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Drosophila suzukii Matsumura (Diptera: Drosophilidae), also commonly known as spotted wing 

drosophila and native to Southeast Asia, is a rapidly emerging polyphagous invasive pest in 

America and Europe (Lee et al., 2011). Contrary to other closely related Drosophila species 

that normally infest mainly overripe and damaged fruits, and thus are not considered serious 

pests, D. suzukii has the ability to break the skin of maturing and undamaged healthy fruits 

and oviposits into them using its serrated ovipositor (Dreves et al., 2009; Hauser, 2011). The 

oviposition wounds caused by D. suzukii flies very often provide access points to secondary 

infection by both insects and pathogens, including fungi, yeasts and bacteria, hence, causing 

additional losses. These make D. suzukii a great concern as a pest of maturing and ripening 

fruits (Mitsui et al., 2006; Calabria et al., 2012). The damage caused by D. suzukii can reach 

up to 80% crop loss (Dreves et al., 2009; Goodhue et al., 2011; Walsh et al., 2011). 

Furthermore, the management of D. suzukii is primarily challenging because the fly can 

continuously infest a wide range of different fruits available throughout the year (Lee et al., 

2011), it can survive in various climatic conditions in which their natural predators cannot keep 

up (Chabert et al., 2012) and it also has a short generation time (Kanzawa, 1939; Lee et al., 

2011). Lack of adequate knowledge on how to effectively control D. suzukii and the zero 

tolerance for infested fruit bound for the fresh market or various export markets, has motivated 

the priority for more research into possible control options for this pest. The main goal of this 

thesis was to investigate the potential of RNA interference (RNAi) technology as a possible 

control method for D. suzukii. 

In Chapter 1, a general introduction on D. suzukii and its threat to fruit production is presented; 

What D. suzukii looks like, why it is a threat to fruit production, its worldwide pest status and 

geographic spread, and its current state of management is further elaborated on. Additionally, 

an introduction on RNAi and its rising potential as a crop protection technology is presented.  
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Chapter 2, titled “RNAi evidence and screening of potential target genes in D. suzukii”, 

addresses two important questions: Is RNAi functional in D. suzukii? And which target genes 

can be exploited for RNAi-based pest control in D. suzukii? This chapter presents the findings 

from in silico transcriptome analysis, performed to verify whether core genes known to be 

present in the RNAi machinery are expressed in D. suzukii. Once confirmed, a microinjection 

protocol was set up, with which we could effectively deliver a known dose of double stranded 

RNA (dsRNA) to induce RNAi in D. suzukii. With the microinjection protocol in hand, we 

screened for potential target genes, based on the phenotype of mortality. In view of the 

possibility of applying RNAi to control D. suzukii in the field, we decided to evaluate and 

optimize a feeding delivery method for RNAi in Chapter 3, using selected target genes from 

Chapter 2. 

Chapter 3, titled “RNAi induction by oral feeding in D. suzukii”, presents different oral delivery 

methods tested and optimized for RNAi in D. suzukii. In this chapter, we first verify if RNAi can 

be induced by oral feeding of dsRNAs and then we present how bacteria can be engineered 

to become a micro-factory to produce D. suzukii target gene dsRNAs for oral delivery. 

Furthermore, we report on the use of lipid-based nanoparticles to improve the oral delivery of 

dsRNAs in D. suzukii. However, the key findings in Chapter 3 indicate that the cellular uptake 

of dsRNA from the gut of D. suzukii is the key bottleneck to the simple and cost effective oral 

application of naked dsRNA. A possible alternative method to deliver dsRNA is using a virus-

based delivery system, since viruses have evolved to be able to penetrate into cells. Hence in 

Chapter 4, we describe the development of a novel virus-based RNAi delivery system. 

Chapter 4 titled “Engineered Flock House Virus (FHV) for targeted gene suppression through 

RNA interference in fruit flies: A proof of concept in D. melanogaster”, presents a novel FHV-

based RNAi delivery system designed for improving RNAi in Drosophila. This chapter presents 

details on the engineering strategy of the virus. Furthermore, the functionality of the FHV-based 
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RNAi delivery system was confirmed in vivo and in vitro in the model insect, D. melanogaster, 

which is also closely related to D. suzukii. 

In the last Chapter (Chapter 5) titled “General discussions and perspectives for future 

research”, the major research findings from this thesis are discussed together with 

perspectives for future research.
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1 Drosophila suzukii and its impact on fruit production 

1.1 What does D. suzukii look like? 

1.1.1 Identification 

Drosophila suzukii Matsumura (Diptera: Drosophilidae), commonly referred to as the spotted 

wing drosophila (SWD), is an economic pest of stone and small fruit crops and is currently 

established in many production areas of these crops in Asia, Europe and America (Asplen et 

al., 2015). D. suzukii adults are drosophilid flies with a length of 2-3 mm, red eyes, a pale brown 

or yellowish brown thorax and black stripes on the abdomen. Sexual dimorphism is clearly 

evident in D. suzukii with males displaying a conspicuous dark spot on the leading top edge of 

each wing and females possessing a large serrated ovipositor (Fig. 1) (Kanzawa, 1939; Walsh 

et al., 2011).  

