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CHAPTER 1

Introduction

The randomised controlled trial (RCT) is regarded as the gold standard for the
evaluation of the causal effect of an exposure on an outcome. Next to primary
intention-to-treat analyses, there is a growing recognition of the usefulness of medi-
ation analysis in the analysis of randomised experiments. The goal of mediation
analysis is to investigate the mechanisms that underlie the observed causal rela-
tionship between treatment and outcome: ‘opening the black box’ as Hafeman and
Schwartz (2009) would say. In randomised controlled trials, mediation analyses can
be used to identify why and how the treatment achieves its effect on the outcome by
decomposing the total intention-to-treat effect into an indirect effect acting through
a given intermediate variable, the so-called mediator, and the remaining direct effect

(Kraemer et al. 2002; Oakley et al. 2006). As such, a mediation analysis may reveal
the causal pathways through which a treatment affects a certain outcome of interest.
Knowledge about these causal pathways may lead to a better understanding of how
the treatment works. By focussing on active treatment elements and separating them
from those that are inessential, better, more efficient, less expensive and possibly
safer treatment regimes with fewer side effects may be developed (Kraemer et al.
2002). Consider, for example, the LEADER trial (Marso et al. 2016), where the



Chapter 1. Introduction1
primary analysis aimed to examine the effect and safety of liraglutide versus a
placebo in adults with type 2 diabetes on time to first major adverse cardiovascu-
lar event (MACE), defined as time from randomisation to cardiovascular death,
non-fatal myocardial infarction, or non-fatal stroke, ‘whichever came first’. Rather
unexpectedly, the results in Marso et al. (2016) showed cardiovascular benefits of
liraglutide as compared to the placebo treatment. Beneficial side effects such as
weight loss, lower glucose levels and improved circulation as a result of a higher
heart rate and lower systolic blood pressure were reported. Rasmussen and Nordisk
(2016) hypothesized that these beneficial side effects could be potential mediators
of the protective effect of liraglutide on time to first MACE. In this setting, media-
tion analysis could thus be used to examine the importance of potential mediators
reduction in HbA1c (blood glucose level), weight loss and improved circulation
from baseline on the hypothetical pathway from liraglutide to time to first MACE.

Furthermore, mediation analyses can be used to evaluate the effectiveness of
an existing treatment to deal with a problem or disease for which it was not orig-
inally developed. In the evaluation of antidepressants, for example, researchers
have noticed that certain antidepressants not only reduce symptoms of depression,
but also improve cognitive function, which is known to be associated with major
depressive disorder (MDD) (McIntyre et al. 2013). The efficacy of vortioxetine
(a rather novel antidepressant) on depressive symptoms, for instance, has already
been demonstrated in several short-term studies (6 to 8 weeks) (Alvarez et al. 2012;
Boulenger et al. 2014). Its effect on cognitive function was further examined in the
randomised controlled trial of McIntyre et al. (2014), which showed a beneficial
effect of vortioxetine on cognition and more importantly that this effect is mainly
due to a direct treatment effect, and not because it eased depressive symptoms
(i.e. indirect effect). Such results may convince the scientific community of the
usefulness of vortioxetine in improving cognitive function, even in the absence of
depressive symptoms, for example to improve residual cognitive function deficits
in remitted patients.

In randomised trials, mediation analyses are also recommended when the inter-
pretation of the intention-to-treat effect is hindered by the presence of intermediate
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1
variables. One such example is the MIRA trial (Padian et al. 2007; Rosenblum
et al. 2009), a randomised controlled trial in HIV-negative, sexually active women
in South Africa and Zimbabwe that aimed to asses the effect of diaphragm and
lubricant gel use in reducing HIV infection. The 5045 female participants were
randomised to either the placebo treatment consisting of intensive condom coun-
selling and provision (i.e. the usual HIV prevention method) or the active treatment
that additionally provided women with a latex diaphragm and lubricant gel. Un-
fortunately, the results showed that the proportion of women using condoms was
significantly lower in the active treatment than in the placebo group, which made it
difficult to draw conclusions about diaphragm and gel efficacy. With a mediation
analysis, Rosenblum et al. (2009) isolated the effect of diaphragm and lubricant gel
on HIV infection mediated by condom use from the remaining direct effect and
thereby provided more information about diaphragm and gel efficacy had condom
use not been influenced, which is considered an important public health question.
Similar complications arise in randomised trials that include the possibility of
rescue medication, if this occurs more frequently in one of the treatment arms. The
intention-to-treat effect, for instance, will not fully reflect the potential beneficial
effect of an active treatment on survival if patients that received the placebo treat-
ment more frequently receive additional rescue medication.

Finally, mediation analyses in randomised trials are also useful to examine
mediating variables that are possible indicators of later disease, so-called inter-

mediate endpoints or surrogate markers. Consider the EORTC 10994/BIG 1-00
randomised phase 3 trial (Bonnefoi et al. 2011), where women with locally ad-
vanced inflammatory or large operable breast cancer were randomly assigned to one
of two neoadjuvant treatments before undergoing primary surgery. The study was
set up to examine whether TP53 status could be used to predict if women would be
more sensitive to anthracycline or taxane based neoadjuvant chemotherapies. At the
time of surgery, pathological complete response (pCR), i.e. complete disappearance
of any invasive cancer in the primary tumour and lymph nodes with the exception
of very few scattered tumour cells, was measured. In neoadjuvant trials, pCR is
often used as an endpoint to support accelerated approval of a drug for high-risk,
early stage breast cancer, such that patients can be provided (conditional) access to
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Chapter 1. Introduction1
promising drugs while confirmatory clinical trials are being conducted. Mediation
analysis methods can be used to examine the validity of intermediate endpoints
such as pCR. Identifying these surrogate markers is useful because replacing rare
or late-occurring clinically relevant outcomes by frequent or short-term outcomes,
might substantially reduce the cost and duration of experiments. But although the
benefits are obvious, caution is in order. Inappropriately using a surrogate endpoint
instead of the outcome of interest may give misleading results which in turn may
lead to improper treatment for a large group of patients. One can find examples in
studies about cardiovascular disease and colorectal cancer where arrhythmia and
tumour response respectively are often used as an intermediate endpoint for overall
survival. The Cardiac Arrhythmia Suppression Trial Investigators (1989) showed
that the two major antiarrhythmic drugs encanaide and flecanaide indeed reduced
arrhythmia initially, but also more than tripled the risk of eventually dying from
arrhytmia. In advanced colorectal cancer, Buyse et al. (2000b) concluded, based on
their meta-analysis of 25 randomised trials, that an increased tumour response was
indeed related to an increase in overall survival. Knowing the effect of treatment
on tumour response, however, seemed insufficient to predict its ultimate effect on
overall survival. Using arrhythmia and tumour response as surrogate endpoints for
overall survival in clinical trials might thus not be appropriate.

1.1 Mediation history

Mediation analysis is a popular topic nowadays, but the first attempt at quantifying
mediating mechanisms in fact began in the early twentieth century with Wright’s
path analysis (Wright 1920). Wright’s path analysis visually displays the variables
and the relations between them in a path diagram and generates coefficients that
represent the strength of the relationship between those variables. It was Wright
who showed that the mediating process could be quantified as the product of all the
path coefficients in the chain of mediation. Later on, structural equation modeling
became popular when the path analysis approach was rediscovered by sociolo-
gists and economists (Duncan 1966; Simon 1954) and was made more general by
combining it with covariance structure modeling (Bentler 1980). These structural
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equation models combine a structural model that shows dependencies between the
variables and a measurement model showing relations between the latent variables
and their indicators. As such, path analysis is a special case of structural equation
modeling, consisting of only the structural part (i.e. no latent variables).

In the 1970s, researchers from several fields became aware of the usefulness of
mediation analysis. In social sciences, structural equation modeling was revisited
with two landmark papers about mediation: one from Judd and Kenny (1981), who
used mediation analysis for the development and evaluation of disease prevention
programs, and one from Baron and Kenny (1986), that described methods to
examine mediation and moderation in detail. MacKinnon (2008) gives an overview
of these statistical procedures typically used in social sciences to conduct mediation
analysis for single and multiple mediators. In the medical and epidemiological
literature, Prentice (1989) examined the existence of mediating variables as possible
surrogate markers. He provided a formal definition and rather strict criteria to
validate surrogate endpoints, because a variable could only be a surrogate marker
if it fully captured the treatment effect on the primary endpoint. In practice, a
surrogate endpoint is more likely to only explain part of the treatment effect.
Therefore, Freedman et al. (1992) suggested the proportion-explained approach,
better known as the Freedman approach, a quantitative measure of the proportion
of the effect of the treatment on the outcome that is explained by the surrogate.

1.1.1 Traditional mediation analysis with a single mediator

Before providing a detailed description of modern causal mediation analysis ap-
proaches, we first discuss the traditional approach and the problems accompanying
it. We will make use of graphs, which we will refer to as causal diagrams, to
visualize this. Figure 1 shows the causal diagram of an ideal randomised study (i.e.,
no loss to follow-up, full treatment adherence, and double blind assignment) with
treatment A and end-of-study outcome Y .

A Y
α∗

Figure 1: Causal diagram of the effect of treatment A on outcome Y .
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Chapter 1. Introduction1
For a continuous outcome Y , the intention-to-treat effect can be estimated via a
linear regression model of Y on A:

E(Y |A) = µ1 +α
∗A, (1.1)

where α∗ represents the intention-to-treat effect, for which an unbiased (in large
samples) estimate can be obtained by substituting α∗ by an ordinary least squares
estimate.

A

M

Y A

M

Y

U

(A) (B)

α

βδ

αc

βcδ

Figure 2: Causal diagram of randomised treatment A, mediator M,
outcome Y (A) and confounders U (B).

Figure 2a again illustrates a causal diagram of an ideal randomised experiment
with treatment A, mediator M and continuous outcome Y . Two additional linear
regression models are used to investigate mediation:

E(Y |A,M) = µ2 +αA+βM (1.2)

and

E(M|A) = µ3 +δA. (1.3)

The direct effect of A on Y not going through intermediate variable M, α is esti-
mated via the regression of Y on A with adjustment for M. Even if A is randomised,
one can not be sure that α̂ , an estimator of α , results in an unbiased estimate of the
direct treatment effect on outcome Y . The problem is that while A is randomised,
the mediator M is not. And thus, it is very likely that there are unmeasured common
causes U of mediator M and outcome Y (Figure 2b) and even if they would have
been measured, the linear regression model in (1.2) does not control for them. As a
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11.1. Mediation history

result, α̂ is not an unbiased estimator because the estimate will not only contain
the direct effect A→ Y , but also a spurious association via A→M←U → Y . To
gain insight, imagine a causal diagram with randomised treatment A (e.g., antide-
pressants), mediator M (e.g., depressive symptoms), outcome Y (e.g., cognitive
function) and common cause U (e.g., physical activity level). Although the treat-
ment and one’s physical activity level are not associated by themselves, this changes
if we condition on depressive symptoms. One can easily imagine that those patients
who experience a decrease in their depressive symptoms, but were not physically
active, were more likely the ones that received antidepressants and not a placebo.
As such, the regression coefficient α would not only consist of the direct effect of
antidepressants on cognitive function (i.e., αc), but also of an additional source of
association due to the inclusion of depressive symptoms into the regression model,
because this induces an association between treatment and physical activity level,
which is also associated with cognitive function.

The effect of treatment A on outcome Y that goes through the intermediate
variable M can be estimated via two different approaches. We can see this if we use
equations (1.2) and (1.3) to rewrite E(Y |A) from (1.1) as follows:

E(Y |A) = E{E(Y |A,M)|A}

= E{µ2 +αA+βM|A}

= µ2 +αA+βE{M|A}

= µ2 +αA+β (µ3 +δA)

= µ2 +β µ3 +(α +βδ )A (1.4)

Then µ1 and α∗A from (1.1) equal µ2+β µ3 and (α+βδ )A from (1.4) respectively.
The latter equality can be rewritten as:

α
∗−α = δβ (1.5)

which shows the two approaches to calculate the indirect effect. Estimates for the
indirect effect can be obtained by substituting α∗, α , δ and β by ordinary least
squares estimates. Substituting α∗ and α on the left-hand side, results in an indirect
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Chapter 1. Introduction1
effect estimated via the difference-of-coefficients method, where the indirect effect
equals the difference between the total and the direct effect. Substituting δ and
β on the right-hand side equals the mediated or indirect effect according to the
product-of-coefficients method. The total intention-to-treat effect, α∗, can thus be
decomposed into a direct effect, α , and an indirect effect δβ = α∗−α . Freedman
et al. (1992) similarly used the difference between α∗ and α as a measure of the
indirect effect and additionally divided this by the total intention-to-treat effect α∗,
which results in the proportion of the effect of treatment A on outcome Y that is
explained by mediator M, the so-called proportion mediated.

Similar to the problem with α̂ , an estimator of α in equation (1.2), β̂ will not
be an unbiased estimator of β (i.e. the effect of mediator M on outcome Y ), because
M is not randomised. Unlike α̂∗ estimator of α∗ in equation (1.1) and δ̂ estimator
of δ in equation (1.3) that are unbiased because treatment A is randomised, we
can not be sure about α̂ and β̂ if we have not measured all common causes of M

and Y or do not include them in our analysis. This bias, induced because common
causes of the mediator and outcome are not included, is called confounding bias.
Although Judd and Kenny (1981) and MacKinnon (2008) recognise the need to
control for important confounders of the mediator - outcome relationship, even in
randomised trials, this was not pointed out by Baron and Kenny (1986) and thus
frequently ignored in the social sciences literature.

A main concern of this traditional approach is that it was originally developed
for linear regression models. Assuming linear relationships is no longer appropriate
however, when the outcome is not measured at the interval level. As a result, the
method was extended to non-linear models and is routinely used in those settings,
but it has no formal justification and the interpretation of the effect measures is
not well-defined (Lin et al. 1997; Kaufman et al. 2004; Imai et al. 2010; Pearl
2012). Tein and MacKinnon (2003) apply this approach to time-to-event outcomes,
with accelerated failure time and proportional hazard models, but their analysis has
severe shortcomings. They use model (1.3) for the mediator and two proportional
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11.1. Mediation history

hazard models for the time-to-event outcome

λ (t) = λ0(t)exp{γA+ηM} (1.6)

and

λ (t) = λ0(t)exp{γ∗A} (1.7)

or the log hazard form of the models

log{λ (t)}= log{λ0(t)}+ γA+ηM (1.8)

and

log{λ (t)}= log{λ0(t)}+ γ
∗A. (1.9)

and assume that there is no censoring. If the population regression parameters γ∗,
γ , η and δ are substituted with their appropriate estimators γ̂∗, γ̂ , η̂ and δ̂ , then
Tein and MacKinnon (2003) show via simulations that with proportional hazards
models the indirect effect estimated via the difference-of-coefficients method (i.e.
γ̂∗− γ) differs from the product-of-coefficients estimate of the indirect effect (i.e.
η̂ δ̂ ). VanderWeele (2011) shows, provided that the outcome is rare and there
are no treatment-mediator interactions, that the difference-of-coefficients method
and product-of-coefficients method approximately coincide. In general, however,
neither the product-of-coefficients or the difference-of-coefficients method for the
proportional hazards model have a clear causal interpretation as a measure of effect.

Additionally, VanderWeele (2011) shows that even if the outcome is not rare,
the product-of-coefficients method does provide a valid test for whether there is
an indirect effect of treatment on the outcome, provided the models are correctly
specified and that the assumptions for natural direct and indirect effects, discussed
later on, hold. That this is true can be understood as follows: η̂ δ̂ will only be
different from zero if both η̂ and δ̂ are different from zero. If the assumptions for
natural direct and indirect effects hold and the models for the outcome and mediator
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Chapter 1. Introduction1
are correctly specified then from δ̂ 6= 0 it follows that A has a direct effect on M

and from η̂ 6= 0 it follows that M has a direct effect on Y and as a result that the
natural indirect effect is non-zero. The difference-of-coefficients method, on the
other hand, can potentially result in an effect estimate for the indirect effect that
is different from zero in non-linear models even when there is no indirect effect.
This problem of non-linear models is called non-collapsibility (Greenland et al.
1999). Imagine a simple example (Figure 3) with a binary randomised exposure A,
a covariate M and a time-to-event outcome Y .

A

M

Y

Figure 3: An example of non-collapsibility.

Fitting a Cox regression model with and without adjustment for M may result
in estimates of a systematically different magnitude for the intention-to-treat ef-
fect, even when M is not a mediator, as in the example, because exposure A has
no effect on M (Martinussen and Vansteelandt 2013). Another concern with the
difference-of-coefficients method is model incongeniality. If there are two Cox
regression models for outcome Y that are fitted simultaneously, then in general they
are unlikely to be true at the same time (Lin et al. 1997; Bycott and Taylor 1998).

In the surrogacy setting, Freedman’s approach received the criticism that the
proportion explained is unstable in small samples or for small effect sizes (Daniels
and Hughes 1997; Lin et al. 1997; Buyse and Molenberghs 1998; Bycott and Taylor
1998; Freedman 2001; MacKinnon et al. 1995). It only seemed useful in situations
with a highly significant total treatment effect or large sample sizes. Otherwise this
proportion explained could possibly lie outside the [0,1] range and the confidence
intervals frequently cover the whole [0,1] interval, which is too wide to be useful.
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11.1. Mediation history

1.1.2 Traditional mediation analysis with multiple mediators

Often more than one mediational process is of interest in the study of the rela-
tionship between the treatment and outcome of interest. The Multiple Risk Factor
Intervention Trial (MRFIT) Group (1990), for instance, designed the trial to study
the effect of treatment on prevention of heart disease via three possible mediators:
smoking, cholesterol and blood pressure. At other times, a scenario with multi-
ple mediators presents oneself when the relationship between the mediator and
outcome of interest is confounded by a second mediator. In the Multiple Risk
Factor Intervention Trial, for instance, there is a good chance that smoking is both
mediator and, since it influences cholesterol and blood pressure, a confounder of the
relationship between the outcome and the other mediators. The traditional literature
on structural equation models (MacKinnon 2008) provides a framework to deal
with multiple mediators that is a straightforward extension of their single mediator
approach.

A

M1

M2

Y
α

β1δ1

β2δ2

Figure 4: Causal diagram of randomised treatment A, mediators M1 and M2, and
outcome Y .

Four regression equations are used to study mediation in the simple two-mediator
model represented in Figure 4.

E(Y |A) = µ1 +α
∗A, (1.10)

E(Y |A,M1,M2) = µ2 +αA+β1M1 +β2M2 (1.11)

11



Chapter 1. Introduction1
E(M1|A) = µ3 +δ1A. (1.12)

E(M2|A) = µ4 +δ2A. (1.13)

In the traditional mediation analysis approach edges in sequence can be multiplied
to obtain effects of interest. As such, the product of parameters δ1 and β1, i.e. δ1β1,
and the product of parameters δ2 and β2, i.e. δ2β2, are assumed to represent the
mediated or indirect effects via M1 and M2 respectively. Similarly to the single me-
diator model, the direct effect of A on Y not going through any intermediate variable,
α is estimated via the regression of Y on A with adjustment for M1 and M2. This
means that the total intention-to-treat effect, α∗, can be decomposed into a direct
effect, α , and a total indirect effect α∗−α or δ1β1 +δ2β2 (i.e. the difference-of-
coefficients and the product-of-coefficients method respectively, when substituted
with their respective estimators). The latter follows from the fact that parallel effects
(i.e., A→M1→Y and A→M2→Y ) can be summed to obtain the effect of interest.

A

M1

M2

Y
α

β1δ1

β2δ2

δ3

Figure 5: Causal diagram of randomised treatment A, sequential mediators M1 and
M2, and outcome Y .

A slightly more complicated setting arrises when M1 is not only a mediator, but
also a confounder of the relationship between the outcome and the second mediator,
as in Figure 5. In the regression equations, mediator M1 is added to the regression
equation for M2, with δ3 as parameter. As for the effects, similarly, the direct effect
of A on Y not going through any intermediate variable equals α . Mediated effects
are estimated via the product of the coefficients for each of the paths in the causal
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11.1. Mediation history

pathway and the sum of parallel pathways. Thus, the total indirect effect of A

on Y is calculated as δ1δ3β2 +δ1β1 +δ2β2. In the traditional mediation analysis
approach, this effect can be broken down into three-paths: the effect passing via
both mediators δ1δ3β2, and the effects via only one of the mediators δ1β1 and δ2β2.

The structural equation model approach to traditional longitudinal mediation
analyses of continuous and binary outcomes (MacKinnon 2008) and extensions
to time-to-event outcomes, so-called dynamic path analysis (Fosen et al. 2006;
Strohmaier et al. 2015) have received a lot of critique. Next to the fact that they
deliver no meaningful or vague interpretations of the effects, these techniques
were originally developed for linear regression analysis and have no justification in
non-linear models (VanderWeele and Vansteelandt 2009, 2010; Imai et al. 2010).
Outside of linear models the difference-of-coefficients method falls short and the
product-of-coefficients method is only valid under very stringent parametric con-
straints (Taylor et al. 2008), such as the combination of specific parametric models,
for example an additive hazard model for the time-to-event (due to its collapsibil-
ity properties) and linear regression models for the mediators in survival settings
(Fosen et al. 2006; Strohmaier et al. 2015). Literature on the topic is also rather
vague about their assumptions of unmeasured confounding: they logically assume
no unmeasured treatment-outcome and mediator-outcome confounding, but also
implicitly assume the absence of unmeasured confounders of the multiple mediators
and measured time-varying confounders and the outcome. Additionally, they as-
sume the absence of long term effects of covariates and mediators on covariates and
mediators measured later in time. Further, they work under a strong no-interaction
assumption on the individual level: the difference in outcome that would have been
observed for a patient under active and placebo treatment with the mediator fixed to
equal m is constant for all values of m (De Stavola et al. 2015). This assumption is
biologically rather unlikely however and known to be violated in the presence of
treatment - mediator interactions and with dichotomous and time-to-event endpoints
(Robins and Greenland 1992; Robins 2003; De Stavola et al. 2015). Finally, they
provide effect estimates for all path-specific effects in Figure 5. Later, it will be
shown that such an effect decomposition is unrealistic as the indirect effect via
M1 and M2 (i.e., A→M1→M2→ Y ) can never be separated from the effect only
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going through M1.

The extensive number of papers published in the last decade in medical and
epidemiological journals on the topic of mediation analysis in randomised and
non-randomised studies (Ananth and VanderWeele 2011; Lynch et al. 2008; Nandi
et al. 2012; Oba et al. 2011; Rochon et al. 2014; Wang et al. 2010) illustrates that,
recently, the scientific community indeed has taken a big interest in the analysis
of direct and indirect effects of an exposure on an outcome. Extending the social
sciences literature of the 1980s (Baron and Kenny 1986; Judd and Kenny 1981),
methodological advances in the causal inference literature, which we will describe
in the next section, have provided a way to formally decompose these effects under
certain well-defined conditions.

1.2 Methodological advances in mediation analysis

1.2.1 Potential Outcomes

First some potential outcome or counterfactual notation is introduced. This formal
framework, used to clarify causal effects and conditions that enable estimating these
effects, is actually very intuitive because people are used to reasoning in terms of
hypothetical situations in everyday life: “If I take an aspirine now instead of doing
nothing, my headache will be gone within 30 minutes”.

Let’s get back to the LEADER trial, ignoring censoring and the typical skewness
of survival times for now. There the causal effect of liraglutide on time to first
MACE can be defined as the difference between two potential outcomes: the time
to first MACE that would be realised if the patient received liraglutide and the one
that would be realised if the patient received the placebo. Let X denote the baseline
covariates and possible confounders of the relationship between blood glucose,
the mediator M and time to first MACE, the outcome Y . Further, let A denote
the randomised treamtent with two treatment arms, the placebo (A = 0) and the
experimental treatment liraglutide (A = 1), with known randomisation probabilities.
Then, we can use M(a) and Y (a) to denote the potential blood glucose level and
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11.2. Methodological advances in mediation analysis

the potential time to first MACE that would occur under treatment status a. Thus,
Mi(0) and Mi(1) measure individual i’s blood glucose level if this individual would
have been randomised to receive the placebo or liraglutide, respectively. Similarly,
Yi(0) and Yi(1) measure what would have happened to the potential time to first
MACE of individual i, if this individual had been randomised to receive the placebo
or liraglutide, respectively. Even though there are two potential outcomes for
each patient, only one of them is actually observed. For instance, if patient i was
randomised to the placebo treatment, then only Yi(0) is observed and Yi(1) remains
unobserved for that patient. The causal effect of liraglutide on time to first MACE
for patient i can subsequently be defined as Yi(1)−Yi(0). It is impossible to identify
this unit-level causal effect, even in randomised experiments, because only one of
these two counterfactual outcomes are observed. Therefore, the focus of researchers
is on the estimation of the population-average causal effect defined as

E{Y (1)−Y (0)}.

1.2.2 Natural Direct and Indirect Effects

But what if researchers from the LEADER trial (Rasmussen and Nordisk 2016) were
interested in whether the protective effect of liraglutide on time to first MACE is
due to its effect on blood glucose level. Robins and Greenland (1992) extended the
counterfactual outcome notation to define causal mediation effects by introducing
nested counterfactuals. Previously, the potential outcomes (e.g. Y (a)) were a
function of the treatment, while in mediation analysis a potential outcome (e.g.
Y (a,M(a)) is itself a function of the treatment and another potential outcome M(a).
Mediation analysis does not only rely on nested counterfactuals such as Y (a,M(a)),
but also makes use of cross-world counterfactuals like Y (a,M(a∗)). These nested
counterfactuals are referred to as cross-world counterfactuals because they require
information from a single patient in two separate “worlds” a and a∗. Using these
nested counterfactuals, we can now define the indirect effect via mediator M for
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each patient i as

INDi(a) = Yi(a,Mi(1))−Yi(a,Mi(0))

with a = 0 the pure indirect effect and a = 1 the total indirect effect (Robins, 2003).
These indirect effects show what would have happend to the time to first MACE for
patient i had this patient’s blood glucose level been changed from Mi(0), the blood
glucose level he would have had, had he been randomised to the placebo arm, to
Mi(1), his potential blood glucose level on the liraglutide arm, without changing the
actual treatment arm (i.e. holding it fixed at a). For a = 1 for example, Yi(1,Mi(1))
equals the observed time to first MACE if this patient would have been randomised
to the liraglutide treatment arm. Whereas Yi(1,Mi(0)) represents what the time
to first MACE for patient i would have been, had this patient been randomised
to the liraglutide treatment, but with a blood glucose level equal to the one he
would have had if he would have been randomised to the placebo arm. Note that
the counterfactual Y (1,M(0)) is itself a function of another counterfactual M(0)
but with a different a status, as such, Y (1,M(0)) is unobservable, but it allows the
formal expression of the indirect effect of treatment on outcome.

Similarly, the direct treatment effect for patient i can be defined as

DEi(a) = Yi(1,Mi(a))−Yi(0,Mi(a))

with a= 0 the pure direct effect and a= 1 the total direct effect (Robins, 2003). The
direct effect of treatment is thus the change in time to first MACE had patient i been
randomised to the liraglutide treatment instead of the placebo, while holding his
blood glucose level fixed at the level it would have been naturally under treatment
regime a. If we assume that the direct and indirect effects do not vary in function of
treatment status (i.e., no difference in the pure and total direct and indirect effects:
IND = IND(1) = IND(0) and DE = DE(1) = DE(0)), then note that the sum of
either one of these direct and indirect effects equals the total intention-to-treat
effect. If the direct and indirect effects do differ in function of treatment status, then
one total and one pure effect sum to the total intention-to-treat effect. In practice,
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researchers are typically interested in the average direct effect

DE(a) = E{Y (1,M(a))−Y (0,M(a))},

and the average indirect effect

IND(a) = E{Y (a,M(1))−Y (a,M(0))}

for a = 0 or 1. Pearl (2001) referred to these effects as natural direct and indi-
rect effects, in contrast to controlled direct effects E{Y (1,m)−Y (0,m)}, because
the natural direct effect captures the treatment effect upon fixing the mediator to
the level it would have naturally taken for a patient under treatment regime a,
rather than fixing it to be m for all patients. The strength of this potential outcome
framework is that it defines causal direct and indirect effects without reference to
specific statistical models. They can accommodate all kinds of linear and nonlinear
relationships and various types of mediators and outcome variables irrespective of
the scale of interest. Previously, we defined the effects in terms of mean differences,
but they can be defined in terms of risk ratios and odds ratios as well.

Sceptics criticize the fact that natural direct and indirect effects are defined as a
contrast of potential outcomes (i.e. outcomes that are not directly observed), but
would have been observed if the mediator and/or exposure would have been different.
Moreover, cross-world counterfactuals are involved, as they are potential outcomes
that can never be observed in practice. Because scientists are generally interested
in investigating the effect of a realistic intervention, this raises the question whether
natural direct and indirect effects are all that informative if they do not even
correspond to some realistic event. This does not mean however that natural direct
and indirect effects should be forgotten altogether. First, they can be identified if one
is willing to make specific assumptions. Also note that statisticians continuously
seek for ways to relax these and make them more realistic. Secondly, many causal
effects can not be estimated via randomised trials for ethical or practical reasons,
but this should not be the reason why one should not try to get as close to the truth
as possible (Naimi et al. 2014).
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1.2.3 Identification

The nested counterfactuals that enable the formal expression of natural direct and
indirect effects are related to the observed variables through the consistency as-

sumption. If this assumption holds, then interventions that set exposure A to 1 (or
0) have no effect amongst those for whom the observed exposure level was A = 1
(or A = 0). This also holds for interventions on the mediator. In mediation analyses,
we additionally make the composition assumption that Y (1,M(1)) = Y (1) = Y if
A = 1. This implies that mediation analyses give us the results of non-invasive in-
terventions or manipulations (VanderWeele and Vansteelandt 2009), thus, changing
the exposure while holding the mediator at a fixed, but individual-specific in case
of natural effects, level.

Natural direct and indirect effects conceptualize an intervention on both the
mediator and the exposure and their identification requires specific assumptions
besides the consistency and composition assumption. Because they conceptualize
an intervention on the exposure, one has to control for all confounders of both the
exposure-mediator and the exposure-outcome relationship in the sense that

∀ a,m : Y (a,m)⊥⊥ A|X , (1.14)

and

∀ a : M(a)⊥⊥ A|X . (1.15)

Thus, the counterfactual outcome Y (a,m) and the counterfactual mediator M(a)

should be independent of the actual treatment A within strata of a set of covariates X .
This is the so-called conditional ignorability assumption, which states, for example
in (1.14) with Y mortality, that within strata of X the risk of dying that would have
been observed under treatment regime a = 1 and mediator level m, would be the
same in the treatment group that actually got A = 1 as in the A = 0 group if they
would have received, contrary to the fact, the same treatment as the A = 1 group.
Also called the no unmeasured confounding assumption, these assumptions show
that X has to be a sufficient set of covariates to adjust for possible confounding
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of the exposure-outcome and exposure-mediator relationship. Since we focus on
randomised controlled trials, we do not need to worry about these two assumptions,
because randomisation is expected to produce conditional ignorability with respect
to the randomised treatment A. But randomisation in itself is not enough. The
mediator is not randomly assigned and identification of natural direct and indirect
effects, even in randomised trials, demands additional control for confounding of
the mediator-outcome relationship. One thus has to assume that all confounders X

of the mediator-outcome association have been measured in the sense that

∀ a,m : Y (a,m)⊥⊥M|A = a,X . (1.16)

This states that the counterfactual outcome Y (a,m) that, possibly contrary to the fact,
would have been observed under an intervention that sets A = a and M = m, does
not depend on the actual level M within strata with A = a and a set of covariates X .
Not only do we need information about nested counterfactuals such as Y (1,M(1))
in the subjects for whom A = 1 is actually observed, we also need to learn about
the distribution of cross-world counterfactuals such as Y (1,M(0)). Pearl (2001)
assumes that

∀ a,a∗,m : Y (a,m)⊥⊥M(a∗)|X . (1.17)

If we assume that the data are generated under a non-parametric structural equation
model with independent errors (NPSEM, Pearl 2009) and if assumption (1.16)
holds, then assumption (1.17) holds if there are no confounders L of the mediator-
outcome relationship that are influenced by the treatment themselves. In that case
the setting would become more complex, because then these variables L are both
confounders and mediators on the causal pathway of interest. Generally, natural
direct and indirect effects can not be identified in the presence of so-called interme-

diate confounders (Avin et al. 2005).

The assumption of cross-world independence (1.17) has been a source of much
controversy. It implies that mediation analyses are bound to rely on assumptions
that can not be guaranteed by study design, not even in randomised cross-over trials
of the exposure (Robins and Greenland 1992). Since Y (a,m) and M(a∗) only seem
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to coexist across multiple worlds, assumption (1.17) can also not be empirically
verified, because when a is different from a∗ the observed data simply carry no
information about the dependence of Y (a,m) and M(a∗).

Under assumptions (1.14) to (1.17), the natural direct and indirect effect are
nonparametrically identified as

DE(a) =
∫ ∫
{E(Yi|Mi = m,Ai = 1,Xi = x)−E(Yi|Mi = m,Ai = 0,Xi = x)}×

FMi|Ai=a,Xi=x(m) FXi(x) dx dm (1.18)

and

IND(a) =
∫ ∫

E(Yi|Mi = m,Ai = a,Xi = x)×{
FMi|Ai=1,Xi=x(m)−FMi|Ai=0,Xi=x(m)

}
FXi(x) dx dm, (1.19)

respectively, using the mediation formula (Pearl 2012). This can be seen since
assumptions (1.14) to (1.17) and the consistency assumption imply that

E[Yi{a,Mi(a∗)}]

=
∫

E[Yi{a,Mi(a∗)}|Xi = x] FXi(x) dx

=
∫ ∫

E[Yi(a,m)|Xi = x,Mi(a∗) = m] FMi(a∗)|Xi=x(m) FXi(x) dx dm

=
∫ ∫

E[Yi(a,m)|Xi = x,Mi(a∗) = m,Ai = a∗] FMi(a∗)|Xi=x(m) FXi(x) dx dm

=
∫ ∫

E[Yi(a,m)|Xi = x,Ai = a∗] FMi(a∗)|Xi=x(m) FXi(x) dx dm

=
∫ ∫

E[Yi(a,m)|Xi = x,Ai = a] FMi(a∗)|Xi=x,Ai=a∗(m) FXi(x) dx dm

=
∫ ∫

E[Yi(a,m)|Xi = x,Ai = a,Mi = m] FMi(a∗)|Xi=x,Ai=a∗(m) FXi(x) dx dm

=
∫ ∫

E[Yi|Xi = x,Ai = a,Mi = m] FMi(a∗)|Xi=x,Ai=a∗(m) FXi(x) dx dm

=
∫ ∫

E[Yi|Xi = x,Ai = a,Mi = m] FMi|Xi=x,Ai=a∗(m) FXi(x) dx dm (1.20)

where the third equality follows from assumption (1.14), assumption (1.17) and
assumption (1.16) are used to establish the fourth and sixth equality respectively,
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assumption (1.14) together with assumption (1.15) are used to establish the fifth
equation and the final equalities follow from the consistency assumption. Changing
a and a∗ in (1.20) and subtracting the expressions accordingly results in the equa-
tions for the natural direct (1.18) and indirect effect (1.19).

