s resulteerde niet alleen in de reductie van de cDC1 populatie in de 

milt, maar tevens in een milt-specifieke reductie van de macrofaag-populatie, een 

toename van CD103 expressie in de overgebleven cDC1s en een onscherpe aflijning 

tussen ESAM+ en ESAM- cDC2s. Verder onderzoek is lopende om te bepalen hoe het 

gebrek aan Zeb1 expressie in cDC1s ook andere mononucleaire fagocyten in de milt 
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kan beïnvloeden. Tot slot hebben we vastgesteld dat Zeb2 ook een belangrijke rol 

vervult in macrofagen. Hoge mRNA expressie van transcriptiefactor Zeb2 is een 

algemene karakteristiek van macrofagen in verschillende weefsels in de muis. 

Bovendien leidt het verwijderen van Zeb2 expressie in gedifferentieerde macrofagen 

in de long, milt, dikke darm en lever tot een gewijzigd fenotype en het uiteindelijke 

verlies van de macrofagen. Alles samengenomen hebben we aangetoond dat Zeb1 en 

Zeb2 de ontwikkeling en homeostase van mononucleaire fagocyten reguleren. 

Zeb1 en Zeb2 hebben duidelijk een fysiologisch functie in dendritische cellen en 

macrofagen. Het is dan ook geen verrassing dat genetische wijzigingen die resulteren 

in verhoogde of verlaagde eiwitniveaus van Zeb1 of Zeb2 geassocieerd worden met 

de ontwikkeling van lymfomen en verschillende leukemie subtypes. Zo werd reeds 

aangetoond dat zowel Zeb1 als Zeb2 kunnen fungeren als oncogen in acute myeloïde 

leukemie. Daarenboven werden terugkerende mutaties in het Zeb2 gen geïdentificeerd 

in patiënten die leiden aan blastair plasmacytoïd dendritisch cel neoplasma (BPDCN), 

een zeldzame leukemie waarvan wordt gedacht dat ze ontstaat in pDC-precursoren. 

Momenteel zijn de overlevingskansen van BPDCN-patiënten zeer laag en de 

ontwikkeling van een geschikt klinisch relevant muismodel zou de ontwikkeling van 

betere therapieën ten goede komen. Daarom hebben wij in deze thesis geprobeerd 

om de ziekte na te bootsen in muizen door simultaan expressie van Zeb2 en 

tumorsuppresorgen p53 uit te schakelen in dendritische cellen. De muizen 

ontwikkelden inderdaad een hematopoëtische kanker, maar deze was echter 

verschillend van de humane ziekte BPDCN. Verder onderzoek naar een geschikt 

klinisch muismodel voor deze zeldzame, maar dodelijk leukemie is dus vereist. 
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I. Zeb family of proteins originally seen as EMT-TFs 

 

I.1 Discovery 

 

Zeb (Zinc finger E-box-binding homeobox) proteins were discovered in Drosophila 

melanogaster and termed Zfh-1 (Zinc finger homeodomain -1) and Zfh-2, now called 

respectively Zeb1 and Zeb21. Later on Zeb1 was described in different organisms with 

different names: AREB6 or ZEB in human, δEf1 (Delta-crystallin enhancer binding 

factor 1) in chicken, Bzp in hamster and Zag-1 in Caenorhabditis elegans2–7. Zeb2 was 

first picked up for its ability to bind Smad (Mothers against decapentaplegic homolog) 

proteins and was first called Sip1 (Smad interacting protein 1)8. Zebs were the first 

proteins described in which two types of DNA binding motifs exist side-by-side, namely 

a homeodomain (HD) and different zinc finger clusters1. The high degree of homology 

between both transcription factors (TFs) is likely a consequence of gene duplication 

coinciding with the origin of vertebrate life9.  

Analysis of expression patterns in Drosophila embryos already suggested a role for 

both proteins in neurogenesis and additional functions for Zeb1 in mesoderm 

development10. The following years it became clear that Zebs function in many different 

tissues and cell types. mRNA expression of human ZEB1 is abundant in heart and 

skeletal muscle, moderate in brain and lung and low in liver, kidney and pancreas2.  In 

mice, Zeb1 expression was confirmed in pancreas, pituitary gland and central nervous 

system4. Next to that a function for Zeb1 was suggested in T cells and B cells5,11, in 

different aspects of embryogenesis3,7,12 and terminal differentiation of neurons7. 

Determining the function of Zeb2 was initially based on the finding that deleterious 

mutations in the gene or full deletions of the locus cause Hirschsprung disease, which 

is characterized by a lack of enteric nerves in parts of the intestine13–16. Patients with 

Mowat-Wilson syndrome carrying heterozygous ZEB2 mutations often suffer from 

Hirschsprung disease, next to mental retardation, facial malformation, epilepsy and 

congenital heart disease. This clue for ZEB2 functionality in the nervous system was 

confirmed when mRNA expression was found in developing human embryos in neural 

crest derived cells, central nervous system and muscle17. 
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I.2 Structure: different domains and their function 

 

Initially, it was the protein structure of Zeb1 that was described by different research 

groups in several organisms. They all reported the presence of seven zinc finger motifs 

organised in two widely separated zinc finger clusters and a homeodomain in the 

middle of the protein2–4,18. Both Zeb1 and Zeb2 contain this C-terminal (CZF) and  N-

terminal zinc finger cluster (NZF), which have a high sequence homology and are 

conserved between both Zebs19 (Figure 1). The presence of the zinc fingers enables 

the proteins to bind to regulatory sequences in the DNA in order to exert their function 

as transcription factors2. As such it was shown that Zeb1 binds to the enhancer 

sequence of delta 1-crystallin in order to repress transcription of this gene during lens 

development in chicken3. The repressive function of Zeb proteins is executed through 

the specific binding of the CZF to 5’-CACCT sequences in different promoters. This 

particular sequence is included in the E2-box sequence 5’-CACCTG, which is the 

binding site for transcriptional activators of the basic helix-loop-helix (bHLH) family. In 

that way Zebs compete for the binding to E2-box sequences with other transcriptional 

regulators5,8,12,18. The optimal binding site for the NZF was determined as 

5’-GTCACCTGT or 5’-TGCACCTGT18. Zeb proteins show the highest affinity for 

binding when a bipartite 5’-CACCT and 5’-CACCTG sequence is present. The 

orientation and spacing between the two E-boxes can vary and experiments suggested 

that binding of one of the zinc finger clusters to the first E-box and binding of the other 

cluster to the second E-box stabilizes the monomeric DNA-protein interaction19. 

Although it was already clear that Zeb proteins are able to repress transcription by 

binding promoter regions of genes, it were Postigo and Dean who discovered how the 

repressor function is established. They localized the repressor domain of Zeb1 to the 

central region of the protein where they identified a PLDLS amino acid sequence, a 

typical binding site for the Ctbp (C-terminal binding protein) corepressor (Figure 1). 

Two additional Ctbp-like sites were found in the cDNA sequence and all three sites 

participate in the repressive function of Zeb1 through binding with the Ctbp proteins at 

the promoter regions of repressed genes20. Later, a model was proposed in which 

Zeb1 cooperates with Ctbp2 and histone deacetylase 1 (Hdac1) in order to form a 

repressor complex21,22. 
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Figure 1 | Zeb1 and Zeb2 protein domains and their interaction partners. NIM: Nurd Interacting 

Motif – interaction with Nurd (Nucleosome remodelling and deacetylase) complex, N-terminal region of 

Zeb1 – interaction with p300 or P/CAF, NZF: N-terminal zinc finger cluster – interaction with DNA, SBD: 

Smad binding domain – interaction with R-Smads, HD: Homeodomain - no interaction shown, CID: Ctbp 

interaction domain – interaction with Ctbp (C-terminal binding protein), CZF: C-terminal zinc finger 

cluster – interaction with DNA. (Based on De Smedt et al., 2017 for Zeb1 and Akay et al., 2017 for Zeb2; 

Encyclopedia of Signaling Molecules, 2nd edition) 

 

Zebs not only have the ability to bind to DNA and regulate transcription, they are also 

involved in protein-protein interactions for which they possess other domains 

(Figure 1). The ability to interact with Smad proteins was discovered by Verschueren 

and colleagues. A yeast two hybrid screen for interaction with the MH2 domain of Smad 

led to the identification of Zeb2. The domain responsible for the interaction is called 

the Smad binding domain (SBD) and is located in between the NZF and the HD. In 

mammalian cells, Zeb2 only interacts with the MH2 domain of activated full length 

receptor-regulated Smads (R-Smads)8 which links Zeb2 with Tgfβ (Transforming 

growth factor beta) signalling, as ligation of Tgfβ to its receptors generates 

phosphorylated R-Smads23. Initially the minimal binding motif of the SBD was identified 

as a 51 amino acid long stretch, but later redefined to be as short as 14 amino acids. 

This short SBD stretch was modelled as part of an α-helix that may fit in the 

hydrophobic pocket within the MH2 domain of activated Smad proteins8,24. Zeb1 

contains a domain downstream of its NZF which shows high homology with the SBD 

of Zeb2 and is conserved across species. Although both binding Smads through a 

similar domain, the Zeb proteins have an opposite effect on Tgfβ and Bmp (Bone 

morphogenetic protein) mediated transcription. Zeb1 synergizes with Smad proteins to 
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activate transcription, while Zeb2 inhibits Tgfβ/Bmp-mediated transcription25. It is the 

different recruitment of coactivators and corepressors that explains this opposition. The 

N-terminal region of Zeb1 interacts with p300 and P/CAF to assemble a Zeb1-Smad 

activation complex. The interaction with p300 provides transcriptional synergy, but it is 

the recruitment of P/CAF that switches Zeb1 from a repressor to an activator through 

the displacement of Ctbp1 from the Ctbp interaction domain (CID) of Zeb126. Later, 

others demonstrated that, depending on the experimental context, Zeb1 and Zeb2 are 

equally potent to bind p300 and P/CAF27. This suggests that other mechanisms and/or 

cofactors are contributing to the differential Zeb1/2-specific effects on Smad-mediated 

transcription. 

Finally, Zeb2 contains a Nurd interacting motif (NIM) in its N-terminal domain28 

(Figure 1). The Nurd (nucleosome remodelling and deacetylase) complex is involved 

in chromatin remodelling and plays a key role in transcriptional repression29,30. 

Importance of the ZEB2-NURD interaction became apparent from a Mowat-Wilson 

syndrome patient, in which the NIM was substituted with an unrelated sequence 

rendering the transcription factor unable to recruit the NURD complex and so causing 

the disease28.  Later on the relevance of the Nurd interaction was also highlighted in 

murine Schwann cell differentiation and remyelination. Here it was found that Zeb2 

controls maturation of these cells by recruiting Hdac1/2-Nurd complexes thereby 

inhibiting a Notch-Hey2 signalling pathway31. As such the Zeb2-Nurd interaction was 

proven to be important in several neuropathies caused by mutations in the NIM motif. 

Based on the extensive and continuously growing list of interaction partners and 

putative downstream targets, one can expect that Zebs have very pleiotropic functions, 

which largely depend on the cellular context. Indeed, the chromatin status and the 

presence/absence of tissue-specific interaction partners strongly influences their role 

as a transcriptional repressor/activator. This can, to some extent, explain why in some 

cell types Zebs play complementary or synergistic roles, while in others seemingly 

opposite roles. 
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I.3 Zebs as EMT-TFs 

 

Zeb proteins are primarily known as inducers of epithelial-mesenchymal transition 

(EMT), and thus called EMT-TFs. EMT is a process during which polarized epithelial 

cells undergo a molecular switch to become motile mesenchymal cells that have lost 

polarity32. EMT is important during embryonic development, wound healing and cancer 

progression33 (Figure 2). The main hallmark of EMT is the loss of E-cadherin 

expression. Zebs are able to repress E-cadherin transcription by directly binding to the 

E-box sequences in the E-cadherin promoter34–36. Additionally, Zeb2 was shown to 

directly downregulate gene expression of epithelial tight junction, desmosomal and gap 

junction proteins like Occludin, Zonula occludens 3, Plakophilin 2 and Connexin 2637,38. 

On the other hand upregulation of mesenchymal markers, like Vimentin, has also been 

associated with high expression of Zeb proteins39,40. 

 

  

Figure 2 | Importance of EMT in embryonic development, wound healing and cancer 

progression. During EMT (Epithelial-mesenchymal transition) epithelial cells lose their adhesive 

capacities and gain mesenchymal properties. EMT is of importance for embryonic development, 

wound healing and cancer progression leading to metastasis. 
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At different stages of embryogenesis (e.g. gastrulation, formation of the neural crest, 

morphogenesis of heart, muscles and skeletal structures) cells temporarily need to 

acquire the ability to migrate. This temporal motility is governed by EMT and therefore 

by EMT-TFs like Zeb1/232. As such Zeb2 was found to be highly expressed in embryos 

in developing peripheral and central nervous system, muscle and neural crest derived 

cells41,17. Evidence for a physiological role for ZEB2 in embryonic development is found 

in Mowat-Wilson syndrome patients as described above (see I.1 Discovery).  More 

proof was found when Higashi and colleagues created a CRE-mediated conditional 

Zeb2 knockout (KO) mouse. They demonstrated that full KO of Zeb2 leads to 

embryonic lethality between E9.5 and E10.542. Zeb1 on the other hand was detected 

in murine embryonic nervous system progenitors, notochord, somites and neural crest 

derivatives43,44. In accordance to this Zeb1 null mice are perinatally lethal, exhibiting 

different skeletal defects including craniofacial abnormalities of neural crest origin44. 

Although EMT is essential during embryonic development, the program can also be 

aberrantly activated by cancer cells. EMT endows tumor cells to disseminate from the 

primary tumor in order to form distant metastasis, the biggest cause of death in cancer 

patients45. Keeping this in mind, it is not a surprise that high expression of ZEB proteins 

has been associated with aggressiveness and poor outcome in different types of 

carcinomas. Typically, ZEB1 and ZEB2 are not expressed in the centre or in well 

differentiated regions of the tumor, but are upregulated at dedifferentiated and invading 

sites46. For example, high ZEB2 expression and consequently low E-CADHERIN levels 

have been correlated with bad outcome of ovarian and breast carcinoma and with 

adverse overall survival of oral squamous cell carcinoma47,48. Another mechanism by 

which ZEB2 facilitates the invasion of carcinoma cells is the downregulation of matrix 

metalloproteinases (MMPs)49. ZEB1 was correlated with high VIMENTIN/low 

E-CADHERIN expression in non-small cell lung cancer (NSCLC) and inhibition of cell 

polarity genes like LGL2 in metastatic colorectal tumors40,50,51.  

 

EMT not only facilitates invasion of cancer cells, it also renders them with stem cell 

properties and thus creating so called cancer stem cells (CSCs)57,58. CSCs or tumor-

initiating cells have the potential to self-renew and form secondary tumors when 

transplanted into immune deficient or syngeneic mice.  As Zebs, in combination with a 

negative feedback loop with the miR-200 family, control EMT, they are very likely 
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involved in managing this stem cell state54. Zeb1 for instance, was found to inhibit 

members of the miR-200 family that repress known stem cell factors including Sox2, 

Klf4 and Bmi1. Therefore EMT-associated upregulation of Zeb1 leads to increased 

expression of these stem cell factors55. ZEB1 is also implicated in a self-enforcing 

feedback loop with stem cell marker CD44, in which ZEB1-induced repression of 

ESRP1 controls alternative splicing of CD4456.  

 

Often CSCs are resistant to certain drugs and form the basis of disease relapse. 

Acquisition of stemness through the EMT program has been linked with therapy 

resistance in cancer patients57–59. For several drugs it was shown that ZEB proteins 

play a role in this process. In NSCLC ZEB1 driven EMT is interrelated with resistance 

to tyrosine kinase inhibitors60,61 and the miR-200/ZEB loop with resistance to the 

angiokinase inhibitor nintedanib62. ZEB1 driven EMT is also responsible for the 

existence of docetaxel resistant CSCs in castration resistant prostate cancer58 and the 

cause of resistance to gemcitabine, 5-FU and cisplatin in pancreatic cancer cell lines63. 

MiR-200b regulated ZEB2 in turn is associated with multi-drug resistance in small cell 

lung cancer64. As such ZEBs can act as important regulators of therapy resistance in 

cancer patients. 

 

To conclude, the roles of ZEB proteins in solid tumor progression have been 

extensively documented. Therefore, ZEB expression levels and the expression of their 

targets could be used in the clinic as prognostic markers for solid tumor 

aggressiveness and poor patient outcome. 
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II. Emerging role for Zeb proteins in immune system 

development and homeostasis 

 

 

Although originally discovered as transcription factors in EMT, it is becoming more and 

more evident that Zeb proteins also have physiological functions during hematopoiesis 

and in mature hematopoietic cells. Before going deeper into detail concerning the 

different immune cell lineages, we will have a general look at mRNA expression levels 

of Zeb1 and Zeb2 at different stages of murine hematopoiesis (Figure 3).  

 

Both Zeb1 and Zeb2 are expressed at moderate levels in early hematopoietic 

precursors, but upon further development it seems that Zeb1 and Zeb2 mRNA levels 

are mostly mutually exclusive (Figure 3). Remarkably, the decision to develop along 

the lymphoid or myeloid lineage is marked with expression of respectively Zeb1 

(common lymphoid progenitor; CLP) and Zeb2 (common myeloid progenitor; CMP). 

For the T cell lineage, which develops mostly in the thymus, Zeb1 is highly expressed 

in mature single positive T cells (T-CD4 and T-CD8) and upon activation Zeb2 is 

expressed, whereas Zeb1 is downregulated. High expression of Zeb1 and low 

expression of Zeb2 is seen in mature B cells, granulocytes and erythrocytes, while 

opposite high expression of Zeb2 and low expression of Zeb1 is typical for NK cells, 

macrophages and monocytes (Figure 3). On the next pages a more detailed overview 

will be given on what has already been elucidated so far, starting with the importance 

for Zebs more early in murine immune cell development, followed by their function in 

terminally differentiated and mature cells. 

 



11 

 

 

Figure 3 | Zeb1 and Zeb2 mRNA levels are mostly mutually exclusive during murine 

hematopoietic differentiation. The figure is based on expression data available via 

http://servers.binf.ku.dk/bloodspot/ and shows micro-array data from murine samples. HSC: 

Hematopoietic stem cell, MPP: Multipotent progenitor, CMP: Common myeloid progenitor, GMP: 

Granulocyte-monocyte progenitor, MEP: Megakaryocytic erythroid progenitor, CLP: Common lymphoid 

progenitor, T-DN: T cell CD4-CD8- double negative, T-DP: T cell CD4+CD8+ double positive, T-CD4: T 

cell CD4+ single positive, T-CD8: T cell CD8+ single positive, pro-B: Pro B cell, pre-B: Pre B cell, IgM+ 

SP: IgM positive side population, pro-NK: Natural killer cell progenitor, NK cell: Natural killer cell. 
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II.1 Zeb2 is essential in embryonic HSC/HPC differentiation and controls 

 adult hematopoietic differentiation 

 

Zeb proteins are mainly known for their role in EMT, which is essential for many 

developmental processes during embryogenesis. One such process is the formation 

of hematopoietic stem cells (HSCs) from the hemogenic endothelium through an EMT-

like program. In mice it has been shown that Zeb2 is dispensable for the initial 

formation of HSCs, but is essential in early HSC and hematopoietic progenitor cell 

(HPC) differentiation65. Next to that Zeb2 is involved in downregulation of genes 

associated with adhesion, e.g. β1-integrin, and hence crucial for mobilization of 

HSCs/HPCs from the fetal liver to the bone marrow (BM)65. Zeb2 not only plays a role 

early in embryonic HSC differentiation, but also controls murine adult hematopoietic 

differentiation. Inducible loss of Zeb2 in adult BM leads to the accumulation of 

precursor cells due to inefficient commitment to differentiation and maturation 

programs. For instance commitment into the B cell lineage and terminal differentiation 

of megakaryocytes and erythrocytes are dependent on Zeb266.  

 

II.2 Zeb1 in early T cell development  

 

T cells develop from HSCs present in fetal liver and in BM during adult life. After homing 

to the thymus, cells undergo several developmental stages before leaving the thymus 

as mature T cells in order to function in peripheral organs. The different stages in the 

thymus can be recognized through the expression of several cell surface markers. The 

first four stages are characterized by a lack of CD4 and CD8 and are the so called 

double negative (DN) stages. DN1 can be defined by CD44+CD25-cKit+, DN2 by 

CD44+CD25+cKit+, DN3 by CD44-CD25+cKit- and the DN4 stage by CD44-CD25-cKit- 

surface marker expression. Starting from the DN2 stage onward, developing T cells 

undergo rearrangements in their T cell receptor (TCR) genes and start to express CD3, 

a TCR coreceptor molecule, and in that way proceed to a CD4+CD8+ (DP) stage. In 

the next step cells pass through a positive and negative selection. Positive selection is 

based on a weak interaction of the TCR with self-peptide-Mhc (Major histocompatibility 

complex) complexes and protects thymocytes from ‘death-by-neglect’, while negative 
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selection eliminates T cells responding to self-antigen with high affinity by inducing 

apoptosis. These selections leads to a single positive (SP) stage with both CD4+CD8- 

and CD4-CD8+ T cells, which are able to leave the thymus and move into peripheral 

tissues67.  

Two different mouse models have highlighted a possible role for Zeb1 in early T cell 

development. The first model, called ΔC-fin, contains a mutation which leads to a 

truncated protein lacking the CZF of Zeb168. The other mouse model is called the 

cellophane mouse, in which a T to A transversion was identified in the seventh exon 

of Zeb1 leading to a premature stop codon and the expression of a protein also lacking 

the CZF69. In both models small, hypocellular thymi with a poor distinction between 

medulla and cortex were observed in homozygous mutant mice. For the ΔC-fin mice a 

reduction in number of thymocytes was reported down to 1% of the number in wild type 

(WT) mice. In both models the proportions of the different developmental stages were 

investigated in the thymus. Thymi of homozygous mutant mice showed a lower 

proportion of DP thymocytes and expanded populations of the DN and SP stages. The 

group working with the ΔC-fin mice looked deeper into the thymus populations with 

flow cytometry analysis and showed that it was specifically the CD44+CD25+cKit+ DN2 

population that was depleted. In addition to a defect in T cell development, the 

cellophane mice also showed a reduced natural killer (NK) cell population in the spleen 

together with a lack of a discrete population of marginal zone (MZ) B cells. Splenic B 

cells of cellophane mice also proliferate poorly in response to B cell receptor dependent 

stimuli. All together we can conclude that Zeb1 likely plays an important role in early T 

cell development in the thymus68,69.  

Next to this developmental function, Zeb1 is also important in repressing several genes 

in mature T cells. As such Zeb1 represses Crtam (cytotoxic and regulatory T cell 

molecule) transcription in non-stimulated and stimulated T cells70. The EMT-TF also 

negatively regulates CD4 expression by competing with transcriptional activators E12 

and Heb at the CD4 gene promoter site71. Furthermore Zeb1 cooperates with Ctbp2 

and Hdac1 in order to repress IL-2, a cytokine expressed after T cell activation and 

important in proliferation and homeostasis of the activated cells22. 
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II.3 Zeb1 and Zeb2 are involved in a counterregulatory network that 

regulates the fate of CD8+ T cells 

 

Mature T cells can be subdivided into two major subsets on the basis of CD4 and CD8 

surface expression. CD4+ or T helper (Th) cells owe their name to the fact that they 

assist other cells during immune responses. Th cells help the maturation of B cells into 

plasma cells or memory B cells and the activation of macrophages or cytotoxic T 

lymphocytes (CTLs). This last type of T cells is characterized by the expression of CD8 

and is important in immunity against intracellular pathogens like viruses. When an 

intracellular infection is detected CD8+ T cells proliferate and differentiate into a 

heterogeneous population of effector T cells, which are able to destroy infected cells. 

About 90% of the antigen-specific effector cells are short-lived and terminally 

differentiated (TE). They can be distinguished through a Klrg1hiCD127lo surface 

expression. Klrg1loCD127hi expression marks the minority of CD8+ T cells after 

infection. These cells are long-lived multipotent memory precursors that facilitate a 

quick expansion of antigen-specific T cells upon secondary infection72,73.  

Zeb2 was found to be important in regulating CTL differentiation as a response to 

infection in mice. Zeb2 mRNA is, amongst T cells, almost exclusively detected in 

Klrg1hiCD127lo TE cells following infection. In these effector cells Zeb2 expression is 

directly induced by T-bet, another transcription factor shown to promote Klrg1hi effector 

cell differentiation. Zeb2 and T-bet cooperate to induce the expression of genes 

correlated with terminal differentiation and to repress the expression of the memory 

precursor program. Zeb2 and T-bet probably coordinately bind to the loci of several 

memory precursor genes. On those sites Zeb2 may prevent T-bet binding and 

subsequent T-bet dependent gene activation and/or directly repress transcription74,75. 

Furthermore, maturation of memory CD8+ T cells after viral infection is associated with 

Tgfβ induced expression of Zeb1, whereas both Tgfβ and the miR-200 family members 

selectively inhibit Zeb2 during this process. As such it was shown that Zeb1 is critical 

for memory T cell survival and function, protective recall response and the formation 

of central memory T cells76. In conclusion, Zeb1, Zeb2, Tgfβ and the miR-200 family 

members are involved in a counterregulatory network that regulates the fate of CD8+ 

T cells following viral infection74–76.  
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II.4 Zeb2 is important for NK cell maturation 

 

Natural killer (NK) cells are lymphocytes which recognize cells that are infected with 

an intracellular pathogen. They are able to kill the affected cells through the release of 

granules containing cytotoxic perforin and granzymes. NK cells are also important in 

cancer immunosurveillance, where they can distinguish malignant cells from healthy 

cells77. NK cells develop in the BM and after commitment they undergo maturation, 

during which they lose the capacity to proliferate and gain the ability to egress from the 

BM77,78. Three maturation stages can be identified on the basis of surface markers 

CD11b and CD27: CD11b-CD27+ (CD11b-), CD11b+CD27+ (DP) and CD11b+CD27- 

(CD27-)79 ,80. 

It was shown that Zeb2 has an important role in the terminal maturation of NK cells81. 

During NK cell maturation cells gradually express higher Zeb2 mRNA levels. Mice with 

a loss of Zeb2 expression specifically in the NK cell lineage display an accumulation 

of NK cells in the BM and a decrease in the blood and peripheral organs. The mice 

virtually lack the mature CD27- population in all organs. On the other hand Zeb2 

overexpression promoted NK cell maturation. Next to its role in maturation, Zeb2 is 

also essential for the survival of mature NK cells and the egression of these cells from 

the BM. Mice with NK cell specific Zeb2 knockout had a comparable phenotype with 

mice in which NK cells lack T-bet, a transcription factor known to be important in NK 

cell maturation, and van Helden et al. demonstrated that Zeb2 controls NK cell 

maturation acting downstream of T-bet. T-bet levels increase during the maturation 

process and this leads to the induction of Zeb2. In mature NK cells, T-bet and Zeb2 

control the expression of the same genes. In that way the T-bet/Zeb2 regulatory axis 

irreversibly induces terminal maturation in the NK cell lineage81.  

 

II.5 A function for Zeb2 in mast cell activation? 

 

Mast cells originate from progenitors in the bone marrow and undergo final maturation 

once they arrive at their destination, which is made up by epithelial and mucosal tissues 

throughout the body. These myeloid cells are best known for their involvement in the 

pathophysiology of many diseases like allergy, asthma and a range of different 
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malignancies, but they also function under homeostatic conditions in vasodilatation, 

angiogenesis and the innate and adaptive immune responses. Mast cells are activated 

through the aggregation of IgE receptors (FcεRI) on the cell surface after contact with 

antigen-IgE complexes. A phosphorylation mediated signaling transduction eventually 

leads to degranulation of preformed granules and the de novo synthesis of 

inflammatory mediators82.  

One study suggests a role for Zeb2 in regulating signaling in mast cells. Reduced Zeb2 

expression in an in vitro model for mast cell function resulted in a decreased expression 

of FcεRI and several other proteins involved in the signaling cascade following 

activation. Additionally, the phosphorylation of several transducers in this pathway was 

reduced. Eventually this led to a decrease in mast cell degranulation and cytokine 

release after FcεRI-mediated activation. Lowering Zeb2 expression also led to a block 

in cell cycle progression. Taken together, Zeb2 seems to control the expression of 

signaling molecules thereby regulating both early and late events in mast cell 

activation83. Experiments with in vivo models are necessary to validate these findings.  

 

II.6 Zebs in the mononuclear phagocyte system? 

 

The term ‘mononuclear phagocyte system’ (MPS) was first introduced by Van Furth 

during the late 1960s84. Initially the MPS was comprised of monocytes, macrophages 

and their BM precursors84, but later on also dendritic cells (DCs), consisting of 

plasmacytoid DCs (pDCs) and conventional DCs (cDCs) were included85. Although not 

a lot of research has focused on Zeb proteins in the MPS, we can find some evidence 

in literature that Zeb1 and Zeb2 could be important in mononuclear phagocytes. 

First, a possible role for both ZEB1 and ZEB2 was identified in human Langerhans 

cells (LCs), a type of macrophages present in the skin epidermis. LCs are specialized 

to recognize foreign proteins present in the epidermis, after which they migrate through 

the dermis into the skin draining lymph nodes (LNs) in order to initiate a specific 

immune response86. In the epidermis LCs are present in an immature status 

characterized by the expression of several epithelial adhesion molecules like 

E-Cadherin, Claudin-1 and Zonula occludens 3. Through these epithelial features LCs 

are able to form cell-cell contacts with epidermal keratinocytes and hence a crucial 
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step in LC migration is the downregulation of E-cadherin. This downregulation of 

adhesion is accompanied with the induction of mesenchymal markers like MMPs and 

certain integrins, but also N-cadherin. Konradi et al. showed with a human in vitro LC 

maturation system that the E-CADHERIN to N-CADHERIN switch goes hand in hand 

with an increased expression and nuclear localization of ZEB1 and ZEB2. The study 

provides a first hint on how Zeb proteins and EMT might facilitate LC mobilization and 

migration87. As the conclusions of Konradi et al. are based on in vitro work only, 

relevance of the results will have to be confirmed in in vivo settings.  

Additionally, Zeb2 has recently been identified in several genome-wide microarray and 

RNA-sequencing transcriptional analyses as potentially involved in cDC 

development88–90. Conventional DCs are further subdivided into cDC1s and cDC2s 

based on their ontogeny and function91 and Zeb2 was found to be specifically  

associated  with  cDC2  development. The transcription factor was found to be 

expressed in pre-cDC2s and cDC2s88,90, while being down-regulated in pre-cDC1s and 

cDC1s89. Furthermore, Zeb2 was found to be part of the pre-macrophage core profile92. 

Also, Cortés and colleagues showed that tumor associated macrophages depend on 

Zeb1 for their cancer-promoting capacities93. As most of the data on Zebs in the MPS 

presented here, is circumvential or based on in vitro experiments, the role of Zebs in 

mononuclear phagocytes remains unclear. As such, the main objective of this thesis 

will be to elucidate the role of Zeb proteins specifically in dendritic cells and 

macrophages and therefore the next part of this introduction will discuss these two cell 

types in detail. 
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III. Dendritic cells 

 

Dendritic cells or DCs were discovered by Steinman and Kohn in 1973. After 

dissociation of mouse spleen and adherence of the single cells to plastic or glass, they 

noticed a cell that had a different morphology than that of earlier described cell types. 

Dendritic cells are characterized by a large nucleus and owe their name to their long 

cytoplasmic projections that continuously elongate, retract and reorientate 

themselves94. A few years later it was found that DCs express high levels of MhcII, an 

antigen presenting peptide, on their surface and are capable of inducing specific T 

lymphocyte proliferation much more efficiently than other antigen presenting cells 

(APCs) discovered so far 95. Today, we know that the key function of DCs is to sample 

antigen in peripheral organs, followed by their migration to the draining LNs and 

presentation of the antigen to specific T cells. As such DCs form the crucial link 

between the innate and adaptive arms of the immune system96. 

 

III.1 Dendritic cell subsets and their function 

 

Dendritic cells are rare hematopoietic cells that reside in almost all tissues of the body. 

They are subdivided into two main classes: plasmacytoid DCs (pDCs) and 

conventional or classical DCs (cDCs)96.  

 

Plasmacytoid DCs 

Morphologically, pDCs resemble plasma cells and when activated they present a 

dendritic appearance. Their main function is the capacity to produce large amounts of 

type 1 interferon (IFN) upon stimulation with viral infections or certain Toll-like receptor 

(Tlr) ligands97–99. pDCs do not express MhcII and therefore are, compared to cDCs, 

inefficient at presenting antigen at steady state100. However, upon stimulation they can 

gain expression of MhcII and present antigen to CD4+ T cells and depending on the 

context this results in either CD4+ T cell activation or tolerance100–102. Murine pDCs 

express the DC marker CD11c (but at lower levels than cDCs), CD45R (B220), SiglecH 

and Bst2 on their cell surface103–106. Several cytokines are able to promote pDC 
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development:  fms-like tyrosine kinase 3 ligand (Flt3L), macrophage colony-stimulating 

factor (M-Csf or Csf1), thrombopoietin and interleukin-7 (IL-7)107–110. 

 

Conventional or classical DCs 

The term conventional or classical DC was first introduced by Steinman and refers to 

short-lived cells with a stellate morphology that have the capacity to migrate and 

stimulate naive T cells111. cDCs are seen as the professional APCs of the immune 

system. They form the bridge between the innate and adaptive immune response by 

sampling antigen after which they migrate to draining LNs in order to present antigenic 

peptides on MhcI and MhcII to naive T cells96. Depending on the co-stimulatory 

molecules on the surface and the cytokines produced by the cDCs, the T cells will 

proliferate and polarize in either antigen specific effector T cells or regulatory T cells 

(Tregs). Subsequently, the activated T cells will home to the tissue where the antigen 

was originally sampled by the cDC, and further orchestrate the immune response96,112. 

Murine cDCs are dependent on Flt3L for their development113,114 and are typically 

identified through the high expression of both surface markers CD11c and MhcII96. 

cDCs can be divided into two main subtypes, which have been termed cDC1s and 

cDC2s by Guilliams et al91. cDC1s are characterized by Xcr1 (X-C motif chemokine 

receptor 1) expression, CD8α expression in the spleen and CD24 or CD103 expression 

in the periphery. They are specialists in cross-presentation of antigen to CD8+ T cells 

and hence in defence against intracellular pathogens. cDC2s express CD172a (Signal 

regulatory protein alpha or Sirpα) and usually CD11b and function primarily to present 

antigen to CD4+ T cells thereby protecting against extracellular pathogens96,111. 

However, as CD172a is also expressed by LCs, other macrophages and certain 

monocyte-derived cells115 and CD11c expression can be downregulated on cDCs116, 

we must be careful when identifying cDC subsets using expression of these surface 

markers. Therefore, further analysis of cDC populations in this thesis will be based on 

a recently published flow cytometry approach developed by Guilliams et al. This 

method allows to correctly identify cDCs across different tissues based on their 

expression of CD11c and CD26, without contamination by F4/80+CD64+ 

macrophages115. 
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III.2 Dendritic cell development  

 

All DCs start their development from an HSC in the BM (Figure 4). HSCs give rise to 

progeny thereby progressively losing self-renewal capacity and gaining a further 

degree of commitment to specific immune cell lineages. Unravelling the complexity of 

DC development started with the discovery of the common myeloid progenitor or CMP. 

This CMP gives rise to all myeloid lineages (which comprises monocytes, DCs, 

granulocytes, platelets and erythrocytes), but has lost the ability to develop into 

lymphoid cells (T and B lymphocytes)117. The next milestone was the identification of 

the monocyte-DC precursor or MDP which lacks granulocyte, platelet and erythrocyte 

potential, but can generate monocytes, macrophages and dendritic cells118. MDPs 

further commit into a common dendritic cell precursor (CDP)119 capable of generating 

pDCs and cDCs120,121. Further differentiation of the CDP results in either a pre-pDC122 

or a pre-cDC119. Pre-pDCs develop into full mature pDCs within the BM, while pre-

cDCs migrate out of the BM to reach full maturity in peripheral tissues either as cDC1s 

or cDC2s. Recent advances in single cell analyses revealed that there exists 

heterogeneity in the pre-cDC population. In the BM and the spleen pre-cDCs can be 

found which are pre-committed to the cDC1- or cDC2-lineage and they were termed 

respectively pre-cDC1s and pre-cDC2s89,90 (Figure 4).  

 

III.3 Growth factors and cytokines in dendritic cell development 

 

The main cytokine regulating DC development is Flt3L. Ligation of Flt3L to its receptor 

fms-like tyrosine kinase 3 (Flt3) on the cell surface of DCs, results in downstream 

signalling mediated by Stat3 and the Pi3k/mTor pathway123,124. The importance of the 

Flt3L-Flt3 interaction in DC development is supported by in vivo studies influencing 

both Flt3L levels or expression and functioning of its receptor. As such Flt3L-treatment 

or the induction of Flt3L with a tetracyclin-inducible system in mice led to increased DC 

numbers125–127, while mice deficient for Flt3L showed a reduction in all DC 

populations114. On the other hand Flt3 negative BM progenitors are unable to 

differentiate into pDCs and cDCs in vitro128 and mice treated with a Flt3 tyrosine kinase 
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Figure 4 | Development of the different dendritic cell subsets. In the bone marrow hematopoietic 

stem cells (HSCs) subsequently develop into common myeloid progenitors (CMP), monocyte-DC 

precursors (MDP) and common DC precursors (CDP). CDPs further develop into pre-pDCs which give 

rise to mature pDCs in the bone marrow. pDCs will start circulating in the blood in order to seed 

peripheral tissues. The CDP also develops into the pre-cDC population which contains cells that are 

already pre-committed to the cDC1- and cDC2-lineage, the pre-cDC1s and pre-cDC2s respectively. 

Pre-cDC1s and pre-cDC2s will leave the bone marrow and enter peripheral tissues through the blood 

circulation, where they finally mature into cDC1s and cDC2s. 

 

inhibitor are deficient for all DC subsets129. Moreover, only Flt3-expressing BM 

precursors are capable of developing into DCs130. As culturing BM in the presence of 

Flt3L generates pDCs, cDC1s and cDC2s89, it is a widely used tool to investigate DC 
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development. In vitro generation of BM-derived cells using granulocyte-macrophage 

colony-stimulating factor (GM-Csf or Csf2) as a growth factor is also used in DC 

research, however these cultures only generate cDCs and macrophages, but not 

pDCs131. It was shown that Csf2 is involved in the homeostasis and survival of non-

lymphoid tissue CD103+ cDC1s and intestinal lamina propria CD103+ cDC2s132,133. 

Furthermore, addition of Csf2 to Flt3L BM-cultures increased the production of CD103+ 

cDC1s, a population generated in low amounts in cultures containing Flt3L alone134. 

However, Edelson et al. suggested that Csf2 signalling simply induces the expression 

of CD103 in cDC1s135 and hence the precise contribution of this growth factor to DC 

development remains unclear. Finally, few studies reported on a possible role for M-Csf 

or Csf1 in regulating DC development. As such it was shown that BM cultured in the 

presence of Csf1 generates pDCs and cDCs108 and that a Csf1 receptor reporter 

mouse contained labelled pDC and cDC populations108,136. 

 

III.4 Transcription factors in dendritic cell development and homeostasis 

 

Several transcription factors were proven to be important in the generation of all DC 

lineages. Core-binding factor subunit beta (Cbfβ) is essential early in DC lineage 

commitment. This TF is crucial for the development of the MDP in the BM and 

subsequently all DC subsets in the periphery137. Another general DC protein is Ikaros, 

as mice homozygous for a dominant negative form of this TF lack all DCs and the 

developmental requirement for Ikaros is cell intrinsic138.  It was also shown that Ikaros 

controls pDC differentiation and regulates terminal DC maturation and their capacity to 

induce a Th1 response139,140. A requirement for ETS (E26 transform-specific) family 

member Pu.1 in DC development was already highlighted in 2000141,142, but only a 

decade later Carotta and colleagues were able to resolve the mechanism behind this 

dependency. They identified that Pu.1 controls the expression of the Flt3L cytokine 

receptor in a dose-dependent matter143. Another protein controlling Flt3 expression, 

but also IL-7R expression, is Bcl11a. As such Bcl11a is required for the development 

of all DCs144,145.  Moreover, Gfi1 has a cell autonomous and non-redundant role in 

dendritic cell development. Gfi-/- mice show a global reduction in DCs and Gfi-/- 

hematopoietic progenitor cells are unable to develop into DCs, but instead differentiate 

into macrophages. In addition, Gfi was also shown to be important in DC maturation 
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and activation146. Mechanistically this could be ascribed to a decrease in Stat3, a TF 

important in DC development through its central role in Flt3L signalling147.  

 

pDC specific TFs 

The main TF regulating pDC development is E2-2. This member of the bHLH family of 

TFs is highly and preferentially expressed in human and mouse pDCs and its deletion 

leads to abrogated pDC development148. E2-2 not only functions during pDC 

development, but is also important in maintaining pDC cell fate, as deleting E2-2 in 

mature pDCs skews their gene expression towards a cDC-like signature149. It was 

shown that, together with helix-loop-helix protein Id2 (Inhibitor of DNA binding 2), E2-2 

is important at balancing pDC versus cDC commitment. Compared to Id2 expression 

during pDC development, cDC commitment is accompanied by increased expression 

of Id2. This increased Id2 expression during cDC development leads to increased 

formation of Id2/E2-2 complexes, which inhibits E2-2 to dimerize and perform its 

function as a transcriptional regulator150. Furthermore, E2-2 directly activates the 

expression of two other transcription factors important in the pDC lineage, namely 

Spi-b and Interferon regulatory factor 8 (Irf8)148. Spi-b is an ETS TF important in pDC 

development and functioning151. It is found to be exclusively expressed in the pDC 

lineage and its knockdown inhibits pDC development152. Spi-b acts through controlling 

survival of pDCs and pDC progenitors by directly upregulating the anti-apoptotic 

protein Bcl2a1153. The first clue that Irf8 is important for pDCs came from the 

observation that Irf8 KO mice lack the pDC population154,155.  Later on it was confirmed 

that Irf8 contributes to pDC development by regulating Flt3L-mediated differentiation156  

and in 2014 Amit and colleagues stated that Irf8 governs the establishment and 

maintenance of pDC-specific enhancer states and gene expression157. However, 

recently it has been proven that Irf8 is not intrinsically required for pDC development, 

but is required for proper functioning of the cells. Sichien et al. showed that loss of Irf8 

expression in pDCs affects their ability to produce type I IFNs and their capacity to 

activate and induce proliferation of CD4+ T cells158. 
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cDC specific TFs 

The expression of zinc finger transcription factor Zbtb46 (zDC) is, among mononuclear 

phagocytes, restricted to pre-cDCs and cDCs and therefore useful as a marker for 

cDCs versus pDCs and macrophages159,160. Zbtb46 is additionally expressed by some 

vascular endothelium, at low levels in the megakaryocyte-erythroid progenitor 

(MEP)159 and in Langerhans cells161. Zbtb46 is a TLR-responsive protein that helps in 

the prevention of cDC maturation during steady state conditions162. Although it is a 

marker for cDC commitment, it is not required for cDC development159,162. 

Nevertheless, its discovery as a cDC specific TF will help in the development of tools 

to study DC functions, such as the recently developed zDC-DTR160 and zDC-CRE163 

mice. 

 

cDC1 specific TFs 

Next to general DC TFs, also specific TFs for cDC1 commitment and terminal selection 

were identified. One such TF, already discovered in 2003, is Id2. Mice lacking Id2 

expression show a reduction in splenic cDC1s164,165. It was suggested that Id2 

expression in cDC1s is induced by Tgfβ164. Later on it was confirmed that Id2 is actually 

expressed in all cDC subsets, but is expressed at the highest level by the cDC1 

lineage166. A second cDC1 specific TF is Batf3. Deletion of Batf3 ablates cDC1 

development in lymphoid tissues167 and Batf3 KO mice also lack cDC1s in peripheral 

non-lymphoid tissues135. Batf3 already determines cDC1 fate at the level of the pre-

cDC1 by maintaining auto-activation of Irf8, which is important at different steps of 

cDC1 development89. Irf8 is not only crucial for the generation of the pre-cDC1 out of 

the CDP, but also for the further commitment of the pre-cDC1s towards mature 

cDC1s89,168. Additionally, it has been shown that Irf8 functions as a terminal selector in 

mature cDC1s, as it is crucial to maintain the cDC1 identity throughout its lifespan158. 

Probably acting in the same network as previously mentioned TFs, is basic leucine 

zipper Nfil3. Nfil3 KO mice show a selective defect in cDC1 development and pre-cDCs 

from these mice have a reduced expression of Batf3, suggesting that Nfil3 acts 

upstream of Batf3169.  Although all four TFs presented so far have their role in the cDC1 

lineage, not all of them are strictly required. As such it was shown that forced 

expression of Id2 and/or Batf3 in BM from Irf8-/- mice is not sufficient to induce cDC1 
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development170. Furthermore, experiments with short-term BM reconstitution showed 

that expansion of cDC1s upon viral infection takes place in the absence of Id2, Nfil3 

and Batf3, but not in the absence of Irf8171.  Based on these studies it was suggested 

that Irf8 acts upstream of Batf3 and Id2 in the cDC1 developmental program170, but 

how the different TFs are exactly intertwined needs to be determined. 

 

cDC2 specific TFs 

A number of transcription factors were shown to be important in terminal differentiation 

and survival of cDC2s, but so far those determining early cDC2 lineage commitment 

have not been identified. While Irf8 expression is specific for cDC1s, another interferon 

regulatory factor, namely Irf4 is expressed by cDC2s. Although initially thought to be 

required for cDC2 generation156,172, it has since been shown that Irf4 does not function 

during the development of the cDC2 lineage. Rather, it seems that Irf4 plays a role in 

survival or function of terminally differentiated cDC2s or is only required by certain 

subsets of cDC2s. As such, Persson et al. identified how intestinal CD103+ cDC2s, but 

not their CD103- counterparts, are dependent on Irf4 for their survival173. Furthermore, 

Bajaña and colleagues showed how Irf4 is required by CD24+, but not CD24- cDC2s 

in the lung and by CD4+, but not CD4- cDC2s in the spleen168. Additionally, Irf4 is 

essential for the migration of cDC2s from peripheral tissues to draining LNs168,173,174 

and for the priming of Th responses175, such as the Th2 response in house dust mite 

driven asthma176. Meanwhile others identified that DC specific Notch2 deletion 

revealed a cDC2 subset specifically requiring this protein. The mice showed an 

ablation of Esamhi cDC2s in the spleen and a loss of CD103+ cDC2s in the lamina 

propria of the intestine177,178. The deficiency for Notch2 in DCs resulted in a reduced 

capacity to induce a Th17 response and an impaired IL-23 production following 

Citrobacter rodentium infection177. Also Klf4 seems to be an important TF for cDC2s, 

as deletion of this protein leads to a reduction of cDC2s in all lymphoid and peripheral 

tissues. As for Notch2, not all cDC2s are affected, pointing to the presence of Klf4-

dependent cDC2 subpopulations179. As such it was shown that in the skin dermis and 

the lung it are respectively the CD11b- cDC2s and the CD24+MgI2+ cDC2s that require 

Klf4179. Mice with a deficiency for Klf4 in DCs are susceptible to Schistosoma mansoni 

helminth infection and protected against house dust mite allergy induced asthma, due 

to a defective Th2 response179. Next to these more recent reports on Notch2, Klf4 and 
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Irf4, two other TFs were reported much earlier. Mice that are knockout for Irf2 have a 

selective defect in cDC2s, though this was only evaluated in the spleen180. Additionally, 

the results are based on full KO mice and further research to a possible role for Irf2 in 

cDC2s across tissues using a DC specific KO is required. Also the finding that cDC2s 

may depend on TF Relb, needs more detailed research. Again this study only showed 

dependency in the spleen and used mice with a mutation in the Relb gene, of which it 

is not clear if this leads to lack of expression or the expression of a dominant negative 

form of the Relb protein181.  
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IV. Macrophages 

 

Macrophages were first discovered by Metchnikoff in 1883. He described how 

phagocytic cells in frogs are not only important in host defense against pathogens, but 

are also able to eliminate degenerating or dying cells in the tissue182,183. Later on 

macrophages were classified based on morphology, function, kinetics and origin into 

the ‘mononuclear phagocyte system’ (MPS)184, comprising monocytes, macrophages 

and DCs85. Originally the MPS also included BM promonocytes, which were at the time 

believed to be the sole progenitors of monocytes and macrophages185.  In recent years 

however it has become clear that the diversity in tissue macrophages is originating 

from a multi-layered developmental process that takes place in the developing embryo 

and the post-natal BM186. 

 

IV.1 Macrophages and their functions 

 

Macrophages can be found in all tissues throughout the adult body and in each tissue 

they have a unique name. Macrophages localised in the brain are called microglial 

cells, while in the liver they are named after the person who identified them and termed 

Kupffer cells. The names of splenic and lung-residing macrophages depend on the 

specific niche in which they reside. As such we find red pulp macrophages and 

marginal zone macrophages in the spleen and alveolar and interstitial macrophages in 

the lung187,188. Langerhans cells or LCs are skin residing phagocytes189 and although 

LCs share many features with cDCs, it was suggested to classify them as 

macrophages based on their ontogeny91. This last subset of macrophages will be 

discussed in a separate paragraph (IV.5). 

In mice, tissue-resident macrophages are typically expressing the following surface 

markers: Csf1R which is the receptor for M-Csf or Csf1, integrin CD11b, Fcγ receptor 1 

(CD64), MerTK and F4/80189. In some tissues they also express CD11c and MhcII, two 

markers used to delineate dendritic cells. Moreover, some cDC2s also express the 

macrophage marker F4/80. In order to avoid inclusion of cDC2s in the macrophage 

gate, it was recently suggested to always define macrophages as F4/80+CD64+ when 
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using flow cytometric analysis. Additionally, this accurate identification of macrophages 

avoids contamination of CD11c+MhcII+ DCs115. 

Macrophages have a range of diverse functions in immune defense and tissue 

homeostasis. The phagocytic cells not only help clearing infections by enhanced 

phagocytosis of pathogens which have been opsonized by antibodies or complement 

factors, they are also able to recognize pathogens in order to initiate host defense. For 

this macrophages are equipped with pattern recognition receptors (PRRs) on their cell 

surface or in their cytoplasm, which allows them to interact with so called pathogen 

associated molecular patterns or PAMPs190. Interaction of PRRs with microbial 

pathogens induces the expression of pro-inflammatory cytokines and chemokines, 

which results in the influx of inflammatory leukocytes among which are neutrophils and 

monocytes187. However, in order to avoid excessive or permanent damage in an 

inflamed tissue, it is important to also resolve inflammation and return to a normal 

tissue homeostasis. Macrophages also function during this resolution and the 

restoration of equilibrium after injury in many tissues191–196. The process mostly starts 

with efferocytosis, which is the phagocytosis of apoptotic inflammatory cells, like 

neutrophils, by macrophages197,198.  Following efferocytosis, resident and recruited 

monocyte-derived macrophages shift from a pro-inflammatory to an anti-inflammatory 

state, promoting resolution of inflammation and tissue repair191–196.  

Macrophages clearly assist to restore tissue balance after injury and inflammation, but 

also during steady state they are responsible for maintaining tissue homeostasis, and 

in some instances they even support the development of a tissue. In the lung for 

instance, alveolar macrophages (AMs) are responsible for phagocytosis of dust, 

senescent cells and allergens191. Next to that AMs contribute to catabolism of 

surfactants in the lung. Absence of AMs leads to accumulation of surfactants in the air 

spaces and eventually to pulmonary alveolar proteinosis199,200. Additionally, Kupffer 

cells were shown to support iron201 and lipid200,202 metabolism in hepatocytes. Also 

splenic red pulp macrophages are implicated in the recycling of heme-associated 

iron203,204. In the gastro-intestinal tract, macrophages are not only responsible for 

removal of senescent and dying cells, but also support the integrity of the epithelial 

barrier205,206. BM-resident macrophages are essential for the development of red blood 

cells (RBCs) and also at the end of their lifetime senescent RBCs are again cleared by 

tissue residing macrophages207. As a final example of tissue-specific accessory 
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macrophage functions, microglia have been shown to contribute to synaptic maturation 

in developing brain 208. 

