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ABSTRACT Sheep scab, caused by infestation with Psoroptes ovis, is highly contagious,
results in intense pruritus, and represents a major welfare and economic concern. Here,
we report the first draft genome assembly and gene prediction of P. ovis based on
PacBio de novo sequencing. The �63.2-Mb genome encodes 12,041 protein-coding
genes.

Sheep scab, caused by the ectoparasitic mite Psoroptes ovis, is characterized by
pruritus and skin irritation and is a major welfare and economic concern for the

livestock industry (1, 2). Control relies on injectable macrocyclic lactone-based endec-
tocides and organophosphate dips, but concerns over residues, environmental con-
tamination, and the development of resistance threaten the sustainability of this
approach and have highlighted interest in developing alternative control methods (3).
However, the development of novel vaccines and identification of potential chemo-
therapeutic targets has been hampered by the lack of transcriptomic and genomic
resources for P. ovis.

Adult female P. ovis mites (�3,200, Moredun isolate) were harvested, as previously
described (4), from experimentally infested sheep. Ethical approval was obtained from
the Moredun Research Institute’s local ethics committee (E03/17). Any contaminating
host material was removed by extensive washing before mites were cleaned with 0.01%
Triton X-100. Mites were ground under liquid nitrogen in a prechilled (�80°C) pestle
and mortar, and genomic DNA (gDNA) was extracted using the SDS-proteinase K
method (5). DNA integrity was assessed on an Agilent Bioanalyzer and quantified using
a Qubit double-stranded DNA (dsDNA) broad-range (BR) assay kit. PacBio sequencing
libraries were generated from high-molecular-weight gDNA using the PacBio SMRTbell
template prep kit version 1.0 according to the manufacturer’s instructions, and se-
quencing was performed using 10 single-molecule real-time (SMRT) cells on the PacBio
RS II platform. Genomic sequences were assembled using the Hierarchical Genome
Assembly Process version 3 (HGAP3) pipeline embedded in PacBio SMRT Portal version
2.3.0.140936.p0 (6). Filtered subreads were aligned to contigs using BLASR (7), and the
corrected consensus reads were generated using Quiver (6). The contaminating se-
quences were identified using BLASTx searches of the NCBI prokaryotic RefSeq data set,
combined with tetramer frequencies and read coverage for emergent self-organizing
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map (ESOM) clustering, and removed from the final polished assembly, which con-
tained 93 contigs, with an N50 value of 2,279,290 bp and an L50 value of 8 contigs (8,
9, 10). The largest scaffold was 5,538,194 bp and, as with other closely related mites, the
GC content of the coding sequences was 33.6%. The total genome size was estimated
to be 63.2 Mb, and 14 Gb of PacBio data provided �220-fold coverage.

Gene prediction was performed with EUGENE version 4.1 (11), which was pretrained
on Dermatophagoides farinae (BioProject number PRJNA379991). The extrinsic data
used to support the ab initio gene models were protein sets from Tetranychus urticae,
RefSeq data (invertebrates), D. farinae predictions, and transcript data from P. ovis. The
pipeline identified 12,041 predicted protein-coding genes, with an average length
1,928.21 bp, in agreement with the predicted average gene size (�1,800 bp) for a
genome of �63.2 Mb. The presence of core eukaryotic protein-coding genes was
assessed with BUSCO version 1.22 (arthropod set) (12) with 91% of arthropod single-
copy orthologs present. Predicted genes were functionally annotated by combining
InterProScan (13) and reciprocal best BLAST hits, generating sensible gene function
descriptions. Potential secretion signals, transmembrane helices, and other domains
were predicted in PHOBIUS (14). BLAST hits against the NCBI nonredundant (nr)
database (July 2016) were identified for 9,964 genes, and gene ontology (GO) assess-
ment was performed in Blast2GO (15), resulting in the assignment of GO terms for 7,957
genes and functional annotation for 5,217 genes.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number PQWQ00000000. The version de-
scribed in this paper is the first version, PQWQ01000000.
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