Note that under the no-interaction assumption (i.e., IND = IND(1) = IND(0)
and DE = DE(1) = DE(0)), these natural direct and indirect effects coincide with
the Baron and Kenny (1986) approach if the linear regression models of (1.2) and
(1.3) are correctly specified (VanderWeele and Vansteelandt 2009; Imai et al. 2010).
When linearity assumptions no longer hold, the traditional structural equation
models fail (MacKinnon 2008). The advantage of the mediation formula is that it
enables one to estimate natural direct and indirect effects via arbitrary models for
the mediator and the outcome.

A number of papers have been published on this topic and give closed-form
expressions for natural direct and indirect effects for a limited number of media-
tor and outcome combinations (Lange and Hansen 2011; Valeri and VanderWeele
2013; VanderWeele 2009; VanderWeele and Vansteelandt 2010; VanderWeele 2011).
Combining parameter estimates from a regression model for the mediator and a re-
gression model for the outcome in a specific way, however, often results in complex
expressions if they can be defined altogether (Lange et al. 2012). In time-to-event
scenarios, Lange and Hansen (2011) show how to combine normal regression
models for continuous mediators with additive hazard models for event times in
a somewhat restrictive setting with no interactions involving the mediator or the
exposure. VanderWeele (2011) uses Cox proportional hazards models or acceler-
ated failure time models in the case of rare events. Huang and Cai (2016) achieve
greater flexibility by relying on semiparametric probit models for the event-time
which combine well with linear models for possibly multiple mediators. Imai et al.
(2010) suggest a different, more generic approach based on Monte Carlo sampling
to derive natural direct and indirect effects in their R-library mediation. It has the
advantage that it can handle all types of mediators and outcome variables and that
one only has to specify a model for the mediator and the outcome, to get natural
direct and indirect effect estimates in terms of mean differences. In case of survival
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times, reporting effects in terms of mean differences is less ideal, however, because
of skewness and censoring. In time-to-event settings, the mediation package avoids
the need for the rare event assumption that VanderWeele (2011) had to deal with at
the cost of demanding parametric survival models. Recently, a lot of work has been
done on flexibly implementing these natural direct and indirect effects via natural
effect models (Lange et al. 2012; Vansteelandt et al. 2012a; Loeys et al. 2013; Steen
et al. 2016). Additionally, there are proposals like the one of Tchetgen Tchetgen
(2011) and Zheng and van der Laan (2012a), that offer appealing robustness prop-
erties. Considering the concern for bias due to model misspecification, which is
quite dominant in the analyses of randomised trials, part of this thesis will focus on
robust mediation analysis approaches.

1.2.4 Multiple mediators

Although generally more than one mediational process is of interest or mediators
are measured multiple times during the course of the study, a major part of the
recent literature on counterfactual-based mediation analysis has been focussed on
single mediators measured at one point in time. Simply extending these develop-
ments to settings with repeatedly measured or multiple mediators is not possible
because of the assumption in (1.17): natural direct and indirect effects can not be
identified in the presence of confounders of the mediator-outcome relationship that
are influenced by the treatment themselves. In settings with multiple or repeatedly
measured mediators, these variables will generally be, next to being mediators,
confounders of the mediator - outcome relationship. We saw that the traditional
literature on structural equation models (MacKinnon 2008) extended their single
mediator approach to multiple or repeatedly measured mediators, but that they
work under a strong no-interaction assumption at the individual level, which is
biologically rather unlikely and known to be violated in the presence of treatment -
mediator interactions and with dichotomous and time-to-event endpoints (Robins
and Greenland 1992; Robins 2003; De Stavola et al. 2015). Other work on multiple
or repeatedly measured mediators avoids this complication of assumption (1.17)
by assuming causally independent multiple mediators (Preacher and Hayes 2008;
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Lange et al. 2014; Taguri et al. 2015).

Leaving behind these rather unrealistic assumptions, progress has been made to
estimate path-specific effects by jointly modelling the mediators (VanderWeele and
Vansteelandt 2013). Imagine a setting with two sequential mediators as in Figure 5.
Let Y (a,M1(a∗),M2(a∗,M1(a∗))) denote the counterfactual outcome that would be
observed if A were set to a and M1 and M2 were set to the value they would have
naturally taken if A had been equal to a∗. Then, the total intention-to-treat effect
can be decomposed into the joint natural indirect effect (1.21) via the joint mediator
(M1,M2) from the remaining direct effect of A on Y via neither of the mediators
(1.22):

E{Y (1)−Y (0)}=

E{Y (1,M1(1),M2(1,M1(1)))−Y (1,M1(0),M2(0,M1(0)))} (1.21)

+ E{Y (1,M1(0),M2(0,M1(0)))−Y (0,M1(0),M2(0,M1(0)))} (1.22)

(A) (B)

A

M1

M2

YC U C A Y

M1

M2

L

Figure 6: Causal diagram of randomised treatment A, sequential mediators M1 and
M2, measured confounders C, (unmeasured) confounders of the mediators U and L,

and outcome Y .

This two-way decomposition and its joint natural direct and indirect effects
are identified if assumptions (1.14) to (1.17) hold for the joint mediator (M1,M2).
This means that unmeasured common causes U of M1 and M2 as in Figure 6a or
common causes L that are themselves influenced by the treatment as in Figure 6b
are allowed, since U and L are not confounders for the joint effect of (M1,M2) on
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Y because U and L do not affect Y , except through (M1,M2) (VanderWeele and
Vansteelandt 2013; Steen et al. 2017).

Going one step further, even a more detailed decomposition can be made. By
focusing on M1 and forgetting M2 for a moment, the joint natural indirect effect
(1.21) can be disentangled into all of the effect going through M1 (1.23), under the
composition assumption that Y (a,M1(a∗),M2(a,M1(a∗))) = Y (a,M1(a∗)), and the
remaining effect (1.24) (i.e. only going through M2):

E{Y (1,M1(1),M2(1,M1(1)))−Y (1,M1(0),M2(0,M1(0)))}=

E{Y (1,M1(1),M2(1,M1(1)))−Y (1,M1(0),M2(1,M1(0)))} (1.23)

+ E{Y (1,M1(0),M2(1,M1(0)))−Y (1,M1(0),M2(0,M1(0)))} (1.24)

This means that in Figure 5 two distinct pathways contribute to the natural
indirect effect via M1 (A→M1→M2→ Y and A→M1→ Y ), while the so-called
semi-natural (Pearl, 2014) or partial (Huber, 2014) indirect effect only consists
of a single pathway (A→ M2 → Y ). This three-way decomposition is not the
only one however. Remember that in the single mediator setting, there were two
types (pure and total) of the two path-specific effects (direct and indirect). With an
increasing number of mediators, the number of pathways from exposure to outcome
and accordingly the number of decompositions of the total intention-to-treat effect
grow exponentially. With two mediators there are already eight types of four
path-specific effects. This means that more generally in the finest decomposition
possible, there are 2k distinct pathways in a setting with k mediators and (2k)!
possible decompositions (Daniel et al. 2015). The semi-natural or partial indirect
effect via M2 can be identified, similar to the result in (1.21) commonly referred to
as Pearl’s mediation formula (Pearl 2012), as

E{Y (1,M1(0),M2(1,M1(0)))−Y (1,M1(0),M2(0,M1(0)))}=∫ ∫ ∫
E(Yi|Ai = 1,M1i = m1,M2i = m2,Xi = x) FM1i|Ai=0,Xi=x(m1)×{

FM2i|Ai=1,M1i=m1,Xi=x(m2)−FM2i|Ai=0,M1i=m1,Xi=x(m2)
}

FXi(x) dx dm1 dm2,

Part of the literature (VanderWeele and Vansteelandt 2013; Steen et al. 2017;
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Huang and Yang 2017) focusses on decomposing the total intention-to-treat ef-
fect into the k+1 pathways as described here, since further effect decomposition
generally fails. VanderWeele and Vansteelandt (2013) rely on the ordering of the
mediators to obtain sequential natural indirect effects. Under the assumptions
that the mediators have no unmeasured common causes and that none of the mea-
sured common causes of M1 and M2 are influenced by the treatment, they obtain 2
out of the (k+1)! decompositions. Similarly, Huang and Yang (2017) introduce
closed form expressions for path-specific effects on different effects scales using
semiparametric probit, Aalen additive hazard and Cox proportional hazard models.
Under slightly stronger identification assumptions, although the difference is very
subtle and of little practical relevance in realistic examples, the flexible approach to
mediation analysis based on natural effect models of Steen et al. (2017) allows one
to recover all (k+1)! decompositions. In the setting where M2 is the mediator of
interest and M1 is merely a mediator - outcome confounder influenced by the expo-
sure, Miles et al. (2017) showed that the partial (Huber, 2014) indirect effect only
via M2 is still identified when there is unmeasured confounding of the relationship
between M1 and the outcome. This still leaves the assumption of no unmeasured
common causes between mediators, however, which will be unlikely to hold in the
setting of repeatedly measured mediators. Another limitation of these approaches
is their reliance on the causal structure of the mediators (i.e., M1 influences M2,
but not the other way around) when different mediators are considered at the same
time.

VanderWeele, Vansteelandt, and Robins (2014) made progress with a different
kind of effect measures, so-called interventional direct and indirect effects. They
differ from natural direct and indirect effects because they do not fix the mediator
level to be equal to the counterfactual mediator value at level a or a∗, but to a
random draw of the distribution of the mediator at exposure level a or a∗ given
covariate values C. Unless covariates C fully determine the counterfactual values
of the mediator, these measures may yield effects of different magnitudes. Natural
direct and indirect effects have been criticized because they are defined via cross-
world counterfactuals and even randomised controlled studies are not able to give
information about them. Additionally, their practical relevance in policy making
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has been questioned. Interventional direct and indirect effects are not defined in
terms of these cross-world counterfactuals and can thus be identified under weaker
assumptions (i.e., mediators are allowed to share unmeasured common causes).
They are also policy relevant in the sense that they represent the result of fixing or
shifting the mediator distribution to the extent that it is affected by the exposure
(VanderWeele, 2013). Natural direct and indirect effects are more closely related to
the definition of a mechanism however. These interventional effects as proposed
in VanderWeele, Vansteelandt, and Robins (2014) also have the disadvantage that
they do not sum to the total effect, which hinders interpretation. Vansteelandt and
Daniel (2017) overcome this limitation, their proposal for the multiple mediator
setting can be used even when the direction of causality is unknown among the
different mediators. Different from approaches relying on the causal structure of the
mediators (VanderWeele and Vansteelandt 2013; Steen et al. 2017), other pathways
that contribute to the indirect effect are identified. The interventional indirect effect
via M1 captures all of the causal pathways from exposure to outcome via M1 except
those involving causal descendants of M1 (e.g., M2 in figure 5). The interventional
indirect effect via M1 in Figure 5 is thus represented by the pathway A→M1→ Y ,
but not A→M1→M2→ Y unlike the semi-natural indirect effect (Pearl, 2014).

E{Y (1,M1(1),M2(1,M1(1)))−Y (1,M1(0),M2(1,M1(0)))}=

E{Y (1,M1(1),M2(1,M1(1)))−Y (1,M1(1),M2(1,M1(0)))} (1.25)

+ E{Y (1,M1(1),M2(1,M1(0)))−Y (1,M1(0),M2(1,M1(0)))} (1.26)

Further disentangling the natural indirect effect only via M1 (A→ M1 → Y )

from the pathway A→ M1 → M2 → Y is impossible. These effects not identifi-
able (Avin et al. 2005; Daniel et al. 2015) unless one is willing to make certain
no-interaction assumptions (Huber, 2014; Imai and Yamamoto, 2013; Petersen et
al., 2006; Robins, 2003; Tchetgen Tchetgen and VanderWeele, 2014) or makes
use of sensitivity analysis (Albert and Nelson 2011; Daniel et al. 2015; Imai and
Yamamoto 2013). Looking at expressions (1.25) and (1.26) shows that further dis-
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entangling the effect (1.23) makes little sense because this would require knowledge
about counterfactual outcome Y (1,M1(1),M2(1,M1(0))) which makes use of the
counterfactual mediator M1 in both intervention worlds. Figures 5 and 6 show that
we can not just forget about M1 and focus on M2 alone because M1 is a confounder
of the relationship between M2 and the outcome Y .

The previously discussed literature, all handles settings with a single exposure
and outcome, together with two or more mediators or a single repeatedly measured
mediator. It does not allow the exposures and the multiple mediators to vary over
time. Similar to VanderWeele et al. (2014) and Vansteelandt and Daniel (2017),
VanderWeele and Tchetgen Tchetgen (2017) and Lin et al. (2016) make progress via
interventional effects. The disadvantage of their interventional direct and indirect
effects in the presence of time-varying exposures, mediators and confounders is
that they do not always sum to the total intention-to-treat effect, which makes
interpretation difficult. An additional limitation of their proposal is the way they
account for confounding in their mediational g-formula. They intend to estimate,
for example, the interventional analogue of the natural indirect effect as the change
in outcome under randomised exposure a if the mediator for each individual were
fixed to a random draw from the distribution of the mediator under randomised
exposure a∗. This random draw from the mediator distribution under exposure a∗

only depends on patients’ observed baseline confounders however and thus ignores
the observed time-varying confounders. As a result, the values for the mediator
might really deviate from the mediator trajectory a person would have “naturally”
followed over time. Zheng and van der Laan (2017) overcome this limitation within
the interventional direct and indirect effects setting for time-varying exposures
and allow patient’s time-varying covariate data to influence the random draw from
the mediator distribution. As a result of taking these time-varying confounders
into account, their interventional indirect effect captures the effect of treatment
on outcome as transmitted along the combination of pathways whereby treatment
directly influences one of the mediators, and not those pathways whereby treatment
initially influences one of the time-varying confounders.
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1.3 Outline and contributions

In the detailed and up-to-date overview of the causal inference literature on me-
diation analysis in this chapter, we saw that analyses of randomised experiments
can often benefit from a mediation analysis next to the primary intention-to-treat
analysis. As the literature of applied papers on the topic in medical and epidemio-
logical journals grows, more and more applied researchers recognize the usefulness
of mediation analyses. As such, an increasing number of analyses of randomised
trials include an attempt to further examine the treatment mechanism and try to
decompose the intention-to-treat effect into an indirect effect, mediated by given
intermediaries and the remaining direct effect. Although the traditional approach
to direct and indirect effects may be straightforward and intuitive, extensions to
non-linear models are limited for a number of earlier discussed reasons. Novel
developments from causal mediation analysis led to the formal decomposition of
direct and indirect effects even in settings with interactions and nonlinearities. The
main identification result of this formal mediation analysis framework, referred
to as the mediation formula (Pearl 2001, 2012), allows the combination of arbi-
trary models for the outcome and the mediator. Mediation analyses based on a
direct application of the mediation formula have a major disadvantage however:
the results may not be unbiased if one of the models, the one for the outcome
or the mediator, is misspecified. Considering the concern for bias due to model
misspecification, which is dominant in analyses of randomised controlled trials,
more robust approaches approaches that are less sensitive to model misspecification
are considered in chapter 2 and chapter 3.

One alternative strategy to the mediation formula (Tchetgen Tchetgen and Sh-
pitser 2012; Vansteelandt 2012b) is substituting the model for the mediator or the
model for the outcome with a model for the exposure. This is typically done when
the exposure is randomly assigned as one can then be sure about the correctness
of the exposure model. In chapter 2, we focus on such robust mediation analysis
approaches for continuous and binary outcomes, in the sense that we exploit a priori
knowledge of the randomisation probabilities and only require correct specification
of the model for the outcome. The model for the outcome, and not that of the
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11.3. Outline and contributions

mediator, because it avoids the need for inverse probability weighting and because
a model for the mean outcome is generally more easily specified than a model for
the mediator distribution (as needed in the mediation formula). Unfortunately, not
relying on a model for the distribution of the mediator can result in a considerable
loss of efficiency when baseline covariates that are predictive of the mediator are
available. As such, we propose a novel approach that makes use of a model for
the mediator to extract all available information from baseline covariates, but still
delivers unbiased results if this model is misspecified. To supplement this chapter
(based on the paper of Vandenberghe et al. (2017a)), we developed an R-function
which is available as part of the supplementary material of the paper and allows re-
searchers to make use of the proposed estimators. In chapter 3, we describe similar
modern mediaton analysis techniques for time-to-event endpoints and extend the
estimators proposed in chapter 2 to a survival setting. Although the proposed anal-
ysis strategy is broadly applicable to mediation analyses of time-to-event endpoints,
in this chapter we focus on showing how the analysis may be informative with
respect to pathological complete response (pCR) as a putative surrogate marker
when data from just a single trial are available. Again, we supplemented this
chapter (based on the paper of Vandenberghe et al. (In press)) with an easy-to-use
R-function which is also available as part of the supplementary material of the paper.

Current mediation analysis approaches are generally focussed on the effect of
treatment on outcome via a single mediator measured at a single point in time. This
is rather limiting since more mediators are often of interest and/or measured multiple
times during the course of a study. In chapter 4, we give an overview of the existing
advances on the topic of longitudinal mediation analysis and propose a mediation
analysis strategy for a randomly assigned exposure, a repeatedly measured mediator
and a time-to-event endpoint in the presence of (repeatedly measured) time-varying
confounders. We make progress, similar to recent contributions of Zheng and
van der Laan (2012b) and Zheng and van der Laan (2017), but focus on natural
direct and indirect effects (in contrast to interventional direct and indirect effects)
for a time-to-event outcome. We conclude in chapter 5 with a discussion on the
relevance of this research in the fast-growing field of mediation analysis and discuss
some further challenges.
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CHAPTER 2

Efficient mediation analyses

of binary and continuous outcomes

This chapter is based on the following paper: Vandenberghe, S., Vansteelandt, S.,
and Loeys, T. (2017). Boosting the precision of mediation analyses of randomised
experiments through covariate adjustment. Statistics in Medicine, 36(6), 939-957.

Analyses of randomised experiments frequently include attempts to decompose
the intention-to-treat effect into a direct and indirect effect, mediated by given
intermediaries, with the aim to shed light onto the treatment mechanism. Methods
from causal mediation analysis have facilitated this by allowing for arbitrary models
for the outcome and the mediator. They thereby generalise the traditional approach
to direct and indirect effects, which is essentially limited to linear models. The
default maximum likelihood methods make use of a model for the conditional
distribution of the mediator, given treatment and baseline covariates, but are prone
to bias when that model is misspecified. In randomised experiments, specification
of such model can be easily avoided, but at the expense of a sometimes major
efficiency loss when those baseline covariates are predictive of the mediator. In
this article, we develop a compromise approach: it makes use of a model for
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the mediator to optimally extract information from the baseline covariate data,
but is insulated from the impact of misspecification of that model; it achieves
this by exploiting the known randomization probabilities. Simulation studies and
the analysis of a randomised study show major efficiency gains and confirm our
theoretical findings that the default methods from causal mediation analysis are
sometimes, though not always, reasonably robust to model misspecification.

2.1 Introduction

Analyses of randomised experiments frequently supplement the primary intention-
to-treat analysis with analyses aimed at a better understanding of the treatment
mechanism. Mediation analyses seek a more in-depth understanding by decompos-
ing the intention-to-treat effect into a direct and indirect effect, mediated by given
intermediaries (Emsley et al. 2010). For instance, Oba et al. (2011) contrasted two
treatments that equally suppressed the incidence of cardiovascular events, but had
a small but significantly different effect on systolic blood pressure. A mediation
analysis provided a more in-depth understanding by clarifying what the (relative)
treatment effect would be if an effect on systolic blood pressure could be avoided.
Rosenblum et al. (2009) observed a much lower reported use of condoms in the
intervention arm than in the control arm of the open-label ‘Methods for improving
reproductive health in Africa’ trial that investigated the effect of diaphragm and
lubricant gel use in reducing HIV infection among susceptible women. They used
mediation analysis to assess what the effect of diaphragm and lubricant gel use
would have been, had a harmful effect on condom use been avoided.

Methods from causal mediation analysis have generalised traditional mediation
analysis approaches, which are inspired by linear structural equation models (Baron
and Kenny 1986). The key identification result underlying these methods - the
so-called mediation formula (Pearl 2001; VanderWeele and Vansteelandt 2009) -
suggests possibilities to combine arbitrary models for the outcome and mediator. In
particular, maximum likelihood estimates (MLE) of direct and indirect effects are
obtained by averaging predicted values from a model for the conditional outcome
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mean, given mediator and covariates and given a specific treatment level, over the
conditional distribution of the mediator at a given (possibly different) treatment
level, given those covariates; such averaging is much akin to the use of standardisa-
tion in epidemiology. A major concern with such mediation analyses is that they
may deliver biased results when those models for the outcome and mediator are
misspecified.

This concern for model misspecification is very pertinent in intention-to-treat
analyses that rely on statistical models to adjust for baseline covariates (Pocock et al.
2002; Rosenblum and van der Laan 2009). Since model-free analyses are usually
attainable here, covariate-adjusted intention-to-treat analyses of the overall treat-
ment effect are often viewed with some scepticism, despite the precision benefits
that they may confer (Pocock et al. 2002; Senn 2000). Recent developments have
nevertheless given rise to an array of methods that make use of statistical models
to boost the precision of the intention-to-treat analysis, but are not susceptible to
bias when those models are misspecified (Tsiatis et al. 2008; Zhang et al. 2008;
Moore and van der Laan 2009; Colantuoni and Rosenblum 2015; Vermeulen et al.
2015). The precision benefit of these analyses is derived from the potential of
covariate adjustment to eliminate noise from the outcome data; their robustness
against model misspecification is secured by exploiting the a priori knowledge of
the randomisation probabilities.

Model-free mediation analyses are not feasible, however, because of the need
to control for confounding of the mediator-outcome association. In the usual
settings where the confounders are continuous and/or discrete with many levels, this
demands specification of either a model for the outcome or a model for the mediator
(Tchetgen Tchetgen and Shpitser 2012; Vansteelandt 2012b). In this article we
will focus on strategies that do not rely on models for the mediator for unbiased
estimation, for two reasons. First, models for the distribution of the mediator are
generally more difficult to specify than models for the mean of the outcome. Second,
our focus on outcome models will avoid the need for inverse probability weighting,
which can sometimes yield estimators with erratic behaviour that may moreover
be sensitive to minor misspecifications in the tails of the mediator distribution
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(Vansteelandt 2012b). In particular, the semi-parametric efficient strategies that
we will propose, make use of a mediator model, but only to extract information
from the baseline covariate data; the proposed estimators will be insulated from the
impact of misspecification of that mediator model. By construction, they thus form
an ideal compromise between maximum likelihood-based mediation analyses that
make use of a mediator model, and simple alternatives that do not. The performance
of the proposed estimators, relative to various alternatives, is investigated through
simulation studies and through the analysis of a randomised experiment on the
effect of implicit priming.

2.2 Assessing mediation in randomised experiments

2.2.1 Definitions and assumptions

Consider a study design which collects baseline covariates Xi (e.g. age, gender, ...)
for a random sample of individuals (i = 1, ...,n), who are subsequently randomised
over experimental treatment (Ai = 1) or control treatment (Ai = 0), with known
randomisation probabilities that possibly depend on covariates. For each individual,
data are recorded on a potential mediator Mi - which may consist of multiple
components - and the end-of-study outcome Yi. The direct effect of treatment on
outcome quantifies that part of the treatment effect which is not mediated by Mi.
To be precise about its meaning, we make use of potential outcome notation. In
particular, let Mi0 and Yi0 denote the value that the mediator and outcome would
have taken for individual i, had this individual been assigned to the control arm;
Mi0 and Yi0 equal the observed value of the mediator and outcome for control
individuals, but remain unobserved for individuals on the treatment arm. Further,
let Yi1Mi0 be the value that the outcome would have taken for individual i, had
this individual been assigned to the treatment arm, but his level of the mediator
were as it would have been under control conditions; Yi1Mi0 is unobservable for all
individuals, but enables us to formally express the direct effect of treatment on
outcome as

E (Yi1Mi0−Yi0) . (2.1)
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Rewriting Yi0 as Yi0Mi0 , it is indeed seen that the above measure captures the effect
of treatment, while holding the mediator fixed at a level Mi0. This level Mi0 is
often regarded as a natural mediator level for the given individual in the sense that
it represents the level that would be seen on the control arm; expression (2.1) is
therefore referred to as a natural direct effect (Robins and Greenland 1992; Pearl
2001; VanderWeele and Vansteelandt 2009). A natural indirect effect is likewise
obtained as

E (Yi1−Yi1Mi0) . (2.2)

Rewriting Yi1 as Yi1Mi1 , it is indeed seen that the above measure captures the indirect
effect of treatment because it expresses the effect of changing the level of the
mediator only to the extent that it is affected by treatment: that is, changing it
from Mi0 to Mi1. Note that these natural direct and indirect effects sum to the total
treatment effect E (Yi1−Yi0).

Randomisation in itself does not suffice to disentangle direct from indirect
treatment effects (Pearl 2001; VanderWeele and Vansteelandt 2009). The reason is
that the magnitude of the indirect (and hence direct) effect depends on how strongly
the mediator affects the outcome; since the mediator is not randomly assigned,
estimating this requires knowledge of all confounders of the relation between
mediator and outcome. Throughout, we will therefore assume that the baseline
covariate set Xi is sufficient to adjust for confounding of this association. In some
studies, some of the confounders of the relation between mediator and outcome
will only manifest themselves as the study is ongoing, and may then be themselves
influenced by the treatment. The results that we propose in this article cannot
handle such so-called intermediate confounders; we refer the reader to Vansteelandt
and VanderWeele (2013), VanderWeele et al. (2014) or Tchetgen Tchetgen and
VanderWeele (2014) for strategies to deal with intermediate confounders and to the
Appendix for formal identification assumptions.

2.2.2 Traditional approaches for linear models

When the outcome obeys a linear regression model with only additive effects, e.g.

E(Y |A,M,X) = β
∗
0 +β

∗
1 A+β

∗
2 M+β

∗t
3 X ,
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then the natural direct effect (2.1) can be calculated as β ∗1 (Baron and Kenny 1986;
VanderWeele and Vansteelandt 2009). The natural indirect effect can then be
calculated in two standard ways. The first is to fit the regression model

E(M|A) = α
∗
0 +α

∗
1 A, (2.3)

and calculate the indirect effect as α∗1 β ∗2 (Baron and Kenny 1986; VanderWeele
and Vansteelandt 2009). The second, more standard strategy is to fit the regression
model

E(M|A,X) = γ
∗
0 + γ

∗
1 A+ γ

∗t
2 X , (2.4)

and calculate the indirect effect as γ∗1 β ∗2 . Estimates for these direct and indirect
effects can now be obtained by substituting α∗1 ,β

∗
1 ,γ
∗
1 and β ∗2 by ordinary least

squares estimates. Since model (2.3) is always correctly specified (by virtue of A

being dichotomous), the resulting direct and indirect effects are unbiased (in large
samples) as soon as the linear outcome model is correctly specified. When the
exposure is randomly assigned independently of X , then interestingly, this is also
the case for the direct and indirect effects obtained under model (2.4), in spite of
the fact that this model may be misspecified. That these direct and indirect effect
estimates are insulated from the impact of misspecification of the mediator model,
follows from the properties of ordinary least squares estimators and the fact that A

and X are orthogonal predictors (in the sense that they are independent, by design)
(Yang and Tsiatis 2001; Rosenblum and van der Laan 2009). It moreover follows
from the properties of ordinary least squares estimation that the resulting direct
and indirect effect estimators are not less efficient than those obtained under model
(2.3), even when model (2.4) is misspecified (Yang and Tsiatis 2001). In view of
this, we conclude that the direct and indirect effect estimators obtained under model
(2.4) are preferred. However, they will not be fully efficient when model (2.4) is
misspecified. The results in the next sections accommodate this, and will moreover
generalise this result to non-linear outcome and mediator models.
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2.2.3 Causal mediation analysis approaches for linear and non-
linear models

The causal mediation literature has extended the traditional approaches from the
previous section to arbitrary models for outcome and mediator. We will here review
two relatively standard causal mediation analysis approaches to estimate E (Yi1Mi0)

and E (Yi0), and thus the natural direct effect as their difference. The estimation of
E (Yi0Mi1) and E (Yi1), needed for the calculation of the natural indirect effect, then
follows by simply recoding the exposure.

The estimation of E (Yi1Mi0) generally demands modelling assumptions (Tchet-
gen Tchetgen and Shpitser 2012; Vansteelandt 2012b). As before, we will assume
throughout that a correctly specified model is available for the outcome in the
treatment arm, in function of mediator M and confounders X . This may be a linear
regression model, e.g.

E(Y |A = 1,M,X) = η
∗
0 +η

∗
1 M+η

∗t
2 X , (2.5)

or a logistic regression model, e.g.

E(Y |A = 1,M,X) = expit
(
η
∗
0 +η

∗
1 M+η

∗t
2 X +η

∗t
3 MX

)
. (2.6)

More generally, we shall assume that E(Y |A = 1,M,X) obeys the model

E(Y |A = 1,M,X) = m(M,X ;η
∗), (2.7)

where m(M,X ;η) is a known function, evaluated at an unknown parameter η∗; e.g.
m(M,X ;η) = η0 +η1M+η t

2X in model (2.5) and m(M,X ;η) =

expit
(
η0 +η1M+η t

2X +η t
3MX

)
in model (2.6). Let η̂ be an estimator of η∗, as

obtained using a standard regression procedure.

The most popular approach for estimating E (Yi1Mi0) is based on maximum
likelihood estimation (MLE). It involves taking the average of the fitted values
m(Mi,Xi; η̂) from the outcome model (with η̂ the MLE) over the fitted distribution
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of Mi in the untreated (Ai = 0), given Xi (based on MLE under some parametric
model) and then averaging the result across all individuals as follows (VanderWeele
and Vansteelandt 2009; Imai et al. 2010):

1. Fit a parametric model for the distribution of M in the untreated (A = 0),
given X , using MLE. For each subject i, both treated and untreated, take a
large number K (e.g. K = 10000) of random draws Mi(1), ...Mi(K) from this
distribution with X set to Xi.

2. Estimate E (Yi1Mi0) as

1
n

n

∑
i=1

{
1
K

K

∑
j=1

m(Mi( j),Xi; η̂)

}
.

Note that the averaging is across all subjects, which is valid by the fact that
treated and untreated subjects are exchangeable by randomisation. The outcome
mean E (Yi0) under control treatment can be estimated similarly upon redefining
m(M,X ;η) to be a parametric model for the expected outcome E(Y |A = 0,M,X)

in the untreated. This approach, which generalises the strategy based on model (2.4)
in the previous section, has been implemented in a number of software packages,
e.g. ‘mediation’ in R (Imai et al. 2010). A drawback is that it requires specification
of a model for the mediator. This raises concern for bias in the resulting estimates
for E (Yi1Mi0) when that model is misspecified.

With concern for bias, a preferable approach for the analysis of randomised
experiments may therefore be to avoid reliance on a model for the mediator. The
outcome mean E (Yi0) under control treatment can be estimated as the average out-
come in the control arm, which is valid by randomisation. Furthermore, E (Yi1Mi0)

can be estimated as the average of the fitted values m(Mi,Xi; η̂) across individuals in
the control arm (Tchetgen Tchetgen and Shpitser 2012; Albert 2012; Vansteelandt
2012b):

1
n0

∑
i:Ai=0

m(Mi,Xi; η̂); (2.8)
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with n0 the number of control subjects; e.g., this is

1
n0

∑
i:Ai=0

(η̂0 + η̂1Mi + η̂2Xi)

under model (2.5), and

1
n0

∑
i:Ai=0

expit
(
η̂0 + η̂1Mi + η̂

t
2Xi + η̂

t
3MiXi

)
under model (2.6). That this works can be intuitively understood upon noting
that m(M,X ; η∗) represents the average outcome in the treated at their observed
mediator and covariate values; thus by averaging across control subjects, this gets
evaluated at control levels, Mi0, for the mediator. Limiting the average to the con-
trols is justified since both groups are comparable by randomisation. This estimator
of E (Yi1Mi0), which we will refer to as the restricted MLE (RMLE), generalises
the strategy based on model (2.3) in the previous section. Like the considered
estimator of E (Yi0) it is easy to obtain, but does not exploit all information in
the data, by primarily or exclusively relying only on data for control subjects and
thus ignoring that the treated subjects represent the same population. In the next
section, we will improve the efficiency of these estimators by additionally making
use of information obtained for treated subjects. In particular, we will infer the
semi-parametric efficient estimator of E (Yi1Mi0) under model (2.7) and of E (Yi0)

under the nonparametric model.

2.2.4 Proposal

Efficient estimation of the natural direct and indirect effects requires the specifica-
tion of three models in addition to the outcome model in the treated. However, their
specification will turn out to be relatively innocent because one model will turn out
to be a priori known by design, and misspecification of the two others will turn out
not to induce bias (although it may affect precision).

The first model is a so-called propensity score model for the probability of
treatment, given covariates. Specifying such model is straightforward in randomised
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experiments where the randomisation probabilities are known by design. For
instance, we may assume that

P(A = 1|X) = α
∗,

or that
P(A = 1|X) = expit

(
α
∗
0 +α

∗t
1 X
)
.

Both these models are correctly specified models when, as often, all individuals are
equally likely to be administered treatment or control, regardless of their covariates
(i.e. P(A = 1|X) = 0.5). More generally, and for notational convenience, we shall
assume that P(A = 1|X) obeys the model

P(A = 1|X) = g(X ;α
∗),

where g(X ;α) is a known function, evaluated at an unknown parameter α∗ (e.g.,
g(X ;α) = α or g(X ;α) = expit

(
α0 +α t

1X
)

in the above examples). Here, α∗ can
be estimated (as α̂) using a default maximum likelihood procedure. By allowing for
a possible dependence on covariates, our proposed strategy, unlike that in Section
2.2.2, will be able to accommodate designs where treatment is randomised with
randomisation probabilities depending on measured covariates.

The second model, a regression model for the outcome on covariates in the
control arm, is only needed for efficient estimation of E (Yi0), as in Tsiatis et al.
(2008). This may be a linear regression model, e.g.

E(Y |A = 0,X) = β
∗
0 +β

∗t
1 X

or a logistic regression model, e.g.

E(Y |A = 0,X) = expit
(
β
∗
0 +β

∗t
1 X
)
.

More generally, we will consider generalised linear models of the form

E(Y |A = 0,X) = z(β ∗0 +β
∗t
1 X), (2.9)
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where z(.) is a canonical link function (e.g. the identity link, the exponential link,
the inverse logistic transformation, ...). Here, X may be a different vector of baseline
covariates than considered in model (2.7) (e.g. it may include outcome predic-
tors that do not confound the mediator-outcome association and were therefore
not included in model (2.7)). We will then fit the model using the default maxi-
mum likelihood procedure for generalised linear models on data for the controls,
weighing each observation by 1 over the fitted probability of being assigned to the
control arm, given covariates; such weighing is not required when the randomisation
probabilities are constant (i.e., g(X ;α) = α). Let β̂ be the resulting estimator of
β ∗ ≡ (β ∗0 ,β

∗t
1 )t . Choosing a canonical link function, limits the class of models, but

can be justified in that it will lead to a simple estimation procedure and, moreover,
misspecification of this model will turn out not to induce bias. In the Appendix, we
show how to conduct inference under a larger class of models.