 

Figure 1: Adult D. suzukii (a) Adult male D. suzukii with spotted wings, (b) Close-up of serrated 

ovipositor on female D. suzukii. (Photo credit: Washington state University, Tree Fruit Research and 

Extension Center, SWD gallery) 
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However, the identification of D. suzukii still presents several challenges despite these evident 

features. D. suzukii adults can still be easily misidentified, as it happened in California, where 

it was at first erroneously identified as Drosophila biarmipes Malloch (Hauser, 2011). This is 

because the distinguishing characteristics of the two sexes (Males: black wing spots and 

Females: serrated ovipositor) are present in other Drosophila species, thus making species 

identification very difficult especially in areas where they are sympatric. For example, the black 

spots on Drosophila subpulchrella Takamori and Watabe males are very similar in position and 

shape to those of D. suzukii (Takamori et al., 2006). Furthermore, young or small D. suzukii 

males sometimes lack the black spot on their wings, which only becomes clearly visible around 

two days after emergence (Hauser, 2011) and could lead to misidentification with other 

Drosophila males. In such a situation, other characteristics could be used to guide 

identification, such as the sex combs on the fore tarsi. D. suzukii males have only one row of 

combs on the first and one row on the second tarsal segment (Parshad and Paika, 1965; Bock 

and Wheeler, 1972) (Fig. 2). In many cases, it is only by analysing a full set of features, also 

including the male genitalia (Parshad and Paika, 1965; Bock and Wheeler, 1972) that a reliable 

identification can be made.  

 

Figure 2: Sex combs on first and second tarsomere of D. suzukii male’s forelegs. (Photo credit: Adapted 

from EPPO Bulletin and Martin Hauser, California Department of Agriculture) 
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Similar problems are encountered while trying to identify D. suzukii females. Based on the 

length and shape of the ovipositor, D. suzukii females can easily be differentiated from some 

related species, such as D. biarmipes, but not from others, such as D. subpulchrella (Takamori 

et al., 2006) and Drosophila immigrans Sturtevant, having very similar ovipositors (Hauser, 

2011). In this situation, the final determination will rely on the relative size of the spermatheca 

compared to the ovipositor’s size, meaning that it will only be feasible in the eyes of a trained 

taxonomist (Hauser, 2011). The identification of immature stages (eggs, larvae and pupae) of 

D. suzukii is equally complex, especially since no reliable morphological diagnostic features 

have been identified so far. The eggs of D. suzukii have two respiratory appendages but this 

character is not species-specific, leaving DNA barcoding as the only fully reliable identification 

tool. To facilitate the identification of D. suzukii, a comparative diagnostic account on D. suzukii 

has been published by Hauser (2011) and a good key for proper identification has also been 

provided by Vlach (2010). 

1.1.2 Taxonomy 

Taxonomically, D. suzukii belongs to the subgenus Sophophora, which is divided into different 

species groups. Among these species groups, melanogaster is the species group that contains 

Drosophila melanogaster Meigen, which is a famous model insect in experimental biology and 

genetics (Powell, 1997). The melanogaster group further divides into several species 

subgroups, one of which is the suzukii subgroup. The suzukii subgroup together with 6 other 

subgroups compose the “oriental lineage” (Kopp and True, 2002; Van Der Linde et al., 2010). 

The relationships within and between these subgroups are complex and still far from being 

resolved. The suzukii subgroup itself is commonly regarded as polyphyletic (Kopp and True, 

2002). In fact, D. biarmipes was suggested as a sister species of D. suzukii (Yang et al., 2012), 

in accordance with previous findings (Kopp and True, 2002; Barmina and Kopp, 2007), but in 

contrast with others (Prud'Homme et al., 2006; van der Linde and Houle, 2008), which rather 
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supported D. subpulchrella as a sister species of D. suzukii. These conflicting results are 

probably linked to inadequate sampling of species from different taxa and characters. 

1.2 Why is D. suzukii a threat to fruit production? 

Unlike most other Drosophilidae, possibly exempting D. subpulchrella, D. suzukii is able to lay 

eggs in healthy, unwounded fruit thanks to the serrated female ovipositor (Fig. 3) and not only 

on damaged or overripe fruits (Cini et al., 2012; Bellamy et al., 2013). In fact, ripening fruits 

are even preferred over overripe ones (Mitsui et al., 2006). Furthermore, although it is unlikely 

for D. suzukii to oviposit into fruits with thick and hard skin or fuzzy surfaces such as apples, 

cranberries, oranges, peaches, and pomegranates, it can complete its larval development 

when these ‘suboptimal’ hosts are damaged, rotted, or overripe (Steffan et al., 2013). 

Therefore, numerous cultivated and uncultivated fruits can be utilized by D. suzukii (Lee et al., 

2015; Stacconi et al., 2015). 

 

Figure 3: female D. suzukii (a) female D. suzukii piercing through the skin of a healthy fruit using its 

hook-like ovipositor, (b) Right: D. suzukii hook-like ovipositor. Left: D. simulans ovipositor. (Photo credit: 

(a) Washington state University, Tree Fruit Research and Extension Center, SWD gallery, (b) Adapted 

from Martin Hauser, California Department of Agriculture) 
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Although most of the damage caused by D. suzukii is due to larvae feeding on fruit flesh, the 

insertion of the prominent ovipositor into the skin of the fruit can cause physical damage to the 

fruit. This in turn provides access to secondary infections of pathogens such as, yeasts, 

filamentous fungi and bacteria that may cause faster deterioration and further losses (Hamby 

et al., 2012; Ioriatti et al., 2015) (Fig. 4).  