 

IV.2 Macrophage development 

 

For decades it was believed that all tissue-resident macrophages develop from 

circulating monocytes. The idea was that blood monocytes originate from BM 

progenitor cells or promonocytes, migrate into the different tissues and further give rise 

to tissue-resident macrophages209,210. However, more recently it was shown that 

tissue-resident macrophages already develop in the embryo alongside their tissue and 

are able to maintain their pool during adult life without influx from adult blood 

monocytes211. Yolk sac macrophages and fetal liver monocytes are the embryonic 

macrophage precursors that colonize the tissues before birth212. Yolk sac 

macrophages develop from erythro-myeloid progenitors (EMPs) that develop during 

primitive hematopoiesis from yolk-sac blood islands and yolk-sac hemogenic 

endothelium212,213. For the development of fetal liver monocytes, there are currently 

two hypotheses. The first hypothesis is that late yolk sac EMPs home to the fetal liver, 

where they expand and further differentiate into fetal liver monocytes214. In the second 

hypothesis pre-hematopoietic stem cells (pre-HSCs) produced in the aorta-gonad-

mesonephros home to the fetal liver, where they subsequently develop in fetal liver 

HSCs, which in turn give rise to fetal liver monocytes215 (Figure 5) .  

Fetal liver monocytes will next colonize all tissues in the embryo, except for the brain, 

proliferate and develop into macrophages (Figure 5). Indeed, brain resident 

macrophages or microglia solely develop from yolk sac progenitors213,216–218 and this 

is probably due to the closure of the blood-brain barrier before fetal liver monocytes 

can colonize the embryonic brain215. Whether yolk sac macrophages also contribute to 

other adult tissue-resident macrophages than microglia remains matter of debate. 

While Schulz et al. suggest that most tissue-resident macrophages are derived from 

yolk sac progenitors217, others showed contribution of fetal liver monocytes to tissue-

resident macrophages in the lung alveolar space, liver, spleen, peritoneal cavity and 

heart211,212,219,220. Besides a population of tissue-resident macrophages that maintains 

itself through local proliferation, tissues often contain a subpopulation of macrophages 
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that are derived from adult circulating monocytes. Monocytes start their development 

in the BM from an HSC subsequently differentiating into a CMP, MDP and common 

monocyte progenitor (cMoP) to ultimately start circulating in the blood as a 

monocyte118,221,222 (Figure 5). The precise contribution of adult blood monocytes to the 

macrophage pool is tissue-dependent and was among others shown for cardiac 

macrophages223,224, dermal macrophages in the skin225, intestinal macrophages226, 

Kupffer cells227 and pancreas-resident macrophages228. In some tissues the 

proliferation rate of the embryonic-derived macrophages declines and with age the 

relative contribution of blood monocytes to the macrophage pool increases. This is for 

instance the case for cardiac macrophages and the macrophage population in the 

intestinal mucosa223,226. 

Figure 5 | Development of tissue-resident macrophages. During primitive hematopoiesis in the 
embryonic yolk sac the erythro-myeloid progenitor (EMP) differentiates into a yolk sac macrophage 
(Mφ), which will colonize the brain and other tissues before birth, where they develop into tissue-resident 
macrophages that maintain themselves in the adult tissue through local proliferation. Fetal liver 
monocytes arise from late EMPs or pre-hematopoietic stem cells (pre-HSCs) that migrate to the fetal 
liver from the yolk sac or aorta-gonad-mesonephros respectively. Fetal liver monocytes will seed all 
embryonic tissues, except the brain, were they proliferate and differentiate into tissue-resident Mφ that 
self-maintain throughout adult life. Hematopoietic stem cells in the adult bone marrow subsequently 
develop into common myeloid progenitors (CMP), monocyte-dendritic cell precursors (MDP), common 
monocyte progenitors (cMoP) and ultimately into monocytes that start circulating in the blood. 
Monocytes will enter adult tissues where they will further develop into monocyte-derived macrophages. 
Monocytes are also able to develop into self-renewing tissue-resident macrophages. 
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IV.3 Growth factors and cytokines in macrophage development 

 

Several cytokines or growth factors have been shown to regulate macrophage 

numbers and their function. M-Csf or Csf1 is commonly used to generate macrophages 

from BM in vitro. Its role was discovered through the use of the Csf1op/op mice, which 

carry a mutation in the coding region of the Csf1 gene229. These mice show a reduced 

number of macrophages in different tissues, like bone, liver, spleen and kidney230,231. 

Csf1 is expressed by different cell types among which are endothelial cells and 

osteoblasts232,233. The cytokine functions through its receptor Csf1R234 and upon 

ligand-receptor binding, autophosphorylation is followed by a cascade of intracellular 

signals to further regulate survival and homeostasis of the cell235. Csf1 typically induces 

an immunosuppressive polarization of the macrophage, just like IL-34 which signals 

through the same Csf1R236. However, IL-34 is less efficient in stimulating receptor 

phosphorylation and subsequent macrophage proliferation, due to a lower affinity of 

the receptor for IL-34 compared to Csf1237. IL-34 specifically regulates the 

differentiation of LCs and microglial cells, coinciding with its expression in skin 

keratinocytes and neurons in the brain238,239. In contrast to Csf1 and IL-34, Csf2 (or 

GM-Csf) causes a polarization of the macrophage to a pro-inflammatory state240. This 

is in accordance with elevated levels of Csf2 in inflammatory and auto-immune 

diseases, where it is produced by a variety of cell types241,242.  

 

IV.4 Transcription factors regulating macrophage development and identity 

 

Despite being derived from a limited number of progenitors (yolk sac macrophages, 

fetal monocytes and blood monocytes), gene expression among tissue-resident 

macrophages is immensely heterogeneous243,244. This tissue-specific expression 

allows tissue-resident macrophages to perform their tissue-specific functions and it 

implies that macrophages are highly influenced by the micro-environment in which they 

reside245. It was suggested that local signals induce the expression of tissue-specific 

TFs that regulate the development, function and identity of tissue-resident 

macrophages. Bach1 for instance was shown to play a role in splenic red pulp 

macrophages. In monocytes, Bach1 is a transcriptional repressor of Spi-c, a protein 
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that is required for the development of splenic red pulp macrophages. A typical feature 

of the splenic tissue environment is the presence of heme, derived from senescent 

RBCs. This heme induces the degradation of Bach1 and subsequently the expression 

of Spi-c, allowing macrophage development203. Another tissue-specific signal that 

regulates tissue-resident macrophages is retinoic acid. It induces expression of TF 

Gata6 in peritoneal macrophages and in that way controls their localization and 

functional polarization246. Looking at the lung environment, it seems that Csf2 induces 

expression of nuclear receptor Pparγ in fetal monocytes. Functioning as a TF, Pparγ 

regulates perinatal development of AMs and governs the specific identity of these 

cells247. C/Ebpβ also plays a role in the generation of AMs, as mice deficient for this 

TF lack AMs as well as functional large peritoneal macrophages248. It is likely that the 

tissue-specific TFs mentioned here cooperate with the more general factor Pu.1. Upon 

binding to the DNA, Pu.1 controls nucleosome remodelling and H3K4 mono-

methylation and is thus able to change the chromatin landscape and determine gene 

expression244,249. It has been proposed that all macrophages have a common 

enhancer repertoire, but that the tissue-specific TFs, which are induced by signals in 

the local environment, collaborate with Pu.1 to establish tissue-specific enhancers250. 

This would explain the immense differences in gene expression between different 

tissue-resident macrophage populations. 

Recently, research focused on the heterogeneity of macrophages from one tissue to 

another, but factors that govern macrophage identity across tissues remain unknown. 

Gautier et al. explored gene expression across multiple tissue-resident macrophages 

and found that only a small core of a few hundred genes were selectively expressed 

by macrophages compared to DCs. TFs predicted to regulate this core macrophage 

signature are Tcfe3, C/Ebpα, Creg-1 and Bach1243. However, the gene signature in 

this study was only based on four different tissue-resident macrophages and most of 

the genes were not shared among all four macrophage populations. More recently, 

Geissmann and colleagues defined a set of genes that is differentially expressed 

during the differentiation from EMP to macrophage92. One TF identified in this core 

macrophage program was Zeb2 and therefore investigating the role of this TF in the 

macrophage lineage is one of the aims of this thesis. 
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IV.5 Langerhans cells 

 

Langerhans cells or LCs are mononuclear phagocytes that reside in the skin epidermis, 

where they sample antigen. Upon activation they migrate through the dermis to skin 

draining LNs in order to prime CD4+ T cells86. LCs display a lot of DC-like features, 

such as their stellate morphology, surface expression of CD11c and MhcII and the 

ability to migrate and present antigen150,251. Therefore they were previously considered 

to be dendritic cells, but based on recent advances in the ontogeny-research on LCs, 

it was decided to classify them as macrophages91. Indeed, LCs develop from yolk sac 

macrophages and fetal liver monocytes in the embryo and maintain themselves 

through local proliferation in the adult skin217,252,253. Additionally, LCs do not depend on 

the DC-associated growth factor Flt3L, but on the macrophage-associated factors Csf1 

and IL-34238,239,254. Interestingly, a recent study combined lineage-tracing of 

macrophages and dendritic cells, respectively based on Mafb and Zbtb46161. As LCs 

were marked by both system, this re-enforced the finding that LCs share features of 

both DCs and macrophages.  

Several transcription factors are of importance for the development of LCs. As such 

Runx3-/- mice completely lack LCs in their skin epidermis255. Mechanistically, Runx3 is 

part of the Tgfβ-signalling pathway and LCs require autocrine and paracrine Tgfβ for 

their differentiation256,257. Furthermore, Irf2 and Id2 are implicated in LC development, 

as both Irf2 and Id2 KO mice showed reduced numbers of LCs164,180. 

 

IV.6 Monocyte-derived cells with macrophage- and DC-features 

 

During inflammation high numbers of monocytes are recruited to the affected tissue, 

were they further mature into monocyte-derived cells (MCs) that show both DC-like 

and macrophage-like features215. MCs exert many functions during inflammation, such 

as migration to the draining LNs, antigen-presentation and clearance of 

pathogens258,259. MCs showing pre-dominantly DC-associated features, such as their 

morphology, migration to draining LNs and expression of typical cDC markers (CD11c, 

MhcII, CD80 and CD86), are often referred to as moDCs260–262. Human moDCs can be 

cultured starting from blood or BM monocytes, when supplemented with CSF2 and 
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IL-4263. These in vitro derived moDCs are routinely used in human DC-based 

immunotherapy against cancer264. On the other hand, MCs showing more 

macrophage-like characteristics, for instance expression of F4/80, are often referred 

to as moMφs192,194–196. However, moDCs and moMφs often display surface markers 

and functions related to DCs and macrophages. Moreover, a recent lineage-tracing 

study demonstrated that the so-called moDCs lack expression of the DC-associated 

Zbtb46, but do express the macrophage-related Mafb161. MoDCs and moMφs probably 

represent the same highly plastic population that arises from monocytes during 

inflammatory settings and therefore it was suggested to no longer make a distinction 

and refer to them as MCs215.  

  



35 

 

V. Leukemia: when ZEB proteins are out of balance in the 

immune system 

 

As discussed above, Zeb proteins have a physiological role in a range of different 

immune cells. Considering this, it is not a surprise that genetic events changing the 

levels of Zeb proteins can have serious consequences and lead to the development of 

lymphomas and leukemias. One aim of this thesis was to contribute to the development 

of mouse models that allow to study the role of Zeb proteins in leukemia and can 

eventually be used to develop better therapies. Thus, here I will summarise what is 

known on how ZEBs function as tumor suppressors or oncogenes in hematological 

malignancies (Table 1). In several types of malignancies originating in the T cell 

lineage, ZEB1 acts as a tumor suppressor. ZEB2 on the other hand has been 

described as an oncogene in ETP-ALL, an immature form of T cell acute lymphoblastic 

leukemia (T-ALL). For some B cell malignancies ZEB1 was shown to be oncogenic, 

while in other B cell malignancies ZEB2 acts as a tumor suppressor. Additionally, both 

ZEBs have been associated with oncogenic function in acute myeloid leukemia (AML), 

while ZEB2 might act as a tumor suppressor in blastic plasmacytoid dendritic cell 

neoplasm (BPDCN), a rare malignancy believed to originate from pDC precursors. 

 

Table 1 | ZEBs as oncogenes or tumor suppressors of leukemia. Table showing the known and 

suggestive oncogenic and tumor suppressive roles for ZEB1 and ZEB2 in various leukemias. 

 



36 
 

V.1 ZEBs have opposing roles in T cell malignancies 

 

ZEB2 acts as an oncogene in immature T cell lymphoblastic leukemia 

T cell acute lymphoblastic leukemia or T-ALL is an aggressive hematological cancer 

of thymic T cell progenitors that gradually accumulate epigenetic and genetic changes, 

leading to a block in differentiation, increased survival and proliferative expansion of a 

malignant clone265,266. Over the last decade, the prognosis of T-ALL has gradually 

improved with the introduction of intensified chemotherapy for young patients. 

However, the outcome of T-ALL patients with primary resistant or relapsed disease 

remains poor267. 

One subgroup of T-ALL can be identified by a gene expression signature similar to that 

of an early T cell precursor (ETP), the most early T cell lineage progenitor that resides 

in the thymus268. Patients with ETP-ALL suffer from the most aggressive form of T-ALL 

and have the worst prognosis269. Goossens et al. identified a rare but recurrent 

translocation involving ZEB2 and BCL11B in immature/ETP-ALL, suggesting a role for 

ZEB2 in the disease. It was hypothesized that this translocation retains ZEB2 

expression during T cell commitment, leading to a differentiation block and leukemic 

transformation270. Hematopoietic-specific Zeb2 overexpression in the mouse was 

sufficient to spontaneously develop T-ALL with an immature expression profile and 

profound similarities to the human disease. Overexpression of Zeb2 resulted in 

increased expression of the IL-7 receptor (IL7R) and aberrant activation of the IL7R-

Jak/Stat signalling pathway. Additionally, Zeb2 overexpression was associated with 

the acquisition of enhanced leukemia stem cell properties270. Furthermore, mouse and 

human ETP-ALLs characterized by increased Zeb2 levels, were shown to be highly 

dependent on lysine-specific demethylase Kdm1a activity for their survival. It was 

demonstrated that disruption of the ZEB2-KDM1A protein interaction or inhibition of 

KDM1A activity itself, should be considered as a novel therapeutic strategy for ETP-

ALL patients in which ZEB2 acts as a driving oncogene271. 
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ZEB1 acts as a tumor suppressor in T cell malignancies 

In contrast to ZEB2, ZEB1 seems to act as a tumor suppressor in T cell derived 

hematological neoplasms. First, ZEB1 was identified as an essential downstream 

mediator of the LMO2 oncogene in T-ALL272. During T-cell development LMO2 

expression can be detected in early T cell progenitors, but is downregulated from the 

DN stage on273. Aberrant overexpression leads to an arrest in development and can 

be considered as an oncogenic event in T-ALL274. Two observations were suggestive 

of a link between Lmo2 and Zeb1 in T-ALL. First KO of Zeb1 and overexpression of 

Lmo2 in mice cause a similar arrest in T cell development and both mouse models 

spontaneously develop T cell lymphoma/leukemia with a median onset of six 

months68,274. Secondly, an inversely correlated expression pattern of both genes was 

detected in samples from leukemia patients. LMO2 inhibits ZEB1 activity in two ways: 

it inhibits ZEB1 transcription and it binds to the NZF of ZEB1 preventing ZEB1 to 

perform its positive regulatory activity on its target genes272. Through this mechanism, 

ZEB1 can be considered as a tumor suppressor in T-ALL. 

Expression analysis of genes mapped within a common breakpoint cluster in the 

10p11.2 region of adult T cell leukemia/lymphoma patients (ATLL), suggested that 

ZEB1 may act as a tumor suppressor in this T cell malignancy275. ATLL is caused by 

infection with the human T-lymphotropic virus-1 (HTLV-1), which is for instance 

endemic in certain regions of Japan276. People typically get infected around birth and 

about 5% of them develop ATLL with a latency period that can be as long as fifty years, 

which suggests the need of extra tumorigenic events277. Phenotypic analysis revealed 

that around 80% of patients show a malignant expansion of CD4 SP T lymphocytes. 

The other phenotypes (CD8 SP, DN and DP) are approximately equally distributed 

among the rest of the patients278. Most ATLL cell lines and primary cells display low 

mRNA expression levels of ZEB1, as a consequence of either chromosomal 

translocations with heterozygous deletion, intragenic mutations or epigenetic 

dysregulation275. Further confirmation came from the ΔC-fin mouse expressing a 

truncated form of Zeb1 lacking the C-terminal zinc fingers68. 84% of these mice 

develop T cell leukemia/lymphoma with a median onset of six months and a dominant 

phenotype of CD4 SP T cells, similar to the human disease275. Mechanistically, low 

ZEB1 levels may result in resistance to TGFβ1 mediated growth arrest. Binding of 

TGFβ1 to its receptor activates its kinase activity, leading to phosphorylation of 
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receptor-associated SMAD proteins. These phospho-SMADs accumulate in the 

nucleus as dimers, and in conjunction with other transcription factors, like ZEB1 and 

ZEB2, they bind regulatory elements within their target gene promoters23,25,279. As an 

example, TGFβ1 stimulation induces cell cycle arrest in various tumor cell types via 

the direct upregulation of the cyclin dependent kinase inhibitor p21280. ATLL cells with 

low ZEB1 levels appear to be resistant to these anti-proliferative effects of TGFβ1 and 

overexpression of ZEB1 restored the TGFβ1-mediated growth suppression in these 

cells, associated with increased p21 expression. In more detail, ZEB1 expression, and 

its direct binding to the phospho-SMAD3 complex, was demonstrated to be essential 

for the recruitment of this complex to the SMAD-response element (SRE) within the 

p21 promoter281. 

Furthermore, aberrant ZEB1 expression has been linked to two types of cutaneous T 

cell lymphoma (CTCL): Mycosis fungoides (MF) and Sézary syndrome (SS). MF and 

SS are two types of mature T cell neoplasms with a CD4 SP phenotype282. MF arises 

due to a clonal expansion of skin-homing CD4+ T cells. SS can arise de novo, but is 

mostly identified in patients already suffering from MF and can be considered as the 

leukemic variant of MF. Three diagnostic criteria are used for SS: erythroderma, 

lymphadenopathy and circulating CD4+ T cells with convoluted nuclei (also called 

Sézary cells)283. Several genetic alterations targeting ZEB1 have been reported in both 

forms of CTCL, including translocations, mutations and both heterozygous and 

homozygous deletions284–288. Mishra et al. also reported on the involvement of ZEB1 

in the pathogenic role of IL-15 signalling in CTCL. CTCL patients overexpressing IL-15 

show a reduced binding of ZEB1 due to hypermethylation of the ZEB1 binding sites in 

the IL-15 promoter. As such ZEB1 is no longer capable of repressing IL-15289. All 

together these loss of function alterations of ZEB1 suggest that the transcription factor 

acts as a tumor suppressor in cutaneous T cell lymphoma.  
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V.2 ZEBs in B cell malignancies 

 

Altered ZEB1 expression and mutations have been associated with two types of B cell 

malignancies, namely mantle cell lymphoma (MCL) and diffuse large B cell lymphoma 

(DLBCL), while deleterious alterations in the ZEB2 locus have been associated with B 

cell acute lymphoblastic leukemia (B-ALL). 

 

ZEB1 acts as an oncogene in MCL 

MCL is an infrequent subtype of non-Hodgkin B cell lymphoma with a high response 

rate to chemotherapy, but the majority of patients relapses290,291. The genetic 

characteristic for MCL is the translocation of cyclin D1 to the Ig heavy chain enhancer 

resulting in overexpression of cyclin D1. This genetic event occurs at the pre-B stage, 

but the tumor is composed of mature B lymphocytes290,291. Half of MCLs display 

constitutive active Wnt-signalling, with nuclear localization of β-catenin and 

concomitant high expression of ZEB1. Downregulation of ZEB1 expression in MCL cell 

lines reduced their tumor growth capacity in mouse xenograft models. Furthermore, 

the cell lines with reduced ZEB1 expression were more sensitive to 

chemotherapeutics, associated with a differential expression of drug influx and efflux 

transporters and genes involved in cell survival and apoptosis292. Therefore, this study 

suggests that ZEB1 could serve as a potential predictive biomarker and putative 

therapeutic target in MCL. 

 

ZEB1 acts as an oncogene in DLBCL 

DLBCL is the most common type of adult non-Hodgkin lymphoma282. Standard therapy 

consists of cyclophosphamide, vincristine, prednisone and doxorubicin (CHOP), 

combined with the anti-CD20 monoclonal antibody rituximab293,294. ZEB1 can be 

considered as an oncogene in DLBCL for several reasons. First, strong nuclear 

immunohistochemical staining for ZEB1 was associated with an adverse 3-year overall 

survival of DLBCL patients, compared to those with no or weak nuclear ZEB1 

staining295. Secondly, higher levels of the miR-200 family, a micro-RNA family known 

to negatively regulate ZEB1 mRNA levels, results in less aggressive behaviour of the 

disease296. Helicobacter pylori positive gastric DLBCLs, which typically show lower 
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ZEB1 expression, have less lymph node metastasis, better response to chemotherapy 

and are less aggressive296. This last subgroup is also characterized by higher 

expression levels of BCL6, a known predictor of better prognosis in DLBCL297 and a 

direct target of ZEB1298. Combined, these expression data suggest that ZEB1 may act 

as an oncogene in this type of non-Hodgkin lymphoma. 

 

ZEB2 acts as a tumor suppressor in B cell malignancies 

Interestingly, loss and not gain of 2q22.3, the genomic region spanning the ZEB2 locus, 

has been recurrently observed in B cell lymphoma patients299. In addition, rare but 

recurrent ZEB2 point mutations were found in B-ALL300, the most common childhood 

malignancy that initiates in the BM with oncogenic transformation of B cell progenitors. 

Depending on the cell of origin, several subtypes of B-ALL can be identified: early pre-

B-ALL or pro-B-ALL, pre-B-ALL, common B-ALL and mature B-ALL301. Interestingly, in 

all five reported B-ALL patients with a mutant ZEB2 locus, a single amino acid change 

affected the C-terminal zinc fingers of the TF300. Zhou and colleagues also reported a 

ZEB2-PDGFRB translocation in one B-ALL patient. In this translocation event, the C-

terminal zinc finger cluster of ZEB2 is missing and in frame fused to the catalytic 

domain of the platelet-derived growth factor receptor B (PDGFRB)302. However, no 

additional data is available whether this chimeric protein is expressed, functional and 

whether it contributes to the disease progression. The notion that ZEB2, or a mutant 

version, may play an important role in the initiation and/or progression of B-ALL is 

further supported by the observed high occurrence of viral insertions at the Zeb2 locus 

in two independent retroviral mutagenesis screens using mouse models that are 

predisposed to spontaneously develop B-ALL, the Calm-af10 transgenic and the 

heterozygote Pax5-/+ mice303,304. Nonetheless, no information is available whether 

these viral integrations result in loss or gain of Zeb2 function. 

Combining the mutation data of the human patients and the mutagenesis screenings 

in the B-ALL mouse models, we hypothesize that Zeb2 acts as a tumor suppressor in 

B cell malignancies, in contrast to Zeb1, which seems to act as an oncogene. More 

research with conditional Zeb1/2 gain or loss of function mouse models, using a B cell 

restricted CRE line, will be necessary to further test this hypothesis.  
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V.3 ZEBs in myeloid malignancies 

 

ZEBs act as oncogenes in AML 

Acute myeloid leukemia or AML is a clinically and genetically heterogeneous 

malignancy, characterized by an uncontrolled accumulation of immature myeloid cells 

in the BM and the blood of the patient. This accumulation of blast cells, and the 

cytokines they produce, interfere with normal hematopoiesis which leads to a general 

deficiency of hematopoietic cells. The main diagnostic criterion for AML is the presence 

of 20% or more of such blast cells in the blood and/or BM305,306. It’s a rare, but 

aggressive disease with a median onset age of 65 years and occurring more in men 

than in women305. Despite rapid advances in the field, including new drug targets and 

increased understanding of the biology, current treatment for AML still leads to relapse 

in patients. Allogeneic transplant remains the best chance for cure in patients with 

intermediate or high risk disease306. 

One recurrent translocation associated with extra-medullary disease (such as 

chloroma or central nervous system involvement), relapse and poor survival of AML is 

the t(9;11)(p22;q23) rearrangement leading to the MLL-AF9 fusion. Recently, a 

conditional mouse model was used to address the role of the cellular origin of MLL-

AF9+ AML. Activation of Mll-af9 in long-term hematopoietic stem cells (LT-HSCs) 

induces a particularly invasive and chemoresistant disease307. Strikingly, about 

10-20% of human AMLs express a very similar gene signature like LT-HSC-derived 

Mll-af9 AMLs in mice, which is characterized by expression of high Zeb1 mRNA levels. 

Chromatin immunoprecipitation (ChIP) experiments suggested that Zeb1 is a direct 

target of the Mll-af9 fusion. Interestingly, knockdown of Zeb1 expression compromised 

the invasive behaviour of Mll-af9 AML cells in vitro and in vivo. Notably, LT-HSC-

derived Mll-af9 AML cells also displayed increased expression of many genes 

regulating migration and invasion, an thus showing at least at the transcriptional level 

some similarities to that of solid cancer cells undergoing EMT307.  

In addition to involvement of ZEB1, increasing evidence also suggests an important 

role for ZEB2 in AML development. In 2015 one AML patient was found with tumor 

cells carrying a similar t(2;14)(q22;q23) translocation as earlier identified in ETP-ALL, 

resulting in a ZEB2-BCL11B fusion270,308. In the resulting ZEB2-BCL11B fusion 
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transcript, the first 19 amino acids of BCL11B are replaced by the first 24 amino acids 

of ZEB2. As all functional domains of BCL11B are retained in this fusion product and 

the inverse BCL11B-ZEB2 transcript could not be detected, the authors concluded that 

the principal result of this translocation is aberrant expression of BCL11B controlled by 

the ZEB2 promoter/enhancer308. Interestingly, other genetic events driving BCL11B 

overexpression have been reported in AML, further reinforcing the putative oncogenic 

role of BCL11B in the myeloid lineage309. These observations are in sharp contrast 

with the proposed role of BCL11B in T-ALL as a tumor suppressor317. This 

contradiction suggests that a similar genetic aberration, t(2;14)(q22;q23), can drive 

leukemic transformation both in the myeloid and the lymphoid lineage. In the case of 

AML, BCL11B overexpression most probably drives malignant transformation, 

whereas retained ZEB2 expression during T cell commitment is most probably the 

oncogenic driver in the case of ETP-ALL270. More recent experiments showed that 

ZEB2 expression is essential for maintenance of leukemic growth of AML311,312. 

Furthermore, using an in vitro genome-wide shRNA screening method followed by an 

in vivo secondary screen using a murine AML model driven by the expression of a Mll-

af9 fusion, Zeb2 was identified as an essential gene for AML progression. Further 

molecular analysis demonstrated that Zeb2 represses transcription of genes important 

in myeloid differentiation. Consequently, Zeb2 depletion in AML cells will force 

differentiation of the leukemic cells311. The notion that AML cells depend on sustained 

ZEB2 expression was recently confirmed by a large-scale deep RNAi screen that 

unravelled cancer dependencies in an extensive series of human tumor cell lines, 

including AML313. 

 

Is ZEB2 a tumor suppressor in BPDCN? 

Blastic plasmacytoid dendritic cell neoplasm or BPDCN is a rare and aggressive 

disorder which is believed to originate from pDC-precursors314–316. The malignancy is 

currently classified as a myeloid neoplasm317. Patients typically show skin lesions and 

later on involvement of BM, LNs and peripheral blood. Treatment with chemotherapy 

often leads to relapse and currently allogeneic stem cell transplantation gives the best 

improvement on survival. BPDCN occurs mostly in elderly patients with a median age 

of onset above 60 years318.  
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One study showed a possible role for ZEB2 in the disease. The researchers performed 

whole exome sequencing on material of three patients followed by a targeted next-

generation sequencing of 38 selected genes in 25 other tumors. This revealed that the 

ZEB2 locus is mutated in 16% of cases. Two frameshift mutations and one mutation 

causing a single amino acid change were identified319. These deleterious changes in 

the ZEB2 gene could be the first clue for a possible tumor suppressive role for the TF 

in BPDCN and in this thesis we will use this finding in an attempt to model the disease 

in mice. Currently, there is no standardized therapeutical approach for BPDCN patients 

and we believe that a preclinical mouse model could be helpful for developing better 

targeted therapies, eventually leading in better outcome for patients. 

 

 

V.4 ZEBs in pathogen-induced hematologic malignancies 

 

Altered expression of ZEB1 has been associated with few pathogen-induced leukemia 

subtypes, like Helicobacter pylori positive gastric DLBCLs296, HTLV-1 related ATLL275 

and Epstein-Barr virus (EBV) associated lymphomas320. EBV is a human herpesvirus 

that was first isolated from a cultured Burkitt’s lymphoma cell line. It has been estimated 

that more than 90% of the world’s population is carrying the virus, usually through a 

first asymptomatic infection during childhood. EBV has been linked to many types of 

malignancies including several epithelial cancers and some B cell malignancies like 

Burkitt’s and Hodgkin’s lymphoma. EBV can infect epithelial cells and B cells, either 

causing a lytic infection with active production of viral particles and killing of the host 

cell, or a latent infection which is maintained stably in the host cell320,321. Breaking 

through the latency and activating the lytic cycle of the virus could be used as a therapy 

for EBV infected malignancies. It has been shown that ZEB1 is important in regulating 

this latent-lytic switch. The switch can be initiated by expression of the viral immediate-

early Bzlf1 gene. This gene codes for the DNA-binding protein Zta, a transactivator of 

viral genes for lytic replication321. The Bzlf1 gene has two promoters, the proximal Zp 

which is most active and a more distal Rp. It was shown in B lymphocytes that ZEB1 

binds to the Zp promoter to actively repress its transcription322. More specifically, ZEB1 

binds to two consensus ZEB binding sites in the Zp promoter through both the 
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N-terminal and C-terminal zinc finger domains323. Breaking through the latency by 

inhibiting ZEB1 could be a potential mechanism to achieve a switch to the lytic phase 

of infection and possibly leading to dead of the virally infected malignant cells. 

As mentioned before, Zeb2 expression is essential for differentiation, maturation 

and/or function of NK cells and CD8+ T cells, two types of immune cells involved in 

antiviral host defense74,75,81. Interestingly, recurrent deletions of the ZEB2 locus are 

significantly enriched in Hepatitis C virus (HCV)-related non-Hodgkin’s lymphoma 

patients. Furthermore, viral integrations at the Zeb2 locus are sufficient to induce 

leukemia in mice haplo-sufficient for Pax5304. This mouse model spontaneously 

develops B-ALL only in a conventional animal facility and not under specific pathogen 

free conditions, suggesting that exposure to infectious agents can act as a trigger for 

the development of B-ALL. We hypothesize that the expression of Zeb2 is essential for 

the functionality of the innate and adaptive immune system to efficiently eradicate 

pathogens, but also infected and (partially) transformed cells from the body, before 

they can develop into a lymphoma/leukemia. Van Helden and colleagues showed that 

Zeb2 also plays a pivotal role in the immunosurveillance and clearance of melanoma 

cells after transplantation in syngeneic mice81, suggesting our hypothesis could serve 

as a more common mechanism also outside of hematologic malignancies.  

In general, more research is needed to better understand the role of Zeb proteins in 

immune cells and hence their role in the eradication of pathogens, immunosurveillance 

of cancer and development of leukemia. Therefore, the main goal of this thesis is to 

further assess the physiological role of Zebs in dendritic cells and macrophages, two 

cell types that express Zeb1/2, but where a possible function for these TFs has not yet 

been investigated. 
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Zeb1 and Zeb2 are two highly homologous transcription factors (TFs) that are mainly 

known for their role in epithelial-mesenchymal transition (EMT), a multistep process 

during which epithelial cells lose their adhesive capacities and polarity to turn into 

mesenchymal migratory cells. EMT is important for embryonic development and 

wound healing, but the process can also be aberrantly activated by solid tumor cells in 

order to disseminate from the primary tumor and form metastasis in secondary 

organs1. In recent years it has become more and more evident that Zeb proteins cannot 

solely be considered as EMT-inducing TFs. Both TFs also fulfill physiological functions 

during hematopoiesis and in mature hematopoietic cells. As such Zeb2 has been 

shown to play a role in embryonic hematopoietic stem cell differentiation, natural killer 

cell maturation and CD8+ T cell terminal differentiation2–6. Zeb1 on the other hand is 

involved in early T cell development7,8. However, at the start of this thesis little was 

known on the role of Zeb1 and Zeb2 in the mononuclear phagocyte system (MPS). 

Therefore the main objective of my PhD was to investigate the importance of Zeb 

proteins in the cells of the MPS, namely dendritic cells and macrophages. 

 

Although the exact roles of Zebs in the MPS were unknown, there was some evidence 

in literature that these TFs could be important in dendritic cells and macrophages. As 

such Zeb2 was identified through several genome-wide microarray and RNA-

sequencing transcriptional analyses as potentially being involved in the development 

of conventional dendritic cells (cDCs)9–11. Therefore, we decided to first investigate the 

role of Zeb2 in dendritic cells using CRE-mediated conditional loss or ectopic 

expression mouse models. Our findings on this are discussed in Chapter 1 of the 

results section, ‘The transcription factor Zeb2 regulates development of conventional 

and plasmacytoid DCs by repressing Id2’. Having identified a role for Zeb2 in the 

dendritic cell lineage, we next examined if its homolog Zeb1 would function in a similar 

way. The results of this research are discussed in Chapter 3 ‘Understanding the role 

of Zeb1 in dendritic cell homeostasis’. Furthermore, during the course of our research 

Zeb2 was found to be expressed by pre-macrophages and was thus considered a core 

macrophage gene12. Accordingly, we also went on to investigate the importance for 

Zeb2 in the macrophage lineage in Chapter 4 ‘Zeb2 is essential for macrophage 

survival’.  
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Having shown a physiological role for Zeb1 and Zeb2 in dendritic cells and 

macrophages, it is not a surprise that genetic events changing the levels of Zeb 

proteins can have serious consequences and lead to the development of lymphomas 

and leukemias. As such it was previously shown that both Zeb1 and Zeb2 act as 

oncogenes in acute myeloid leukemia13–15. Additionally, recurrent deleterious 

mutations in the Zeb2 gene locus suggest a role for Zeb2 as tumor suppressor in a 

rare leukemia called blastic plasmacytoid dendritic cell neoplasm (BPDCN), a disease 

that is believed to originate in plasmacytoid DC precursors16. Currently the outcome 

for BPDCN patients is very poor and therefore we attempted to model the disease in 

mice, based on the loss of Zeb2 expression, as we believe that a clinically relevant 

mouse model could aid the development of better targeted therapies. Results 

regarding this last aim of my thesis are discussed in Chapter 2 of the results section. 
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Chapter 1 
 

 

The transcription factor Zeb2 regulates 

development of conventional and 

plasmacytoid DCs by repressing Id2 
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1.1 Abstract 

 

Plasmacytoid dendritic cells (pDCs) develop from pre-pDCs, whereas two lineages of 

conventional DCs (cDC1s and cDC2s) develop from lineage-committed pre-cDCs. 

Several transcription factors (TFs) have been implicated in regulating the 

development of pDCs (E2-2 and Id2) and cDC1s (Irf8, Id2, and Batf3); however, 

those required for the early commitment of pre-cDCs toward the cDC2 lineage are 

unknown. Here, we identify the TF zinc finger E box–binding homeobox 2 (Zeb2) to 

play a crucial role in regulating DC development. Zeb2 was expressed from the pre-

pDC and pre-cDC stage onward and highly expressed in mature pDCs and cDC2s. 

Mice conditionally lacking Zeb2 in CD11c+ cells had a cell-intrinsic reduction in pDCs 

and cDC2s, coupled with an increase in cDC1s. Conversely, mice in which CD11c+ 

cells overexpressed Zeb2 displayed a reduction in cDC1s. This was accompanied by 

altered expression of Id2, which was up-regulated in cDC2s and pDCs from 

conditional knockout mice. Zeb2 chromatin immunoprecipitation (ChIP) analysis 

revealed Id2 to be a direct target of Zeb2. Thus, we conclude that Zeb2 regulates 

commitment to both the cDC2 and pDC lineages through repression of Id2. 
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1.2 Introduction 

 

DCs reside in almost all tissues in the body, where they function as immune 

sentinels. DCs can be subdivided into two main groups: pDCs, which are specialized 

in the production of type I interferons to elicit an antiviral  immune  response1,2,  and 

cDCs  which  are  professional  antigen-presenting cells. cDCs form the crucial link 

between the innate and adaptive arms of the immune system by sampling local  

antigens  and  subsequently  migrating  to  their  draining LNs, where they initiate 

appropriate responses from T cells3. cDCs exist in two main subtypes, which were  

recently  termed  cDC1s  and  cDC2s4. cDC1s,  expressing  Xcr1 (X-C motif 

chemokine receptor 1)  and  usually  CD103  and/or  CD8α,  are  functionally  

specialized  in  cross-presentation of antigens to CD8+ T cells3,5,6,7,8. cDC2s express 

CD172a (signal regulatory protein α or Sirpα) and usually CD11b or CD4 and are 

functionally specialized in the presentation of antigens to CD4+ T cells3,5. As some 

surface markers typically used to identify cDCs (like CD11c and MhcII) can also be 

expressed by tissue resident macrophages, there is a risk for macrophage 

contamination while performing flow cytometric analysis of different DC populations. 

In order to avoid this, we will make use of a flow cytometry approach recently 

developed in the lab9 that allows comprehensive and contamination-free 

classification of cDCs across tissues in the mouse. 

DCs develop in the BM through a series of differentiation intermediates, each with a 

further degree of commitment to a specific lineage, that see the common myeloid 

progenitor (CMP) become a macrophage-DC progenitor (MDP) and then a common 

DC progenitor (CDP), with the penultimate step of differentiation resulting in 

generation of the pre-pDC and pre-cDCs3,10–14. Furthermore, it has recently been 

shown  that  pre-cDCs  can  be  further  subdivided  into  pre-cDC1s and pre-cDC2s, 

which are committed to the cDC1 and cDC2 lineages, respectively15,16. Pre-pDCs 

develop into pDCs in the bone marrow (BM), which then migrate out to the periphery, 

whereas the pre-cDC subsets first migrate to the periphery and then undergo their 

final differentiation into cDCs11,13,15. The development of pDCs, cDC1s, and cDC2s 

requires the concerted action of several lineage-determining TFs. The main TF 

involved in pDC development and maintenance is the basic helix–loop–helix E 



71 

 

protein E2-217,18, whereas cDC1s require Irf8, Batf3, and Id26,16,19–25. Notch2, Klf4 

and more recently Irf4 have been shown to be required for terminal differentiation into 

tissue-specific cDC2 subsets, but do not seem to be involved in the early  

commitment toward the cDC2 lineage in the BM26–30. Additionally , Irf4 has also been 

implicated in the survival of differentiated cDC2s31, as well as in their migration to the 

LNs32–34. However, the TFs involved in the initial specification and commitment 

toward the cDC2 lineage have not yet been identified, and much remains unknown 

regarding how the decision to commit to a specific DC lineage is made35. Zinc finger 

E box–binding homeobox 2 (Zeb2) is a TF primarily associated with epithelial-

mesenchymal transition, a process important in embryonic development, wound 

healing, and cancer progression36. However, Zeb2 has also been implicated in the 

development of the nervous system and is known to be required for normal mouse 

melanocyte differentiation and embryonic hematopoiesis37–40. Although its role in the 

immune system is largely unknown, Zeb2 has recently been shown to be required for 

the maturation of NK cells and terminal differentiation of T cells41–43. Zeb2 has also 

been identified in transcriptional analyses as a potential TF involved in DC 

development15,16,44. Here, we use mice either lacking or ectopically expressing Zeb2 

in CD11c+ cells to examine the effects of manipulating Zeb2 expression in DCs45,46. 

We demonstrate that Zeb2 is required for the development of pDCs and cDC2s in 

vivo, with CD11cCRExZeb2fl/fl cells being more efficient at generating cDC1s, which is 

associated with a rise in the expression of E protein inhibitor Id2. Reciprocally 

increasing the expression of Zeb2 resulted in a decrease in the cDC1 population with 

an associated increase in cDC2 development. Thus, Zeb2 is a previously 

uncharacterized key player in the regulation of the decision of DC precursors to 

commit to a specific DC lineage by mediating Id2 expression. 
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1.3 Results 
 

High expression of Zeb2 beyond the CDP stage and in subsets of mature DCs 

 

Zeb2 has recently been identified in several genome-wide microarrays and RNA-

sequencing transcriptional analyses as a TF associated with cDC2 development and 

found to be expressed in pre-cDC2s and cDC2s15,44, but down-regulated in pre-

cDC1s and cDC1s16. To validate these results and determine at which stages in DC 

development Zeb2 could play a role, we FACS (Fluorescence activated cell sorting) 

purified CMPs, MDPs, CDPs, and pre-pDCs from the BM and pDCs, pre-cDC1s, pre-

cDC2s, cDC1s and cDC2s from the spleen and performed real-time quantitative PCR 

(RT-qPCR) analysis for Zeb2 expression. In agreement with published data15,16, we 

found Zeb2 mRNA expression to be increased in pre-cDC2s and decreased in pre-

cDC1s compared with CDPs (Figure 1A). Strikingly, we also found Zeb2 to be up-

regulated in pre-pDCs and pDCs, suggesting a role for this TF in pDCs (Figure 1A). 

As Zeb2 has recently been implicated in NK cell41 and T cell development42,43, we 

also FACS-purified NK cells and CD4+ and CD8+ T cells as a reference for Zeb2 

expression levels. cDC2s and pDCs expressed lower levels of Zeb2 than NK cells 

but higher levels of Zeb2 than both T cell subsets (Figure 1A). 

 

 

Splenic pDCs are reduced in CD11cCRExZeb2fl/fl mice 

 

To examine whether Zeb2 expression has a functional role in cDCs and/or pDCs, we 

generated mice lacking or ectopically expressing either one or both alleles of Zeb2 in 

CD11c+ cells, including pre-cDCs, cDCs, and pDCs, by crossing CD11cCRE mice47 

with Zeb2fl/fl mice45 or with R26-Zeb2Tg/Tg mice46 to drive transgenic Zeb2 expression 

from the Rosa-26 promoter (Figure 1B). Analysis of Zeb2 mRNA levels in the splenic 

pDC populations of these mice revealed a slight down-regulation of Zeb2 in the 

CD11cCRExZeb2fl/fl mice (Zeb2−/− mice) and a striking up-regulation of Zeb2 in the 

CD11cCRExR26-Zeb2Tg/Tg mice (Zeb2Tg/Tg mice; Figure 1C and Figure S1A-B). 
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Figure 1 | Zeb2 expression levels regulate pDCs. (A) RT-qPCR for Zeb2 expression in FACS-purified 

BM-derived CMPs, MDPs, CDPs, and pre-pDCs and splenic pDCs, pre-cDC1s, pre-cDC2s, cDC1s, cDC2s, CD4+ 

T cells, CD8+ T cells, and NK cells from WT mice. Results shown are expressed relative to GAPDH expression 

using the 2−ΔΔC(t) method with CMP set to 1. Data are pooled from two to three experiments, with at least n = 4 per 

cell type. Two-way Student’s t test was used between indicated groups. (B) Schematic showing range of Zeb2 

levels and abbreviations for the transgenic mouse lines used in the study. (C) RT-qPCR for Zeb2 expression in 

FACS-purified splenic pDCs from indicated mice. The results shown are expressed relative to GAPDH expression 

using the 2−ΔΔC(t) method with Zeb2+/+ pDCs set to 1. Data are pooled from two experiments, with at least n = 7 

per group. Two-way Student’s t test. (D) Representative FACS plots showing identification of CD317+CD45R+ 

pDCs in the spleen of indicated mice. Cells were pre-gated as single live lineage−CD11b− and were 

Ly6C+MHCIIintCD11cint. Numbers represent proportion of pDCs as a percentage of live lineage−CD11b−cells. (E) 

Proportion of splenic pDCs as a percentage of live lineage−CD11b− cells in indicated mice. Data are pooled from 

two experiments with at least n = 8 per group. One-way ANOVA with Bonferroni post-test. (F) Absolute cell 

number of pDCs in the spleen of indicated mice. Data are representative of at least two experiments where each 

dot represents one mouse. One-way ANOVA with Bonferroni post-test was used. (G) Proportion of pDCs in the 

blood of Zeb2+/+ and Zeb2−/− mice. Data are pooled from two experiments where each dot represents one mouse. 

Two-way Student’s t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. Error bars represent SEM. AU, arbitrary units.  
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Despite the only slight down-regulation of Zeb2 observed in the remaining pDCs in 

Zeb2−/− mice, there was a significant reduction in the pDC population in Zeb2−/− mice 

in the spleen and the blood (Figure 1D-G and Figure S1C), suggesting Zeb2 

expression is indeed down-regulated in pDCs. However, loss of only one allele of 

Zeb2 (Zeb2+/−) had only minimal effects on the pDC population (Figure 1D-F). 

Increasing expression of Zeb2 in pDCs did not result in any significant changes in the 

proportion of pDCs, but we did observe an increase in terms of absolute cell numbers 

(Figure 1D-F).  

 

 

Splenic cDC2s are reduced in CD11cCRExZeb2fl/fl mice, whereas splenic cDC1s 

are reduced in CD11cCRExR26-Zeb2Tg/Tg mice 

 

Analysis of the cDC populations in the spleens of Zeb2−/− and Zeb2Tg/Tg mice 

revealed a striking down-regulation of Zeb2 expression among cDC2s in Zeb2−/− 

mice and a significant up-regulation of Zeb2 expression among cDC1s in Zeb2Tg/Tg 

mice (Figure 2A and Figure S2A-B). Ablation of Zeb2 in cDC1s caused a significant 

but minor decrease in Zeb2 expression, likely because WT cDC1 cells do not 

express Zeb2. There was no significant increase in Zeb2 levels in cDC2s in Zeb2Tg/Tg 

mice (Figure 2A). Ablation of Zeb2 expression in CD11c+ cells resulted in a reduction 

in the proportion and absolute number of XCR1−SIRPα+ cDC2s (Figure 2B-D and 

Figure S2C). Somewhat surprisingly, this reduction was coupled with an increase in 

both the proportion and absolute number of XCR1+SIRPα− cDC1s (Figure 2B-D). 

Similarly to the pDCs, this reduction in cDC2s was only apparent when both alleles of 

Zeb2 were targeted (Figure 2B-D). On the contrary, two alleles of the transgenic 

Zeb2 in CD11c+ cells led to a decrease in the proportion and number of splenic 

cDC1s, whereas the cDC2s were unaffected. Once again, we observed that only 

targeting one allele had limited effects on either subset (Figure 2B-D). Interestingly, 

the increased expression of Zeb2 in CD11c+ cells led to the presence of a new 

XCR1+SIRPα+ population of cDCs in the spleen (Figure 2B-D). These XCR1+SIRPα+ 

(double positive [DP]) cDCs also expressed intermediate levels of CD24, a marker 

typically associated with cDC1s in the spleen (Figure 2E). 
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Figure 2 | Zeb2 expression levels regulate cDCs. (A) Splenic cDC1s and cDC2s were FACS-purified 

from Zeb2+/+, Zeb2−/−, or Zeb2Tg/Tg mice, and Zeb2 levels were assessed by RT-qPCR. The results shown are 

expressed relative to GAPDH expression using the 2−ΔΔC(t) method with Zeb2+/+ cDC1s set to 1. Data are pooled 

from two to three experiments, with at least n = 7 per group. Two-way Student’s t test. (B) Proportion of splenic 

cDC1s, cDC2s, and DP cDCs as a percentage of total cDCs in indicated mice. Data are pooled from two to three 

experiments, with at least n = 4 per group. One-way ANOVA with Bonferroni post-test. (C) Representative FACS 

plots showing identification of XCR1+SIRPα− cDC1s, XCR1−SIRPα+ cDC2s, and XCR1+SIRPα+ DP cDCs in the 

spleen of indicated mice. Cells were pre-gated as single live CD45+lineage−CD64−F4/80−MHCII+CD11c+CD26+. 

Numbers represent proportion of cDC1s, cDC2s, and DP cDCs as a percentage of total cDCs. (D) Absolute cell 

number of cDC1s, cDC2s, and DP cDCs in the spleen of Zeb2+/+ (black) , Zeb2+/− (light blue), Zeb2−/− (dark blue) , 

Zeb2+/Tg (orange), and Zeb2Tg/Tg (red) mice. Data are representative of at least two experiments where each dot 

represents one mouse. One-way ANOVA with Bonferroni post-test. (E) Representative histogram showing CD24 

expression by splenic cDC1s, cDC2s, and DP cDCs in Zeb2Tg/Tg mice.  *, P < 0.05; ***, P < 0.001. Error bars 

represent SEM. AU, arbitrary units. 
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Zeb2 expression differentially affects subsets of tissue-resident cDC2s 

 

We next extended our analysis to the liver, lung, and small intestine lamina propria 

(SILP) to determine whether Zeb2 expression regulates cDCs globally or whether its 

role is restricted to lymphoid tissues. Analysis of cDC1s and cDC2s on the basis of 

XCR1 and SIRPα expression in these tissues revealed, similarly to the spleen, an 

overall increase in cDC1s and decrease in cDC2s in Zeb2−/− mice and an overall 

decrease in cDC1s in Zeb2Tg/Tg mice (Figure 3 and Figure 4). However, the scale of 

these differences was tissue dependent. For example, we did not observe any effect 

of Zeb2 overexpression in the liver (Figure 3A,B and E), whereas the lung cDCs 

appeared to be extra sensitive to Zeb2 expression levels with effects of Zeb2 loss 

and overexpression being observed even when only one allele of Zeb2 was targeted 

(Figure 3C,D and F). Additionally, a population of XCR1−SIRPα− cDCs was identified 

in the lungs of the Zeb2−/− and Zeb2+/− mice (Figure 3C). In the SILP, the same 

trends were observed in terms of total cDC1s and cDC2s as in the other tissues 

(Figure 4A-B). However, when the cDC2s were further subdivided on the basis of 

CD103 expression, a marker commonly used to define cDC subsets in the gut31,48, 

we found that the two subsets of cDC2s were not equally sensitive to Zeb2 

expression. Intriguingly, we found the CD103− cDC2s to be susceptible to the loss of 

Zeb2 expression, whereas the CD103+ cDC2s appeared to be unaffected in Zeb2−/− 

mice. No effects were seen in either population in Zeb2Tg/Tg mice, with only the 

cDC1s (CD103+SIRPα−) being affected (Figure 4C-E and Figure S3).  
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DC-intrinsic effects of Zeb2 expression on cDC commitment revealed by 

competitive BM chimerism 

 

Having  shown  that  Zeb2  expression  in  CD11c+  cells  regulates both pDCs and 

cDCs, we next sought to determine whether these effects were cell intrinsic or 

caused by immune dysregulation. To this end, we generated competitive BM 

chimeric mice (Figure 5A), in which CD45.1/CD45.2 WT mice were lethally irradiated 

and reconstituted with a ~70:30 mix (determined by analysis of neutrophils in the 

spleen; Figure 5B) of Zeb2fl/fl/Zeb2Tg/Tg (Zeb2+/+), CD11cCRExZeb2fl/fl (Zeb2−/−), or 

CD11cCRExZeb2Tg/Tg (Zeb2Tg/Tg) CD45.2+ BM and WT CD45.1+ BM. 10-12 weeks 

after reconstitution, the proportions of CD45.2+ cells among pDCs in the spleen and 

cDC1s and cDC2s in the spleen, lung, liver and SILP were analyzed. This analysis 

revealed that the defect in pDCs in the Zeb2−/− mice was indeed cell intrinsic, with the 

Zeb2−/− CD45.2+ cells dramatically losing the competition with the CD45.1+ WT BM to 

generate pDCs when compared with their Zeb2+/+ counterparts (Figure 5C). 