The third model, which is only needed for efficient estimation of E (Yi1Mi0),
regresses the fitted values from the outcome model for E(Y |A = 1,M,X) on co-
variates in the control arm. This model thereby produces predictions of Yi1Mi0

that depend solely on the available baseline covariates, and which can therefore
be evaluated for all individuals (not just control subjects, as was the case for the
RMLE). For instance, reconsidering models (2.5) and (2.6) for scalar M and X , we
may assume that

E
(
η
∗
0 +η

∗
1 M+η

∗t
2 X |A = 0,X

)
= γ
∗
0 + γ

∗t
1 X ,

which is satisfied if the mean of the mediator is linear in covariates X within the
controls, or that

E
{

expit
(
η
∗
0 +η

∗
1 M+η

∗t
2 X +η

∗t
3 MX

)
|A = 0,X

}
= expit

(
γ
∗
0 + γ

∗t
1 X
)
.

More generally, we will consider generalised linear models of the form

E {m(M,X ;η
∗)|A = 0,X}= z(γ∗0 + γ

∗t
1 X), (2.10)

where z(.) is again a canonical link function and where, again, X may be a different
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vector of baseline covariates than considered in models (2.7) and (2.9). An estimator
γ̂ of γ∗ ≡ (γ∗0 ,γ

∗t
1 )t is then obtained as in the previous paragraph, via maximum

likelihood on data in the control arm, weighing each observation by 1 over the fitted
probability of being assigned to the control arm, given covariates. In the Appendix,
we show how to do inference under a larger class of models.

Once these models are fitted, an estimator of E (Yi0) and E (Yi1Mi0) is obtained by
simple averaging of the fitted values of model (2.9) and (2.10) across all individuals,
i.e.

1
n

n

∑
i=1

z(β̂0 + β̂
t
1Xi), (2.11)

and
1
n

n

∑
i=1

z(γ̂0 + γ̂
t
1Xi), (2.12)

respectively. These estimators improve upon the efficiency of the average outcome
in the control arm, and of the restricted MLE from Section 2.2.3, respectively. This
can be intuitively understood in that they are obtained by averaging predictions for
all subjects, and not just for the controls (as in (3.5), for instance). More precisely,
it follows from Tsiatis et al. (2008) that the estimator (2.11) is efficient when the
second working model is correctly specified, but remains unbiased for E (Yi0) in
large samples, even when that model is misspecified. It follows from the Appendix
that the estimator (2.12) is efficient when the third working model is correctly
specified, but remains unbiased for E (Yi1Mi0) in large samples, even when that
model is misspecified. Note, however, that the estimator (2.12) does require the
outcome model for E(Y |A = 1,M,X) to be correctly specified. In the Appendix,
we show how standard errors can be calculated and further show that, even while
α∗ is generally known in randomised experiments, estimating it using maximum
likelihood improves efficiency.

The estimator (2.12) is very closely related to the MLE of E (Yi1Mi0), which
is obtained by averaging the fitted outcome means m(Mi,Xi; η̂) over the fitted
distribution of the mediator in the controls, given covariates, under some parametric
mediator model. In particular, when the MLE δ̂ of the parameters δ that index the

42



2

2.2. Assessing mediation in randomised experiments

parametric mediator model satisfies∫
m(u,X ; η̂) f (M = u|A = 0,X ; δ̂ )du = z(γ̂0 + γ̂

∗t
1 X),

then the MLE of E (Yi1Mi0) is mathematically identical to (2.12), provided that the
simple exposure model P(A = 1|X) = α∗ is used (so that the weights equalling 1
over the fitted probability of being assigned to the control arm, given covariates, are
constant). This is obviously the case when m(M,X ;η∗) does not depend on M (in
which case no mediator model is needed), as well as when the linear model (2.5) is
combined with a normal regression model for the mediator in the untreated, with
mean also linear in X . It motivates why, as we will see in simulation studies, the
MLE is sometimes reasonably robust to model misspecification.

2.2.5 Improvements that guarantee efficiency gain, even under
model misspecification

A drawback of the estimators of E (Yi0) and E (Yi1Mi0) that we proposed in Section
2.2.4 is that their efficiency is only guaranteed under correct specification of model
(2.9) and (2.10), respectively; under misspecification of these models, the proposed
estimators may sometimes be less efficient than the simple estimators from Section
2.2.3. We will therefore label these estimators as being locally efficient (LE) in
that their efficiency is local: attained under a correctly specified model for (2.9) or
(2.10), but not necessarily otherwise.

Easy-to-compute estimators of E (Yi0) and E (Yi1Mi0) can however be obtained
that are at least as efficient as the corresponding restricted MLEs, regardless of
correct specification of working models (2.9) and (2.10). For E (Yi0), this has been
noted in Moore and van der Laan (2009) and Yang and Tsiatis (2001) in the context
of linear or logistic models when α∗ = 0.5; we here extend it to more general
models and to the estimation of E (Yi1Mi0). In particular, when the randomisation
probabilities are assumed constant (in the sense that g(X ;α∗)=α∗) and the working
models (2.9) and (2.10) are linear and include an intercept and covariates X , then
this is possible via the estimation procedure of Section 2.2.4, but with β̂ and γ̂
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substituted by estimators β̃ and γ̃ , where:

• β̃ is the ordinary least squares estimator obtained upon linearly regressing Ỹ =

(1−A)Y + Ê (Y |A = 0){A− α̂} onto X̃ =
{

X− Ê (X)
}
{A− α̂} (without

intercept), where Ê (Y |A = 0) is the sample average of Y in the control group
and Ê (X) is the sample average of X ;

• γ̃ is the ordinary least squares estimator obtained upon linearly regress-
ing M̃ = (1−A)m(M,X ; η̂)+ Ê {m(M,X ; η̂)|A = 0}{A− α̂} onto X̃ , where
Ê {m(M,X ; η̂)|A = 0} is the sample average of m(M,X ; η̂) in the control
group.

That this procedure delivers estimators that are at least as efficient as the corre-
sponding restricted MLEs is formally shown in the Appendix; it essentially follows
from the properties of ordinary least squares estimation, which guarantees residuals
with reduced variance, regardless of correct model specification. The resulting
estimators may however be less precise than the corresponding estimators of Sec-
tion 2.2.4 when models (2.9) and (2.10), respectively, are in fact non-linear and
correctly specified. We will therefore label these estimators as being restricted
efficient (RE) in that their efficiency is restricted to linear models, but global (i.e.
not local). More general results for non-linear working models are obtainable using
empirical efficiency maximisation (Rubin and van der Laan 2008; Cao et al. 2009),
but fall beyond the scope of this chapter.

2.2.6 Improvements that yield more robustness to model mis-
specification

Tchetgen Tchetgen and Shpitser (2012) and Lendle et al. (2013) also propose
natural direct and indirect effect estimators that are applicable to randomised exper-
iments. Their estimators are unbiased for E (Yi1Mi0) (in large samples) when either
the outcome model (2.7) is correctly specified, or a model for the distribution of the
mediator, given treatment and covariates (or instead of this, a model for the prob-
ability of treatment, given mediator and covariates). They thus have even greater
robustness to model misspecification than the estimators of the previous section, but
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are generally less efficient by not explicitly relying on correct specification of the
outcome model (2.7) (even though they are (locally) efficient in the less restrictive
nonparametric model). Additional robustness is built in the proposal of Lendle et al.
(2013) by making using data-adaptive statistical learning methods. Our choice to
develop a different estimation approach in Section 2.2.4 was guided by (a) its much
greater simplicity, by (b) the fact that - unlike the estimators in Tchetgen Tchetgen
and Shpitser (2012) and Lendle et al. (2013) - it does not require inverse probability
weighting when the randomisation probabilities are constant, as weighting can
sometimes yield erratic behaviour, and by (c) the fact that we believe models for
the distribution of the mediator (or the probability of treatment, given mediator and
covariates) are generally more difficult to specify than models for the mean of the
outcome. We refer the reader to Lendle et al. (2013) for details on these Targeted
Maximum Likelihood Estimators (TMLEs) of the natural direct effect, and to the
Appendix for corresponding TMLEs of the indirect effect. We will evaluate these
estimators in the simulation studies of the next section.

2.3 Simulation study

We evaluate the performance of the different proposed estimators through simulation
analyses with 1000 runs for data sets of 500 observations. Settings are shown for
both continuous and binary outcomes, and a continuous mediator. Additional
simulation results for a binary mediator, small sample sizes (i.e. n = 50) and
misspecified outcome models are reported in the Appendix. In each simulation
study, a dichotomous exposure A is drawn with P(A = 0) = P(A = 1) = 0.5. We
evaluate eight estimators: the restricted MLE (RMLE) and the MLE estimator of
Section 2.2.3, with and without treatment interactions, the locally efficient (LE)
estimator of Section 2.2.4, the restricted efficient (RE) estimator of Section 2.2.5 and
three targeted maximum likelihood estimators (TMLE). The ‘parametric’ TMLE
uses a correct model for the outcome and a parametric model for the treatment with
main effects of the mediator en confounders. The second ‘partially parametric’
TMLE uses the correct parametric model for the outcome and a library of data-
adaptive algorithms for the treatment model, while the third ‘non-parametric’ TMLE
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uses this library of data-adaptive algorithms (GLM, Step, GLM interaction and
Step interaction) for fitting both models (Lendle et al. 2013). For the MLE and the
‘parametric’ TMLE, we report bootstrap standard errors, while sandwich standard
errors (see the Appendix) are presented for all other estimators and used to construct
95% confidence intervals.

2.3.1 Correct model specification

2.3.1.1 Continuous Outcome

Covariates X = (X1, ...,X8)
t are generated as follows: X1,X3,X8 ∼ N (0,1); X4

and X6 are Bernoulli with P(X4 = 1) = 0.3 and P(X6 = 1) = 0.5; and X2 =

0.2X1 + 0.98U1, X5 = 0.1X1 + 0.2X3 + 0.97U2, and X7 = 0.1X3 + 0.99U3, where
Ul ∼ N (0,1), l = 1,2,3. The continuous mediator M is drawn from a normal
distribution with residual variance 1 and mean E(M|A,X) = β0 + β1A + β t

2X

with β0 = 0, β1 = 1 and β2 chosen to yield null, moderate, and strong associa-
tions between mediator M and covariates X , as detailed in the Web Appendix.
Next, a continuous outcome Y is drawn from a normal distribution with mean
E(Y |A,M,X) = α0 +α1A+α2M +α t

3X and residual variance 4. Here, α0 = 1,
α1 = 2, α2 is set to -1 and α3 is chosen to yield null, moderate, and strong asso-
ciations between outcome Y and mediator M and covariates X , as detailed in the
Appendix.

Table 2.1 shows that both proposed efficient estimators (LE and RE) have nearly
identical performance. Relative to the RMLE, which is based on linear main effect
models for outcome and mediator, they deliver drastic efficiency gains for the
natural indirect effect, although not for the natural direct effect (see Table 2.15
in the Appendix). This is not surprising, considering the discussion in Section
2.2.3. In particular, the expressions for the direct and indirect effect in that section
are based on two regressions: (a) a regression of mediator on treatment, which
may or may not include the baseline covariates; and (b) a regression of outcome
on treatment and mediator, which must include the baseline covariates when they
confound the association between mediator and outcome. Model (a) is only needed
for the estimation of the indirect effect. The choice whether or not to include
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baseline covariates may thus only affect estimation of the indirect effect; as stated
in Section 2.2.3, adjustment is indeed favourable, in line with the properties of
ordinary least squares estimation.

Association RMLE LE RE MLE MLEI TMLEP TMLEPP TMLE

Y ∼M: moderate Bias 0.015 0.006 0.006 0.004 0.006 0.020 0.020 0.020
Y ∼ X : moderate Emp SD 0.195 0.156 0.156 0.131 0.156 0.172 0.172 0.171
M ∼ X : null Mean SE 0.197 0.157 0.157 0.127 0.157 0.172 0.884 0.883

Coverage 0.96 0.94 0.94 0.95 0.94 0.95 1.00 1.00
Y ∼M: moderate Bias 0.007 0.006 0.006 0.004 0.006 0.009 0.009 0.006
Y ∼ X : moderate Emp SD 0.225 0.156 0.156 0.131 0.156 0.206 0.206 0.202
M ∼ X : strong Mean SE 0.228 0.157 0.157 0.127 0.157 0.206 0.973 0.973

Coverage 0.95 0.94 0.94 0.95 0.94 0.95 1.00 1.00
Y ∼M: null Bias 0.012 0.003 0.003 0.001 0.003 0.010 0.010 0.010
Y ∼ X : moderate Emp SD 0.174 0.128 0.128 0.089 0.128 0.147 0.147 0.137
M ∼ X : moderate Mean SE 0.176 0.130 0.130 0.090 0.130 0.151 0.850 0.850

Coverage 0.96 0.96 0.96 0.95 0.95 0.96 1.00 1.00
Y ∼M: strong Bias 0.009 0.009 0.009 0.007 0.009 0.020 0.020 0.019
Y ∼ X : moderate Emp SD 0.292 0.225 0.225 0.212 0.225 0.278 0.279 0.277
M ∼ X : moderate Mean SE 0.294 0.220 0.220 0.201 0.220 0.277 1.175 1.175

Coverage 0.95 0.94 0.94 0.93 0.94 0.95 1.00 1.00
Y ∼M: moderate Bias 0.002 0.006 0.006 0.004 0.006 0.006 0.006 0.003
Y ∼ X : null Emp SD 0.190 0.156 0.156 0.131 0.156 0.165 0.165 0.150
M ∼ X : moderate Mean SE 0.190 0.157 0.157 0.127 0.157 0.164 0.861 0.861

Coverage 0.95 0.94 0.94 0.95 0.94 0.96 1.00 1.00
Y ∼M: moderate Bias 0.014 0.006 0.006 0.004 0.006 0.018 0.018 0.016
Y ∼ X : strong Emp SD 0.222 0.156 0.156 0.131 0.156 0.202 0.202 0.200
M ∼ X : moderate Mean SE 0.225 0.157 0.157 0.127 0.157 0.203 0.967 0.967

Coverage 0.97 0.94 0.94 0.95 0.94 0.95 1.00 1.00

Table 2.1: Simulation results for indirect effect on a continuous outcome under
correct model specification.

The simulation results moreover show that the proposed efficient estimators
attain nearly the same efficiency as the MLE without treatment interactions. The
relatively minor efficiency benefit of this MLE comes exclusively from the addi-
tional assumption that the mediator and covariate effects on the outcome do not
interact with treatment. The proposed estimators, LE and RE, do not make this
assumption as they postulate separate models for the expected outcome in the
treated and untreated populations, although one may equally well choose to fit more
restrictive models. In fact, when that same assumption is made in the LE-estimator,
then it reduces to the MLE; this follows from the remark at the end of Section 2.2.4
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that the MLE is robust to misspecification of the mediator model when all models
are linear, in which case it reduces to the LE estimator. When the MLE is based on
an outcome model which includes treatment interactions, then it loses its relatively
minor efficiency benefit over the LE an RE-estimators. Unlike for the direct effect,
worse results in terms of efficiency are generally obtained for the TMLE. This is
not the result of using a more flexible model for the outcome, considering that
a similar efficiency loss is observed for the ‘parametric’ and ‘partly parametric’
TMLE estimators, but because these estimators do not presume correct specification
of the outcome model to increase efficiency (i.e. they increase efficiency relative to
the nonparametric model, rather than the model that assumes a correctly specified
outcome mean). All competing estimators are unbiased and confidence intervals
reach the nominal level, except for the ‘partly parametric’ and ‘non-parametric’
TMLE. This is because their sandwich standard errors, which are calculated as
the variance of the influence function under the assumption of known nuisance
parameters (see the Appendix), can be severely biased (under misspecification of
models for the outcome and treatment).

It follows from the theoretical results in the Appendix that the potential of the
proposed estimators to improve efficiency depends on the strength of the associa-
tions between outcome and mediator, outcome and covariates, and mediator and
covariates. Not surprisingly, bigger efficiency gains can be realised when covariates
X become more strongly predictive of outcome Y . The same is observed when
the strength of the association between covariates X and mediator M is changed,
although there may be scenarios where this is less obvious. While a stronger associ-
ation between covariates and mediator improves estimation of the treatment effect
on the mediator, it can also deteriorate the estimation of the mediator’s effect on
the outcome as a result of multicollinearity. When the strength of the association
between the mediator M and the outcome Y is changed, a stronger reduction in
absolute terms is observed. This can be intuitively understood by considering the
product-of-coefficient estimator of the indirect effect. Its Delta method standard
error weighs the variance of the estimated treatment effect on the mediator by the
magnitude of the mediator’s effect on the outcome. Since covariate adjustment
reduces this variance, the extent to which it reduces is larger (in absolute terms) as
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the mediator is more strongly predictive of the outcome.

2.3.1.2 Binary Outcome

Association RMLE LE RE MLE MLEI TMLEP TMLEPP TMLE

Y ∼M: moderate Bias 0.002 0.002 0.002 0.139 0.002 0.001 0.001 0.045
Y ∼ X : moderate Emp SD 0.029 0.027 0.027 0.024 0.027 0.029 0.029 0.032
M ∼ X : null Mean SE 0.030 0.029 0.029 0.023 0.028 0.032 0.063 0.060

Coverage 0.96 0.96 0.96 0.00 0.96 0.97 1.00 0.98
Y ∼M: moderate Bias -0.001 0.000 0.000 0.103 0.000 -0.001 -0.001 0.010
Y ∼ X : moderate Emp SD 0.033 0.025 0.026 0.024 0.025 0.033 0.033 0.030
M ∼ X : strong Mean SE 0.034 0.025 0.026 0.023 0.025 0.035 0.068 0.066

Coverage 0.96 0.96 0.96 0.01 0.95 0.96 1.00 1.00
Y ∼M: null Bias 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Y ∼ X : moderate Emp SD 0.031 0.030 0.030 0.021 0.030 0.031 0.031 0.019
M ∼ X : moderate Mean SE 0.031 0.030 0.030 0.021 0.029 0.033 0.072 0.072

Coverage 0.95 0.94 0.94 0.94 0.94 0.95 1.00 1.00
Y ∼M: strong Bias 0.000 0.001 0.001 0.143 0.001 0.000 0.000 0.017
Y ∼ X : moderate Emp SD 0.033 0.027 0.027 0.024 0.026 0.033 0.033 0.031
M ∼ X : moderate Mean SE 0.033 0.027 0.027 0.024 0.026 0.035 0.064 0.063

Coverage 0.96 0.96 0.96 0.00 0.95 0.96 1.00 1.00
Y ∼M: moderate Bias 0.000 0.001 0.001 0.124 0.001 0.000 0.000 0.021
Y ∼ X : null Emp SD 0.031 0.027 0.027 0.024 0.027 0.031 0.031 0.029
M ∼ X : moderate Mean SE 0.032 0.027 0.028 0.023 0.027 0.033 0.065 0.063

Coverage 0.96 0.96 0.95 0.00 0.95 0.97 1.00 1.00
Y ∼M: moderate Bias 0.001 0.001 0.001 0.113 0.001 0.000 0.000 0.017
Y ∼ X : strong Emp SD 0.033 0.027 0.027 0.023 0.026 0.033 0.033 0.031
M ∼ X : moderate Mean SE 0.032 0.026 0.026 0.023 0.025 0.034 0.067 0.065

Coverage 0.95 0.95 0.94 0.00 0.94 0.96 1.00 1.00

Table 2.2: Simulation results for indirect effect on a binary outcome under correct
model specification.

Covariates X = (X1, ...,X8)
t and mediator M are generated as before. A bi-

nary outcome Y is generated as a Bernoulli variate obeying logit{P(Y = 1|A =

a,M,X)} = α0a +α1aM +α t
2aX with a = 0 or 1, (α00,α01) equal to (−0.8,0.8),

α1a equal to (0.6,−0.8) and α t
2a chosen to yield null, moderate, and strong as-

sociations between outcome Y and mediator M and covariates X , as detailed in
the Appendix. The simulation results in Table 2.2, as well as Table 2.16 of the
Appendix, suggest similar conclusions as for the continuous outcome: efficiency
gains relative to the RMLE and TMLE. In contrast to the results of the continuous
outcome, the ‘non-parametric’ TMLE, based on a more flexible outcome model,
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shows some bias for the binary outcome. As before, we observe a relatively minor
efficiency benefit of the MLE without treatment interactions in the outcome model,
but also a large bias since the data generating mechanism included interactions
in the binary outcome model. Both, the minor efficiency gain and the large bias,
disappear when treatment interactions are included in the outcome model.

2.3.2 Misspecification of the model for the mediator

A drawback of direct maximum likelihood estimation based on the mediation
formula is that it requires correct specification of the model for the mediator
distribution. The proposed estimators also make use of such a model, but only
to increase efficiency; its misspecification does not induce bias. In this section,
we will examine this through various simulation settings with misspecification
of the mediator model, chosen to reflect important, but realistic degrees of mis-
specification. Covariates X∗ = (X1, ...,X8)

t are generated as before. The contin-
uous mediator M is drawn from a normal distribution with mean E(M|A,X) =

β0 + β1A+ β t
2X . In the first scenario, the mediator was drawn from a normal

distribution with residual variance 1, and with X including the eight covariates
X∗ and two squared terms X2

1 and X2
2 . Parameter values were set to β0 = 0,

β1 = 1, β2 = (1,0,0,0,0,0,0,0,−1,−1)t . As a result, mediator models in the
analyses are misspecified since the two squared terms were ignored. In the
second setting, M has mean E(M|A,X) = β0 + β1A+ β t

2X + β3Un and residual
variance 1, where Un is Bernoulli distributed with P(Un = 1) = 0.5 and param-
eter values β0 = 0, β1 = −1.25, β2 = (−0.25,0.25,0,0,0,0,0,0)t and β3 = 10.
Mediator models are misspecified because they did not include Un as a pre-
dictor. In the third scenario, X equals X∗ with β0 = 0, β1 = 0.5, and β2 =

(0.1,−0.2,0.1,0.2,0.15,−0.2,−0.15,−0.05)t , but residual errors were taken from
a Student t-distribution with three degrees of freedom, multiplied by 1. In the
fourth and final setting, the continuous mediator M is drawn from a gamma
distribution with shape equal to β0 + β1A+ β t

2X with β0 = 1.5, β1 = 1.5, β2 =

(0.2,0,0,0,0,0,0,0)t and scale equal to 1; here, X equals X∗, but X1 ∼N (6,1).
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2.3.2.1 Continuous Outcome

The continuous outcome Y is drawn from a normal distribution with mean E(Y |A,M,X)

= α0 +α1A+α2M +α t
3X and residual variance 4, and the following parameter

values: α0 = 1, α1 = 2, α2 =−1 and α3 = (0.8,0.7,0.55,−0.6,−0.25,0,0,0)t .

Misspecification RMLE LE RE MLE MLEI TMLEP TMLEPP TMLE

Not included Bias 0.007 0.001 0.001 0.001 0.001 -0.001 -0.001 0.002
higher order Emp SD 0.230 0.213 0.212 0.209 0.212 0.230 0.230 0.229
terms Mean SE 0.231 0.211 0.211 0.205 0.210 0.230 0.913 0.913

Coverage 0.95 0.95 0.95 0.94 0.95 0.94 1.00 1.00
Forgotten Bias 0.004 -0.001 -0.001 0.000 -0.001 -0.093 -0.094 -0.092
predictor Emp SD 0.477 0.472 0.471 0.471 0.471 0.479 0.479 0.479

Mean SE 0.474 0.454 0.454 0.457 0.456 0.474 1.434 1.432
Coverage 0.95 0.94 0.94 0.93 0.94 0.95 1.00 1.00

Outliers in Bias -0.002 -0.012 -0.012 -0.013 -0.012 -0.015 -0.015 -0.016
mediator Emp SD 0.214 0.163 0.163 0.161 0.163 0.212 0.212 0.211
distribution Mean SE 0.207 0.160 0.160 0.156 0.159 0.204 1.330 1.330

Coverage 0.95 0.94 0.94 0.94 0.94 0.94 1.00 1.00
Gamma Bias 0.002 -0.008 -0.008 -0.005 -0.008 0.017 0.017 0.017
mediator Emp SD 0.220 0.183 0.183 0.171 0.183 0.207 0.207 0.207
distribution Mean SE 0.226 0.189 0.189 0.177 0.188 0.215 1.109 1.109

Coverage 0.95 0.95 0.95 0.96 0.95 0.96 1.00 1.00

Table 2.3: Indirect effect on a continuous outcome with mediator misspecification

Table 2.3, as well as Table 2.17 of the Appendix summarise the simulation
results for the continuous outcome under mediator model misspecification. Both
proposed estimators are again more efficient than the restricted MLE and the TMLE
in terms of the natural indirect effect estimate, even if the model for the mediator
is misspecified. The MLE without treatment interaction continues to be unbiased
because the linear model for the mediator satisfies identity 2.10, indicating that the
MLE is robust against mediator model misspecification. It is also slightly more
efficient, which reflects its reliance on a more restrictive outcome model, which
does not allow for modification of the mediator and covariate effects by treatment. If
such mediator and covariate treatment interactions are included, the slight efficiency
gain of the MLE disappears.
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2.3.2.2 Binary Outcome

The binary outcome Y is generated as Bernoulli according to logit{P(Y = 1|A =

a,M,X)}= α0a +α1aM+α t
2aX with a = 0 or 1. Parameter values are detailed in

the Appendix.
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Figure 2.1: Indirect effect on a binary outcome with mediator misspecification

Table 2.4 and Figure 2.1 (and Table 2.18 and Figure 2.2 of the Appendix)
suggest similar conclusions as before in terms of efficiency. The MLE is once again
extremely biased when it does not take into account that the mediator and covariate
effects on the outcome interact with treatment, which leads to undercoverage of the
confidence intervals. Even when modelling those interactions, forgetting to include
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an important predictor (see also Table 2.18 and Figure 2.2 of the Appendix) or not
including higher order terms induces some bias and leads to undercoverage. In
three of the four settings (i.e. forgotten predictor, outliers and gamma distribution),
the ‘non-parametric’ TMLE seems more vulnerable to bias with a binary outcome.

Misspecification RMLE LE RE MLE MLEI TMLEP TMLEPP TMLE

Not included Bias 0.000 0.001 0.000 -0.020 -0.018 0.002 0.002 0.003
higher order Emp SD 0.022 0.021 0.021 0.019 0.020 0.022 0.022 0.022
terms Mean SE 0.021 0.020 0.020 0.019 0.019 0.022 0.024 0.023

Coverage 0.94 0.94 0.94 0.82 0.84 0.94 0.96 0.96
Forgotten Bias -0.002 -0.002 -0.002 0.064 0.012 -0.002 -0.002 -0.013
predictor Emp SD 0.030 0.030 0.030 0.007 0.024 0.031 0.031 0.034

Mean SE 0.030 0.029 0.029 0.007 0.023 0.032 0.070 0.068
Coverage 0.95 0.94 0.94 0.00 0.90 0.96 1.00 1.00

Outliers in Bias -0.001 0.000 0.000 0.026 0.000 -0.001 -0.001 0.011
mediator Emp SD 0.015 0.012 0.012 0.008 0.012 0.015 0.015 0.014
distribution Mean SE 0.017 0.014 0.014 0.008 0.013 0.019 0.060 0.059

Coverage 0.97 0.98 0.98 0.11 0.95 0.98 1.00 1.00
Gamma Bias -0.001 -0.001 -0.001 -0.031 -0.003 0.000 0.000 -0.020
mediator Emp SD 0.023 0.022 0.022 0.019 0.021 0.023 0.024 0.024
distribution Mean SE 0.024 0.023 0.023 0.019 0.022 0.026 0.038 0.039

Coverage 0.96 0.96 0.96 0.62 0.94 0.97 1.00 0.99

Table 2.4: Indirect effect on a binary outcome with mediator misspecification

2.3.3 Additional results

In the Appendix, we provide a large number of additional simulation results on
the behaviour of these estimators in small samples and under misspecification of
the outcome model. With outcome model misspecification, the TMLE performed
sometimes slightly better and sometimes slightly worse in terms of bias and standard
deviation than the considered estimators. Overall, the results are largely similar as
before.

2.4 Data analysis

We re-analyze data from a psychological experiment on the effect of implicit prim-
ing with social deception (A) on responses towards other’s pain (Y ) (De Ruddere
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et al. 2013). In total, 55 participants were randomly assigned to the neutral condi-
tion (n = 27) or the social deception condition (n = 28), in which they read either
a neutral text about the use of the health care system or a text about its misuse,
respectively. It was hypothesised that implicit priming with social deception would
lower the observers’ estimates of pain experienced by a patient (presented to the
participant in a video). A numerical rating scale, going from 0 to 10, was used to
asses observers’ estimated pain of the patient, where 10 indicated ‘pain as bad as
could be’. Furthermore, the patients’ valence (M), i.e. how positive or negative a
patient was evaluated by the observers (based a 21-point scale from -10 = very neg-
ative to 10 = very positive), was considered as a potential mediator. It was explored
whether social deception induced less positive ratings, which in turn lowered the
observers’ estimates of pain experienced by a patient. Available baseline covariates
(C) include education, profession, gender, marital status and age.

Estimator Estimate SEboot SEsandwich 95% CI

Direct effect RMLE 0.49 0.39 0.28 −0.27 to 1.25

LE 0.54 0.38 0.26 −0.20 to 1.28

RE 0.51 0.33 0.26 −0.14 to 1.16

MLE 0.40 0.29 −0.17 to 0.97

TMLEPP 0.41 0.29 0.20 −0.16 to 0.98

Indirect effect RMLE −0.58 0.38 0.26 −1.32 to 0.16

LE −0.22 0.25 0.14 −0.71 to 0.27

RE −0.21 0.22 0.14 −0.64 to 0.22

MLE −0.11 0.11 −0.33 to 0.11

TMLEPP −0.52 0.27 1.00 −1.05 to 0.01

Table 2.5: Estimates of the natural direct and indirect effect without model building.

In a first stage, we used main effect models that include all baseline factors
and mean-centered age. The corresponding estimated natural direct and indirect
effects are presented in Table 2.5. We did not observe a significant direct effect of
priming on the rating of patients’ pain, nor did we observe a significant indirect
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effect via the evaluation of the patients’ valance. The ‘partially parametric’ TMLE
estimator of Lendle et al. (2013), based on the same outcome model as the MLE,
showed a slightly larger bootstrap bias (respectively −0.02 and 0.06 for the direct
and indirect effect in comparison to for example −0.01 and 0.01 of the LE estima-
tor), smaller standard errors for the direct effect and larger ones for the indirect
effect. The discrepancy between the bootstrap standard errors and the sandwich
standard errors of all other estimators suggests that the latter might have also been
underestimated because of the small sample. Similar to the simulation results, we
observe considerably smaller standard errors for the LE-, RE- and TMLE-estimator
of the indirect effect than for the RMLE-estimator.

Next, the models were extended to only include important main and interac-
tion effects. A forward selection procedure with an inclusion criterion of 0.15
for the p-value was used. Tables 2.19, 2.20, 2.21, 2.22 and 2.23 in the Appendix
show the fitted outcome models for E(Y |A = 1,M,X) and E(Y |A = 0,M,X), for
E(Y |A = 1,X) and E(Y |A = 0,X), and for E {m(M,X ;η∗)|A = 0,X}, respectively.
We additionally evaluated a TMLE estimator that makes use of data-adaptive learn-
ing algorithms for the outcome mean (2.7). Bootstrap standard errors were evaluated
conditional on the selected model. Overall, the obtained estimates are slightly more
efficient than before, but deliver similar conclusions. One exception is that we now
observe a significant direct effect of priming on the rating of patients’ pain of 0.63
(95% CI 0.003 to 1.26) based on the RE estimator. We conclude that if a participant
were primed with social deception, but his or her evaluation of the patient’s valence
stayed as it would have been without the priming, the participants’ score of the
patients’ pain would on average be 0.63 points higher than in the neutral condition.

The ‘partially parametric’ TMLE resulted in a significant indirect effect of prim-
ing via patients’ valence of -0.63 (95% CI −1.12 to −0.14). It appears favourable
in terms of efficiency, but has a relatively large bootstrap bias of 0.12. The reason
for this increased efficiency may be the fact that the outcome model for the ‘partially
parametric’ TMLE is fitted on the whole sample, while the LE and RE estimators
postulate separate models for the expected outcome in the treated and untreated
populations. Although the LE and RE estimators can equally be based on more
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restrictive models, we generally advise to model the treated and untreated popula-
tions separately in view of possible model misspecification. Similarly, the TMLE
estimator based on data-adaptive learning algorithms showed a larger bootstrap
bias (respectively −0.10 and 0.13 for the direct and indirect effect in comparison
to for example −0.04 and 0.04 of the LE estimator), which is likely the result of
the small sample size.

Estimator Estimate SEboot SEsandwich 95% CI

Direct effect RMLE 0.51 0.36 0.29 −0.20 to 1.22

LE 0.63 0.33 0.27 −0.02 to 1.28

RE 0.63 0.32 0.27 0.003 to 1.26

MLE 0.41 0.28 −0.14 to 0.95

TMLEPP 0.41 0.28 0.20 −0.14 to 0.96

TMLE 0.19 0.29 0.21 −0.38 to 0.76

Indirect effect RMLE −0.60 0.33 0.25 −1.25 to 0.05

LE −0.44 0.29 0.22 −1.01 to 0.13

RE −0.43 0.29 0.22 −1.00 to 0.14

MLE −0.14 0.10 −0.37 to 0.04

TMLEPP −0.63 0.25 0.98 −1.12 to −0.14

TMLE −0.46 0.29 0.92 −1.03 to 0.11

Table 2.6: Estimates of the natural direct and indirect effect with extended models.

2.5 Discussion

In this article, we have proposed estimators of the natural direct and indirect effect
of a randomised treatment on an end-of-study outcome, with respect to a given me-
diator. Like popular maximum likelihood estimators (MLE) based on the mediation
formula, our estimators make use of a model for the mediator to improve efficiency,
but unlike MLEs, they are robust to its misspecification. In particular, we have con-
sidered two estimators that optimally extract information from the baseline covariate
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data: one (LE) that achieves efficiency when a working model for the mediator is
correctly specified, and one (RE) that achieves efficiency within a more restrictive
class of estimators regardless of correct specification of a working model for the me-
diator. In simulation studies, we found both estimators to exhibit similar behaviour
and therefore recommend the LE estimator for practical use in view of its greater
simplicity. A by-product of our results is that it provides conditions under which the
MLE is robust against mediator model misspecification. All results extend directly
to settings with multiple mediators, upon redefining M to be the vector of mediators.