 

Figure 4: Direct and indirect damage caused by D. suzukii to fruits (a) Sweet cherry infested with D. 

suzukii larvae, (b) Wound on the oviposition site, (c) Fungi infection around the oviposition site. (Photo 

credit: (a) Mike Bush, Washington State University Extension, (b) and (c) Martin Hauser, California 

Department of Agriculture) 

Additional costs are mostly related to increased production costs (monitoring and chemical 

input costs, increased labour and fruit selection, reduction of the fruit shelf life, storage costs) 

and to the decrease of market appeal for fruits from contaminated areas (Goodhue et al., 

2011). Nevertheless, the oviposition habit itself is not enough to explain the dramatic impact 

of D. suzukii on fruit production. In the next sections the main features making D. suzukii a 

threat of high concern for the fruit production sector are discussed. 
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1.2.1 Extreme fecundity 

Mating in D. suzukii optimally occurs from the first days after emergence and females start to 

lay eggs already from the second day. Depending on the temperature, females typically lay 1-

3 eggs per fruit in up to 7-16 fruits per day (Kinjo et al., 2014). Since they are able to oviposit 

for 10-59 days, they can lay up to a total of 600 eggs during their lifetime (around 400 eggs on 

average) and once eggs are laid in the fruit, it can no longer be controlled with pesticides. Eggs 

hatch within 2 to 72 hours after being laid inside the fruits, and larvae mature (inside the fruit) 

in 3 to 13 days. Pupae reside for 3 to 15 days either inside or less frequently outside the fruit. 

Depending on the temperature, a minimum of 10 days is required from oviposition to adult 

emergence (Fig. 5). This very short generation time has a huge impact on fruit production. It 

implies that D. suzukii can complete several generations in a single cropping cycle and up to 

7 to 15 generations in a year, according to the specific climatic conditions, thus allowing an 

explosive population growth. The life-cycle details can be found in several other studies 

(Kanzawa, 1939; Mitsui et al., 2006; Walsh et al., 2011; Tochen et al., 2014; Wiman et al., 

2014).  

 

Figure 5: Life cycle of D. suzukii. (Photo credit: UMass Extension Fruit program, the center for 

Agriculture, Food and the Environment)  
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1.2.2 Tolerance of a wide range of climatic conditions  

The ability to reproduce and survive in a wide range of climatic conditions is obviously a 

relevant factor for insects and especially for invasive pest insects like D. suzukii. Limiting 

temperatures recorded for D. suzukii reproduction are between 10 and 32 °C for oviposition 

and up to 30 °C for male fertility (Sakai, 2005). The peak of activity and development is around 

20 to 25 °C (Kanzawa, 1939; Tochen et al., 2014). D. suzukii can thus be considered a species 

with high thermal tolerance, being both heat tolerant (viable D. suzukii populations can resist 

the hot summers in Spain) and cold tolerant (D. suzukii is present in cold areas, such as 

mountain regions in Japan and Alpine areas). Adult D. suzukii are particularly more tolerant to 

cold compared to other drosophilids (Sasaki and Sato, 1995; Mitsui et al., 2010) and mated 

females in reproductive diapause are considered to be the overwintering stage of D. suzukii 

(Kanzawa, 1939; Mitsui et al., 2010; Walsh et al., 2011). Whether this tolerance is physiological 

or mediated by behavioural adaptation is still unclear and several authors suggest that D. 

suzukii survival under harsh conditions might be increased by altitudinal migration (Mitsui et 

al., 2010), acclimatization (Walsh et al., 2011) and/or overwintering in manmade habitats or 

other sheltered sites (Kimura, 2004). 

1.2.3 Wide host range  

D. suzukii is able to develop on a very wide range of both cultivated and wild soft-skinned fruits 

in the native and invaded areas, with berries being the preferred hosts (Table 1). Although 

laboratory experiments showed a significantly lower oviposition susceptibility and 

developmental rate of D. suzukii on grapes than on berries and cherry (Lee et al., 2011), 

observations in vineyards in Northern Italy indicated that Vitis vinifera can become a field host 

(with soft skinned varieties being more impacted) (Griffo et al., 2012). This suggest that host 

preference is heavily dependent upon the local abundance of hosts. The host-choice flexibility 

of D. suzukii is also demonstrated by the ability to develop on tomato under controlled 

laboratory conditions. However, tomato has not been recorded so far as a host in the field, 
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even though D. suzukii adults have been trapped in tomato crops in France (EPPO website). 

In addition to cultivated fruits, many wild, ornamental, and uncultivated plants can serve as 

potentially important hosts (Lee et al., 2015; Klick et al., 2016). 

The wide host range of D. suzukii represents a pest management constraint in many affected 

regions. This is not only because D. suzukii can cause damage to many species, but also 

because populations can survive almost everywhere, alternating hosts with different ripening 

times through the year, both cultivated and wild. Crop plants usually cultivated in high density 

monoculture, allow rapid and impressive population growth, while wild hosts and ornamental 

plants may serve as refuges from management treatments, and provide later re-infestation 

sources and overwintering habitats observed (Klick et al., 2016). Furthermore, the ability to 

damage thick ripening fruits and the wide host range, allows D. suzukii to occupy a wide but 

at the same time specialized ecological niche. Nevertheless, overlapping niches and possible 

competition with other drosophilids needs to be investigated. 
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Table 1: List of D. suzukii host plants grouped based on botanical family 

Family name Host plants* References 

Rosaceae Fragaria ananassa (strawberry), Rubus idaeus (raspberry), Rubus 

fruticosus, Rubus laciniatus, Rubus armeniacus and other Rubus 

species and hybrids of the blackberry group, Rubus ursinus 

(marionberry), Prunus avium (sweet cherry), Prunus armeniaca 

(apricot), Prunus persica (peach), Prunus domestica (plum), Eriobotrya 

japonica (loquat) 

(Kanzawa, 1939; Bolda et al., 2010; Grassi et al., 2011), 

(Seljak, 2011; Walsh et al., 2011; Klick et al., 2016; Kenis et 

al., 2016; Mazzi et al., 2017) 

Ericaceae Vaccinium species and hybrids of the blueberry group (Hampton et al., 2014) 

Grossulariaceae Ribes species including the cultivated currants (Cini et al., 2012) 