Consistent with our earlier findings that increasing Zeb2 expression did not alter the 

pDC population, the WT and Zeb2Tg/Tg BM were equally capable of generating pDCs 

(Figure 5C). Concurrently, we also found the defect in cDC2 generation in the spleen, 

lung, and liver and CD103− cDC2 generation in the SILP of Zeb2−/− mice to be cell 

intrinsic (Figure 5E and Figure 6A-C). Analysis of the cDC1 populations in these 

tissues also found that the enhanced generation of cDC1s in CD11cCRExZeb2fl/fl mice 

was cell intrinsic, as Zeb2−/− CD45.2+ BM had a competitive advantage over WT 

CD45.1+ BM in the generation of cDC1s compared with their Zeb2+/+ counterparts 

(Figure 5D and Figure 6A-C). Similarly, we found that the decrease in spleen, lung 

and SILP cDC1s in CD11cCRExR26-Zeb2Tg/Tg mice was cell intrinsic (Figure 5D and 

Figure 6B and 6C), as was the generation of splenic DP cDCs, with these being 

almost uniformly derived from Zeb2Tg/Tg BM (Figure 5F). However, Zeb2Tg/Tg BM cells 

did not show a competitive advantage over WT BM in generating cDC2s in the 

chimeras (Figure 5E and Figure 6A-C). Interestingly, analysis of the CD103+ cDC2s 

in the SILP demonstrated that in addition to having a competitive advantage over WT 

BM to become cDC1s, Zeb2−/− BM also outcompeted WT BM to generate CD103+ 

cDC2s, whereas WT BM outcompeted Zeb2Tg/Tg BM to become both CD103+ cDC1s
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Figure 5 | Zeb2 regulation of splenic cDC subsets is cell intrinsic. (A) Competitive BM chimeric mice 

were generated by lethally irradiating CD45.1/CD45.2 WT mice and reconstituting with a ~70:30 mix of Zeb2+/+, 

Zeb2−/−, or Zeb2Tg/Tg CD45.2 BM and WT CD45.1 BM. (B-E) LEFT: Representative FACS plots showing CD45.1 

and CD45.2 staining among splenic neutrophils (B), pDCs (C), cDC1s (D) and cDC2s (E) of indicated chimeras. 

The numbers represent the proportion of each cell type coming from CD45.1 or CD45.2 BM. RIGHT: Proportions 

of splenic neutrophils (B) , pDCs (C), cDC1s (D), cDC2s (E), and DP cDCs (F) deriving from CD45.2 donor BM. *, 

P < 0.05; **, P < 0.01; ***, P < 0.001. Two-way Student’s t test.  
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and CD103+ cDC2s (Figure 6C). This finding in combination with the results in Figure 

4 prompted us to examine Zeb2 expression in the three SILP cDC populations. 

Fitting with our results, we found that the CD103+ cDC2s express significantly less 

Zeb2 than their CD103− counterparts, instead expressing similar levels of Zeb2 to the 

CD103+ cDC1s (Figure 6D). 

 
 

Zeb2 expression regulates cDC development, not cell survival  

 
Having shown that Zeb2 expression levels skew the prevalence of the cDC subtypes 

present in multiple tissues, we next sought to determine whether Zeb2 functions 

during cDC2 development or whether, similar to the previously described cDC2 TFs, 

it functions in terminally differentiated cDC2s. It has recently been proposed that 

commitment to the cDC1 and cDC2 lineage is already apparent at the pre-cDC level 

such that pre-cDCs can be further subdivided into cDC1- and cDC2-committed pre-

cDCs on the basis of Ly6C, SiglecH and CD24 expression15,16. Thus, we first  

examined the proportions of these pre-cDCs in the BM of Zeb2−/−, Zeb2+/+, and 

Zeb2Tg/Tg mice (Figure 7A and Figure S4). Although no significant differences were  

observed in any of the populations across the three genotypes, we did notice a trend 

toward less pre-cDC1s with increasing levels of Zeb2 expression (Figure 7A), 

consistent with Zeb2 functioning during cDC development. Examination of the pre-

cDC subsets in the spleen revealed a similar trend in pre-cDC1s as observed in the 

BM, in addition to a significant increase in pre-cDC2s with increasing levels of Zeb2 

expression (Figure 7B), further pointing toward a role for Zeb2 in controlling cDC2 

development. To definitively demonstrate that Zeb2 functions during cDC2 

development, we next crossed the recently described late-CD11cCRE mouse, in which 

the CRE is not active during pre-cDC development but only once the pre-cDCs 

mature into cDCs34, with Zeb2fl/fl and R26-Zeb2Tg/Tg mice. Analysis of these mice 

revealed that the loss of Zeb2 late in cDC development does not affect the 

prevalence of the cDC subsets, meaning that Zeb2 already regulates cDC 

development at the pre-cDC stage (Figure 7C). In contrast, the spleens of 

late-CD11cCRExR26-Zeb2Tg/Tg showed similar defects as the spleens of 

CD11cCRExR26-Zeb2Tg/Tg mice, with a decrease in cDC1s, an increase in cDC2s and 

the presence of a DP cDC population (Figure 7C). Thus, the addition of Zeb2 in 

mature cDCs affects the prevalence of the populations in the spleen. 
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are pooled from two experiments, with at least n = 3 per experiment. *, P < 0.05  (C) Proportions of 

cDC subsets as a percentage of total cDCs in the spleen of late-CD11cCRExZeb2fl/fl (Zeb2-/-) and 

late-CD11cCRExZeb2Tg/Tg (Zeb2Tg/Tg) compared with CRE negative littermate controls (Zeb2+/+). Data 

are pooled from two experiments, with at least n = 3 per experiment. ***, P < 0.001 (D-F) 

Representative FACS plots showing 7-AAD and Annexin V staining and proportions of 

AnnexinV+7-AAD- cells in cDC1s (D), cDC2s (E) and DP cDCs (F) . **, P < 0.01  (A-F) One-way 

ANOVA with Bonferroni post-test. (G) Absolute number of recovered Zeb2+/+ and Zeb2Tg/Tg cDC1s 

at indicated time-points following spiking into seed Flt3L BMDC cultures. *, P < 0.05; **; P < 0.01. 

Two-way ANOVA with Bonferroni post-test. 

Figure 7 | Zeb2 regulates cDC subset development, not 

survival. (A) Representative FACS plots showing identification of 

pre-cDC subsets and proportions of pre-cDC subsets in the BM of 

indicated mice. Cells were pre-gated as single live lineage-

CD11c+CD45R-MHCII-/intCD135+SIRPαint. Data are pooled from two 

experiments, with at least n = 3 per experiment. No significance 

was detected. (B) Representative FACS plots showing 

identification of pre-cDC subsets and proportions of pre-cDC 

subsets in the spleen of indicated mice. Cell were pre-gated as 

single live lineage-CD11c+CD45R-MHCII-/intCD135+SIRPαint. Data 
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To further validate our findings that Zeb2 functions during cDC2 development rather 

than playing a role in terminally differentiated cDC2s, we examined the survival of 

cDC subsets across the range of Zeb2 expression levels. Using Annexin V staining 

we could not detect any differences in the proportion of apoptotic cells (AnnexinV+ 

7-AAD-) in Zeb2-/- mice (Figure 7D and 7E). There was a slight increase in the 

proportion of apoptotic cDC1s in Zeb2Tg/Tg mice (Figure 7D). However we could not 

confirm any increase in cell death when FACS-purified splenic cDC1s were spiked 

into WT Flt3L BMDC cultures compared with Zeb2+/+ cDC1 controls, in fact the 

opposite trend was observed (Figure 7G). A significant proportion of the splenic DP 

cDCs from Zeb2Tg/Tg mice were found to be AnnexinV+7-AAD- (Figure 7F), 

suggesting this atypical population may be apoptotic following their development. 

 

 

Minimal changes in transcriptomes of mature cDC subsets  

 

Having identified Zeb2 as a regulator of cDC development, we next sought to 

examine the consequences of differential Zeb2 expression levels in the mature cDCs. 

To this end, we FACS-purified cDC1s and cDC2s from Zeb2−/−, Zeb2+/+ and Zeb2Tg/Tg 

mice and performed RNA-sequencing (RNA-seq) analysis (Figure S2A and S2B, 

gating strategies). Cluster analysis of this data demonstrated that, fitting with our 

earlier analysis, the ablation of Zeb2 expression in cDC1s and overexpression of 

Zeb2 in cDC2s did not have significant effects on the transcriptomes (Figure 8A). To 

confirm this, we used a visualization method in which each gene is plotted in a graph 

containing three axes (one axis per genotype) that are placed at a 120° angle, 

creating a hexagonal triwise plot (Figure 8B). In these hexagons, the direction of a 

point represents an up-regulation in one or two populations, whereas the distance 

from the origin represents the magnitude of the up-regulation. Each grid line 

represents a log2 fold change (FC). Plotting all uniquely annotated genes for cDC1s 

and cDC2s yielded a profile with most differentially expressed genes in cDC1s either 

being up-regulated specifically in Zeb2Tg/Tg mice or in both Zeb2−/− and Zeb2+/+ mice 

(Figure 8B). Conversely, in the cDC2s, differentially expressed genes were either up-

regulated solely in Zeb2−/− mice or in both Zeb2+/+ and Zeb2Tg/Tg mice (Figure 8B), 

confirming the cluster analysis. Thus, we subsequently focused our analysis on 

cDC2s from the Zeb2−/− mice and cDC1s from the Zeb2Tg/Tg mice compared with 
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their Zeb2+/+ counterparts. Applying a stringency level where the adjusted p-value 

was equal to 0.01 and the log2 FC was less than −1 or greater than 1, we found that 

263 genes were differentially expressed in Zeb2Tg/Tg cDC1s  (Figure S6A and Table  

S1), whereas 118 genes were differentially expressed in Zeb2−/− cDC2s  (Figure S6B 

and Table S2). To our surprise, however, most genes were only just over the 

thresholds, with only a few genes having a log2 FC less than −2 or greater than 2. 

Examining the list of differentially expressed genes for surface receptors enabled us 

to validate some of the changes at the protein level by flow cytometry. In Zeb2−/− 

cDC2s, we were able to confirm changes in CD101, CX3CR1, SiglecF , and epithelial 

cell adhesion molecule protein (EpCam) expression (Figure 8C). However, some of 

the differentially expressed genes did not translate into altered protein expression, 

including CD69 and CCR2 (data not shown). Protein analysis in cDC1s from 

Zeb2Tg/Tg mice validated changes in CD4, CD8α, CD11b, CD38 (Figure 5D), and 

CD115 (data not shown), whereas the slight up-regulation of CD101 observed at the 

mRNA level did not result in increased protein expression (data not shown). 

 

 

Functional consequences of Zeb2 expression levels 

 

The minimal differences in the transcriptomes of mature cDC subsets upon changes 

in the level of Zeb2, suggest that once these cDCs develop, they behave normally. 

To test this hypothesis, we performed IPA analysis on the differentially expressed 

genes in order to pinpoint cDC functions that are potentially affected upon loss of 

Zeb2 expression in cDC2s or gain of Zeb2 expression in cDC1s. For both datasets, 

Zeb2+/+ versus Zeb2-/- cDC2s and Zeb2+/+ versus Zeb2Tg/Tg cDC1s, there was among 

others a significant enrichment for the functions Immune Cell Trafficking 

(p=1,31 x 10-7 for Zeb2+/+ versus Zeb2-/- cDC2s; p=1,35 x 10-18 for Zeb2+/+ versus 

Zeb2Tg/Tg cDC1s; Figure S7) and Inflammatory Response (p=3,21 x 10-7 for Zeb2+/+ 

versus Zeb2-/- cDC2s; p=1,44 x 10-15 for Zeb2+/+ versus Zeb2Tg/Tg cDC1s; figure S7). 

As Immune Cell Trafficking includes migration and Inflammatory Response includes 

antigen presentation by peripheral DCs we looked at these functions in more detail. 

First we examined if cDC migration was affected by examining the resident and 
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Figure 9 | Zeb2 expression levels regulate cDC migration to LNs. (A) Representative FACS plots 

showing identification of resident and migratory cDCs and proportions of resident and migratory cDCs in the 

inguinal lymph nodes (ILNs) of Zeb2-/-, Zeb2+/+ and Zeb2Tg/Tg mice as a percentage of single live CD45+ cells. 

Data are pooled from two experiments with at least n = 3 per group. **, P < 0.01. One-way ANOVA with 

Bonferroni post-test. (B,C) Representative FACS plots showing identification of cDC1s and cDC2s amongst 

resident (B) and migratory (C) cDCs and proportions of cDC1s, cDC2s and DP cDCs as a percentage of total 

resident (B) and migratory (C) cDCs in the ILNs of Zeb2-/-, Zeb2+/+ and Zeb2Tg/Tg mice. Data are pooled from two 

experiments with at least n = 3 per group. ***, P < 0.001. One-way ANOVA with Bonferroni post-test. (D) LEFT 

panel: proportions of resident and migratory cDCs in the mesenteric lymph node (MLN) of Zeb2-/-, Zeb2+/+ and 

Zeb2Tg/Tg mice as a percentage of single live CD45+ cells. TWO RIGHT panels: proportion of MLN resident 

cDC1s, cDC2s and DP cDCs and proportion of MLN migratory CD103+ cDC1s, CD103+ cDC2s, and CD103− 

cDC2s as a percentage of, respectively, total resident and migratory cDCs in Zeb2−/−, Zeb2+/+, and Zeb2Tg/Tg mice. 

Data are representative of two experiments, with n = 5 per group. *, P < 0.05; **, P < 0.01; ***, P < 0.001. One-

way ANOVA with Bonferroni post-test. 
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migratory cDC populations in the inguinal lymph nodes (ILNs). These populations can 

be separated on the basis of CD11c and MHCII expression with resident cDCs 

expressing high levels of CD11c and intermediate levels of MHCII, while migratory 

cDCs express intermediate levels of CD11c and high levels of MHCII (Figure 9A). 

While no differences were observed in the proportion of resident cDCs across the 

three genotypes, we did observe a small but significant decrease in the proportion of 

migratory cDCs in the Zeb2-/- mice (Figure 9A). Further analysis of the cDC subsets 

within the resident and migratory gates revealed a similar phenotype to that observed 

in the spleen and non-lymphoid tissues examined (Figure 9B and 9C). Intriguingly, 

we did not observe a DP cDC population amongst the Zeb2Tg/Tg migratory cDCs 

although this population was seen amongst resident cDCs (Figure 9B and 9C). 

Analysis of cDC populations in the mesenteric LN (MLN) confirmed the results seen 

in the ILN. A decrease in Zeb2 level is associated with a lower number of migratory 

cDCs in the MLN (Figure 9D, LEFT panel). Looking into detail to the resident cDC 

populations, we found a similar trend within the cDC1 and cDC2 populations in 

Zeb2+/+, Zeb2−/−, and Zeb2Tg/Tg mice (Figure 9D, MIDDLE panel) as observed in other 

tissues. Again a DP cDC population was present among the resident cDCs in the 

Zeb2Tg/Tg mice (Figure 9D, MIDDLE panel). Examination of the migratory cDCs in the 

MLN (Figure 9D, RIGHT panel) found similar trends to that observed in the SILP 

(Figure 4D). 

 

As antigen presentation to naive T cells is the main cDC function, we next examined 

whether Zeb2Tg/Tg cDC1s and Zeb2-/- cDC2s could cross-present antigen to naive 

CD8+ T cells or present antigen to naive CD4+ T cells respectively. For this we FACS-

purified splenic Zeb2+/+ and Zeb2Tg/Tg cDC1s and Zeb2+/+ and Zeb2-/- cDC2s and 

cultured them with either OTI (CD8+) or OTII (CD4+) T cells FACS-purified from 

spleens and LNs of OTI and OTII mice in the presence of purified ovalbumin protein. 

We did not observe any differences in the ability to cross-present antigen compared 

with WT controls (Figure 10A-B and 10D-E), as the cDCs were equally capable of 

inducing T-cell proliferation. Equally we did not observe any differences in the 

polarisation of proliferating T cells in either case, except for a significant increase in 

IL-10 production by OTII cells when co-cultured with Zeb2-/- cDC2s (Figure 10C and 

10F).  
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Figure 10 | Zeb2 expression levels do not alter the ability of cDCs to present antigen to T cells. 
(A and D) Representative histograms showing CFSE dilution on OTI T cells following 4 days of co-culture (A) or on 

OTII T cells following 5 days of co-culture (D) with Zeb2+/+ or Zeb2-/- cDC2s and Zeb2+/+ or Zeb2Tg/Tg cDC1s. (B) 

Proportion of live OTI T cells per 100.000 events per division number following 4 days of co-culture with Zeb2+/+ or 

Zeb2-/- cDC2s and Zeb2+/+ or Zeb2Tg/Tg cDC1s. Data are pooled from two experiments with at least n = 5 per group. No 

significance was detected with two-way ANOVA with Bonferroni post-test. (E) Proportion of live OTII T cells per 

100.000 events per division number following 5 days of co-culture with Zeb2+/+ or Zeb2-/- cDC2s and Zeb2+/+ or 

Zeb2Tg/Tg cDC1s. Data are from one experiment, representative of two, with at least n = 2 per group. No significance 

was detected with two-way ANOVA with Bonferroni post-test. (C and F) Cytokines present in co-culture supernatants 

as measured by cytokine bead array. Data are pooled from two experiments with at least n = 4 per group. Error bars 

represent SEM. ***, P < 0.001. Two-way ANOVA with Bonferroni post-test. 
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Zeb2 acts as a cDC subset fate switch  

 

Given our findings that Zeb2 functions during development to determine the ratio 

between the two cDC subsets across a range of mouse tissues, we next sought to 

investigate whether this is caused by Zeb2 acting as a subset fate switch. To this 

end, we generated a list of cDC1- and cDC2-associated genes across a range of 

tissues by examining the transcriptomes of distinct cDC1 and cDC2 subsets available 

on the Immunological Genome Project Consortium (DC.8+.Sp, DC.8+.MLN, 

DC.8+.SLN, DC.103+11b-.Lu and DC.103+11b-.SI for cDC1s; and DC.4+.Sp, 

DC.4+.MLN, DC.4+.SLN and DC.103-11b+24+.Lu for cDC2s). The expression of 

these genes in cDC1s and cDC2s across the range of Zeb2 expression levels was 

then examined. This analysis revealed that the Zeb2Tg/Tg cDC1s reduce their 

expression of some of the cDC1-associated genes including Alms1, Btla, Cxcr3, 

Gcsam, Gpr33, Lrrc1,  Ly75, Met, Pbx1, and Ttc39a while increasing their expression 

of some of the cDC2-associated genes including Apobec1, Clec4a1, Ddx58, Ehf, 

Itgam, Rtp4, and Sirpa (Figure 11A and 11B). Conversely, Zeb2−/− cDC2s increased 

their expression of some of the cDC1-associated genes including Cxcr3, Map4k5, 

Pbx1, Rnf144b, Snx22, Tmeff1, and Ttc39a, whereas their expression of the cDC2-

associated genes, with the exception of Zeb2 itself, was largely unaffected (Figure 

11A and 11B). It seems that the transcriptome of Zeb2-/- cDC2s leans towards a 

cDC1 transcriptome, while the transcriptome of Zeb2Tg/Tg cDC1s leans towards that 

of cDC2s. This suggests that Zeb2 could act as a cDC subset fate switch. 

 

With this hypothesis in mind, we sought to focus further on the role of Zeb2 in cDC 

development. First, we examined how Zeb2 was induced during cDC development by 

analyzing Zeb2 expression levels in WT BM-derived cDC subsets after culture of total 

BM with the canonical cDC growth factors Flt3L or GM-Csf (Csf2). As it has recently 

been shown that Csf2 BM cultures consist of both monocyte-derived DCs and 

cDCs49, we used MHCII, CD115 (Csf1R) and CD26 expression to delineate cDCs 

and monocyte-derived DCs in these culture systems, concentrating our analysis on 

the CD115−CD11c+MHCIIhi cDCs (Figure S5). Intriguingly, Zeb2 expression was only 

induced in cDC2s from the Flt3L cultures (Figure 11C), demonstrating that Zeb2 

expression is induced by Flt3L but not by Csf2-signalling. 
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Figure 11 | Zeb2 expression levels dictate cDC subset fate. (A and B) Heat maps showing relative 

expression of cDC1-(A) and cDC2-(B) associated genes normalized per mean expression of each gene in cDC1s 

and cDC2s from indicated mice. (C) cDC1s from Flt3L WT BMDC cultures and cDC2s from WT Flt3L and WT Csf2 

BMDC cultures were FACS-purified, and Zeb2 expression was assessed by RT-qPCR. The results are expressed 

relative to GAPDH using the 2−ΔΔC(t) method with Flt3L BM cDC1s set to 1. Data are pooled from two experiments, 

with n = 6 per group. (D) Geometric mean (mean fluorescence intensity [MFI]) of Irf8 and Irf4 expression by splenic 

cDCs of indicated mice. Data are pooled from two experiments, with at least n = 6 per group. (C and D) One-way 

ANOVA with Bonferroni post-test. (E) Representative FACS plots showing Irf8 and Irf4 expression by splenic cDC 

subsets in indicated mice. (F) Splenic cDC1s and cDC2s were FACS-purified from Zeb2+/+ or Zeb2−/− mice, and the 

indicated TF expression was assessed by RT-qPCR. The results are expressed relative to GAPDH using the 

2−ΔΔC(t) method with Zeb2+/+ cDC1s set to 1. Data are pooled from three experiments, with at least n = 3 per group. 

Two-way Student’s t test. Error bars represent SEM. AU, arbitrary units.*, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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Having shown that Zeb2 is induced during cDC development, we next investigated 

the  effects of manipulating Zeb2 expression on the other TFs known to function in 

cDC development and terminal differentiation. Analysis of Irf8 and Irf4 protein 

expression in the cDCs of Zeb2−/−, Zeb2+/+ and Zeb2Tg/Tg mice revealed a striking 

decrease in Irf8 expression in Zeb2Tg/Tg cDC1s that was coupled with a significant 

increase in Irf4. We also observed a significant decrease in Irf4 expression in Zeb2−/− 

cDC2s, but this was not correlated with an increase in Irf8 expression (Figure 11D 

and 11E). Consistent with our earlier findings of an intermediate cDC1/cDC2 

phenotype, the DP cDCs in the Zeb2Tg/Tg mice expressed intermediate levels of Irf8 

and Irf4 (data not shown). In addition to Irf8 and Irf4, the TFs Id2, Batf3, Nfil3, Relb, 

Klf4 and Notch2 have all been implicated in cDC development and/or terminal 

differentiation19,50,20,22,24,27,47,51,16,28,31,33 . As the expression levels of these TFs cannot 

be analyzed with flow cytometry, we instead examined their mRNA expression by 

RT-qPCR in Zeb2−/− cDC1s and cDC2s compared with their Zeb2-sufficient 

counterparts. Strikingly, we found a significant up-regulation of the cDC1-associated 

TF Id2 among the Zeb2−/− cDC2 population (Figure 11F). Consistent with this, we 

found Id2 to be differentially expressed in the RNA-sequencing data from Zeb2Tg/Tg 

cDC1s and Zeb2−/− cDC2s with a log2 FC of −0.6 or 0.6, respectively. We did not 

detect any other significant changes in the other TFs examined, although there was a 

trend toward less Nfil3 expression in Zeb2−/− cDC2s (Figure 11F).  

 

 

Zeb2 regulates DC development by direct repression of Id2 

  

To determine whether Id2 expression was also affected by the loss of Zeb2 early in 

cDC development, we next examined Id2 mRNA levels in the cDC1- and cDC2-

committed splenic pre-cDC populations. Similar to the results seen in the mature cDC 

populations, we found an increase in Id2 expression among the Zeb2−/− pre-cDC2s 

(Figure 12A),  suggesting  that  Zeb2  may  function in cDC2s during development to 

repress Id2 expression. As Id2 is known to suppress pDC development by 

antagonizing the E protein TF E2-217,18,23,52,53, we also checked Id2 and E2-2 

expression in the remaining pDCs in the Zeb2−/− mice. As observed for the cDC2s, 

we found a significant increase in Id2 expression among the Zeb2−/− pDCs 
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(Figure 12B), suggesting Zeb2 may regulate both pDC and cDC development 

through regulation of Id2 expression. We also detected a small but significant 

increase in E2-2 expression in Zeb2-/- pDCs (Figure 12B). 

 

 

 

Figure 12 | Zeb2 regulates pDC and cDC development by repressing Id2. (A) Splenic pre-cDC1s and 

pre-cDC2s were FACS-purified from Zeb2+/+ or Zeb2−/− mice and Id2 expression was assessed by RT-qPCR. The 

results are expressed relative to GAPDH expression using the 2−ΔΔC(t) method with Zeb2+/+ pre-cDC1s set to 1. 

Data are pooled from two experiments, with at least n = 2 per group. (B) Splenic pDCs were FACS-purified from 

Zeb2+/+ or Zeb2−/− mice and Id2 and E2-2 expression was assessed by RT-qPCR. The results are expressed 

relative to GAPDH expression using the 2−ΔΔC(t) method with Zeb2+/+ pDCs set to 1. Data are pooled from two 

experiments, with at least n = 7 per group. (A and B) Two-way Student’s t test. Error bars represent SEM. AU, 

arbitrary units. *, P < 0.05; ***, P < 0.001. (C) Schematic representation of the Id2 promoter with predicted 

E-boxes. A and B represent regions amplified by qPCR with primer pair A and primer pair B, respectively. TSS, 

transcription start site. (D) RT-qPCR analysis on chromatin samples obtained by ChIP performed against the 

FLAG-tag present on recombinant Zeb2 in splenic pDCs and cDC2s of Zeb2Tg/Tg mice. Data are expressed as the 

percentage of input. Data are pooled from two independent experiments, with n = 2 per group.  

 

 

Thus, mechanistically, Zeb2 appears to function during DC development by 

repressing Id2 expression, facilitating both pDC and cDC2 development. As Zeb2 is 

itself a TF, we next examined whether this effect was through direct binding of Zeb2 
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to the Id2 promoter region or through an indirect mechanism. In silico analyses using 

PhysBinder54 or ConTra55 identified several conserved Zeb binding sites56 in the Id2 

gene and its surrounding regions in mice and humans (Figure S8). Thus, we next 

designed two sets of primers to amplify two overlapping regions (A and B) in the Id2 

promoter containing the predicted binding sites (Figure 12C). RT-qPCR was 

performed on chromatin extracted from splenic pDCs and cDC2s of Zeb2Tg/Tg mice 

after chromatin immunoprecipitation (ChIP) with an antibody recognizing the FLAG-

tag present on Zeb2 in these mice. For both pDCs and cDC2s, we observed a clear 

enrichment for region A, with ∼40% for pDCs and ∼6% for cDC2s, whereas region B 

was amplified with a percentage of enrichment of ∼7% and ∼5% in pDCs and 

cDC2s, respectively (Figure 12D). Thus, Zeb2 binds the E-boxes present in the Id2 

promoter, repressing its expression.  
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1.4 Discussion 

 

TFs have a big influence on the transcriptome of a cell. This governs them with the 

power to control many cell features, including development, homeostasis and 

function. To date many TFs have been implicated in development and terminal 

differentiation of the different DC lineages. For the pDC lineage the most important 

TF is E2-2. E2-2 not only functions during development, but also maintains the cell 

fate of the mature pDC18. Looking at cDC1 commitment Id2, Batf3 and Irf8 play an 

essential role, with the last two already determining cell fate from the pre-cDC stage 

onward6,16,21–25,29. On the other hand Irf4, Notch2 and Klf4 are required for terminal 

differentiation of the cDC2 subset19,26-31, but the TFs involved in the early 

commitment of this lineage have not yet been identified. Measuring mRNA levels of 

TF Zeb2 along the DC lineage, we saw a low expression in early progenitors followed 

by an increase specifically in the pDC and cDC2 path from the pre-pDC and pre-

cDC2 stage onward. This led us to the hypothesis that Zeb2 could be important in 

these two DC subsets. 

 

We were able to pinpoint an importance for Zeb2 in the pDC lineage by crossing the 

CD11cCRE mice with either the Zeb2fl/fl or the R26-Zeb2Tg/Tg mice, generating mice 

lacking or overexpressing Zeb2 on one or both alleles in CD11c+ cells. Loosing Zeb2 

on both alleles in CD11c+ cells caused a severe reduction in the pDC population in 

spleen and blood, with only a very low number of splenic pDCs remaining. These 

remaining pDCs only show a minor decrease in Zeb2 mRNA, suggesting these cells 

were not efficiently targeted by the CD11cCRE line and were able to reach full 

maturation. Interestingly, loss of only one allele of Zeb2 had minimal effect on the 

pDCs, demonstrating that although Zeb2 is a crucial TF for pDC homeostasis, haplo-

sufficient expression is able to generate a normal pDC population. Increasing Zeb2 

expression on the other hand also had minimal impact on pDC numbers. We 

hypothesize that this is because pDCs already express high levels of Zeb2 in steady 

state, and so the moderate increase in Zeb2 expression driven by the Rosa-26 

promoter does not provide significant advantage to the cells. Experiments with 

competitive BM chimeras revealed that the defect in pDCs in the Zeb2-/- mice was 

cell intrinsic and confirmed that Zeb2 expression is required for pDC homeostasis.  



96 

 

Trying to unravel how Zeb2 is able to control the pDC population, we determined the 

effect of loss of Zeb2 on the expression levels of two TFs important in pDC 

development, namely Id2 and E2-217,18,23,52. Despite the small decrease in Zeb2 

mRNA level, the remaining splenic pDCs in Zeb2-/- mice showed a big increase in Id2 

and a smaller increase in E2-2 mRNA levels. As Id2 antagonizes E2-2 dimerization, 

and hence its function as a transcriptional regulator53, it could be that the increased 

E2-2 expression is an attempt of the Zeb2-/- pDCs to compensate for the increased 

Id2 levels. ChIP experiments showed that Zeb2 is able to directly bind the E-boxes 

present in the promoter region of Id2 and in that way very likely represses Id2 

transcription. This explains why decreased expression of Zeb2 in Zeb2-/- pDCs is 

associated with increased Id2 expression. As Id2 functions during pDC development, 

and we showed that Zeb2 acts upstream of Id2 and is already highly expressed in 

pre-pDCs, we can conclude that Zeb2 not only regulates pDC homeostasis as stated 

before, but also pDC commitment. A cell intrinsic requirement for Zeb2 during pDC 

development was confirmed by Wu and colleagues57. Taken together we propose a 

model (Figure 14) in which Zeb2 regulates pDC development from the pre-pDC stage 

onward by directly repressing Id2, allowing the pDC TF E2-2 to bind DNA and induce 

pDC development.  

 
Figure 14 | Proposed model for the action of Zeb2 in pDC development. Zeb2 regulates pDC 
development from the pre-pDC stage onward by directly repressing Id2, allowing pDC TF E2-2 to 
induce pDC development. 
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Fitting with the high mRNA expression data for Zeb2 in cDC2s, we found that 

ablation of Zeb2 expression in CD11c+ cells resulted in a cell intrinsic reduction in 

cDC2s across multiple tissues, demonstrating that Zeb2 is required by cDC2s. This 

reduction in cDC2s was rather unexpectedly coupled with an increase in cDC1s, 

which was as well shown to be cell intrinsic. Overexpression of Zeb2 in CD11c+ cells 

led to a cell intrinsic decrease in cDC1s in all tissues examined, while cDC2s 

remained unaffected. As hypothesized for the pDCs, we believe that this last finding 

is because the Rosa-26 promoter does not significantly increase the already high 

level of Zeb2 in cDC2s. Indeed, qPCR analysis revealed that cDC2s from Zeb2Tg/Tg 

mice do not express higher Zeb2 mRNA levels than cDC2s from WT littermate 

controls. Comparing the different tissues, we found that not all are equally sensitive 

to the changes in Zeb2 expression. cDCs in the lung for instance appear to be very 

sensitive, as affecting only one allele of Zeb2 already gave significant differences in 

the presence of the cDC populations, whereas the cDCs in the liver were not affected 

by increased expression of Zeb2. This suggests the involvement of some local 

tissue-imprinting factors.  

 

In the spleen of mice overexpressing Zeb2 in CD11c+ cells we found a new 

XCR1+SIRPα
+ (DP) cDC population and its presence was shown to be cell intrinsic. 

These DP cDCs were absent in all other tissues examined, except for the inguinal 

and mesenteric LN. This suggests that either the lymphoid environment is involved or 

that this is a consequence of the longer half-life of cDCs in lymphoid organs 

compared to cDCs in peripheral tissues. To our knowledge, such a population has 

not previously been reported. The intermediate expression of CD24, Irf4 and Irf8 puts 

forward the idea that the DP cDCs represent an intermediate subset between a cDC1 

and a cDC2. This should be further confirmed by performing RNA-seq on this 

population and comparing the expression profile with that from WT splenic cDC1s 

and cDC2s. However, a high proportion of those splenic DP cDCs were apoptotic 

and they were absent from migratory populations in LNs, which led us believe that 

this intermediate population is dysfunctional.  
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When looking closer at the different SILP cDC populations, we found that the two 

cDC2 subsets were not equally affected by changes in Zeb2 expression. CD103- 

cDC2s were sensitive to the loss of Zeb2 in a cell intrinsic way, while their CD103+ 

counterparts were unaffected. Thus SILP CD103+ cDC2s do not require Zeb2 for 

their generation and, in terms of Zeb2 dependence, these cells are more similar to 

SILP CD103+ cDC1s. This is not the first example where the CD103+ cDC2s behave 

similarly to their cDC1 counterparts. Csf2R2b-/- mice, for example, have reduced 

cDC1 populations in the periphery, but also show a reduction in CD103+ cDC2s in the 

SI53,58,59. Next to this, it has been shown that intestinal CD103+ cDC2s express the 

typical cDC1 marker CD2433. However, there is also substantial evidence that the 

CD103+ cDC2s represent a unique cDC subset in the gut. For example, the CD103+ 

cDC2s are the only intestinal cDCs that have been reported to be Notch2 

dependent27, targeted in hu-Langerin diphtheria toxin A mice60, and affected in mice 

that express a truncated form of Sirpα61. Very recently it was proposed that intestinal 

CD103+ cDC2s depend on TgfβR-signalling62 for their development. In addition, 

CD103+ cDC2s were found to express CD101, SiglecF and Epcam, three markers we 

showed to be upregulated in splenic Zeb2-/- cDC2s. Additionally, CD103+ cDC2s are 

dependent on Csf258 and we showed that cDC2s from Csf2 BM cultures do not 

express Zeb2. Furthermore, Zeb2 is known to antagonize Tgfβ-mediated 

transcription63. All of this together suggests that high expression of Zeb2 in CD103- 

cDC2s inhibits TgfβR-mediated signalling, whereas the low expression of Zeb2, 

possibly a consequence of Csf2-signalling, in CD103+ cDC2s allows TgfβR-mediated 

signalling resulting in the differentiation of this subset and the expression of its typical 

markers CD101 and SiglecF. Further research is needed to test this hypothesis and 

further unravel the regulation of intestinal CD103+ cDC2s and the link between 

intestinal CD103- and CD103+ cDC2s. 

 

In terms of DC function, it seems that, at least in steady state conditions, the role for 

Zeb2 is rather limited. The decreased presence of migratory cDCs in Zeb2-/- mice 

suggests a function for Zeb2 in their capacity to migrate, which was also predicted by 

the RNA-seq data. As migratory cDCs show a similar trend in cDC1 and cDC2 

presence upon altering Zeb2 levels as tissue resident DCs, we believe that the 
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influence of Zeb2 in migration is the same for the different cDC subsets. The impact 

on migration could be attributed to the fact that Zeb2 controls the expression of 

several junctional proteins and hence inhibits cell-cell adhesion46,64–67. Zeb2 has 

been identified before as crucial for the migration of many cell types, including neural 

crest cells, cortical GABAergic neurons, melanoblasts and many carcinoma 

cells36,39,40.  It is likely that also for DC migration Zeb2 behaves in a similar way and 

that loss of Zeb2 expression leads to increased adhesion to for instance epithelial 

cells or endothelial cells lining lymph vessels, and thus lowers the ability of DCs to 

migrate. This hypothesis is supported by the RNA-seq results in which we found an 

elevated expression of adhesion molecules like Cldn1, Epcam, Itgad, Cdh17 and 

SiglecF and the down-regulation of migration facilitating Mmp9 and chemokine 

related genes (Cxcr1, Ccr2, Ackr3 and Cx3cl1) upon ablation of Zeb2 in cDC2s. In 

addition to migration, we also investigated if Zeb2 has an effect on the antigen 

presenting capacity of cDCs. In conclusion we did not observe any differences in the 

ability of Zeb2Tg/Tg cDC1s and Zeb2-/- cDC2s to induce naive CD4+ or CD8+ T cell 

proliferation and polarization in the steady state when compared to their WT 

counterparts. The only significant difference found, was an increased IL-10 

production by CD4+ T cells upon antigen presentation by Zeb2-/- cDC2s. Interestingly, 

the expression of CD101, for which we found an increased expression on the surface 

of Zeb2-/- cDC2s, on CD11c+ cells has been associated with increased IL-10 

production68,69. IL-10 is typically linked with a Treg phenotype and hence the 

regulation of immune response and self-tolerance70. We did not evaluate the 

presence of Treg cells in Zeb2-/- mice, but in Zeb2-/- cDC2/CD4+ T cell co-cultures we 

did not find a difference in the presence of Foxp3+ Treg cells (data not shown). 

Although ablation of Zeb2 decreased the presence of cDC2s, it could be that the 

remaining ones have an increased ability to prevent auto-immunity or allograft 

rejection. As so far we only studied steady state conditions and further examination of 

the functional consequences of altering Zeb2 expression levels during infection and 

inflammation settings are still required. 
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To date, we have limited evidence that Zeb2 expression has impact on DC function, 

but the TF does skew the prevalence of the cDC subtypes. Previously described 

cDC2 TFs all function in terminally differentiated cDC2s, but here we compiled 

evidence for Zeb2 functioning during cDC2 development. In the spleen we found an 

increase in pre-cDC2s with increasing levels of Zeb2, coupled with a decrease in pre-

cDC1s pointing toward a role for Zeb2 in controlling cDC2 development. Also, loss of 

Zeb2 expression in mature DCs did not cause a shift in cDC subset prevalence and 

we did not find any evidence for a function for Zeb2 in cell survival, supporting the 

idea that Zeb2 does not operate in terminally differentiated cDCs. Together with the 

fact that Zeb2-/- cDC2s express cDC1-associated genes and Zeb2Tg/Tg cDC1s 

express cDC2-associated genes, this led to the hypothesis that Zeb2 acts as a cDC 

subset fate switch. We suggest that the absence or overexpression of Zeb2 switches 

the fate of the majority of pre-cDCs, resulting in the development of cDC1s or cDC2s 

respectively. However, this is not 100% efficient, as some pre-cDCs do become 

either cDC2s or cDC1s in Zeb2-/- and Zeb2Tg/Tg mice, respectively, and consequently 

these express some genes typically associated with the alternate subset. A possible 

explanation for the remaining cDC2s in the Zeb2-/- mice is the existence of different 

subsets within the cDC2 population. It could be that there is a cDC2 subpopulation 

that depends on Zeb2 for its development which is no longer present in the Zeb2-/- 

mice. Whereas the cDC2s that remain do not require Zeb2 for their development, but 

rather for maintaining a proper cDC2 identity. The partial Zeb2-dependence in cDC2s 

was independently confirmed by the group of Kenneth Murphy. In their study they 

suggest that Zeb2 does not control the cDC2 lineage, but rather represses the cDC1 

lineage64. However, this hypothesis does not explain the cell intrinsic reduction or 

increase of cDC2s in Zeb2-/- or Zeb2Tg/Tg mice respectively. We believe that Zeb2 

acts as a cDC subset fate switch, with its absence skewing the cDCs toward the 

cDC1 lineage and its overexpression skewing the cDCs toward the cDC2 lineage. 

 

We were able to unravel, at least partially, the mechanism behind this Zeb2 

controlled fate switch as well upstream as downstream of the TF. Using both Csf2 

and Flt3L supplemented BM-derived DC cultures, we demonstrated that Zeb2 

expression is induced by Flt3L, but not by Csf2-signalling. This is consistent with 
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recent findings that cDC2s, apart from CD103+ cDC2s in the small intestine lamina 

propria, develop normally in mice lacking Csf258. So Zeb2 acts downstream of Flt3L 

and this is limited to the cDC2 lineage. Further downstream, Zeb2 acts in a similar 

way as in pDCs. Our ChIP experiments on cDC2s showed that Zeb2 binds to the 

E-boxes present in the Id2 promoter which subsequently leads to repression of Id2 

expression. In the cDC1 lineage, Zeb2 expression is not induced and hence Id2 is 

expressed and driving cDC1 commitment.  

 

Collectively our results lead to the model pictured in Figure 15. We propose that in 

cDC development, Zeb2 functions downstream of Flt3L to regulate commitment 

toward the cDC2 lineage by repressing Id2. As such, Zeb2 represents the first TF to 

be described that is involved in the early commitment of pre-cDCs toward the cDC2 

lineage. 

 

 

 
Figure 15 | Proposed model for the action of Zeb2 in cDC development. Zeb2 regulates 

commitment to the cDC2 lineage by repressing Id2. Hence, loss of Zeb2 expression leads to 

increased Id2 expression skewing the cDCs toward the cDC1 lineage. On the other hand 

overexpression of Zeb2 leads to decreased expression of Id2 skewing the cDCs toward the cDC2 

lineage. 
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1.5 Materials and methods 

 

 

Mice 

 

The generation of Zeb2fl/fl and R26-Zeb2Tg/Tg mice was described previously45,46. 

Mice were backcrossed to a C57BL/6 background for at least seven generations 

before crossing with the CD11cCRE mice47 or late-CD11cCRE mice34. OTI and OTII 

mice were purchased from Jackson Laboratories and backcrossed to the Rag-/- 

background. All mice were bred and maintained at the Vlaams Instituut voor 

Biotechnologie (Ghent University) under specific pathogen-free conditions and were 

used between 6 and 12 weeks of age. All experiments were performed in accordance 

with the ethical committee of the Faculty of Science. 

 

 

Generation of competitive BM chimeric mice 

 

Competitive BM chimeric mice were generated by lethally irradiating CD45.1/CD45.2 

WT mice with a single dose of 8 Gy. 12 hours later mice were reconstituted by 

intravenous injection of 5 x 106 BM cells, which were a ~1:1 mix of CD45.1 WT and 

CD45.2 Zeb2-/-, Zeb2+/+ or Zeb2Tg/Tg BM cells. Chimerism was assessed 10 weeks 

after irradiation in liver, lung, spleen and SI. 

 

 

Isolation of tissue leukocytes 

 

For the isolation of liver leukocytes, livers were isolated from phosphate buffered 

saline (PBS)-perfused mice, chopped finely, and incubated for 15–20 min with 1 

mg/ml collagenase A (Sigma-Aldrich) and 10 U/ml DNase (Roche) in a shaking water 

bath at 37°C. Cells were passed through a 70-µm cell strainer. For the isolation of 

lung, spleen and LN leukocytes, lungs, spleens and LNs were isolated from PBS-

perfused mice, chopped finely, and incubated for 30 min with 0.2 mg/ml Liberase TM 

(Roche) and 10 U/ml DNase (Roche) in a shaking water bath at 37°C. Cells were 

passed through a 70-µm cell strainer. SILP leukocytes were isolated as described 



103 

 

previously78. Briefly, small intestines (SIs) were flushed with PBS or RPMI containing 

2% fetal calf serum (FCS) and Peyer’s patches were excised. After opening 

longitudinally and cutting into 0.5 cm segments, they were incubated twice with PBS 

containing 2mm EDTA (Ethylene-diamine-tetra-acetic acid) in a shaking water bath at 

37°C for 20 min. Then the tissue was digested with 1 mg/ml collagenase VIII (Sigma-

Aldrich) in a shaking water bath at 37°C for 15 min. Cells were passed through a 40-

µm cell strainer. Pre-cDCs were isolated from spleens by gently pressing the spleens 

through a 70-μm filter (no enzymes) to allow for the detection of SiglecH. BM cells 

were obtained by flushing femurs and tibias with RPMI. In all instances, except for 

the SI, red blood cells were lysed with an in house made osmotic lysis buffer (10mM 

KHCO3, 155 mM NH4Cl and 0.1 mM EDTA in PBS) before staining for flow 

cytometric analysis. 

 

 

BMDC cultures 

 

Total BM was harvested from WT mice, and 2 x 106 cells were cultured in RPMI 

supplemented with Glutamax and Gentamicin in a well of a 6-well plate for 7 days 

with either 250 ng/ml Flt3L and 10% FCS for Flt3L cultures or 20 ng/ml Csf2 and 5% 

FCS for Csf2 cultures. Csf2 BMDCs were further supplemented with additional 

media, FCS and Csf2 at day 3 of culture. 

 

 

Magnetic pre-enrichment: negative selection of T, B, NK cells and neutrophils 

 

Before FACS-purification of pre-cDCs and cDCs a negative selection for T, B, NK 

cells and neutrophils was performed on splenic single cell suspensions. For this, cells 

were first incubated for 20 min with following biotin labelled antibodies; NK1.1 

(PK136), CD19 (1D3), CD3e (145-2c11) and Ly6G (1A8). Next, samples were 

washed  and resuspended in cell separation buffer (10mM EDTA and 2% FCS in 

PBS) in FACS tubes. After incubating with magnetic streptavidin beads (Magnisort; 

eBioscience) for 10 min at RT, tubes were placed in a magnet for 10 min at room 

temperature (RT). Supernatant was poured off and tubes were washed with 
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separation buffer and again left for 10 min at RT in the magnets. Supernatant was 

poured off and after a second round of magnetic sorting, samples were further 

processed for FACS.  

 

 

Flow cytometry and FACS 

 

For flow cytometry, 3–4 x 106 cells were stained at 4°C in the dark with antibodies 

(Table 1). Intracellular staining of Irf4 and Irf8 was performed after fixing and 

permeabilizing of the cells with a Foxp3 TF-staining buffer set (eBioscience). Data 

were acquired on a cell analyser (LSRFortessa; BD) and analyzed using FlowJo 

software (Tree Star). Before FACS-purification of pre-cDCs and cDCs a magnetic 

pre-enrichment was performed as stated before. Cells were FACS-purified using a 

flow cytometer (FACSAria II or FACSAria III; BD). After sorting, a purity check was 

performed for all samples. 

 

Table 1 | Antibodies used for flow cytometry 

Antibody Clone Antibody Clone 

    
Fc Block 2.4G2 CD11b M1/70 

Fixable Viability Dye eBioscience CD11c N418 

CCR2 475301 CD127 SB/199 

CD3e 145-2c11 CD135 A2F10 

CD4 RM4-5 CD161 PK136 

CD8 53-6.7 CD172a P84 

CD19 1D3 CD317 120g8 

CD24 M1-69 CXCR1 SA011F11 

CD26 H194-112 Epcam G8.8 

CD38 90 F4/80 BM8 

CD45 30-F11 IA-IE M5/114.15.2 

CD45.1 A20 Irf4 M-17 

CD45.2 104 Irf8 V3GYWCH 

CD45R RA3-6B2 Ly6C AL-21 

CD64 X54-5/7.1 NK1.1 PK136 

CD69 H1.2F3 Sca1 D7 

CD101 Moushi101 SiglecF E50-2440 

CD103 2E7 SiglecH 440c 

CD115 AFS98 Ter-119 Ter-119 

CD117 2B8 Xcr1 ZET 
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Splenic cDC spiking in Flt3L BMDC cultures 

 

At day 0 a Flt3L BMDC culture was started up as described before from WT CD45.1 

mice and 1 x 106 cells were seeded in a well of a 24-well plate. At day 4 splenic 

CD45.2 cDC1s and CD45.2 cDC2s from mice of interest were FACS-purified (as 

described before) and 6,000 cells per well were spiked into the Flt3L BMDC cultures. 

Cultures were further supplemented with Flt3L (250 ng/ml) and Csf2 (1 ng/ml). 1, 2, 4 

and 6 days after spiking of the splenic cDCs, cells were harvested by roughly 

pipetting and number of surviving CD45.2 cDCs was assessed by flow cytometry.  

 

 

Cocultures of cDCs with ovalbumin (OVA) specific OTI or OTII cells 

 

Naive CD62L+CD8+ (OTI) or CD4+ (OTII) T cells were FACS-purified from the spleen 

and lymph nodes of Rag-/- OTI or OTII mice. Isolated T cells were incubated with 5 

µM CellTrace CFSE (Thermofisher Scientific) for 7 min at 37°C. Splenic cDC1s or 

cDC2s were FACS-sorted from mice of interest and 10,000 cDCs were cocultured 

with 50.000 OTI or OTII cells in the presence of 100 µg/ml OVA protein 

(Worthington). After 4 days for OTI and 5 days for OTII cocultures, culture 

supernatant was harvested and stored at -20°C for further analyses with a CBA 

assay. On those same days cells were harvested and CFSE dilution in T cells was 

assessed by flow cytometry. 

 

 

CBA assay: BD Cytometric Bead Array (CBA) Mouse Th1/Th2/Th17 Cytokine Kit 

 

To asses concentrations of IFNγ, IL-2, IL-4, IL-6, IL-10, IL-17a and TNFα in 

supernatant from cDC/T cell cocultures, we performed the CBA Mouse Th1/Th2/Th17 

Cytokine Kit from BD (cat. Nr 560485 ) according to the manufacturer’s instructions. 

Briefly, the following workflow was performed. Preparing cytokine standards, mixing 

of capture beads, dilution of samples, performing instrument setup, performing the 

cytokine assay, acquiring data and data analysis. A detailed protocol can be found in 

the kit manual.  
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RNA sequencing 

 

25,000 cDC1s or cDC2s from Zeb2−/−, Zeb2+/+ and Zeb2Tg/Tg mice were FACS-

purified into 500 μl of buffer (RLT Plus; QIAGEN) and β-mercaptoethanol. RNA was 

isolated using an RNeasy Plus micro kit (QIAGEN) and sent to the Vlaams Instituut 

voor Biotechnologie Nucleomics facility, where the RNA-sequencing was performed 

using a NextSeq sequencer (Illumina). The pre-processing of the RNA-sequencing 

data was done by Trimmomatic. The adapters were cut off, and reads were trimmed 

when the quality dropped below 20. Reads with a length <35 were discarded. All 

samples passed quality control based on the results of FastQC. Reads were mapped 

to the mouse reference genome via Tophat2 and counted via HTSeqCount. Samples 

were subsequently analyzed using R/Bioconductor and the DESeq2 procedure was 

used to normalize the data. 

 

Gene expression analysis by RT-qPCR 

 

RNA was purified from sorted cells using an RNeasy Plus micro kit (QIAGEN). RNA 

was reverse transcribed to cDNA with an iScript Advanced cDNA Synthesis kit (Bio-

Rad Laboratories). Gene expression was assayed by RT-qPCR using a SensiFast 

SYBR No-Rox kit (GC Biotech) on a PCR amplification and detection instrument 

(LightCycler 480; Roche) with the primers listed in Table 2. Gene expression was 

normalized to GAPDH, and the mean relative gene expression was calculated using 

the 2−ΔΔC(t) method.  