Our proposal extends to the analysis of observational studies, where the treat-
ment A is not randomly assigned, but the covariate set X remains sufficient to
adjust for confounding of the effects of exposure on outcome and of exposure on
mediator. Because the propensity scores P(A = 1|X) are generally unknown in such
studies, consistent estimates are then required. When the covariate set X is low-
dimensional, then the propensity scores can be estimated non-parametrically. In
that case, the proposed locally efficient estimator is asymptotically equivalent to the
restricted MLE because its potential to exploit covariate information is predicated
on the existence of residual covariate imbalances between the exposure groups.
When the covariate set X is high-dimensional, then an additional model for the
propensity score is required. It then follows from Tsiatis et al. (2008) that the
proposed estimator for E (Y0) is double-robust: unbiased in large samples when
either the model for the propensity score (i.e. working model 1) or the model for
the outcome in the untreated (i.e. working model 2) is correctly specified, but not
necessarily both. It is immediate from the general expressions (2.13) and (2.14) in
the Appendix, that a similar result holds for the proposed estimator for E (Y1M0).
It is double-robust in the following sense: unbiased in large samples when either
the model for the propensity score (i.e. working model 1) or the model for the
fitted outcome in the untreated (i.e. working model 3) is correctly specified, but
not necessarily both. Our proposal is closely related to the triple-robust estimators
of Tchetgen Tchetgen and Shpitser (2012), which are unbiased in large samples
when two out of three models for the exposure, mediator and outcome are correctly
specified, and to related work on Targeted Maximum Likelihood estimation (Lendle
et al. 2013), which we evaluated in our simulation studies. It is also closely related
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to the double-robust estimators of Vansteelandt et al. (2012a), which are unbiased in
large samples when either the outcome model, or both models for the exposure and
mediator are correctly specified. Our proposal differs from these other proposals in
that it makes explicit use of the known randomisation probabilities; it in particular
avoids the need for inverse weighting by the mediator distribution.

Like other mediation analyses, our analysis of natural direct and indirect effects
relies on a technical requirement that the data have been generated by a so-called
nonparametric structural equation model. Mediation analysis based on natural
direct and indirect effects has therefore been the subject of recent debate (Robins
and Richardson 2011; Naimi et al. 2014). We agree that the requirement of a non-
parametric structural equation model is strong, but tend not be to overly concerned
about it so long as one can rule out intermediate confounding. The reason is that in
that case, the natural direct effects that we calculate remain interpretable as direct
effects - even under violation of the nonparametric structural equation model - in
the following sense (Petersen et al. 2006). They can then be interpreted as the
(controlled) treatment effect that would be seen if for each individual, the mediator
were fixed at some value randomly drawn from the conditional distribution of the
mediator, given covariates X , in the controls. We refer the reader to Vansteelandt
and VanderWeele (2013), VanderWeele et al. (2014) or Tchetgen Tchetgen and
VanderWeele (2014) for strategies to deal with intermediate confounders.
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2.A Appendix

2.A.1 Identification assumptions

It follows from Pearl (2001) that the natural direct and indirect effects defined in
Section 2.2.1 can be identified when Ya ⊥⊥ A|X , Ma ⊥⊥ A|X , Yam ⊥⊥M|A = a,X

and Yam ⊥⊥Ma∗|X . It follows from VanderWeele and Vansteelandt (2009) that when
the exposure A is randomly assigned conditional on X , then these assumptions are
satisfied when the data have been generated by a so-called nonparametric structural
equation model, A and X are sufficient to control for confounding of the association
between M and Y , and none of the variables X is affected by the exposure.

2.A.2 General theory: known nuisance parameters

It follows from Tchetgen Tchetgen and Shpitser (2012) and Albert (2012) that

E(Y1M0) = E
{

1−A
P(A = 0|X)

E(Y |A = 1,M,X)

}
,

when the exposure is randomly assigned and X is sufficient to adjust for confound-
ing of the association between M and Y (see Pearl (2001) and VanderWeele and
Vansteelandt (2009) for further discussion of the required identification assump-
tions).

Suppose first that the randomisation probabilities (and thus α∗) are known, and
that also η∗ is known. Then all consistent and asymptotically normal estimators of
θ = E(Y1M0) can be obtained by solving an estimating equation of the form

0 =
n

∑
i=1

Ui(θ ,α
∗,η∗) =

n

∑
i=1

1−Ai

1−g(Xi;α∗)
m(Mi,Xi;η

∗)−θ +d(Xi){Ai−g(Xi;α
∗)}

+e(Mi,Xi)Ai {Yi−m(Mi,Xi;η
∗)} ,

for some index function d(Xi) and e(Mi,Xi). The variance of the solution θ̂

to this equation equals 1 over n times the variance of Ui(θ ,α
∗,η∗). The op-

timal choices of index functions d(Xi) and e(Mi,Xi) may thus be obtained by
minimising the variance of Ui(θ ,α

∗,η∗) w.r.t. d(Xi) and e(Mi,Xi). Since the
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terms d(Xi){Ai−g(Xi;α∗)} and e(Mi,Xi)Ai {Yi−m(Mi,Xi;η∗)} are orthogonal
(i.e., uncorrelated), the optimal choice of d(Xi) may in particular be obtained by
population least squares projection of (1−Ai)m(Mi,Xi;η∗)/{1−g(Xi;α∗)} onto
Ai−g(Xi;α∗). It thus equals

dopt(Xi) = −
E
[

1−Ai
1−g(Xi;α∗)

m(Mi,Xi;η∗){Ai−g(Xi;α∗)}|Xi

]
E
[
{Ai−g(Xi;α∗)}2 |Xi

]
=

E
[
(1−Ai)

g(Xi;α∗)
1−g(Xi;α∗)

m(Mi,Xi;η∗)|Xi

]
g(Xi;α∗){1−g(Xi;α∗)}

=
E [(1−Ai)m(Mi,Xi;η∗)|Xi]

{1−g(Xi;α∗)}2

=
E [m(Mi,Xi;η∗)|Ai = 0,Xi]

1−g(Xi;α∗)
.

Likewise, the optimal choice of e(Mi,Xi) can be obtained by population least
squares projection of (1−Ai)m(Mi,Xi;η∗)/{1−g(Xi;α∗)} onto Ai {Yi−m(Mi,Xi;η)}.
It equals 0.

Calculating the efficient estimator of E(Y1M0) thus requires a working model
for the conditional expectation E [m(Mi,Xi;η∗)|Ai = 0,Xi], which we here more
generally formalise as

E [m(Mi,Xi;η
∗)|Ai = 0,Xi] = z(Xi;γ

∗),

where z(X ;γ) is a known function, smooth in γ and γ∗ is an unknown finite-
dimensional parameter. For given estimator γ̂ of γ∗, the efficient estimator is then
obtained as

θ̂ =
1
n

n

∑
i=1

1
1−g(Xi;α∗)

[(1−Ai)m(Mi,Xi;η
∗)+ z(Xi; γ̂){Ai−g(Xi;α

∗)}] (2.13)

=
1
n

n

∑
i=1

z(Xi; γ̂)+
1−Ai

1−g(Xi;α∗)
[m(Mi,Xi;η

∗)− z(Xi; γ̂)] . (2.14)

Its variance is straightforwardly obtained as the variance of the corresponding
sample average, ignoring estimation of γ̂ .
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The first term in the expression for θ̂ ,

1
n

n

∑
i=1

z(Xi; γ̂) (2.15)

is closely related to the mediation formula. It involves averaging the expected
outcome values, if the exposure were set to 1, over the mediator distribution if the
exposure were set to zero. The second contribution insulates it against bias resulting
from possible misspecification of the mediator distribution.

If z(Xi;γ∗) is a canonical generalised linear model that includes an intercept
and γ∗ is estimated using a standard maximum likelihood procedure on data for the
unexposed, using weights 1/{1−g(Xi;α∗)}, then the efficient estimator reduces
to (2.15) and thus becomes a so-called substitution estimator. This can be seen
because the remaining contribution then equals the score of the intercept in the
fitted model, which is set to zero through the fitting procedure for γ∗.

Finally, while misspecification of the working model for the conditional ex-
pectation E [m(Mi,Xi;η∗)|Ai = 0,Xi] does not affect the consistency of θ̂ , it does
affect its efficiency and may in particular make the estimator less efficient than
the restricted MLE that would be obtained upon setting d(Xi) = 0. When α∗ is
known, this can be remedied by letting z(.) be the identity link and then estimating
γ∗ via ordinary least squares regression of (1−A)m(M,X ;η∗)/{1−g(X ;α∗)}
onto (1,X){A−g(X ;α∗)}/{1−g(X ;α∗)}. This is guaranteed to increase effi-
ciency because the effect of least squares projection is to minimise sums of squares
(and thus variance). Likewise, for estimation of E(Y0), one may consider esti-
mating β ∗ via ordinary least squares regression of (1−A)Y/{1−g(X ;α∗)} onto
(1,X){A−g(X ;α∗)}/{1−g(X ;α∗)}. When α∗ is unknown, then we adopt the
same principle after projecting the influence function (1−A)m(M,X ;η∗)/

{1−g(X ;α∗)}− γ tX {A−g(X ;α∗)}/{1−g(X ;α∗)} onto the orthocomplement
of the tangent space for α∗, which we show for the case g(X ;α∗) = α∗:

(1−A)m(M,X ;η∗)

(1−α∗)
− γ

tX
(A−α∗)

(1−α∗)
+E

[
(1−A)m(M,X ;η∗)

(1−α∗)2 +
γ tX

(1−α∗)

]
(A−α

∗)
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(1−A)m(M,X ;η∗)+E {m(M,X ;η∗)|A = 0}(A−α∗)

(1−α∗)
− γ

t {X−E(X)} (A−α∗)

(1−α∗)
,

which suggestes estimating γ∗ via ordinary least squares regression of (1−
A)m(M,X ;η∗)+E {m(M,X ;η∗)|A = 0}(A−α∗) onto {X−E(X)}(A−α∗).

2.A.3 General theory: unknown nuisance parameters

Suppose now that η∗ is unknown but substituted by a consistent estimator η̂ ,
obtained by solving an estimating equation of the form

0 =
n

∑
i=1

Uη ,i(η
∗) =

n

∑
i=1

eη(Mi,Xi)Ai {Yi−m(Mi,Xi;η
∗)} .

Then all consistent and asymptotically normal estimators of E(Y1M0) may still
be obtained by solving an estimating equation of the above form. However, the
variance of the solution θ̂ is now equal to 1 over n times the variance of

U∗i (θ ,α
∗,η∗) ≡ Ui(θ ,α

∗,η∗)−E
{

∂

∂η
Ui(θ ,α

∗,η∗)

}
E
{

∂

∂η
Uη ,i(η

∗)

}−1

Uη ,i(η
∗).

Since Uη ,i(η
∗) is of the form eη(Mi,Xi)Ai {Yi−m(Mi,Xi;η∗)}, (2.16) has the same

form of Ui(θ ,α
∗,η∗) (although corresponding to a different choice of e(Mi,Xi)).

The optimal choice of d(Xi) that corresponds to an estimator of θ ∗ with minimal
asymptotic variance is thus dopt(Xi), as before.

Suppose now that g(Xi;α)=α , where α∗ is substituted by a consistent estimator
α̂ , obtained by solving an estimating equation of the form

0 =
n

∑
i=1

Uα,i(α
∗) =

n

∑
i=1

Ai−α
∗.

Then the variance of the solution θ̂ is equal to 1 over n times the variance of

U∗∗i (θ ,α∗,η∗) ≡ Ui(θ ,α
∗,η∗)−E

{
∂

∂η
Ui(θ ,α

∗,η∗)

}
E
{

∂

∂η
Uη ,i(η

∗)

}−1

Uη ,i(η
∗)

−E
{

∂

∂α
Ui(θ ,α

∗,η∗)

}
E
{

∂

∂α
Uα,i(α

∗)

}−1

Uα,i(α
∗).
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It follows by a similar reasoning as in Appendix D.2.2 of Bartlett et al. (2014) that
this leaves the optimal choice dopt(Xi) unchanged. This is not surprising because,
by construction, Ui(θ ,α

∗,η∗) with d(Xi) = dopt(Xi) is orthogonal to the scores for
α∗. Note that this is not true for the restricted efficient estimator defined in Section
2.2.5, for which the results of Section 2.2.5 must now be used!

Because by construction of dopt(Xi), U∗i (θ ,α
∗,η∗) is orthogonal to scores of

the form Ai−α∗, we further have that E
{

∂

∂α
Ui(θ ,α

∗,η∗)
}
= 0, thus making

adjustment for the estimation of α∗ unnecessary, when the efficient choice dopt(Xi)

is adopted. More generally, when α∗ is estimated by maximum likelihood, then the
influence function for θ becomes, up to a scalar,

U∗i (θ ,α
∗,η∗)−E

{
∂

∂η
U∗i (θ ,α

∗,η∗)

}
E
{

∂

∂α
Uα,i(α

∗)

}−1

Uα,i

=U∗i (θ ,α
∗,η∗)−E {U∗i (θ ,α∗,η∗)Si,α}E

{
Si,αS′i,α

}−1 Si,α ;

because the second term is a projection, we may conclude that efficient estimation
of α∗ (rather than using a known α∗) reduces variance.

2.A.4 Double-robust estimators

We refer the reader to Tchetgen Tchetgen and Shpitser (2012) and Lendle et al.
(2013) for double-robust estimators of E(Y1M0): estimators that are unbiased in large
samples when either model (2.7) or a model for the distribution of the mediator,
given treatment and covariates (or instead of this, a model for the probability of treat-
ment, given mediator and covariates) is correctly specified. In the simulation study,
we followed the Targeted Maximum Likelihood Estimation (TMLE) approach of
Lendle et al. (2013), which makes use of data-adaptive learning algorithms for
the outcome mean (2.7) and for the probability of treatment, given mediator and
covariates. We here explain how we estimated the indirect effect E(Y1−Y1M0) in
the simulation study, as this is not explained in Lendle et al. (2013). In partic-
ular, consider constant randomisation probabilities g(X ;α) = α . Let Q(1,M,X)

be a working model for E(Y |A = 1,M,X) and h(a,M,X) be a working model for
P(A = a|M,X) for a = 0,1. Then it can be shown that the influence function of the
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indirect effect θ = E(Y1−Y1M0) in the nonparametric model equals{

A
α
− A

1−α

h(0,M,X)

h(1,M,X)

}
{Y −Q(1,M,X)}+{A−h(1,M,X)}×(

1
α
+

1
1−α

)
Q(1,M,X)+

(
h(1,M,X)

α
− h(0,M,X)

1−α

)
Q(1,M,X)−θ .

We started from initial fits Q(0)(1,M,X), h(0)(1,M,X) and h(0)(0,M,X) = 1−
h(0)(1,M,X) obtained via the use of non-parametric data adaptive learning al-
gorithms such as the super learner (van der Laan et al. 2007), which combines
machine learning algorithms and parametric models using cross validation. GLM,
Step, GLM interaction and Step interaction algorithms were used as prediction
algorithms in the super learner function. Additionally, the parametric TMLE was
fitted using the correct outcome model for initial fits of Q(0)(1,M,X). For a con-
tinuous outcome Y ∗, we set a = min(Y ∗), b = max(Y ∗), and Y = (Y ∗−a)/(b−a).
The initial estimates for Q(0)(1,M,X) of E(Y ∗|A = 1,M,X) and h(0)(1,M,X) of
P(A = 1|M,X) are represented as a logistic function of their logit transformation.
Because logit(x) is not defined when x = 0 or 1, Q(0)(1,M,X) and h(0)(1,M,X)

were bounded away from 0 and 1 by truncating at the α and 1−α percentiles with
α = 0.01. In a next step, we iteratively update these estimates for j = 1,2, ... by
fitting the parametric extensions until convergence:

logitQ( j)(1,M,X) = logitQ( j−1)(1,M,X)+ ε
( j−1)
y C( j−1)

y

logith( j)(1,M,X) = logith( j−1)(1,M,X)+ ε
( j−1)
a C( j−1)

a ,

where

C( j−1)
y =

{
A
α̂
− A

1− α̂

h( j−1)(0,M,X)

h( j−1)(1,M,X)

}

C( j−1)
a =

(
1
α̂
+

1
1− α̂

)
Q( j−1)(1,M,X).
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and, upon convergence, calculate the estimator as

1
n

n

∑
i=1

(
h( j)(1,Mi,Xi)

α̂
− h( j)(0,Mi,Xi)

1− α̂

)
Q( j)(1,Mi,Xi).

2.A.5 Simulation study

2.A.5.1 Correct model specification

Continuous outcome The scenario where there is no association between media-
tor M and covariates X is obtained, with β0 = 0, β1 = 1, β2 = (0,0,0,0,0,0,0,0)T

and residual variance σ2 = 1. The scenario’s with a moderate association between
M and X are generated with β2 = (0.1,−0.2,0.8,0.15,0.2,−0.6,0.25,−0.5)T .
In the setting with a strong association between M and X , β2 is changed to
(0.1,−0.2,1.15,0.25,0.4,−1.3,0.5,−0.8)T . In terms of the strength of the associ-
ation between outcome Y and covariates X , a setting with no association is created
with α0 = 1, α1 = 2, α3 = (0,0,0,0,0,0,0,0)T and residual variance σ2 = 4. In
the moderate scenario, α3 is modified to (0.55,0.7,0.8,−0.55,−0.25,0,0,0)T and
in the strong setting to (0.65,0.9,1.25,−1,−0.65,0,0,0)T . To vary the strength of
the association between outcome Y and mediator M, α2 was adjusted from 0 in the
null scenario, to −1 in the moderate setting, and to −2 in the strong scenario.

Binary outcome Similar as for the continuous outcome, the scenario without
association between mediator M and covariates X is obtained, with β0 = 0, β1 = 1,
β2 = (0,0,0,0,0,0,0,0)T and variance σ2 = 1. The scenario’s with a moderate as-
sociation between M and X are generated with β2 = (0.1,−0.2,0.8,0.15,0.2,−0.6,
0.25,−0.5)T . In the strong association setting, β2 is changed to (0.1,−0.2,1.15,
0.25,0.4,−1.3,0.5,−0.8)T . In terms of the strength of the association between
outcome Y and covariates X , a setting with no association is created with (α00,α01)

equal to (−0.8,0.8), α20 = (0,0,0,0,0,0,0,0)T and α21 = (0,0,0,0,0,0,0,0)T . In
the moderate scenario, α20 and α21 are modified to (−0.1,0.1,0.2,−0.15,0,0,0,0)T

and (0.1,−0.25,−0.2,0.15,0,0,0,0)T , and in the strong setting to (−0.6,0.5,0.3,
−0.2,0,0,0,0)T and (0.4,−0.35,−0.3,0.7,0,0,0,0)T . To vary the strength of the
association between outcome Y and mediator M, (α10,α11) are adjusted from (0,0)
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in the null scenario, to (0.6,−0.8) in the moderate setting, and to (0.8,−1) in the
strong scenario.

2.A.5.2 Misspecification of the mediator model with a binary outcome

In the first mediator misspecification setting, where the mediator model is mis-
specified because the two squared terms were ignored, (α00,α01) equals (−3,−2),
(α10,α11) is set to (1,1.5), α20 to (−0.1,0,0.1,−0.1,0.05,0,0,0)T and α21 to
(−0.2,−0.2,0,0.05,0.2,0,0,0)T . The second scenario, characterized by an impor-
tant predictor that is missing from the mediator model in the analysis, has parameter
values (α00,α01) = (−0.1,0.05), (α10,α11) = (−0.5,0.5), α20 = (−0.2,0.15,0,0,
0,0,0,0)T and α21 = (−0.15,0.2,0,0,0,0,0,0)T . The binary outcome in the set-
ting where the mediator distribution has outliers is generated using parameter values:
(α00,α01) = (−0.6,0.6), (α10,α11) = (0.3,−0.2), α20 = (−0.1,0.1,0.2,−0.15,0,
0,0,0)T and α21 = (0.1,−0.25,−0.2,0.15,0,0,0,0)T . In the fourth and final sce-
nario with a gamma mediator distribution (α00,α01) equals (−2.5,−2), (α10,α11)

equals (−0.25,0.25), α20 is set to (0.15,−0.05,−0.1,0,0,0,0,0)T and α21 to
(0.05,0.1,0.05,0,0,0,0,0)T .

2.A.5.3 Binary mediator

Covariates X∗ = (X1, ...,X8)
T are generated as follows: X1,X3 and X8 ∼N (0,1),

X4 and X6 are Bernoulli with P(X4 = 1) = 0.3 and P(X6 = 1) = 0.5, and X2 =

0.2X1 + 0.98U1, X5 = 0.1X1 + 0.2X3 + 0.97U2, and X7 = 0.1X3 + 0.99U3, where
Ul ∼ N (0,1), l = 1,2,3. The binary mediator M is generated as a Bernoulli
variate obeying logit{P(M = 1|A,X)} = β0 + β1A+ β T

2 X with X including the
eight covariates X∗ and one higher order term X2

1 . Parameter values are β0 = 0,
β1 = −1, and β2 = (0.05,−0.1,0.1,−0.2,0,0,0,0,1). The mediator model used
in the analyses is a logistic regression, including main effects of A and X∗. As a
result, the mediator model is misspecified because a higher order term is ignored.

Continuous outcome The continuous outcome Y is drawn from a normal distri-
bution with mean E(Y |A,M,X) = α0 +α1A+α2M+αT

3 X , residual variance 4, X

including the eight covariates of X∗ and the following parameter values: α0 = 1,
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α1 = 2, α2 =−2, α3 = (0.8,0.7,0.55,−0.6,−0.25,0,0,0)T . Table 2.7 summarizes
the simulation results for the continuous outcome under mediator model misspecifi-
cation for a binary mediator. As before, we observe a drastic efficiency benefit of
the LE and RE estimators in comparison to the RMLE and TMLE estimators for
the natural indirect effect estimate, even when the mediator model is misspecified.
The MLE continues to be slightly more efficient, and not biased. As before, the
larger efficiency of the MLE is due to a more restrictive outcome model, which
does not allow for modification of the mediator and covariate effects by treatment.
If the MLE does allow such effects to be included, the slight efficiency benefit it
had disappears.

Estimator Bias Emp SD Mean SE Coverage

Direct effect RMLE 0.009 0.190 0.189 0.95

LE 0.009 0.190 0.188 0.96

RE 0.009 0.190 0.188 0.96

MLE 0.009 0.184 0.183 0.95

MLEI 0.009 0.189 0.188 0.95

TMLEP 0.009 0.187 0.187 0.94

TMLEPP 0.009 0.187 0.169 0.91

TMLE 0.010 0.187 0.169 0.91

Indirect effect RMLE 0.006 0.160 0.160 0.96

LE -0.003 0.102 0.106 0.96

RE -0.003 0.102 0.106 0.96

MLE -0.003 0.094 0.096 0.96

MLEI -0.003 0.102 0.103 0.95

TMLEP 0.006 0.155 0.157 0.96

TMLEPP 0.006 0.155 0.930 1.00

TMLE 0.006 0.154 0.930 1.00

Table 2.7: Direct and indirect effect on a continuous outcome with binary mediator
misspecification
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Binary outcome The binary outcome Y is generated as Bernoulli according to
logit{P(Y = 1|A = a,M,X) = α0a +α1aM +αT

2aX} with a = 0 or 1. X included
the eight covariates of X∗. The following parameter values are used: (α00,α01) =

(−2,−1), (α10,α11) = (−0.5,1), α20 = (−0.1,0,−0.05,0.15,0.3,0,0,0)T and
α21 = (−0.2,−0.2,0.3,0.2,−0.1,0,0,0)T . As before, Table 2.8 shows that the
MLE is biased when it does not take into account that the mediator and covariate
effects on the outcome interact with treatment. Similarly, the ‘non-parametric’
TMLE, based on the flexible outcome model, again shows some bias. Also in terms
of efficiency previous conclusions can be repeated.

Estimator Bias Emp SD Mean SE Coverage

Direct effect RMLE 0.000 0.041 0.040 0.95

LE -0.001 0.040 0.040 0.95

RE 0.000 0.040 0.040 0.95

MLE -0.018 0.040 0.039 0.91

MLEI -0.001 0.040 0.039 0.95

TMLEP 0.000 0.041 0.041 0.95

TMLEPP 0.000 0.041 0.040 0.94

TMLE -0.016 0.041 0.037 0.90

Indirect effect RMLE 0.001 0.021 0.022 0.96

LE 0.001 0.016 0.018 0.96

RE 0.001 0.016 0.018 0.96

MLE 0.019 0.013 0.013 0.70

MLEI 0.002 0.015 0.015 0.94

TMLEP 0.001 0.021 0.023 0.97

TMLEPP 0.001 0.021 0.043 1.00

TMLE 0.015 0.018 0.041 1.00

Table 2.8: Direct and indirect effect on a binary outcome with binary mediator
misspecification
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2.A.5.4 Small sample

Now, we will evaluate the performance of the different proposed estimators through
simulation analyses with 1000 runs for data sets of 50 observations. Covariates
X = (X1, ...,X4)

T are generated as follows: X1 and X3 are generated from a standard
normal distribution, X4 is Bernoulli with P(X4 = 1) = 0.5 and X2 = 0.1X1+0.2X3+

0.97U1, where U1 ∼N (0,1). The continuous mediator M is drawn from a normal
distribution with residual variance 1 and mean E(M|A,X) = β0 +β1A+β T

2 X with
β0 = 0, β1 = 0.5 and β2 = (0.1,−0.2,0.15,−0.3)T .

Estimator Bias Emp SD Mean SE Coverage

Direct effect RMLE 0.002 0.683 0.650 0.94

LE 0.007 0.660 0.626 0.94

RE 0.008 0.649 0.623 0.94

MLE 0.006 0.606 0.628 0.96

MLEI 0.012 0.664 0.776 0.97

TMLEP -0.009 0.608 0.630 0.95

TMLEPP -0.005 0.607 0.430 0.81

TMLE -0.342 0.857 0.440 0.65

Indirect effect RMLE 0.013 0.538 0.555 0.96

LE 0.002 0.409 0.426 0.95

RE 0.001 0.407 0.426 0.95

MLE 0.006 0.344 0.364 0.94

MLEI 0.002 0.404 0.477 0.96

TMLEP 0.014 0.451 0.52 0.98

TMLEPP 0.019 0.460 2.08 1.00

TMLE 0.104 0.436 2.030 1.00

Table 2.9: Direct and indirect effect on a continuous outcome with binary mediator
misspecification
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Continuous outcome A continuous outcome Y is drawn from a normal distri-
bution with mean E(Y |A,M,X) = α0 +α1A+α2M+αT

3 X and residual variance
4. Here, α0 = 1, α1 = 2, α2 is set to -1 and α3 to (0.55,−0.7,0.8,−0.55)T . Table
2.9 summarizes the simulation results for the continuous outcome. Relative to the
RMLE and to a lesser extent the TMLE, the proposed efficient estimators (LE and
RE) deliver drastic efficiency gains for the natural indirect effect, even with this
small sample size. The relatively minor efficiency benefit of the MLE is again
visible, but it disappears once the assumption that the mediator and covariate effects
on the outcome do not interact with treatment is dropped. As in the data analysis,
the ‘non-parametric’ TMLE shows its sensitivity to finite sample bias.

Estimator Bias Emp SD Mean SE Coverage

Direct effect RMLE -0.004 0.168 0.155 0.91

LE -0.007 0.162 0.149 0.91

RE -0.005 0.163 0.149 0.91

MLE -0.018 0.159 0.151 0.93

MLEI -0.006 0.164 0.160 0.97

TMLEP -0.005 0.167 0.170 0.95

TMLEPP -0.006 0.168 0.140 0.89

TMLE -0.040 0.146 0.110 0.87

Indirect effect RMLE 0.002 0.090 0.101 0.97

LE 0.003 0.067 0.080 0.98

RE 0.003 0.068 0.081 0.98

MLE 0.015 0.045 0.053 0.97

MLEI 0.003 0.065 0.078 0.99

TMLEP 0.001 0.091 0.140 1.00

TMLEPP 0.001 0.092 0.180 1.00

TMLE 0.015 0.071 0.170 1.00

Table 2.10: Direct and indirect effect on a binary outcome with binary mediator
misspecification
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Binary outcome The binary outcome Y is generated as Bernoulli according to
logit{P(Y = 1|A = a,M,X) = α0a +α1aM +αT

2aX} with a = 0 or 1. The follow-
ing parameter values are used: (α00,α01) = (−0.3,0.1), (α10,α11) = (0.1,−0.15),
α20 = (−0.1,0.05,0.2,0)T and α21 = (0.05,0,−0.1,0.1)T . Table 2.10 shows the
simulation results for the binary outcome which are similar to those of the contin-
uous outcome in terms of efficiency: large efficiency benefit for the LE and RE
compared to the RMLE and the TMLE. The MLE is more efficient under the no
treatment interaction assumption, but shows significant bias when this assumption
does not hold. Here this is not that obvious, because the interactions were not really
important predictors. When treatment interactions are included in the outcome
model for the MLE, its efficiency gain disappears.

2.A.5.5 Outcome model misspecification

Finally, we will evaluate the performance of the different proposed estimators
through simulation analyses with 1000 runs for data sets of 500 observations with
outcome model misspecification. Covariates X∗ = (X1, ...,X8)

T are generated as
follows: X1,X3 and X8 ∼N (0,1), X4 and X6 are Bernoulli with P(X4 = 1) = 0.3
and P(X6 = 1) = 0.5, and X2 = 0.2X1+0.98U1, X5 = 0.1X1+0.2X3+0.97U2, and
X7 = 0.1X3 +0.99U3, where Ul ∼N (0,1), l = 1,2,3. The continuous mediator M

is drawn from a normal distribution with residual variance 1 and mean E(M|A,X) =

β0+β1A+β T
2 X with β0 = 0, β1 = 1 and β2 = (0.1,−0.2,0.8,0.15,0.2,−0.6,0.25,

−0.5)T .

Continuous outcome We will examine the effect of outcome misspecification
via various simulation settings with misspecification of the outcome model. In the
first and fifth setting, the continuous outcome Y is drawn from a normal distribution
with mean E(Y |A,M,X) = α0+α1A+α2M+αT

3 X , residual variance 4 and with X

including the eight covariates X∗ and one squared term X2
8 . Parameter value α0 is set

to 1, α1 to 2, α2 is set to -1 and α3 = (0.55,0.7,0.8,−0.55,−0.25,0,0,0,−0.75)T

in the first setting and to α0 = 1, α1 = 2, α2 is set to -0.75 and α3 = (−0.5,0,0,0,0,
0,0,0,1)T in the fifth setting. As a result, the outcome models in the analyses are
misspecified since the squared term was ignored.
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Misspecification RMLE LE RE MLE MLEI TMLEPP TMLE

Scenario 1 Bias -0.002 -0.007 -0.007 -0.003 -0.007 -0.037 -0.030
Emp SD 0.270 0.268 0.268 0.242 0.268 0.238 0.235
Mean SE 0.250 0.248 0.248 0.225 0.250 0.187 0.225
Coverage 0.94 0.93 0.93 0.93 0.94 0.85 0.92

Scenario 2 Bias -0.003 -0.002 -0.003 -0.003 -0.002 -0.008 -0.002
Emp SD 0.254 0.249 0.249 0.221 0.249 0.223 0.222
Mean SE 0.238 0.235 0.235 0.210 0.237 0.164 0.202
Coverage 0.94 0.94 0.94 0.93 0.94 0.82 0.91

Scenario 3 Bias -0.003 -0.006 -0.006 -0.004 -0.006 -0.045 -0.086
Emp SD 0.333 0.320 0.320 0.274 0.320 0.265 0.289
Mean SE 0.300 0.289 0.289 0.251 0.293 0.190 0.202
Coverage 0.93 0.93 0.93 0.92 0.93 0.81 0.84

Scenario 4 Bias -0.003 -0.006 -0.006 -0.004 -0.006 -0.035 -0.044
Emp SD 0.333 0.320 0.320 0.274 0.320 0.266 0.269
Mean SE 0.300 0.289 0.289 0.251 0.293 0.181 0.195
Coverage 0.93 0.93 0.93 0.92 0.93 0.80 0.89

Scenario 5 Bias -0.008 -0.001 -0.001 -0.001 -0.001 0.026 0.010
Emp SD 0.280 0.277 0.277 0.251 0.277 0.260 0.265
Mean SE 0.270 0.268 0.268 0.243 0.269 0.201 0.250
Coverage 0.94 0.94 0.94 0.95 0.94 0.85 0.93

Scenario 6 Bias 0.006 0.000 0.000 -0.001 - -0.051 -0.113
Emp SD 0.393 0.374 0.374 0.320 - 0.304 0.301
Mean SE 0.364 0.346 0.346 0.295 - 0.220 0.221
Coverage 0.95 0.93 0.94 0.93 - 0.82 0.82

Table 2.11: Direct effect on a continuous outcome with outcome misspecification
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In the second, third, fourth and sixth scenario, the continuous outcome Y

has mean E(Y |A,M,X) = α0 +α1A+α2M+αT
3 X +αT

4 X×M with residual vari-
ance 4 and X including the eight covariates X∗. In the second and third sce-
nario, parameter values were set to α0 = 1, α1 = 2, α2 is set to -1 and α3 =

(0.55,0.7,0.8,0,−0.25,0,0,0)T . Further in the second scenario, the parameter val-
ues of α4 were set to (0,0,0,1,0,0,0,0)T and in the third scenario to (0,0,0,0,0,0,
0,1)T . In the fourth scenario, parameter values were set to α0 = 1, α1 = 2, α2

is set to -0.75 and α3 = (−0.5,0,0,0,0,0,0,0)T and α4 = (0,0,0,0,0,0,0,1)T .
In the sixth setting, we left out the MLE with interaction terms for simplic-
ity. Parameter values were set to α0 = 1, α1 = 2, α2 is set to -1 and α3 =

(−0.5,0.4,0,−0.7,0,0,0,0)T and α4 =(0,0,0,0,−0.5,−0.2,−0.8,1)T . Outcome
models are misspecified because they did not include the X×M interactions.

Table 2.12 shows that relative to the RMLE and to a lesser extent the TMLE’s
(i.e., in scenario’s where covariates play an important role), the proposed efficient
estimators (LE and RE) deliver drastic efficiency gains for the natural indirect effect,
even with outcome misspecification. In terms of the natural direct effect (Table
2.11), the TMLE’s seem to perform somewhat better in terms of efficiency in case
of a continuous outcome. All estimators remain unbiased and confidence intervals
reach the nominal level even with outcome model misspecification. With an R2,
indicating the importance of the forgotten squared or interaction term, ranging from
12% to 40%, this shows that the in case of continuous outcomes all competing
estimators are fairly robust against outcome model misspecification.