Moraceae Ficus carica (fig), Morus spp. (mulberry) (Lee et al., 2011; Cini et al., 2012) 

Rhamnaceae Rhamnus alpina ssp. fallax, Rhamnus frangula (buckthorn) (Asplen et al., 2015; Kenis et al., 2016)  

Cornaceae Cornus spp. (dogwood) (Kenis et al., 2016; Pelton et al., 2016) 

Actinidiaceae Actinidia arguta (hardy kiwi) (Kinjo et al., 2014) 

Ebenaceae Diospyros kaki (persimmon) (Kanzawa, 1939; Hamby et al., 2014) 

Myrtaceae Eugenia uniflora (Surinam cherry) (Cini et al., 2012; Lee et al., 2015) 

Rutaceae Murraya paniculata (orange jasmine) (Mann et al., 2011; Lee et al., 2015) 
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Myricaceae Myrica rubra (Chinese bayberry) (Cini et al., 2012; Asplen et al., 2015) 

Caprifoliaceae Lonicera spp. (honeysuckle) (Lee et al., 2011; Cini et al., 2012) 

Elaeagnaceae Elaeagnus spp. (silverberry or oleaster)  (Cini et al., 2012; Kinjo et al., 2012; Asplen et al., 2015),  

Adoxaceae Sambucus nigra (black elder) (Lee et al., 2011; Cini et al., 2012; Lee et al., 2015)  

Vitaceae Vitis vinifera (common Grape Vine), Vitis labrusca (fox Grape) (Cini et al., 2012; Van Timmeren et al., 2013)  

* Non-exhaustive and tentative host list, since some information is not well documented 
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1.2.4 Economic impact 

Despite its relatively recent detection in Europe, D. suzukii has already caused severe yield 

losses in several small fruit crops grown across southern Europe, such as sweet cherries, 

strawberries, raspberries, blackberries, and blueberries. Extreme damage has been reported 

for locations in Northern Italy (Trentino) and in France, with up to 100 % damage reported on 

caneberries, strawberries, and sweet cherries (Cini et al., 2012; Warlop et al., 2013). The first 

evaluation of the economic impact in Europe was presented by De Ros et al. (2013), although 

the study only focused on Trento Province, Italy. It was estimated in the study that 400 ha of 

soft fruit production areas faced losses of around 500,000 € in 2010, and 3 million € in 2011. 

While the magnitude of these economic impacts in Trentino can be ascribed to high levels of 

blueberry production, this estimate is also somewhat conservative in that it did not consider 

the costs of control strategies and other societal consequences resulting from increased 

chemical inputs. In France, D. suzukii has also been reported on apples and peaches, although 

without economically significant damage (Warlop et al., 2013). Besides crop loss in the fields, 

additional economic impact is attributed to the cost-intensive secondary selection of fruits in 

the storage facilities after harvest, as well as to losses due to the shorter shelf life of fruit 

containing the eggs of D. suzukii. In fact, an expert working group of the European and 

Mediterranean Plant Protection Organization (EPPO) for D. suzukii in 2010 concluded that the 

potential for economic consequences due to D. suzukii incursions in Europe were ‘high’. 

Nevertheless, the estimated economic impact of D. suzukii varies between regions, depending 

on the climate, vegetation and cropping strategies. 

1.2.5 High dispersal potential 

D. suzukii has a high dispersal potential (Hauser, 2011; Calabria et al., 2012), which could be 

confirmed by its rapid spread in invaded countries and its presence on several continents, as 

well as remote islands (e.g. Hawaii; (Kaneshiro, 1983)). Passive diffusion due to global trade 

is likely the main cause of the spread of D. suzukii, as for many other invasive species 
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(Westphal et al., 2008). The apparently intact and healthy status (before larval activity) of the 

fruits infested with D. suzukii is likely to compound the problem, as it increases the risk that 

infestation will remain undetected and thus increases the risk of passive dissemination of D. 

suzukii (Calabria et al., 2012). 

1.3 Management strategies for D. suzukii 

The effective management of D. suzukii is a challenge, owing to the wide host range and short 

generation time. Pesticide applications have been the primary control tactic against D. suzukii 

(Beers et al., 2011; Bruck et al., 2011). Four classes of registered pesticides, spinosyns, 

organophosphates, pyrethroids and diamides have demonstrated good contact or residual 

activity, while there is a pressing need to identify more organic alternatives, as there are few 

effective products available (Beers et al., 2011; Bruck et al., 2011; Andreazza et al., 2017). 

However, the efficacy of insecticide-based programs could be limited by the abundant non-

crop host plants that may act as reservoirs for D. suzukii’s reinvasion into the treated 

commercial crops, resulting in multiple applications per crop season (Van Timmeren and 

Isaacs, 2013; Pelton et al., 2016). D. suzukii is a highly mobile pest, even migrating from low 

to high altitudes between winter and summer seasons in Japan, likely seeking better host 

sources or climatic conditions (Mitsui et al., 2010). Immigration from unmanaged hosts may 

support the persistence of D. suzukii in commercial orchards, which would otherwise be 

eliminated by recurrent insecticide applications (Klick et al., 2016). Host plants in unmanaged 

habitats could then act as sinks or sources of D. suzukii populations in commercial crops 

(Briem et al., 2016). It is therefore critical to understand the pest’s seasonal phenology and 

factors triggering dispersal and persistence of this pest’s populations on a landscape-scale in 

order to develop reduced risk strategies for highly mobile and polyphagous pests such as D. 

suzukii. 
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While pesticides have been the focus to provide growers with immediate chemical options, 

other management practices are critical to developing a sustainable D. suzukii integrated pest 

management (IPM) program. A summary of knowledge and practices used for the IPM of D. 

suzukii around the world, including chemical, cultural, and biological control is provided by 

Haye et al. (2016). Furthermore, longer-term research is under way on the use of other 

methods, including mass trapping, semiochemicals, sanitation, landscape management, 

biological control, post-harvest treatment and biotechnological tools such as RNAi technology 

for the management of D. suzukii.  