 
Table 2 | Primers used for RT-qPCR 

Gene Forward primer Reverse primer 

   

Batf3 5’-CAGACCCAGAAGGCTGACAAG-3’ 5’-CTGCGCAGCACAGAGTTCTC-3’   

E2-2 5’-CGAAAAGTTCCTCCGGGTTTG-3’ 5’-CGTAGCCGGGCTGATTCAT-3’ 

GAPDH 5’-GCATGGCCTTCCGTGTTC-3’ 5’-TGTCATCATACTTGGCAGGTTTCT-3’ 

Id2 5’-TCCTGTCCTTGCAGGCATCTGAAT-3’ 5’AACGTGTTCTCCTGGTGAAATGGC-3’ 

Klf4 5’-CGATGAACTGACCAGGCACTAC-3’ 5’-CCTCTTCATGTGTAAGGCAAGGTG-3’ 

Nfil3 5’ GAACTCTGCCTTAGCTGAGGT-3’ 5- ATTCCCGTTTTCTCCGACACG-3’ 

Notch2 5’-CCACCTGCCTGGATAAGATCG-3’ 5’-CTGCCCGTTGTTCACACAC-3’   

RelB 5’-GAATGTCGTCAGGATCTGC-3’ 5’-TGGTGGACTTCTTGTCGTAG-3’ 

Zeb2 5’-GGCAAGGCCTTCAAGTACAA-3’ 5'-AAGCGTTTCTTGCAGTTTGG-3’ 
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ChIP and Id2 RT-qPCR 

 

FACS-purified pDC and cDC2 cells from Zeb2Tg/Tg mice were cross-linked with 1% 

paraformaldehyde in fixation buffer (Active Motif). After nuclei isolation, DNA was 

fragmented with 25 U micrococcal nuclease for 20 min at 37°C in micrococcal 

nuclease-digesting buffer (50 mM Tris-HCl, pH 7.6, 1 mM CaCl2, and 0.2% Triton X-

100). DNA fragment size (150–500 bp) was confirmed after chromatin preparation in 

a 1.2% agarose gel. The fragmented chromatin was incubated overnight with 10 μg 

FLAG-M2 antibody (F3165; Sigma-Aldrich) followed by a pull-down assay using A/G-

conjugated agarose beads (EMD Millipore). DNA was purified with an iPure kit 

(Diagenode) and the quality was measured using a 2100 Bioanalyzer system with a 

DNA kit (High Sensitivity; Agilent Technologies). RT-qPCR was performed on a Zeb-

predicted binding site identified in the Id2 promoter with the following primers: 

5′-TACCTGACAAAGAGCTTCCC-3′ and 5′-TTACATACACTGCCCTTGGT-3′ (primer pair 

A) or 5′-ATGTGGCTGCATCTAGGAA-3′ and 5′-GGGAAGCTCTTTGTCAGGTA-3′ (primer 

pair B). Primers in the coding sequence of the GAPDH gene were used as a control 

of unspecific binding with the primer pair 5′-TTGAGCTAGGACTGGATAAGCAGG-3′ and 

5′-AGTCCGTATTTATAGGAACCCGG-3′. The percentage of enrichment to the input 

was calculated and shown in a bar graph.  

 

Statistical analysis 

 

Groups were compared with a two-way Student’s t test, and multiple-group 

comparisons were performed using one-way ANOVA followed by a Bonferroni post-

test with Prism Software (GraphPad Software). Samples were assumed to be 

normally distributed with similar variance between groups. No randomization was 

used to determine experimental groups, and no blinding of the investigator was 

performed. Group sizes were determined on the basis of previous experience. 

 

Accession numbers 

 

RNA-sequencing data have been deposited in the Gene Expression Omnibus public 

database under accession no. GSE79903. 
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1.7  Supplementary figures and tables 

 

 

Figure S1 | Splenic pDC gating strategies. (A) Representative FACS plots showing gating 

strategy for purification of splenic pDCs. The number represent the proportion of pDCs as a 

percentage of total cells. Samples were pre-enriched using streptavidin negative selection beads 

(Magnisort; eBioscience). (B) Representative FACS plots showing purity of splenic pDCs after sorting. 

The number represents the proportion of pDCs as a percentage of total cells. (C) Representative 

FACS plots showing gating strategy for non-enriched splenic pDCs and CD11c, Ly6C and MHCII 

expression in splenic pDCs. FSC, forward scatter. SSC, side scatter. 
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Figure S2 | Splenic cDC gating strategies. (A) Representative FACS plots showing gating 

strategy for purification of splenic cDC subsets. The numbers represent the proportion of each cDC 

subset as a percentage of total cells. Samples were pre-enriched using streptavidin negative selection 

beads (Magnisort; eBioscience). (B) Representative FACS plots showing purity of splenic cDC subsets 

after sorting. The numbers represent the proportion of each cDC  subset as a percentage of total cells. 

(C) Representative FACS plots showing gating strategy for non-enriched splenic cDC subsets. FSC, 

forward scatter. SSC, side scatter. 
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Figure S3 | Gating strategy for SILP cDC subsets. Representative FACS plots showing gating 

strategy for non-enriched CD103+ cDC1s, CD103+ cDC2s, and CD103− cDC2s in the SILP. FSC, 

forward scatter. SSC, side scatter. 

 

 

 

 

Figure S4 | BM and splenic pre-cDC gating strategy. Representative FACS plots showing 

gating strategy for identification of pre-cDC subsets in the BM and the spleen. Plots shown are from a 

BM sample. FSC, forward scatter. SSC, side scatter. 
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Figure S5 | BMDC gating strategies and post-sort purities. (A en B) Representative FACS 

plots showing gating strategy and post-sort purities for WT Flt3L BMDC cultures (A) and WT Csf2 

BMDC cultures (B). The numbers represent the proportion of indicated cells as a percentage of total 

cells. FSC, forward scatter. SSC, side scatter. 
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Figure S6 | Zeb2 expression levels control gene expression in cDCs. (A) Heatmap of 

genes differentially expressed between splenic Zeb2+/+and Zeb2Tg/Tg cDC1s shown for splenic Zeb2-/-, 

Zeb2+/+ and Zeb2Tg/Tg cDC1s. Genes are listed in Table S1. (B) Heatmap of genes differentially 

expressed between splenic Zeb2+/+and Zeb2-/- cDC2s shown for splenic Zeb2-/-, Zeb2+/+ and Zeb2Tg/Tg 

cDC2s. Genes are listed in Table S2. 
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Figure S7 | Functional consequences of Zeb2 expression levels. (A) IPA analysis showing 

enriched Diseases & Functions in genes differentially expressed between splenic Zeb2+/+and Zeb2-/- 

cDC2s. (B) IPA analysis showing enriched Diseases & Functions in genes differentially expressed 

between splenic Zeb2+/+and Zeb2Tg/Tg cDC1s. 
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Figure S8 | Predicted Zeb binding sites in Id2 locus. (A) Physbinder predictions for Zeb1 

binding sites in Id2 locus and surrounding regions. Zeb1 was used as a model for Zeb2, as 

the binding motifs are conserved between them. The red lines indicate predicted Zeb binding 

sites. Sequence conservation among other species is also depicted. (B) The top shows a 

schematic representation of the Id2 promoter region and ConTra-predicted Zeb E-box 

binding sites. The bottom shows sequence conservation of these E-boxes across multiple 

species. TSS, transcription start site. Chr., chromosome. 
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Table S1 | Differentially expressed genes: Zeb2+/+ versus Zeb2Tg/Tg cDC1s 

Up-regulated Down-regulated 

Tgm2 Hcar2 Tgfbi Cd38 Card10 Slamf6 
Clec4a1 Cd302 Ccnb1 Gpr82 Ildr1 Cystm1 
Clec7a Lifr Neurl2 Pkib Efcc1 Marveld2 
Clec1b Ifi203 Sh2d1b1 Ccl22 Fas Homer2 
Sirpb1a Ms4a7 Acp5 Ido1 Cd8b1 Gclc 
Cd4 Fam26f Oas2 Fchsd2 Otud7b Cxcr3 
Adgre1 Hmox1 Esr1 Cnnm1 Lpar3 Cyb561 
Oasl2 Slc16a7 Aurkb Fcrlb Gramd2 Cdon 
Tlr1 Mndal Cdc25c Angel1 Elmo3 Esyt3 
Wfdc17 Rarg Aurka Glce Asap2 Mmp28 
Clec4a2 Cdc25b Ehf Sspo Slc41a2 Notch4 
Ifit3 Tespa1 Il1rn Pik3r3 Mab21l3 Trabd2b 
Oas1a Ctnnd2 Ttk Sec1 Casr Aff3 
Zeb2 Fam46a Ckap2l Slc22a15 Scin Lsr 
Apobec1 Ccl9 Pou2f2 Vps37d Cd8a P3h2 
Pilrb1 Emb A630033H20Rik Nfe2l3 Pdzk1ip1 Nid2 
Ifit3b Pira2 AI504432 Lzts2 Lrrc1 Egfl8 
Clec4a4 Gapt Cenpf Mtmr4 Myb Proser2 
Sirpa Slc40a1 Cenpi Lrrc29 Abcd2 Serpinb6b 
Lair1 Lst1 Ifi27l2a Pacsin1 Pcdh1 Rtn4rl1 
Cybb Tlr7 Gngt2 Tm4sf5 Cldn1 Actn1 
Fcer1g Gpr141 Cenpm Arc Hgfac Gcsam 
Ms4a4c Hpgds Vegfa Noxred1 Adgrf5 Dkk3 
Cd300ld Ifitm3 Lag3 Prr13 Ldlrad3 Gm3336 
Csf1r Fut7 Ctsc Serpinb1a Gpr157 Ltbp2 
Itgam S100a4 Casp1 Pdcd1 Foxj1 Fcrla 
Ddx58 Abhd15 Spic Dnajc22 Ccr9 Ttc39a 
1810011H11Rik Hacd4 Spc25 Chst11 Rab30  
Gpr162 Ceacam1  Ms4a1 Ankrd55  
Cd300a Ms4a6b  Anxa6 Fndc4  
Gm12250 Cdr2  Ccndbp1 Arpin  
Nxpe4 Lgmn  Sh3gl3 Mpzl2  
Ncf2 Ube2c  Chrnb1 Frmd5  
Ltb4r1 Cd101  Tlr3 Ptgis  
Cd300lf Ccl6  Col27a1 Prss57  
Pydc4 Ccnf  Rasip1 Itga3  
Abi3 Sapcd2  Cd200 Gpr33  
Rtp4 Ggt5  Mrvi1 Traf4  
Clec4n Prc1  Pglyrp1 Sema4c  
Galnt6 Itga9  Acss2 Ffar4  
Sirpb1b Gm5150  Myzap Serpine2  
Pilrb2 Prdm1  Ctla4 Inadl  
Ms4a6c Ear2  Sema4f Pcsk5  
Plcb1 Klk8  Spint2 D030025P21Rik  
Oas3 C3ar1  Dapk2 2510009E07Rik  
Ifit1 Ifi47  Gucy2c E330020D12Rik  
Gm9733 Itgad  Prph Dcstamp  
Slc7a11 Rasgrf2  Kazn Hepacam2  
Fcgr4 Lpcat2  Dusp18 Arhgef9  
Ifit1bl1 Oas1g  Snn Lefty1  
Pla2g7 Xaf1  Sept1 Serpinb9  
Ddit4 Pif1  Mmp19 Clec4b2  
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Table S2 | Differentially expressed genes: Zeb2+/+ versus Zeb2-/- cDC2s 

Up-regulated Down-regulated 

Pclb1 Frk Snx22 F11r Clec4b2 Kntc1 
1700011B04Rik Cldn1 Arpin Nrg2 Slfn1 BC030867 
Plcb4 Tmeff1 Zcchc18 Wfdc21 Cd9 Slc9a2 
Itgad Hdc Snn Stard10 Nid2 Clec9a 
Cox6a2 Siglecf Sox8 Ttll5 C3ar1 Lyz2 
Ttc39a Rtn4rl1 Cystm1 Cd101 Krtcap3 Smim5 
Sspo Rnase4 Jag1 Aff3 Ackr3 Dmwd 
Upp1 Gpc1 Apoe Pappa2 Cx3cl1 Cygb 
Chac1 Dusp4 Paqr9 Gm3336 Rragd Mmp9 
Cxcr3 Ms4a1 Gpr55 Cst3 Ceacam19 Dapk1 
Lurap1 Lima1 Efnb1 Prg3 P2ry2 Gpr83 
Cdh17 Nid1 Gpr157 Car2 Chtf18 Ccr2 
Lsr Pbx1 Elmo3 Sema4c Cp Hr 
Cd84 Tgtp1 Oasl2 Gjb2 Ska1 Dab2 
Fcer2a Epcam Mnda G0s2 Fam198b Lyz1 
Prg2 Tenm4 Hepacam2 Elovl7 Myof Zeb2 
Ecel1 Fcrla Als2cr12 Oasl1 Slc1a2 Cxcr1 
Pde1b E330020D12Rik Ccl24 Utf1 2610528A11Rik Gp2 
Slc22a23 Osgin1 Tm4sf5 Strip2 Cd209b  
Cysltr1 Dact3 Slc27a2 Gpr160 Dbn1  
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Chapter 2 
 

 

Loss of Zeb2 in CD11c+ cells does not 

influence the development of 

hematoproliferative disease in the 

CD11cCRExp53fl/fl mouse model 
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2.1 Abstract 

 

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive 

disease that is believed to develop from plasmacytoid dendritic cell (pDC) precursors. 

Currently there is no standardised therapeutic approach and the mean overall 

survival for patients is 12 to 16 months. A reliable preclinical model for the disease 

would be helpful to better understand the development of this lymphoma/leukemia 

subtype and could be used to develop and evaluate improved therapeutic strategies. 

Based on our finding that Zeb2 is essential for pDC differentiation and ZEB2, as well 

as P53, are recurrently mutated in BPDCN, we aimed at modelling this disease using 

our available p53 and Zeb2 loss-of-function mouse models. As the CD11cCRE mouse 

line allows targeting of the pDC lineage, we intercrossed this CRE line with our 

conditional Zeb2 and p53 knockout mice to generate CD11cCRExp53fl/fl and 

CD11cCRExZeb2fl/flxp53fl/fl mice. However, analysis of the cohorts revealed that our 

novel in vivo models do not develop BPDCN, but a so far unidentified aggressive 

proliferative hematopoietic disorder that develops independently of Zeb2. 
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2.2 Introduction 

 

 

Blastic plasmacytoid dendritic cell neoplasm (BPDCN), previously referred to as 

blastic NK-cell lymphoma/leukemia or agranular CD4+/CD56+ hematodermic 

neoplasm is currently classified as an ‘Acute myeloid leukemia and related 

neoplasm’1. BPDCN occurs mostly in elderly people with a median onset age above 

60 years and patients typically show skin lesions and later on involvement of bone 

marrow, lymph nodes and peripheral blood, including thrombocytopenia and 

anaemia2,3. Additionally, splenomegaly and hepatomegaly can be present at 

diagnosis4. The highly aggressive disease has a poor prognosis, probably due to the 

fact that the presentation of skin lesions delays diagnosis of this hematopoietic 

malignancy. BPDCN is believed to derive from pDC precursors5 and currently the 

diagnosis of BPDCN is based on the characteristic cytology and immunophenotype 

of malignant cells co-expressing CD4, CD56, CD123, blood dendritic cell antigens 2 

and 4, and CD2AP. Treatment with chemotherapy often leads to relapse and 

currently chemotherapy followed by allogeneic stem cell transplantation gives the 

best improvement on survival2.  

 

In 2014, Menezes et al. performed whole exome sequencing on three BPDCN 

samples, followed by a targeted next-generation sequencing of 38 selected genes in 

samples from 25 other BPDCN patients. This revealed that the ZEB2 locus is 

mutated in 16% of cases. Two frameshift mutations and one mutation causing a 

single amino acid change were identified6. Furthermore, the research team of 

Mecucci (Perugia University, Italy) found genomic deletions spanning the full ZEB2 

locus with a similar frequency as the ZEB2 mutations found by Menezes (personal 

communication, unpublished). The discovery of these deleterious changes in the 

ZEB2 locus, together with the finding described in Chapter 1 of the Results section 

that Zeb2 is important in the development of pDCs7,8, suggests a possible tumor 

suppressive role for this transcription factor in BPDCN. In Chapter 1, we used the 

CD11cCRExZeb2fl/fl model to investigate the consequences of loss of Zeb2 expression 
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in pDCs, but ageing of these mice did not lead to disease development. In an attempt 

to model BPDCN in mice, we hence decided to further cross the CD11cCRExZeb2fl/fl 

mice with a CRE-mediated conditional p53 knockout model and reasoned that the 

added knockout of the tumor suppressor p53 could accelerate the disease. 

Moreover, P53 was shown to be mutated in 38% of BPDCN cases9. If we are able to 

model this rare neoplasm in mice, this would be beneficial for patients which currently 

only have a median overall survival of 12 to 16 months10,11 and for whom no 

standardized therapeutic approach exists3. Indeed, a preclinical mouse model could 

be used to better understand the disease and for the development of more targeted 

therapies for BPDCN-patients.  
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2.3 Results 
 

 

Breeding setup used to model BPDCN  

 

BPDCN is an aggressive dendritic cell neoplasm believed to be derived from pDC 

precursors and 16% of cases was shown to have deleterious mutations in the ZEB2 

locus. We previously successfully used the CD11cCRExZeb2fl/fl line to investigate the 

role of Zeb2 in the pDC lineage7 (Chapter 1 results section), but upon ageing (until 50 

weeks of age) these mice did not develop signs of disease. With the aim to shorten 

the initiation time for possible disease development, we crossed the model with a 

CRE-mediated conditional p53 knockout mouse line12. The resulting 

CD11cCRExZeb2fl/flxp53fl/fl mice will be further referred to as Zeb2-/-p53-/- (Figure 1). 

Two control groups will be used in this study: CD11cCRExp53fl/fl (Zeb2+/+p53-/-) mice 

and CRE- Zeb2fl/fl or Zeb2fl/flp53fl/fl (Zeb2+/+p53+/+) mice (Figure 1). 

 

 

 

Figure 1 | Breeding scheme and experimental mice in this study. Mice were obtained using the 

following breeding scheme: first CD11cCRE mice were crossed with either Zeb2fl/fl or p53fl/fl mice. Next the 

CD11cCRExZeb2fl/fl mice were further crossed with the CD11cCRExp53fl/fl mice to generate 

CD11cCRExZeb2fl/flxp53fl/fl mice. This resulted in the experimental mouse cohorts used in this study: CRE+ 

CD11cCRExp53fl/fl mice (Zeb2+/+p53-/-) with their CRE- control littermates (Zeb2+/+p53+/+) and CRE+ 

CD11cCRExZeb2fl/flxp53fl/fl mice (Zeb2-/-p53-/-) with their CRE- control littermates (Zeb2+/+p53+/+). 
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Zeb2-/-p53-/- and Zeb2+/+p53-/- mice suffer from massive cell infiltration in the 

liver, splenomegaly and/or enlarged thymus 

 

The health of CD11cCRExZeb2fl/flxp53fl/fl (Zeb2-/-p53-/-) and CD11cCRExp53fl/fl 

(Zeb2+/+p53-/-) mice was monitored weekly until a maximum age of 65 weeks. Every 

week we determined the weight of the mice, palpated them to check for 

splenomegaly and other growths, and assessed their general well-being (activity, 

hunched back and breathing). Mice were sacrificed when showing visible signs of 

disease, such as splenomegaly or breathing problems, or when their weight loss 

exceeded 15% of their body mass. All CRE+ mice, except for one Zeb2+/+p53-/- 

mouse, developed sings of illness with a median onset age of 37 weeks and ranging 

between 18 and 65 weeks, whereas none of the CRE- mice showed signs of disease. 

Dissection of the mice immediately revealed apparent problems with different organs. 

A majority of the sick Zeb2-/-p53-/- and Zeb2+/+p53-/- mice displayed a massive 

infiltration of white blood cells in the liver, turning the tissue whitish or yellow and 

resulting in enlargement of the organ (Figure 2A). Enlargement of the liver was 

accompanied with a similar discoloration of the spleen and splenomegaly 

(Figure 2A). When sacrificing mice with breathing problems, we often encountered a 

heavily enlarged thymus in the chest (Figure 2A). Zeb2-/-p53-/- and Zeb2+/+p53-/- mice 

showed a similar distribution of the observed phenotypes with respectively 23.5% 

and 33.3% of cases showing thymus enlargement, 64.7% and 50% showing cell 

infiltration in liver and splenomegaly and 11.8% and 16.7% showing cell infiltration in 

liver, splenomegaly and thymus enlargement (Figure 2B). Next we calculated the 

ratio of spleen to body mass and found that, normalised to the body weight, diseased 

Zeb2-/-p53-/- and Zeb2+/+p53-/- have a significant increase in their spleen weight 

compared to healthy Zeb2+/+p53+/+ control mice (Figure 2C). When comparing sick 

Zeb2-/-p53-/- to sick Zeb2+/+p53-/- mice, no statistically significant differences could be 

found in the ratio of spleen to body mass (Figure 2C). At the time of sacrifice, we also 

collected blood for automated analysis on a Hemavet (Drew Scientific Group) device. 

In general, we did not find significant differences in the cell numbers per µl blood for 

white blood cells, red blood cells and platelets (Figure 2D). However, several 

diseased mice of both groups displayed blood cell numbers outside the normal 

range. As such, 36.4% of Zeb2-/-p53-/- mice had anaemia, whereas 54.5% of
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Figure 2 | Zeb2+/+p53-/- and Zeb2-/-p53-/- mice suffer from massive cell infiltration in the liver, 

splenomegaly and/or thymus enlargement. (A) Macroscopic pictures showing massive cell infiltration in 

liver, splenomegaly (affected spleen with blue or green mouse icon next to spleen of CRE- littermate control with 

grey mouse icon) or enlargement of the thymus in Zeb2+/+p53-/- and Zeb2-/-p53-/- mice. (B) Distribution of the 

phenotypes as percentage of total mice in Zeb2-/-p53-/- (n=17) and Zeb2+/+p53-/- (n=6) mice. (C) Ratio of spleen to 

body weight for indicated mice. Each dot represents one mouse. *, P < 0.05; **, P< 0.01. One-way ANOVA with 

Bonferroni post-test. (D) Absolute cell number per µl of blood for white blood cells, red blood cells and platelets 

determined with Hemavet in Zeb2+/+p53+/+ (n=15; 40% male, 60% female), Zeb2-/-p53-/- mice (n=11; 27% male, 

73% female) and Zeb2+/+p53-/- mice (n=5; 40% male, 60% female). No significance was found with one-way 

ANOVA with Bonferroni post-test.  
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Zeb2-/-p53-/- mice and 20% of Zeb2+/+p53-/- mice suffered from low platelet counts. 

This reduced numbers of blood cells in diseased mice are suggestive of BM 

involvement affecting normal hematopoiesis. Indeed, when flushing femurs and tibias 

from sick mice, we often found the BM to be white/yellow instead of bright red. 

 

 

Zeb2-/-p53-/- and Zeb2+/+p53-/- mice develop a hematoproliferative disease that 

does not resemble human BPDCN 

 

Next we performed hematoxylin and eosin (H&E) staining on tissue samples fixed 

with 4% paraformaldehyde (PFA). This revealed that diseased Zeb2-/-p53-/- and 

Zeb2+/+p53-/- mice have a disrupted spleen architecture (Figure 3A). The distinction 

between red and white pulp, which is clearly visible in age-matched Zeb2+/+p53+/+ 

control mice, has disappeared and it seems like the white pulp has expanded 

(Figure 3A). H&E staining on liver sections of sick Zeb2-/-p53-/- and Zeb2+/+p53-/- mice 

shows presence of clusters/regions of small basophilic cells low in cytoplasm, next to 

eosinophilic cytoplasm rich hepatocytes (Figure 3B). In CRE- control liver sections, 

these clusters are absent. H&E staining on sections of diseased thymi reveals that 

the architecture of the tissue is disrupted and the distinction between medulla and 

cortex has disappeared (Figure 3C). In order to find out if the cells present in the 

affected tissues are proliferating, we stained PFA fixed samples for Ki67. This 

revealed that the spleen and thymus of Zeb2-/-p53-/- and Zeb2+/+p53-/- mice is indeed 

full of Ki67+ proliferating cells (Figure 3A and 3C). Ki67 staining on liver sections of 

Zeb2-/-p53-/- and Zeb2+/+p53-/- mice revealed that the infiltrating cell clusters also 

consist of proliferating cells (Figure 3B). Next, we wondered if the proliferating cells 

had a hematopoietic origin and thus we opted to stain the liver sections with CD45, 

as in healthy mice this tissue contains very little hematopoietic cells. Indeed, the cell 

clusters in the liver of Zeb2-/-p53-/- and Zeb2+/+p53-/- mice are staining positive for 

CD45 (Figure 3B) and we can conclude that the mice suffer from a 

hematoproliferative disease.  
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Figure 3 | The spleens of Zeb2-/-p53-/- and Zeb2+/+p53-/- mice have lost their general architecture. 

(A) TOP: representative pictures of H&E staining on the spleens of indicated mice. Pictures were taken using a 

10x/0.25 objective. Scalebar 100 µm. MIDDLE: representative pictures of immunohistochemical Ki67 staining on 

the spleens of indicated mice. Pictures were taken using a 10x/0.25 objective. Scalebar 100 µm. BOTTOM: 

representative pictures of fluorescent CD11c staining on the spleens of indicated mice (blue: DAPI; red: CD11c). 

Pictures were taken using a 10x/0.4 objective. Scalebar 100 µm. 
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Figure 3 continued | The livers of Zeb2-/-p53-/- and Zeb2+/+p53-/- mice contain proliferative 

CD45+CD11c+ cells. (B) TOP: representative pictures of H&E staining on the livers of indicated mice. Pictures 

were taken using a 10x/0.25 objective. Scalebar 100 µm. SECOND ROW: representative pictures of 

immunohistochemical Ki67 staining on the livers of indicated mice. Pictures were taken using a 10x/0.25 

objective. Scalebar 100 µm. THIRD ROW: representative pictures of immunohistochemical CD45 staining on the 

livers of indicated mice. Pictures were taken using a 10x/0.25 objective. Scalebar 100 µm. BOTTOM: 

representative pictures of fluorescent CD11c staining on the livers of indicated mice. (blue: DAPI; red: CD11c). 

Pictures were taken using a 10x/0.4 objective. Scalebar 100 µm. 
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Figure 3 continued | The thymi of Zeb2-/-p53-/- and Zeb2+/+p53-/- mice contain proliferative 

CD11c+ cells. (C) TOP: representative pictures of H&E staining on the thymi of indicated mice. Pictures were 

taken using a 10x/0.25 objective. Scalebar 100 µm. MIDDLE: representative pictures on immunohistochemical 

Ki67 staining on the thymi of indicated mice. Pictures were taken using a 10x/0.25 objective. Scalebar 100 µm. 

BOTTOM: representative pictures of fluorescent CD11c staining on the thymi of indicated mice. (blue: DAPI; red: 

CD11c). Pictures were taken using a 10x/0.4 objective. Scalebar 100 µm. 
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As we mediated knockout of Zeb2 and/or p53 in CD11c+ cells, we wanted to see if 

the proliferative CD45+ cells still expressed this integrin. In the spleen of sick mice, 

CD11c was present throughout the tissue, while healthy mice displayed clusters of 

CD11c- cells which are typically B and T cell clusters (Figure 3A). CD11c staining on 

liver sections from Zeb2-/-p53-/- and Zeb2+/+p53-/- mice again revealed clusters of cells 

expressing this integrin, while in control Zeb2+/+p53+/+ mice only very few single 

CD11c+ cells were found (Figure 3B). In the enlarged thymi of Zeb2-/-p53-/- and 

Zeb2+/+p53-/- mice a vast amount of cells expressed CD11c (Figure 3C). Taken 

together we showed that  Zeb2-/-p53-/- and Zeb2+/+p53-/- mice suffer from a 

proliferative disorder originating in CD11c expressing hematopoietic cells. 

Experienced pathologist Prof. Dr. Jo Van Dorpe (Ghent University Hospital) 

described the cancer as an acute, aggressive, immature and anaplastic 

hematopoietic malignancy containing a lot of mitotic, but also apoptotic cells.  

 

However, the hematoproliferative disease found in our mouse models does not 

resemble the human BPDCN that we wanted to mimic, as 73% of patients with 

BPDCN show the typical skin lesions and patients never suffer from enlargement of 

the thymus13. Additionally, BPDCN cells in human patients typically express CD4 and 

CD1234. Flow cytometric analysis of CD4 and CD123 in affected spleens of diseased 

mice, did not show significant enrichment of cells expressing CD4 or CD123 

compared to spleens from healthy age-matched Zeb2+/+p53+/+ mice (Figure 4). We 

also assessed the presence of CD3, CD19 and CD11c on splenic cells of sick 

Zeb2-/-p53-/- and Zeb2+/+p53-/- mice, as human BPDCN cells are negative for these 

surface markers4. Although spleens of sick mice were not enriched for CD3 and 

CD19 expressing cells compared with spleens from Zeb2+/+p53+/+ mice, we did find a 

significant increase for CD11c+ cells in spleens from Zeb2-/-p53-/- mice (Figure 4). 

Taken together, analysis of the phenotypes and the expression of surface markers 

showed that our mouse models develop a hematopoietic proliferative disease that 

does not resemble human BPDCN.  
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Figure 4 | Cells from diseased spleens of Zeb2-/-p53-/- and Zeb+/+p53-/- mice do not express 

typical markers for human BPDCN. Proportion as a percentage of total live cells of singe live CD4+, 

CD123+, CD3+, CD19+ and CD11c+ cells in the spleens of Zeb2+/+p53+/+, Zeb2-/-p53-/- and Zeb2+/+p53-/- mice. One 

dot represents one mouse. *, P < 0.05; ***, P < 0.001. One-way ANOVA with Bonferroni post-test. 
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The hematopoietic malignancy in Zeb2-/-p53-/- and Zeb2+/+p53-/- mice is 

independent of Zeb2 

 

Although the proliferative disease in our mice does not mimic human BPDCN, we still 

wanted to find out if Zeb2 is important in the hematopoietic malignancy that develops 

in the CD11cCRExp53fl/fl model. Analysing the Kaplan-Meier curve for percentage 

disease free mice did not reveal significant differences between Zeb2-/-p53-/- and 

Zeb2+/+p53-/- mice, which had an onset age for disease of respectively 37 and 39 

weeks (Figure 5A). The similar onset age of disease in Zeb2-/-p53-/- and Zeb2+/+p53-/- 

mice, together with the appearance of very similar symptoms (Figure 2), suggests 

that the hematopoietic malignancy in CD11cCRExp53fl/fl mice develops independently 

of Zeb2. To test this hypothesis we performed immunohistochemical staining for Ki67 

and Zeb2 on consecutive liver sections of diseased mice. In liver sections from 

Zeb2-/-p53-/- and Zeb2+/+p53-/- corresponding regions that stained positive for Ki67, 

and hence contain proliferating cells, were negative for Zeb2 expression (Figure 5B). 

This confirmed our hypothesis that the development of the hematopoietic malignancy 

in CD11cCRExp53fl/fl mice develops independently of Zeb2 and probably explains why 

we were unable to identify significant differences between Zeb2-/-p53-/- and 

Zeb2+/+p53-/- mice throughout this study. 
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Figure 5 | Development of hematoproliferative disease induced by loss of p53 expression in 

CD11c+ cells is independent of Zeb2. (A) Kaplan-Meier curve for percentage disease free mice in 

Zeb2+/+p53+/+, Zeb2-/-p53-/- and Zeb2+/+p53-/- mice. ***, P < 0.001. Mantel-Cox test with Bonferroni post-test. 

(B) Representative pictures of immunohistochemical Ki67 and Zeb2 staining on consecutive liver sections of 

Zeb2-/-p53-/- and Zeb2+/+p53-/- mice. Areas indicated with the same colour depict corresponding regions. Pictures 

were taken using a 10x/0.25 objective. Scalebar 100 µm. 
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2.4 Discussion 

 

 

BPDCN is a rare hematopoietic malignancy that is believed to develop from pDC 

precursors5. In 16% of cases deleterious mutations can be found in the ZEB2 gene 

locus6. As we already found a role for Zeb2 in pDC development using the 

CD11cCRExZeb2fl/fl model7, which did not develop disease upon ageing, we aimed at 

modelling BPDCN in mice by adding loss of the tumor suppressor p53, a gene also 

frequently mutated in BPDCN9.   

 
 

CD11cCRExZeb2fl/flxp53fl/fl (Zeb2-/-p53-/-) mice and CD11cCRExp53fl/fl (Zeb2+/+p53-/-) 

mice developed a hematopoietic malignancy which resulted in massive cell infiltration 

in liver, splenomegaly and/or enlargement of the thymus. Pathological review of the 

affected tissues suggested that the malignancy is aggressive, acute and likely 

originates from immature cells. Additionally, several mice suffered from anaemia and 

thrombocytopenia, suggestive of BM involvement affecting normal hematopoiesis. 

However, throughout our study we were unable to find differences between 

Zeb2-/-p53-/- and Zeb2+/+p53-/-. Both groups of mice developed similar phenotypes 

and displayed the same distribution of those phenotypes. Also in terms of disease 

onset Zeb2-/-p53-/- and Zeb2+/+p53-/- mice behaved similar, with respectively a median 

onset age of 39 and 37 weeks. Immunohistochemical staining for Zeb2 indeed 

revealed that in both genotypes, the proliferative cells do not express Zeb2, strongly 

suggesting that the hematoproliferative disease found in CD11cCRExp53fl/fl mice 

develops independently of Zeb2. 

 
 

The aim of this study was to develop a mouse model for human BPDCN. However, 

the hematopoietic malignancy that developed in Zeb2-/-p53-/- and Zeb2+/+p53-/- mice 

did not resemble the human disease. Some typical features of BPDCN, like presence 

of cutaneous lesions and expression of CD4 and CD1234, were not found in our 

mouse models. On the other hand enlargement of the thymus and expression of 

CD11c by proliferative cells, which was found in Zeb2-/-p53-/- and Zeb2+/+p53-/- mice, 
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have not been reported in BPDCN patients14. We can think of several reasons why 

the disease in our mouse models does not resemble human BPDCN. First, ZEB2 and 

P53 are only mutated in respectively 16%6 and 38%9 of BPDCN cases and 

additionally it is not known of these mutations can be considered as driver or 

passenger mutations for this particular malignancy. Secondly, although deleterious 

mutations were found in the ZEB2 gene locus of patients, we do not know if these 

are heterozygous or homozygous. Furthermore, we do not have data on protein 

expression levels of the transcription factor in human BPDCN cells. It could be that 

the loss of function mutation in ZEB2 is compensated by enhanced expression of the 

intact ZEB2 allele or maybe BPDCN cells depend on ZEB2 for their survival, just like 

AML cells15. To test this hypothesis, we could cross the CD11cCRExp53fl/fl mice with 

our conditional Rosa26-Zeb2 overexpression model16 and see if those mice develop 

BPDCN-like symptoms. Additionally, the CD11cCRE line used does not only target 

pDCs, but also cDCs, NK cells, T cells, B cells and macrophages (see Results 

section Chapter 3 Figure 7). Hence it is likely that the tumor suppressor p53 is 

knocked out in one or more of those cell types and thus the hematopoietic 

malignancy in the CD11cCRExp53fl/fl mice does not originate from the pDC lineage. 

The fact that the CD11cCRE line targets multiple lineages could also explain the 

manifestation of the disease in different organs across mice, especially the 

involvement of the thymus in some mice could be explained by the possible targeting 

of T cells. It was indeed shown before that full knockout of p53 can lead to 

development of B and T cell malignancies17 and flow cytometric analysis of the 

enlarged thymi of several Zeb2-/-p53-/- and Zeb2+/+p53-/- mice showed enrichment for 

cells expressing the typical B cell marker CD19 or T cell marker CD3 (data not 

shown). Additionally, extensive flow cytometric analysis of affected splenic, hepatic 

and thymic tissue did not identify a common immunological marker across sick mice 

(data not shown). Taken together this suggests that Zeb2-/-p53-/- and Zeb2+/+p53-/- 

mice may present multiple subtypes of leukemia due to the aspecificity of the 

CD11cCRE line and hence further attempts for modelling BPDCN in mice would 

benefit from a CRE-line that specifically targets the pDC lineage. 
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In conclusion, we were unable to model the human disease BPDCN using 

CD11cCRExZeb2fl/flxp53fl/fl and CD11cCRExp53fl/fl mice. Nevertheless, the mice did 

develop an acute, aggressive and immature hematopoietic malignancy that resulted 

in cell infiltration in the liver, splenomegaly, deficiencies in the blood and/or 

enlargement of the thymus. Up to date we were not able to identify the specific nature 

of the hematopoietic malignancy, but we did show that the disease develops 

independently of Zeb2. We still believe that a preclinical mouse model for BPDCN is 

necessary to improve targeted therapies for the disease and further research is 

needed to achieve this goal. 
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2.5 Materials and methods 

 

 

Mice 

 

The generation of Zeb2fl/fl and p53fl/fl mice was described previously12,16. Mice were 

crossed with the CD11cCRE mice18 in order to obtain CD11cCRExZeb2fl/flxp53flfl and 

CD11cCRExp53fl/fl mice. All mice were bred and maintained at the Vlaams Instituut 

voor Biotechnologie (Ghent University) under specific pathogen-free conditions and 

their health was inspected weekly by determining body weight, palpating for 

splenomegaly and other abnormal growths and assessing general health status 

(activity, hunched back, breathing). All experiments were performed in accordance 

with the ethical committee of the Faculty of Science. 

 

 

Automated blood analysis 

 

20-30 µl of blood was collected from the tail vein of mice into an EDTA coated tube. 

After mixing of the sample, it was loaded into the Hemavet (Drew Scientific Group) 

machine for automated blood analysis. 

 

 

Immunohistochemical staining of paraffin embedded tissue 

 

Tissue from mice euthanized by means of cervical dislocation was washed in PBS 

and incubated overnight in 4% paraformaldehyde (PFA). Next the tissue was 

dehydrated, embedded in paraffin and cut into 5 µm sections. For histology, sections 

were stained with hematoxylin and eosin. For immunohistochemical staining, antigen 

retrieval was done in citrate buffer and endogenous peroxidase activity was blocked 

using 3% H2O2 in methanol. Next the sections were incubated overnight at 4°C with 

primary antibody: Zeb2 (Sigma, HPA003456, dilution 1/300), Ki67 (Cell Signaling, 

122025, dilution 1/1000) and CD45 (BD Pharmingen, 550539, dilution 1/50). 

Incubation with a biotin-conjugated secondary antibody (1h, RT) was followed by 
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streptavidin-HRP based development (substrate development with DAB or AEC). For 

the staining with Zeb2 antibody, the signal was amplified using the Tyramide Signal 

Amplification (TSA) kit (Perkin Elmer, Zaventem, Belgium). Finally, slides were 

counterstained with hematoxylin, dehydrated and mounted with Entellan. Histology 

and pictures of the stained tissue were taken using an Olympus BX51 Discussion 

Microscope with a 10x/0.25 objective. Scalebars were added to the pictures using 

FiJi software. 

 

 

Immunofluorescent staining of frozen tissue 

 

Freshly isolated tissue was embedded in O.C.T. Compound (Tissue Tek) and snap 

frozen. 10 µm thick cryosections were obtained and air dried for at least 30 minutes. 

Next sections were fixed for 2 minutes in a 2% PFA solution. After washing in PBS, 

sections were stained with directly labelled antibody (CD11c eFluor 660, 

eBioscience, 50-0114-82, diluted 1/20 in PBT) for 1 hour in the dark at RT. After 

washing in PBS, sections were incubated with DAPI diluted in PBT for 10 minutes in 

the dark at RT. Following a last washing step in PBS, sections were mounted with N-

propylgallate and imaged with a Leica TCS SP5 confocal microscope using a 10x/0.4 

objective. Merging of the pictures and adding of the scalebars was done with FiJi 

software. 

 

 

Isolation of splenic cells and flow cytometry 

 

For the isolation of splenic cells, spleens were disected from mice killed with cervical 

dislocation and gently pressed through a 70-μm filter (no enzymes). Next red blood 

cells were lysed with ACK Lysing Buffer (Lonza), cells were counted manually and 

5 x 106 cells were stained for 45 minutes at 4°C in the dark for flow cytometric 

analysis (Table 1).  Data were acquired on a cell analyser (LSRFortessa; BD) and 

analyzed using FlowJo software (Tree Star). 
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Table 1 | Antibodies used for flow cytometry 

Antibody Clone Antibody Clone 

    
Fc Block 2.4G2 CD19 1D3 

Fixable Viability Dye eBioscience CD11c N418 

CD3e 145-2c11 CD123 5B11 

CD4 RM4-5   

 

 

 

Statistical analysis 

 

Multiple-group comparisons were performed using one-way ANOVA followed by a 

Bonferroni post-test with Prism Software (GraphPad Software). Samples were 

assumed to be normally distributed with similar variance between groups. Analysis of 

survival curves was performed using Mantel-Cox test with Prism Software, followed 

by Bonferroni post-test used to calculate adjusted P-values. 
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Chapter 3 
 

 

Understanding the role of Zeb1 in 

dendritic cell homeostasis 
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3.1 Abstract 

 

Zeb1 is a multi-zinc-finger protein that can act as a transcriptional activator or 

transcriptional repressor and is best known for its role in epithelial-to-mesenchymal 

transition during embryogenesis and solid cancer metastasis. Although the function 

of Zeb1 in the dendritic cell lineage is unknown, its highly homologous family member 

Zeb2 has been implicated in plasmacytoid and conventional dendritic cell 

development. Here, we found Zeb1 to be expressed in cDC1s and cDC2s across 

most murine tissues. To understand the role of Zeb1 in dendritic cells, we crossed 

the CD11cCRE mice to the Zeb1fl/fl mice. CD11cCRExZeb1fl/fl mice had a number of 

defects within the immune compartment of the spleen, including a reduced 

population of cDC1s; with the remaining cDC1s having an altered phenotype, and an 

almost complete lack of splenic macrophages. Additionally, loss of Zeb1 expression 

specifically in cDC1s also resulted in a reduction of splenic cDC1s and macrophages, 

together with an increase in CD103 expressing splenic cDC1s. In conclusion, we 

found that Zeb1 expression in cDC1s is crucial for the homeostasis of splenic 

mononuclear phagocytes and work is currently ongoing to determine the 

mechanisms at play. 
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3.2 Introduction 

 

The transcription factor Zeb1, together with its family member Zeb2, is generally 

recognized for its role in epithelial-mesenchymal transition (EMT). EMT is a multistep 

process important during embryonic development and aberrantly activated by tumor 

cells in order to disseminate and form distant metastasis1. Other human diseases 

that are linked with mutations in the ZEB1 gene are polymorphous corneal dystrophy 

type 3 and Fuch’s endothelial corneal dystrophy type 6, two conditions characterized 

by corneal endothelial abnormalities and cloudiness of the cornea2,3.  

In recent years, research performed by us and others revealed that Zeb2 does not 

solely function as an EMT-TF, but also as a TF crucial for the homeostasis of several 

lineages of the hematopoietic system. Zeb2 has been shown to play a role in NK cell 

maturation4, CD8+ T cell terminal differentiation5,6 and dendritic cell development7,8. 

For Zeb1 less is known regarding its role in the immune system, but nevertheless a 

role for Zeb1 in hematopoiesis has been suggested9,10. For instance, Zeb1 null mice 

die perinatally due to skeletal defects and respiratory failure, but were also found to 

have small hypocellular thymi11. Hypocellular thymi were also found in two Zeb1 

mutant mice, the Δc-fin mouse and the cellophane mouse, both expressing a 

truncated Zeb1 lacking the C-terminal zinc finger domain. Moreover, both models 

display a block in early T cell differentiation9,10. In line with this Zeb1 was also found 

to repress expression of CD4 in T cells by competing with transcriptional activators at 

the CD4 promoter12. Further analysis of the spleen of the cellophane mouse also 

suggested defects in NK cell and B cell maturation9. However, it is unclear if these 

two Zeb1 mutant models generate truncated forms of Zeb1 that act as dominant 

negatives or cause loss of function. The recently developed conditional Zeb1 

knockout model13 will be helpful in the validation of these data and is the model we 

chose for our studies.  

 
As we already identified a role for Zeb2 in the dendritic cell lineage, we were curious 

if its homolog Zeb1 acts in a similar fashion. Therefore, we crossed the conditional 

Zeb1 knockout mouse model13 and the conditional Zeb1 overexpression model 

(developed in house) with the CD11cCRE line and studied the effects on the DC 

lineage. 
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3.3 Results 

 

Zeb1 is expressed in cDC1s and cDC2s across most murine tissues 

 

As we already investigated Zeb2 in DCs, we were curious if its homolog Zeb1 also 

has a function in the DC lineage. When comparing the expression patterns of Zeb1 

and Zeb2 mRNA in different murine immune cells, we observed some differences. 

While Zeb2 is expressed at relatively high levels in dendritic cell progenitors in the 

BM and red pulp macrophages (MFs) and NK cells in the spleen, Zeb1 is expressed 

at relatively low levels in these populations (Figure 1A). For Zeb2, which we and 

others found to skew cDC development away from the cDC1 lineage7,8, we see a 

distinctive pattern of high expression in cDC2s and low expression in cDC1s across 

different murine tissues (Figure 1A). In contrast, Zeb1 is lowly expressed across both 

cDC1s and cDC2s in different murine tissues, with the exception of the liver, where it 

is not expressed in cDC2s. Additionally, pDCs in the spleen express relatively low 

levels of Zeb1 (Figure 1A). As this expression pattern could be suggestive of a role 

for Zeb1 in the cDC compartment, we crossed the conditional Zeb1 knockout mouse

 

 
Figure 1 | Expression of Zeb1 and Zeb2 in dendritic cells. (A) Heatmap showing relative mRNA 

expression for Zeb1 and Zeb2 in cDC1s, cDC2s and pDCs from the spleen, cDC1s and cDC2s from the lung, 

mediastinal LN (MedLN), small intestine (SI), mesenteric LN (MLN) and liver, common myeloid progenitors 

(CMP), monocyte-dendritic cell precursors (MDP) and common dendritic cell precursors (CDP) from the BM and 

red pulp macrophages (MF RP) and NK cells from the spleen. Data were compiled from the Immgen Consortium. 

Gene expression was normalized per mean expression of each gene. (B) Schematic showing range of Zeb1 

levels and nomenclature of the transgenic mouse lines used in this chapter. 
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model13 and the conditional Zeb1 overexpression model (developed in house) with 

the CD11cCRE line and studied the cDC populations in the resulting mice (Figure 1B). 

 

Splenic cDC1s are reduced in CD11cCRExZeb1fl/fl mice, while cDC1s in other 

tissues are unaffected 

 

To investigate the role of Zeb1 in cDCs, we first crossed the conditional Zeb1 

knockout mouse13 to the CD11cCRE line14 (Figure 1B) and analyzed the lung, liver, 

small intestine lamina propria (SILP) and spleen for the presence of the different cDC 

populations (Figure S1, gating strategies). In the lung, SILP and liver no significant 

differences were observed in terms of proportion or absolute cell number of cDC1s 

and cDC2s (Figure 2A, B and C; Figure S1B, D and C). When comparing splenic 

cDCs from CD11cCRExZeb1fl/fl mice with those from Zeb1fl/fl control littermates, a 

significant reduction was observed in the cDC1 population both in proportion as well 

as in absolute cell count (Figure 2D and Figure S1A). Additionally, we found a 

significant increase in cDC2s as a percentage of total cDCs in the spleens of 

CD11cCRExZeb1fl/fl mice. However, no difference was observed in terms of absolute 

numbers (Figure 2D). The reduction in splenic cDC1s following loss of Zeb1 

expression in CD11c+ cells was only apparent when both alleles of Zeb1 were 

targeted (Figure 2D), suggesting haplo-sufficient expression of Zeb1 is sufficient for 

normal cDC1 development and/or maintenance. 

 

Splenic cDC1s and cDC2s of CD11cCRExZeb1fl/fl mice display an altered surface 

phenotype 

 

Having established that Zeb1 deficiency in CD11c+ cells results in a reduction in the 

cDC1 population, we further looked in detail to the remaining cDCs. To this end, we 

first assessed the expression of CD103 and CD8α in splenic cDC1s. CD103 or Itgae 

is typically highly expressed in cDC1s in peripheral tissues, but is typically lacking in 

splenic cDC1s. CD8α expression follows the opposite trend, with high expression in 

splenic cDC1s and lower expression in cDC1s from peripheral tissues (with the 

exception of SILP cDC1s). Assessing protein levels with flow cytometry highlighted 



1
5
1
 

 

 
F

ig
u

re
 2

 |
 C

D
1
1

c
C

R
E
x
Z

e
b

1
fl

/f
l  

m
ic

e
 s

h
o

w
 a

 r
e
d

u
c
ti

o
n

 i
n

 s
p

le
n

ic
 c

D
C

1
s

. 
 (

A
-C

) 
P

ro
p

o
rt

io
n
 a

s
 p

e
rc

e
n

ta
g

e
 o

f 
to

ta
l 

c
D

C
s
 a

n
d
 a

b
s
o

lu
te

 c
e

ll 
n

u
m

b
e

r 
o

f 
c
D

C
1

s
 a

n
d
 

c
D

C
2

s
 i

n
 t

h
e

 l
u

n
g

 (
A

),
 S

IL
P

 (
B

) 
a

n
d
 l

iv
e

r 
(C

) 
o

f 
Z

e
b
1

fl
/f
l  
a
n

d
 C

D
1

1
c

C
R

E
X

Z
e

b
1

fl
/f
l  
m

ic
e

. 
D

a
ta

 a
re

 p
o

o
le

d
 f

ro
m

 t
w

o
 e

xp
e

ri
m

e
n

ts
 w

it
h

 a
t 

le
a

s
t 

n
=

7
 p

e
r 

g
ro

u
p

. 
N

o
 s

ig
n
if
ic

a
n
c
e

 w
a
s
 

fo
u

n
d
 u

s
in

g
 a

 t
w

o
-w

a
y
 S

tu
d

e
n

t’
s
 t

 t
e

s
t.
 (

D
) 

R
e

p
re

s
e

n
ta

ti
v
e
 F

A
C

S
 p

lo
ts

 s
h

o
w

in
g

 i
d

e
n
ti
fi
c
a

ti
o

n
 o

f 
X

C
R

1
+
S

IR
P
α

−
 c

D
C

1
s
 a

n
d
 X

C
R

1
−
S

IR
P
α

+
 c

D
C

2
s
 i

n
 t

h
e
 s

p
le

e
n

 o
f 

in
d

ic
a

te
d
 

m
ic

e
. 

N
u
m

b
e

rs
 r

e
p

re
s
e
n

t 
th

e
 p

o
p
u

la
ti
o

n
 a

s
 a

 p
e

rc
e

n
ta

g
e

 o
f 

to
ta

l 
c
D

C
s
 w

h
ic

h
 w

e
re

 p
re

-g
a

te
d
 a

s
 s

in
g

le
 l

iv
e

 C
D

4
5

+
C

D
6

4
- F

4
/8

0
- li

n
e

a
g

e
- M

H
C

II
+
C

D
1

1
c

+
C

D
2

6
+
. 

G
ra

p
h

s
 s

h
o

w
 

p
ro

p
o

rt
io

n
 a

s
 p

e
rc

e
n

ta
g

e
 o

f 
to

ta
l 

c
D

C
s
 a

n
d

 a
b
s
o
lu

te
 c

e
ll 

n
u
m

b
e

r 
o

f 
c
D

C
1
s
 a

n
d

 c
D

C
2

s
 i
n

 t
h

e
 s

p
le

e
n

 o
f 

in
d

ic
a

te
d
 m

ic
e

. 
D

a
ta

 a
re

 p
o

o
le

d
 f

ro
m

 t
w

o
 t

o
 t

h
re

e
 e

xp
e

ri
m

e
n

ts
 w

it
h

 a
t 

le
a

s
t 

n
=

5
 p

e
r 

g
ro

u
p

. 
**

, 
P

 <
 0

.0
1

; 
**

*,
 P

 <
 0

.0
0

1
. 

O
n

e
-w

a
y
 A

N
O

V
A

 w
it
h

 B
o

n
fe

rr
o

n
i 
p

o
s
t-

te
s
t.

  



152 

  

 

Figure 3 | Splenic cDC1s and cDC2s show a change in surface expression upon loss of Zeb1 in 

CD11c+ cells. (A) Representative FACS plots showing expression of CD103 and CD8α in splenic cDC1s of 

Zeb1fl/fl and CD11cCRExZeb1fl/fl mice. Numbers represent the population as a percentage of total cDC1s which 

were pre-gated as single live CD64-F4/80-lineage-MHCII+CD11c+XCR1+SIRPα-. Graphs show proportion of 

indicated population as percentage of total cDC1s. For CD103+ and CD103- cDC1s data are pooled from two 

experiments, with at least n=7 per group; for CD8α+ and CD8α- cDC1s data are from one experiment, with n=4 

per group. (B) Representative FACS plots showing expression of ESAM and CD11b in splenic cDC2s of Zeb1fl/fl 

and CD11cCRExZeb1fl/fl mice. Numbers represent the population as a percentage of total cDC2s which were pre-

gated as single live CD64-F4/80-lineage-MHCII+CD11c+XCR1-SIRPα+. Graphs show proportion of indicated 

population as percentage of total cDC2s. Data are from one experiment, with at least n=3 per group. (A-B) **, P < 

0.01;  ***, P < 0.001. Two-way Student’s t test. 
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that loss of Zeb1 in CD11c+ cells causes an upregulation of CD103 surface 

expression, coupled with a downregulation of CD8α surface expression on splenic 

cDC1s (Figure 3A). The CD103+ fraction of splenic cDC1s increased from 13.27 ± 

1.46% in Zeb1fl/fl mice to 65.28 ± 2.50% in CD11cCRExZeb1fl/fl mice, while the CD8α+ 

fraction decreased from 80.65 ± 0.79% to 24.59 ± 1.36% (Figure 3A). Splenic cDC2s 

can be divided into two subsets based on ESAM and CD11b expression15, therefore 

we examined the expression of ESAM and CD11b in the remaining splenic cDC2s. 