Binary outcome In the first and fifth setting, the binary outcome Y is generated
as Bernoulli according to logit{P(Y = 1|A = a,M,X) = α0a +α1aM+αT

2aX} with
a = 0 or 1. X included the eight covariates of X∗ and one squared term X2

8 . The
following parameter values are used in the first scenario: (α00,α01) = (−0.7,0.1),
(α10,α11) = (0.2,−0.3), α20 = (−0.1,0.1,−0.2,−0.15,0,0,0,0,0.6)T and α21 =

(0.1,−0.15,−0.1,0.15,0,0,0,0,0.8)T . The fifth setting had parameter values
(α00,α01) = (−0.4,0.1), (α10,α11) = (−0.4,−0.6), α20 = (−0.1,0,0,0,0,0,0,0,
0.5)T and α21 = (0.1,0,0,0,0,0,0,0,1.5)T . As a result, the outcome models in
the analyses are misspecified since the squared term was ignored. In the sec-
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Misspecification RMLE LE RE MLE MLEI TMLEPP TMLE

Scenario 1 Bias 0.007 0.008 0.008 0.005 0.008 0.032 0.029
Emp SD 0.209 0.168 0.168 0.140 0.168 0.179 0.177
Mean SE 0.215 0.172 0.172 0.135 0.170 1.118 1.117
Coverage 0.96 0.95 0.95 0.95 0.95 1.00 1.00

Scenario 2 Bias 0.003 0.002 0.002 0.002 0.002 0.005 0.002
Emp SD 0.192 0.154 0.154 0.119 0.155 0.155 0.161
Mean SE 0.195 0.156 0.156 0.118 0.155 0.874 0.872
Coverage 0.96 0.95 0.95 0.95 0.95 1.00 1.00

Scenario 3 Bias 0.003 0.008 0.008 0.006 0.008 0.036 0.044
Emp SD 0.272 0.208 0.208 0.166 0.208 0.195 0.239
Mean SE 0.279 0.206 0.206 0.158 0.204 1.444 1.438
Coverage 0.96 0.94 0.94 0.94 0.93 1.00 1.00

Scenario 4 Bias -0.002 0.007 0.007 0.005 0.007 0.024 0.011
Emp SD 0.261 0.199 0.199 0.153 0.199 0.180 0.200
Mean SE 0.258 0.197 0.197 0.147 0.195 1.389 1.385
Coverage 0.96 0.95 0.94 0.94 0.94 1.00 1.00

Scenario 5 Bias 0.004 0.003 0.003 0.002 0.003 -0.030 -0.018
Emp SD 0.204 0.173 0.173 0.131 0.173 0.171 0.178
Mean SE 0.200 0.173 0.173 0.129 0.171 0.871 0.870
Coverage 0.94 0.95 0.95 0.96 0.94 1.00 1.00

Scenario 6 Bias -0.009 0.003 0.003 0.004 - 0.041 0.032
Emp SD 0.350 0.253 0.253 0.201 - 0.239 0.288
Mean SE 0.349 0.247 0.247 0.190 - 1.967 1.960
Coverage 0.95 0.94 0.94 0.94 - 1.00 1.00

Table 2.12: Indirect effect on a continuous outcome with outcome misspecification
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ond, third and fourth scenario, the binary outcome Y is generated as Bernoulli
according to logit{P(Y = 1|A = a,M,X) = α0a+α1aM+αT

2aX +αT
3aX×M} with

a = 0 or 1. X included the eight covariates of X∗. In the second scenario, pa-
rameter values were (α00,α01) = (−0.4,0.1), (α10,α11) = (0.4,−0.6), α20 =

(−0.1,0.1,−0.2,0,0,0,0,0)T , α21 = (0.1,−0.15,−0.1,0,0,0,0,0)T , α30 = (0,0,
0,0.5,0,0,0,0)T and α31 = (0,0,0,1.5,0,0,0,0)T . In the third scenario, parameter
values were (α00,α01) = (−0.4,0.1), (α10,α11) = (−0.4,−0.6), α20 = (−0.1,0.1,
−0.2,0,0,0,0,0)T , α21 = (0.1,−0.15,−0.1,0,0,0,0,0)T , α30 = (0,0,0,0,0,0,0,
0.5)T and α31 =(0,0,0,0,0,0,0,1.5)T . In the fourth setting, parameter values were
(α00,α01)= (−0.4,0.1), (α10,α11)= (−0.4,−0.6), α20 =(−0.1,0,0,0,0,0,0,0)T ,
α21 =(0.1,0,0,0,0,0,0,0)T , α30 =(0,0,0,0,0,0,0,0.5)T and α31 =(0,0,0,0,0,0,
0,1.5)T . In the sixth setting, the binary outcome Y is generated as Bernoulli accord-
ing to logit{P(Y = 1|A,M,X) = α0+α1A+α2M+αT

3 X +αT
4 X×M}. X included

the eight covariates of X∗. Parameter values were α0 = 0, α1 = 0.6, α2 = −1,
α3 = (0.1,0,0,0,0,0,0,0)T and α4 = (0,0,0,0,0.7,0.3,1.5,0.6)T . Outcome mod-
els are misspecified because they did not include the X×M interactions.

Also for binary outcomes, we observe that relative to the RMLE and to a
lesser extent the TMLE’s, the proposed efficient estimators (LE and RE) perform
better in terms of efficiency for the natural indirect effect, even with outcome
misspecification (Table 2.14). Although there seems to be a bit more bias in
scenario 3 and 4 for the RMLE, LE, RE, MLE’s and ‘partially parametric’ TMLE,
all confidence intervals approach the nominal level even with outcome model
misspecification. We do believe that more severe outcome misspecification could
possibly result in biased estimates and undercoverage.
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Misspecification RMLE LE RE MLE MLEI TMLEPP TMLE

Scenario 1 Bias 0.001 0.001 0.001 -0.050 0.001 0.001 -0.037
Emp SD 0.053 0.053 0.053 0.051 0.053 0.053 0.050
Mean SE 0.051 0.051 0.051 0.048 0.051 0.054 0.047
Coverage 0.94 0.94 0.94 0.80 0.95 0.95 0.84

Scenario 2 Bias 0.002 0.002 0.001 -0.075 0.001 0.003 -0.024
Emp SD 0.055 0.053 0.053 0.049 0.054 0.055 0.051
Mean SE 0.056 0.055 0.055 0.050 0.055 0.061 0.052
Coverage 0.95 0.95 0.95 0.67 0.96 0.96 0.92

Scenario 3 Bias -0.015 -0.015 -0.015 0.001 -0.015 -0.018 -0.007
Emp SD 0.055 0.054 0.054 0.048 0.054 0.058 0.049
Mean SE 0.056 0.054 0.054 0.048 0.054 0.060 0.044
Coverage 0.94 0.94 0.94 0.94 0.94 0.94 0.85

Scenario 4 Bias -0.014 -0.014 -0.014 0.003 -0.014 -0.019 -0.007
Emp SD 0.056 0.055 0.055 0.048 0.055 0.059 0.050
Mean SE 0.056 0.055 0.055 0.048 0.055 0.060 0.043
Coverage 0.94 0.94 0.94 0.95 0.94 0.94 0.84

Scenario 5 Bias -0.001 0.000 0.000 -0.009 0.000 -0.001 -0.014
Emp SD 0.047 0.047 0.047 0.044 0.047 0.048 0.044
Mean SE 0.047 0.046 0.046 0.043 0.046 0.048 0.042
Coverage 0.94 0.93 0.93 0.94 0.94 0.94 0.91

Scenario 6 Bias 0.001 0.002 0.002 -0.004 - -0.004 -0.005
Emp SD 0.050 0.049 0.049 0.045 - 0.045 0.044
Mean SE 0.052 0.051 0.050 0.046 - 0.032 0.039
Coverage 0.96 0.96 0.96 0.96 - 0.83 0.90

Table 2.13: Direct effect on a binary outcome with outcome misspecification
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Misspecification RMLE LE RE MLE MLEI TMLEPP TMLE

Scenario 1 Bias 0.000 0.000 0.000 0.051 0.000 0.000 0.030
Emp SD 0.030 0.028 0.028 0.021 0.028 0.030 0.025
Mean SE 0.031 0.029 0.029 0.021 0.029 0.068 0.067
Coverage 0.96 0.96 0.96 0.32 0.95 1.00 1.00

Scenario 2 Bias -0.001 -0.001 0.000 0.076 -0.001 -0.001 0.019
Emp SD 0.035 0.031 0.031 0.023 0.031 0.035 0.031
Mean SE 0.035 0.031 0.031 0.023 0.031 0.063 0.058
Coverage 0.96 0.96 0.96 0.09 0.95 1.00 1.00

Scenario 3 Bias 0.015 0.015 0.015 -0.001 0.015 0.015 0.002
Emp SD 0.037 0.032 0.032 0.022 0.032 0.037 0.030
Mean SE 0.036 0.032 0.032 0.023 0.031 0.057 0.052
Coverage 0.92 0.93 0.93 0.96 0.93 0.99 1.00

Scenario 4 Bias 0.015 0.015 0.015 -0.002 0.015 0.015 0.002
Emp SD 0.036 0.032 0.032 0.022 0.032 0.036 0.028
Mean SE 0.036 0.032 0.032 0.023 0.031 0.057 0.052
Coverage 0.92 0.92 0.92 0.95 0.92 1.00 1.00

Scenario 5 Bias 0.002 0.002 0.002 0.011 0.002 0.001 0.009
Emp SD 0.029 0.027 0.027 0.020 0.027 0.029 0.023
Mean SE 0.029 0.027 0.027 0.019 0.026 0.070 0.069
Coverage 0.95 0.95 0.95 0.91 0.94 1.00 1.00

Scenario 6 Bias -0.002 -0.003 -0.002 0.003 - 0.002 0.000
Emp SD 0.034 0.028 0.028 0.022 - 0.024 0.032
Mean SE 0.034 0.029 0.029 0.021 - 0.066 0.065
Coverage 0.96 0.95 0.95 0.94 - 1.00 1.00

Table 2.14: Indirect effect on a binary outcome with outcome misspecification

77



Chapter 2. Efficient mediation analyses of binary and continuous outcomes

2
2.A.6 Other tables and figures

2.A.6.1 Simulation study: Correct model specification

Association RMLE LE RE MLE MLEI TMLEpar TMLEPP TMLE

Y ∼M: moderate Bias -0.005 -0.004 -0.004 -0.002 -0.004 -0.015 -0.015 -0.015
Y ∼ X : moderate Emp SD 0.235 0.234 0.234 0.211 0.234 0.212 0.212 0.213
M ∼ X : null Mean SE 0.221 0.219 0.219 0.200 0.221 0.202 0.169 0.172

Coverage 0.93 0.93 0.93 0.93 0.93 0.93 0.86 0.86
Y ∼M: moderate Bias -0.005 -0.004 -0.004 -0.002 -0.004 -0.015 -0.015 -0.010
Y ∼ X : moderate Emp SD 0.235 0.234 0.234 0.211 0.234 0.212 0.211 0.210
M ∼ X : strong Mean SE 0.221 0.219 0.219 0.200 0.221 0.204 0.182 0.184

Coverage 0.93 0.93 0.93 0.93 0.93 0.93 0.88 0.89
Y ∼M: null Bias -0.005 -0.004 -0.004 -0.002 -0.004 -0.005 -0.006 -0.005
Y ∼ X : moderate Emp SD 0.235 0.234 0.234 0.211 0.234 0.212 0.212 0.206
M ∼ X : moderate Mean SE 0.221 0.219 0.219 0.200 0.221 0.203 0.158 0.161

Coverage 0.93 0.93 0.93 0.93 0.93 0.93 0.83 0.85
Y ∼M: strong Bias -0.005 -0.004 -0.004 -0.002 -0.004 -0.026 -0.026 -0.027
Y ∼ X : moderate Emp SD 0.235 0.234 0.234 0.211 0.234 0.212 0.212 0.213
M ∼ X : moderate Mean SE 0.221 0.219 0.219 0.200 0.221 0.204 0.194 0.197

Coverage 0.93 0.93 0.93 0.93 0.93 0.93 0.91 0.90
Y ∼M: moderate Bias -0.005 -0.004 -0.004 -0.002 -0.004 -0.014 -0.014 -0.009
Y ∼ X : null Emp SD 0.235 0.234 0.234 0.211 0.234 0.210 0.210 0.199
M ∼ X : moderate Mean SE 0.221 0.219 0.219 0.200 0.221 0.202 0.167 0.164

Coverage 0.93 0.93 0.93 0.93 0.93 0.93 0.85 0.87
Y ∼M: moderate Bias -0.005 -0.004 -0.004 -0.002 -0.004 -0.017 -0.017 -0.014
Y ∼ X : strong Emp SD 0.235 0.234 0.234 0.211 0.234 0.212 0.211 0.211
M ∼ X : moderate Mean SE 0.221 0.219 0.219 0.200 0.221 0.204 0.181 0.182

Coverage 0.93 0.93 0.93 0.93 0.93 0.94 0.88 0.89

Table 2.15: Simulation results for direct effect on a continuous outcome under
correct model specification.
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Association RMLE LE RE MLE MLEI TMLEP TMLEPP TMLE

Y ∼M: moderate Bias -0.001 -0.001 -0.001 -0.139 -0.002 -0.001 -0.001 -0.062
Y ∼ X : moderate Emp SD 0.049 0.049 0.049 0.052 0.050 0.050 0.050 0.052
M ∼ X : null Mean SE 0.049 0.049 0.049 0.051 0.050 0.050 0.051 0.047

Coverage 0.95 0.94 0.94 0.21 0.95 0.94 0.95 0.71
Y ∼M: moderate Bias 0.001 0.000 0.000 -0.103 0.000 0.001 0.001 -0.016
Y ∼ X : moderate Emp SD 0.050 0.046 0.047 0.050 0.047 0.051 0.051 0.048
M ∼ X : strong Mean SE 0.050 0.046 0.047 0.049 0.043 0.051 0.052 0.050

Coverage 0.94 0.95 0.95 0.45 0.94 0.95 0.95 0.94
Y ∼M: null Bias -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002
Y ∼ X : moderate Emp SD 0.052 0.051 0.051 0.048 0.051 0.052 0.052 0.045
M ∼ X : moderate Mean SE 0.051 0.050 0.050 0.046 0.050 0.052 0.053 0.038

Coverage 0.95 0.95 0.95 0.94 0.95 0.95 0.96 0.89
Y ∼M: strong Bias 0.001 0.001 0.001 -0.142 0.000 0.001 0.001 -0.024
Y ∼ X : moderate Emp SD 0.052 0.049 0.049 0.053 0.051 0.053 0.053 0.051
M ∼ X : moderate Mean SE 0.051 0.048 0.048 0.051 0.047 0.052 0.052 0.050

Coverage 0.94 0.94 0.94 0.21 0.93 0.94 0.94 0.93
Y ∼M: moderate Bias 0.000 -0.001 -0.001 -0.124 -0.001 0.000 0.000 -0.032
Y ∼ X : null Emp SD 0.051 0.050 0.050 0.053 0.051 0.052 0.052 0.050
M ∼ X : moderate Mean SE 0.050 0.048 0.048 0.050 0.047 0.051 0.051 0.050

Coverage 0.94 0.93 0.93 0.29 0.93 0.94 0.94 0.90
Y ∼M: moderate Bias -0.001 -0.001 -0.001 -0.113 -0.001 -0.001 -0.001 -0.026
Y ∼ X : strong Emp SD 0.052 0.048 0.049 0.051 0.050 0.052 0.052 0.050
M ∼ X : moderate Mean SE 0.050 0.047 0.047 0.049 0.045 0.051 0.051 0.049

Coverage 0.93 0.94 0.94 0.37 0.93 0.94 0.94 0.92

Table 2.16: Simulation results for direct effect on a binary outcome under correct
model specification.
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2.A.6.2 Simulation study: Misspecification of the model for the mediator

Misspecification RMLE LE RE MLE MLEI TMLEP TMLEPP TMLE

Not included Bias -0.004 -0.003 -0.003 -0.003 -0.004 0.020 0.021 0.012
higher order Emp SD 0.200 0.198 0.198 0.194 0.199 0.202 0.203 0.205
terms Mean SE 0.190 0.188 0.188 0.183 0.189 0.194 0.187 0.186

Coverage 0.94 0.94 0.94 0.92 0.93 0.93 0.92 0.91
Forgotten Bias -0.001 -0.001 -0.001 -0.002 -0.001 0.092 0.091 0.014
predictor Emp SD 0.184 0.183 0.182 0.180 0.182 0.183 0.181 0.199

Mean SE 0.184 0.183 0.183 0.180 0.182 0.186 0.171 0.167
Coverage 0.95 0.95 0.95 0.95 0.94 0.93 0.90 0.89

Outliers in Bias 0.011 0.011 0.011 0.011 0.011 0.015 0.016 0.002
mediator Emp SD 0.189 0.186 0.186 0.184 0.186 0.194 0.195 0.202
distribution Mean SE 0.186 0.185 0.185 0.181 0.185 0.191 0.184 0.183

Coverage 0.95 0.95 0.95 0.95 0.95 0.95 0.91 0.90
Gamma Bias 0.002 0.002 0.002 -0.002 0.002 -0.028 -0.028 -0.025
mediator Emp SD 0.204 0.203 0.203 0.197 0.203 0.203 0.204 0.202
distribution Mean SE 0.205 0.204 0.204 0.194 0.204 0.199 0.186 0.182

Coverage 0.96 0.95 0.95 0.94 0.95 0.94 0.90 0.91

Table 2.17: Direct effect on a continuous outcome with mediator misspecification
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Figure 2.2: Direct effect on a binary outcome with mediator misspecification
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Misspecification RMLE LE RE MLE MLEI TMLEP TMLEPP TMLE

Not included Bias 0.000 0.000 0.000 0.009 0.011 -0.002 -0.002 0.002
higher order Emp SD 0.017 0.017 0.017 0.019 0.023 0.016 0.016 0.018
terms Mean SE 0.017 0.017 0.017 0.019 0.025 0.017 0.016 0.015

Coverage 0.95 0.95 0.95 0.92 0.98 0.95 0.96 0.91
Forgotten Bias 0.000 0.000 0.001 -0.066 0.081 -0.008 -0.008 -0.010
predictor Emp SD 0.047 0.046 0.046 0.041 0.047 0.045 0.045 0.044

Mean SE 0.046 0.046 0.046 0.041 0.048 0.046 0.043 0.041
Coverage 0.94 0.94 0.94 0.63 0.61 0.94 092 0.92

Outliers in Bias 0.001 0.001 0.001 -0.026 -0.002 0.001 0.001 -0.018
mediator Emp SD 0.043 0.043 0.043 0.042 0.044 0.043 0.043 0.042
distribution Mean SE 0.045 0.044 0.044 0.044 0.045 0.046 0.045 0.041

Coverage 0.95 0.95 0.95 0.92 0.96 0.96 0.95 0.91
Gamma Bias 0.001 0.000 0.001 0.030 0.000 0.000 0.000 0.027
mediator Emp SD 0.040 0.039 0.039 0.036 0.039 0.040 0.040 0.038
distribution Mean SE 0.039 0.039 0.039 0.037 0.039 0.041 0.039 0.034

Coverage 0.95 0.96 0.96 0.85 0.96 0.96 0.95 0.83

Table 2.18: Direct effect on a binary outcome with mediator misspecification

2.A.6.3 Data analysis

Estimate Std. Error t value Pr(>|t|)
Intercept 3.23 0.33 9.74 0.00
Age -0.04 0.02 -1.92 0.07
Age2 0.003 0.001 1.89 0.07
Evaluation 0.04 0.01 3.71 0.00

Table 2.19: Results of outcome model E(Y |A = 1,M,X)

82



2

2.A. Appendix

Estimate Std. Error t value Pr(>|t|)
Intercept 5.54 0.64 8.73 0.00
Rel. Status Single

Relationship -0.70 0.46 -1.54 0.14
Profession Unemployed

Student -0.97 0.63 -1.53 0.14
Employed -1.39 0.51 -2.73 0.01

Evaluation 0.01 0.01 0.59 0.56

Table 2.20: Results of outcome model E(Y |A = 0,M,X)

Estimate Std. Error t value Pr(>|t|)
Intercept 4.81 0.49 9.89 0.00
Rel. Status Single

Relationship -0.83 0.44 -1.89 0.07
Education Secondary

Higher -1.16 0.44 -2.63 0.01
Gender Male

Female 0.96 0.47 2.06 0.05

Table 2.21: Results of outcome model E(Y |A = 1,X)

Estimate Std. Error t value Pr(>|t|)
Intercept 5.76 0.51 11.25 0.00
Profession Unemployed

Student -1.00 0.62 -1.61 0.12
Employed -1.40 0.50 -2.80 0.01

Rel. Status Single
Relationship -0.73 0.45 -1.62 0.12

Table 2.22: Results of outcome model E(Y |A = 0,X)
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Estimate Std. Error t value Pr(>|t|)
Intercept 4.85 0.34 14.36 0.00
Profession Unemployed

Student 1.02 0.55 1.84 0.08
Employed -0.25 0.40 -0.62 0.54

Age 0.03 0.01 1.80 0.09

Table 2.23: Results of outcome model E {m(M,X ;η∗)|A = 0,X}



3CHAPTER 3

Efficient mediation analyses

of time-to-event outcomes

This chapter is based on the following paper: Vandenberghe, S., Duchateau, L.,
Slaets, L., Bogaerts, J., and Vansteelandt, S. (2017). Surrogate marker analysis
in cancer clinical trials through time-to-event mediation techniques. Statistical

Methods in Medical Research, in press.

The meta-analytic approach is the gold standard for validation of surrogate
markers, but has the drawback of requiring data from several trials. We refine
modern mediation analysis techniques for time-to-event endpoints and apply them
to investigate whether pathological complete response (pCR) can be used as a
surrogate marker for disease-free survival (DFS) in the EORTC 10994/BIG 1-00
randomised phase 3 trial in which locally advanced breast cancer patients were
randomised to either taxane or anthracycline based neoadjuvant chemotherapy. In
the mediation analysis, the treatment effect is decomposed into an indirect effect via
pCR and the remaining direct effect. It shows that only 4.2% of the treatment effect
on disease-free survival after 5 years is mediated by the treatment effect on pCR.
There is thus no evidence from our analysis that pCR is a valuable surrogate marker
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to evaluate the effect of taxane versus anthracycline based chemotherapies on
progression free survival of locally advanced breast cancer patients. The proposed
analysis strategy is broadly applicable to mediation analyses of time-to-event
endpoints, is easy to apply and outperforms existing strategies in terms of precision
as well as robustness against model misspecification.

3.1 Introduction

This article is motivated by a secondary analysis of the EORTC 10994/BIG 1-00
randomised phase 3 trial in 1856 breast cancer patients. The study was originally
set up to examine the interaction between P53 status of the patient and the treatment
effect: the alternative hypothesis states that the hazard ratio of the taxane based
regiment versus the anthracycline regimen is larger in the P53 positive patients
as compared to the P53 negative patients (Bonnefoi et al. 2011). At the time of
surgery, and thus after neoadjuvant chemotherapy, pathological complete response
(pCR) status (i.e. a complete disappearance of any invasive cancer in the primary
tumour and lymph nodes with the exception of very few scattered tumour cells)
was determined. Our aim is to assess if pCR is an appropriate surrogate marker for
the treatment effect on long-term clinically relevant outcomes, such as disease-free
survival (DFS) and overal survival (OS), as previously suggested by Liedtke et al.
(2008) and Mieog et al. (2007).

The validation of surrogate markers has been a longstanding popular research
topic in the analysis of randomised trials (Daniels and Hughes 1997; Gail et al.
2000). Surrogate outcomes enable one to gain knowledge about the effect of treat-
ment on the clinically relevant outcome from the effect of treatment on the surrogate,
which is especially of interest in trials with low incidence rates for the clinically
relevant outcomes. Since surrogate markers ideally provide early evidence about the
effect of treatment, shorter follow-up periods and smaller sample sizes are required,
which makes the resulting trials more cost-efficient. Event-free survival (Michiels
et al. 2009) and disease-free survival (Sargent et al. 2005; Oba et al. 2013), for
instance, have been examined as possible surrogate markers for overall survival
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in locally advanced head and neck cancer and resectable colon and gastric cancer
respectively.

The meta-analytic approach is the gold standard approach for the validation
of surrogate markers (Daniels and Hughes 1997; Buyse et al. 2000a; Alonso et al.
2015). It has the advantage of examining what surrogacy actually is about: does
knowledge about the direction and strength of the effect of treatment on the surro-
gate enable one to predict the direction and strength of the effect of the treatment
on the outcome. One large disadvantage is that it requires a fairly large number
of studies before the results can be deemed reliable (Gail et al. 2000). A recent
meta-analysis for example by Cortazar et al. (2014) studied whether pCR after a
neoadjuvant chemotherapy regimen is an appropriate surrogate outcome for event-
free survival (EFS) and overall survival (OS). Their pooled analysis was based on
data from 10 international trials and showed no evidence of surrogacy. However,
the results of a single trial in this meta-analysis containing an anti-HER2 treatment
alongside chemotherapy, shifted the belief from an overall surrogacy to surrogacy
restricted to the setting of targeted therapy for HER2-positive breast tumors. In
2012, the FDA issued a draft guidance about the use of pCR as an endpoint to
support accelerated approval of a drug for high-risk, early stage breast cancer, such
that patients can be provided (conditional) access to promising drugs while con-
firmatory clinical trials are being conducted (FDA 2014). In 2013, following this
guideline, such accelerated approval was given to the anti-HER2 treatment Perjeta
(FDA 2013), awaiting the phase III results. However, recently the ALTTO trial,
focusing also on HER2 positive tumors, could not confirm its phase II pCR results
and failed on its primary endpoint of disease-free survival (Goss et al. 2013). There-
fore it is questionable whether pCR will remain a convincing red surrogate to the
scientific community, since a surrogacy meta-analysis for anti-HER2 therapy is still
lacking and moreover the clinical relevance of this endpoint for the patient is limited.

In light of these problems, we will use modern mediation analysis methods to
examine the validity of pCR as a surrogate marker for disease-free survival (DFS).
The advantage of this methodology is that only one trial is needed, but the disad-
vantage that it attempts to answer a more ambitious question: whether all of the
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treatment effect is mediated by the surrogate. The mediation analysis approach gen-
eralizes the proportion-explained approach for the validation of surrogate endpoints,
better known as the Freedman approach (Freedman et al. 1992). This approach
attempts to provide insight by contrasting the magnitude of the treatment effect
with or without adjustment for the surrogate (see Tein and MacKinnon (2003) for
such analysis in the context of time-to-event outcomes). Modern mediation analysis
approaches accommodate one key problem of the Freedman approach: that adjust-
ing for a marker in non-linear models (e.g. Cox regression models) may change
the magnitude of the treatment effect even when the marker is not affected by the
treatment (and thus a poor surrogate). This problem is known as non-collapsibility
of treatment effects (Greenland et al. 1999; Martinussen and Vansteelandt 2013).

In this chapter, extending earlier work on continuous and binary outcomes
(Vandenberghe et al. 2017a), we will introduce such modern mediation analysis
approaches for the analysis of time-to-event endpoints and develop a novel approach
that is simple, robust against model misspecification, and makes efficient use of
the information in the data. We will study the usefulness of the proposed approach
for the validation of surrogate markers, recognizing that the approach will be more
broadly useful for mediation analysis of time-to-event endpoints. Indeed, such
analyses are increasingly used and recommended in the analysis of randomised
clinical trials to study why and how the treatment might achieve its effect on the
outcome (Kraemer et al. 2002; Oakley et al. 2006). Understanding the different
causal pathways through which the treatment influences the outcome may facilitate
the development of innovative, better and more cost-effective treatments (Kraemer
et al. 2002). For instance, Rochon et al. (2014) used a mediation analysis to examine
the finding that patients treated in research-active institutions have better outcomes
than patients treated in research-inactive institutions. Their study revealed that
research-active institutions have superior patient survival due to a direct effect of
research activity on survival, but also due to an indirect effect, since research-active
institutions tended to make better use of surgery and chemotherapy. In the ran-
domised trial of Pirl et al. (2012), early palliative care in patients with metastatic
non-small-cell lung cancer was found to improve survival, but no sufficient evidence
was found that this survival benefit was due to a reduction in depression scores.
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3.2. EORTC 10994/BIG 1-00 randomised phase 3 trial

The remainder of this chapter is organized as follows. In the next section, we
give a detailed description of the EORTC 10994/BIG 1-00 randomised phase 3
trial dataset. In Section 3.3, we review existing mediation analysis approaches. In
Section 3.4, these existing approaches are improved to increase the power provided
that the models are correctly specified. Results of the method applied to the EORTC
10994/BIG 1-00 randomised phase 3 trial data will be presented in Section 3.5. We
conclude with final remarks and ideas for future research in Section 3.6.

3.2 EORTC 10994/BIG 1-00 randomised phase 3 trial

The EORTC 10994/BIG 1-00 randomised phase 3 trial (Bonnefoi et al. 2011) ex-
amined whether patients with locally advanced breast cancer and a mutated P53
status were more sensitive to a taxane-based chemotherapy instead of a standard
anthracycline regimen than women with wild-type P53. A secondary analysis of the
trial data investigated the relationship between pCR and survival within intrinsic
breast cancer subtypes (Bonnefoi et al. 2014). The trial included women with large
operable or locally advanced/inflammatory breast cancer, for whom data were first
collected on baseline covariates Xi (e.g., clinical nodal status, breast cancer sub-
type, . . . ). Subsequently, women were randomised (1:1) between two neoadjuvant
treatment arms before undergoing primary surgery. They either received a standard
anthracycline regimen (Ai = 0) or an experimental taxane-based regimen (Ai = 1),
both over the course of approximately 15 weeks. At the time of surgery, pCR (Mi)
was assessed by local pathologists. This is a binary variable coded as 1 if there is a
complete disappearance of any invasive cancer in the primary tumour and lymph
nodes with the exception of very few scattered tumour cells and 0 otherwise. The
primary endpoint in our study is disease-free survival (DFS), defined as time from
surgery to loco-regional recurrence, distant metastasis, death from any cause, or
invasive contralateral breast cancer, whichever comes first. If none of these events
occurred, women were censored at their last follow-up date. Median follow-up was
57 months.
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A subgroup of the initial population of 1856 breast cancer patients was selected
for this study based on several criteria (see the Appendix). After selection, 1546
(83%) patients appeared to be eligible for a mediation analysis with pCR. There
are 766 eligible patients who were randomised to the standard treatment and 780
to the taxane-based regimen. For 459 of the 1546 eligible women (30%) an event
was reported and 1087 women were thus censored at their last follow-up date. The
analysis was ultimately limited to the 882 patients for whom complete data were
available. Information is lost due to missingness in baseline covariates such as local
PgR status (9.6%), p53 status (20.2%), histological grade (13.5%) and intrinsic
breast cancer subtype (21.7%). Reassuringly, the intention-to-treat analysis on the
entire subset (hazard ratio 0.77, 95% CI 0.64 to 0.93) versus the 882 patients with
complete data (hazard ratio 0.75, 95% CI 0.59 to 0.96) showed similar hazard ratios
for the effect of chemotherapy on DFS.

3.3 Available approaches

Like principal stratification methods for the validation of surrogate endpoints, mod-
ern developments to mediation analysis methods make use of potential outcome or
counterfactual notation. We assume that counterfactual variables Mi(a) and Ti(a)

exist for each patient i = 1, ...,n and each treatment group a = 0,1. Here, Mi(0) and
Ti(0) correspond to the pCR status and duration of DFS that would have been ob-
served for patient i, had she been randomised to the standard anthracycline regimen.
As such, Mi(0) and Ti(0) are observed for control patients, but remain unobserved
for patients on the experimental taxane-based chemotherapy arm. Furthermore, we
use Ti{1,Mi(0)} to represent the unobservable duration of DFS for patient i, had
she been randomised to the experimental arm, but with the pCR status she would
have had under control conditions. Using this potential outcome notation, we can
define the direct effect of treatment on outcome on the risk ratio scale as

RRd(t) =
P[Ti{1,Mi(0)}> t]
P[Ti{0,Mi(0)}> t]

, (3.1)

which can be evaluated for each time t > 0. This is called a natural direct effect

(Robins and Greenland 1992; Pearl 2001; VanderWeele and Vansteelandt 2009)
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since it captures the effect of treatment on outcome, while holding pCR at a value
Mi(0), which is the pCR value that would have been observed naturally for patient i

if she would have been assigned to the standard anthracycline regimen. This natural
direct effect shows what would happen to the duration of DFS if one could deliver
the treatment without inducing a change in pCR status. A natural indirect effect

(Robins and Greenland 1992; Pearl 2001; VanderWeele and Vansteelandt 2009) is
correspondingly defined as

RRm(t) =
P[Ti{1,Mi(1)}> t]
P[Ti{1,Mi(0)}> t]

, (3.2)

for each time t > 0. It represents what would happen to the duration of DFS if pCR
status were changed for each patient to the extent that it is affected by treatment
for that patient. A marker with a natural direct effect of 1 at each time t > 0 and
an indirect effect different from 1 at certain times t > 0, is likely a good surrogate
marker, since all of the effect of treatment on the outcome then goes through the
surrogate. Note that the product of the natural direct and indirect effects equals the
total treatment effect RRtot(t) =

P[Ti{1,Mi(1)}>t]
P[Ti{0,Mi(0)}>t] .

It is important to realize that randomisation in itself is not enough to be able
to disentangle the total effect of treatment into a natural direct and indirect effect.
Even though patients were randomly assigned to the treatment, the mediator pCR
is not randomly assigned. Direct and indirect effects conceptualize interventions
on both randomised exposure and non-randomised mediator, and thus in particular
demand control for confounding of the mediator-outcome association. Therefore,
we will assume from now on that a set of baseline covariates X is sufficient to
control for confounding of the association between pCR and DFS. This enables
the use of the so-called mediation formula for the calculation of natural direct and
indirect effects Pearl (2001). In practice, some of the confounders of the association
between mediator and outcome may appear during the course of the study and
might thus be influenced by the treatment themselves. The proposal in this article
cannot handle these so-called intermediate confounders. In the discussion, we argue
that the need for confounding adjustment is less essential when the only purpose is
to evaluate whether Mi is a valuable surrogate of the effect of Ai on Ti.
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Table 3.1: A restricted set of patients with baseline data, duration of DFS and model
predictions.

Patient 1 2 3 4 5 6 7 8 9 10

Treatment Ai 0 1 1 0 0 0 1 0 1 0
pCR Mi 0 0 0 1 1 1 1 0 1 0
Menopausal status Xi 1 0 1 1 0 1 1 1 0 1
Event Ei 1 1 0 1 1 1 0 1 1 0
Duration of DFS Ti (days) 893 1162 937 108 1603 4476 10897 179 7342 122
P̂{Ti(1)> 365|Xi,Mi} 0.82 . . 0.88 0.88 0.88 . 0.82 . 0.82
P̂{Ti(1)> 730|Xi,Mi} 0.66 . . 0.76 0.78 0.76 . 0.66 . 0.66
P̂[Ti{1,Mi(0)}> 365|Xi] 0.83 0.85 0.83 0.83 0.85 0.83 0.83 0.83 0.85 0.83
P̂[Ti{1,Mi(0)}> 730|Xi] 0.69 0.72 0.69 0.69 0.72 0.69 0.69 0.69 0.72 0.69

The mediation formula (Pearl 2001, 2012) enables one to combine, in principle,
arbitrary models for the mediator and outcome in order to obtain estimates of natu-
ral direct and indirect effects. For instance, Lange and Hansen (2011) show how
to combine a normal regression model for a continuous mediator and an additive
hazards model for the event time; in the case of rare events, VanderWeele (2011)
makes progress using Cox proportional hazards models. Imai et al. (2010) relax the
rare event assumption, but demand parametric survival models and represent natural
direct and indirect effects in terms of mean differences in survival time, which is
less ideal in the presence of skewness and censoring. Huang and Cai (2016) achieve
greater flexibility by relying on semiparametric probit models for the event-time
which combine well with linear models for the mediator. Considering the dominant
concern for bias due to model misspecification in analyses of randomised studies,
we will consider and develop more robust mediation analysis approaches in this
article. In particular, like the proposal of Tchetgen Tchetgen (2011), we will merely
demand correct specification of a model for the event time; however, to increase
power relative to that proposal, we will additionally make use of a working model
for the mediator.