1.4 Worldwide pest status and geographic spread of D. suzukii 

D. suzukii was initially described for the first time in Japan in 1916, where it was found to attack 

cherries, but it is still uncertain whether it is native to this region or possibly introduced 

(Kanzawa, 1939). D. suzukii is also present in the eastern part of China (Peng, 1937), Taiwan 

(Lin et al., 1977), North and South Korea (Chung, 1955; Kang and Moon, 1968), Pakistan 

(Muhammad et al., 2005), Myanmar (Toda, 1991), Thailand (Okada, 1976), the Russian Far 

East (Sidorenko, 1992) and India (Kashmir region, (Parshad and Duggal, 1965)), where it was 

described as the D. suzukii subspecies indicus (Parshad and Paika, 1964). D. suzukii is 

currently spreading in many areas, such as the USA (West and East coast), Canada, Brazil 

(Deprá et al., 2014), Mexico and Europe (a history of the introduction in North America is 

reviewed by Hauser (2011)) (Fig. 6). A key feature of its rapid spread was the initial lack of 

regulation over the spread of any Drosophila species.  
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Figure 6: Worldwide D. suzukii distribution map. (Asplen et al., 2015). 

D. suzukii is rapidly spreading across Europe. It was first reported in autumn 2008 in Spain 

(Rasquera Province) (Calabria et al., 2012), despite the recent proposal that southern France 

was the first propagation center (Cini et al., 2014). Malaise traps deployed in Tuscany (San 

Giuliano Terme, Pisa, Italy) in 2008 caught D. suzukii adults contemporaneously with those 

deployed in Spain (Raspi et al., 2011). By 2009, D. suzukii adults were recorded in traps in 

other regions of Spain (Bellaterra, near Barcelona), France (Montpellier and Maritimes Alpes) 

and Italy (Trentino) (Grassi et al., 2009; Calabria et al., 2012). In Trentino, both first oviposition 

on wild hosts (Vaccinium, Fragaria and Rubus spp.) and economically important damage on 

several species of cultivated berries were reported (Grassi et al., 2009; Sarto and Royo, 2011). 

By 2010-2011, the range of D. suzukii was further enlarged. In Italy it was reported in several 

other regions: Piedmont, Aosta Valley, Lombardy, Veneto, Emilia Romagna, Liguria, Marche 

and Campania (Süss and Costanzi, 2010; Franchi and Barani, 2011; Pansa et al., 2011; Griffo 

et al., 2012; Baser et al., 2015; Mazzetto et al., 2015) and in France it was found from Corsica 

up to Ile de France. Then, many other European countries made their first record: Switzerland 

(Baroffio and Fischer, 2011; Baroffio et al., 2014), Slovenia (Seljak, 2011), Croatia (Milek et 
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al., 2011), Portugal (Rota-Stabelli et al., 2013), Austria (Lethmayer, 2011), Germany (Vogt et 

al., 2012; Vogt, 2014; Briem et al., 2015), Belgium (Mortelmans et al., 2012; Belien et al., 

2014), The Netherlands (Helsen et al., 2013), United Kingdom (Eppo, 2012), Hungary (Kiss et 

al., 2014; Kiss et al., 2016), Poland (Łabanowska and Piotrowski, 2015), Greece (Papachristos 

et al., 2013), Romania (Chireceanu et al., 2015), Bulgaria (EPPO, 2015), Serbia (Toševski et 

al., 2014), Bosnia and Herzegovina (Ostojić et al., 2014) and Czech Republic (Březíková et 

al., 2014). This reflects the current known distribution of D. suzukii in Europe.  

D. suzikii appears to be spreading rapidly and all of continental Europe is at risk for invasion. 

It is worthwhile to note that the lack of reports from several areas is probably due to a lack of 

monitoring rather than to an actual absence of D. suzukii. Thus, the history of reports might 

reflect differences in the sampling effort and/or problems of awareness rather than the true D. 

suzukii distribution. Considering the reports together with the outputs of available degree-day 

phenological models (Damus, 2009; Coop, 2010) and analysis of D. suzukii host plants 

distribution (EPPO website), it is very likely that D. suzukii will spread all over Europe. 

Ecological simulations indicate that the northern humid areas are more suitable ecosystems 

compared to the Mediterranean drier environments, especially because desiccation seems to 

be a limiting factor for drosophilids (Walsh et al., 2011). If the current climate changes are 

taken into account, even Scandinavian countries cannot be considered exempt from these 

risks of invasion. On a wider geographic perspective, according to D. suzukii biology, the global 

expansion in regions with climatic conditions spanning from subtropical to continental is highly 

likely to happen (Walsh et al., 2011). Furthermore, niche shifts, as occurred for other pests 

(e.g. Zaprionus indianus Gupta, (Da Mata et al., 2010)), should not be excluded (Calabria et 

al., 2012). This suggests that D. suzukii could become a global problem for fruit production.  
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2 RNA interference in insects 

RNA interference (RNAi) is a post-transcriptional gene silencing pathway based on sequence-

specific suppression of gene expression, which is triggered by double stranded RNA (dsRNA). 