Knockout of Zeb1 in CD11c+ cells caused a loss of definition between ESAM+ and 

ESAM- cDC2s. This led to a significant reduction of the ESAM+ fraction of cDC2s, 

with a decrease from 82.30 ± 0.29% in Zeb1fl/fl mice to 69.98 ± 1.63% in 

CD11cCRExZeb1fl/fl mice (Figure 3B). Taken together, it appears that loss of Zeb1 

from CD11c expressing cells alters the phenotype of splenic cDCs. 

 

The defect in splenic cDC1s and cDC2s of CD11cCRExZeb1fl/fl mice is fully 

observed from 4 weeks of age 

 

Having established the phenotype in adult (6-12 week old) mice, we next wanted to 

determine if the observed splenic cDC phenotype is present from birth or if it 

gradually develops with age. For this, we examined CD11cCRExZeb1fl/fl mice together 

with their littermate controls at 1 week, 3 weeks and 4 weeks of age. Flow cytometric 

analysis of splenic cDC1s revealed that their reduction following loss of Zeb1 in 

CD11c+ cells is not present 1 week after birth, but becomes apparent starting from 3 

weeks of age (Figure 4A). Next we assessed the presence of CD103 on the surface 

of splenic cDC1s. Already in 1 week old CD11cCRExZeb1fl/fl mice we found a 

significant increase of the CD103+ cDC1 subpopulation. The difference with control 

littermates further increases as the mice become older (Figure 4B and 4C). 

Surprisingly, a big majority of splenic cDC1s of 1 week old WT mice express CD103 

(Figure 4B and 4C). This in contrast to WT adult mice of whom the CD103+ fraction of 

splenic cDC1s is a distinct minority (Figure 3A). It appears that around birth almost all 

splenic cDC1s express CD103 and this expression is gradually downregulated with 

age. However, when Zeb1 is not expressed in CD11c+ cells this downregulation of 
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CD103 in splenic cDC1s is decreased (Figure 4 B and 4C). We also investigated how 

the cDC2 phenotype develops with age. Here we found the increase in splenic 

cDC2s as a percentage of total cDCs from 3 weeks of age onward (Figure 4D). 

However, in 4 week old mice this was coupled with a significant reduction in splenic 

cDC2 cell counts. This is in contrast with adult CD11cCRExZeb1fl/fl mice, in which we 

only found a trend towards a decreased absolute number of splenic cDC2s 

(Figure 2D). Furthermore, the reduction of the ESAM+ Notch2-dependent cDC2s is 

established at 4 weeks of age, but is not significant in younger mice. All in all we can 

conclude that the reduction and changed surface phenotype of splenic cDC1s and 

cDC2s in CD11cCRExZeb1fl/fl mice is present from 4 weeks of age onward, suggesting 

that the adult tissue environment is needed to provoke the phenotype. 

 

Loss of Zeb1 expression in CD11c+ cells has a dominant effect on WT cDC1s 

 

As the CD11cCRE line not only targets cDCs16, we sought to determine if the effects of 

Zeb1 knockout in CD11c+ cells on splenic cDCs are cell intrinsic or caused by 

another cell. To this end, we generated competitive BM chimeras, in which 

CD45.1/CD45.2 WT mice were lethally irradiated and reconstituted with a ~70:30 mix 

(determined through analysis of splenic neutrophils; Figure 5B and Figure S3) of 

CD45.2 Zeb1fl/fl or CD11cCRExZeb1fl/fl BM and CD45.1 WT BM. Eight weeks after 

reconstitution, the splenic cDC1s and cDC2s were analysed for CD45.2 chimerism 

(Figure 5A). Although we found that the absolute cell number of total cDC1s is 

reduced in mice that received the mix with CD11cCRExZeb1fl/fl BM, the proportion of 

cDC1s deriving from CD11cCRExZeb1fl/fl BM was not altered (Figure 5B). Next we 

analyzed the surface expression of CD103 on splenic cDC1s in the different chimeric 

mice. When reconstituted with a CD45.2 Zeb1fl/fl / CD45.1 WT BM mix, both cDC1s 

derived from Zeb1fl/fl mice and WT mice only contained a minority of CD103+ cells 

with an average of 7.13 ± 1.92% for CD45.1 and 6.95 ± 1.63% for CD45.2 cells 

(Figure 5C). However, reconstitution with the mix containing CD11cCRExZeb1fl/fl BM 

did change the expression of CD103 in cDC1s. In these mice on average 46.30 ± 

5.21% of cDC1s derived from CD45.2 CD11cCRExZeb1fl/fl BM were CD103 positive. 

Surprisingly, an increased fraction (40.95 ± 4.53%) of the cDC1s derived from 

CD45.1 WT BM  also expressed CD103 on their cell surface (Figure 5C). From this 
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Figure 5 | Loss of Zeb1 expression in CD11c+ cells also affects WT cDC1s. (A) Competitive BM 

chimeric mice were generated by lethally irradiating CD45.1/CD45.2 WT mice and reconstituting with a ~70:30 

mix of Zeb1fl/fl or CD11cCRExZeb1fl/fl CD45.2 BM and WT CD45.1 BM. (B) CD45.2 splenic neutrophils, cDC1s and 

cDC2s as a percentage of total splenic neutrophils, cDC1s and cDC2s respecitvely. Absolute cell number of 

splenic cDC1s and cDC2s in chimeric mice. **, P < 0.01. Two-way student’s t test. (C) Representative FACS plots 

showing CD103 and CD24 expression in CD45.1 or CD45.2 splenic cDC1s in chimeric mice. Numbers represent 

the population as a percentage of total cDC1s. Graph shows CD103+ cDC1s as a percentage of total CD45.1 or 

CD45.2 cDC1s in the spleen of chimeric mice. ***, P < 0.001. One-way ANOVA with Bonferroni post-test. 

(B and C) Data are pooled from two experiments, with at least n=6 per group.  
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we can conclude that BM from CD11cCRExZeb1fl/fl mice (CD45.2) has no competitive 

advantage or disadvantage over WT BM (CD45.1) to generate cDC1s, but that the 

lack of Zeb1 in CD11c expressing cells has a dominant effect on all cDC1s, 

regardless of their Zeb1 expression. As such, the use of competitive BM chimeras 

does not allow us to determine if the splenic cDC1 defect in CD11cCRExZeb1fl/fl mice 

is cell intrinsic or not. With regard to the splenic cDC2s there was no trend towards a 

decrease in absolute cell numbers when Zeb1 knockout BM was present and the 

CD45.2+ fraction of the cDC2s was not different between mice reconstituted with 

Zeb1fl/fl and CD11cCRExZeb1fl/fl BM mix. Again, this means that WT BM and BM from 

CD11cCRExZeb1fl/fl mice are equally capable of generating cDC2s. During this 

experiment however, we did not analyse the expression of ESAM on the splenic 

cDC2s. Therefore, we do not know if the loss of definition between ESAM+ and 

ESAM- cDC2s in CD11cCRExZeb1fl/fl mice is cell intrinsic or caused by a dominant 

factor that can also affect WT cDC2s. 

 

The observed phenotype is caused by loss of Zeb1 in the hematopoietic 

compartment 

 

Next we wanted to asses if the dominant factor causing the splenic cDC phenotype 

has a hematopoietic or non-hematopoietic origin. To investigate this, we generated 

partially protected chimeras, which means that we lethally irradiated CD45.1 WT 

mice with their spleens protected by a lead skirt. This setup ensures that the non-

hematopoietic compartment of the spleen is made up of WT cells and protected from 

effects of irradiation (Figure 6A). The next day irradiated mice were reconstituted with 

CD45.2 Zeb1fl/fl or CD45.2 CD11cCRExZeb1fl/fl BM. As the spleen of the mice was 

protected during irradiation, we needed to wait for the hematopoietic compartment to 

change by natural turnover. Therefore, we analysed the spleens of the chimeric mice 

8 weeks after reconstitution to confirm chimerism and to determine if the observed 

splenic cDC phenotype is present (Figure 6A). CD45.2 chimerism in cDC1s, cDC2s 

and macrophages was calculated as a ratio to the CD45.2 chimerism of the 

neutrophils in the same sample. Neutrophils showed an average CD45.2:CD45.1 

ratio of ~60:40 after reconstitution with both types of BM. For both cDC1s and cDC2s 
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there was no significant difference in the percentage of chimerism between mice 

reconstituted with Zeb1fl/fl or CD11cCRExZeb1fl/fl BM (Figure 6B). Due to protection of 

the spleen during irradiation, chimerism in macrophages was low compared with 

neutrophils. For the macrophages we found a significant increase in CD45.2 

chimerism upon reconstitution with CD11cCRExZeb1fl/fl BM (Figure 6B). This could be 

explained by the observation that reconstitution with CD11cCRExZeb1fl/fl BM causes a 

drastic decrease in the number of macrophages present in the spleen. Surprisingly, 

this reduced number of macrophages mostly resulted from a non-cell-intrinsic effect 

on WT CD45.1 macrophages (Figure 6C). This severe decrease of the macrophage 

population is also observed in the spleen of CD11cCRExZeb1fl/fl mice (Figure 8D). In 

our protected chimeras, it is likely that this loss of macrophages is compensated 

through influx from the CD45.2 BM, leading to a higher percentage of CD45.2 

chimerism (Figure 6B). Next we investigated if the observed cDC1 and cDC2 

phenotype was also present when using the protected chimera setup. Indeed, 

reconstitution with CD11cCRExZeb1fl/fl BM caused a reduction of the cDC1 population 

(Figure 6D). Again, the remaining cDC1s contained an increased CD103 expressing 

subpopulation and as observed in the competitive BM chimeras this holds true for 

both WT CD45.1 cDC1s and Zeb1 knockout CD45.2 cDC1s (Figure 6D). With 

regards to the cDC2s, reconstitution with CD11cCRExZeb1fl/fl BM caused an increase 

in cDC2s when represented as a percentage of total cDCs, but this was not coupled 

with a difference when expressed as a percentage of live cells (Figure 6E). Although 

there was no significant decrease in the ESAM+ cDC2 fraction, we did notice a loss of 

definition between the ESAM- and ESAM+ subpopulations after reconstitution with 

CD11cCRExZeb1fl/fl BM and this for both CD45.1 WT as CD45.2 Zeb1 knockout 

cDC2s (Figure 6E). The setup used ensured presence of a completely WT non-

hematopoietic compartment in the spleen and thus the fact that we find back the 

originally observed phenotypes demonstrates that the phenotypes are caused by the 

loss of Zeb1 in a haematopoietic cell. Therefore, we conclude that the splenic cDC 

phenotype in CD11cCRExZeb1fl/fl mice is driven by the loss of Zeb1 in an immune cell 

targeted by the CD11cCRE line. 
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The CD11cCRE line not only targets cDCs in the spleen 

 

Having established that the loss of Zeb1 in a CD11c expressing hematopoietic cell 

lies at the origin of the splenic cDC and macrophage phenotype in CD11cCRExZeb1fl/fl 

mice, we sought to determine which immune cell could be responsible. To confirm 

previous findings  that the CD11cCRE line targets other immune cells in addition to 

cDCs16, we crossed the CRE line with the Rosa-RFP reporter line17. Next we 

analysed the spleen of the resulting mice to determine which cells were tagged with 

 
Figure 7 | Off target effects in the spleen of the CD11cCRE mouse line. (A) Graph representing the 

percentage of indicated cells that show expression of RFP in the spleen of CD11cCRE (black circles) and 

CD11cCRExRosa-RFP (red circles) mice. cDCs were pre-gated as single live CD19-CD3-NK1.1-F4/80-CD64-

CD11c+MHCII+, B cells as single live CD19+, NK cells as single live CD19-CD3-NK1.1+, macrophages (MFs) as 

CD19-CD3-NK1.1-F4/80+CD64- and T cells as single live CD19-CD3+NK1.1-. Data are from one experiment with at 

least n=2 per group. ***, P < 0.001. Two-way student’s t test. (B) Graph representing the proportion of indicated 

cell type within total RFP+ splenic cells of CD11cCRExRosa-RFP mice. Data are from one experiment with n=5. 
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RFP and thus targeted by the CD11cCRE mouse line (Figure S2). This demonstrated 

that while cDCs were targeted (with an average of 87.90%) also 14.14% of B cells, 

18.74% of NK cells, 68.02% of macrophages and 40.60% of T cells expressed RFP 

and hence are targeted with the CD11cCRE line (Figure 7A). If we than look at all RFP 

expressing cells in the spleen of CD11cCRExRosa-RFP mice, we see that only 6.67% 

of them are the cDCs that we aimed to target. 47.98% of all RFP+ cells are B cells, 

3.09% are NK cells, 2.26% are macrophages and 11.20% are T cells (Figure 7B). 

Additionally, it was previously shown that neutrophils and monocytes are also 

targeted with the CD11cCRE line16. As such, it could be that the loss of Zeb1 

expression in cDC1s, cDC2s, B cells, NK cells, T cells, macrophages, neutrophils or 

monocytes causes the splenic cDC phenotype in CD11CRExZeb1fl/fl mice. Additionally, 

the loss of Zeb1 could induce cell-intrinsic defects in one of these populations 

themselves. 

 

Additional effects of loss of Zeb1 in CD11c+ cells in the immune system 

 
Having shown that the CD11cCRE line targets other immune cells besides cDCs, we 

wanted to examine if these cell types were affected in CD11cCRExZeb1fl/fl mice. To 

this end, we performed flow cytometry on single cell suspensions from the spleen of 

CD11cCRExZeb1fl/fl mice and their control littermates with a mix containing following 

antibodies: CD11b, CD64, F4/80, NK1.1, Ly6G, CD3, XCR1, Ly6C, MHCII, CD172a 

(SIRPα), CD19 and CD11c. The obtained data were then processed using the 

FlowSOM algorithm, which generates a clear overview on how all markers are 

behaving on all cells without introducing a bias from a subjective manual gating 

strategy and from only looking at pairwise comparisons18. The output of the algorithm 

is a tree that clusters cells with similar expression of the surface markers in a pie 

chart, with the size of the pie chart equivalent to the number of cells showing this 

expression pattern. In the spleen of CD11cCRExZeb1fl/fl mice we can see that certain 

cell types have a decreased presence (light blue shadows), while other cell types 

show an increase in presence (red shadows) compared with the Zeb1fl/fl WT spleens 

(Figure 8A). This highlights a severe imbalance in the proportions of a number of 

immune cell subtypes and we next wanted to find out if this also changes the general 

architecture of the splenic tissue. To examine this, we performed confocal 
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Figure 8 | Additional effects on immune populations in CD11cCRExZeb1fl/fl spleens. (A) Tree 

resulting from analysis with the FlowSOM algorithm18 performed for Zeb1fl/fl and CD11cCRExZeb1fl/fl spleens. Each 

pie chart shows expression of the different markers used during flow cytometry (see legend included) and the size 

of the pie chart is equivalent to the number of cells showing such expression. Bright blue shadows mean 

reduction in cells and red shadows mean increase in cells when comparing CD11cCRExZeb1fl/fl splenic cells with 

those from Zeb1fl/fl littermates.(B) Immunofluerescent staining of spleen sections from Zeb1fl/fl and 

CD11cCRExZeb1fl/fl mice with CD3 (red), B220/CD45R (yellow), CD11c (green) and DAPI (blue). (C) 

Immunofluerescent staining of spleen from Zeb1fl/fl and CD11cCRExZeb1fl/fl mice with F4/80 (red), CD3 (yellow), 

MOMA (green) and DAPI (blue). (D) Absolute cell numbers for splenic B cells, T cells, macrophages, NKT cells, 

NK cells, Ly6Chi monocytes (mono), Ly6Clo monocytes and neutrophils in Zeb1fl/fl (black circles) and 

CD11cCRExZeb1fl/fl (blue circles) mice. Data are pooled from two experiments, with at least n=6 per group. *, P < 

0.05; **, P < 0.01; ***, P < 0.001. Two-way student’s t test.  



163 

 

microscopy on cryosections of the spleens of CD11cCRExZeb1fl/fl and control 

littermates with two different antibody combinations. The first antibody mix with CD3, 

B220 and CD11c allows us to visualize the localization of T cells, B cells and DCs in 

the spleen respectively. In both spleens from Zeb1fl/fl and CD11cCRExZeb1fl/fl mice we 

can clearly distinguish the T cell zone (red) surrounded by B cell follicles (yellow). For 

both genotypes the dendritic cells (green) are present in the marginal zone (MZ) and 

the MZ bridging channels (Figure 8B). However, this antibody panel did not allow us 

to assess the localization of cDC1s and cDC2s or respectively their CD103+ and 

ESAM+ subpopulations. Therefore, extra stainings containing XCR1, CD103, SIRPα 

and ESAM are necessary. The second antibody combination shows the presence of 

red pulp macrophages (F4/80; red), metallophilic MZ macrophages (MOMA; green) 

and again the T cell area (CD3; yellow). Although the general cellular layout remains 

unaffected, this staining reveals an almost complete lack of red pulp macrophages 

and a reduction in MZ macrophages when Zeb1 expression is absent from CD11c+ 

cells (Figure 8C). Next we manually gated the data from the FlowSOM experiment 

(Figure S3) to determine in detail what particular immune cells were affected in the 

spleen from CD11cCRExZeb1fl/fl mice. This highlighted significant reductions in the 

absolute cell numbers of B cells, T cells, macrophages, NKT cells, NK cells, Ly6Chi 

monocytes, Ly6Clo monocytes and neutrophils (Figure 8D and Figure S3). As these 

cells are targeted by the CD11cCRE line16 (Figure 7A), these reduced populations 

could be directly due to the loss of Zeb1 in the cells themselves, but could also be the 

consequence of a non-cell-intrinsic effect. Moreover, it could be that the loss of one 

of these populations is the cause of the cDC phenotype. Despite this reductions in 

cell numbers of all these different types of immune cells, we did not find a difference 

in spleen weight (data not shown) and general architecture of the spleen (Figure  8B 

and 8C). Nevertheless, the absence of red pulp macrophages seen on cryosections 

of CD11cCRExZeb1fl/fl mice (Figure 8C), was confirmed by flow cytometry for which 

enzymatic digestion only isolated red pulp macrophages and not MZ macrophages 

(Figure 8D). Moreover, this loss of red pulp macrophages was previously observed in 

the protected chimeras, in which we determined that this was caused by a dominant 

factor that also affected wild type red pulp macrophages.  
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NK cells do not drive the splenic cDC phenotype in CD11cCRExZeb1fl/fl mice 

 

We next wanted to determine which of the immune cells may be causing the 

observed effects in CD11cCRExZeb1fl/fl mice. To this end we crossed the Zeb1fl/fl mice 

to a number of different CRE lines that were available in house. First we crossed the 

conditional Zeb1 knockout mouse with the NK cell specific NKp46CRE line containing 

an internal ribosome entry site (IRES) followed by an iCRE gene in the 3’ end of the 

NKp46 gene. Flow cytometric analysis of the spleen revealed that loss of Zeb1 in NK 

cells causes a small but significant reduction in absolute NK cell numbers (Figure 9 

and Figure S3). To explore if the splenic phenotype of the CD11cCRExZeb1fl/fl mice is 

repeated in the NKp46CRExZeb1fl/fl cross, the presence of MFs, cDC1s and cDC2s 

was assessed. Differences in the number or phenotype of these three cell 

populations were however not observed in this model (Figure 9A). From the findings 

in NKp46CRExZeb1fl/fl mice we can conclude two things. First, the reduction in NK cell 

numbers in the spleen of CD11cCRExZeb1fl/fl mice is likely, at least in part, cell 

intrinsic. Secondly, the defect in cDCs and macrophages in CD11cCRExZeb1fl/fl mice 

is not driven by the loss of Zeb1 in NK cells. 

 

 

Figure 9 | Loss of Zeb1 in NK cells is not the cause of the observed cDC and MF phenotype. 

(A) Dot plots showing absolute cell numbers of NK cells, macrophages (MFs), cDC1s and cDC2s in the spleen of 

Zeb1fl/fl and NKp46CRExZeb1fl/fl mice. Bar graph showing mean fluorescence intensity (MFI; geometric mean) of 

CD103 for splenic cDC1s of Zeb1fl/fl and NKp46CRExZeb1fl/fl mice. Data are pooled from two experiments with at 

least n=7 per group. *, P<0.05. Two-way student’s t test. 
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The observed phenotype is caused by the loss of Zeb1 in cDC1s 

 

Next we wanted to determine if the effects seen in the CD11cCRExZeb1fl/fl mice are 

caused by the loss of Zeb1 in cDCs. Therefore we wanted to determine if we could 

use the Zbtb46CRE line, which has previously been reported to specifically target 

cDCs within the hematopoietic compartment19,20. Therefore, we crossed the 

Zbtb46CRE line to the Rosa-RFP reporter mice and assessed the expression of RFP 

in splenic immune cells. This revealed that cDC1s and cDC2s are indeed targeted, 

but rather inefficiently, with respectively 68.72 ± 1.11% and 47.93 ± 0.60% cells 

 

 
Figure 10 | Off target effects in the spleen of the Zbtb46CRE mouse. (A) Graph representing the 

percentage of indicated cells that show expression of RFP in the spleen of Zbtb46CRE (black circles) and 

Zbtb46CRExRosa-RFP (red circles) mice. ***, P < 0.001. Two-way student’s t test. (B) Graph representing the 

proportion of indicated cell type within total RFP+ splenic cells of Zbtb46CRExRosa-RFP mice. Data or pooled from 

two experiments with at least n=6 per group. 
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expressing RFP (Figure 10A and Figure S4). However, we found that also 

1.90 ± 0.24% of B cells, 1.00 ± 0.22% of T cells and 5.97 ± 0.34% of macrophages 

expressed RFP and are thus targeted with the Zbtb46CRE line (Figure 10A). 

Additionally, 23.57 ± 3.71% of splenic CD45- cells expressed RFP. If we than 

consider all RFP-expressing cells in the spleen of Zbtb46CRExRosa-RFP mice, we 

see that only 12.64% and 24.48% of them are cDC1s and cDC2s respectively, while 

34.73% are B cells, 9.21% are T cells, 1.27% are macrophages and 6.59% are 

CD45- cells (Figure 10B). 

Due to the off target effects and the inefficient targeting of the cDCs, we decided not 

to use the Zbtb46CRE line and further search for more specific CRE lines. This led us 

to the new XCR1CRE line (generated by Bernard Malissen at the Centre 

d’Immunophenomique, Marseille, France) containing an IRES followed by the iCRE- 

recombinase gene at the 3’ end of the Xcr1 gene and developed to target cDC1s. 

 
Figure 11 | The XCR1CRE mouse line specifically and efficiently targets splenic cDC1s. 

(A) Representative FACS plots showing expression of RFP and XCR1 in cDC1s, RFP and SIRPα in cDC2s and 

RFP and F4/80 in macrophages (MFs) in the spleen of XCR1CRE and XCR1CRExRosa-RFP mice. (B) Graph 

representing the percentage of indicated cells that show expression of RFP in the spleen of XCR1CRE (black 

circles) and XCR1CRExRosa-RFP (red circles) mice. **, P < 0.01; ***, P < 0.001. Two-way student’s t test. For 

cDC1s, cDC2s, MFs and CD45- cells data or pooled from two experiments with at least n=5 per group. For B cells 

and T cells data ar from one experiment with n=2 per group. 
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As this is a new mouse model, we first checked the expression of RFP in 

XCR1CRExRosa-RFP mice, to determine if the cDC1 population is specifically and 

efficiently targeted. RFP was expressed in 90.17 ± 0.83% of splenic cDC1s, 

confirming that the new XCR1CRE line efficiently targets cDC1s. Additionally, only a 

minority of splenic cDC2s (0.46 ± 0.09%), B cells (0.03 ± 0.02%), T cells (0.33 ± 

0.12%), macrophages (1.84 ± 0.16%) and CD45- cells (0.09 ± 0.03%) was targeted 

with the XCR1CRE line (Figure 11A and 11B and Figure S4).  

Having shown that the XCR1CRE line specifically and efficiently targets cDC1s, we 

next analysed the presence and surface phenotype of cDC1s and cDC2s and the 

presence of macrophages in the spleen of XCR1CRExZeb1fl/fl mice. As observed in 

CD11cCRExZeb1fl/fl mice, we found a reduction in the splenic macrophage population 

upon knockout of Zeb1 in cDC1s (Figure 12A). With regard to the cDC1 population in 

the spleen, we again found a decrease in both proportion and absolute cell number 

(Figure 12B). Furthermore, the remaining cDC1s in the spleen of XCR1CRExZeb1fl/fl 

mice expressed increased levels of CD103 and decreased levels of CD8α (Figure 

12C). Looking to the splenic cDC2s, we again found the definition between ESAM+ 

and ESAM- cDC2s to be lost upon lack of Zeb1 expression in cDC1s, resulting in a 

decreased proportion of ESAM+ cDC2s (Figure 12D). Analogous to the 

CD11cCRExZeb1fl/fl model, analysis of cDC populations in the lung and liver of 

XCR1CRExZeb1fl/fl did not reveal any significant changes despite the fact that we 

efficiently targeted cDC1s in these tissues (data not shown). Given the finding that 

the XCR1CRE line specifically and efficiently targets the cDC1s (Figure 11) and the 

presence of the splenic phenotype in the XCR1CRExZeb1fl/fl mice, we conclude that 

loss of Zeb1 in cDC1s causes a defect not only in splenic cDC1s, but also in splenic 

cDC2s and macrophages. Work is ongoing to determine the mechanisms at play. 
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Overexpression of Zeb1 in CD11c+ cells leads to a decrease in cDC1s in the 

lung 

 

After discovering and thoroughly analysing the severe phenotype in the spleen of 

CD11cCRExZeb1fl/fl mice, we wondered what the consequences were of 

overexpressing Zeb1 in cDCs. As the XCR1CRE line only targets cDC1s (Figure 11) 

and the Zbtb46CRE line (Figure 10) displays as many off target effects as the 

CD11cCRE line, we first opted to cross the Zeb1 overexpression model with the 

CD11cCRE line. Next, we performed flow cytometry on the lung, spleen, SILP and liver 

of CD11cCRExZeb1Tg/Tg mice to determine the presence of cDC1s and cDC2s. In the 

lung we found a vast reduction in both the proportion and the absolute cell number of 

cDC1s (Figure 13A). Additionally, lung cDC2s showed a significant increase when 

represented as a percentage of total cDCs, but this was not coupled with a difference 

in the absolute cell number of this population (Figure 13A). Analysis of the spleen 

revealed again a significant reduction in the proportion of cDC1s, but this reduction 

was not seen in terms of absolute cell number (Figure 13C). In the SILP and the liver 

of CD11cCRExZeb1Tg/Tg mice no significant differences in the presence of cDC1s or 

cDC2s were observed (Figure 13D and E).  

 

cDC1s in the lung of CD11cCRExZeb1Tg/Tg mice display an altered surface 

expression of CD103 

 

Having established that overexpression of Zeb1 in CD11c+ cells leads to a reduction 

in pulmonary cDC1s, we decided to further focus on this population. As we already 

knew that the loss of Zeb1 in splenic cDC1s led to a change in the surface 

expression of CD103 and CD8α on these cells, we also investigated the surface 

expression of these two proteins in the remaining cDC1s in the lung of 

CD11cCRExZeb1Tg/Tg mice. While the expression of CD8α on the remaining cDC1s in 

the lung did not change, the CD103+ proportion of pulmonary cDC1s decreased from 

91.99 ± 1.55% in Zeb1Tg/Tg mice to 69.16 ± 3.77% in CD11cCRExZeb1Tg/Tg mice, 

suggesting a role for Zeb1 in the regulation of CD103 expression (Figure 13B). 
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Figure 13 | CD11cCRExZeb1Tg/Tg mice show a reduction in pulmonary cDC1s, with the remaining 

ones displaying an altered CD103 expression. (A) Representative FACS plots showing identification of 

XCR1+SIRPα− cDC1s and XCR1−SIRPα+ cDC2s in the lung of Zeb1Tg/Tg and CD11cCRExZeb1Tg/Tg mice. Numbers 

represent the population as a percentage of total cDCs which were pre-gated as single live CD45+CD64-F4/80-

lineage-MHCII+CD11c+CD26+. Graphs show proportion as percentage of total cDCs and absolute cell number of 

cDC1s and cDC2s in the lung. (B) Representative FACS plots showing expression of CD103 and CD8α in cDC1s 

in the lung of Zeb1Tg/Tg and CD11cCRExZeb1Tg/Tg mice. Numbers represent the population as a percentage of total 

cDC1s which were pre-gated as single live CD64-F4/80-lineage-MHCII+CD11c+CD26+XCR1+SIRPα-. Graphs show 

proportion of indicated population as percentage of total cDC1s. (C-E) Proportion as percentage of total cDCs and 

absolute cell number of cDC1s and cDC2s in the spleen (C), SILP (D) and liver (E) of Zeb1Tg/Tg and 

CD11cCRExZeb1Tg/Tg mice. Data are pooled from two to four experiments with at least n=5 per group. **, P < 0.01; 

***, P < 0.001. Two-way Student’s t test. 
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The decrease of pulmonary cDC1s and the altered CD103 surface expression 

on the remaining pulmonary cDC1s in CD11cCRExZeb1Tg/Tg mice is cell intrinsic 

 

Next we sought to determine if the defects seen in the cDC1 population in the lung of 

CD11cCRExZeb1Tg/Tg mice were cell intrinsic or caused by additional targets of the 

CD11cCRE line. To this end we again generated competitive BM chimeras for which 

we lethally irradiated CD45.1/CD45.2 WT mice and reconstituted them with a ~70:30 

mix (as determined from the analysis of neutrophils in the lung) of CD45.2 Zeb1Tg/Tg 

or CD11cCRExZeb1Tg/Tg BM and CD45.1 WT BM (Figure 14A). Reconstitution with the 

BM mix containing CD11cCRExZeb1Tg/Tg BM did not result in a reduction of total lung 

cDC1s. However, analysis of the chimerism revealed that most of these cells were 

originating from CD45.1 WT BM (Figure 14B). On the other hand, WT and 

CD11cCRExZeb1Tg/Tg BM were equally capable of generating cDC2s in the lung 

(Figure 14B). Further looking into detail to the cDC1 population in the lung of the 

competitive chimeras, we found that when mice were reconstituted with a BM mix 

containing CD11cCRExZeb1Tg/Tg BM the proportion of CD103+ cDC1s is reduced 

(Figure 14C). However, unlike what we had seen in the spleen of competitive 

chimeras generated with CD11cCRExZeb1fl/fl BM, this reduction of the CD103 

expressing cDC1s was only shown for cDC1s differentiating from CD45.2 Zeb1 

overexpressing BM and not for cDC1s developing from CD45.1 WT BM (Figure 14C). 

In conclusion the results from the competitive BM chimeras reveal that the effects 

observed within pulmonary cDC1s in mice overexpressing Zeb1 in CD11c+ cells are 

cell intrinsic. Nevertheless, further research is needed to determine if the decrease in 

the cDC1 population in the lung is due to a defect in their development or cell death 

resulting from the overexpression of Zeb1 in fully differentiated cells. 
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Figure 14 | The defect in lung cDC1s from CD11cCRExZeb1Tg/Tg mice is cell intrinsic. 

(A) Competitive BM chimeric mice were generated by lethally irradiating CD45.1/CD45.2 WT mice and 

reconsituting with a ~70:30 mix of Zeb1Tg/Tg or CD11cCRExZeb1Tg/Tg CD45.2 BM and WT CD45.1 BM. Graph 

represents CD45.2 lung neutrophils as a percentage of total lung neutrophils. No significance was found using 

two-way student’s t test. (B) Representative FACS plots showing CD45.1 and CD45.2 expression on cDC1s in the 

lung of chimeric mice. Graphs show cDC1s and cDC2s as a percentage of live cells and CD45.2 cDC1s and 

CD45.2 cDC2s as a percentage of respectively total cDC1s and total cDC2s in chimeric mice. ***, P < 0.001. 

Two-way student’s t test. (C) Representative FACS plots showing CD103 and CD24 expression in CD45.1 or 

CD45.2 cDC1s in the lung of chimeric mice. Numbers represent the population as a percentage of total CD45.1 or 

CD45.2 cDC1s. Graph shows CD103+ cDC1s as a percentage of total CD45.1 or CD45.2 cDC1s in the lung of 

chimeric mice. ***, P < 0.001. One-way ANOVA with Bonferroni post-test. Data are pooled from two experiments, 

with at least n=5 per group.  
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3.4 Discussion 

 

Having established a role for Zeb2 in dendritic cell development7, we wondered if its 

family member Zeb1 also had a function in the dendritic cell lineage. Analysis of 

publically available expression data revealed that Zeb1 is expressed in both cDC1s 

and cDC2s across murine tissues. The loss of Zeb1 expression specifically in cDC1s, 

using the newly generated XCR1CRE line, resulted in a reduction of splenic cDC1s 

and red pulp macrophages, together with an increase in CD103 expressing splenic 

cDC1s and a loss of definition between ESAM+ and ESAM- splenic cDC2s. 

Furthermore, CD11cCRExZeb1fl/fl mice displayed the same splenic phenotype as 

XCR1CRExZeb1fl/fl mice and additionally we found a reduced number of splenic B 

cells, T cells, NKT cells, NK cells, Ly6Chi monocytes, Ly6Clo monocytes, neutrophils 

and marginal zone macrophages. On the other hand, overexpression of Zeb1 in 

cDCs led to a cell intrinsic loss of pulmonary cDC1s, with the remaining ones 

showing a decreased expression of CD103.  

 

The defects in the Zeb1 knockout and Zeb1 overexpression models used in this 

study were restricted to one tissue, respectively the spleen and the lung. With 

regards to the CD11cCRExZeb1fl/fl and XCR1CRExZeb1fl/fl mice, we hypothesize that 

the difference in tissue architecture and environment between the spleen and the 

other peripheral tissues examined (lung, liver and SILP) is at the base of the tissue-

specificity of the phenotype, similar to the recently proposed theory on the niche 

being the dominant factor conferring macrophage identity21. First, in most peripheral 

tissues WT cDC1s typically express CD103 on their surface and lack expression of 

CD8α, while in the spleen cDC1s express CD8α and lack CD103 expression. 

However, loss of Zeb1 expression in cDC1s, caused the splenic cDC1s to display a 

surface expression of both proteins that is typical for peripheral cDC1s, with 

increased CD103 and decreased CD8α expression. Furthermore, we found that the 

loss of Zeb1 in cDC1s not only affected the cDC1 population in the spleen, but also 

led to a decrease in ESAM expressing cDC2s and red pulp macrophages. Indeed, 

the presence of ESAMhi cDC2s is restricted to the spleen15 and for tissue-resident 

macrophages it was shown that their gene expression and function is highly tissue-

specific22–24. Additionally, in the spleen many different types of immune cells are in 
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close contact to each other, which is not the case in the peripheral tissues. This could 

explain why the loss of Zeb1 in cDC1s also affects other cell types, a phenomenon 

that was not found in the peripheral organs investigated. On the other hand the cDC1 

defect in CD11cCRExZeb1Tg/Tg mice was restricted to the lung and was shown to be 

cell intrinsic. Although the expression of Zeb1 at mRNA level seems to be similar in 

the cDC1s of the examined tissues (Figure 1A), we do not know if this holds true for 

the protein level of Zeb1. Perhaps Zeb1 is not expressed or expressed at lower levels 

in pulmonary cDC1s, compared to splenic, intestinal and hepatic cDC1s and as such 

the overexpression of Zeb1 is only problematic in pulmonary cDC1s. In order to test 

this hypothesis, we should perform flow cytometry analysis including an intra-cellular 

staining for Zeb1. Unfortunately, so far we were unable to find a good antibody to 

perform this experiment.  

 

Next to the defect in both cDC populations, the spleen of CD11cCRExZeb1fl/fl mice 

also displayed reduced numbers of macrophages, B cells, T cells, NKT cells, NK 

cells, Ly6Chi monocytes, Ly6Clo monocytes and neutrophils. Crossing the CD11cCRE 

line with the Rosa-RFP reporter line showed us that CRE recombinase activity is not 

only present in cDCs, but also in macrophages, T cells, B cells and NK cells. 

Additionally, it was previously shown that neutrophils and monocytes are also 

targeted with the CD11cCRE line16. So the loss of Zeb1 in either of these cell types 

targeted with the CD11cCRE line could cause a cell intrinsic defect in the cell itself, but 

could also be the cause of the defects in other cell types of the spleen. Using 

NKp46CRExZeb1fl/fl mice we found that the reduction of splenic NK cells is at least 

partly cell intrinsic to the loss of Zeb1. Additionally, the experiments with the 

competitive and the protected BM chimeras revealed that loss of Zeb1 in CD11c+ 

cells has a dominant effect on all cDC1s, cDC2s and macrophages, regardless of 

their Zeb1 expression. To determine this dominant effect we have sent RNA from 

splenic CD103+ WT cDC1s, ESAM+ WT cDC2s and ESAM- WT cDC2s from the 

protected BM chimeras that received CD11cCRExZeb1fl/fl BM for RNA-sequencing and 

are currently waiting for the results. Furthermore, the analysis of the 

XCR1CRExZeb1fl/fl mice showed us that loss of Zeb1 expression specifically in cDC1s 

not only affects cDC1s, but also cDC2s and macrophages. However, for splenic B 

cells, T cells, NKT cells, monocytes and neutrophils it remains unclear if their 

reduced numbers are cell intrinsic or not. All of these findings raise the question if we 
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have to reconsider other DC research that is based on the CD11cCRE line and the 

Zbtb46CRE line, as for this last model we also identified considerable off target effects. 

Inclusion of BM chimeras that show a cell intrinsic effect adds more credibility to the 

results. However, a lot of publications using CD11cCRE and Zbtb46CRE do not use BM 

chimeras and hence we should be careful in interpreting them. The use of other CRE 

lines which are truly specific, such as the XCR1CRE line, could be a solution in the 

future.  

 

The expression of the integrin Itgae or CD103 on the surface of cDC1s is directly 

regulated by Csf225,26, however the role of CD103 on cDC1s is unclear. In 

intraepithelial lymphocytes (IELs), mostly T cells, CD103 expression was shown to be 

induced by Tgfβ127–29, which is expressed by many cell types including epithelial 

cells30,31. E-cadherin, mostly expressed by epithelial cells, is the main ligand for the 

integrin CD10332. This interaction between CD103 on IELs and E-cadherin on 

epithelial cells could explain why CD103 was shown to be important in the retention 

of IELs in the mucosal epithelium of the gut32,33, the oral mucosa34 and skin 

epidermis34,35. As the expression of CD103 on cDC1s is mostly found in peripheral 

organs, it could be that in the periphery the same CD103-E-cadherin interaction 

ensures the retention of cDC1s in the epithelium, where they scan for antigen. In the 

spleen on the other hand, we found that wild type cDC1s do not express CD103, 

probably because in lymphoid organs they do not need to be in the epithelium. 

Indeed, at steady-state cDC1s are present in the T cell zone of the spleen, where 

they cross-present antigen to CD8+ T cells36. With this theory in mind, one could 

hypothesize that aberrant expression of CD103 on splenic cDC1s caused by the loss 

of Zeb1 expression, results in incorrect localisation of cDC1s in the spleen. 

Additionally, as CD8α+ cDC1s are normally located in the T cell areas and CD8α- 

cDC2s in the marginal zone36, the decreased expression of CD8α could also cause 

mislocalisation of the Zeb1-deficient cDC1s. Incorrect localisation of cDC1s in the 

spleen could subsequently cause an imbalance in the splenic micro-environment 

leading to cell death of ESAM-expressing cDC2s and red pulp macrophages. To test 

this hypothesis, we should determine the localisation of cDC1s in the spleen of WT 

and XCR1CRExZeb1fl/fl mice. This could for instance be done with confocal 

microscopy on tissue sections stained with anti-XCR1 and anti-CD103 antibodies. 

However, evidence against the CD103-associated localisation hypothesis is that 
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almost all splenic cDC1s from adult WT C57BL/6 mice purchased at Janvier were 

CD103+. This in contrast to adult C57BL/6 mice bred in our animal house, in which 

splenic cDC1s are almost all CD103-. Hence, we can state that CD103 expression on 

splenic cDC1s is different from animal facility to animal facility, a phenomenon that 

could be caused by differences in microbiome. Strikingly, we found that the observed 

splenic phenotype in CD11cCRExZeb1fl/fl mice, including the defective downregulation 

of CD103 on cDC1s, is established around weaning, which is typically associated 

with alterations in gut microbiota37. Maybe the loss of cDC1s, due to the loss of Zeb1 

expression, causes a shift in the microbiome which subsequently affects the 

presence of macrophages and the phenotype of cDC2s. Further research, using for 

instance antibiotic treatments or experiments in a germfree facility, is needed to test 

this hypothesis. 

 

To date, we confirmed that the expression of Zeb1 in splenic cDC1s is essential to 

maintain homeostasis of mononuclear phagocytes in the spleen. Our current working 

hypothesis is as follows: loss of Zeb1 in cDC1s inhibits or induces the release of a 

factor in the splenic environment that is either essential or detrimental to the survival 

of other immune cells in the niche (Figure 15). To test this hypothesis the new 

XCR1CRExZeb1fl/fl model, in which Zeb1 is knocked out specifically in cDC1s, will be a

 

 

Figure 15 | Working hypothesis on the role of Zeb1 in splenic cDC1s. We hypothesise that loss of 

Zeb1 expression in splenic cDC1s leads to the release or the lack of a dominant factor in the splenic 

environment, which subsequently leads to a defect in different types of immune cells including the 

mononuclear phagocytes. 
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very helpful tool. First we need to repeat the FlowSom phenotyping experiment in 

these mice to confirm if the defects in B cells, T cells, NKT cells, NK cells, Ly6Chi 

monocytes, Ly6Clo monocytes and neutrophils seen in the CD11cCRE model are also 

observed in the XCR1CRE model. Comparing the phenotypes of the XCR1CRE model 

to the phenotypes of the CD11cCRE model will reveal what part of the phenotype in 

the CD11cCRE model was a consequence of the off target loss of Zeb1 in immune 

cells other than cDC1s. Finally, we would like to identify the unknown factor of which 

we believe that its aberrant expression or lack of expression by cDC1s causes this 

imbalance in the splenic environment. To this end we would like to FACS-purify 

cDC1s from the spleen of XCR1CRExZeb1fl/fl mice and control littermates and isolate 

their RNA for RNA-sequencing. We hope that the final experiments proposed here 

will be sufficient to fill the gaps in our current working model (Figure 15). 

 

Additionally it would be interesting to use the XCR1CRExZeb1fl/fl model in functional 

studies. First we would like to test the cross-presentation capacities of the remaining 

splenic cDC1s in vitro by setting up coculture experiments with OTI cells in the 

presence of purified ovalbumin protein. Furthermore, we would like to challenge the 

functioning of Zeb1-deficient splenic cDC1s in vivo. To this end we could infect 

XCR1CRExZeb1fl/fl mice with the intracellular bacterium Listeria monocytogenes, as it 

was shown that splenic cDC1s mediate T cell priming and induce differentiation of 

naive CD8+ T cells into pathogen-specific protective memory cells38. Interestingly, we 

have created a mouse model that almost completely lacks red pulp macrophages, 

which are mostly functioning as scavengers for ageing and dying red blood cells, but 

also possess several mechanisms to protect against blood-borne pathogens39. For 

instance, red pulp macrophages limit uptake of iron by E. coli through the release of 

lipocalin-240 and they express the natural resistance associated macrophage 

protein-1 (NRAMP1) in their phagosomes which facilitates protection against 

intraphagosomal pathogens like Mycobacterium bovis, Leishmania donovani and 

Salmonella typhimurium41. As our XCR1CRExZeb1fl/fl model is deficient for red pulp 

macrophages, it would be interesting to challenge the mice with Salmonella 

typhimurium, for which in house a protocol is running, and follow the course of 

disease in the affected spleen. However, when analysing and interpreting results of 

in vivo challenges in XCR1CRExZeb1fl/fl mice, we need to keep in mind that the mice 

have defects in cDC1s, cDC2s and red pulp macrophages and thus we need to be 
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careful in assigning the results to the correct cell type. Moreover, if further 

phenotyping reveals that the additional defects in the splenic immune compartment 

observed in the CD11cCRExZeb1fl/fl are repeated in the XCR1CRExZeb1fl/fl model, the 

proposed in vivo challenges would not provide useful information and will not be 

performed. 

 

Finally, the project on the overexpression of Zeb1 in dendritic cells needs further 

research. Due to time restrictions, we only performed a general phenotyping of 

dendritic cells in different tissues of the CD11cCRExZeb1Tg/Tg mice and this revealed 

that overexpression of Zeb1 in CD11c+ cells leads to a decrease of cDC1s in the 

lung. Next to that we found that among the remaining lung cDC1s an decreased 

fraction of them expresses CD103 on their surface. Experiments with competitive BM 

chimeras revealed the defect in cDC1s to be cell intrinsic and thus cDC1s derived 

from CD11cCRExZeb1Tg/Tg lose the competition with their WT counterparts in 

becoming cDC1s. These findings bring up some other questions. Why is the 

phenotype restricted to the lung? Does the loss of CD103 expression on cDC1s in 

the lung change their location, their ability to migrate or their antigen presenting 

capacities? How does Zeb1 regulate the expression of CD103 on the surface of 

pulmonary cDC1s? Is the decrease in the cDC1 population in the lung caused by a 

defect in their development or by cell death of mature cDC1s? Work is ongoing to 

answer all these questions and to determine the mechanisms at play. 
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3.5 Materials and methods 

 

 

Immgen data processing 

 

Gene expression data were downloaded from the Immgen database (GSE15907). 

After merging expression values of all samples, data was normalized within arrays 

(probeset summarization, background correction and log2-transofrmation) and 

between arrays (quantile normalization) using the Robust Multi-array Average (RMA) 

procedure in R. Only probesets that mapped uniquely to one gene were kept, and for 

each gene the probeset with the highest expression level was kept. 

 

 

Mice 

 

The generation of Zeb1fl/fl was described previously13. The Rosa26-Zeb1Tg/Tg mice 

were created in-house and contain a loxP flanked stop-cassette followed by the Zeb1 

gene in the Rosa26 locus. Mice were backcrossed to a C57BL/6 background for at 

least seven generations before crossing with the CD11cCRE line14, the NKp46CRE 

line42 or the XCR1CRE line (generated by Bernard Malissen at the Centre 

d’Immunophenomique, Marseille, France). CD11cCRE, XCR1CRE and Zbtb46CRE 

mice19 were also crossed with the Rosa-RFP reporter mouse17. All mice were bred 

and maintained at the VIB-UGent center for inflammation research (IRC) under 

specific pathogen-free conditions and were used between 6 and 12 weeks of age, 

unless stated differently. All experiments were performed in accordance with the 

ethical committee of the Faculty of Science.  

 
 
Isolation of tissue leukocytes 

 

For the isolation of liver leukocytes, livers were isolated from PBS-perfused mice, 

chopped finely, and incubated for 15–20 min with 1 mg/ml collagenase A (Sigma-

Aldrich) and 10 U/ml DNase (Roche) in a shaking water bath at 37°C. Cells were 

passed through a 70-µm cell strainer. For the isolation of lung and spleen leukocytes, 

lungs and spleens were isolated from PBS-perfused mice, chopped finely, and 
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incubated for 30 min with 0.2 mg/ml Liberase TM (Roche) and 10 U/ml DNase 

(Roche) in a shaking water bath at 37°C. Cells were passed through a 70-µm cell 

strainer. SILP leukocytes were isolated as described previously43. Briefly, small 

intestines were flushed with PBS or RPMI containing 2% FCS and Peyer’s patches 

were excised. After opening longitudinally and cutting into 0.5 cm segments, they 

were incubated twice with PBS containing 2mm EDTA in a shaking water bath at 

37°C for 20 min. Then the tissue was digested with 1 mg/ml collagenase VIII (Sigma-

Aldric) in a shaking water bath for 15 min. Cells were passed through a 40-µm cell 

strainer. In all instances, except for the SI, red blood cells were lysed with an in 

house made osmotic lysis buffer (10mM KHCO3, 155 mM NH4Cl and 0.1 mM EDTA 

in PBS) before staining for flow cytometric analysis.  

 
 
Flow cytometry 

 

For flow cytometry, 3–4 x 106 cells were stained at 4°C in the dark with antibodies 

(Table 1). Data were acquired on a cell analyser (LSRFortessa; BD) and analyzed 

using FlowJo software (Tree Star).  

 

Table 1 | Antibodies used for flow cytometry 

Antibody Clone Antibody Clone 

    
Fc Block 2.4G2 CD103 2E7 

Fixable Viability Dye eBioscience CD11b M1/70 

CD3e 145-2c11 CD11c N418 

CD4 RM4-5 CD172a P84 

CD8α 53-6.7 ESAM 1G8 

CD19 1D3 F4/80 BM8 

CD24 M1-69 IA-IE M5/114.15.2 

CD26 H194-112 Ly6C AL-21 

CD45 30-F11 Ly6G 1A8 

CD45.1 A20 NK1.1 PK136 

CD45.2 104 SiglecF E50-2440 

CD45R/B220 RA3-6B2 Ter-119 Ter-119 

CD64 X54-5/7.1 XCR1 ZET 
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Generation of competitive BM chimeric mice 

 

Competitive BM chimeric mice were generated by lethally irradiating CD45.1/CD45.2 

WT mice with a single dose of 8 Gy. 12 hours later mice were reconstituted by 

intravenous injection of 5 x 106 BM cells, which were a ~1:1 mix of CD45.1 WT and 

CD45.2 Zeb1fl/fl, Zeb1Tg/Tg, CD11cCRExZeb1fl/fl or CD11cCrexZeb1Tg/Tg BM cells. 

Chimerism was assessed 8 weeks after irradiation in spleen or lung. 

 

 

Generation of partially protected chimeras 

 

6 week-old WT CD45.1 mice were anaesthetized by intraperitoneal administration of 

Ketamine (150 mg/kg) and Xylazine (10 mg/kg). Spleens were protected with a 3-cm-

thick lead cover before mice were lethally irradiated with 8Gy. Once recovered from 

the anaesthesia, mice were reconstituted by intravenous administration of 10 x 106 

BM cells from congenic CD45.2 Zeb1fl/fl or CD11cCRExZeb1fl/fl mice. 8 weeks after 

irradiation chimerism in the spleen was assessed by flow cytometry. 

 

 

Analysis with FlowSOM algorithm 

 

First data was manually pre-gated as single live cells using FlowJo. Next the data 

was compensated and transformed using the logicleTransform() function in R. Then, 

the clustering algorithm was trained on an aggregated random sampling, taking 

333334 cells from each of the samples, resulting in 4 million cells in total. 12 markers 

and a ten-by-ten grid were used for clustering, resulting in hundred clusters. Each of 

the cleaned up files were mapped onto the discovered clusters, to define their cell 

distribution. The results were visualized with the node size representative of the 

mean cluster frequency of all samples from each group. Finally, the cluster 

frequencies were compared between the two groups (Zeb1fl/fl and CD11cCRExZeb1fl/fl) 

using a Wilcox test and those clustered with a p-value lower than 0.5 were selected 

as significant. The cluster was given a light blue shadow when significantly 

decreased in CD11cCRExZeb1fl/fl mice and a red shadow when significantly increased. 
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Immunofluorescent staining of tissue sections 

 

Freshly isolated spleens were embedded in O.C.T. Compound (Tissue Tek) and 

snap frozen. 10 µm thick cryosections were obtained and air dried for at least 30 

minutes. Next sections were fixed for 2 minutes in a 2% PFA solution. After washing 

in PBS, sections were stained with directly labelled antibodies diluted in PBT (CD3; 

145-2c11, B220; RA3-6B2, CD11c; N418, F4/80; BM8, CD169; MOMA-1)  for 1 hour 

in the dark at RT. After washing in PBS, sections were next incubated with DAPI 

diluted in PBT for 10 minutes in the dark at RT. Following a last washing step in PBS, 

sections were mounted with N-propylgallate and imaged with a Zeiss LSM 780 

confocal microscope. 