To be concrete, let us first consider the data structure in Table 3.1, which shows
artificial data for 10 breast cancer patients. As before, Ai is the randomised treat-
ment indicator, Xi is a single binary baseline covariate (in practice multiple baseline
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covariates can be included), for example menopausal status, Mi defines pCR status,
Ei is an indicator for a DFS event (1 if DFS occurred, 0 otherwise) and Ti is duration
of DFS in days.

To calculate the numerator P[Ti{1,Mi(0)} > t] of (3.1), we may proceed as
follows:

1. Fit a Cox regression model for DFS given treatment arm, pCR and menopausal
status

λ (t) = λ0(t)exp(η1Ai +η2Mi +η3Xi), (3.3)

using conventional software, where λ0(t) is the unspecified baseline hazard.
Conventional software for fitting this model accommodates non-informative
censoring, given treatment Ai, mediator pCR Mi and baseline covariate
menopausal status Xi. Suppose that this results in the following parameter esti-
mates for the log hazard ratio: η̂1 =−0.95, η̂2 =−0.44, and η̂3 = 0.05. In R
these estimates can be obtained as follows: fit.y <- coxph(Surv(T,

event) ∼ A + M + X, data = cbind(A,T,event,X,M)).

2. Use this Cox regression model to calculate the survival curve for all subjects,
had they, possibly contrary to the fact, received the experimental taxane based
regimen (rows 6 and 7 in Table 3.1):

P̂{Ti(1)> t|Xi,Mi}= exp
{
−Λ̂0(t)exp(η̂1 + η̂2Mi + η̂3Xi)

}
. (3.4)

For the first patient, for example, the probability that the duration of DFS lasts
longer than time t if she would have got the experimental treatment is calcu-
lated as: P̂{T1(1) > t|X1,M1} = exp[−Λ̂0(t)exp{(−0.95× 1) + (−0.44×
0) + (0.05×1)}], with Λ̂0(t) the estimated cumulative baseline hazard which
equalled 0.61 after 1 year and 0.36 after 2 years. In R we may calculate this as:
pp <- predictProb(fit.y,Surv(T,event), x = cbind(A=1

,T,event,X,M), times = c(365,730).

3. Average the duration of DFS probabilities P̂{Ti(1)> t|Xi,Mi} for each time t
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across all subjects in the control arm:

RMLE = P̂[Ti{1,Mi(0)}> t] =
1
n0

n0

∑
i=1

P̂{Ti(1)> t|Xi,Mi}, (3.5)

with n0 the number of subjects in the control group. This provides an estimate
of the numerator P[Ti{1,Mi(0)}> t] of (3.1). In our example, the duration
of DFS probabilities of patients 1, 4, 5, 6, 8 and 10 are averaged to obtain an
estimate for P[Ti{1,Mi(0)}> t] at 1 and 2 years. The averaging is restricted
to subjects in the standard anthracycline regimen because their observed value
Mi for pCR equals Mi(0). This is not the case for patients on the experimental
arm, which is why we did not present the duration of DFS probabilities
P̂{Ti(1) > t|Xi,Mi} for them in Table 3.1. Only using control patients to
calculate P[Ti{1,Mi(0)}> t] gives us a valid estimate, since both treatment
groups are comparable due to randomization. In this case, the probability that
the duration of DFS is larger than time t when patients would have got the
experimental treatment but without influencing pCR is 0.85 and 0.71 after 1
and 2 years respectively. In R, we may calculate this as follows:
RMLE <- mean(cbind(pp,A)[A==0,1]).

We call estimator (3.5) the restricted maximum likelihood estimator (RMLE)
because it uses predictions based on a model for the outcome in function of the
treatment, mediator and confounders, but unlike the maximum likelihood approach
of Lange and Hansen (2011) and VanderWeele (2011), no additional model for
the mediator is used. This RMLE may be viewed as a special case of the more
general IPW estimator in the paper of Tchetgen Tchetgen (2011) (pg. 5), which
additionally allows control for measured confounders of the treatment-mediator
and treatment-outcome association and can thus be used in observational studies.

3.4 Efficient estimator

A drawback of the estimation strategy in the previous section is that patients in the
experimental arm do not contribute to the final calculation in (3.5), which makes
the estimator inefficient. In view of this, we propose a locally efficient estimator
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(LE) in this section that is guaranteed to be more efficient than the RMLE if all
models used are correctly specified. To estimate the numerator P[Ti{1,Mi(0)}> t]

of (3.1), step 1 and 2 of the algorithm for the RMLE are repeated. Next, we proceed
as follows:

3*. Regress the predictions of women in the standard anthracycline regimen from
step 2 on baseline covariates Xi using a separate logistic regression in the
control arm:

E[P̂{Ti(1)> t|Xi,Mi}|Ai = 0,Xi] = expit(α0 +α1Xi), (3.6)

for each considered time t separately, with expit the inverse of the logit

link function. This will later enable us to estimate the survival probabilities
P̂[Ti{1,Mi(0)}> t|Xi] for subjects on the experimental arm, rather than just
those on the control arm. Suppose that for time points 365 and 730 days,
the logistic regression model (3.6) has parameter estimates α̂0 = 1.75 and
α̂1 = −0.13, and α̂0 = 0.95 and α̂1 = −0.14 respectively. In R we may fit
the logistic regression model as follows:
mod <- glm(pp ∼ X, data=cbind(A,T,event,X,M) [a==0,],

weights=1/(1-mean(A)), family=binomial).

4*. Use this logistic regression model at each time t to calculate P̂[Ti{1,Mi(0)}>
t|Xi] for every subject (i.e. subjects from both the control and experimental
arm) at each time t based on their observed baseline covariate values (Table
3.1):

P̂[Ti{1,Mi(0)}> t|Xi] = expit(α̂0 + α̂1Xi) (3.7)

Because the model in step 3 is fitted only to women in the standard anthra-
cycline regimen, its fitted values deliver estimates P̂[Ti{1,Mi(0)}> t|Xi] for
‘control’ levels of Mi. By randomization, the same model can be used to
calculate P̂[Ti{1,Mi(0)} > t|Xi] for subjects on the experimental arm. Let
us for example calculate the survival probability for the 10 patients in Table
3.1 for time points t = 365 and t = 730. For the first patient the probability
that the duration of DFS lasts longer than t = 365 if she would have got
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the experimental treatment, but without influencing pCR, is calculated as
P̂[T1{1,M1(0)} > 365|X1] = expit(1.75− 0.13× 1) and equals 0.83. The
second patient, who was excluded from the calculation of the RMLE estima-
tor, is now included in the analysis. The probability that the duration of DFS
lasts longer than t = 365 if she would have got the experimental treatment,
but without influencing pCR is calculated as P̂[T2{1,M2(0)} > 365|X2] =

expit(1.75−0.13×0) and equals 0.72. In R this is:
pp.all <- predict(mod, newdata = cbind(A,T,event,X,

M,pp), type = "response").

5*. Average these probabilities P̂[Ti{1,Mi(0)}> t|Xi] for each time t across all
subjects in both the control and experimental arm:

LE =
1
n

n

∑
i=1

P̂[Ti{1,Mi(0)}> t|Xi]. (3.8)

So now for time t = 365 and t = 730, we average these duration of DFS
probabilities of all patients to get an estimate for P[Ti{1,Mi(0)}> t]. In this
case, the probability that the duration of DFS lasts longer than time t when
patients would get the experimental treatment but without influencing pCR,
is 0.84 for t = 365 and 0.70 for t = 730, which is very similar to the results
of the RMLE. In R we calculate this as:
LE <- mean(pp.all).

We show in the appendix that estimator (3.8) is consistent, in the sense that it
converges to the true probability of duration of DFS as the sample size n increases,
if the outcome model from step 1 is correctly specified. Quite surprisingly, this
continues to be so even if the model from step 3* is misspecified. Additionally, this
estimator is at least as efficient as the RMLE, when both models, the one from step
1 and step 3*, are correctly specified. We therefore called it locally efficient (LE)
where ‘local’ emphasizes that efficiency is only guaranteed under correct model
specification. That this estimator is more efficient than the RMLE can be intuitively
expected because the estimator (3.8) averages across all subjects rather than only
across the control subjects like (3.5). The estimation of the denominator of (3.1)
and numerator of (3.2) follows by simply recoding the treatment accordingly in the
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previously described estimation steps. To report confidence intervals, we derived
the analytic expression of the standard errors of the RMLE and LE estimator (Ap-
pendix) and confirmed that the LE is more efficient than the RMLE via simulations
(see the Appendix). To facilitate the use of these estimators a user friendly R
function is made available as part of the supplementary materials accompanying the
paper, which includes calculation of the estimators, standard errors and confidence
intervals.

3.5 Results of the EORTC 10994/BIG 1-00 trial

Before presenting results from our mediation analysis, we report the three rela-
tionships of interest between treatment, putative surrogate and clinical endpoint
separately. pCR occurred in 283 of the 1546 (18%) women: 135 of the 766 (18%)
in the standard anthracycline arm and 148 of the 780 (19%) in the experimental
taxane based arm (odds ratio 1.09, 95% CI 0.85 to 1.42). The final multivariate Cox
regression model, built using the general strategy in Collett (2003) to decide on the
inclusion or exclusion of the available baseline characteristics age, height, weight,
BMI, clinical nodal status, clinical tumour size, histological grade, histological
type, local ER status, local PgR status, intrinsic breast cancer subtype, menopausal
status and p53 status, is presented in Table 3.2. It shows a significant relationship
between treatment and DFS (hazard ratio 0.65, 95% CI 0.51 to 0.84) and a signifi-
cant interaction between pCR and clinical nodal status. The hazard ratio for DFS
in the pCR 1 group for clinical nodal status N0 versus N1 is 0.37 (95% CI 0.16 to
0.85). The hazard ratio for DFS in the pCR 1 group for N0 versus N2-N3 is 0.21
(95% CI 0.02 to 1.80).

We used the RMLE and LE estimator to estimate the indirect effect of chemother-
apy arm on DFS mediated via pCR and the remaining direct effect. The multivariate
Cox regression model presented in Table 3.2 served as outcome model 3.3 for the
first step of the RMLE and LE estimator. To obtain the LE estimator, we fit an
additional logistic regression model 3.6 for each time t separately, which is shown
for 2 of these time points in Table 3.3 and 3.4 of the Appendix. We used the same
predictors as in the outcome model (Table 3.2), except those involving pCR and
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treatment.

Figure 3.1: Direct and indirect effect risk ratios of surviving the given time indicated
on the X-axis with accompanying 95% point-wise confidence intervals
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Figure 3.1 presents the direct effect ratio (3.1) of chemotherapy on DFS on the
right-hand side and the indirect effect ratio (3.2) via pCR on the left-hand side. The
RMLE estimator yields a direct effect of 1.148 (95% CI 1.053 to 1.242) and an
indirect effect of 0.994 (95% CI 0.955 to 1.034) after 5 years. The LE estimator
gave a similar direct effect of 1.151 (95% CI 1.050 to 1.251) and a more precise
indirect effect of 1.006 (95% CI 0.975 to 1.037). In the Appendix, additional results
of two sensitivity analyses are reported. First, an analysis on the complete set of
eligible patients using the missing-indicator method (Greenland and Finkle 1995)
on an outcome model that includes all important (possibly incomplete) covariates.
Additionally, we evaluated if adjustment for a smaller number of baseline covariates
would change our estimates. Thus, we also report results of a third analysis
on the 882 patients with complete data that uses an outcome model without the
incomplete covariates local PgR status, p53 status, histological grade and intrinsic
breast cancer subtype. The overall results of our mediation analysis and the two
sensitivity analyses (in the Appendix) are comparable. We thus conclude that the
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Table 3.2: Results of the EORTC 10994/BIG 1-00 trial Cox
regression model

HR 95% CI P-value

Treatment Standard
Experimental 0.65 0.51 - 0.84 0.00

pCR No
Yes 0.64 0.36 - 1.12 0.12

p53 Wild
Mutated 1.43 0.90 - 2.27 0.13

Local PgR status Negative
Positive 0.86 0.53 - 1.40 0.54

Clin. nod. stat. 0.03a

N0
N1 1.72 1.14 - 2.60 0.01
N2 & N3 1.21 0.50 - 2.89 0.67

Clin. tum. size 0.00a

T2
T3 2.83 0.93 - 8.60 0.07
T4 7.65 1.52 - 38.48 0.01

Hist. grade 0.28a

I
II 2.00 0.85 - 4.67 0.11
III 2.92 1.08 - 7.92 0.04

BC subtype 0.00a

Lum. A
Lum. B (HER2 neg.) 1.26 0.53 - 3.01 0.60
Lum. B (HER2 pos.) 1.06 0.50 - 2.22 0.88
HER2 pos. (non-lum.) 4.86 2.19 - 10.81 0.00
Triple neg. 0.78 0.31 - 1.92 0.58

Clin. nod. stat. x pCR 0.03
N0 x No
N1 x No
N2 & N3 x No
N0 x Yes
N1 x Yes 0.37 0.16 - 0.85 0.02
N2 & N3 x Yes 0.21 0.02 - 1.80 0.15

Clin. tum. size x Hist. grade 0.04
T2 x I
T3 x I
T4 x I
T2 x II
T3 x II 0.41 0.13 - 1.32 0.14
T4 x II 0.28 0.05 - 1.58 0.15
T2 x III
T3 x III 0.46 0.12 - 1.76 0.25
T4 x III 0.09 0.01 - 0.65 0.02

a P-values based on a main effect model.
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Table 3.2: Results of the EORTC 10994/BIG 1-00 trial Cox regression
model

HR 95% CI P-value

p53 x BC subtype 0.05
Wild x Lum. A
Mutated x Lum. A
Wild x Lum. B (HER2 neg.)
Mutated x Lum. B (HER2 neg.) 0.72 0.32 - 1.63 0.43
Wild x Lum. B (HER2 pos.)
Mutated x Lum. B (HER2 pos.) 0.79 0.39 - 1.61 0.51
Wild x HER2 pos. (non-lum.)
Mutated x HER2 pos. (non-lum.) 0.27 0.11 - 0.62 0.00
Wild x Triple neg.
Mutated x Triple neg. 0.85 0.39 - 1.85 0.68

Clin. nod. stat. x Local PgR status 0.06
N0 x Negative
N1 x Negative
N2 & N3 x Negative
N0 x Positive
N1 x Positive 0.86 0.50 - 1.49 0.60
N2 & N3 x Positive 3.52 1.08 - 11.51 0.04

Clin. tum. size x BC subtype 0.00
T2 x Lum. A
T3 x Lum. A
T4 x Lum. A
T2 x Lum. B (HER2 neg.)
T3 x Lum. B (HER2 neg.) 0.68 0.21 - 2.21 0.52
T4 x Lum. B (HER2 neg.) 2.15 0.42 - 10.90 0.35
T2 x Lum. B (HER2 pos.)
T3 x Lum. B (HER2 pos.) 3.06 1.29 - 7.24 0.01
T4 x Lum. B (HER2 pos.) 2.53 0.83 - 7.76 0.10
T2 x HER2 pos. (non-lum.)
T3 x HER2 pos. (non-lum.) 1.03 0.36 - 2.95 0.96
T4 x HER2 pos. (non-lum.) 2.25 0.58 - 8.72 0.24
T2 x Triple neg.
T3 x Triple neg. 3.12 1.22 - 7.97 0.02
T4 x Triple neg. 14.81 4.36 - 50.35 0.00

a P-values based on a main effect model.
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probability that the duration of DFS lasts longer than 5 years after administering the
experimental taxane-based regimen is about 14.1% and 15.7% (11.7% and 11.5%
in the analysis on the complete subset of eligible patients and 12.1% and 12% in
the sensitivity analysis) larger for the RMLE and LE estimator respectively than
when the anthracycline based regimen would be administered.

Figure 3.2: Proportion mediated for the given time indicated on the X-axis
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The above analysis shows that a very small part of the total intention-to-treat
effect is due to the effect via pCR. In particular, the mediation proportion, which is
not a proportion in the real sense because it is not restricted to lie between 0 and 1,
is calculated as follows (Ananth and VanderWeele 2011)

RRtot(t)−RRd(t)
RRtot(t)−1

=
P[Ti{1,Mi(1)}> t]−P[Ti{1,Mi(0)}> t]
P[Ti{1,Mi(1)}> t]−P[Ti{0,Mi(0)}> t]

. (3.9)

It shows that only 4.2% (0.3% in the analysis on the complete subset of eligible
patients and 4.5% in the analysis using less covariates) of the treatment effect on the
DFS risk difference is mediated by the treatment effect on pCR for the LE estimator
after 5 years (Figure 3.2). In particular, changing the pCR status of a patient who
got the taxane-based treatment to what it would have been in the anthracycline
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regimen decreases the probability that the duration of DFS lasts longer than 5 years
with only 0.6% (based on the indirect effect of the LE estimator). That the indirect
effect is small comes as no surprise, considering that no strong association was
found between treatment and mediator pCR. We thus conclude, in line with the
general results of Cortazar et al. (2014), that there is no evidence in favour of pCR
being a surrogate for the effect of taxane versus anthracycline based neoadjuvant
chemotherapy on disease-free survival.

From the confidence intervals, we observed no efficiency gain for the direct
effect when using the LE estimator instead of the RMLE estimator, but a substantial
30% to 40% reduction in variance for the indirect effect (see also Figure 3.3 in the
Appendix). This not surprising because the increased efficiency of our estimator
is based on the model 3.6 for the mediator. Such a model enables more precise
estimation of the exposure effect on the mediator, which is an essential component
of the indirect effect and not the direct effect.

3.6 Discussion

We have proposed a novel, easy-to-apply estimator of the natural direct and indirect
effect of a randomised treatment on a time-to-event outcome. Like the estimators
of Tchetgen Tchetgen (2011), it quantifies the natural direct and indirect effect
on the survival scale (instead of the hazard scale, as in Lange and Hansen (2011)
and VanderWeele (2011)). This has the advantage of better interpretability (in
view of the fact that hazard ratios lack causal interpretation, even in randomised
trials (Hernan 2010; Aalen et al. 2015)), but the disadvantage of demanding a more
high-dimensional graphical representation of the results. Our estimator improves
the efficiency of a related estimator proposed by Tchetgen Tchetgen (2011), by
extracting information from the potential outcomes to correct for baseline imbal-
ances between randomised arms. Like the proposals by Lange and Hansen (2011)
and VanderWeele (2011), this demands a model for (some transformation of) the
mediator, but – unlike in those other proposals – misspecification of that model
does not induce bias.
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3.6. Discussion

Our proposed methods are broadly applicable for mediation analysis of time-to-
event endpoints in randomised trials. They were motivated by an application on
the validation of surrogate markers, even though mediation is not a prerequisite for
a good surrogate marker (Joffe and Greene 2009; VanderWeele and Vansteelandt
2013). In spite of this, in our opinion mediation analysis techniques are informative
to study potential surrogate markers for the following reason. One can easily verify
that the numerator of the mediation proportion (3.9) equals

∑
m

∑
x

P(Ti > t|Mi = m,Ai = 1,Xi = x){P(Mi = m|Ai = 1,Xi = x)−

P(Mi = m|Ai = 0,Xi = x)}P(Xi = x) (3.10)

and the denominator equals the total treatment effect P(Ti > t|Ai = 1)−P(Ti >

t|Ai = 0). Regardless of whether the covariate set X includes all confounders
of the mediator-outcome association, the calculated mediation proportion thus
encodes a contrast of (some functional of) the treatment effect on the surrogate,
P(Mi = m|Ai = 1,Xi = x)−P(Mi = m|Ai = 0,Xi = x), and the treatment effect on
the clinical endpoint, P(Ti > t|Ai = 1)−P(Ti > t|Ai = 0), weighted by the extent to
which the surrogate is predictive of the clinical endpoint. In particular, for a binary
surrogate marker (coded 0 or 1) in the absence of covariates, it follows from (3.10)
that the mediation proportion equals

p =
{P(Ti > t|Mi = 1,Ai = 1)−P(Ti > t|Mi = 0,Ai = 1)}

P(Ti > t|Ai = 1)−P(Ti > t|Ai = 0)
×

{P(Mi = 1|Ai = 1)−P(Mi = 1|Ai = 0)} . (3.11)

Suppose now that this mediation proportion as well as the extent to which the
surrogate is predictive of the clinical endpoint (as measured by P(Ti > t|Mi =

1,Ai = 1)−P(Ti > t|Mi = 0,Ai = 1)) are both stable across trials. Then the above
expression suggests that a doubling of the treatment effect on the surrogate marker
translates into a p100% relative increase in the treatment effect on the clinical
endpoint. Although this interpretation holds regardless of whether or not covariate
adjustment was considered, we do encourage adjustment for covariates sufficient to
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control for confounding of the association between surrogate marker and clinical
endpoint, because evidence of an important mediation effect will generally add
support to the validity of a candidate surrogate. More generally, note from (3.11)
that when the mediation proportion equals zero, then it indicates that either there is
no treatment effect on the surrogate (as is nearly the case in our study) or that the
mediator and outcome are not associated (conditional on exposure and covariates);
in both these cases, Mi would be poor as a surrogate endpoint. This approach based
on mediation analysis thus has the advantage over the meta-analysis approach of
needing only a single trial, but the disadvantage of being blind to between-study
heterogeneity in treatment effects and thus less well generalisable.

When using our results to acquire insight into the treatment mechanism, the
need to control for confounding of the mediator-outcome association becomes a
key consideration. With concern for residual confounding by unmeasured variables,
sensitivity analysis techniques (Tchetgen Tchetgen 2011) may be applied. In our
analysis, a remaining concern is that some patients died or experienced the event
before surgery took place and thus before the mediator was assessed. If this occurs,
then the mediation analysis must be limited to the subgroup of patients who are alive
at the time at which the mediator is assessed. In this subgroup, the two treatment
arms may not longer be comparable. In future work, we will extend the proposed
techniques to account for this.
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3.A Appendix

3.A.1 General theory

Let Ŝ{t|Ai = 1,Mi,Xi; Λ̂0(t, η̂), η̂} be a consistent estimator of P(T > t|Ai = 1,Mi,Xi)

obtained under Cox regression model 3.3. Note that the following theory can be
generalized to other Cox regression models though. Suppose that the randomisation
probabilities πi ≡ P(Ai = 1|Xi;α) are known and that also the nuisance parame-
ters η and Λ0(t,η) of the survival model are known. Let π̂i, η̂ and Λ̂0(t, η̂) be
consistent estimators of πi, η and Λ0(t,η) respectively. Further, dN j(s) indicates
if an event is observed at time s for unit j. We will use Λ̂0(t, η̂) to explicate the
dependence on η̂ of the cumulative baseline hazard under model 3.3. Now, consider
the restricted maximum likelihood estimator (RMLE):

Ŝ1M0(t) =
1
n

n

∑
i=1

[
1−Ai

P(Ai = 0|Xi; α̂)
S{t|Ai = 1,Mi,Xi; Λ̂0(t, η̂), η̂}

]
=

1
n

n

∑
i=1

[
1−Ai

1− π̂i
exp{−Λ̂0(t, η̂) exp(η̂1 + η̂2Mi + η̂3Xi)}

]
≡ Ŝ{t, π̂, η̂ , Λ̂0(t, η̂)},

where

Λ̂0(t,η) =
∫ t

0

∑
n
j=1 dN j(s)

∑
n
j=1 I(Tj ≥ s)exp(η1A j +η2M j +η3X j)

,

the Breslow estimate of the baseline cumulative hazard function. This restricted
maximum likelihood estimator of θ = S1M0(t) can be thus be obtained by solving
an estimating equation of the form

0 =Ui{θ ,α,Λ0(t,η),η}

=
n

∑
i=1

1−Ai

1−P(Ai = 1|Xi;α)
S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}−θ ,

with α,Λ0(t,η) and η substituted by consistent estimators.
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To derive the asymptotic distribution of θ̂ , we make the following decomposition
for each time t:

√
n {Ŝ1M0(t)−S1M0(t)}=

√
n [Ŝ{t, π̂, η̂ , Λ̂0(t, η̂)}− Ŝ{t,π, η̂ , Λ̂0(t, η̂)}] (3.12)

+
√

n [Ŝ{t,π, η̂ , Λ̂0(t, η̂)}− Ŝ{t,π,η , Λ̂0(t,η)}] (3.13)

+
√

n [Ŝ{t,π,η , Λ̂0(t,η)}− Ŝ{t,π,η ,Λ0(t,η)}] (3.14)

+
√

n [Ŝ{t,π,η ,Λ0(t,η)}−S1M0(t)] (3.15)

=
1√
n

n

∑
i=1

Ui1 +Ui2 +Ui3 +Ui4

=
1√
n

n

∑
i=1

Ui,

where in each step, we account for a different part of the uncertainty in the RMLE
caused by estimating a particular model parameter and S1M0(t) equals

E
[

1−Ai

1−πi
exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)}

]
.

Consider the first term (3.12) and note by Taylor expansion that

1√
n

n

∑
i=1

Ui1 ≡
√

n[Ŝ{t, π̂, η̂ , Λ̂0(t, η̂)}− Ŝ{t,π, η̂ , Λ̂0(t, η̂)}]

=
√

n
∂

∂π
Ŝ{t,π,η ,Λ0(t,η)} (π̂−π)+op(1)

= E
[

1−Ai

(1−πi)2 exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)}
]
×

√
n(π̂−π)+op(1)

= E
[

1−Ai

(1−πi)2 exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)}
]
×

1√
n

n

∑
i=1

(Ai−π)+op(1)

Thus,

Ui1 = E
[

1−Ai

(1−πi)2 exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)}
]
(Ai−πi).
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Consider the next term (3.13) and note by Taylor expansion that

1√
n

n

∑
i=1

Ui2 ≡
√

n[Ŝ{t,π, η̂ , Λ̂0(t, η̂)}− Ŝ{t,π,η , Λ̂0(t,η)}]

=
√

n
∂

∂η
Ŝ{t,π,η ,Λ0(t,η)} (η̂−η)+op(1)

=
√

n(η̂−η)×

(
−E

[
1−Ai

1−πi
exp{−Λ0(t,η)exp(η1 +η2Mi +η3Xi)} ×

Λ0(t,η)exp(η1 +η2Mi +η3Xi)

 1
Mi

Xi

]+E

[
1−Ai

1−πi
×

exp{−Λ0(t,η)exp(η1 +η2Mi +η3Xi)}exp(η1 +η2Mi +η3Xi)×

∫
τ

0

∑
n
j=1 dN j(s) ∑

n
j=1 I(Tj ≥ s) exp(η1A j +η2M j +η3X j)

A j

M j

X j


{∑n

j=1 I(Tj ≥ s) exp(η1A j +η2M j +η3X j)}2

])
+op(1)

It follows from standard survival theory that

√
n


η̂1

η̂2

η̂3

 −
η1

η2

η3


=

1√
n

n

∑
i=1

E
(

∂Vi(η)

∂η

)−1

Vi(η)+op(1),

where Vi(η) is the partial score, i.e.

Vi(η) =
∫

τ

0



Ai

Mi

Xi

−
E


Ai

Mi

Xi

 I(Ti ≥ u) exp(η1Ai +η2Mi +η3Xi)


E {I(Ti ≥ u) exp(η1Ai +η2Mi +η3Xi)}


dMi(u)
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with dMi(u) = dNi(u)− I(Ti ≥ u) dΛ0(u,η) exp(η1Ai + η2Mi + η3Xi) the mar-
tingale and τ the end-of-study time. Further −E

(
∂Vi(η)

∂η

)
equals the expected

information matrix, which is the covariance matrix of the score residuals Vi(η).
Thus,

Ui2 = E
(

∂Vi(η)

∂η

)−1

Vi(η)×

(
−E

[
1−Ai

1−πi
exp{−Λ0(t,η)exp(η1 +η2Mi +η3Xi)} ×

Λ0(t,η)exp(η1 +η2Mi +η3Xi)

 1
Mi

Xi

]+E

[
1−Ai

1−πi
×

exp{−Λ0(t,η)exp(η1 +η2Mi +η3Xi)}exp(η1 +η2Mi +η3Xi)×

∫
τ

0

∑
n
j=1 dN j(s) ∑

n
j=1 I(Tj ≥ s) exp(η1A j +η2M j +η3X j)

A j

M j

X j


{∑n

j=1 I(Tj ≥ s) exp(η1A j +η2M j +η3X j)}2

])
+op(1).

Next, consider the third term (3.14) and note by Taylor expansion that

1√
n

n

∑
i=1

Ui3 ≡
√

n[Ŝ{t,π,η , Λ̂0(t,η)}− Ŝ{t,π,η ,Λ0(t,η)}]

=
√

n
∂

∂Λ0(t,η)
Ŝ{t,π,η ,Λ0(t,η)} {Λ̂0(t,η)−Λ0(t,η)}+op(1)

=−E

[
1−Ai

1−πi
exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)} ×

exp(η1 +η2Mi +η3Xi)

]
√

n {Λ̂0(t,η)−Λ0(t,η)}+op(1),

where

√
n {Λ̂0(t,η)−Λ0(t,η)}

=
√

n

{∫
τ

0

∑
n
j=1 dN j(u)

∑
n
j=1 I(Tj ≥ u) exp(η1A j +η2M j +η3X j)

−
∫

τ

0
dΛ0(u,η)

}
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=
√

n

{∫
τ

0

∑
n
j=1 dN j(u)

∑
n
j=1 I(Tj ≥ u) exp(η1A j +η2M j +η3X j)

−

∫
τ

0

dΛ0(u,η) ∑
n
j=1 I(Tj ≥ u) exp(η1A j +η2M j +η3X j)

∑
n
j=1 I(Tj ≥ u) exp(η1A j +η2M j +η3X j)

}

=
√

n

{∫
τ

0

∑
n
j=1 dN j(u)−dΛ0(u,η) I(Tj ≥ u) exp(η1A j +η2M j +η3X j)

∑
n
j=1 I(Tj ≥ u) exp(η1A j +η2M j +η3X j)

}

=
1√
n

n

∑
j=1

[∫
τ

0

dM j(u)
E{I(Tj ≥ u) exp(η1A j +η2M j +η3X j)}

]
+op(1).

Thus,

Ui3 =−E

[
1−Ai

1−πi
exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)} ×

exp(η1 +η2Mi +η3Xi)

]∫
τ

0

dM j(u)
E{I(Tj ≥ u) exp(η1A j +η2M j +η3X j)}

.

And finally, the last term (3.15) is readily obtained as

1√
n

n

∑
i=1

Ui4 ≡
√

n[Ŝ{t,π,η ,Λ0(t,η)}−S1M0(t)]

=
√

n

(
1
n

n

∑
i=1

[
1−Ai

1−πi
exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)}

]

−S1M0(t)

)
.

Thus,

Ui4 =
1−Ai

1−πi
exp{−Λ0(t,η) exp(η1 +η2Mi +η3Xi)}.

To obtain standard errors, we use that

Var[
√

n {Ŝ1M0(t)−S1M0(t)}] = Var(
1√
n

n

∑
i=1

Ui)+op(1)

= Var(Ui)+op(1).
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Thus,

Var{Ŝ1M0(t)} ≈
Var(Ui)

n

=
Var(Ui1 +Ui2 +Ui3 +Ui4)

n
.

Now that we know the restricted maximum likelihood estimator and its standard
errors, we can make it more efficient by solving the following estimation equation
instead

0 =
n

∑
i=1

Ui{θ ,α,Λ0(t,η),η}

=
n

∑
i=1

1−Ai

1−P(Ai = 1|Xi;α)
S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}−θ

+ d(Xi){Ai−P(Ai = 1|Xi;α)} ,

for some index function d(Xi).

Similar as before, the variance of the solution θ̂ to this equation equals 1 over n

times the variance of Ui{θ ,α,Λ0(t,η),η}. Assuming that randomisation probabil-
ities πi and also the nuisance parameters η and Λ0(t,η) of the survival model are
known, the optimal choices of index function d(Xi) may be obtained by minimising
the variance of Ui{θ ,α,Λ0(t,η),η} w.r.t. d(Xi). It may be obtained by population
least squares projection of (1−Ai)−S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}/{1−P(Ai = 1|Xi;α)}
onto Ai−P(Ai = 1|Xi;α). dopt(Xi) thus equals

=−
E
[

1−Ai
1−P(Ai=1|Xi;α)S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}{Ai−P(Ai = 1|Xi;α)}|Xi

]
E
[
{Ai−P(Ai = 1|Xi;α)}2 |Xi

]
=

E
[
(1−Ai)

P(Ai=1|Xi;α)
1−P(Ai=1|Xi;α)S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}|Xi

]
P(Ai = 1|Xi;α){1−P(Ai = 1|Xi;α)}

=
E [(1−Ai)S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}|Xi]

{1−P(Ai = 1|Xi;α)}2

=
E [S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}|Ai = 0,Xi]

1−P(Ai = 1|Xi;α)
.
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Calculating the efficient estimator of S1M0(t) thus requires a working model for
the conditional expectation E [S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}|Ai = 0,Xi], which we
here more generally formalise as

E [S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}|Ai = 0,Xi] = z(Xi;γ),

where z(X ;γ) is a known function. For given estimator γ̂ of γ , the efficient estimator
is then obtained as

θ̂ =
1
n

n

∑
i=1

1
1−P(Ai = 1|Xi;α)

[
(1−Ai)S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}

+ z(Xi; γ̂){Ai−P(Ai = 1|Xi;α)}
]

(3.16)

=
1
n

n

∑
i=1

z(Xi; γ̂)+
1−Ai

1−P(Ai = 1|Xi;α)
×[

S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}− z(Xi; γ̂)

]
. (3.17)

Upon noting that the estimation equation solved by the optimal estimator can
be written as 3.17, it is clear that z(Xi; γ̂) can be estimated if we fit a model for
E [S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}|Ai = 0,Xi] using logistic regression in the control
arm, with weights 1

1−P(Ai=1|Xi;α) . It then follows that the second part of 3.17 is in
fact the score equation of the intercept in that logistic regression model, which is set
to zero through the fitting procedure for γ . As such, the efficient estimator reduces
to the following

1
n

n

∑
i=1

z(Xi; γ̂) =
1
n

n

∑
i=1

E [S{t,Ai = 1,Mi,Xi;Λ0(t,η),η}|Ai = 0,Xi] (3.18)

and thus becomes a so-called substitution estimator, which has the advantage of
always delivering a result between 0 and 1. While misspecification of the model
E [S{t,Ai = 1,Mi,Xi;Λ0(t,η),η}|Ai = 0,Xi], the working model for the conditional
expectation, does not affect the consistency of θ̂ , it does affect its efficiency and
may in particular make the estimator less efficient than the RMLE that would be
obtained upon setting d(Xi) = 0. This first term in expression 3.17 for θ̂ is closely
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related to the mediation formula. It involves averaging the expected outcome values,
if the treatment were set to 1, over the mediator distribution if the exposure were
set to zero. The second contribution insulates it against bias resulting from possible
misspecification of the mediator distribution.