This dsRNA trigger can be of endogenous origin, in the form of microRNA (miRNA) or it can 

be exogenous dsRNA, in the form of viruses, transposons or introduced into a cell for research 

purposes. Since its discovery in the nematode Caenorhabditis elegans (Fire et al., 1998), it 

has rapidly developed as a widely used molecular research tool in a variety of insects including 

Diptera (Taning et al., 2016b; Abul Khair et al., 2018), Lepidoptera (Vatanparast and Kim, 

2017; Yoon et al., 2017), Coleoptera (Knorr et al., 2018; Li et al., 2018), Hemiptera (Taning et 

al., 2016a; Singh et al., 2018) and Hymenoptera (Costa et al., 2016; Li et al., 2016). RNAi has 

transformed insect science research because it enables the researcher to suppress a gene of 

interest and thereby link a phenotype to gene function. For basic research purposes, RNAi 

offers a route to functional genetics in all insects, including those for which transgene resources 

do not exist (Bellés, 2010). Additionally, RNAi has enormous potential for applied entomology 

(Price and Gatehouse, 2008; Xue et al., 2012; Zotti et al., 2017). For example, RNAi can be 

used for insect pest control by suppressing essential genes leading to reduced fitness and/or 

mortality (Zotti et al., 2017). Furthermore, by priming the antiviral RNAi response with 

innocuous viral sequences, beneficial insect species, such as the honey bee (Apis mellifera), 

can be protected from highly pathogenic viral infections (Maori et al., 2009; Hunter et al., 2010). 

However, the reality does not yet match the envisioned potential of RNAi. Practitioners are 

increasingly aware that RNAi in insects can be capricious; efficacy varies across insect taxa, 

among genes, with mode of delivery, and even between different laboratories (Terenius et al., 

2011; Christiaens et al., 2014). This implies that the parameters required for a successful RNAi 

will have to be validated independently for each insect species. 
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2.1 Molecular mechanism and cellular uptake in insects   

2.1.1 Molecular mechanism 

In insects, including Drosophila melanogaster, three RNA silencing pathways are known to 

exist which are mediated by small interfering RNA (siRNA),  micro RNA (miRNA) and Piwi-

interacting RNA (piRNA), respectively (Tomari et al., 2007). The miRNA pathway primarily 

uses endogenous products transcribed from the cell's genome with a dsRNA structure to 

regulate developmental processes, while the piRNA pathway is involved in epigenetic and 

post-transcriptional silencing of retrotransposons in germ line cells. Hence, these two 

pathways will not be further discussed in detail here. The siRNA pathway is involved to 

primarily function as a defense response against exogenous dsRNAs and is exploited for 

RNAi-related studies in insects. The application of RNAi technology for insect pest control is 

based on the introduction of dsRNA into the insect body to silence a gene of interest, thereby 

activating the siRNA pathway. Briefly, upon entry into the cell, the exogenous dsRNA is 

processed into siRNAs, by a ribonuclease III enzyme called Dicer-2. These 21–24 nucleotide 

duplexes are subsequently incorporated into a multiprotein silencing complex called RNA-

induced silencing complex (RISC), where the duplex is unwound. Next, the guide strand of the 

siRNA guides the RISC and allows Watson-Crick base pairing of the complex to the 

complementary target mRNA for endonucleolytic degradation of the homologous target mRNA 

by the Argonaute 2 (AGO2) protein. This then leads to specific post-transcriptional gene 

silencing (Agrawal et al., 2003) (Fig. 7). 
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Figure 7: Schematic representation of the siRNA pathway. DsRNA introduced into the cell is recognized 

and cleaved into smaller pieces (siRNAs) by an RNase III endoribonuclease (Dicer 2). The siRNAs then 

associate with the RISC complex, unwind and guide the endonucleolytic degradation of the homologous 

mRNA by an RNase H enzyme (AGO2), which is also part of the RISC complex, leading to gene 

silencing.  

2.1.2 Cellular uptake of dsRNA in insects 

The introduction of dsRNA in a single cell and the resulting RNAi silencing effect in that cell is 

termed cell autonomous RNAi. In this scenario, the site of introduction or production of dsRNAs 

and its resulting RNAi effects is the same, namely the cytoplasm of the cell. Conversely, in 

non-cell autonomous RNAi, the site of the RNAi effect is different from the site of dsRNA 

introduction or production. Non-cell autonomous RNAi can either be environmental RNAi, 

when the cell takes up dsRNA molecules from the environment, leading to a silencing response 

in the cells in contact with this environment, or it can be systemic RNAi, when the dsRNA 

molecules or silencing signal is originating from other cells or tissues (Whangbo and Hunter, 
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2008; Huvenne and Smagghe, 2010; Baum and Roberts, 2014). In a number of insect species, 

a robust silencing response has been observed for both environmental and systemic RNAi 

(Baum et al., 2007; Tomoyasu et al., 2008; Zhu et al., 2011; Bolognesi et al., 2012; Cappelle 

et al., 2016; Prentice et al., 2017). So far, two pathways have been proposed to explain cellular 

uptake of dsRNA in insects; trans-membrane channel-mediated uptake mechanism and an 

alternative endocytosis-mediated uptake mechanism (Saleh et al., 2006; Ulvila et al., 2006; 

Huvenne and Smagghe, 2010; Xue et al., 2012; Cappelle et al., 2016; Joga et al., 2016). 