 

 

Statistical analysis 

 

Groups were compared with a two-way Student’s t test, and multiple-group 

comparisons were performed using one-way ANOVA followed by a Bonferroni post-

test with Prism Software (GraphPad Software). Samples were assumed to be 

normally distributed with similar variance between groups. No randomization was 

used to determine experimental groups, and no blinding of the investigator was 

performed. Group sizes were determined on the basis of previous experience. 
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3.7  Supplementary figures 

 

Figure S1 | cDC gating strategy for different organs. (A) Representative FACS plots showing 

gating strategy for macrophages, cDC1s and cDC2s in the spleen. (B) Representative FACS plots 

showing gating strategy for cDC1s and cDC2s in the lung. FSC, forward scatter. SSC, side scatter. 

L/D, live/dead. Autofluo, autofluorescence. 
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Figure S1 continued | cDC gating strategy for different organs. (C) Representative FACS 

plots showing gating strategy for cDC1s and cDC2s in the liver. (D) Representative FACS plots 

showing gating strategy for cDC1s and cDC2s in the small intestine lamina propria. FSC, forward 

scatter. SSC, side scatter. L/D, live/dead. Autofluo, autofluorescence. 
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Figure S2 | Gating strategy to identify splenic B cells, NK cells, T cells, macrophages 

and cDCs as performed in CD11cCRExRosa-RFP mice. Representative FACS plots showing 

gating strategy for B cells, NK cells, T cells, macrophages and cDCs as performed in the spleen of 

CD11cCRExRosa-RFP mice. FSC, forward scatter. SSC, side scatter. L/D, live/dead. 
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Chapter 4 
 

 

Zeb2 is essential for macrophage survival 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contributions: Bieke Soen performed and analyzed experiments shown in Figures 1B-D, 2, 

3 and 4. Bieke Soen and Charlotte Scott performed and analyzed experiments shown in 

Figures 5, 6 and 7. Joachim Taminau, Gillian Blancke and Gert Van Isterdael provided 

technical assistance. Liesbet Martens performed the bio-informatics analysis shown in 

Figure 1A. Bieke Soen, Charlotte Scott, Martin Guilliams and Geert Berx contributed to the 

conceptualization and discussion of the project and its experiments. Bieke Soen performed 

the writing of this chapter. 
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4.1 Abstract 

 

Depending on the tissue, macrophages develop either from yolk-sac macrophages, 

fetal liver monocytes or bone marrow monocytes. In most tissues resident 

macrophages are able to maintain their pool through local proliferation, however in 

some tissues macrophages require constant replenishment from adult blood 

monocytes to sustain their numbers. Despite the limited set of progenitors, gene 

expression among tissue-resident macrophages is highly heterogeneous. It was 

suggested that factors in the local environment induce the expression of tissue-

specific TFs, like Gata6 in peritoneal macrophages and Pparγ in alveolar 

macrophages. These tissue-specific TFs probably cooperate with the chromatin 

remodelling TF Pu.1, which is required for the development of all macrophages. This 

cooperation could explain the tissue-specific gene expression in macrophages. 

Except for Pu.1, so far no TFs were described to govern development or 

maintenance of the whole macrophage lineage. Here we identified that high 

expression of the TF Zeb2 is a conserved feature across tissue-resident 

macrophages. Moreover, the removal of Zeb2 from fully differentiated macrophages 

in lung, spleen, colon and liver results in an altered macrophage phenotype and 

eventually in their disappearance. 
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4.2 Introduction 

 

Macrophages were first described in 1883 as phagocytic cells with importance in host 

defense and elimination of dying cells1,2. For a long time it was believed that all 

tissue-resident macrophages arise from adult blood monocytes after migration into 

the tissue and are continuously replenished through this influx3,4. Now we know that 

in mice most tissue-resident macrophages develop alongside the tissue during 

embryogenesis from yolk-sac macrophages or fetal liver monocytes and are able to 

self-maintain in the adult tissue5,6. In some tissues, like the skin dermis, heart and 

intestine, macrophages first develop from yolk-sac macrophages or fetal liver 

monocytes and are then gradually replaced by blood monocytes7–10. Despite being 

derived from a limited number of progenitors (yolk-sac macrophages, fetal liver 

monocytes and blood monocytes), gene expression among tissue-resident 

macrophages is immensely heterogeneous11,12. This implies that macrophages are 

highly influenced by the micro-environment in which they reside13. It has been 

suggested that tissue-specific factors induce secondary TFs in local macrophages 

and that these cooperate with the more general macrophage TF Pu.114,15. With the 

help of Pu.1, tissue-specific secondary TFs can influence the chromatin landscape 

and hence gene expression12,14,15. However, apart from Pu.1 so far no TF has been 

identified to control all tissue-resident macrophages. As Zeb proteins are also able to 

change the chromatin landscape and gene expression and we showed a role for 

Zebs in DCs, we wondered if they could also function in macrophage development 

and homeostasis. When looking at publically available expression data for Zeb1 and 

Zeb2 in different tissue-resident macrophages, we noticed that Zeb1 mRNA levels 

are rather low in the macrophage lineage, while Zeb2 mRNA levels are high 

compared to splenic DCs (Figure 1A). In light of this, we further investigated if Zeb2 

played a role across different tissue macrophages. For this we combined in vitro work 

using different macrophage cell lines with in vivo experiments. For this last part, we 

crossed our conditional Zeb2 knockout model with three different CRE lines, namely 

Lyz2CRE (referred to as LysMCRE) , ItgaxCRE (referred to as CD11cCRE) and the newly 

generated Clec4fCRE (referred to as KCCRE). 
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4.3 Results 

 

High expression of Zeb2 and low expression of Zeb1 in murine tissue-resident 

macrophages and murine macrophage cell lines 

 

To determine the possibility of a role for Zeb proteins in macrophages (MFs), we first 

investigated the mRNA expression levels in different murine tissue-resident 

macrophages and macrophage cell lines. For this we looked at Zeb expression levels 

in different FACS-purified murine macrophage populations (Kupffer cells, alveolar 

macrophages, splenic red pulp macrophages, peritoneal macrophages, microglia and 

small intestinal macrophages) and compared this with classical (Ly6Chi) and non-

classical (Ly6Clo) BM monocytes and other immune cell populations isolated from the 

spleen (B cells; follicular, germinal center and marginal zone, T cells; naive CD4+ and 

naive CD8+, cDC1s and cDC2s) and neutrophils isolated from the blood. Data were 

compiled from previously published studies performed by the Immgen 

Consortium11,16–19 and published by the group of Prof. Guilliams20,21 (Figure 1A, Scott 

et al. (under review, Addendum p.252)). Compared to splenic DCs, we see a low 

expression of Zeb1, but a high expression of Zeb2 in Kupffer cells (KCs), alveolar 

MFs (AMs), microglia (MG), splenic red pulp MFs (RP), peritoneal MFs (PT) and 

small intestinal MFs (SI). Both Ly6Chi and Ly6Clo BM monocytes (Mo) show a rather 

low expression of Zeb2 compared to the different tissue-resident MFs (Figure 1A). 

The same holds true for the different murine cell lines analyzed (Table 1 Materials 

and methods). C3H-Hej, C3H-Hen, MH-S, P388D1 and Raw264-7 can be considered 

as macrophage cell lines, while WEHI3 are cultured monocytes. From the different 

cell lines RNA was extracted and RT-qPCR was performed to determine the relative 

mRNA expression levels of Zeb1 and Zeb2. As for the publically available data the 

levels of Zeb2 are mostly higher in the macrophage cultures compared to the WEHI3 

monocytes. Zeb1 shows the opposite trend with the highest expression in the WEHI3 

monocytic line (Figure 1B). Based on the Immgen data and the RT-qPCR results 

from the cell lines, we hypothesized Zeb2 to be generally important in the 

macrophage lineage. 
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Figure 1 | Knockdown of Zeb2 in murine macrophage cell lines affects cell survival. (A) Heatmap 

showing Zeb1 and Zeb2 expression in murine tissue-resident MFs and other immune cells including splenic B 

cells, naive T cells, cDC1s, cDC2s and blood neutrophils and Ly6Chi and Ly6Clo BM monocytes. Data are from 

microarray analyses performed either in house or by the Immgen consortium. Gene expression was normalized 

per mean expression of each gene. (B) Relative Zeb1 and Zeb2 mRNA expression in different murien MF (black) 

and monocyte (red) cell lines. Results (mean and SD of three technical replicates) shown are expressed relative 

to Calm2 and Eef1a1 expression using qbase+ software with the average expression across samples set to 1. *, P 

< 0.05; **, P < 0.01; ***, P < 0.001. One-way ANOVA with Bonferroni post-test. (C) Relative Zeb2 mRNA 

expression after transduction with a scrambled or two Zeb2 shRNA constructs in indicated MF cell lines. Results 

(mean and SD of three technical replicates) shown are expressed relative to Calm2 and Eef1a1 expression using 

qbase+ software with the scrambled construct set to 1. *P < 0.05; **P < 0.01; ***, P < 0.001. Two-way student’s t 

test was used to compare the scrambled to the Zeb2 shRNA constructs. (D) Pictures of the MH-S cell line 7 days 

after transduction with either a scrambled or a Zeb2 knockdown shRNA (shRNA Zeb2-1 and shRNA Zeb2-2). 

Scalebar 100 µm. 
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Knockdown of Zeb2 in murine macrophage cell lines results in cell death 

 

To investigate the role of Zeb2 in MF homeostasis, we first utilised the murine 

macrophage cell lines Raw264-7, P388D1 and MH-S as those lines are often used 

and most easy to transduce. The three cell lines were transduced with constitutive 

lentiviral vectors containing either a scrambled non-targeting shRNA or a shRNA 

targeting the Zeb2 mRNA (shRNA Zeb2-1 and shRNA Zeb2-2). Shortly after 

transduction we extracted RNA to confirm a knockdown for Zeb2 through RT-qPCR. 

For all three cell lines we were able to confirm a decreased Zeb2 mRNA expression 

for both Zeb2 knockdown constructs when compared to the scrambled construct 

(Figure 1C). The efficiency of knockdown varied between ~95% with shRNA Zeb2-1 

in MH-S cells and ~25% with shRNA Zeb2-2 in P388D1 cells. Despite the varying 

knockdown efficiency, decreased levels of Zeb2 had a massive effect on the 

macrophage cell lines. Shortly after transduction with shRNA against Zeb2 the cells 

started to die and it was impossible to further passage the cells, while cells 

transduced with the scrambled non-targeting shRNA could be further kept in culture 

(Figure 1D). This in vitro findings strongly suggest a dependency for Zeb2 in 

macrophage survival and hence we next aimed to investigate if this finding holds true 

in vivo. 

 

BM derived macrophages from LysMCRExZeb2fl/fl mice have an increased 

population of Ly6C+ cells 

 

To investigate the role of Zeb2 in macrophages in vivo, we first crossed the 

conditional Zeb2 knockout mouse model22 with the LysMCRE line23 in order to achieve 

loss of Zeb2 in monocytes, mature macrophages and neutrophils24. Hence, the 

resulting LysMCRExZeb2fl/fl mice should allow us to investigate the consequences of 

loss of Zeb2 expression across different tissue-resident macrophages. As we 

suspected Zeb2 to play a role in maturation or survival of macrophages, we first 

cultured whole BM of LysMCRExZeb2fl/fl mice and Zeb2fl/fl control mice supplemented 

with Csf1 (M-Csf). After 3 days of culturing a subtle difference in number of 

differentiated cells could be seen in the culture plates, with a trend towards a 
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decrease in number of cells in plates with Zeb2 KO BM (Figure 2A). Although this did 

not result in a significant difference in cell counts on day 7 of culturing, there was a 

trend towards lower cell numbers in LysMCRExZeb2fl/fl BM cultures compared with 

cultures from control littermates (Figure 2B). On the 7th day of culturing, cells were 

harvested and stained for flow cytometry with antibodies against different 

macrophage and monocyte markers (Ccr2, Ly6C, CD11b, CD11c, CD64 and F4/80). 

All markers except Ly6C were expressed at comparable levels between Zeb2 KO 

and WT BM (Figure 2C). Upon further investigation we found a significant increase in 

Ly6C+CD64+ cells, coupled with a significant decrease in Ly6C-CD64+ cells in 

cultures derived from LysMCRExZeb2fl/fl BM (Figure 2C). 

 
Figure 2 | Bone marrow derived macrophages from LysMCRExZeb2fl/fl mice have an increased 

Ly6C+ subpopulation. (A) Pictures showing BM derived macrophage cultures after 3 days of culturing 

supplemented with Csf1 for Zeb2fl/fl and LysMCRExZeb2fl/fl  whole BM. (B) Cell counts from one 10 cm dish on day 

7 of Csf1 BM cultures from Zeb2fl/fl and LysMCRExZeb2fl/fl mice. (C) Representative FACS plots showing Ly6C and 

CD64 expression on BM derived macrophages after 7 days of culturing for Zeb2fl/fl and LysMCRExZeb2fl/fl BM. The 

numbers represent the proportion of each population as percentage of live CD45+ cells. Graphs represent the 

percentage of cells as frequency of total live CD45+ cells. *, P < 0.05; **, P < 0.01. Two-way student’s t test. 
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LysMCRExZeb2fl/fl mice do not show a reduction in colon or liver resident 

macrophages 

 

Having shown a small increase in Ly6C expression in ex vivo cultured macrophages 

from LysMCRExZeb2fl/fl mice, we next aimed to investigate the presence of tissue-

resident macrophages in these mice. We decided to dissect the liver and colon of the 

mice and determine the presence of monocytes and macrophages with flow 

cytometry (Figure S1 and S2), because in the colon macrophages typically develop 

from blood monocytes, while in the liver Kupffer cells are derived from embryonic 

origin. When looking at Kupffer cells, Ly6Chi monocytes and neutrophils, we could not 

detect statistically significant differences in the presence of these populations in the 

liver of LysMCRExZeb2fl/fl compared to their WT littermate controls (Figure 3A and B 

and Figure S1). Next we analyzed the colon lamina propria for MFs, monocytes and 

transitioning monocytes, which are monocytes maturing into MFs. Also in this organ 

we were unable to find statistical differences when comparing LysMCRExZeb2fl/fl mice 

with WT littermate controls (Figure 3C and D and Figure S2).  

 

BM derived macrophages from LysMCRExZeb2fl/fl mice reveal an inefficient CRE 

recombinase activity 

 

Despite the small difference found during ex vivo differentiation of LysMCRExZeb2fl/fl 

BM, we were unable to find differences in monocyte or macrophage populations in 

vivo. However, the LysMCRE line was reported before to be inefficient24 and we 

suspected that this was also the case in our LysMCRExZeb2fl/fl mice. In order to test 

this hypothesis, we sorted the Ly6C-CD64+ and Ly6C+CD64+ fractions from the 7 day 

old BM cultures, extracted genomic DNA and performed a PCR designed to 

specifically detect if CRE excision took place. This PCR only generates a 288 bp long 

fragment when the seventh exon of Zeb2 was actually excised by CRE recombinase 

activity, while lack of loxP sites (CRE- cells) or lack of excision in CRE+
 cells does not 

generate a PCR-product. The results show a clear enrichment of PCR-product for the 

Ly6C+CD64+ sorted fraction from LysMCRExZeb2fl/fl BM when comparing with the 

Ly6C-CD64+ fraction sorted from the same BM culture (Figure 4). This would suggest 
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that the immature Ly6C+ monocytic fraction is enriched for cells with an actual KO for 

Zeb2, while the more mature Ly6C-CD64+ macrophage fraction contains more cells 

which have retained intact Zeb2 alleles. This last finding could be due to an inefficient 

CRE recombinase activity, potentially combined with loss of cells that have efficiently 

floxed out the seventh exon of Zeb2. Having found evidence fitting our hypothesis of 

inefficient CRE excision in the LysMCRExZeb2fl/fl model, we decided to explore the use 

of hopefully more efficient CRE lines to further investigate the role of Zeb2 in 

macrophages. 

 

 
Figure 4 | Inefficient CRE recombinase activity in LysMCRExZeb2fl/fl mice. Schematic representation 

and result of PCR used to determine CRE excision of the 7th exon of Zeb2. Grey blocks represent the exons of 

Zeb2, arrows represent primers, red triangles represent loxP sites, red crosses represent lack of PCR-product. 

Samples loaded on the gel were fractions (Ly6C-CD64+ and Ly6C+CD64+) sorted from CRE- (Zeb2fl/fl) and CRE+ 

(LysMCRExZeb2fl/fl) BM derived macrophages after 7 days of culturing. 

 

 

 

The KCCRE mouse line efficiently targets Kupffer cells 

 

In search for more efficient and specific CRE lines to target tissue-resident 

macrophages, we opted to first focus on Kupffer cells in the liver. Recently it was 

shown that the C-type lectin, Clec4F, is exclusively expressed by murine KCs20. 

Therefore, the lab of Prof. Guilliams with which we closely collaborated, generated 

the KCCRE mice by introducing an internal ribosome entry site (IRES) and CRE 

recombinase into the 3’ untranslated region of the Clec4f gene. To validate if the 

newly generated CRE line efficiently targets KCs, we crossed it with the Rosa-RFP 

reporter line18. We next isolated the liver and performed flow cytometry to check for 

RFP-expression among KCs. This revealed that 88.35 ± 1.54% of F4/80+CD64+ 

Clec4F+Tim4+ KCs express RFP and can thus be efficiently targeted with the new 

KCCRE mouse line (Figure 5A and Figure S3). 
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Figure 5 | KCs of KCCRExZeb2fl/fl mice have an altered phenotype. (A) Representative FACS plots 

showing RFP expression in KCs from Rosa-RFP and KCCRExRosa-RFP mice. Numbers represent the proportion 

of RFP+ cells as a percentage of total KCs. Data are from one experiment with n=4 per group. (B) Representative 

FACS plots showing the presence of liver MFs in Zeb2fl/fl and KCCRExZeb2fl/fl mice. Numbers represent hepatic 

MFs as percentage of live CD45+ cells. Graphs show proportion as a percentage of live CD45+ cells and absolute 

cell number per g liver of MFs in the liver of indicated mice. For percentage of live CD45+ data are pooled from 

three experiments, with at least n=11 per group; for absolute cell numbers data are pooled from two experiments, 

with at least n=8 per group. (C) Representative FACS plots showing Clec4F and Tim4 expression in hepatic MFs 

of Zeb2fl/fl and KCCRExZeb2fl/fl mice. Numbers represent the proportion of each subpopulation as percentage of 

total liver MFs. Graphs show proportion as a percentage of total liver MFs for indicated cell types. Data are pooled 

from two experiments, with at least n=11 per group.(A-C) ***, P < 0.001. Two-way student’s t test.  
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Loss of Zeb2 in KCs alters their phenotype 

 

We next analysed the presence of MFs in the liver of KCCRExZeb2fl/fl mice. To our 

surprise we did not find significant differences in either the proportion or absolute cell 

number when comparing total liver F4/80+CD64+ MFs of KCCRExZeb2fl/fl mice with 

those of their control littermates (Figure 5B and Figure S3). However, since our initial 

analysis in the LysMCRExZeb2fl/fl mice, two additional markers had been identified to 

be expressed on KCs, namely Clec4F and Tim414,20. Thus, here we also examined 

expression of these markers. Importantly, this highlighted that while in Zeb2fl/fl mice 

nearly all hepatic MFs are Clec4F+Tim4+ KCs, the livers of KCCRExZeb2fl/fl mice had a 

significant reduction in Clec4F+Tim4+ KCs coupled with a significant increase in both 

Clec4F+Tim4- KCs and Clec4F-Tim4- MFs (Figure 5C). This resembles what has 

previously been published on KC-DTR mice. In this model administration of 

diphtheria toxin leads to depletion of liver-resident Kupffer cells. This creates niche 

availability and subsequent engraftment from circulating monocytes in the liver20. 

Engrafted monocytes then differentiate into Clec4F- MFs, which further differentiate 

into Tim4- KCs to finally become long-lived self-renewing Tim4+ KCs20. Hence, the 

presence of Tim4-Clec4F- monocyte-derived MFs and Tim4-Clec4F+ KCs in the liver 

of KCCRExZeb2fl/fl mice suggests that self-renewing KCs die and are subsequently 

replaced by monocyte-derived cells. 

 

AMs, splenic MFs and colonic MFs are reduced in CD11cCRExZeb2fl/fl mice 

 

Having shown a role for Zeb2 in KC homeostasis, we wanted to see if this also holds 

true for other tissue-resident macrophages. As alveolar macrophages (AMs) express 

high levels of CD11c, we wondered if we could use the CD11cCRE line25 to target 

these tissue-resident macrophages. We therefore crossed the CD11cCRE line with the 

Rosa-RFP reporter mouse line26, and checked for RFP expression in macrophages 

in the lung. We found that lung MFs are efficiently targeted with the CD11cCRE line, 

as on average 91.24% of lung MFs express RFP in the CD11cCRExRosa-RFP mice 

(Figure 6A). Additionally, we have previously shown that splenic macrophages can 

be targeted with the CD11cCRE mouse model (see Chapter 3 of Results section). We 
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determined that 68.02 ± 0.33% of macrophages are RFP+ in the spleen of 

CD11cCRExRosa-RFP mice (Figure 6B). Furthermore, it has previously been reported 

that colonic macrophages express CD11c and can be targeted with the CD11cCRE 

line27. Knowing this, we decided to have a closer look at alveolar, splenic and colonic 

macrophages in the CD11cCRExZeb2fl/fl model, which was previously used to 

investigate Zeb2 in dendritic cells (see Chapter 1 of Results section).  

 

 
Figure 6 | CD11cCRE mice can be used to efficiently target pulmonary MFs and splenic MFs. 

(A) Representative FACS plots showing RFP expression in MFs in the lung of CD11cCRE and 

CD11cCRExRosa-RFP mice. Numbers represent the proportion of RFP+ cells as a percentage of total lung MFs. 

Data are from one experiment with at least n=2 per group. (B) Representative FACS plots showing RFP 

expression in splenic MFs from CD11cCRE and CD11cCRExRosa-RFP mice. Numbers represent the proportion of 

RFP+ cells as a percentage of total splenic MFs. Data are from one experiment with at least n=2 per group. ***, P 

< 0.001. Two-way student’s t test. 
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Using flow cytometric analysis we first examined the lungs of CD11cCRExZeb2fl/fl 

mice. This revealed a reduction in total CD64+F4/80+CD11c+SiglecF+ AMs upon loss 

of Zeb2 (Figure 7A and Figure S4). When represented as frequency of live CD45+ 

cells AMs have a mean presence of 4.08 ± 0.68% in CD11cCRExZeb2fl/fl lungs, 

compared to a mean presence of 7.78 ± 1.75% in lungs from control littermates 

(Figure 7A). This reduction is also observed in terms of absolute cell number 

(Figure 7A). Moreover, examination of the remaining AMs in CD11cCRExZeb2fl/fl mice, 

revealed ~45% of AMs to express CD11b, while in control littermates only ~1% of 

AMs expressed this integrin (Figure 7B). We next performed the same analysis in the 

spleen of CD11cCRExZeb2fl/fl mice. Although no significant difference could be 

established when presented as a percentage of live CD45+ cells, we did find a 

significant difference in absolute cell number of splenic MFs (Figure 7C and 

Figure S5). Splenic MF cell numbers decreased from 7.52 x 105 to 4.44 x 105 

(Figure 7C). Simultaneously we again verified the expression of CD11b and this 

revealed that also splenic MFs gain expression of CD11b upon loss of Zeb2 

expression. Here we found that among total splenic MFs of CD11cCRExZeb2fl/fl mice 

21.26 ± 1.39% expressed CD11b, compared to 1.51 ± 0.13% in control Zeb2fl/fl mice 

(Figure 7D). For both AMs and splenic MFs, the increased CD11b surface expression 

was shown to be highly significant (Figure 7B and D). Although we did not find 

differences in the presence of colonic macrophages in the LysMCRExZeb2fl/fl mice, we 

repeated the analysis in the more efficient CD11cCRExZeb2fl/fl model. This revealed a 

significant increase in transitioning monocytes when represented as a percentage of 

live CD45+ cells. However, this increase was not significant when calculated as an 

absolute cell number (Figure 7E and Figure S6). Nevertheless, loss of Zeb2 in 

colonic macrophages did result in a decrease of both proportion and absolute cell 

number of this population (Figure 7E). Colonic MF numbers decreased from 

3.47 x 105 in Zeb2fl/fl mice to 1.70 x 105 in CD11cCRExZeb2fl/fl mice. All together we 

showed that CD11cCRExZeb2fl/fl mice have a reduced number of alveolar, splenic and 

colonic MFs and the remaining alveolar and splenic MFs have an increased fraction 

of CD11b expressing cells. 
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Figure 7 | In CD11cCRExZeb2fl/fl mice AMs and splenic MFs have a reduced number and gain 

expression of CD11b. (A and C) Representative FACS plots showing the presence of AMs (A) and splenic 

MFs (C) in Zeb2fl/fl and CD11cCRExZeb2fl/fl mice. Numbers represent AMs (A) or splenic MFs (C) as frequency of 

live CD45+ cells. Graphs show proportion as a percentage of live CD45+ cells and absolute cell number of AMs in 

the lung (A) and MFs in the spleen (C) of indicated mice. (B and D) Representative FACS plots showing CD11b 

expression in AMs (B) and splenic MFs (D) of Zeb2fl/fl and CD11cCRExZeb2fl/fl mice. Numbers represent the 

proportion of CD11b- and CD11b+ AMs as frequency of total AMs (B) or the proportion of CD11b- and CD11b+ 

splenic MFs as frequency of total splenic MFs (D). Graphs show proportion as a percentage of total AMs (B) or 

total splenic MFs (D) for indicated cell types. Data are pooled from two experiments, with at least n=6 per group. 

*P < 0.05; **, P < 0.01; ***, P < 0.001. Two-way student’s t test.   
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Figure 7 continued | Colonic MFs are reduced in CD11cCRExZeb2fl/fl mice. (E) Representative FACS 

plots showing identification of Ly6C+MHCII- monocytes, Ly6C+MHCII+ transitioning monocytes and 

Ly6C-CD64+F4/80+ MFs in the colon lamina propria of Zeb2fl/fl and CD11cCRExZeb2fl/fl  mice. For monocytes and 

transitioning monocytes the number represents the proportion of live CD45+CD11b+SiglecF-Ly6G-CD64lo/+ cells 

and for MFs the proportion of CD45+CD11b+SiglecF-Ly6G-CD64lo/+Ly6C- cells. Graphs represent proportion as a 

percentage of live CD45+ cells and absolute cell number of indicated cell type in colon lamina propria of indicated 

mice. Data are pooled from two experiments with at least n=7 per group. *, P < 0.05; ***, P < 0.001. Two-way 

student’s t test.   
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4.4 Discussion 

 

First, we looked at the publically available expression data for Zeb2 mRNA in 

different tissue-resident macrophages and found that high expression of Zeb2 is 

conserved across all macrophages considered. Moreover, further analysis performed 

outside of this thesis confirmed Zeb2 to be one of the 67 core macrophage genes 

(Scott et al. (under review); Addendum p.252). As described earlier in this thesis, we 

already found a definite role for Zeb2 in cDC2 development. Comparing expression 

levels, it is evident that Zeb2 is expressed at higher levels in macrophages than in 

cDC2s. This, together with the finding that Zeb2 mRNA levels are higher in 

macrophages than in monocytes, led to the hypothesis that Zeb2 could function in 

macrophage homeostasis. 

 

To investigate this, we started in vitro with several murine macrophage cell lines and 

one murine monocytic cell line. Also here, we found that Zeb2 is expressed at higher 

levels in the macrophage cell lines compared with the monocytic line. Next, we tried 

to knockdown Zeb2 expression in three macrophage lines through transduction with 

constitutive shRNA constructs. Shortly after transduction we were able to confirm a 

significant knockdown of Zeb2 mRNA levels. However, we were unable to further 

passage the macrophage lines that were transduced with both Zeb2 knockdown 

constructs, while the lines transduced with a non-targeting scrambled shRNA could 

be passaged, suggesting that loss of Zeb2 may affect macrophage survival. When 

using other vectors expressing GFP together with a Zeb2-targeting shRNA, similar 

problems were encountered (data not shown). Additionally, after FACS-purifying 

GFP+ cells, the cultures were unable to further proliferate when transduced with 

Zeb2-targeting shRNA vectors, while the GFP+ cells sorted from cultures transduced 

with the scrambled construct could be further passaged. From this we concluded 

that, at least in vitro, macrophages depend on Zeb2 for their survival and/or 

proliferation. We next wanted to see if this held true for different tissue-resident 

macrophages in vivo.  
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Initially, we crossed our conditional Zeb2 knockout mouse model with the LysMCRE 

line which was reported to target neutrophils, monocytes and mature macrophages24. 

Analysis of BM derived macrophages revealed that seven day old Csf1 cultures from 

LysMCRExZeb2fl/fl mice have an increased population of Ly6C+ cells compared with 

cultures from littermate controls. Despite this promising result ex vivo, we were 

unable to confirm a role for Zeb2 in macrophages in vivo when analysing the liver 

and colon of LysMCRExZeb2fl/fl mice. However, a PCR for detecting CRE recombinase 

activity performed on FACS-purified Ly6C+ and Ly6C- cells from seven day old Csf1 

cultures of LysMCRExZeb2fl/fl BM, demonstrated that the LysMCRE line is rather 

inefficient. Previously, Abram and colleagues also reported that the LysMCRE line only 

targets around 40% of splenic macrophages and peripheral blood monocytes24. 

Because of the inefficiency found in the LysMCRE line, we sought other CRE lines that 

are more efficient at targeting specific tissue-resident macrophages. With the newly 

generated KCCRE, which contains the CRE recombinase gene in the 3’ untranslated 

region of the KC specific Clec4f gene20 (Scott et al. (under review); Addendum 

p.252), we were able to target around 88% of KCs.  As we and others24,27 showed 

that the CD11cCRE line targets tissue-resident macrophages in the lung, spleen and 

colon, we opted to use this CRE line to investigate the role of Zeb2 in alveolar, 

splenic and colonic macrophages. Both Clec4F and CD11c are expressed in late 

stages of macrophage development20,28, and thus both CRE lines are considered to 

only target fully mature MFs. 

 

To our surprise, livers from KCCRExZeb2fl/fl mice did not show a difference in general 

MF numbers. Nevertheless, looking more in detail to hepatic MFs with surface 

markers Tim4 and Clec4F we did find interesting changes. Liver MFs of the 

KCCRExZeb2fl/fl mice show a significant reduction of fully mature Tim4+Clec4F+ KCs, 

which was coupled with a remarkable increase in Tim4- KCs and Tim4-Clec4F- MFs. 

A very similar phenotype was reported before by Scott et al. in the KC-DTR mice. In 

this mouse model administration of diphtheria toxin results in loss of long-lived KCs, 

after which they get replaced by monocyte derived cells. Their development starts as 

Tim4-Clec4F- MFs, further differentiating into Tim4-Clec4F+ KCs and finally maturing 

fully in long-lived self-renewing Tim4+Clec4F+ KCs20. The presence of both Tim4- 
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populations and the reduction in mature KCs in KCCRExZeb2fl/fl suggests that Zeb2 

knockout KCs die and are continuously replaced from the BM, a hypothesis that was 

confirmed by Scott et al. (Scott et al. (under review); Addendum p.252). As the KCCRE 

line acts late in development, KCs from KCCRExZeb2fl/fl mice are able to develop 

normally and only flox out Zeb2 following expression of Clec4f upon full maturation. 

This continuous cycle of death of mature KCs resulting from loss of Zeb2 followed by 

replacement from infiltrating monocytes, explains why we don’t see a reduction of 

total MF numbers in the liver of KCCRExZeb2fl/fl mice. It could be that this cycle was 

also present in the liver of LysMCRExZeb2fl/fl mice, but due to the lack of Clec4F and 

Tim4 in the LysMCRE analysis we were unable to pick up on this. Moreover, work 

performed outside the scope of this thesis revealed that KCs in the KCCRExZeb2fl/fl 

model contained both cells with homozygous (Zeb2-/-) and heterozygous (Zeb2+/-) 

loss of Zeb2 and with time Zeb2-/- KCs are outcompeted through local proliferation of 

more fit Zeb2-/+ KCs (Scott et al. (under review); Addendum p.252). Keeping in mind 

the inefficiency of the LysMCRE model, it is likely that in the LysMCRExZeb2fl/fl mice 

there exists a fraction of KCs that have retained one or two intact alleles of Zeb2. 

Based on our knowledge from the KCCRExZeb2fl/fl model, we would hypothesize that 

in LysMCRExZeb2fl/fl mice KCs that are truly Zeb2 knockout do die, but get replaced 

through proliferation of Zeb2-sufficient macrophages. This would again explain the 

lack of phenotype in the liver of LysMCRExZeb2fl/fl mice. 

 

To investigate if Zeb2 also plays a role in survival of tissue-resident macrophages 

other than KCs, we next made use of our CD11cCRExZeb2fl/fl model which allows us 

to generate loss of Zeb2 expression in mature MFs of the lung, spleen and colon. 

Doing so, we detected a significant reduction in absolute cell number of alveolar, 

splenic and colonic macrophages. As this reduction was found in steady state, it 

suggests that all three MF populations depend on Zeb2 for their survival. One could 

ask, why there are still mature macrophages present in the tissue. We believe that, 

as in the LysMCRE and KCCRE models, Zeb2 expressing macrophages are still present 

and proliferate locally to fill the available niche. Further examination, performed 

outside of this thesis, confirmed that Zeb2+/- AMs are indeed present in the lung of 
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CD11cCRExZeb2fl/fl mice and that these Zeb2-sufficient AMs in time refill the niche 

through local proliferation (Scott et al. (under review); Addendum p.252).  

 

Another interesting finding is that more than half of the remaining alveolar MFs and 

around one fifth of the remaining splenic MFs of CD11cCRExZeb2fl/fl mice displayed 

surface expression of the phagocytic receptor CD11b. It has been shown that during 

AM development CD11b expression is initially high, but later on downregulated upon 

full maturation of the MF an this independent of its origin (yolk sac MF, fetal liver 

monocyte or adult BM monocyte)21,28. Based on this, we hypothesized that the 

presence of CD11b+ AMs in the lung of CD11cCREXZeb2fl/fl mice is due to input from 

the BM and this influx is required to maintain AM numbers. However, follow-up 

experiments using partially protected BM chimeras revealed that there is no 

significant contribution from the BM to replace AMs that have died due to loss of 

Zeb2 expression (Scott et al. (under review); Addendum p.252). The replacement of 

KCs, but lack (or minor) replacement of AMs by BM derived cells, is in line we the 

niche hypothesis from Guilliams and Scott13. They proposed that the highly controlled 

regulation of a full niche inhibits monocytes to differentiate into macrophages and 

monocyte-to-macrophage differentiation only takes place in an available and 

accessible niche. Applying this niche hypothesis, only the liver macrophage niche is 

accessible for circulating monocytes as KCs reside in the bloodstream of the liver 

sinusoids. The niche for AMs is unaccessible for circulating progenitors due to the 

presence of the lung epithelial barrier between the bloodstream and the alveolar 

space.  

 

In conclusion, we showed here that high expression of transcription factor Zeb2 is a 

general feature of the macrophage lineage. Furthermore loss of Zeb2 in mature 

macrophages leads to their disappearance, suggesting cell death, and changes in 

their surface phenotype. So we can speculate that Zeb2 is required to maintain 

terminally differentiated macrophages. The next question is how Zeb2 functions to 

maintain the macrophage lineage and the answer to this was found outside the work 

of this thesis. Scott et al. demonstrated that Zeb2 is crucial in preserving the tissue-

specific identity of macrophages through regulation of tissue-specific macrophage 
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TFs, such as Lxrα in KCs and potentially Cebpβ in AMs (Scott et al. (under review); 

Addendum p.252). How Zeb2 is able to regulate the expression of the tissue-specific 

macrophage TFs remains to be elucidated. Another question that remains 

unanswered is if Zeb2, next to its role in mature macrophages, also functions during 

macrophage development. It was suggested before that Zeb2 is required for 

commitment to the monocyte lineage29, but the CRE lines used in this chapter did not 

allow us to assess the role of Zeb2 in early macrophage development. A more 

general CRE line, for instance based on the pre-macrophage expression profile from 

Mass et al., targeting MF development at an earlier time point, would help us to 

resolve this last question. 
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4.5 Materials and methods 

 

 

 

Immgen data processing 

 

Gene expression data used were from the Immgen database (GSE15907), other 

publically available microarray data sets deposited to NCBI GEO under accession no. 

GSE75225 and GSE76999 and unpublished in house generated data. After merging 

expression values of all samples, data was normalized within arrays (probeset 

summarization, background correction and log2-transformation) and between arrays 

(quantile normalization) using the Robust Multi-array Average (RMA) procedure in R. 

Only probesets that mapped uniquely to one gene were kept, and for each gene the 

probeset with the highest expression level was kept. 

 

 

Cell lines 

 

The following macrophage and monocytic cell lines present in the department were 

used: C3H-Hej, C3H-Hen, P388D1, MH-S, WEHI3 and Raw264-7. Details on these 

cell lines can be found in Table 1. C3H-Hej and C3H-Hen cells were cultured in RPMI 

supplemented with 10% FCS. MH-S cells were cultured in RPMI supplemented with 

10% FCS, glutamine and β-mercaptoethanol. Raw264-7 wells were cultured in 

DMEM supplemented with 10% FCS and glutamine. P388D1 and WEHI3 cells were 

cultured in RPMI supplemented with 10% FCS, glutamine, Na-Pyruvate and 

β-mercaptoethanol. 
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Table 1 | Murine cell lines used for in vitro work 

Cell line Cell type Source 

   
C3H-Hej 

(=GG2EE) 

Macrophage Isolated from C3H/HeJ mice. Immortalization 

achieved by infection with J2 recombinant 

retrovirus. 

C3H-Hen 

(=INF-3A) 

Myelomonocyte Derived from bone marrow of C3H/HeN (H-2k) 

mice. Immortalization was performed by 

infection with J2 recombinant retrovirus. 

P388D1 Monocyte/ 

macrophage 

Established in 1975 from the ascites of a DBA/2 

mouse with a lymphoid neoplasm. 

MH-S Alveolar 

macrophage 

 

Derived in 1989 by SV40 transformation of an 

adherent cell-enriched population of mouse 

alveolar macrophages. 

WEHI3 Monocyte Derived from monocytes of a murine leukemia 

model in 1976. 

Raw264-7 Macrophage Established from a tumor induced by Abelson 

murine leukemia virus. 

 

 

Lentiviral transduction 

 

First the appropriate plasmid mixes were concentrated with a sodium acetate/ethanol 

precipitation. For this the following ratio of plasmids was used: a 2/2/1 ratio of 

shRNA-plasmid / pCMVdeltaR839-packaging-plasmid / pMD2.G-packaging-plasmid. 

The three shRNA-plasmids used are the TRC1 version from Sigma’s 

MISSION®RNAi and have a pLKO.1-puro backbone. The control scrambled plasmid 

contains a sequence that does not target any mammalian genes known (SHC002), 

the two Zeb2 shRNA’s target the coding sequence of Zeb2 (shRNA Zeb2-1 = 

TRCN0000013530; shRNA Zeb2-2 = TRCN0000070887). Next Hek293T cells were 

transfected with a calcium phosphate transfection protocol, virus was harvested on 

day 2 and day 3 after transfection and was immediately used to transduce cells of 

interest. Transduced cells were cultured with puromycin to perform a negative 

selection for non-transduced cells.  



215 

 

Gene expression analysis by RT-qPCR 

 

RNA was purified from cell lines using TRIsure (Bioline, GC Biotech) according to the 

manufacturers guidelines. RNA was reverse transcribed to cDNA with an iScript 

Advanced cDNA Synthesis kit (Bio-Rad Laboratories). Gene expression was assayed 

by real-time qPCR using a SensiFast SYBR No-Rox kit (GC Biotech) on a PCR 

amplification and detection instrument (LightCycler 480; Roche) with the primers 

listed in Table 2. Gene expression was normalized to the reference genes Calm2 and 

Eef1a1 and relative gene expression was calculated using qbase+ software 

(Biogazelle).  

 

Table 2 | Primers used for RT-qPCR 

Gene Forward primer Reverse primer 

   

Calm2 5’-TTTGCCTCAAAATCCATTCCA-3’ 5’-GCAGAGCAACCATTGGGTAAA-3’   

Eef1a1 5’-TCGCCTTGGACGTTCTTTT-3’ 5’-GTGGACTTGCCGGAATCTAC-3’ 

Zeb1 5’-TTGCGTGTCAGGCATGGAT-3’ 5’-GAAAACGGCTGTGAACCAAAA-3’ 

Zeb2 5’-GGCAAGGCCTTCAAGTACAA-3’ 5'-AAGCGTTTCTTGCAGTTTGG-3’ 

 

 

Mice 

 

The generation of Zeb2fl/fl mice was described previously22. Mice were backcrossed 

to a C57BL/6 background for at least seven generations before crossing with the 

CD11cCRE mice25, LysMCRE mice23 and KCCRE mice (B6-Clec4ftm3Ciphe; developed 

in the Centre d’Immunophenomique, Marseille, France). CD11cCRE mice and KCCRE 

mice were also crossed with the Rosa-RFP reporter mouse26. All mice were used on 

a C57Bl/6 background between 6 and 12 weeks of age. All mice were bred and 

maintained at the IRC (Ghent University) under specific pathogen free conditions. All 

animals were randomly allocated to experimental groups and littermate controls were 

used in all experiments. All experiments were performed in accordance with the 

ethical committee of the Faculty of Science. 
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Cultures of BM derived macrophages 

 

Total BM was harvested from mice, red blood cells were lysed with ACK lysing buffer 

(Biowhittaker) and 15-20 x 106 cells were cultured in RPMI supplemented with 

Glutamax, non-essential amino acids and penicillin/streptomycin in a 10 cm petri dish 

for 7 days with 20ng/ml Csf1. On day 3 of cultivation cells were passaged by gently 

loosening them with a cell scraper. 

 

 

Isolation of tissue leukocytes 

 

For the isolation of liver leukocytes, livers were isolated from PBS-perfused mice, 

chopped finely and subjected to GentleMACs dissociation and incubated for 20 min 

with 1 mg/ml Collagenase A (Sigma) and 10U/ml DNase (Roche) in a shaking water 

bath at 37°C. Following a second round of GentleMACs dissociation, single cell 

suspensions were filtered over a 100-µm filter. For the isolation of lung and spleen 

leukocytes, lungs and spleens were isolated from PBS-perfused mice, chopped 

finely, and incubated for 30 min with 0.2 mg/ml Liberase TM (Roche) and 10 U/ml 

DNase (Roche) in a shaking water bath at 37°C. Cells were passed through a 70-µm 

cell strainer. For the isolation of colonic lamina propria leukocytes, colons were 

flushed with RPMI containing 2% FCS. After opening longitudinally and cutting into 

0.5 cm segments, they were incubated twice with PBS containing 2mm EDTA in a 

shaking water bath at 37°C for 15 minutes (first incubation round) and 30 minutes 

(second incubation round). Then the tissue was digested with 1 mg/ml Dispase II 

(Gibco), 30 µg/ml DNAse (Roche), 0.75 mg/ml Collagenase D (Roche) and 0.425 

mg/ml Collagenase V (Sigma) in a shaking water bath for 30 to 45 min. Cells were 

passed through a 40-µm cell strainer. In all instances, except for the colon, red blood 

cells were lysed with an in house made osmotic lysis buffer (10mM KHCO3, 155 mM 

NH4Cl and 0.1 mM EDTA in PBS) before staining for flow cytometric analysis. 
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Flow cytometry and FACS 

 

For flow cytometry, 3–4 x 106 cells were stained at 4°C in the dark with antibodies 

(Table 3) and analysed with a Fortessa (BD Biosciences) and FlowJo software 

(TreeStar). In case of FACS-purification, cells were FACS-purified using a flow 

cytometer (FACSAria II or FACSAria III; BD). After sorting, a purity check was 

performed for all samples. 

 

Table 3 | Antibodies used for flow cytometry 

Antibody Clone Antibody Clone 

    
Fc Block 2.4G2 CD11c N418 

Fixable Viability Dye eBioscience Clec4F AF2784 

7-AAD BD Pharmingen F4/80 BM8 

CCR2 475301 IA-IE M5/114.15.2 

CD3e 145-2c11 Ly6C AL-21 

CD19 1D3 Ly6G 1A8 

CD45 30-F11 NK1.1 PK136 

CD64 X54-5/7.1 SiglecF E50-2440 

CD11b M1/70 Tim4 RMT4-54 

 

 

Statistical analysis 

 

Groups were compared with a two-way Student’s t test using Prism Software 

(GraphPad Software). Samples were assumed to be normally distributed with similar 

variance between groups. No randomization was used to determine experimental 

groups, and no blinding of the investigator was performed. Group sizes were 

determined on the basis of previous experience. 
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4.7  Supplementary figures 

 

 

Figure S1 | Gating strategy for liver KCs, Ly6Chi monocytes and neutrophils as 

performed in the LysMCRExZeb2fl/fl mouse model. Representative FACS plots showing gating 

strategy for KCs, Ly6Chi monocytes and neutrophils in the liver. FSC, forward scatter. SSC, side 

scatter. Autofluo, autofluorescence. L/D, live/dead.  
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Figure S2 | Gating strategy for colon lamina propria monocytes, transitioning 

monocytes and MFs as performed in the LysMCRExZeb2fl/fl mouse model. Representative 

FACS plots showing gating strategy for monocytes, transitioning monocytes and MFs in the lamina 

propria of the colon. FSC, forward scatter. SSC, side scatter. L/D, live/dead. 
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Figure S5 | Gating strategy for splenic macrophages as performed in the 

CD11cCRExZeb2fl/fl mouse model. Representative FACS plots showing gating strategy for 

macrophages in the spleen. FSC, forward scatter. SSC, side scatter. L/D, live/dead. 
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Figure S6 | Gating strategy for colon lamina propria monocytes, transitioning 

monocytes and macrophages as performed in the CD11cCRExZeb2fl/fl mouse model. 

Representative FACS plots showing gating strategy for monocytes, transitioning monocytes and 

macrophages in the colon lamina propria. FSC, forward scatter. SSC, side scatter. L/D, live/dead. 
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Throughout this PhD thesis we have shown that Zeb1 and Zeb2 are master regulators 

of mononuclear phagocyte development and homeostasis. For the dendritic cell 

lineage we found that Zeb2 regulates development of conventional and plasmacytoid 

DCs, whereas Zeb1 in cDC1s is important for the homeostasis of splenic cDCs and 

macrophages. Furthermore, we showed that Zeb2 is important for the survival of 

macrophages across multiple murine tissues. Finally, based on recurrent mutations in 

the ZEB2 locus in blastic plasmacytoid dendritic cell neoplasm (BPDCN), we attempted 

to model this rare malignant disease in mice. However, the mice developed a 

hematoproliferative disease that did not resemble BPDCN. Although the results were 

discussed at the end of each chapter, some remaining questions and future 

perspectives will be further addressed in this section. Additionally, we would like to 

introduce some general concepts on the role of Zeb proteins in the hematopoietic 

system and the consequences of this for cancer therapy development. 

 

 

Remaining questions and future perspectives 

 

What about the remaining pDCs and cDC2s in CD11cCRExZeb2fl/fl mice? 

During the course of the first results chapter we have shown that Zeb2 regulates 

commitment of the cDC2 and the pDC lineage. However, in CD11cCRExZeb2fl/fl mice 

we still find a residual pool of both pDCs and cDC2s. Such a partial reduction in cDC2s 

in CD11cCRExZeb2fl/fl mice was independently reported by the group of Kenneth 

Murphy1. The remaining pDCs and cDC2s suggest that a Zeb2-dependent and a Zeb2-

independent subset could exist within both DC populations. However, we could not 

identify specific surface markers for the subsets of pDCs and cDC2s requiring Zeb2. 

Although showing a similar partial reduction in cDC2s using inducible CRE systems 

such as the Mx1CRE, Murphy and colleagues proposed that Zeb2 does not control the 

cDC2 lineage. They suggest that Zeb2 rather represses the development of the cDC1 

lineage1. However, this hypothesis does not explain the cell intrinsic nature of the 

reduction in cDC2s in these mice. 
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Another hypothesis regarding the remaining pDCs and cDC2s in CD11cCRExZeb2fl/fl 

mice is that in these cells one intact allele of Zeb2 may be present. Indeed, follow-up 

experiments outside the scope of this thesis considering the role of Zeb2 in 

macrophages revealed that in CD11cCRExZeb2fl/fl mice Zeb2-/+ alveolar macrophages 

are present (Scott et al. (under review); Addendum p.252) and thus this could also be 

the case for other cells targeted in this mouse model. Additionally, haplo-sufficiency of 

Zeb2 in the residual populations would also explain why we only see minimal 

differences regarding gene expression, migration and antigen presentation. Therefore 

we would like to FACS-purify the residual populations, extract genomic DNA and 

perform a PCR designed to specifically detect if CRE excision took place. Additionally, 

PrimeFlow RNA Assay, a flow cytometry technique that detects the presence of 

specific RNAs in the cell, was used successfully to show the presence of Zeb2-/+ 

macrophages and hence we would like to use this method to answer the question if 

the remaining pDCs and cDC2s in CD11cCRExZeb2fl/fl mice are indeed heterozygous 

for the loss of Zeb2. This question could also be answered by using single cell RNA-

sequencing.  

 

What about Zeb2 and epigenetic regulation? 

In Chapter 1 of the results section, we found that Zeb2 regulates pDC and cDC 

development by directly repressing Id2. However, we think that this is only a part of the 

mechanism downstream of Zeb2 and we believe that known interactions of Zeb2 with 

epigenetic modifiers, such as nucleosome remodeling complex Nurd or lysine 

demethylase Kdm1a, may also play a role2–4. Preliminary data (not shown) suggest 

that the loss of Zeb2 in cDC2s is correlated with a shift from repressive to active histone 

marks at the promoter regions of around 930 genes. In the future, we will further link 

these data to the RNA-sequencing data obtained in Chapter 1 in order to find out which 

genes change their mRNA expression following the identified epigenetic switch. 

Finally, it would be ideal if we could trace back which gene promoters are epigenetically 

controlled following binding of Zeb2 by using ChIP-seq. However, a ChIP-grade Zeb2-

antibody is currently not available and thus we will first need to generate ChIP-grade 

Zeb2-antibodies or invest in developing a mouse model expressing tagged Zeb2 

protein from the endogenous Zeb2 promoter using CRISPaint technology5. 
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The role of Zeb proteins in cDCs and macrophages during infection 

In the discussion part of Chapter 1 and Chapter 3, we proposed to further investigate 

the functional consequences of altering Zeb2 and Zeb1 expression in dendritic cells 

during infection and inflammation settings. However, as we showed in the course of 

this thesis that CD11cCRExZeb2fl/fl mice also have reduced macrophage populations in 

several tissues and we found defects in multiple lineages of the splenic immune 

compartment of CD11cCRExZeb1fl/fl mice, interpreting results of infection models in 

these mice will be very complicated and likely not conclusive. Furthermore, as we 

hypothesize that the remaining pDCs, cDC2s and macrophages in CD11cCRExZeb2fl/fl 

mice could have a haplo-sufficient expression of Zeb2, this adds another layer of 

complexity. One possible solution is the use of the newly developed XCR1CRE line 

(Chapter 3). XCR1CRExZeb1fl/fl mice would indeed allow us to investigate the functional 

consequences of altered expression of Zeb1 specifically in cDC1s. However, also with 

this model caution is needed, as we showed in Chapter 3 that the loss of Zeb1 in 

cDC1s also affects cDC2s and macrophages. As Zeb2 is mainly expressed in pDCs 

and cDC2s, it would be interesting to cross our CRE-mediated conditional loss of Zeb2 

line with a pDC and cDC2 specific CRE line. This would allow us to specifically 

investigate the role of Zeb2 in pDCs and cDC2s during infection, without the additional 

effects in CD11c expressing non DCs. Unfortunately, such CRE lines do not exist and 

currently there are no pDC or cDC2 specific genes known that can be used to develop 

such mouse models.  