To obtain standard errors for this locally efficient estimator, note that we already
have expanded the first contribution

n

∑
i=1

1−Ai

1−P(Ai = 1|Xi;α)
S{t|Ai = 1,Mi,Xi;Λ0(t,η),η},

which gave us 4 terms: one for the uncertainty in the propensity score Ui1, on for the
uncertainty in estimating the Cox regression coefficients Ui2, one for the cumulative
baseline hazard Ui3, and finally one for the sample average that we take Ui4. In
particular, we previously obtained that

√
n {Ŝ1M0(t)−S1M0(t)}=

1√
n

n

∑
i=1

Ui1 +Ui2 +Ui3 +Ui4 +op(1).

For the locally efficient estimator, we need to replace Ui4 by

1−Ai

1−P(Ai = 1|Xi;α)
S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}−θ

+ d(Xi){Ai−P(Ai = 1|Xi;α)} ,

and since the term d(Xi){Ai−P(Ai = 1|Xi;α)} also involves the propensity score
P(Ai = 1|Xi;α), Ui1 will need to be changed too. We will need to add

−d(Xi){Ai−P(Ai = 1|Xi;α)}

to the original term for Ui1.

The estimation of Ŝ0M0(t) and Ŝ1M1(t) follows by simply recoding the exposure.
As a result, the restricted maximum likelihood estimators are:

Ŝ0M0(t) =
1
n

n

∑
i=1

[
1−Ai

1−P(Ai = 1|Xi; α̂)
S{t|Ai = 0,Mi,Xi; Λ̂0(t, η̂), η̂}

]
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and

Ŝ1M1(t) =
1
n

n

∑
i=1

[
Ai

P(Ai = 1|Xi; α̂)
S{t|Ai = 1,Mi,Xi; Λ̂0(t, η̂), η̂}

]
.

The standard errors are obtained by similarly recoding the exposure. Only for
Ŝ1M1(t) a − sign needs to be added to U1i. Now that we know the restricted
maximum likelihood estimators and its standard errors, we can make them more
efficient by solving the following estimation equations:

0 =
n

∑
i=1

Ui{θ ,α,Λ0(t,η),η}

=
n

∑
i=1

1−Ai

1−P(Ai = 1|Xi;α)
S{t|Ai = 0,Mi,Xi;Λ0(t,η),η}−θ

+ d(Xi){Ai−P(Ai = 1|Xi;α)}

and

0 =
n

∑
i=1

Ui{θ ,α,Λ0(t,η),η}

=
n

∑
i=1

Ai

P(Ai = 1|Xi;α)
S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}−θ

+ d(Xi){Ai−P(Ai = 1|Xi;α)}

for some index functions d(Xi), where the optimal choices for index functions
d(Xi) are obtained by population least squares projection of (1−Ai)− S{t|Ai =

0,Mi,Xi;Λ0(t,η),η}/{1−P(Ai = 1|Xi;α)} and (Ai)−S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}/
{P(Ai = 1|Xi;α)} onto Ai−P(Ai = 1|Xi;α). As a result, dopt(Xi) equals:

E [S{t|Ai = 0,Mi,Xi;Λ0(t,η),η}|Ai = 0,Xi]

1−P(Ai = 1|Xi;α)

for Ŝ0M0(t) and

−E [S{t|Ai = 1,Mi,Xi;Λ0(t,η),η}|Ai = 1,Xi]

P(Ai = 1|Xi;α)
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for Ŝ1M1(t).

Suppose now that α , the parameters of the propensity score, and η and Λ0(t,η),
the nuisance parameters of the survival model, are unknown but substituted by
consistent estimators α̂ , η̂ and Λ̂0(t,η). We can then repeat the previous argument,
starting from

√
n {Ŝ1M0(t)−S1M0(t)}=

1√
n

n

∑
i=1

(Ui1 +Ui2 +Ui3 +Ui4+

d(Xi){Ai−P(Ai = 1|Xi;α)}),

while we previously started from

√
n {Ŝ1M0(t)−S1M0(t)}=

1√
n

n

∑
i=1

(Ui4 +d(Xi){Ai−P(Ai = 1|Xi;α)}).

The optimal choice of d(Xi) is now obtained by regressing Ui1+Ui2+Ui3+Ui4

on Ai−P(Ai = 1|Xi;α), i.e.

dopt(Xi) =−
E
[

1−Ai
1−P(Ai=1|Xi;α)(U1i +U2i +U3i +U4i){Ai−P(Ai = 1|Xi;α)}|Xi

]
E
[
{Ai−P(Ai = 1|Xi;α)}2 |Xi

] .

This will be identical to

dopt(Xi) =−
E
[

1−Ai
1−P(Ai=1|Xi;α)(U4i){Ai−g(Xi;α)}|Xi

]
E
[
{Ai−g(Xi;α)}2 |Xi

] ,

which is what we found previously. We can see this because U2i and U3i have mean
zero conditional on Ai and Xi and so regressing them on Ai−P(Ai = 1|Xi;α∗) gives
zero. Since U1i is already of the form d(Xi){Ai−P(Ai = 1|Xi;α)} for some d(Xi),
the residual will eliminate this term.
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3.A.2 Eligibility Criteria

A subgroup of the initial population of 1856 breast cancer patients was selected
for this study based on several criteria. Those women for whom pCR status was
non-identifiable at surgery and the 101 women who progressed beforehand, were
excluded from the analysis according to the landmark analysis approach (Giobbie-
Hurder et al. 2013). Other selection criteria were: (i) patients who were eligible
for the P53 trial (Bonnefoi et al. 2011), (ii) patients who received at least one cycle
of neoadjuvant chemotherapy and did not receive radiotherapy before surgery, and
(iii) patients without M1, bilateral breast cancer or T4d cancer.

3.A.3 Tables and Figures

Figure 3.3 examines the extent of the efficiency gain of the LE versus the RMLE
estimator. The total variance of the estimators equals the variance of the sum of
four specific terms. All four terms have to be included, since they each account
for a different part of the uncertainty in the estimators. The first term U1i handles
the uncertainty due to estimating the propensity score, the second term U2i is
included because of the uncertainty in estimating the Cox regression coefficients,
the third U3i takes care of the uncertainty due to estimating the cumulative baseline
hazard, and the fourth U4i accounts for the fact that we take the sample average.
No efficiency gain will be seen for terms U2i and U3i, because we can not improve
the estimates of the parameters indexing the Cox regression model. Since the LE
estimator relies on covariate information of all patients, and not on that of one
treatment group, progress can be made for U4i. Figure 3.3 shows that the total
variance U1i +U2i +U3i +U4i of the LE estimator is 30 to 40% smaller over time
than that of the RMLE estimator and that this efficiency gain is the result of a
smaller variation in U1i +U4i.
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RMLE: efficiency gain in the complete case analysis
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Table 3.3: Model (3.6) at t = 1.010 fitted on the complete cases

log(OR) SE Z-value P-value

Intercept 4.57 1.27 3.61 0.00
Local PgR status Negative

Positive 0.14 0.68 0.21 0.84
p53 Wild

Mutated -0.38 0.65 -0.58 0.57
Clin. nod. stat. N0

N1 -0.45 0.50 -0.90 0.37
N2 & N3 0.11 0.86 0.13 0.90

Clin. tum. size T2
T3 -1.13 1.55 -0.73 0.47
T4 -2.11 2.66 -0.79 0.43

Hist. grade I
II -0.67 1.21 -0.56 0.58
III -1.07 1.42 -0.75 0.45

BC subtype Lum. A
Lum. B (HER2 neg.) -0.20 1.31 -0.15 0.88
Lum. B (HER2 pos.) 0.07 1.08 0.07 0.95
HER2 pos. (non-lum.) -1.42 1.18 -1.20 0.23
Triple neg. 0.59 1.30 0.45 0.65

Clin. tum. size x Hist. grade T2 x I
T3 x I
T4 x I
T2 x II
T3 x II 0.96 1.65 0.58 0.56
T4 x II 1.24 2.80 0.44 0.66
T2 x III
T3 x III 0.94 1.90 0.50 0.62
T4 x III 2.26 3.07 0.74 0.46

Clin. tum. size x BC subtype T2 x Lum. A
T3 x Lum. A
T4 x Lum. A
T2 x Lum. B (HER2 neg.)
T3 x Lum. B (HER2 neg.) 0.27 1.63 0.17 0.87
T4 x Lum. B (HER2 neg.) -0.67 2.49 -0.27 0.79
T2 x Lum. B (HER2 pos.)
T3 x Lum. B (HER2 pos.) -1.43 1.20 -1.19 0.24
T4 x Lum. B (HER2 pos.) -0.95 1.52 -0.62 0.53
T2 x HER2 pos. (non-lum.)
T3 x HER2 pos. (non-lum.) -0.27 1.42 -0.19 0.85
T4 x HER2 pos. (non-lum.) -1.37 1.71 -0.80 0.42
T2 x Triple neg.
T3 x Triple neg. -1.19 1.33 -0.89 0.37
T4 x Triple neg. -2.56 1.69 -1.51 0.13

p53 x BC subtype Wild x Lum. A
Mutated x Lum. A
Wild x Lum. B (HER2 neg.)
Mutated x Lum. B (HER2 neg.) 0.39 1.17 0.34 0.74
Wild x Lum. B (HER2 pos.)
Mutated x Lum. B (HER2 pos.) 0.41 1.00 0.41 0.68
Wild x HER2 pos. (non-lum.)
Mutated x HER2 pos. (non-lum.) 1.62 1.14 1.42 0.16
Wild x Triple neg.
Mutated x Triple neg. -0.13 1.09 -0.12 0.90

Clin. nod. stat. x Local PgR status N0 x Negative
N1 x Negative
N2 & N3 x Negative
N0 x Positive
N1 x Positive 0.08 0.76 0.11 0.92
N2 & N3 x Positive -1.51 1.29 -1.16 0.24
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Table 3.4: Model 3.6 at t = 5.002 fitted on the complete cases

log(OR) SE Z-value P-value

Intercept 2.52 0.51 4.95 0.00
Local PgR status Negative

Positive 0.17 0.31 0.56 0.58
p53 Wild

Mutated -0.42 0.29 -1.45 0.15
Clin. nod. stat. N0

N1 -0.46 0.26 -1.75 0.08
N2 & N3 0.25 0.48 0.52 0.60

Clin. tum. size T2
T3 -1.25 0.67 -1.87 0.06
T4 -2.45 1.49 -1.64 0.10

Hist. grade I
II -0.73 0.47 -1.56 0.12
III -1.08 0.58 -1.87 0.06

BC subtype Lum. A
Lum. B (HER2 neg.) -0.30 0.59 -0.51 0.61
Lum. B (HER2 pos.) -0.01 0.47 -0.02 0.99
HER2 pos. (non-lum.) -1.69 0.64 -2.62 0.01
Triple neg. 0.51 0.57 0.89 0.37

Clin. tum. size x Hist. grade T2 x I
T3 x I
T4 x I
T2 x II
T3 x II 1.06 0.72 1.47 0.14
T4 x II 1.44 1.56 0.93 0.35
T2 x III
T3 x III 0.93 0.88 1.06 0.29
T4 x III 2.72 1.80 1.51 0.13

Clin. tum. size x BC subtype T2 x Lum. A
T3 x Lum. A
T4 x Lum. A
T2 x Lum. B (HER2 neg.)
T3 x Lum. B (HER2 neg.) 0.40 0.78 0.51 0.61
T4 x Lum. B (HER2 neg.) -0.90 1.40 -0.64 0.52
T2 x Lum. B (HER2 pos.)
T3 x Lum. B (HER2 pos.) -1.67 0.56 -2.99 0.00
T4 x Lum. B (HER2 pos.) -1.11 0.86 -1.29 0.20
T2 x HER2 pos. (non-lum.)
T3 x HER2 pos. (non-lum.) -0.20 0.76 -0.27 0.79
T4 x HER2 pos. (non-lum.) -1.91 1.36 -1.40 0.16
T2 x Triple neg.
T3 x Triple neg. -1.34 0.62 -2.17 0.03
T4 x Triple neg. -3.31 1.34 -2.47 0.01

p53 x BC subtype Wild x Lum. A
Mutated x Lum. A
Wild x Lum. B (HER2 neg.)
Mutated x Lum. B (HER2 neg.) 0.45 0.53 0.85 0.39
Wild x Lum. B (HER2 pos.)
Mutated x Lum. B (HER2 pos.) 0.53 0.50 1.06 0.29
Wild x HER2 pos. (non-lum.)
Mutated x HER2 pos. (non-lum.) 1.83 0.65 2.82 0.00
Wild x Triple neg.
Mutated x Triple neg. -0.04 0.54 -0.08 0.94

Clin. nod. stat. x Local PgR status N0 x Negative
N1 x Negative
N2 & N3 x Negative
N0 x Positive
N1 x Positive 0.05 0.36 0.14 0.89
N2 & N3 x Positive -1.91 0.77 -2.50 0.01
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3.A.4 Sensitivity analysis one: Analysis on the complete subset
of eligible patients using the missing-indicator method

The RMLE and LE estimator are used to estimate the indirect effect of chemother-
apy arm on DFS mediated via pCR and the remaining direct effect. The multivariate
Cox regression model presented in Table 3.5 served as outcome model for the first
step of the RMLE and LE estimator in the analysis on the complete subset of eligible
patients. To obtain the LE estimator, we fit an additional logistic regression model
for each time t separately. We used the same predictors as in the outcome model
(Table 3.5), except those involving pCR and treatment. Figure 3.4 presents the
direct effect ratio of chemotherapy on DFS on the right-hand side and the indirect
effect ratio via pCR on the left-hand side. The RMLE estimator yields a direct effect
of 1.115 (95% CI 1.045 to 1.184) and an indirect effect of 1.002 (95% CI 0.975 to
1.030) after 5 years. The LE estimator gave a similar direct effect of 1.115 (95% CI
1.042 to 1.188) and a more precise indirect effect of 1.000 (95% CI 0.979 to 1.021).
On the basis of this, we may conclude that the probability that the duration of DFS
lasts longer than 5 years after administering the experimental taxane-based regimen
is about 11.7% and 11.5% larger for the RMLE and LE estimator respectively than
when the anthracycline based regimen would be administered. A very small part
of the total intention-to-treat effect is due to the effect via pCR. In particular, the
mediation proportion shows that only 0.3% of the treatment effect on the DFS risk
difference is mediated by the treatment effect on pCR for the LE estimator after 5
years (Figure 3.5).

Figure 3.6 examines the extent of the efficiency gain of the LE versus the
RMLE estimator in the first sensitivity analysis. It shows that the total variance
U1i+U2i+U3i+U4i of the LE estimator is 30 to 40% smaller over time than that of
the RMLE estimator and that this efficiency gain is the result of a smaller variation
in U1i +U4i.
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Figure 3.4: Results of the first sensitivity analysis: direct and indirect effect risk
ratios of surviving the given time indicated on the X-axis with accompanying 95%
point-wise confidence intervals

1
.0

1
.1

1
.2

1
.3

1
.4

D
ir
e

c
t 

E
ff
e

c
t 

R
a

ti
o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

RMLE

LE

Time (Years)

Patients at risk:

1525 1478 1405 1320 1245 1142 993 823 664 516 412 237 154 68 31 7

0
.9

5
1

.0
0

1
.0

5

In
d

ir
e

c
t 

E
ff
e

c
t 

R
a

ti
o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

RMLE

LE

Time (Years)

Patients at risk:

1525 1478 1405 1320 1245 1142 993 823 664 516 412 237 154 68 31 7

Figure 3.5: Results of the first sensitivity analysis: proportion mediated for the
given time indicated on the X-axis
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Figure 3.6: Part of indirect effect variance relative to total indirect effect variance
RMLE: efficiency gain in the first sensitivity analysis
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Table 3.5: Cox regression outcome model of the first sensitivity analysis

HR 95% CI P-value

Treatment Standard
Experimental 0.72 0.60 - 0.87 0.00

pCR No
Yes 0.80 0.52 - 1.21 0.28

p53 Wild
Mutated 1.10 0.88 - 1.38 0.38
Missing 0.78 0.59 - 1.03 0.08

Local ER status Negative
Positive 0.53 0.36 - 0.77 0.00
Unknown 0.43 0.22 - 0.83 0.01

Clin. nod. stat. N0
N1 1.89 1.50 - 2.37 0.00
N2 & N3 2.31 1.54 - 3.48 0.00

Clin. tum. size T2
T3 3.21 1.21 - 8.47 0.02
T4 4.15 0.85 - 20.22 0.08

Hist. grade I
II 2.14 1.03 - 4.45 0.04
III 2.36 1.03 - 5.37 0.04
Missing 1.30 0.50 - 3.36 0.59

BC subtype Lum. A
Lum. B (HER2 neg.) 1.63 0.85 - 3.12 0.14
Lum. B (HER2 pos.) 1.28 0.74 - 2.22 0.37
HER2 pos. (non-lum.) 1.69 0.88 - 3.27 0.12
Triple neg. 0.56 0.28 - 1.10 0.09
Missing 1.22 0.73 - 2.03 0.45

Hist. type Inv. ductal
Inv. lobular 1.01 0.74 - 1.39 0.94
Other 1.05 0.68 - 1.63 0.81

Clin. nod. stat. x pCR N0 x No
N1 x No
N2 & N3 x No
N0 x Yes
N1 x Yes 0.30 0.16 - 0.57 0.00
N2 & N3 x Yes 0.20 0.05 - 0.91 0.04

Clin. tum. size x Hist. grade T2 x I
T3 x I
T4 x I
T2 x II
T3 x II 0.33 0.12 - 0.92 0.03
T4 x II 0.58 0.11 - 2.90 0.50
T2 x III
T3 x III 0.49 0.16 - 1.52 0.22
T4 x III 0.29 0.05 - 1.67 0.17
T2 x Missing
T3 x Missing 0.55 0.16 - 1.93 0.35
T4 x Missing 0.72 0.12 - 4.35 0.72
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Table 3.5: Cox regression outcome model of the first sensitivity analysis

HR 95% CI P-value

Clin. tum. size x BC subtype T2 x Lum. A
T3 x Lum. A
T4 x Lum. A
T2 x Lum. B (HER2 neg.)
T3 x Lum. B (HER2 neg.) 0.56 0.21 - 1.50 0.25
T4 x Lum. B (HER2 neg.) 1.41 0.36 - 5.49 0.62
T2 x Lum. B (HER2 pos.)
T3 x Lum. B (HER2 pos.) 2.31 1.11 - 4.78 0.02
T4 x Lum. B (HER2 pos.) 1.49 0.60 - 3.68 0.39
T2 x HER2 pos. (non-lum.)
T3 x HER2 pos. (non-lum.) 0.74 0.31 - 1.75 0.49
T4 x HER2 pos. (non-lum.) 1.02 0.35 - 3.01 0.97
T2 x Triple neg.
T3 x Triple neg. 3.06 1.39 - 6.75 0.01
T4 x Triple neg. 5.90 2.05 - 17.00 0.00
T2 x Missing
T3 x Missing 1.56 0.76 - 3.21 0.23
T4 x Missing 0.89 0.36 - 2.16 0.79
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3.A.5 Sensitivity analysis two: Smaller number of baseline co-
variates

Finally, we report the results of an additional mediation analysis that makes use
of an outcome model that included a smaller number of baseline covariates. This
outcome model excluded the important, but incomplete baseline covariates local
PgR status, p53 status, histological grade and intrinsic breast cancer subtype. The
multivariate Cox regression model is presented in Table 3.6. An additional logistic
regression model for each time t separately is used to obtain the LE estimator. This
model consists of the same predictors as the outcome model (Table 3.6), except
those involving pCR and treatment. Figure 3.7 presents the direct effect ratio of
chemotherapy on DFS on the right-hand side and the indirect effect ratio via pCR
on the left-hand side. The RMLE estimator yields a direct effect of 1.114 (95%
CI 1.014 to 1.214) and an indirect effect of 1.006 (95% CI 0.979 to 1.033) after
5 years. The LE estimator gave a similar direct effect of 1.114 (95% CI 1.012
to 1.216) and a more precise indirect effect of 1.005 (95% CI 0.983 to 1.027).
Thus, we may conclude that the probability that the duration of DFS lasts longer
than 5 years after administering the experimental taxane-based regimen is about
12.1% and 12% larger for the RMLE and LE estimator respectively than when the
anthracycline based regimen would be administered. A very small part of the total
intention-to-treat effect is due to the effect via pCR. In particular, the mediation
proportion shows that only 4.5% of the treatment effect on the DFS risk difference
is mediated by the treatment effect on pCR for the LE estimator after 5 years (Figure
3.8).

Figure 3.9 again examines the extent of the efficiency gain of the LE versus the
RMLE estimator. It shows that the total variance U1i +U2i +U3i +U4i of the LE
estimator is 30 to 50% smaller over time than that of the RMLE estimator and that
this efficiency gain is the result of a smaller variation in U1i +U4i.
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Figure 3.7: Results of the second sensitivity analysis: direct and indirect effect risk
ratios of surviving the given time indicated on the X-axis with accompanying 95%
point-wise confidence intervals
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Figure 3.8: Results of the second sensitivity analysis: proportion mediated for the
given time indicated on the X-axis
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3 Figure 3.9: Part of indirect effect variance relative to total indirect effect variance
RMLE: efficiency gain in the second sensitivity analysis
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Table 3.6: Cox regression outcome model of the second sensitivity analysis

HR 95% CI P-value

Treatment Standard
Experimental 0.74 0.58 - 0.95 0.02

pCR No
Yes 0.99 0.59 - 1.67 0.98

Clin. nod. stat. N0
N1 1.70 1.28 - 2.25 0.00
N2 & N3 2.70 1.49 - 4.91 0.00

Clin. tum. size T2
T3 1.93 1.48 - 2.52 0.00
T4 2.91 2.04 - 4.15 0.00

Clin. nod. stat. x pCR N0 x No
N1 x No
N2 & N3 x No
N0 x Yes
N1 x Yes 0.40 0.18 - 0.89 0.02
N2 & N3 x Yes 0.16 0.02 - 1.29 0.09
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3.A.6 Simulations

We reported large sample theory in this Appendix in section 3.A.1. To investigate
the finite sample properties of the estimators and their inference some simulations
were done. We evaluate the performance of our two estimators through a simulation
analysis with 1000 runs for data sets of 100, 200, 500 and 1000 observations.
First, a dichotomous exposure A is drawn with P(A = 0) = P(A = 1) = 0.5. For
each simulation, we report the results at 3 different time points (3, 5 and 8 years).
Sandwich standard errors (see the Appendix) are presented and used to construct
95% confidence intervals. Covariates X = (X1,X2)

t are generated as follows: X1

and X2 ∼ N (0,0.49). The dichotomous mediator M is generated as a Bernoulli
variate obeying a logit{P(M = 1|A,X)} = α0 +α1A+αT

2 X∗ with X∗ including
the 2 covariates of X and their interaction. Parameter values were set to α0 =

0, α1 = 0.5 and αT
2 equals (−0.25,0.15,−0.2)t . Finally, the event time T is

drawn from a Weibull distribution with shape parameter a = 1 and scale parameter
b = 1/{λT exp(β1A+ β2M + β T

3 X∗)} with λT = 0.2, β1 = −0.4, β2 = 0.8 and
β T

3 = (−0.4,−0.4,0.2)t . The censoring time C is also drawn from a Weibull
distribution with shape parameter a = 1 and scale parameter b = 1/λC = 0.3. An
event occurs if T ∗ = min(T,C) equals T . Results of the simulation analyses with
data sets of 100, 200, 500 and 1000 observations are presented in Tables 3.7, 3.8,
3.9 and 3.10 respectively.

Table 3.7: Results simulations analysis n = 100

RMLE RRD LE RRD RMLE RRM LE RRM

3 5 8 3 5 8 3 5 8 3 5 8
Bias 0.04 0.09 0.41 0.03 0.09 0.40 0.01 0.01 0.03 0.00 0.00 0.01
Emp. Sd 0.32 0.63 4.16 0.32 0.63 4.28 0.08 0.12 0.18 0.06 0.08 0.12
Se 0.48 0.91 2.18 0.51 1.00 2.64 0.08 0.11 0.157 0.07 NaN NaN
Coverage 0.98 0.97 0.95 0.98 0.98 0.96 0.95 0.92 0.91 0.98 NaN NaN

Table 3.7, 3.8, 3.9 and 3.10 show that the proposed efficient estimators LE deliv-
ers drastic efficiency gains for the natural indirect effect, although not for the natural
direct effect in comparison to the RMLE estimator. This is not surprising because
the choice whether or not to include baseline covariates only affects estimation
of the indirect effect (Vandenberghe et al. 2017a). Both estimators are generally
unbiased, except in the simulation study with only 100 observations, where some
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Table 3.8: Results simulations analysis n = 200

RMLE RRD LE RRD RMLE RRM LE RRM

3 5 8 3 5 8 3 5 8 3 5 8
Bias 0.01 0.03 0.09 0.01 0.03 0.09 0.00 0.00 0.01 0.00 0.00 0.01
Emp. Sd 0.20 0.33 0.65 0.20 0.33 0.65 0.05 0.08 0.11 0.04 0.06 0.08
Se 0.22 0.41 0.63 0.24 0.44 0.70 0.06 0.08 0.11 0.05 0.07 0.08
Coverage 0.97 0.97 0.92 0.97 0.98 0.93 0.97 0.97 0.95 0.99 0.98 0.94

Table 3.9: Results simulations analysis n = 500

RMLE RRD LE RRD RMLE RRM LE RRM

3 5 8 3 5 8 3 5 8 3 5 8
Bias 0.00 0.01 0.03 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Emp. Sd 0.12 0.22 0.37 0.12 0.22 0.37 0.03 0.05 0.06 0.02 0.03 0.05
Se 0.12 0.17 0.34 0.12 0.18 0.34 0.04 0.05 0.09 0.03 0.04 0.07
Coverage 0.94 0.90 0.93 0.94 0.90 0.93 0.98 0.98 0.99 0.99 0.98 0.99

Table 3.10: Results simulations analysis n = 1000

RMLE RRD LE RRD RMLE RRM LE RRM

3 5 8 3 5 8 3 5 8 3 5 8
Bias 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Emp. Sd 0.08 0.14 0.24 0.08 0.14 0.24 0.02 0.03 0.05 0.02 0.02 0.04
Se 0.08 0.14 0.20 0.08 0.14 0.21 0.03 0.04 0.06 0.02 0.03 0.05
Coverage 0.95 0.94 0.91 0.96 0.95 0.91 0.98 0.99 0.99 0.99 0.99 0.99
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bias appears due to the small sample size. This is especially visible at the latest
time point, where there’s not much information left to fit the model. The standard
errors also become larger due to lack of information.
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CHAPTER 5

Conclusion and Future Research

5.1 Conclusion

Over recent years there has been a growing awareness of the usefulness of mediation
analyses to supplement the intention-to-treat analysis in randomised experiments.
Applied researchers are increasingly using (natural) direct and indirect effects as
they try to grasp the working mechanism of a certain treatment. In this thesis, we
briefly discussed several research areas which could benefit from supplementing
the usual intention-to-treat analysis with a mediation analysis. We saw two areas of
research wherein especially the (natural) indirect effect could be of interest: (1) the
development of better, more efficient treatments with fewer side effects (Marso et al.
2016) and (2) the evaluation of putative surrogate markers that could potentially
replace long-term more clinically relevant outcomes (Vandenberghe et al. In press).
Additionally, two examples were discussed which showed that also the (natural)
direct effect could add helpful information to the analyses of randomised trials: (1)
in assessing the usefulness of existing treatments for problems or diseases for which
they were not originally developed (McIntyre et al. 2014) and (2) in clarifying
seemingly ambiguous results on total intention-to-treat effects (Padian et al. 2007).
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The traditional approach to direct and indirect effects dates back to the social
science literature of the 1970s and early 1980s (Baron and Kenny 1986; Judd
and Kenny 1981) and can be viewed as a refining of earlier ideas from Wrights’
path analysis (Wright 1920). A number of papers have been published that show
how using these traditional approaches, as the difference-of-coefficients and the
product-of-coefficients method, may produce misleading results for non-linear
models (Robins and Greenland 1992; Kaufman et al. 2004; Ten Have and Joffe
2012; VanderWeele 2011). The proposals of Robins and Greenland (1992) and
Pearl (2001) delivered the possibility of a formal mediation analysis framework
based on counterfactual-based distribution-free definitions of natural direct and
indirect effects that can be identified under certain well-defined conditions. Pearl’s
mediation formula (Pearl 2001, 2012) enables the combination of arbitrary statis-
tical models for the outcome and mediator to identify natural direct and indirect
effects and is thereby far superior to the traditional approach to direct and indirect
effects.

Although this identification result was groundbreaking for modern causal me-
diation analysis, it still has a number of important limitations (Vansteelandt et al.
2012a). A first important limitation, that recently fueled an ongoing debate on the
usefulness of natural direct and indirect effects in the epidemiologic literature, is the
need for cross-world assumptions to be able to identify natural direct and indirect
effects. This is indeed a very strong assumption as it can not be empirically verified
or guaranteed by study design (Robins and Greenland 1992). Second, applying the
mediation formula to compute natural direct and indirect effects involves integration
which can become very complex for certain combinations of mediator and outcome
models. Third, combining arbitrary models for the mediator and outcome may
result in complex closed-form expressions of natural direct and indirect effects,
if they can be defined altogether (Lange et al. 2012). VanderWeele and Vanstee-
landt (2010) show that even a simple linear model for the mediator and a logistic
regression model for the outcome already result in elaborate expressions for the
natural direct and indirect effect. A final limitation, that may be considered a major
disadvantage in particular in the analysis of randomised trials as the concern for
model misspecification is more pertinent in that setting, is that this approach may
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deliver biased effect estimates if the model for the mediator or the model for the
outcome (or both) are misspecified. Although van der Laan and Petersen (2008)
too need to rely on cross-world assumptions, they accommodate the other concerns
by directly modeling the natural direct effect of interest via so-called double robust
estimators that require correct specification of a model for the distribution of the
mediator, and either for the distribution of the exposure or the mean outcome.
Tchetgen Tchetgen and Shpitser (2012) and Tchetgen Tchetgen (2011) additionally
discuss estimation of natural indirect effects via their triple-robust estimators that
require 2 out of the 3 models (one for exposure, mediator and outcome) to be
correctly specified. These alternatives still involve inverse weighting with the medi-
ator distribution however, which can sometimes yield erratic behaving estimators
that tend to be sensitive to minor misspecifications in the tails of the mediator
distribution (Vansteelandt 2012b). In Chapter 2 and Chapter 3, we therefore
propose semi-parametric efficient strategies that exploit our a priori knowledge
of the randomisation probabilities and as a result do not rely on a model for the
mediator to obtain unbiased estimates for natural direct and indirect effects.

In Chapter 2, we first discuss a simple estimator for natural direct and indirect
effects that delivers unbiased estimates for binary and continuous outcomes by only
relying on the correct specification of the model for the outcome. However, when
baseline covariates that are predictive of the mediator are available, not relying on a
model for the mediator distribution is far less efficient than maximum likelihood
estimation (MLE) based on the mediation formula. Therefore, we proposed two
estimators that, like MLEs, make use of a model for the mediator to improve effi-
ciency by optimally extracting information from baseline covariate data, but are
robust against misspecification, unlike MLEs. In particular, we propose the locally
efficient (LE) estimator that is efficient when a working model for the mediator is
correctly specified and the restricted efficient (RE) estimator that achieves efficiency
within a more restrictive class of estimators regardless of correct specification of a
working model for the mediator. As simulation studies showed similar behavior
for both estimators, we recommend to use the LE estimator in practice as it is
relatively simple to use in routine applications. These two proposed estimators
have several advantages as compared to the popular MLEs and robust estimators of
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Tchetgen Tchetgen and Shpitser (2012) and Lendle et al. (2013). First, unlike those
proposals it does not require inverse weighting with the mediator distribution. In
fact, when the randomisation probabilities are constant, it does not require inverse
probability weighting at all. Second, in our experience models for the distribution
of the mediator (or the probability of treatment, given mediator and covariates) are
generally more difficult to specify than models for the mean of the outcome. And
finally our approach is much more easy to apply because of its greater simplicity.

In Chapter 3, the strategy of the locally efficient estimator is further extended
to handle time-to-event outcomes. This proposal has the advantage of quantifying
the natural direct and indirect effect on the survival scale, instead of the hazard scale,
as in earlier work on mediation analysis with time-to-event outcomes from Lange
and Hansen (2011) and VanderWeele (2011). This improves interpretability since
hazard ratios lack causal interpretation, even in randomised trials (Hernan 2010;
Aalen et al. 2015), but does require a more high-dimensional graphical representa-
tion of the results. Although this approach can be generally applied to mediation
analyses of time-to-event outcomes, this chapter was written as an example of how
mediation analyses may be informative to evaluate the appropriateness of potential
intermediate outcomes or surrogate markers when data from just a single trial are
available. Even though mediation is not a necessary condition for a mediator to be
a good surrogate marker (Joffe and Greene 2009; VanderWeele and Vansteelandt
2013), we show that mediation analysis techniques may be informative in that
respect.

Finally, because focussing on a single mediator measured at a single point
in time is rather limiting, recent advances in mediation analysis with multiple or
repeatedly measured mediators are discussed in Chapter 4. Traditional approaches
to mediation analysis with multiple mediators are criticized because the literature is
rather unclear about the interpretations of the effects and the assumptions needed
for them to be identified (VanderWeele and Vansteelandt 2009, 2010; Imai et al.
2010). The mediation analysis strategy that we propose for a randomly assigned
exposure, repeatedly measured mediator and time-to-event endpoint has several
advantages compared to the traditional approach, the so-called dynamic path analy-
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sis (Strohmaier et al. 2015; Fosen et al. 2006). When an additive hazards model is
used for the time-to-event outcome in combination with a linear regression model
for the normal mediator with constant variance, the resulting direct and indirect
effects are comparable. Our approach however is not restricted to this combination
of models and can handle different types of survival models (i.e. from additive
hazards to proportional hazards models) and different kinds of mediators. As it
also allows long term effects of covariates and mediators on covariates, mediators
and the outcome measured later in time, the presence of time-varying confounders
and unmeasured confounders of different realizations of the mediator over time,
it can be applied to much more realistic settings than the traditional approach.
Our proposal is closely related to recent contributions of Zheng and van der Laan
(2012b) and Zheng and van der Laan (2017), but there are subtle differences that
will be discussed in detail in Section 5.3.2.