Trans-membrane channel-mediated uptake mechanism 

In the nematode C. elegans, environmental and systemic RNAi involves several membrane-

associated proteins, labeled SID (systemic RNA interference deficient) proteins (Winston et 

al., 2002; Winston et al., 2007; Jose et al., 2009; McEwan et al., 2012). Two of these proteins, 

SID-1 and SID-2, are transmembrane proteins. SID-1 is a multispan trans-membrane protein, 

found in all non-neuronal cells (Winston et al., 2002). It has been reported to be involved in the 

passive transport of dsRNA among cells in C. elegans (Fig. 8a) (Jose et al., 2009). The other 

transmembrane protein, SID-2 is directly involved in the uptake of ingested dsRNAs from the 

intestinal lumen and has been reported to be expressed in the intestinal cells of the nematode, 

C. elegans (Winston et al., 2007; McEwan et al., 2012). Therefore, systemic RNAi involves the 

sequential function of SID-1 and SID-2, where SID-2 mediates the initial uptake of dsRNA 

directly from the intestinal lumen or environment, while SID-1 functions at secondary step, by 

exporting the silencing RNAs to other neighbouring cells through SID-1 channels by passive 

movement and also the import in non-intestinal cells (Whangbo and Hunter, 2008; Jose et al., 

2009; Cappelle et al., 2016). In most insects, a homolog of sid-1 has been discovered, but so 

far no sid-2 genes have been found in insect species whose genomes have been sequenced 

(Tomoyasu et al., 2008; Zha et al., 2011; Cappelle et al., 2016). Moreover, a phylogenetic 

analysis suggested that sid-1 like genes in Tribolium may not be orthologous to sid-1, but 

rather to the C. elegans tag-130 gene, which is not associated in systemic RNAi in nematodes 
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(Tomoyasu et al., 2008). This implies that SID-1 might not be imperative for the uptake of the 

silencing signal in insects. An alternative dsRNA uptake mechanism might exist in insects, 

since robust systemic RNAi response was observed in some insects such as T. castaneum 

and mosquitoes even in the absence or upon knockdown of sid homologs (Boisson et al., 2006; 

Tomoyasu et al., 2008).  

Another major difference between insects and nematodes is found in the amplification of the 

RNAi system. In C. elegans, secondary siRNAs are created via an RNA-dependent RNA 

polymerase (RdRp) system, which amplifies and prolongs the silencing effect. In insects, no 

clear homologs for this RdRp have been discovered yet. However, this does not necessarily 

mean that insects do not have a similar amplification system, as it can be based on a different 

enzyme with a similar working mechanism as RdRp, or a completely distinct mechanism that 

still remains to be unraveled (Joga et al., 2016). In some species, for example some 

coleopterans, the RNAi effect is so strong and can last so long that it would indeed be likely 

that such a system is present in these insects. On the other hand, many other insects do 

require large amounts of dsRNA to elicit a moderate effect, which is often short lived. 

Endocytosis-mediated uptake mechanism 

The endocytosis-mediated silencing signal uptake mechanism is based on the receptor-

mediated endocytosis (Saleh et al., 2006; Ulvila et al., 2006). According to this model, insect 

cells take up the silencing signal from the environment by receptor-mediated endocytosis and 

then actively spread the silencing signal through vesicle-mediated intracellular trafficking (Fig. 

8b) (Saleh et al., 2006). Previous studies on uptake mechanisms in D. melanogaster S2 cells 

found out that more than 90% of dsRNA uptake depended on SR-CI and Eater receptors. D. 

melanogaster SR–CI shares high similarity with the mammalian class A scavenger receptors, 

suggesting their possible involvement through receptor-mediated endocytosis dsRNA uptake 

in D. melanogaster (Saleh et al., 2006; Ulvila et al., 2006). The endocytosis-mediated silencing 
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signal uptake mechanism is considered to be more energy consuming than the trans-

membrane channel-mediated uptake mechanism. This could explain why RNAi efficiency is 

relatively lower in Dipterans such as Drosophila (known to possess only the endocytosis-

mediated silencing signal uptake mechanism) compared to Coleopterans such as Leptinotarsa 

decemlineata that possess both mechanisms (Saleh et al., 2006; Cappelle et al., 2016). 

However, the mechanisms by which dsRNAs are transported into the cell are still not clearly 

understood.  

 

Figure 8: Schematic overview of the two cellular dsRNA uptake mechanisms discussed in this thesis 

(a) The SID-1(-like) proteins form transmembrane channels through the cell membrane through which 

dsRNA can be taken up passively, (b) dsRNA is recognized by a receptor which recruits clathrin to form 

an invaginated vesicle coated by clathrin molecules. This vesicle is then released into the cytoplasm 

(Grant and Sato, 2006). 

2.2 dsRNA delivery into insects 

The overall success of RNAi is dependent on the mode of delivery of dsRNA. Therefore, it 

remains a major consideration for planning any strategy to use RNAi in insect control. Various 
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delivery systems have been studied in different groups of organisms. As gene silencing is only 

limited to cells that take up and process dsRNAs, the main challenge is the selection of the 

delivery system (Terenius et al., 2011). The main dsRNA delivery methods tested so far include 

soaking, injection, feeding, and transgenic plants expressing dsRNA. 

2.2.1 Delivery through soaking 

Soaking of insects in a dsRNA solution is a convenient method for triggering an RNAi response 

in the insect. However, delivery of dsRNA by this method is applicable only for certain insect 

cell lines and tissues, as well as for specific insects of developmental stages that readily absorb 

dsRNA from the solution. The first cell line used for a soaking experiment was the S2 cell line 

derived from D. melanogaster embryos (Clemens et al., 2000). By direct addition of specific 

dsRNA to the cell growth medium, suppression of specific gene expression was reported 

(Caplen et al., 2000). Subsequently, soaking became the most commonly used method to 

induce an RNAi response in several other insect cell lines (Levashina et al., 2001; Sivakumar 

et al., 2007; Kolliopoulou and Swevers, 2013). However, it was soon found that simply adding 

dsRNA to the culture medium did not induce RNAi in every insect cell line. For example, no 

RNAi response was observed when dsRNA was directly added to Hi5 cells (derived from 

Trichoplusia ni) in culture, whereas by adding the dsRNA together with the help of a 

transfection reagent to improve cellular uptake, a downregulation of the target gene was 

observed (Beck and Strand, 2005). Transfection-mediated gene silencing has also been 

reported in Sf21 cells (derived from ovaries of Spodoptera frugiperda) (Valdes et al., 2003). 