With regard to investigating the role of Zeb proteins in macrophages during 

inflammatory settings, we again cannot use the CD11cCRE line, as to many different 

immune cell lineages are targeted with this mouse model. Furthermore, Scott et al. 

(under review; Addendum p.252) showed that the Fcgr1CRE line, generated by the lab 

of Bernard Malissen and containing an iCRE recombinase in the 3’ untranslated region 

of the Fcrgr1 gene, efficiently targets macrophages across murine tissues. However, 

like the CD11cCRE line a number of other immune cells are also targeted (although 

minimally) and thus using this CRE line to investigate the role of Zeb proteins during 

infection in macrophages, would again generate results that are difficult to interpret. In 

contrast, we have shown that the KCCRE line specifically and efficiently targets Kupffer 

cells. Hence, we could use KCCRExZeb2fl/fl mice to determine the function of the 
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transcription factor in Kupffer cells during for instance acetaminophen-induced liver 

injury6 or high-fat-diet-induced non-alcoholic steatohepatitis7.  

 

ZEBs in mononuclear phagocytes: translation to the human field 

Throughout this PhD thesis we have shown a role for both Zeb proteins in the 

homeostasis and development of mononuclear phagocytes in mice. However, if we 

want to be in the position to manipulate or therapeutically target dendritic cells and 

macrophages in different human diseases, such as infections, auto-immunity or 

cancer, it will be crucial to confirm our findings in the human field. Currently, little is 

known on the expression patterns of ZEB1 and ZEB2 in human mature DCs or tissue-

resident macrophages. The difficult access to human tissue and the fact that DCs are 

rare cells, makes it challenging to research the human aspects. Nevertheless, one 

study reporting on gene expression in human blood-derived, splenic and thymic DCs, 

found ZEB1 to be upregulated in cDC1s compared to cDC2s and pDCs, whereas ZEB2 

was shown to be upregulated in cDC2s and pDCs compared to cDC1s8. At least at the 

mRNA level, this confirms our findings in mice.  

One option to check if our conclusions on Zeb2 in DCs and macrophages are valid in 

human, would be to assess the presence of pDCs, cDC1s, cDC2s and macrophages 

in Mowat-Wilson syndrome patients. However, as these patients are heterozygous for 

the loss of ZEB2 and heterozygous loss of Zeb2 in mice did not yield significant 

changes, at least regarding the numbers of DCs or macrophages, negative results 

would not be conclusive. Currently, collaborators are looking into immune cells in the 

blood of Mowat-Wilson syndrome patients, but this approach has its limitations, as DCs 

in the blood are not mature and macrophages are only present in tissues. If we would 

have access to BM from Mowat-Wilson syndrome patients, we could culture the BM 

with FLT3L and determine if the different DC populations are able to develop and 

function properly. This BM could also be cultured with CSF1 in order to determine if 

macrophages from Mowat-Wilson syndrome patients develop normally, are able to 

survive and perform their function. 
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How to proceed in the search for a preclinical mouse model for BPDCN? 

The main goal of Chapter 2 was to develop a clinical mouse model for the human 

disease blastic plasmacytoid dendritic cell neoplasm (BPDCN). Based on recurrent 

mutations in the ZEB2 and P53 loci and the suggestion that the proliferative disease 

develops in the pDC lineage9, we opted to use CD11cCRExp53fl/fl and 

CD11cCRExZeb2fl/flxp53fl/fl mice. Although mice of both genotypes developed the same 

hematopoietic malignancy, the disease did not resemble human BPDCN. We can think 

of several reasons to explain this dissimilarity. First, it could be that the severe 

phenotype induced by the loss of p53 in CD11c expressing cells, does not allow the 

possible development of a BPDCN-like disease upon additional loss of Zeb2 

expression. Furthermore, we do not know if the ZEB2 and P53 mutations that are found 

in BPDCN-patients are present on only one or on both alleles. If only one allele is 

affected, this would mean that intact ZEB2 and P53 protein are still present and 

functional. Therefore, we would like to obtain samples from BPDCN patients, which 

could be achieved in collaboration with the research team of Prof. Mecucci at the 

University of Perugia in Italy, and perform immunohistochemical stainings to assess 

the presence of both proteins. However, absence of the proteins in BPDCN-cells does 

not necessarily mean that the deleterious mutations in the ZEB2 and/or P53 loci are 

driver mutations, but we chose these genes because they are our genes of expertise 

and we showed a role for Zeb2 in the pDC lineage. Maybe targeting other genes that 

are recurrently mutated in BPDCN, such as Tet2 and Asxl19, whether or not in 

combination with Zeb2, will be more effective to come to a preclinical model for the 

disease. Not only the choice of genes, but also the choice of CRE line can possibly 

explain why we were unable to model BPDCN. We used the CD11cCRE line because it 

efficiently targets pDCs in mice, but through the course of this thesis, we confirmed 

that this CRE line also targets multiple other hematopoietic lineages. Therefore, we 

believe that the search for a clinically relevant mouse model for BPDCN would benefit 

from a CRE line that specifically targets the pDC lineage. Unfortunately, such a CRE 

line does not exist at this time and currently there are no pDC specific genes known 

that can be used to develop such a mouse model. 
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General concepts 

 
Zebs, Tgfβ and Csf2 

During the course of this PhD thesis, multiple findings hinted to a link between Zeb 

proteins, Tgfβ-signaling and Csf2. When investigating the role of Zeb2 in dendritic cell 

development in Chapter 1 of the results section, we came across the first hint, which 

was the differential expression of Zeb2 in CD103- and CD103+ cDC2s in the small 

intestine lamina propria. Very recently it was suggested that the CD103+ cDC2s 

develop from their CD103- counterparts and that this process is regulated through 

TgfβR-mediated signaling10, and it is already known for a long time that Zeb2 is able 

to inhibit Tgfβ-induced transcription11. Additionally, CD103+ cDC2s are dependent on 

Csf212 and we showed that cDC2s from Csf2 BM cultures do not express Zeb2. 

Furthermore, CD103+ cDC2s express CD101, SiglecF and Epcam, while their CD103- 

counterparts do not10. Remarkably, we showed that these three markers were also 

upregulated on the surface of splenic Zeb2-deficient cDC2s. Moreover, follow-up 

experiments on Chapter 4 outside the scope of this thesis, revealed that Zeb2-deficient 

Kupffer cells aberrantly express SiglecF on their surface, while Zeb2-deficient alveolar 

macrophages aberrantly display surface-expression of CD101 and Epcam (Scott et al. 

(under review); Addendum p.252), suggesting a common mechanism in cDC2s and 

macrophages. In Chapter 3 the increased expression of CD103 on the surface of Zeb1-

deficient splenic cDC1s and the cell intrinsic decreased expression of CD103 on 

pulmonary cDC1s in CD11cCRExZeb1Tg/Tg mice forms another link with Csf2, as it has 

been suggested that Csf2 induces the expression of CD103 on cDC1s13. Taken 

together this led to the hypothesis that a general mechanism may be at play in cDCs 

and macrophages in which TgfβR-mediated signaling leads to the phosphorylation of 

R-Smads. Subsequently, Zeb proteins are able to interact with those activated 

R- Smads and as such inhibit TgfβR-mediated transcription of a set of genes, including 

CD101, SiglecF, Epcam and CD103 (Figure 1, left panel). However, reduced 

expression of Zebs as a consequence of Csf2-signaling or targeted gene deletion 

counteracts Zeb-mediated inhibition of Tgfβ-mediated transcription, leading to the 

expression of CD101, SiglecF, Epcam and CD103 (Figure 1, right panel). Further 

experiments are necessary to validate this hypothesis and to determine the differences 

in this model for cDC1s, cDC2s and macrophages. Provided that the XCR1CRE line is 
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Figure 1 | Hypothesis for the action of Zeb proteins in mononuclear phagocytes. LEFT 

PANEL: TgfβR-mediated signaling leads to the phosphorylation of R-Smads and subsequently Zeb 

proteins are able to interact with those activated R-Smads and as such inhibit TgfβR-mediated 

transcription of a set of genes, including CD101, CD103, SiglecF and Epcam. RIGHT PANEL: reduced 

expression of Zebs as a consequence of Csf2-signaling or targeted gene deletion counteracts Zeb-

mediated inhibition of Tgfβ-mediated transcription, leading to the expression of CD101, SiglecF, Epcam 

and CD103. 

 

functional in in vitro settings, we could for instance culture BM from XCR1CRExZeb1Tg/Tg 

mice in the presence of Flt3L and Csf2 and determine if the generation of CD103+ 

cDC1s is decreased. On the other hand, we could culture BM from XCR1CRExZeb1fl/fl 

mice in the presence of Flt3L and determine if CD103+ cDC1s can be generated in the 

absence of Csf2 and if possible assess their surface expression of CD101, SiglecF 

and Epcam. Furthermore, we could add Tgfβ into Flt3L WT BM cultures with the aim 

of generating CD103+ cDC2s and verify if the addition of Csf2 or the use of tamoxifen-

inducible Zeb2 KO BM from Rosa26CRE-ERT2xZeb2fl/fl mice would increase their 

production. Additionally, we could add Csf2 in differentiated Csf1 BM-derived 

macrophage cultures and determine the expression of CD101, Epcam, SiglecF and 

Zeb2. 

 



236 
 

Oscillation of Zeb proteins during hematopoietic differentiation 

Based on the observed complementary expression patterns of Zeb1 and Zeb2 mRNAs 

during embryonic development and the aggravated phenotypes in mice combining  

loss-of-function of Zeb1 and Zeb2, it was suggested that Zeb transcription factors may 

have partly overlapping, compensatory functions14. In line with this, expression of Zeb1 

and Zeb2 is mostly mutually exclusive during murine hematopoietic differentiation, 

except in the hematopoietic stem and multipotent progenitor cell compartment, where 

Zeb1 and Zeb2 are co-expressed at moderate levels (Figure 3 of General introduction 

p.11). Further along the pathway of differentiation several cell fate decision points are 

characterized with switching levels of Zeb1 and Zeb2 mRNA. For instance, following 

the multipotent progenitor (MPP) stage, cells either commit to the lymphoid lineage 

with high expression of Zeb1 and low expression of Zeb2 in the common lymphoid 

progenitor (CLP) or to the myeloid lineage with high expression of Zeb2 and low 

expression of Zeb1 in the common myeloid progenitor (CMP) (Figure 2 , upper panel). 

When looking at T cell differentiation, counter-oscillating levels of both mRNAs are 

observed along the entire differentiation pathway (Figure 2, upper panel). Furthermore, 

DC differentiation is also characterized by oscillating levels of Zeb2, however in the 

DC lineage this is not coupled with counter-oscillation of Zeb1 levels (Figure 2, lower 

panel). Remarkably, most of the hematopoietic differentiation defects seen in the 

Zeb1/2 loss- or gain-of-function mouse models occur exactly at the cell fate decision 

checkpoints (Figure 2). As such, loss of Zeb2 early in development leads to the 

accumulation of non-committed progenitors and a decrease in fully matured functional 

blood cells15,16 (Figure 2, upper panel). In line with the increasing levels during the DN 

to DP transition in T cell development, Zeb1 mutant mouse models are suffering from 

a block in T cell differentiation precisely at that point17,18 (Figure 2, upper panel). 

Furthermore, the activation of CD8+ T cells, which is characterized by high expression 

of Zeb2, is impaired in Zeb2 loss-of-function models19,20 (Figure 2, upper panel). 

Inactivation of Zeb2 in the hematopoietic system also resulted in problems in the 

myeloid lineage, such as the inability to commit to the monocyte lineage coupled with 

an increased commitment to the granulocyte lineage1,16 (Figure 2, lower panel). Finally, 

we and others showed that in line with the high expression of Zeb2 in pDCs and cDC2s, 

loss of Zeb2 in dendritic cells leads to a defect in pDC and cDC2 development1,21  

(Figure 2, lower panel). 



237 

 

 

Figure 2 | Examples of Zeb expression switching as a molecular driver of important cell 

fate decision checkpoints during hematopoietic differentiation. The figure is based on 

expression data available via http://servers.binf.ku.dk/bloodspot/ and shows micro-array data from 

murine samples. UPPER PANEL: Counter-oscillating expression levels of Zeb1 and Zeb2 during T cell 

differentiation with indications of known differentiation defects in Zeb1 and Zeb2 loss-of-function mouse 

models. LOWER PANEL: Oscillating Zeb2 expression levels during dendritic cell differentiation with 

indications of known differentiation defects in Zeb2 loss-of-function mouse models.
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Based on these observations, one could hypothesize that oscillations of Zeb levels 

may control hematopoietic differentiation. At this point, the molecular mechanisms that 

control such a Zeb mRNA switching remain largely unexplored. However, negative 

feedback mechanisms via the miRNA-200 family might partially explain these Zeb1/2 

oscillations. Indeed, miRNA-200 family members are able to inhibit expression of Zeb 

proteins at the post-transcriptional level by binding to highly conserved target sites in 

their 3’ untranslated region. In addition, Zebs are also able to transcriptionally repress 

the miRNA-200 family, suggesting a negative feedback loop that can fuel this Zeb1/2 

switching22,23. As such, the miRNA-200 family is involved in a counterregulatory 

network in which Zeb2 drives terminal differentiation of CD8+ T cells, while Zeb1 is 

involved in maturation and survival of memory CD8+ T cells24. Interestingly, also in non-

hematopoietic cell lineages, including the melanocytes, a similar oscillation between 

Zeb1/2 mRNAs has been described25,26. Of note, this concept has also been 

suggested for other protein families, including the Gata2/Gata1 switch as an important 

driver of molecular development27. In the future, we would like to investigate the 

importance of and the mechanism behind Zeb oscillations in hematopoietic 

differentiation, starting with determining the levels of the miR-200 family members in 

the different dendritic cell subtypes. 

 

Consequences for targeting Zeb proteins in cancer 

Initially, Zeb proteins were mainly studied as EMT inducing transcription factors that 

endow epithelial cancer cells with the capacity to disseminate from the primary tumor 

site, coupled with the gain of stem cell properties and features for therapy resistance. 

Although EMT is not a hallmark of hematologic malignancies, there is extensive 

evidence that ZEBs also play an important role in initiation and progression of different 

subtypes of lymphomas and leukemias. Depending on the lineage of origin of these 

malignancies, ZEB1 and ZEB2 can both act as oncogenes or tumor suppressors. 

These often contradictory, synergistic and/or complementary functions of ZEBs in 

lymphoma/leukemia may be, at least in part, explained by their very pleiotropic 

functions (cellular adhesion and mobilization/homing, stem cell properties, 

development and immune regulation) at various stages during hematopoiesis. 

Additionally, the intricate functioning of ZEB proteins in hematopoietic malignancies 

may also be influenced by their complex oscillating expression profile, in combination 
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with the presence or absence of cell-context dependent co-factors and downstream 

targets. This complexity raises the question if it would be feasible to therapeutically 

target ZEBs in the context of leukemia. Additionally, as metastasis is the major cause 

of death in cancer patients, we could also consider targeting ZEBs in solid cancers as 

a preventative treatment to avoid dissemination from the primary tumor. However, next 

to the inherent difficulty of targeting transcription factors, the main concern for 

therapeutic inhibition or reactivation of ZEB proteins might reside in the possible side 

effects. Indeed, previous work and the results in this thesis show that Zeb1 and Zeb2 

have physiological functions throughout the body, including control of the immune 

system, where they safeguard development and functioning of different immune cell 

types. Interfering with this could not only disturb response to pathogens, but could also 

interrupt tumor immunosurveillance. To prevent these important side effects, specific 

pathways acting downstream of Zebs such as their interaction with cancer specific co-

activators, co-repressors and chromatin remodeling complexes or their competition for 

DNA binding with other E-box binding transcription factors, could be targeted. More 

research will be required to dissect the mode of action of ZEB1 and ZEB2 in solid tumor 

cells, leukemic cells and non-transformed immune cells which may open the avenue 

to less toxic and more specific therapies for hematologic malignancies and solid 

cancers. 
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Highlights 
- The transcription factor ZEB2 is highly expressed across the macrophage lineage. 
- ZEB2 preserves the tissue-specific identities of macrophages across tissues. 
- ZEB2 deficient macrophages are outcompeted by WT counterparts. 
- ZEB2 maintains LXRα, which is crucial for Kupffer cell identity. 
 
eTOC Blurb 
ZEB2 forms part of the core signature of macrophages across tissues. Scott et al. demonstrate 
that ZEB2 is critical for maintaining the tissue identities of macrophages, with loss of ZEB2 
resulting in tissue-specific changes in the transcriptomes of different macrophage populations 
and the subsequent disappearance of these cells. In KCs, ZEB2 was found to maintain LXRα 
expression, loss of which is sufficient to reproduce the loss of KC identity and KC 
disappearance. 
 
SUMMARY 
Heterogeneity between different macrophage populations has become a defining feature of 
this lineage. However, the conserved factors defining macrophages remain largely unknown. 
The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal 
transition, however its role within the immune system is now being elucidated. We show here 
that Zeb2 expression is a conserved feature of macrophages. Using Clec4fCRE, ItgaxCRE and 
Fcgr1CRE mice to target five different macrophage populations, we found that loss of ZEB2 
results in macrophage disappearance from the tissues, coupled with their subsequent 
replenishment from bone-marrow precursors in open niches. Mechanistically, we found that 
ZEB2 functions to maintain the tissue-specific identities of macrophages. In Kupffer cells, 
ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which 
recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is 
required in macrophages to preserve their tissue-specific identities.  
 
INTRODUCTION 
Macrophages (macs) were first described over a century ago as cells essential for host 
defense. In recent years, the macrophage field has undergone a conceptual revolution. Two 
main findings have arisen from this; firstly it is now clear that, in mouse models, these cells  
typically arise during embryogenesis from either yolk-sac macs or fetal liver monocytes and in 
most tissues then self-maintain throughout life (Bain et al., 2014; Ginhoux and Guilliams, 2016; 
Gomez Perdiguero et al., 2015; Guilliams et al., 2013; Hashimoto et al., 2013; Hoeffel et al., 
2015; Yona et al., 2013). In a selection of tissues including the heart, gut and the dermis this 
self-maintenance is abrogated resulting in the continual replenishment of these macs from 
bone marrow (BM) monocytes (Bain et al., 2013; Epelman et al., 2014; Molawi et al., 2014; 
Tamoutounour et al., 2013). Importantly however, life-span cannot be inferred from mac origin 
as BM monocytes can differentiate into bona-fide long-lived self-renewing macs as has been 
shown in the liver (Scott et al., 2016b) and the alveolar space (van de Laar et al., 2016). 
Secondly, it is now evident that macs across different organs of the body are highly 
heterogeneous, with each mac population having its own unique transcriptional and chromatin 
landscape (Gautier et al., 2012; Gosselin et al., 2014; Lavin et al., 2014; Mass et al., 2016; 
Scott et al., 2016b; T’Jonck et al., 2018). This heterogeneity is present despite the fact that all 
mac populations arise from a limited number of progenitor types, indicating a substantial role 
for the local mac niche in driving mac phenotypes (Guilliams and Scott, 2017). Mac 
heterogeneity is also thought to underlie the contribution of macs to tissue homeostasis, as 
macs have been shown to perform different ‘accessory functions’ in their specific tissues of 
residence (Okabe and Medzhitov, 2016). For example, alveolar macs (AMs) in the alveolar 
space play a role in lipid metabolism preventing the buildup of excess surfactant proteins 
(Remmerie and Scott, 2018). Research has recently been focused on understanding the 
heterogeneity of macs from one tissue to another, but it remains largely unknown if macs also 
require some conserved factors for their macrophage identity, irrespective of their tissue of 
residence. While high expression of the transcription factor (TF) PU.1 (Monticelli and Natoli, 
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2017) and dependence on signaling through the CSF1R either via CSF1 (Gow et al., 2014; 
Hume et al., 1988; Tagliani et al., 2011) or, in the case of microglia and Langerhans cells, via 
IL-34 (Wang et al., 2012) are characteristic features of the mac lineage, not much else is known 
regarding additional conserved TFs that drive and maintain this entire lineage of myeloid cells. 
Zinc finger E box binding homeobox 2 (ZEB2, SIP1, ZFXH1B) is a TF best known for its role 
in epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET), 
in which epithelial cells lose their cellular identity and are converted into mesenchymal cells 
and vice versa (Comijn et al., 2001; Vandewalle et al., 2005). EMT/MET transitions are crucial 
in embryonic development, wound healing and cancer (De Craene and Berx, 2013). Mice 
lacking Zeb2 are embryonic lethal (Higashi et al., 2002; Van de Putte et al., 2003), while 
patients with heterozygous abnormalities in Zeb2 expression often develop Hirschsprung’s 
disease and Mowat-Wilson syndrome (Vandewalle et al., 2009). In addition to EMT/MET, 
ZEB2 has been implicated in development of the nervous system (Hegarty et al., 2015) and 
mouse melanocyte differentiation (Denecker et al., 2014). In the immune system, it has 
recently been reported that ZEB2 functions to regulate NK cell maturation (van Helden et al., 
2015), the terminal differentiation of CD8+ effector T cells (Dominguez et al., 2015; Omilusik et 
al., 2015) and we and others have reported a role for ZEB2 in the differentiation and 
development of pDCs and cDC2s (Scott et al., 2016a; Sichien et al., 2017; Wu et al., 2016). 
Additionally, ZEB2 has been suggested to play a role in controlling the fate of the Granulocyte-
Macrophage progenitor (GMP) with mice lacking ZEB2 (Mx1CRExZeb2fl/fl) having reduced 
numbers of Ly6Chi monocytes but concomitantly increased neutrophil development (Wu et al., 
2016). Here, we examined Zeb2 expression in a variety of mac populations and show that high 
expression of Zeb2 is a conserved feature of the mac lineage. Furthermore, through the 
generation of Kupffer Cell specific CRE (Clec4fCRE) mice and Fcgr1CRE mice and the use of 
ItgaxCRE mice, we found that loss of ZEB2 in five different macs resulted in the loss of their 
tissue identities and their subsequent disappearance. More specifically, we found that ZEB2 
functions to maintain KC identity, at least in part, by regulating expression of the TF LXRα 
(Nr1h3). 
 
RESULTS 
 
Zeb2 expression is conserved across the macrophage lineage 
Although recent work has demonstrated that macs represent a highly heterogeneous lineage 
(Gautier et al., 2012; Lavin et al., 2014; Scott et al., 2016b), we sought here to identify TFs 
conserved across the mac lineage. To this end, we compiled data from previously published 
studies performed by the Immgen Consortium (Ericson et al., 2014; Gautier et al., 2012; Heng 
et al., 2008; Miller et al., 2012; Painter et al., 2011), our previously published studies (Scott et 
al., 2016b; van de Laar et al., 2016) and data generated during this study, thus including 
additional mac populations not previously included in similar analyses. This comparison 
yielded a list of 67 core mac genes (Figure S1A). Included in this list are genes previously 
ascribed to the mac lineage including Fcgr1, Mertk and Cd14 (Gautier et al., 2012; Guilliams 
et al., 2016). Interestingly, the TF Zeb2 was also included in this list of core mac genes. While 
this TF has also recently been identified as a core gene in pre-macs (Mass et al., 2016), its 
precise role within the mac lineage has not yet been investigated. Thus, here we next sought 
to examine this.  
 
Loss of ZEB2 in KCs and AMs results in an altered phenotype 
Given that Zeb2-/- mice are embryonic lethal (Higashi et al., 2002; Van de Putte et al., 2003) 
we utilized CRE-LOX systems to specifically remove Zeb2 expression from different mac 
subsets. Based on Zeb2 expression levels (Figure S1A), we first examined the effects of ZEB2 
loss in KCs (higher Zeb2) and  AMs (lower Zeb2). Having recently shown that the C-type lectin, 
CLEC4F, is exclusively expressed by murine KCs (Scott et al., 2016b) and because KCs are 
poorly targeted by other available CREs, we generated Clec4fCRE mice by introducing an 
internal ribosome entry site (IRES) and iCRE recombinase (Shimshek et al., 2002) into the 3’ 
untranslated region of the Clec4f gene. Crossing these mice to the Rosa26-lox-stop-lox-RFP 
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reporter line revealed 4.81±3.83% of total live liver cells expressed RFP (Figure S1B). Further 
analysis of these mice revealed that the majority were CD64+F4/80+CLEC4F+TIM4+ KCs with 
89.14±3.31% of KCs expressing RFP (Figure S1C-E). However, a minor population of B cells, 
despite lacking expression of CLEC4F, were also found to express RFP, accounting for 
2.34±0.15% of total B cells (Figure S1C-E). Analysis of RFP-expressing cells across tissues 
in these mice revealed a minor population of B cells in all tissues expressing RFP (Figure S1B). 
Despite this minor contamination, we concluded that thes mice represent a good model to 
efficiently target KCs and thus we crossed them to Zeb2fl/fl mice to study the consequences of 
deleting ZEB2 in KCs. Interestingly, analysis of the mac compartment in the liver of 
Clec4fCRExZeb2fl/fl mice revealed that although there was no significant difference in the 
absolute number of total CD64+F4/80+ hepatic macs compared with Zeb2fl/fl littermate controls 
(Figure 1A), there was a difference in their surface phenotype, with Clec4fCRExZeb2fl/fl mice 
having a reduced populations of Clec4F+Tim4+ KCs and increased populations of 
Clec4F+Tim4- KCs and Clec4F-Tim4- macs (Figure 1A). This suggests that ZEB2 may be 
important for KCs and also highlights the importance of examining tissue-specific macrophage 
markers. 
As ZEB2 appears to play a role in KCs, we next examined if it also was required by AMs. To 
remove ZEB2 from AMs, we made use of ItgaxCRE mice, which efficiently target AMs alongside 
a number of other CD11c-expressing cells (Durai and Murphy, 2016). By crossing the ItgaxCRE 
mice to Rosa26-lox-stop-lox-RFP reporters we first confirmed that AMs are efficiently targeted 
(92.32±2.35%) in these mice (Figure S1F). Subsequent analysis of the total AM population in  
ItgaxCRExZeb2fl/fl and Zeb2fl/fl littermate controls (defined as F4/80+CD64+CD11c+SiglecF+) 
revealed a slight but significant reduction in AMs (Figure 1B). In addition, the loss of ZEB2 from 
CD11c-expressing cells also significantly altered the surface phenotype of the remaining AMs 
with a significant proportion expressing CD11b in the absence of ZEB2 (Figure 1B). 
 
Presence of ZEB2+/- cells in the lung and the liver 
To understand how Zeb2 expression was affecting mac numbers and phenotype, we 
performed single cell RNA sequencing analysis (SC-RNA-Seq) on total KCs 
(Clec4F+CD64+F4/80+) and total AMs (CD64+F4/80+SiglecF+CD11c+) from Clec4fCRExZeb2fl/fl 

or ItgaxCRExZeb2fl/fl mice compared with Zeb2fl/fl littermate controls. Following pre-processing 
of the data using the Marioni pipeline (Lun et al., 2016), poor quality (low UMI counts, high 
mitochondrial genes), contaminating (doublets) and actively proliferating cells were excluded 
(Figure S1G) and t-SNE plots with both CRE- and CRE+ cells combined for KCs and AMs were 
generated (Figure 1C,D). Interestingly, this revealed the presence of multiple populations of 
CRE+ cells in both the KCs and AMs. To begin to assess what these distinct populations were, 
we initially grouped thes clusters into groups based on their genotype. For the KCs, this led to 
the identification of 1 group of CRE- cells (consisting of clusters 0,2,4,7, herein referred to as 
group 0) and 3 distinct groups of CRE+ cells (cluster 6=group 1, cluster 5=group 2 and clusters 
1+3=group3) (Figure 1C). For the AMs, we identified 1 group of CRE- cells (Group 0) consisting 
of clusters 0,2,5,8, one group of mixed CRE- and CRE+ cells (Group 1= cluster 6), and three 
groups of CRE+ cells (group 2=cluster 3, group 3=clusters 1+4 and group 4=cluster 7) (Figure 
1D). Next, we examined Zeb2 expression between the groups. However, as the Zeb2fl/fl 
construction generates a truncated form of the mRNA lacking the 7th exon but possessing the 
same 3’ end, it is not possible to determine which cells express full-length mRNA and which 
cells expressed the floxed mRNA with the 3’ Assay from 10X Genomics. As such, we were 
unable to conclude based on Zeb2 expression if these cells had all efficiently deleted Zeb2. 
Instead, a group of CRE+ cells appeared to have increased its expression of Zeb2 in each 
organ (Figure 1E,F). Thus, we next sought to find markers that could distinguish the different 
CRE+ populations by flow cytometry, to enable their further analysis. To this end, we next 
determined the DE genes between these groups. For the KCs, this generated a list of 224 DE 
genes for Group 0, 180 for Group 1, 534 for Group 2 and 693 for Group 3 (Figure 1G & Table 
S1) and identified SiglecF and CD20 (Ms4a1) to be markers that could potentially be used to 
distinguish between the groups of CRE+ cells (Figure 1E). For the AMs, this analysis identified 
821 DE genes in Group 0, 312 for Group 1, 230 for Group 2, 929 for Group 3 and 883 in Group 
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4 (Figure 1H & Table S2) and identified CD326 (Epcam) and CD10 as two markers which could 
distinguish between the groups of CRE+ cells (Figure 1F).  
Having identified potential markers, we next examined expression of these by flow cytometry. 
While not expressed by KCs from littermate Zeb2fl/fl mice, SiglecF and CD20 were found to be 
expressed by a proportion of KCs in Clec4fCRExZeb2fl/fl mice at 6 weeks of age (Figure 2A). 
qRT-PCR analysis for Zeb2 in SiglecF+, SiglecF-Tim4+ and SiglecF-Tim4- KCs (corresponding 
to Group 3, Group 1 and Group 2, respectively) revealed that SiglecF+ KCs had efficiently 
deleted Zeb2; while SiglecF- cells maintained expression of Zeb2 at levels comparable with 
KCs isolated from Zeb2fl/fl control mice, irrespective of Tim 4 expression (Figure 2B and data 
not shown). Similarly, analysis of EpCam and CD101 expression in AMs from ItgaxCRExZeb2fl/fl 

mice identified two populations, those expressing EpCam and CD101 and those negative for 
both markers, with only the latter population being observed in AMs from Zeb2fl/fl mice (Figure 
2C). Again, qRT-PCR analysis determined that only the EpCam+CD101+ AMs had efficiently 
deleted Zeb2 (Figure 2D). As there is no good antibody to detect ZEB2 by flow cytometry, we 
made use of the prime flow assay which measure Zeb2 mRNA expression by flow cytometry 
to confirm the qRT-PCR analysis at the single cell level. This confirmed our findings that 
SiglecF+ KCs and EpCam+ AMs had all efficiently deleted Zeb2 (Figure 2E,F). Genomic PCR 
on the distinct populations of KCs and AMs identified the SiglecF- KCs and EpCam- AMs as 
being heterozygous for the Zeb2 deletion (Figure S2A,B), indicating that for an unknown 
reason, these cells are able to preserve one copy of Zeb2. Returning to the SC-RNA-Seq 
analysis, we could then identify Group 0 in each tissue to be Zeb2+/+ macs from the CRE- mice 
and Group 3 in each tissue to represent bona fide Zeb2-/- macs from the CRE+ mice. 
Interestingly, Group 3 was the population in each tissue expressing higher levels of Zeb2 
according to the SC-RNA-Seq data, suggesting that a feedback mechanism may be in place 
in the Zeb2-/- macs, where these cells attempt to increase the expression of the truncated Zeb2 
mRNA. As we have recently shown that Tim4 expression on KCs correlates with the time these 
cells have spent in the tissue (Scott et al., 2016b), we next defined Group 1 KCs which lacked 
expression of Siglecf and expressed Timd4 as long-lived Zeb2+/- KCs, while Group 2 KCs 
which lacked expression of Siglecf and Timd4, but which expressed Cx3cr1 and Ccr2 wer 
defined as Zeb2+/- putative moKCs that had recently entered the tissue. In the AMs, the minor 
population Group 1 contains both CRE- Zeb2+/+ and some CRE+ Zeb2+/- cells. Analysis of the 
DE genes by IPA suggested that this minor population had an oxidative stress & unfolded 
protein response signature, which caused them to fall in a separate cluster (data not shown). 
Group 2 were identified as Zeb2+/- cells lacking expression of Epcam and Cd101 and the minor 
Group 4 were (alongside the main Group 3) also identified as Zeb2-/- cells expressing Epcam 
and Cd101. Analysis of the DE genes between Groups 3 and 4 found that these cells clustered 
separately from the Group 3 Zeb2-/- cells due to their increased expression of MHCII pathway 
associated genes (Figure 1H). This suggests that these may represent cells that arise from 
monocytes, as increased MHCII expression has been reported on monocyte-derived AMs (van 
de Laar et al., 2016). 
 
 
ZEB2+/- macrophages outcompete their Zeb2-/- counterparts with time 
Having identified a Zeb2+/- of macs amongst both the AMs and KCs in the CRE+ mice, we next 
sought to investigate the maintenance of this population with age. We hypothesized that if 
Zeb2 expression was critical for macs, then one would expect that the Zeb2+/- population would 
outcompete the Zeb2-/- population with time. Thus, we tracked the presence of the 
SiglecF+CD20intZeb2-/- KC and CD101+EpCam+Zeb2-/- AM populations at 6 and 12 weeks of 
age. We found that both Zeb2-/- KCs (Figure 2A) and Zeb2-/- AMs (Figure 2C) were significantly 
reduced at 12 weeks of age. This reduction in SiglecF+ KCs between 6 and 12 weeks of age 
was confirmed by confocal microscopy (Figure S2C). Moreover, distinct islands of 
Clec4F+Tim4+SiglecF- and Clec4F+Tim4-SiglecF- KCs were observed at both time-points but 
were increased in size at 12 weeks. This implies that proliferation of Zeb2+/- KCs may represent 
a mechanism by which these cells expand with age. To investigate if this was occurring, we 
examined expression of the cell proliferation marker Ki-67 by the different KC populations in 
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Clec4fCRExZeb2fl/fl mice. This analysis showed that while Zeb2+/+ KCs in littermate controls 
proliferated at a low level (2.71±1.92%), SiglecF- Zeb2+/- KCs from Clec4fCRExZeb2fl/fl mice 
proliferated at significantly higher levels (13.27±5.47%). Conversely, Zeb2-/- SiglecF+ KCs from 
Clec4fCRExZeb2fl/fl mice were restricted in their ability to proliferate, being only 4.83±1.88% 
Ki-67+ (Figure S2D,E). We next examined if this also occurred in the lung. Also here, Ki-67 
staining revealed that Zeb2-/- EpCam+ AMs did not proliferate to any great extent (2.36±0.86%), 
while their Zeb2+/- EpCam- counterparts in ItgaxCRExZeb2fl/fl proliferated at significantly 
increased rates (10.40±0.83%) compared with EpCam- Zeb2+/+ AMs in littermate controls 
(4.40±1.26%) (Figure S2F,G). Given this reduced proliferation by Zeb2-/- macs, we next sought 
to determine if this was due to a defect in their ability to proliferate. To this end, we administered 
CSF-1Fc or PBS to Clec4fCRExZeb2fl/fl mice, a procedure that has been described to induce 
KC proliferation (Gow et al., 2014). Zeb2-/- KCs proliferated efficiently in response to CSF-1 
(Figure S2H) indicating that loss of Zeb2 does not block the proliferative capacity of macs, but 
rather may be required for their maintenance. 
 
Loss of Zeb2 leads to macrophage disappearance 
To examine the idea that loss of Zeb2 induces macrophage disappearance, we generated BM 
chimeras in which CD45.1+ mice were irradiated and reconstituted with congenic CD45.2+ 
Rosa-26CRE-ERT2xZeb2fl/fl BM. Chimeras were made to prevent death of the animals due to Zeb2 
loss in non-hematopoietic cells. Six weeks post reconstitution, mice were administered 
tamoxifen for 5 days by oral gavage to induce CRE-mediated loss of Zeb2. KCs and AMs were 
then examined 2, 6, 20, 34 and 48 days after the last dose of tamoxifen and expression of 
CD101 and EpCam (Lung AMs) or SiglecF and CD20 (Liver KCs) in donor-derived CD45.2 
cells were assessed (Figure 2G). Controls included both CD45.2 cells from control mice that 
were not treated with tamoxifen and host CD45.1+ WT cells from mice treated with tamoxifen 
(pooled in Figure 2H,I). In the liver, 12.27±3.88% of donor-derived KCs expressed SiglecF and 
CD20 2 days post the last dose of tamoxifen and this rose modestly to 15.27±5.55% at day 6. 
20 days post the last dose of tamoxifen, SiglecF+CD20+ KCs could no longer be detected in 
the liver implying that the Zeb2-/- KCs had disappeared (Figure 2H). This disappearance of  
Zeb2-/- KCs was confirmed by PrimeFlow assay, as by day 20 all Zeb2-/- KCs were lost (Figure 
S2I). In the lung, two days post administration of tamoxifen 26.1±4.23% of CD45.2 donor AMs 
expressed CD101 and EpCam. This further increased to a maximum of 56.4±2.02% six days 
post the last dose of tamoxifen. At the later time points examined this dropped to 44.7±7.88% 
at day 20, 21.22±5.19% at day 34 and 10.78±3.25% at day 48 (Figure 2I). This disappearance 
of Zeb2-/- AMs was also confirmed using the PrimeFlow assay (Figure S2J). Taken together, 
these results demonstrate that ZEB2 is strictly required for the continued presence of 
macrophages in tissues and suggest that loss of ZEB2 may result in impaired mac 
maintenance. 
 
Loss of Zeb2 from KCs but not AMs, results in their replenishment from BM 
As Zeb2-/- KCs and AMs were lost with time and as our SC-RNA-Seq data suggested ther may 
be monocyte-derived macs within both the KC pool (Group 2, Figure 1C,G) and AM 
populations (Group 4, Figure 1D, H), we next investigated if the Zeb2-/- macs were being 
replenished from the BM or if mac numbers were maintained solely by local proliferation of 
Zeb2+/- counterparts. To examine this, we generated partially-protected chimeras, in which 
Clec4fCREXZeb2fl/fl, ItgaxCREXZeb2fl/fl or Zeb2fl/fl littermate controls were irradiated with their 
livers or lungs protected to avoid any radiation damage and reconstituted with congenic 
CD45.1 WT BM (Figure 3A). Four weeks later, we examined the proportion of CD45.1+ cells 
within the blood monocytes and KCs in the liver (defined as Clec4F+) or AMs in the lung 
(defined as CD11c+SigleF+). As the mice were partially protected from irradiation, the animals 
were between 30-50% chimeric (calculated by examining chimerism in blood Ly6Chi 

monocytes). Comparison of the chimerism between the blood monocytes and liver KCs found 
that KCs were chimeric and thus a significant fraction of cells were of BM origin (Figure 3B). 
However, lung AMs displayed very low levels of chimerism (Figure 3C), suggesting that there 
is little contribution of the BM to the AM pool, fitting with our niche hypothesis where BM 
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monocytes would not be able to gain significant access to the lung in adult mice due to the 
epithelial barrier (Guilliams and Scott, 2017). To further investigate how Zeb2-/- macs were 
being lost and replaced by Zeb2+/- counterparts, we next questioned whether the macs wer 
eddying in the absence of ZEB2. Thus, we examined expression of a number of genes 
associated with distinct cell death pathways in our SC-RNA-Seq analysis. While a number of 
these genes were either not expressed or their expression was not altered in Zeb2-/- macs, we 
did observe that RipK3, Il1a and Il1b were upregulated in Zeb2-/- KCs and AMs, suggesting 
that the loss of Zeb2 may result in mac death by necroptosis (Figure 3D,E). Moreover, we 
evaluated the expression of RIPK3 and phosphorylated MLKL (pMLKL) by cells recovered 
from bronchioalveolar lavage fluid from our inducible Zeb2 conditional KO chimeras 27 days 
post the last dose of tamoxifen and compared them to chimeras which received corn oil as a 
control. Total cells from BAL fluid were used to prevent induction of cell death during the 
extensive enzymatic digestions required to isolate macs from tissues. This analysis revealed 
a trend (p=0.06) towards increased pMLKL (Figure 3F). Taken together, our results 
demonstrate that ZEB2 is critical for the maintenance of KCs and AMS, with Zeb2-/- macs being 
lost from the tissue with time. Furthermore, it suggests that Zeb2-/- macs may be lost through 
necroptotic cell death. 
 
Zeb2 controls tissue specific identity of lung and liver macrophages 
Having identified the distinct populations of KCs and AMs present in our conditional KO mice, 
we next sought to use the SC-RNA-Seq data to determine the mechanism through which loss 
of Zeb2 induces the disappearance of macs from tissues. As loss of Zeb2 affects both KCs 
and AMs, we first looked for the DE genes that were conserved between both mac populations. 
However, this demonstrated that the majority of DE genes were unique to either the KC (459 
DE genes) or AM (701 DE genes) population (Figure 3G). As the gene expression profiles of 
different tissue macs have been shown to be highly heterogeneous and ZEB2 is known for its 
role in altering cellular identities in EMT/MET, we next hypothesized that ZEB2 may control the 
tissue-specific identities of the different mac populations, with its loss rendering the macs less 
suited to their tissue of residence resulting in their subsequent loss. To examine this, we 
investigated how the core KC and AM transcriptional profile changed in the absence of ZEB2. 
However, as additional mac populations have been sequenced since the core profiles of these 
two macs were first described (Gautier et al., 2012; Scot et al., 2016b), we first redefined these 
profiles. To achieve this, we compared the transcriptional profile of AMs, KCs, microglia, 
peritoneal macs, colonic macs and splenic red pulp macs (Lavin et al., 2014) and identified the 
genes specific to the KCs and AMs (Figure S3). As ther was significant overlap between the 
transcriptional profiles of KCs and splenic macs, splenic macs were excluded when defining 
the core profile of KCs and vice versa. Furthermore, as these core lists were defined on the 
basis of bulk RNA seq, which are at risk of containing genes from contaminating cells, we 
performed an additional control whereby to be considered as a core gene, it must be expressed 
in at least 20% of our Zeb2fl/fl KCs and AMs profiled by SC-RNA-Seq (Figure S3). This was 
required because previously reported core macrophage gene lists (Gautier et al., 2012; Lavin 
et al., 2014; Scott et al., 2016b) contained genes expressed by contaminating cells, for 
example , a number of endothelial cell genes were included in the previously reported KC core 
list (Lynch et al., 2018). We next compared how expression of the top core genes were altered 
upon loss of ZEB2 and found that there were significant changes to the core profiles of both 
mac populations with 60% of the KC tissue-specific genes and 72% of the AM tissue-specific 
genes affected by the loss of Zeb2 (Figure 3H, I, highlighted genes are the genes significantly 
altered by Zeb2 loss), suggesting ZEB2 may play a role in maintaining the tissue-specific 
identities of these macs.  
 
Loss of KC identity in absence of ZEB2 is in part due to the loss of LXRα 
We next aimed to examine the mechanism through which Zeb2 could control mac tissue-
specific identities. For this, we chose to focus on the KCs for which we have the most specific 
CRE line. The tissue-specific identity of macs has been proposed to be controlled by a small 
set of tissue-specific TFs (Gautier et al., 2012; Gosselin et al., 2014; Lavin et al., 2014; Mass 



259 
 

et al., 2016; Scott et al, 2016b; T’Jonck et al. 2018). Interestingly, Nr1h3 (encoding LXRα) a 
TF proposed to be required for KC identity (Mass et al., 2016) was among the list of DE core 
KC identity gens in KCs lacking Zeb2 (Figure 3H). Thus, we hypothesized, that ZEB2 may 
control KC identity by regulating LXRα expression. LXRα was previously reported to be 
dispensable for KC development and survival, but this conclusion was based solely on F4/80 
and CD68 expression (A-Gonzalez et al., 2013). Therefore, we decided to revisit the effects of 
loss of Nr1h3 on KCs. We crossed Nr1h3fl/fl mice with Clec4fCRE mice generating 
Clec4fCRExNr1h3fl/fl mice. Analysis of these mice confirmed, as in mice lacking Zeb2, and as 
previously reported (A-Gonzalez et al., 2013), that the loss of Nr1h3 did not significantly affect 
the proportion or absolute number of total hepatic CD64+F4/80+ macs (Figure 4A). However, 
as for the loss of Zeb2, it did dramatically alter the proportions of cells expressing Clec4F and 
Tim4 (Figure 4B), again highlighting the need for tissue-specific markers when examining 
macs. As observed with loss of Zeb2, protected chimeras demonstrated that in the absence of 
Nr1h3, KCs were being replaced from a BM source (Figure 4C). As these data fit with the idea 
that ZEB2 may function to control KC identity through maintaining LXRα expression, we next 
sought to determine whether the effect of Zeb2 loss on the KCs transcriptome may reflect loss 
of LXRα dependent genes. Thus, we performed SC-RNA-Seq of KCs from Clec4fCRExNr1h3fl/fl 
mice and Nr1h3fl/fl littermate controls. Following the same pre-processing analysis as used for 
the ZEB2 single cell data (Figure S1G), we identified 2 main groups of KCs in the t-SNE plot 
of CRE- and CRE+ cells. Group 0 consisted of Nr1h3+/+ KCs from the CRE- mice and group 1 
consisted of with Nr1h3-/- KCs from the CRE+ mice (Figure 4D). Mice lacking only one copy of 
LXRα in their KCs (Clec4fCRExNr1h3fl/+) did not display a similar phenotype to 
Clec4fCRExNr1h3fl/fl mice, suggesting no obvious effect of Nr1h3 haploinsufficiency on KCs 
(Figure S4A). Analysis of the DE genes between Nr1h3+/+ KCs and Nr1h3-/- KCs identified 451 
DE genes (Figure 4E and Table S3). In accordance with our hypothesis many of thes DE gens 
were also core KC genes including Cdh5, Pcolce2, Kcna2, C6 and Il18bp (Figure 3H) and were 
similarly lost upon loss of Zeb2 (Figure 4E). Moreover, we were able to confirm this 
downregulation in both Zeb2-/- and Nr1h3-/- KCs either at the protein level by flow cytometry 
(CD55; Figure 4F,G) or at the mRNA level by qRT-PCR (Figure S4B,C). As loss of ZEB2 and 
LXRα led to replacement of the KC pool from the BM, we noticed that a number of the DE 
genes were also related to origin of the KCs. To remove any DE genes associated with mac 
origin and hence only examine DE genes resulting from the loss of LXRα or ZEB2, we used 
our previously published data (Scott et al., 2016b) and identified any DE genes (adj. P 
value <0.05, Log FC <-1, >1) between moKCs from KC-DTR mice 15 days post treatment with 
DT and embryonic KCs (Figure S4D). Comparison of the overlap between the remaining non-
origin related DE genes associated with the Zeb2-/- and Nr1h3-/- KCs identified that 203 of the 
435 DE genes in Nr1h3-/- KCs were conserved in both datasets (Figure 4H), including many of 
the liver-specific core KC genes. Crucially, while there is a significant overlap between the two 
genotypes, this is not 100%, indicating that loss of LXRα is not solely responsible for all the 
DE genes identified in Zeb2-/- KCs. Nonetheless, loss of LXRα is sufficient to recapitulate the 
loss of KC identity and the disappearance and subsequent replenishment of KCs by BM cells 
observed in Clec4fCRExZeb2fl/fl mice. Taken together these data demonstrate that ZEB2 
controls KC identity and their continued presence in the tissue at least in part by regulating 
LXRα expression and as such highlights a previously unappreciated role for LXRα in KC 
biology. 
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We have recently shown that the phosphatidylserine receptor TIM4 can act as a marker of 
long-lived KCs, as KCs do not acquire expression of this receptor immediately upon 
differentiation from BM monocytes (Scott et al., 2016b). Rather monocyte-derived KCs 
(moKCs) acquire TIM4 expression very slowly (Scott et al., 2016b) with a small proportion of  
moKCs remaining TIM4- 120 days post DT administration in a Clec4f-DTR mouse (Figure 2A). 
As adult Clec4fCRExZeb2fl/fl mice contain many CLEC4F+TIM4- KCs and CLEC4F-TIM4- macs 
this suggests that there may be an accumulation of moKCs, possibly due to continuous death 
of KCs in the absence of ZEB2. To mimic such a scenario, we crossed Clec4fCRE mice to Rosa-
DTA mice in which terminally-differentiated KCs express diphtheria toxin and subsequently 
die. Clec4fCRExRosa-DTATg/+ mice exhibit a similar pattern of CLEC4F and TIM4 expression 
amongst total liver macs as observed with the loss of ZEB2 (Figure 2B). As KCs are 
continuously dying and being replaced in the DTA model, we reasoned that the presence of 
TIM4- KCs in Clec4fCRExZeb2fl/fl mice could indicate a similar continuous cycling of the KCs in 
the absence of ZEB2. Additionally, low level chimerism was observed at this early time-point 
amongst the TIM4+ KCs (Figure 2C), indicating that some KCs of BM origin were persisting in 
the liver and acquiring TIM4 expression. Taken together, these results suggest that KCs can 
no longer self-maintain in the absence of ZEB2, and thus require input from the BM to maintain 
the KC pool. We have previously reported that all mac progenitors (yolk-sac macs, fetal liver 
monocytes and BM monocytes) initially upregulate CD11b expression during the initial stages 
of differentiation into AMs (van de Laar et al., 2016). As we had also observed an increase in 
CD11b expression in ZEB2-deficient AMs, we hypothesized that the AM population in 
ItgaxCRExZeb2fl/fl mice may also require input from BM to maintain its numbers. To examine 
this, we used the same chimera approach as above, only this time protecting the lung. 
Comparison of the chimerism between the blood monocytes and lung AMs found that almost 
none of the CD11b+ nor CD11b- AMs were chimeric thus demonstrating that these cells were 
not primarily of BM origin but rather that the CD11b+ AMs arise predominantly from the original 
embryonically derived AM population (Figure 2D). 
 