5.2 On imperfections of the current literature

As recognition of the usefulness of mediation analyses grows, an increasing number
of applied papers are published wherein direct and indirect effects are being used to
better understand the treatment mechanism. All too often however the seemingly
intuitive and appealingly simple regression procedure, known as the difference-
of-coefficients method, is used (Naimi 2015). First, a simple regression model of
the outcome regressed against the exposure (and possibly baseline covariates) is
fitted. In a second step, it seems intuitive to further adjust for the mediator to block
that part of the exposure effect going through said mediator. The remaining effect
of treatment is then interpreted as the direct effect, and the change in exposure
effect is interpreted as indirect effect. Alternatively, the indirect effect is calculated
as the product of the exposure effect on the mediator and the mediator effect on
the outcome. This approach, better known as the product-of-coefficients method,
equally lacks a theoretical basis beyond linear models, but at least has the advantage
of being useful as a test of the null hypothesis of no indirect effect (VanderWeele
2011; Vansteelandt et al. 2012a). Although numerous papers have been published
that discuss how these traditional approaches to direct and indirect effects are only
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valid in the absence of unit-level interactions and with linear regression models
(Robins and Greenland 1992; Kaufman et al. 2004; Ten Have and Joffe 2012;
VanderWeele 2011), a number of recent applied papers that discuss results about
direct and indirect effects still make use of these traditional methods (Contiero et al.
2013; Wang et al. 2010; Bränström et al. 2010). This phenomenon of continually
using methods that are proven to be limited to linear models, leads to the conclusion
that the literature on the topic of causal mediation analysis is seriously lacking. In
particular, the literature is mainly directed to highly technical audiences in statistics.
The focus lies too much on counterfactual-based definitions, assumptions, esti-
mators and influence functions and offers too little practical guidance for applied
researchers through concrete examples of how to implement these estimators. With
our paper about mediation analyses of time-to-event outcomes (Vandenberghe et al.
In press), we tried to contribute by providing a step-by-step explanation of how to
implement the simple estimator proposed by Tchetgen Tchetgen (2011) and our
own proposal, which in our opinion really clarified the difference between the two
and the advantage of the locally efficient estimator. Additionally, an easy-to-use R
function was provided, but applied researchers would really benefit from a compre-
hensive software package including different estimators together with a detailed
and easy to understand discussion on their relative advantages and disadvantages.
As such, the still existing barrier to routine application of these methods might be
gradually broken down.

Although more and more applied papers are being published on the topic of
mediation analysis, the usefulness of the natural direct and indirect effect has
been the subject of a recent debate in the epidemiologic literature (Naimi et al.
2014). Their relevance has been questioned as they do not directly correspond
to real-life interventions that might help improve population health. The causal
inference literature has generally argued that causal effects cannot be estimated
unless a clear (possibly hypothetical) intervention can be defined (Glass et al. 2013;
Hernan 2005). As a result, some authors (Robins and Greenland 1992; Kaufman
2009) have expressed their concerns about the impossibility to conduct experiments
in which the identification assumptions for natural direct and indirect effects are
satisfied and these effects could thus be estimated. This apprehension originates

138



5

5.2. On imperfections of the current literature

from the fact that natural direct and indirect effects are defined in terms of so-called
cross-world counterfactuals that are unobservable, even from randomised controlled
trials. Others (Pearl 2001; Schwartz et al. 2010) defend the use of natural direct and
indirect effects as they can be identified under specific assumptions and provide
useful information about existing mechanisms. Moreover, randomised experiments
very often cannot be conducted due to practical or ethical considerations and results
of causal inference should thus not be discarded as they provide a means of getting
closer to the ‘truth’ where other options fail. Naimi et al. (2014) cite Joffe et al.
(2001) to argue that natural effects are irrelevant in public health research, in
contrast to controlled direct effects, as they do not connect to the effect of particular
policies. Naimi et al. (2014) revisit the example of breast cancer risk for women
taking hormone replacement therapy. More breast cancers are observed among
women taking hormone replacement therapy, but as these women are also subject
to more mammographic screening, the question remains how much of the excess
cases are due to increased detection. In this example, a natural direct effect would
provide us with information about the breast cancer risk under no postmenopausal
hormone therapy and how this risk would change for women under postmenopausal
hormone therapy, had mammographic screening not been affected by the therapy.
We can agree that it is hard to think about an intervention that results in exposed
women undergoing the mammography screening they would have undergone had
they not been exposed (and vice versa). As such, a controlled direct effect that tells
us the difference in breast cancer risk under postmenopausal hormone therapy and
no therapy if all women would have been screened indeed seems more relevant.
However, we can think about examples that show the relevance of natural effects
over controlled direct effects as well. Remember the MIRA trial (Padian et al. 2007;
Rosenblum et al. 2009), which we used to describe the setting where mediation
analysis could help clarify seemingly ambiguous results on total intention-to-treat
effects. In this setting, the natural direct effect would tell us about the HIV risk under
standard treatment and how this risk would change for patients that additionally
received diaphragm and lubricant gel had this not had an effect on condom use.
This is clearly a far more relevant question than what the controlled direct effect
would provide an answer to: the change in HIV risk under standard treatment
versus additional diaphragm and lubricant gel availability if no one (or everyone)

139



Chapter 5. Conclusion and Future Research

5

used condoms. We definitely recognize the usefulness of relatively non-technical
papers about natural effects and their identification assumptions like the ones of
Naimi et al. (2014) and Hafeman and Schwartz (2009), anti and pro natural effects
respectively. But as Kaufman (2009) criticizes Hafeman and Schwartz (2009) for
focussing exclusively on natural direct and indirect effects and forgetting about
the usefulness of controlled direct effects, their discussion too could certainly be
more nuanced and provide concrete examples when natural (in)direct effects versus
controlled direct effects are more relevant.

5.3 Future research

5.3.1 Meta-analysis

The meta-analytic approach is still considered to be the gold standard approach for
the validation of surrogate markers (Daniels and Hughes 1997; Buyse et al. 2000a;
Alonso et al. 2015). Although mediation analysis techniques can be informative to
study potential surrogate markers and have the advantage over the meta-analysis
approach of needing only a single trial, as they depart from limited information,
they do not have the capacity to examine between-study heterogeneity and the
results are thus less well generalisable than results from a meta-analysis. In order to
generalise mediation analysis results, the direct treatment effect on the outcome not
mediated by the surrogate would have to be fairly similar across studies, otherwise
knowledge about the treatment effect on the surrogate would not allow prediction
of the treatment effect on the outcome (if there is also a relatively stable causal
relationship between the surrogate and the outcome). This quantity of predictive
ability is measured via the trial-level R2 under the meta-analytic framework. The
meta-analysis approach on the other hand has the disadvantage, that its power
to detect a high trial-level R2 may be very weak when there is little variability
in the effect of treatment on the surrogate across trials (Joffe and Greene 2009).
This could potentially happen when data from the different trials are homogenous,
although this does not mean that the potential surrogate is a poor one, however.
Recent contributions to the causal inference literature discuss issues of so-called
‘transportability’ and the potential to inform decisions in similar and in other
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populations as the effects were estimated (Hernan and VanderWeele 2011). Thus,
although it is quite restrictive that the direct treatment effect on the outcome would
have to be fairly similar across studies for the results of the mediation analysis to
be generalisable, future research could for instance examine if the direct effect is
similar for different patient groups. One could for instance fit the Cox regression
model and the logistic regression model on the predictions from that Cox model
as in Section 3.4 of Chapter 3 on the EORTC 10994/BIG 1-00 randomised phase
3 trial data and use this as a training data set, but take the average from the final
step across patients from a new data set where our baseline covariates were also
observed (i.e. test data set). As such, one could examine if the direct effect is indeed
similar across different populations.

A Y

S
U

Figure 5.1: Causal diagram representation of surrogacy.

A disadvantage of both the mediation analysis and the meta-analysis in the evalua-
tion of surrogate markers is that neither the proportion mediated, nor the trial-level
R2 is able to provide information about the expected treatment effect of a new
treatment. If the mediation analysis results indicate however that their is an indirect
effect and thus a causal effect of the surrogate on the outcome then, if we adequately
controlled for confounding of their relationship, it is reasonable to assume that this
new treatment will have an effect on the outcome of interest if the data show that it
has an effect on the surrogate. VanderWeele (2013) criticizes the mediation analysis
approach to evaluate surrogacy because it will not detect a surrogate unless the
surrogate has a direct causal effect on the outcome of interest. It is argued that the
surrogate might still be valuable in that case because of common causes U of the
surrogate and the outcome (as in Figure 5.1). Now imagine an example as in Figure
5.1 where surrogate S has no direct effect on outcome Y , but due to unmeasured
common cause U , say age, S serves as a very good proxy for Y : S and Y occur
much more often in older patients. Then if a future study (unknowingly) selects
patients with little variation in terms of age, S will (surprisingly) be a very poor
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surrogate for Y although previous studies showed different results. In our opinion,
evidence of mediation will thus generally add support to the validity of a candidate
surrogate. To conclude, it is rather difficult to choose one approach over the other
at this moment because they both have appealing properties, but also disadvantages.
Future research should take away this uncertainty by for instance examining if
meta-analytic proven surrogates are also supported by mediation analysis results
(i.e. CD4 count). It would be informative to see specific settings where and the
reason why the two approaches may give contradictory results. It would even be
more valuable to not have to choose at all if future research would find ways of
integrating these two approaches to evaluate surrogacy.

5.3.2 Immortal time bias

In our paper about mediation analyses of time-to-event outcomes (Vandenberghe
et al. In press), a remaining concern was that some patients died or experienced the
event before surgery and thus before the mediator was assessed. As a result, our
mediation analysis was limited to the subgroup of patients who were alive at the time
of surgery, when pathological complete response was assessed. In this subgroup,
the two treatment arms may no longer have been comparable and we argued that
future work would thus have to include an extension of the proposed techniques
to account for this. Although we found a better way to deal with this problem in
Chapter 4, there are still some remaining questions that should be addressed in
the future, which is why we provide the reader with a detailed discussion of the
problem in this Section. This type of bias, also called guarantee-time bias (GTB),
can occur in longitudinal analyses in which groups, that are defined via a classifying
event occurring sometime during follow-up (i.e. mediator), are compared (Giobbie-
Hurder et al. 2013). Giobbie-Hurder et al. (2013) describe three analytic techniques
to handle immortal time bias: conditional landmark analysis, a Cox regression
model with time-varying covariates, and inverse probability weighting, of which
we used the former in our analysis of the EORTC 10994/BIG 1-00 trial in Chapter
3. We will first discuss each of the three approaches in turn, before proceeding to
our own proposal from Chapter 4 to handle this problem. First, the conditional
landmark approach does not use time from randomisation till event, but time from
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the mediator measurement (i.e. surgery as landmark) till event. It has the huge
advantage of being a very simple approach, but unlike our proposal in Chapter
4 the disadvantage that it excludes patients who die or have an event before the
landmark. Conditioning on survival up to mediator assessment could also induce
bias when as a result treatment groups are no longer comparable. The second
approach, a Cox regression model that includes a time-varying classifying event (i.e.
mediator), overcomes these limitations by using all patient data, but does not allow
long term prediction. The third approach makes use of inverse probability weights
for the classifying event (i.e. mediator) given treatment, an event indicator up to
that point and baseline patient characteristics and disease-related variables and fit a
marginal structural model to estimate the controlled direct effect of treatment on
the time-to-event outcome, in contrast to the natural direct and indirect effects that
we were interested in.

A I(T > 2)

I(T > 1)

M1

U

Figure 5.2: Causal diagram representation of immortal time bias.

The literature on multiple mediators that helped us with this problem would
treat the event indicator I(T > 1) (Figure 5.2) as an intermediate confounder (i.e.
merely a common cause of the second mediator and the outcome that is affected
by the exposure) and the second mediator (i.e. here M1) as mediator of interest
(Miles et al. 2017; Tchetgen Tchetgen and Shpitser 2012; Tchetgen Tchetgen and
VanderWeele 2014; VanderWeele et al. 2014; Vansteelandt and VanderWeele 2013).
This approach would lead to a coarse two-way decomposition of the total intention-
to-treat effect into an indirect effect only via the second mediator (i.e. here M1) and
a direct effect not through this mediator. A similar strategy is used in Chapter 4
with repeatedly measured mediators and a time-to-event outcome, where survival
up to a certain time t is treated as a time-varying covariate Lt , which is ‘permitted’
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since we allow unmeasured confounders for the relationship between time-varying
counfounders and the outcome. As a result, the partial indirect effect is estimated:
the effect of randomised assignment to treatment on survival as transmitted along
the combination of pathways whereby treatment directly influences one of the
mediators, which thus excludes pathways whereby treatment initially influences
the survival indicator. As such S1,0(t), say for t ∈ [2,3[ would express how likely
it would be to survive time t, if (a) one were assigned to the treatment and (b)
provided one survived wave 1, M1 were set to the value it would have taken if
one were assigned to placebo and survived wave 1. Contrasting S1,0(t) with S1,1(t)

would then express the partial indirect effect via M1.

There are some remaining concerns about the proposal in Chapter 4. First, it
might be that S1,0(t) is not very well defined when for instance the treatment has a
beneficial effect on survival as compared to the placebo. Because then we would
have to imagine for someone who under placebo would have died, say before t=1,
what would have happened to their survival probability if assigned to treatment, but
this person could have been kept alive ‘somehow’ under placebo, so that the value of
M1 under placebo would have been known. If treatment is indeed beneficial for all
patients, it could therefore be a better solution to contrast S0,0(t) to S0,1(t) to express
the indirect effect as this would avoid the need to keep patients alive ‘artificially’.
Another option is to turn to alternative effect measures that are not defined in terms
of cross-world counterfactuals, so-called interventional direct and indirect effects
(Vansteelandt and Daniel 2017; VanderWeele and Tchetgen Tchetgen 2017; Lin
et al. 2016; Zheng and van der Laan 2017). Remember that they differ from natural
direct and indirect effects because they do not fix the mediator level to be equal to
the counterfactual mediator value at a certain level of treatment, but to a random
draw of the distribution of the mediator at a certain exposure level given covariates.
As such, one would not have to imagine the patient’s mediator value under placebo
if this person could have been kept alive, but we would set the mediator value to a
random draw of the distribution of this mediator in survivors under placebo given
covariate history (Zheng and van der Laan 2017). The simple example in Chapter
4 where a patient died on the placebo arm due to a car crash, showed that these
might not be very realistic values however and that conceptually at least natural
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direct and indirect effects might be more appealing. It seems worthwhile however
to look for different effect measures in the future that avoid this problem all together.
A final concern is the relative complexity of this method in Chapter 4 as there
is a whole process to go through before obtaining the final results. What would
thus really make this research more accessible for applied researchers who are
interested in these types of research questions is the development of an approach
that circumvents this complexity, so that one is able to obtain effect estimates via a
single model (see for example natural effect models (Lange et al. 2012; Vansteelandt
et al. 2012a)).
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CHAPTER 6

Samenvatting

De gerandomiseerde gecontroleerde studie wordt nog steeds beschouwd als de
gouden standaard voor de beoordeling van een mogelijks oorzakelijk effect van
een bepaalde blootstelling of behandeling (bv. chemotherapie) op een uitkomst
(bv. sterfte). De zogenaamde ‘intention to treat’-analyses, waarbij patiënten geanal-
yseerd worden volgens de behandelingsgroep waartoe ze oorspronkelijk werden
gerandomiseerd, worden gebruikt om deze oorzakelijke verbanden op te sporen.
Meer en meer worden deze primaire analyses van gerandomiseerde studies aange-
vuld met resultaten van statistische mediatie-analyses. Ondertussen is de weten-
schappelijke gemeenschap er zich immers van bewust dat deze resultaten een grote
meerwaarde kunnen bieden aangezien ze tot een meer diepgaand inzicht in de
mogelijke processen onderliggend aan die oorzaak-gevolg relaties kunnen leiden.
Aan de hand van een mediatie-analyse kan men immers nagaan in welke mate
het effect van de behandeling op de uitkomst toe te schrijven is aan het effect op
mogelijks tussenliggende factoren, ook wel mediatoren genoemd (bv. krimpen
van de tumor), enerzijds en de aanwezigheid van andere, niet nader gedefinieerde
processen anderzijds. De eerste manier waardoor de behandeling een effect kan
hebben op de uitkomst via een specifieke tussenliggende factor wordt in statistische
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mediatie-analyse het indirect effect genoemd, de overige mechanismen die het
behandelingseffect tot stand brengen worden gebundeld onder het direct effect.

In Hoofdstuk 1 beschrijven we vier gebieden waarbij een mediatie-analyse een
toegevoegde waarde kan zijn bovenop de standaard ‘intention to treat’-analyse. Als
eerste leiden de resultaten van een mediatie-analyse tot een beter inzicht in hoe een
bepaalde behandeling effect heeft op de uitkomst. Als we weten welke factoren
er voor het gunstige behandelingseffect zorgen, dan is het eventueel mogelijk om
betere en efficiëntere behandelingen met minder bijwerkingen te ontwikkelen door
net deze factoren te benadrukken en minder essentiële zaken weg te laten (Marso
et al. 2016). Een tweede manier waarop mediatie-analyse resultaten kunnen bijdra-
gen is hun nut in het evalueren van de effectiviteit van bestaande behandelingen voor
een probleem of ziekte waarvoor ze oorspronkelijk niet ontwikkeld werden. Uit on-
derzoek blijkt bijvoorbeeld dat antidepressiva niet alleen symptomen van depressie
verminderen, maar ook cognitieve functies verbeteren. Deze medicijnen zouden dus
niet enkel voor de behandeling van depressieve symptomen voorgeschreven kunnen
worden, maar ook om bijvoorbeeld tekorten op het vlak van cognitieve functies bij
ouderen te verbeteren (McIntyre et al. 2014). Als voorbeeld van een derde context
waar mediatie-analyse duidelijkheid kan brengen, werd de MIRA-trial (Padian et al.
2007; Rosenblum et al. 2009) beschreven, waar het effect van de beschikbaarheid
van een pessarium en glijmiddel op HIV risico niet eenduidig genterpreteerd kon
worden omdat in deze behandelingsgroep significant minder vrouwen een condoom
gebruikten dan in de placebo groep die geen toegang had tot een pessarium of
glijmiddel. Via een mediatie-analyse kreeg Rosenblum et al. (2009) een beter
zicht op het directe effect van pessarium en glijmiddel beschikbaarheid op HIV
risico door het te onderscheiden van hun effect op HIV risico door hun invloed
op condoomgebruik. Tenslotte kan een mediatie-analyse ook van nut zijn voor de
evaluatie van mediërende factoren die indicatoren zijn van ziekte op lange termijn,
zogenaamde surrogaat merkers, die gebruikt worden om klinisch relevante lange
termijn uitkomsten in studies te vervangen en zo de tijd en bijhorende kosten van
de studie te drukken (Vandenberghe et al. In press). De traditionele aanpak om
directe en indirecte effecten te schatten is wel intuiı̈tief en eenvoudig, maar kan
beter niet gebruikt worden los van lineaire modellen. Recente ontwikkelingen
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binnen de causale inferentie literatuur hebben geleid tot formele definities van deze
directe en indirecte effecten, die ook gebruikt kunnen worden voor non-lineaire
modellen en bij interacties. Een van de belangrijkste bijdragen van deze populaire
causale inferentie literatuur is dat deze directe en indirecte effecten geiı̈dentificeerd
kunnen worden aan de hand van de zogenaamde mediation formula (Pearl 2001,
2012) via arbitraire modellen voor de uitkomst en mediator. In de context van
gerandomiseerde studies heeft deze mediation formula als grootste nadeel dat de
resultaten vertekend kunnen zijn wanneer het model voor de mediator, het model
voor de uitkomst of beide fout gespecificeerd zijn. Aangezien men het totale ‘inten-
tion to treat’-effect onvertekend kan schatten in gerandomiseerde studies zonder het
gebruik van statistische modellen, is men vrij sceptisch ten op zichte van analyses
die door het gebruik van extra modellen wel aan efficiëntie winnen, maar tezelfder-
tijd ook een vertekend resultaat kunnen geven. Ook in een gerandomiseerde studie
kan een mediatie-analyse echter niet uitgevoerd worden zonder enige modellering
omdat de mediator (in tegenstelling tot de behandeling) niet gerandomiseerd is
en men dus moet controleren voor mogelijke gemeenschappelijke oorzaken (i.e.
confounders) van de mediator en de uitkomst. Daarom hebben wij ervoor gekozen
om in Hoofdstuk 2 en Hoofdstuk 3 ons te focussen op meer robuste strategieën
die minder gevoelig zijn voor model misspecificatie.

Een alternatieve strategie dan de mediation formula, die gebruik maakt van een
model voor de uitkomst en de mediator, is een van deze twee modellen vervan-
gen door een model voor de behandeling (Tchetgen Tchetgen and Shpitser 2012;
Vansteelandt 2012b). Een van de contexten waarin deze strategie aangemoedigd
wordt zijn gerandomiseerde studies aangezien men de randomisatie kans kent en
dus zeker kan zijn dat dit model juist gespecificeerd is. In Hoofdstuk 2 twee wordt
eerst een simpele schatter besproken voor continue en binaire uitkomsten (Tchet-
gen Tchetgen and Shpitser 2012) waarvan de resultaten onvertekend zullen zijn als
het model voor de uitkomst juist gespecificeerd wordt. Enkel het model voor de
uitkomst, want het model voor de behandeling die ook gebruikt wordt is gekend en
dus correct. We hadden evenzeer kunnen kiezen om het uitkomst model door dat
van de behandeling te vervangen en een correcte specificatie van een model voor de
mediator te eisen, maar er waren twee redenen waarom dit ons een minder gepaste
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aanpak leek. Als eerste zou deze methode gebruik moeten maken van invers wegen
met de mediator distributie wat voor schatters kan zorgen die onstabiel gedrag
vertonen, vooral bij misspecificaties in de staarten van de mediator distributie. Ten
tweede is het zo dat het model voor de gemiddelde uitkomst meestal makkelijker
specificeerbaar is dan een model voor de gehele mediator distributie. Wanneer er
echter covariaten beschikbaar zijn die sterk voorspellend zijn voor de mediator,
dan kan het niet gebruiken van dit model voor de mediator distributie leiden tot
aanzienlijk minder efficiënte schattingen. Daarom stelden we in Hoofdstuk 2
een eigen strategie voor die wel gebruik maakt van een model voor de mediator
zodat alle beschikbare informatie in de covariaten benut kan worden, maar die
tot onvertekende resultaten blijft leiden zelfs als dit model voor de mediator niet
juist gespecificeerd is. In Hoofdstuk 3 beschrijven we moderne mediatie-analyse
technieken voor uitkomsten die tijd tot een bepaalde gebeurtenis (bv. tijd tot sterfte)
betreffen en breiden we het voorstel uit Hoofdstuk 2 uit naar dergelijke uitkomsten.
Hoewel ons voorstel algemeen gebruikt kan worden voor mediatie-analyses bij
survival uitkomsten, werd dit hoofdstuk geschreven vanuit een surrogaat merker

vraagstelling. We tonen namelijk aan dat een mediatie-analyse informatief kan
zijn voor het evalueren van surrogaat merkers wanneer men slechts over data van n
enkel experiment beschikt.

Het merendeel van de recente publicaties omtrent causale mediatie-analyse
is gefocust op het effect van een behandeling op de uitkomst via n specifieke
mediator die op n tijdstip gemeten werd. Realistische onderzoeksvragen betreffen
echter vaak meer complexe toepassingen waarbij men het behandelingseffect via
meerdere mediatoren wenst te onderzoeken. In Hoofdstuk 4 gingen we daarom op
zoek naar bestaande strategieën op het gebied van longitudinale mediatie-analyse
waarbij mediatoren meerdere keren gemeten worden gedurende de studieperiode.
Omdat deze bestaande technieken een aantal nadelen hebben, stellen we zelf
een strategie voor die gebruikt kan worden bij een gerandomiseerde behandeling,
mediatoren die meerdere malen gemeten worden, tijdsafhankelijke confounders
en een survival uitkomst. In tegenstelling tot het recente werk van Zheng and
van der Laan (2017) richten we ons op natural direct en indirecte effecten (en niet
op interventional direct en indirecte effecten) bij een survival uitkomst. Alhoewel
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beide voorstellen veel gemeenschappelijk hebben, zijn er toch subtiele verschillen
die in detail werden besproken, maar waarover er toch nog een aantal vragen blijven
die interessant kunnen zijn om verder te onderzoeken. In Hoofdstuk 5 tenslotte
eindigen we met een conclusie van de resultaten, bespreken we de beperkingen van
de huidige literatuur omtrent mediatie-analyse en maken we een aantal suggesties
voor toekomstig onderzoek.
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E., André, S., Litière, S., Dal Lago, L., Becette, V., Cameron, D. A., Bergh, J.,
and Iggo, R. (2011), “TP53 status for prediction of sensitivity to taxane versus
non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG
1-00): a randomised phase 3 trial.” The Lancet Oncology, 12, 527–539.

154



Bibliography

Boulenger, J. P., Loft, H., and Olsen, C. K. (2014), “Efficacy and safety of vortiox-
etine (Lu AA21004), 15 and 20 mg/day: a randomized double-blind, placebo-
controlled, duloxetine-referenced study in the acute treatment of adult patients
with major depressive disorder.” International Journal of Clinical Psychophar-

macology, 29, 138–149.

Bränström, R., Kvillemo, P., Brandberg, Y., and Moskowitz, J. T. (2010), “Self-
report Mindfulness as a Mediator of Psychological Well-being in a Stress Re-
duction Intervention for Cancer Patients - A Randomized Study.” Annals of

Behavioral Medicine, 39, 151–161.

Buyse, M. and Molenberghs, G. (1998), “Criteria for the validation of surrogate
endpoints in randomized experiments.” Biometrics, 54, 1014–1029.

Buyse, M., Molenberghs, G., Burzykowksi, T., Renard, D., and H, G. (2000a), “The
validation of surrogate endpoints in meta-analyses of randomized experiments.”
Biostatistics, 1, 49–67.

Buyse, M., Thirion, P., Carlson, R. W., Burzykowski, T., Molenberghs, G., and
Piedbois, P. (2000b), “Relation between tumour response to first-line chemother-
apy and survival in advanced colorectal cancer: a meta-analysis,” The Lancet,
356, 373–378.

Bycott, P. W. and Taylor, J. M. G. (1998), “An evaluation of a measure of the
proportion of the treatment effect explained by a surrogate marker.” Controlled

Clinical Trials, 19, 555–568.

Cao, W., Tsiatis, A. A., and Davidian, M. (2009), “Improving efficiency and
robustness of the doubly robust estimator for a population mean with incomplete
data.” Biometrika, 96, 723–734.

Colantuoni, E. and Rosenblum, M. (2015), “Leveraging prognostic baseline vari-
ables to gain precision in randomized trials.” Statistics in Medicine, 34, 2602–
2617.

Collett, D. (2003), Modelling Survival Data in Medical Research, Boca Raton, Fla.:
Chapman and Hall/CRC.

155



Bibliography

Contiero, P., Berrino, F., Tagliabue, G., Mastroianni, A., Di Mauro, M. G., Fabiano,
S., Annulli, M., and Muti, P. (2013), “Fasting blood glucose and long-term prog-
nosis of non-metastatic breast cancer: a cohort study.” Breast Cancer Research

and Treatment, 138, 951–959.

Cortazar, P., Zhang, L., Untch, M., Mehta, K., Costantino, J. P., Wolmark, N.,
Bonnefoi, H., Cameron, D., Gianni, L., Valagussa, P., Swain, S. M., Prowell, T.,
Loibl, S., Wickerham, D. L., Bogaerts, J., Baselga, J., Perou, C., Blumenthal, G.,
Blohmer, J., Mamounas, E. P., Bergh, J., Semiglazov, V., Justice, R., Eidtmann,
H., Paik, S., Piccart, M., Sridhara, R., Fasching, P. A., Slaets, L., Tang, S., Gerber,
B., Geyer Jr, C. E., Pazdur, R., Ditsch, N., Rastogi, P., Eiermann, W., and von
Minckwitz, G. (2014), “Pathological complete response and long-term clinical
benefit in breast cancer: the CTNeoBC pooled analysis.” The Lancet, 9938,
164–172.

Daniel, R. M., De Stavola, B. L., Cousens, S. N., and Vansteelandt, S. (2015),
“Causal Mediation Analysis with Multiple Mediators.” Biometrics, 71, 1–14.

Daniels, M. J. and Hughes, M. D. (1997), “Meta-analysis for the evaluation of
potential surrogate markers.” Statistics In Medicine, 16, 1965–1982.

De Ruddere, L., Goubert, L., Vervoort, T., Kappesser, J., and Crombez, G. (2013),
“Impact of being primed with social deception upon observer responses to others’
pain.” Pain, 154, 221–226.

De Stavola, B. L., Daniel, R. M., Ploubidis, G. B., and Micali, N. (2015), “Mediation
Analysis With Intermediate Confounding: Structural Equation Modeling Viewed
Through the Causal Inference Lens.” American Journal of Epidemiology, 181,
64–80.

Duncan, O. D. (1966), “Path analysis: Sociological examples.” American Journal

of Sociology, 72, 1–16.

Emsley, R., Dunn, G., and White, I. A. (2010), “Mediation and moderation of treat-
ment effects in randomised controlled trials of complex interventions.” Statistical

Methods in Medical Research, 19, 237–270.

156



Bibliography

Fosen, J., Ferkingstad, E., Borgan, O., and Aalen, O. O. (2006), “Dynamic path
analysis - a new approach to analyzing time-dependent covariates.” Lifetime Data

Analysis, 12, 143–167.

Freedman, L. S. (2001), “Confidence intervals and statistical power of the ”val-
idation” ratio for surrogate or intermediate endpoints.” Journal of Statistical

Planning and Inference, 96, 143–153.

Freedman, L. S., Graubard, B. I., and Schatzkin, A. (1992), “Statistical validation
of intermediate endpoints for chronic deseases,” Statistics in Medicine, 11.

Gail, M. H., Pfeiffer, R., van Houwelingen, H. C., and Carroll, R. J. (2000), “On
meta-analytic assessment of surrogate outcomes.” Biostatistics, 1, 231–246.

Giobbie-Hurder, A., Gelber, R. D., and Regan, M. M. (2013), “Challenges of
Guarantee-Time Bias.” Journal of Clinical Oncology, 31, 2963–2969.

Glass, T. A., Goodman, S. N., Hernan, M. A., and Samet, J. M. (2013), “Causal
inference in public health.” Annual Review of Public Health, 34, 61–75.

Goss, P. E., Smith, I. E., O’Shaughnessy, J., Ejlertsen, B., Kaufmann, M., Boyle, F.,
Buzdar, A. U., Fumoleau, P., Gradishar, W., Martin, M., Moy, B., Piccart-Gebhart,
M., Pritchard, K. I., Lindquist, D., Chavarri-Guerra, Y., Aktan, G., Rappold, E.,
Williams, L. S., and Finkelstein, D. M. (2013), “Adjuvant lapatinib for women
with early-stage HER2-positive breast cancer: a randomised, controlled, phase 3
trial,” The Lancet Oncology, 14, 88–96.

Greenland, S. and Finkle, W. D. (1995), “A Critical Look at Methods for Handling
Missing Covariates in Epidemiologic Regression Analyses,” American Journal

of Epidemiology, 142, 1255–1264.

Greenland, S., Robins, J. M., and Pearl, J. (1999), “Confounding and Collapsibility
in Causal Inference.” Statistical Science, 14, 29–46.

Group, M. R. F. I. T. R. (1990), “Mortality rates after 10.5 years for participants in
the Multiple Risk Factor Intervention Trial.” Journal of the American Medical

Association, 263, 1795–1801.

157



Bibliography

Hafeman, D. M. and Schwartz, S. (2009), “Opening the black box: a motivation
for the assessment of mediation,” International Journal of Epidemiology, 38,
838–845.

Hernan, M. A. (2005), “Invited commentary: Hypothetical interventions to define
causal effects - afterthought or prerequisite?” American Journal of Epidemiology,
162, 618–620.

— (2010), “The Hazards of Hazard Ratios,” Epidemiology, 21, 13–15.

Hernan, M. A. and VanderWeele, T. J. (2011), “Compound treatments and trans-
portability of causal inference.” Epidemiology, 22, 368–377.

Huang, Y.-T. and Cai, T. (2016), “Mediation Analysis for Survival Data Using
Semiparametric Probit Models,” Biometrics, 72, 563–574.

Huang, Y.-T. and Yang, H.-I. (2017), “Causal Mediation Analysis of Survival
Outcome with Multiple Mediators.” Epidemiology, 28, 370–378.

Imai, K., Keele, L., and Tingley, D. (2010), “A general approach to causal mediation
analysis,” Psychological Methods, 15, 309–334.

Imai, K. and Yamamoto, T. (2013), “Identification and Sensitivity Analysis for
Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments.”
Political Analysis, 21, 141–171.

Investigators, C. A. S. T. (1989), “Preliminary report: Effect of encainide and
flecainide on mortality in a randomized trial of arrhythmia suppression after
myocardial infarction.” New England Journal of Medicine, 321, 406–412.

Joffe, M. M., Byrne, C., and Colditz, G. A. (2001), “Postmenopausal Hormone
Use, Screening, and Breast Cancer: Characterization and Control of a Bias.”
Epidemiology, 12, 429–438.

Joffe, M. M. and Greene, T. (2009), “Related Causal Frameworks for Surrogate
Outcomes,” Biometrics, 65, 530–538.

158



Bibliography

Judd, C. M. and Kenny, D. A. (1981), “Process analysis: Estimating mediation in
treatment evaluations,” Evaluation Review, 5, 602–619.

Kaufman, J. S. (2009), “Commentary: Gliding the black box.” International Journal

of Epidemiology, 38, 845–847.

Kaufman, J. S., MacLehose, R. F., and Kaufman, S. (2004), “A further critique of
the analytic strategy of adjusting for covariates to identify biologic mediation,”
Epidemiologic Perspectives and Innovations, 1.

Kraemer, H. C., Wilson, G. T., Fairburn, G. C., and Agras, W. S. (2002), “Mediators
and Moderators of Treatment Effects in Randomized Clinical Trials.” Archives of

General Psychiatry, 59, 877.

Lange, T. and Hansen, J. V. (2011), “Direct and Indirect Effects in a Survival
Context,” Epidemiology, 22, 575–581.

Lange, T., Rasmussen, M., and Thygesen, L. C. (2014), “Assessing natural direct
and indirect effects through multiple pathways.” American Journal of Epidemiol-

ogy, 179, 513–518.

Lange, T., Vansteelandt, S., and Bekaert, M. (2012), “A Simple Unified Approach
for Estimating Natural Direct and Indirect Effects,” American Journal of Epi-

demiology, 176, 190–195.

Lendle, S. D., Subbaraman, M. S., and van der Laan, M. J. (2013), “Identifica-
tion and efficient estimation of the natural direct effect among the untreated.”
Biometrics, 69, 310–317.

Liedtke, C., Mazouni, C., Hess, K. R., André, F., Tordai, A., Mejia, J. A., Symmans,
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