ZEB2 functions across the mac lineage to maintain the tissue-specific identities 
Having shown that ZEB2 is required by KCs and AMs to maintain tissue-specific identities and 
that Zeb2 is expressed across the entire mac lineage, we next aimed to investigate if this was 
a requirement across the mac lineage. To examine the role of ZEB2 in additional mac 
populations including splenic macs, microglia and colonic macs we used the Fcgr1CRE line 
recently generated by the lab of Bernard Malissen. These mice were generated by introducing 
an IRES, iCRE recombinase (Shimshek et al., 2002), a 2A cleaved sequence and a fluorescent 
reporter known as mTFP1 (Ai et al., 2006) into the 3’ untranslated region of the Fcgr1 gene. 
Crossing this line to the Rosa26-lox-stop-lox-RFP reporter line revealed that all these macs 
were efficiently targeted; splenic macs (92.03±2.43%), colonic macs (92.47±1.41%)  and 
microglia (98.93±0.39%) (Figure S5A-D). Notably, however, a number of other immune cells 
are also targeted in these mice across tissues. For example, in the spleen this includes some 
penetrance in CD64- B cells, T cells, cDC1s and cDC2s (Figure S5A). 
Analysis of the Fcgr1CRExZeb2fl/fl mice revealed that while ther was no significant change in the 
proportion or number of the total splenic mac population defined as Lin-CD64+F4/80+ (Figure 
5A), there was a significant population of thes macs which gained expression of CD11b in the 
absence of Zeb2 (Figure 5A). In addition, we observe a significant reduction in absolute 
number of microglia (Figure 5B) and Zeb2-/- microglia were found to upregulate their expression 
of CD11c (Figure 5B). To examine if ZEB2 also functions in the maintenance of BM monocyte-
derived macs, we next examined if ZEB2 was also required in colonic macs which are 
constantly replaced by BM monocytes during adulthood along a trajectory dubbed the 
‘monocyte-waterfall’ (Bain et al., 2014; 2013; Tamoutounour et al., 2012). Analysis of the 
monocyte-waterfall in Fcgr1CRExZeb2fl/fl mice identified a significant reduction in the number of 
mature colonic macs alongside a significant increase in the proportion and number of 
Ly6C+MHCII+ transitioning monocytes (Figure 5C). To determine if these changes in 
phenotype and number reflected changes in the tissue-specific identities of these macs, we 
next performed SC-RNA-Seq analysis on splenic macs, microglia and colonic macs from 



261 
 

Zeb2fl/fl and Fcgr1CRExZeb2fl/fl mice. Following the same pre-processing as described for the 
KCs and AMs (Figure S1G), we used expression of Zeb2, Ms4a1, Siglecf, Cd101 or Epcam 
(the markers used to identify Zeb2-/- macs in the lung and liver) to identify Zeb2-/- macs in the 
spleen, brain and colon (Figure 6). Note that, as was observed for the lung and liver, the Zeb2-/- 
macs in the spleen, brain and colon expressed higher levels of Zeb2, again suggesting a 
feedback mechanism in the Zeb2-/- macs as these cells seem to increase the expression of the 
truncated Zeb2 mRNA (Figure 6). We identified 3 main groups of cells in the splenic macs 
(Group 0; Zeb2+/+ macs from the CRE- mice, Group1; presumably Zeb2+/- macs from the CRE+ 
mice clustering close to the Zeb2+/+ macs from the CRE- mice and Group 2; Zeb2-/- macs from 
the CRE+ mice clustering separately and expressing higher levels of Zeb2, Siglecf and Epcam) 
(Figure 6A). In addition, we identified 2 groups of cells in the microglia (Group 0; Zeb2+/+ macs 
from the CRE- mice and Group 1; Zeb2-/- macs from the CRE+ mice expressing higher Zeb2, 
Siglecf and Cd101) (Figure 6B). All microglia from the CRE+ mice clustered together and 
uniformly expressed higher Zeb2, Siglecf and Cd101, suggesting no presence of Zeb2+/- 
microglia in the brain. While we performed the SC-RNA-Seq analysis on total colonic macs 
(Figure 6C), we found these could be divided into two main groups of cells, those expressing 
high levels of Cd74 (coding for the MHCII-associated invariant chain), H2-Aa, H2-Eb1 and 
Itgax (coding for CD11c) and those expressing low levels of Cd74 (Figure 6C). As all the Zeb2-/- 
cells (identified by higher Zeb2, Ms4a1 and SiglecF) expressed high levels of Cd74 (Figure 
6D) and as the gene expression profiles of the Cd74hi and Cd74lo Zeb2+/+ subsets of colonic 
macs from CRE- mice were distinct (Figure S6), we chose to focus our analysis on the 
comparison between Cd74hi Zeb2+/+ macs and Cd74hi Zeb2-/- macs (Figure 6D). An additional 
reason is that previous studies have also focused on CD74hi intestinal macs (Lavin et al., 2014; 
Zigmond et al., 2012). Within CD74hi macs, we identified 2 main groups of cells (Group 0; 
containing a mix of Zeb2+/+ macs from the CRE- mice and presumably Zeb2+/- macs from the 
CRE+ mice clustering together, and Group 1; containing Zeb2-/- macs from the CRE+ mice 
expressing higher Zeb2, Ms4a1 and SiglecF) (Figure 6D). 
To examine if the core profiles of these macs had been altered by the loss of Zeb2, we next 
determined the core profiles of these macs as described above using data from Lavin et al. 
(Lavin., 2014) (Figure S7A-C). Again, due to the overlap between liver KCs and splenic macs, 
KCs were excluded from the comparison when defining the core profile of splenic macs. Having 
defined the core profiles, we next examined the expression of these genes in Zeb2-/- macs in 
each tissue. As for the liver and lung, this revealed that the core profiles of the different macs 
were significantly altered in the absence of Zeb2 with a significant number of core genes being 
altered in the Zeb2-/- mac (60% in splenic macs and microglia and 76% in colonic macs; 
highlighted genes in Figure 7A-C). Examples of significantly DE identity genes include Vcam1 
and Hmox1 in the splenic macs, Sparc and Hexb in the microglia and Apol7c and Ms4a7 in 
the colonic macs (Figure 7A-C). Consistent with the data from the liver and lung (Figure 2G-I), 
Zeb2-/- splenic macs were also found to disappear with time in mice in which Zeb2 loss was 
induced by tamoxifen administration (Figure S7D,E). The brain and colon were unfortunately 
not assessed but the conserved effects in the liver, lung and spleen strongly suggests that loss 
of Zeb2 induces mac disappearance across tissues. 
To further confirm that the loss of ZEB2 results in tissue-specific changes, we next examined 
the overlap between the DE genes in the 5 tissues (Tables S1,2,4,5 & 6). Generation of a 
single t-SNE file containing all Zeb2+/+ and Zeb2-/- macs from the 5 tissues studied (Figure 7D) 
demonstrated that loss of Zeb2 did not direct the cells from each tissue along a single 
component in the tSNE graph, suggesting the changes were predominantly tissue-specific. In  
support of this, we found that the majority of DE genes were specifically altered in only one of 
the 5 tissues (Figure 7E) and only 32 DE genes were shared by all tissues (Figure 7E,F). 
Taken together, these data highlight that loss of Zeb2 has a striking tissue-specific effect on 
mac identity. 
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DISCUSSION 
TFs are at the core of lineage specification and commitment through regulation of gene 
expression. TFs can function at various stages in a cell, during development and/or in the 
maintenance of the terminally-differentiated cells as well as in controlling specific cellular 
functions. While a number of TFs have recently been identified in specific mac populations 
including ID3 in KCs (Mass et al., 2016), PPARγ in AMs (Schneider et al., 2014) and GATA6 
in peritoneal macs (Lavin et al., 2014; Okabe and Medzhitov, 2014), the TFs governing the 
entire mac lineage remain to be fully investigated. One TF required for the development of the 
mac lineage is PU.1 which interacts with a number of other TFs, including members of the Fos-
Jun AP1 family (Dahl et al., 2003; Monticelli and Natoli, 2017; Rojo et al., 2017). Here we report 
that ZEB2 is highly expressed in macs across tissues, including the lung, liver, spleen, intestine 
and brain. In addition, Zeb2 has been reported to already be expressed in the embryonic pre-
mac precursors (Mass et al., 2016). Our data indicate that ZEB2 is required to maintain the 
cellular identity of macrophages with is loss leading to disappearance of the macrophages from 
all tissues studied. Therefore, just as ZEB2 controls cell identity in EMT/MET (Comijn et al., 
2001; De Craene and Berx, 2013; Vandewalle et al.,2005), it is essential for the maintenance 
of the mac identity across tissues. 
SC-RNA-Seq analysis of the different mac populations revealed that ZEB2 was often not 
efficiently deleted in all macs using the two distinct CRE models we employed, with Zeb2-/- and 
Zeb2+/- populations being observed in all tissues except for the brain. The mechanism by which 
some Zeb2+/- macs can retain one unfloxed Zeb2 allele remains unclear and requires further 
investigation. Zeb2-/- macs were distinguished from Zeb2+/- counterparts within the same 
mouse on the basis of their phenotype. KCs expressed SiglecF and CD20 (encoded by Ms4a1) 
following loss of ZEB2, while AMs expressed CD101 and EpCam. Interestingly, these markers, 
although not conserved between all the mac populations studied here, were conserved in a 
number of the populations (Siglecf; Liver, Brain, Spleen and Colon, Cd101; Brain, Lung, 
Ms4a1; Liver, Spleen and Colon, Epcam; Lung and Colon) and with ZEB2-deficient cDC2s 
(Scott et al., 2016a) suggesting that ZEB2 expression may be linked with the repression of a 
set of surface receptors. SiglecF and CD101 expression has recently been reported on CD103+ 
cDC2s in the small intestine (Bain et al., 2017). Remarkably, this subset of cDC2s exists 
independently of ZEB2 expression (Scott et al., 2016a; Sichien et al., 2017) further suggesting 
that expression of these markers is repressed by ZEB2. However, it was not through these 
markers that we first determined an effect of loss of ZEB2 expression in KCs and AMs. Rather, 
we noted a loss of Tim4 expression in Clec4F+ KCs and an increase in Clec4F- macs within 
total F4/80+CD64+ hepatic macs, an increase in CD11b expression in AMs and splenic macs, 
an increase in CD11c in microglia and an increased turnover rate of macs in the colon. This 
highlights the importance of looking at the tissue-specific mac markers and not just F4/80 or 
CD64 when examining different mac populations. 
In terms of understanding mac ontogeny we recently proposed the mac niche hypothesis, 
whereby the local mac niche would determine if any given progenitor could engraft and develop 
into a mac or not (Guilliams and Scott, 2017). We suggested that niche availability and niche 
accessibility would be the two main factors determining mac ontogeny. Loss of ZEB2 within 
mature macs induces macrophage disappearance, which creates niche availability. We found 
that these lost macs are replaced (in part) by cells of BM origin (likely BM monocytes) in the 
liver, but not significantly in the lung. It is worth noting, however, that we do see a small 
population of MHCII-expressing AMs in the SC-RNA-Seq analysis and found few BM-derived 
cells in the chimeras, indicating that a minor fraction of AMs could be replaced by monocytes. 
This major replacement of KCs but minor replacement of AMs is in line with our niche 
hypothesis (Guilliams and Scott, 2017) as only the liver mac niches are accessible to 
progenitors circulating in the blood as liver KCs reside in the bloodstream of the liver sinusoids 
while the alveolar mac niches are not easily accessible due to the presence of the lung 
epithelial barrier. Importantly, however, we only see a small reduction in total AM cell number 
following loss of ZEB2 despite there being very limited replenishment from the BM. This is 
because the Zeb2+/- AMs present are sufficient to refill the niche with time through local 
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proliferation. Proliferation of Zeb2+/- macs also contributes to mac maintenance in the liver. The 
dual mechanism of replacement in the liver via both BM precursors and local proliferation is 
consistent with our previous study whereby partial depletion of KCs using the Clec4f-DTR mice 
led to reconstitution of the mac pool via the same two mechanisms (Scott et al., 2016b).This 
highlights the crucial requirement for ZEB2 within the mac lineage as Zeb2-/- macs are 
outcompeted from the mac niche, regardless of the repopulation mechanism. 
How does ZEB2 function to maintain the mac lineage? As loss of CSF1R expression has been 
proposed to be the mechanism behind the failure of Zeb2-/- GMPs to commit to the monocyte 
lineage (Wu et al., 2016), one possible hypothesis is that ZEB2 may control mac survival by 
regulating CSF1R signaling. Consistent with this, CSF1R signaling is absolutely required for 
KC, microglia, colonic mac and splenic mac but not AM survival (MacDonald et al., 2010) and 
a small downregulation of CSF1R within the Zeb2-/- KCs, microglia and colonic macs but not 
splenic macs or AMs was detected (Tables S1,2,6,7 & 8). However, as Zeb2-/- KCs responded 
to administration of CSF1Fc this implies that CSF1R signaling is still functional in these macs. 
Rather, we propose that loss of ZEB2 leads to significant alterations in tissue-specific identities 
of these cells. In KCs, loss of Zeb2 leads to loss of Nr1h3 suggesting that one mechanism of 
action of ZEB2 is to maintain the expression of TFs driving the tissue-specific identities of the 
different mac populations. We found that loss of LXRα in KCs recapitulated the main traits of 
Zeb2-/- KCs with loss of liver-specific identity and disappearance from the liver, suggesting that 
downregulation of LXRα is at least in part responsible for the phenotype of Zeb2-/- KCs. The 
mechanisms underlying the control of tissue-specific identities by Zeb2 in other organs remain 
to be investigated, but the loss of the TF Cebpb in the Zeb2-/- AMs (Figure 1G), a TF recently 
reported to be essential for AMs (Cain et al., 2013), suggests that loss of Zeb2 may also induce 
the loss of tissue-specific identity by loss of tissue-specific TFs in other macs but this remains 
to be investigated. 
In conclusion, our study highlights that high levels of Zeb2 expression is a defining 
characteristic of the mac lineage. ZEB2 is crucial for the maintenance of macs, with its absence 
leading to dramatic changes in their transcriptional profiles, including loss of roughly 60% of 
their tissue-specific identities potentially through the decreased expression of tissue-specific 
TFs, as demonstrated for LXRα in KCs. This loss of identity inevitably results in macrophage 
disappearance, possibly due to death by necroptosis, identifying ZEB2 as a crucial TF in 
macrophage biology and LXRα as a master TF in KCs. 
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FIGURE LEGENDS 
 
Figure 1: ZEB2 controls mac number and surface phenotype. 
(A) Expression of CD64 and F4/80 by live CD45+Ly6G-Ly6C- liver cells and Clec4F and Tim4 by total 
liver macs in Clec4fCRExZeb2fl/fl and Zeb2fl/fl mice. Absolute number of liver macs (CD64+F4/80+) per 
gram of liver and % of total macs expressing Clec4F and Tim4. Data are pooled from 4 experiments 
with n=11-13 per group. ***p<0.001 Student’s t test. (B) Expression of SiglecF, F4/80 and CD11b by live 
CD45+CD64+CD11c+ Lung macs in ItgaxCRExZeb2fl/fl and Zeb2fl/fl mice. AMs 
(CD64+F4/80+CD11c+SiglecF+) as a % of total live CD45+ cells, absolute number and % of CD11b+ and 
CD11b- AMs in ItgaxCRExZeb2fl/fl or Zeb2fl/fl mice. Data are pooled from 2 experiments with n=7-8 per 
group. *p<0.05, ***p<0.001 Student’s t test. (C) t-SNE plot of SC-RNA-Seq data following preprocessing 
of KCs sorted as Clec4F+ from Clec4fCRExZeb2fl/fl or Zeb2fl/fl mice, showing clusters of KCs, assigned 
groups and CRE- (Red) and CRE+ (Teal) overlay. (D) t-SNE plot of SC-RNA-Seq data following 
preprocessing of AMs sorted as SiglecF+CD11c+ from ItgaxCRExZeb2fl/fl or Zeb2fl/fl mice, showing clusters 
of AMs, assigned groups and CRE- (Red) and CRE+ (Teal) overlay. (E) tSNE plots showing expression 
of Zeb2, Siglecf and Ms4a1 in aggregated KC SC-RNA-Seq data. (F) tSNE plots showing expression of 
Zeb2, Epcam and Cd101 in aggregated AM SC-RNA-Seq data. (G,H) Top DE genes per group based 
on Log Fold Change per group of KCs (G) or AMs (H). 

Figure 2: ZEB2-/- macs are lost with time 
(A) Expression and % of SiglecF and CD20 by Clec4F+ KCs at 6 and 12 weeks of age compared with 
Zeb2fl/fl controls. Data are pooled from 1-2 experiments with n=7-10 per group. ***p<0.001 One way 
ANOVA with Bonferroni post-test. (B) Relative expression of Zeb2 mRNA normalized to β-actin as 
determined by qPCR of FACS-purified SiglecF+ and SiglecF- KCs compared with CRE- control KCs. 
Data are pooled from 1 experiment with n=5-7 per group. ***p<0.001 One way ANOVA with Bonferroni 
post-test. (C) Expression and % of EpCam and CD101 by AMs at 6 and 12 weeks of age compared with 
Zeb2fl/fl controls. Data are pooled from 1-2 experiments with n=5-11 per group. ***p<0.001 One way 
ANOVA with Bonferroni post-test. (D) Relative expression of Zeb2 mRNA normalized to β-actin as 
determined by qPCR of FACS-purified EpCam+ and EpCam- AMs compared with CRE- control AMs. 
Data are pooled from 1 experiment with n=5-7 per group. ***p<0.001 One way ANOVA with Bonferroni 
post-test. (E) Expression of Zeb2 mRNA (determined by primeflow assay) and SiglecF in KCs from 
Zeb2fl/fl and Clec4fCRExZeb2fl/fl mice compared with label probe only control (no primer). Data are 
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representative of 1 experiment with n=5-6 per group. (F) Expression of Zeb2 mRNA (determined by 
primeflow assay) and EpCam in AMs from Zeb2fl/fl and ItgaxCRExZeb2fl/fl mice compared with label probe 
only control (no primer). Data are representative of 1 experiment with n=4-5 per group. (G) Schematic 
of experimental set up. (H) % SiglecF+CD20int KCs amongst total CD45.2+ KCs at indicated time points 
(days) post the last dose of tamoxifen. Data are pooled from 2 experiments with n= 4-7 per time-point. 
***p<0.001, One way ANOVA with Bonferroni post-test comparing each time point with the previous time 
point. (I) % CD101+EpCam+ AMs amongst total CD45.2+ AMs at indicated time points (days) post the 
last dose of tamoxifen. Data are pooled from 2 experiments with n= 4-7 per time-point. ***p<0.001, One 
way ANOVA with Bonferroni post-test comparing each time point to the previous time point. In all panels, 
controls are pooled from donor macs from mice not administered tamoxifen and host macs from mice 
administered tamoxifen. 

Figure 3: ZEB2 controls tissue identity of KCs and AMs 
(A) Schematic of experimental set up. (B) Expression of CD45.1 (donor) and Tim4 in total Clec4F+ KCs 
in Clec4fCRExZeb2fl/fl chimeras. % total chimerism of KCs in Zeb2fl/fl and Clec4fCRExZeb2fl/fl mice 4 weeks 
post irradiation shown as a ratio over the chimerism in blood Ly6Chi monocytes in the same mouse. 
Data are pooled from 2 experiments with n=6-10 per group.***p<0.001 Student’s t-test. (C) Expression 
of CD45.1 (donor) and CD45.2 (host) in total lung AMs in ItgaxCRExZeb2fl/fl mice. % total chimerism of 
AMs in Zeb2fl/fl and ItgaxCRExZeb2fl/fl mice 4 weeks post irradiation shown as a ratio over the chimerism 
in blood Ly6Chi monocytes in the same mouse. Data are pooled from 2 experiments with n=5-8 per 
group. NS; non-significant. Student’s t-test. (D,E) Heatmap of expression of cell death-associated genes 
per group of KCs (D) or AMs (E) from SC-RNA-Seq data. (F) Representative western blots for RIPK3, 
pMLKL and Tubulin expression by total BAL cells isolated from CD45.1 mice that were irradiated (8gy) 
and reconstituted with Rosa-26CRE-ERT2xZeb2fl/fl BM. 33 weeks post reconstitution, mice were fed 5mg 
tamoxifen or corn oil as a control for 5 days. 27 days after the last dose of tamoxifen or corn oil, mice 
were sacrificed and BAL fluid isolated. BAL fluid from 3-4 mice was pooled per replicate and 150,000 
cells were used per lane. Ratio of band intensity was calculated using ImageJ. Data are pooled from 2 
experiments with n=6-8 per group. Student’s t-test was used to calculate indicated p values. (G) Venn 
diagram showing DE genes specific to Zeb2-/- KCs (Group 3), Zeb2-/- AMs (Group 3) or shared between 
both mac populations. (H,I) Heatmap showing expression of top core genes across KC (H) or AM (I) 
groups from SC-RNA-Seq analysis. Highlighted genes are significantly differentially expressed. 

Figure 4: Loss of LXRα from KCs recapitulates main features of ZEB2-/- KCs 
(A) Expression of CD64 and F4/80 by live CD45+Ly6G-Ly6C- liver cells in Clec4fCRExNr1h3fl/fl and 
Nr1h3fl/fl mice. Liver macs (CD64+F4/80+) as a % of total live CD45+ cells and absolute number per gram 
of liver. Data are pooled from 2 experiments with n=12 per group. (B) Expression of Clec4F and Tim4 
by total liver macs in Clec4fCRExNr1h3fl/fl and Nr1h3fl/fl mice and % of total macs expressing Clec4F and 
Tim4. Data are pooled from 2 experiments with n=12 per group. ***p<0.001 Student’s t test. (C) % total 
chimerism of total Clec4F+ KCs in Nr1h3fl/fl and Clec4fCRExNr1h3fl/fl mice 4 weeks post irradiation shown 
as a ratio over the chimerism in blood Ly6Chi monocytes in the same mouse. Data are pooled from 2 
experiments with n=6-8 per group. ***p<0.001; Student’s t-test. (D) t-SNE plot of SC-RNA-Seq data from 
KCs sorted as Clec4F+ from Clec4fCRExNr1h3fl/fl and Nr1h3fl/fl mice, showing clusters of KCs, assigned 
groups and CRE- (Red) and CRE+ (Teal) overlay. (E) Heatmaps showing top DE genes (15 
downregulated, 15 upregulated) based on LogFC in KCs with loss of LXRα and expression of the top 
15 down and upregulated genes in LXRα-/- KCs by the indicated groups of KCs from Zeb2fl/fl and 
Clec4fCRExZeb2fl/fl mice. (F,G) Histogram and MFI of CD55 protein expression as measured by flow 
cytometry in (F) Zeb2+/+ (Zeb2fl/fl), SiglecF+ Zeb2-/- KCs and SiglecF- Zeb2+/- KCs from Clec4fCRExZeb2fl/fl 
mice and (G) Nr1h3+/+ (Nr1h3fl/fl) and Nr1h3-/- KCs from Clec4fCRExNr1h3fl/fl mice. (H) Venn diagram 
showing DE genes specific to Zeb2-/- KCs, Nr1h3-/- KCs or shared between both mac populations. 

Figure 5: Loss of ZEB2 affects mac phenotype and/or number across tissues 
(A) Expression of CD64, F4/80 and CD11b by live CD45+Ly6G-CD64+Ly6C-MHCII- splenic macs in 
Fcgr1CRExZeb2fl/fl and Zeb2fl/fl mice. Splenic macs as a % of total live CD45+ cells, absolute number and 
% of CD11b+ and CD11b- splenic macs in Fcgr1CRExZeb2fl/fl or Zeb2fl/fl mice. Data are pooled from 2 
experiments with n=8-11 per group. ***p<0.001 Student’s t test. (B) Expression of CD64, F4/80, CD11c 
and CD11b by live CD45int microglia in Fcgr1CRExZeb2fl/fl and Zeb2fl/fl mice. Microglia as a % of total live 
CD45+ cells, absolute number and % of CD11c+ and CD11c- microglia in Fcgr1CRExZeb2fl/fl or Zeb2fl/fl 
mice. Data are pooled from 2 experiments with n=8-11 per group. **p,0.01, ***p<0.001 Student’s t test. 
(C) Expression of Ly6C and MHCII (monocyte waterfall) by live CD45+CD11b+Ly6G-SiglecF- non cDCs 
in Fcgr1CRExZeb2fl/fl and Zeb2fl/fl mice. % of liver CD45+ and absolute number of Ly6C+MHCII-, 
Ly6C+MHCII+ and Ly6C- Macs in Fcgr1CRExZeb2fl/fl or Zeb2fl/fl mice. Data are pooled from 2 experiments 
with n=8-11 per group. *p<0.05, **p<0.01, ***p<0.001 Student’s t test. 
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Figure 6: Loss of Zeb2 results in altered transcriptome across mac lineage 
(A,B) t-SNE plot of SC-RNA-Seq data from splenic macs (A) and microglia (B) sorted from 
Fcgr1CRExZeb2fl/fl and Zeb2fl/fl mice, showing clusters of macs, assigned groups and CRE- (Red) and 
CRE+ (Teal) overlay and expression of indicated genes. (C) t-SNE plot of SC-RNASeq data from total 
colonic macs from Fcgr1CRExZeb2fl/fl and Zeb2fl/fl mice, showing clusters of macs and Cd74, Itgax, H2-
Aa and H2-Eb1 expression. (D) t-SNE plot of SC-RNA-Seq data from Cd74hi colonic macs from 
Fcgr1CRExZeb2fl/fl and Zeb2fl/fl mice, showing clusters of macs, assigned groups and CRE- (Red) and 
CRE+ (Teal) overlay and expression of indicated genes 

Figure 7: Loss of ZEB2 results in loss of mac tissue-specific identity across tissues 
(A-C) Heatmap showing expression of top core splenic mac (A), microglia (B) or Cd74hi colonic mac (C) 
genes across indicated groups from SC-RNA-Seq analysis of macs isolated from that tissue. Highlighted 
genes are significantly differentially expressed. (D) t-SNE showing all macs sequenced by SC-RNA-Seq 
from the indicated 5 tissues. Zeb2-/- macs are shown in bold color, ZEB2+/+ or Zeb2+/- macs are shown 
in faded color. Open circles represent cells arising from CRE- mice while filled circles are those isolated 
from CRE+ mice (Fcgr1CRE, ItgaxCRE or Clec4fCRE). (E) Venn Diagram detailing conservation or specificity 
of DE genes across and between all 5 tissue mac populations in the absence of Zeb2. (F) Heatmap 
showing 32 DE genes conserved across all 5 tissue mac populations. 
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CONTACT FOR REAGENT AND RESOURCE SHARING 
Further information and requests for resources and reagents should be directed to and will 
be fulfilled by the lead contact, Martin Guilliams (martin.guilliams@irc.vib-ugent.be). 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
In vivo animal studies: The following mice were used in this study; Zeb2fl/fl (Higashi et al., 2002), 
LXRαfl/fl, ItgaxCRE (Caton et al., 2007), Rosa-RFP (Luche et al., 2007), Rosa-26CRE-ERT2(Ventura  
et al., 2007), Clec4fCRE (B6-Clec4ftm3Ciphe; were developed by the Centre 
d’Immunophenomique, Marseille, France) and Fcgr1CRE (B6-Fcgr1tm3Ciphe; generated by 
Bernard Malissen). All mice were used on a C57Bl/6 background and a mix of male and female 
mice were used for each experiment. Mice were used between 6 and 8 weeks of age unless 
otherwise stated. All mice were bred and maintained at the VIB (Ghent University) under 
specific pathogen free conditions. All animals were randomly allocated to experimental groups 
and littermate controls were used in all experiments. All experiments were performed in 
accordance with the ethical committee of the Faculty of Science of the VIB. 
Construction of Clec4f-IRES-iCRE mice: Using ET recombination, an IRES-iCRE-loxP-Cre-
NeoR-loxP cassette was introduced in the 3’ untranslated region of the Clec4f gene, 
downstream of the stop codon. JM8.F6 C57BL/6N ES cells (Pettitt et al., 2009) were 
electroporated with the targeting vector. After selection in G418, ES cell clones were screened 
for proper homologous recombination by Southern blot. A neomycin-specific probe was used 
to ensure that adventitious non-homologous recombination events had not occurred in the 
selected ES clones. Properly recombined ES cells were injected into FVB blastocysts. 
Germline transmission led to the self-excision of the loxP-Cre-NeoR-loxP cassette in male 
germinal cells. The resulting Clec4f-IRES-iCRE allele (official name B6-Clec4fm2Ciphe, called 
here Clec4fCRE) was identified by PCR of tail DNA. The primers: sense 5'-
GATTCCCCTTCAGACCCTGAAT-3’, sense 5’-TGATGAACTACATCAGAACCTGG-3’ and 
antisense 5’-TATTGAGGGCTTATCTGGGC-3’ amplify a 496 bp band in case of the wild-type 
Clec4f allele and a 304 bp band in the case of the Clec4f-IRES-iCre allele. 
Construction of Fcgr1-IRES-iCRE-2A-TEAL mice: Using ET recombination, an IRES-iCRE-2A-
TEAL-frt-neoR-frt cassette was introduced in the 3’ untranslated region of the Fcgr1 gene, 
downstream of the stop codon. The targeting construct was abutted to a cassette coding for 
the diphtheria toxin fragment A, and linearized with Pme1. JM8.F6 C57BL/6N ES cells (Pettitt 
et al., 2009) were electroporated with the targeting vector. After selection in G418, ES cell 
clones were screened for proper homologous recombination by Southern blot. A neomycin-
specific probe was used to ensure that adventitious non-homologous recombination events 
had not occurred in the selected ES clones. Properly recombined ES cells were injected into 
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FVB blastocysts. Upon germline transmission, mice were then crossed to mice expressing the 
site-specific recombinase FLP (Kranz et al., 2010) to delete the frt-flanked neoR cassette. The 
resulting Fcgr1-IRES-iCRETEAL floxed allele (official name B6-Fcgr1tm2Ciphe, called here 
Fcgr1CRE) was identified by PCR of tail DNA. The primers: sense 5'-
CCCTTCCTCCCAGTGACAGTACTG-3', sense 5’-GACGGCATGGACGAGCTGTACA-3’ and 
antisense 5'-TGAACCCATCCACCCTGTGAG-3' amplify a 402 bp band in case of the wild-
type Fcgr1 allele and a 464 bp band in the case of the Fcgr1-IRES-iCre-TEAL allele. 
 
METHOD DETAILS 
Isolation of tissue leukocytes: For the isolation of liver leukocytes, livers were isolated from 
PBS-perfused mice, chopped finely and subjected to GentleMACS dissociation and incubated 
for 20 min with 1 mg/ml Collagenase A (Sigma) and 10U/ml DNase (Roche) in a shaking water 
bath at 37°C. Following a second round of GentleMACS dissociation, single cell suspensions 
were filtered over a 100um filter. For the isolation of lung, brain and spleen leukocytes, lungs, 
brains, kidneys and spleens were isolated from PBS-perfused mice finely chopped and 
incubated for 30 min with 0.2 mg/ml Liberase TM (Roche) and 10 U/ml DNase (Roche) in a 
shaking water bath at 37 °C. Single cell suspensions from brain were then subjected to a 
100:40 percoll gradient (Sigma) to isolate leukocytes. Colonic intestinal lamina propria 
leukocytes were isolated as described previously (Bain et al., 2013; Scott et al., 2014). 
Generation of BM chimeras: Partially-protected: 6 week-old Clec4fCRExZeb2fl/fl, 
ItgaxCRExZeb2fl/fl or Zeb2fl/fl littermate controls (CD45.2) were anaesthetized by intraperitoneal 
administration of Ketamine (150 mg/kg) and Xylazine (10 mg/kg). Livers were protected with a 
3-cm-thick lead cover before mice were lethally irradiated with 8Gy. Once recovered from the 
anesthesia, mice were reconstituted by intravenous administration of 10x106 BM cells from 
congenic CD45.1 or CD45.1/CD45.2 BM from wild-type mice. 4 weeks after irradiation 
chimerism in the blood and liver or lung was assessed by flow cytometry. Non-protected: 6-8 
week old CD45.1 or CD45.1/CD45.2 WT mice were lethally irradiated with 8Gy. Mice were 
reconstituted with 2-3X106 BM cells from gender-matched Zeb2fl/fl or Rosa-26CRE-ERT2xZeb2fl/fl 

(CD45.2) mice. 7-8 weeks post irradiation mice were fed 5mg tamoxifen by oral gavage daily 
for 5 days before being sacrificed at the indicated time-points after the final dose. 
Flow Cytometry: Cells (0.5–5x106) were stained with appropriate antibodies at 4 °C in the dark 
for 30-45 mins and were analyzed with a Fortessa (BD Biosciences) and FlowJo software 
(TreeStar). KCs/AMs were sorted using an ARIA II or ARIA III (BD, Biosciences). The full list 
of antibodies used can be found in the Key Resource Table. Primeflow assay (Thermo Fischer) 
40 for Zeb2 expression was performed in 96-well U bottom plates according to the 
manufacturer’s instructions using commercially available Zeb2 primers (Thermo Fischer). 
Bulk RNA Sequencing: 25,000 Clec4F+Tim4+ KCs from Zeb2fl/fl or Clec4FCRExZeb2fl/fl were 
FACS-purified into 500µl of RLT plus buffer (QIAGEN) and β-mercaptoethanol. RNA was 
isolated using a RNeasy Plus micro kit (QIAGEN) and sent to the VIB Nucleomics facility, 
where the RNA sequencing was performed using a NextSeq sequencer (Illumina). The pre-
processing of the RNA sequencing data was done by Trimmomatic. The adapters were cut 
and reads were trimmed when the quality dropped below 20. Reads with a length <35 were 
discarded. All samples passed quality control based on the results of FastQC. Reads were 
mapped to the mouse reference genome via Tophat2 and counted via HTSeqCount. Samples 
were subsequently analyzed using R/Bioconductor, and the limma (voom) procedure was used 
to normalize the data. 
Single Cell RNA Sequencing: Sorting and RNA isolation: 60000 Clec4F+CD64+F4/80+CD45+ 
live cells from livers of Clec4fCRExZeb2fl/fl and Zeb2fl/fl littermate controls, 60000 
CD11c+SiglecF+F4/80+CD64+CD45+ live cells from lungs of ItgaxCRExZeb2fl/fl and Zeb2fl/fl 

littermate controls, 20000 CD45intF4/80+CD64+ live cells from brains of Fcgr1CRExZeb2fl/fl and 
Zeb2fl/fl littermate controls, 60000 CD45+Ly6C-Ly6G-SiglecF-CD64+F4/80+ live cells from 
colons of Fcgr1CRExZeb2fl/fl and Zeb2fl/fl littermate controls and 60000 CD45+Ly6C-Ly6G-

SiglecF-CD64+F4/80+ live cells from spleens of Fcgr1CRExZeb2fl/fl and Zeb2fl/fl littermate controls 
were FACS-purified. Cells were sorted into PBS 0.04% BSA, spun down and resuspended in 
PBS/0.04%BSA at an estimated final concentration of 1000 cells/μl. Cellular suspensions 
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(target recovery of 6000 cells) were loaded on a GemCode Single-Cell Instrument (10x 
Genomics, Pleasanton, CA, USA) to generate single-cell Gel Bead-in- EMulsion (GEMs). 
Single-cell RNA-Seq libraries were prepared using GemCode Single-Cell 3ʹGel Bead and 
Library Kit (10x Genomics) according to the manufacturer’s instructions. Briefly, GEM-RT was 
performed in 96-deep well reaction module: 55°C for 45min, 85°C for 5 min; end at 4°C. After 
RT, GEMs were broken down and the cDNA was cleaned up with DynaBeads MyOne Silane 
Beads (Thermo Fisher Scientific, 37002D) and SPRIselect Reagent Kit (SPRI; Beckman 
Coulter; B23318). cDNA was amplified with 96-Deep Well Reaction Module: 98 °C for 3 min; 
cycled 12 times : 98°C for 15s, 67°C for 20 s, and 72°C for 1 min; 72°C for 1 min; end at 4°C. 
Amplified cDNA product was cleaned up with SPRIselect Reagent Kit prior to enzymatic 
fragmentation. Indexed sequencing libraries were generated using the reagents in the 
GemCode Single-Cell 3ʹ Library Kit with the following intermediates: (1) end repair; (2) A-
tailing; (3) adapter ligation; (4) post-ligation SPRIselect cleanup and (5) sample index PCR. 
Pre-fragmentation and post-sample index PCR samples were analysed using the Agilent 2100 
Bioanalyzer. 
RNA sequencing analysis: Sequencing libraries were loaded on an Illumina NextSeq500 (KCs, 
AMs) or HiSeq (microglia, splenic macs, colonis macs) with sequencing settings following 
recommendations of 10X Genomics (26/8/0/98 - 2.1pM loading concentration). Sequencing 
was performed at the VIB Nucleomics Core (VIB, Leuven). The demultiplexing of the raw data 
was done by the 10x’s CellRanger software (version 2.0.0 (KCs, AMs) or version 2.0.2 
(microglia, splenic macs, colonic macs); cellranger mkfastq which wraps Illumina's bcl2fastq). 
The reads obtained from the demultiplexing were used as the input for ‘cellranger count’ (10x’s 
CellRanger software) which align the reads to the mouse reference genome (mm10) using 
STAR and collapses to unique molecular identifier (UMI) counts. The result is a large digital 
expression matrix with cell barcodes as rows and gene identities as columns. The aggregation 
of the Cre- and Cre+ samples was done using ‘cellranger aggr’ (10x’s CellRanger software). 
Preprocessing data: Preprocessing of the data was done by the scran and scater R package 
according to workflow proposed by the Marioni lab (Lun et al., 2016). Outlier cells were 
identified based on 3 metrics (library size, number of expressed genes and mitochondrial 
proportion) and cells were tagged as outliers when they were 3 median absolute deviation 
(MADs) away from the median value of each metric across all cells. Low-abundance genes 
were removed using the ‘calcAverage’ function and the proposed workflow. The raw counts 
were normalised and log2 transformed by first calculating “size factors” that represent the 
extent to which counts should be scaled in each library. Detecting highly variable genes, finding 
clusters and creating tSNE plots was done using the Seurat pipeline. Marker genes per 
identified subpopulation were found using the findMarker function of the Seurat pipeline. 
Additional low quality (low UMI counts, high % of mitochondrial genes), contaminating 
(potential doublets) and actively proliferating cells were also removed from the analysis (Figure 
S1G). 
Gene expression analysis by real-time RT-PCR: RNA was purified from 10000-25000 sorted 
cells using an RNeasy Plus micro kit (QIAGEN). RNA was reverse transcribed to cDNA with 
an iScript Advanced cDNA Synthesis kit (Bio-Rad Laboratories). Gene expression was 
assayed by real-time RT-PCR using a SensiFast SYBR NoRox kit (GC Biotech) on a PCR 
amplification and detection instrument (LightCycler 480; Roche) with the primers listed in the 
Key Resource Table. Gene expression was normalized to β-actin, and the mean relative gene 
expression was calculated using the 2−ΔΔC(t) method.  
Confocal Microscopy: 2-3mm slices of livers were fixed by immersion in Antigen fix (Diapath) 
for 1h, washed in PBS, infused overnight in 30% sucrose and frozen in Tissue-Tek OCT 
compound (Sakura Finetek) for cryostat sectioning. After permeabilization with 0.5% saponin 
and unspecific binding site blocking with 2% bovine serum albumin, 1% fetal calf serum and 
1% donkey serum for 30 minutes, 14μm–thick cryostat tissue sections were labeled overnight 
at 4°C with primary antibodies followed by incubation for 1 hour at room temperature with 
secondary antibodies. When two rat antibodies were used on the same section, the directly 
conjugated rat antibody was incubated for 1h after blocking with a donkey anti-rat secondary 
antibody with 1% rat serum for 30 minutes. Slices were mounted on ProLong Diamond 
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(Thermo fisher scientific) and imaged with a Zeiss LSM 780 confocal microscope (Carl Zeiss, 
Oberkochen, Germany). Images were analyzed using ImageJ software. 
PCR analysis of Zeb2 deletion: 25000 cells of required phenotype and genotype were FACS-
purified from livers and lungs of Clec4fCRExZeb2fl/fl and ItgaxCRExZeb2fl/fl mice respectively. DNA 
was extracted by boiling the cells at 95C in 50µl 50mM NaOH for 20minutes. After boiling 5µl 
1.5M Tris pH8.8 was added to the cells. 1 or 0.2µl pf extracted DNA was added to a PCR 
reaction containing primer pairs (Zeb2 PCR) listed in the key resource table and Allin Red Taq 
polymerase (HighQu). PCR protocol was as follows: 95C 1min, 40 cycles of 95C 15secs, 62C 
15secs, 72C 30secs and a 5min incubation at 72C. PCR products were resolved on a 2% 
agarose gel. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
In all experiments, data are presented as mean ± SEM unless stated otherwise. Statistical 
tests were selected based on appropriate assumptions with respect to data distribution and 
variance characteristics. Student’s t test (two-tailed) was used for the statistical analysis of 
differences between two groups. One-way ANOVA with Bonferroni post-test was used for the 
statistical analysis of differences between more than two groups. Statistical significance was 
defined as p < 0.05. Sample sizes were chosen according to standard guidelines. Number of 
animals is indicated as ‘‘n.’’ Of note, sizes of the tested animal groups were also dictated by 
availability of the transgenic strains and litter sizes, allowing littermate controls. Pre-
established exclusion criteria are based on IACUC guidelines. The investigator was not blinded 
to the mouse group allocation. 
 
DATA AND SOFTWARE AVAILABILITY 
All RNA-sequencing data have been deposited in the Gene Expression Omnibus 
publicdatabase under accession no. XXXX. 
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Figure S1; Related to Figure 1: Zeb2 expression, validation of CRE lines and SC-RNA-
Seq analysis pipeline. 
(A) Heatmap showing relative expression of genes (normalized per mean expression of each gene 
identified to be shared among tissue resident macs and lacking from other immune cells including 
splenic B cells, naïve T cells, cDC1s, cDC2s and blood neutrophils. Data are from microarray analyses 
performed either in house or by the Immgen consortium. (B) % of RFP-expressing cells in indicated 
tissues of Clec4fCRExRosa-RFP+/- (CRE+) and Rosa-RFP+/- (CRE-) mice. Data are pooled from 2-3 
experiments with n=8-16 per group. **p<0.01, ***p<0.001 Student’s t test. (C) Expression of CLEC4F, 
RFP and DAPI by confocal microscopy in liver of Clec4fCRExRosa-RFP+/- mice. Data are representative 
of 2 experiments with n=9. (D) % of KCs (CLEC4F+TIM4+CD64+F4/80+) and B cells (CD19+MHCII+) 
expressing RFP in Clec4fCRExRosa-RFP+/- mice (CRE+) and Rosa-RFP+/- mice (CRE-) and expression 
of CLEC4F and RFP by KCs (red) and B cells (grey) in the liver of Clec4fCRExRosa-RFP+/- mice. Data 
are pooled from 3 (KCs) or 1(B cells) experiment(s) with n=4-16 per group. ***p<0.001 Student’s t test. 
(E) Expression of CD64, F4/80, CLEC4F, TIM4, CD19 and MHCII on RFP+ cells in the liver of 
Clec4fCRExRosa-RFP+/- mice. Data are representative of 3 experiments with n=12-16 per group. (F) 
Expression of RFP by CD11c+CD64+F4/80+SiglecF+ AMs and % of AMs expressing RFP in 
ItgaxCRExRosaRFP+/- (CRE+) and Rosa-RFP+/- (CRE-) mice. Data are pooled from 2 experiments with 
n=5-9 per group. ***p<0.001 Student’s t test. (G) Pipeline followed for analysis of SC-RNA-Seq data. 

Figure S2; Related to Figure 2: Presence of Zeb2+/- macs in liver and lung of conditional 
KO mice  
(A,B) 2% Agarose gel showing results of genomic PCR for Zeb2 flox and Zeb2 deletion band in indicated 
mac populations from (A) Clec4fCRExZeb2fl/fl and (B) ItgaxCRExZeb2fl/fl mice compared with Zeb2fl/fl 
littermate controls. All samples are run in duplicate. For the PCR reaction 1µl DNA loaded was in the 
first well of each sample and 0.2µl DNA was loaded in the second well. (C) Expression of Clec4F, Tim4, 
SiglecF and DAPI by confocal microscopy in liver of Clec4fCRExZeb2fl/fl mice at 6 and 12 weeks of age 
compared with Zeb2fl/fl livers. Data are representative of 1 experiment with n=2 per group. (D,E) 
Expression of F4/80 and Ki-67 by indicated KC populations. Data are pooled from 2 experiments with 
n=8-14 per group. ***p<0.001, One way ANOVA with Bonferroni post-test (F,G) Expression of EpCam 
and Ki-67 by indicated AM populations. Data are pooled from 2 experiments with n=4-9 per group. 
***p<0.001, One way ANOVA with Bonferroni post-test. (H) Absolute number of KCs in Zeb2fl/fl (CRE-) 
and Clec4fCRExZeb2fl/fl (CRE+) mice which received 1mg/kg CSF1Fc subcutaneously for 4 days or PBS 
as a control before being sacrificed on day 6. (I) Zeb2 mRNA expression (PrimeFlow) and SiglecF 
expression in CD45.2 donor KCs (blue) and CD45.1 host KCs (black) at indicated time-points. (J) Zeb2 
mRNA expression (PrimeFlow) and CD101 expression in CD45.2 donor AMs (blue) and CD45.1 host 
AMs (black) at indicated time-points. 

Figure S3; related to Figure 3: Core KC and AM transcriptional profiles redefined 

(A,B) Heatmap showing expression of core KC (A) or AM (B) genes by KCs, colon macs (LiMacs), AMs 
(Lung), Microglia, peritoneal macs and splenic macs. Data was previously published by (Lavin et al., 
2014) and downloaded from the NCBI for this analysis.  

Figure S4; related to Figure 4: Loss of LXRα from KCs mimics main features of loss of 
ZEB2 
(A) Expression of Clec4F and Tim4 by total liver macs in Clec4fCRExNr1h3fl/+ and Nr1h3fl/+ mice and % 
of total macs expressing Clec4F and Tim4. Data are pooled from 2 experiments with n=6-7 per group. 
*p<0.05, ***p<0.001 Student’s t test. (B) Relative mRNA expression of indicated genes normalized to β-
actin as determined by qPCR of FACS-purified KCs from Zeb2fl/fl mice (Zeb2+/+), SiglecF- KCs (Zeb2+/-) 
and SiglecF+ KCs (Zeb2-/-) from Clec4fCRExZeb2fl/fl. Data are pooled from 2 experiments with n=8 per 
group. *p<0.05, ***p<0.001 One way ANOVA with Bonferroni post-test. (C) Relative mRNA expression 
of indicated genes normalized to β-actin as determined by qPCR of FACS-purified KCs from Nr1h3fl/fl 
mice (Nr1h3+/+) or Clec4fCRExNr1h3fl/fl mice (Nr1h3-/-). Data are pooled from 2 experiments with n=8 per 
group. ***p<0.001 Student’s t-test. (D) Table of DE genes (adj. p value 0.05, log FC <1 or >1) between 
embryonic KCs and monocyte derived (moKCs) from KC-DTR mice 15 days post administration of 
DT(Scott et al., 2016). 

Figure S5; related to Figure 5: Fcgr1CRE validation. 
(A) Expression of RFP by indicated splenic immune cell populations including B cells, T cells, 
Neutrophils, Eosinophils and cDC1s and cDC2s (cDC subsets; defined on the basis of CD11b 
expression) in Fcgr1CRExRosa-RFP+/- mice compared with Rosa-RFP+/- littermate controls. Data are 
pooled from 2 experiments with n= 6-9 per group. Students t test. ***p<0.001. (B) Expression of RFP by 
CD64+F4/80+Lin-MHCII- splenic macs and % of splenic macs expressing RFP in Fcgr1CRExRosaRFP+/- 
(CRE+) and Rosa-RFP+/- (CRE-) mice. Data are pooled from 2 experiments with n=6-9 per group. 
***p<0.001 Student’s t test. (C) Expression of RFP and MHCII by colonic macs in Fcgr1CRExRosa-RFP+/- 
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mice compared with Rosa-RFP+/- littermate controls. Data are pooled from 2 experiments with n= 6-9 
per group. Students t test. ***p<0.001. (D) Expression of RFP and CD45 by microglia in 
Fcgr1CRExRosa-RFP+/- mice compared with Rosa-RFP+/- littermate controls. Data are pooled from 2 
experiments with n= 6-9 per group. Students t test. ***p<0.001. 

Figure S6; related to Figure 6: Core Transcriptomic profile of Cd74lo colonic macs 
Heatmap showing expression of core Cd74lo colonic mac genes. Heatmap was created by comparing 
SC-RNA-Seq data from Cd74lo colonic macs with Cd74hi colonic macs, KC, AMs, microglia and splenic 
macs. 

Figure S7; related to Figure 7: Core transcriptomic profiles of splenic macs, microglia 
and colonic Cd74hi macs redefined and loss of Zeb2-/- splenic macs with time 
(A-C) Heatmap showing expression of core splenic mac (A), microglia (B) or colonic Cd74hi mac (C) 
genes by KCs, colonic macs, AMs, microglia, peritoneal macs and splenic macs. Data was previously 
published by (Lavin et al., 2014) and downloaded from the NCBI and filtered based on SC-RNA-Seq 
data to remove contaminating genes. (D) % CD11b+CD20+ splenic macs amongst total CD45.2+ splenic 
macs at indicated time points (days) post the last dose of tamoxifen. Data are pooled from 2 experiments 
with n= 4-7 per time-point. ***p<0.001, One way ANOVA with Bonferroni post-test comparing each time 
point with the previous time point. (E) Zeb2 mRNA expression (PrimeFlow) and CD11b expression in 
CD45.2 donor Splenic macs (blue) and CD45.1 host splenic macs (black) at indicated time-points. 
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Je had altijd tijd voor een babbeltje en was altijd bereid om te luisteren of een handje 

te helpen. 

 

Gillian en Joachim, jullie staan altijd klaar om te helpen, wij hebben het maar te vragen 

en jullie brengen het in orde. Bedankt voor alle praktische hulp de voorbije jaren en 

nog een extra merci voor alle klusjes die ik tijdens mijn zwangerschap niet zelf mocht 

uitvoeren. Sara, wij hebben misschien niet veel samengewerkt, maar toch was je altijd 

bereid om te helpen. Özden, you were a perfect companion to go through the struggles 

of starting a PhD and taking the necessary courses. Sven, ik heb nooit veel vertrouwen 

gehad in mijn educatieve capaciteiten. Toch ben jij intussen van master 1 student 

onder mijn begeleiding geëvolueerd tot doctoraatsstudent in onze groep. Kenneth of 

‘Knet’, bedankt voor de vele discussies over de West-Vlaamse woordenschat. Het was 

altijd aangenaam beginnen aan een nieuwe week op maandagmorgen met jouw vraag 

hoe mijn weekend was geweest. ‘Neleken’, jij bent zo één van die personen waar het 

direct mee klikt. We kennen elkaar nog niet zolang, maar hebben toch al heel wat met 

elkaar kunnen delen, zoals onze zwangerschap en het mama worden. Ik wens je nog 

veel geluk in de wetenschap en de kliniek, je zal dit fantastisch doen. Nielske, jij en ik, 

dat was ‘Manten en Kalle’. Wie nu juist Manten is en wie Kalle, daar zijn we nooit over 

uit geraakt. Merci voor de deugddoende pauzekes samen en het af en toe luisteren 

naar mijn geklaag. Ook bedankt voor de ‘bubbelkesplastiek’, het onnozel doen, 

organiseren van feestjes en ontwerpen van mijn cover. 

 

Eva’tje, omdat je toch wel een speciaal plekje hebt veroverd in mijn hart, krijg jij een 

aparte alinea in dit dankwoord. Jouw positivisme heeft mij door een aantal moeilijke 

momenten gehaald. Als je weer eens op één van je lange reizen vertrok, liet je een 

briefje achter om mij te motiveren en het gemis van jouw energie naast mij te 

compenseren. Merci voor jouw hilarische pogingen tot het vervoegen van het West-

Vlaamse werkwoord ‘ja’ en intussen heb ik dankzij jou het woord ‘gekreft’ toegevoegd 

aan mijn woordenschat. Ik vond het zo jammer dat ik je trouwfeest heb gemist, maar 

als je graag eens zou hebben dat jouw stoel wordt bekleed met ‘bubbeltjesplastiek’, 

dan regel ik dat!  
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Bedankt aan al mijn vrienden om mijn gedachten te helpen verzetten en me even het 

werk te doen vergeten. Af en toe ontstressen met jullie was nodig om er dan weer 

keihard tegenaan te gaan. Cel en genners, met jullie sarcastische opmerkingen over 

de ‘medemens’ is het altijd lachen geblazen. Merci FFF-maatjes en alle andere 

muzikale vrienden voor het samen musiceren. Lieselot en Dieter, bedankt om ons te 

overtuigen echte petanquers te worden en samen met Annelies en Bram te zorgen 

voor ontspannende etentjes.  

 

Mama en papa, van jullie heb ik altijd alle vrijheid en steun gekregen om te doen waar 

ik van droomde. Jullie hadden er soms meer vertrouwen in dan ikzelf dat ik het tot een 

goed einde zou brengen. En jullie hadden gelijk, ik ben ingenieur, doctor, muzikant en 

mama geworden. Merci voor alle hulp doorheen de jaren en af en toe de 

bemoedigende woorden ‘Da komt ollamaole wel in orde!’. Dikke merci ook aan mijn 

zus Maaike en schoonbroer Dieter, broer Jelle en schoonzus Milissa, mijn 

schoonouders en alle andere Eggermontjes. Jullie staan altijd paraat om te helpen en  

hebben al die tijd voor mij gesupporterd. Dank u wel! 

 

Aäron, liefste Bollie, ik ben nu dan misschien doctor in de wetenschappen, maar jij 

verdient de titel ‘doctor in het echtgenootschap’. Ik weet dat ik niet altijd de meest 

aangename persoon ben als ik onder stress sta. Ik kan dan nogal eens kortaf zijn en 

veel klagen, maar desondanks ben jij er altijd om mij te kalmeren en terug te doen 

lachen. Merci Bolleke om al die jaren mijn steun en toeverlaat te zijn. Je mag me nu 

eindelijk aanspreken en voorstellen als Dr. Ir. Soen  . Lieve kleine Raben, ook jij 

verdiend een woordje van dank. Jij was altijd een motivatie om snel te beginnen aan 

mijn werk en het tempo hoog te houden, om dan ’s avonds beloond te worden met 

jouw stralend lachende gezichtje! 
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