This implies that transfection causes a more efficient RNAi response compared to simply 

soaking, most likely because it facilitates a more efficient uptake of dsRNAs into the cell. 

Despite extra barriers such as the insect cuticle, uptake of the dsRNA by whole insect bodies 

is possible. Direct spray of dsRNA on newly hatched Ostrinia furnalalis larvae resulted in 

considerable mortalities ranging from 40% to even 100% after treatment and this effect 
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correlated with the downregulation of the target gene expression as verified by qPCR (Wang 

et al., 2011). It is worthwhile to mention that although spraying dsRNA might be useful to 

control some pest population in the field, it will not be effective in the control of all insect pests. 

For example, using a spray method may not affect piercing-sucking pests feeding on phloem 

sap, or stem borer pests feeding in the plant stems (Li et al., 2015a). 

In the context of insect pest control in the field, the US-EPA anticipates four likely categories 

of dsRNA active ingredients that could be present in sprayable RNAi-based products: (1) 

“direct control agents”, defined as a dsRNA active ingredient that has direct toxic effects upon 

the metabolism of the pest resulting in mortality, (2) “resistance repressors”, defined as a 

dsRNA active ingredient that suppresses genetic resistance to a traditional chemical control, 

(3) “developmental disruptors”,  defined as a dsRNA active ingredient that interferes with the 

normal development or growth of the target pest such that the target pest or its progeny either 

die (indirect mortality), are less competitive, or are sterile, and (4) “growth enhancers”, defined 

here as a dsRNA active ingredient that stimulates, inhibits, or otherwise mimics the activity of 

a naturally-occurring plant hormone (EPA, 2014).  

2.2.2 Delivery through injection 

During the initial stages of research on RNAi technology, the direct injection of dsRNA into 

target tissues and life stages of insects was used as a promising approach for initiating RNAi 

effects (Dzitoyeva et al., 2001; Bettencourt et al., 2002; Quan et al., 2002). The dsRNA is 

synthesized according to the target gene in the insect in vitro and then injected into the insect 

haemocoel (Dzitoyeva et al., 2001; Taning et al., 2016b; Prentice et al., 2017). Soon after the 

genome of D. melanogaster was sequenced and published, a study the following year reported 

the knockdown of the lacZ transgene and GM06434, the D. melanogaster homologue of the 

C. elegans nrf (nose resistant to fluoxetine) gene, by injection of dsRNA targeting these genes 

in D. melanogaster (Dzitoyeva et al., 2001). This was the first case of RNAi successfully 
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applied in insects through injection. Since then, RNAi has been successfully induced in several 

other insect species through injection (Gatehouse et al., 2004; Martin et al., 2006; Moriyama 

et al., 2008; Prentice et al., 2017).  

The direct injection of dsRNA into insects has both advantages and disadvantages compared 

to other methods of dsRNA delivery (Yu et al., 2013). One important advantage is that it allows 

researchers to get the dsRNA immediately to the tissue of choice or into the haemolymph and 

thus avoid possible barriers such as the integument or the gut epithelium which could be a 

problem in feeding or soaking experiments. Another advantage is that the exact amount of 

dsRNA brought into the insect is known, in contrast to delivery by soaking or in some cases by 

feeding. The disadvantages of delivery by injection are that the work itself is more delicate and 

time-consuming than the alternatives, and it also requires quite some optimization. Factors 

such as optimal volume, needle choice and place of injection are very important and differ 

greatly between different insect species. Therefore, these factors have to be carefully 

optimized before starting any experiment. Although microinjection is a good delivery method 

in functional genomic studies, it is not a suitable method to control insect pests in the field. 

2.2.3 Delivery through ingestion 

The delivery of dsRNA by oral feeding is less invasive and comparatively simple as compared 

to injection. Following the first demonstration of oral delivery of dsRNA in C. elegans (Timmons 

and Fire, 1998), this delivery method has been tested in several insect species (Zhu et al., 

2011; Xiong et al., 2013; Taning et al., 2016a; Taning et al., 2016b; Prentice et al., 2017). This 

dsRNA delivery method is comparatively attractive as it is convenient, causes less damage to 

the insect, requires easier manipulations, and is a more natural method of introducing dsRNA 

into insect body (Chen et al., 2010). However, it has some limitations. The efficiency of RNAi 

by ingestion of dsRNA varies between different species possibly due to a different gut 

environment. Furthermore, it is hard to determine the amount of dsRNA brought inside the 
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insect through ingestion (Surakasi et al., 2011), which could compromise many investigations. 

Therefore, optimization of the concentration of dsRNA used to trigger RNAi and the method of 

feeding is important (Turner et al., 2006). Different dsRNA delivery methods through the 

feeding approach include: feeding of dsRNA expressed in micro-organisms (Gu et al., 2011; 

Murphy et al., 2016; Ganbaatar et al., 2017), direct feeding of enzymatically synthesized 

dsRNA (Cappelle et al., 2016), nanoparticle/liposome-mediated dsRNA feeding (Whyard et al., 

2009; Zhang et al., 2015b; Taning et al., 2016b) and feeding of dsRNA expressed in transgenic 

plants (Xue et al., 2012; Joga et al., 2016; Zotti et al., 2017).  

Feeding of enzymatically synthesized dsRNA 

DsRNAs can also be synthesized in vitro and the dsRNA solution can be easily mixed with 

food for oral delivery to insects. DsRNAs of a species-specific E-subunit of the vATPase gene 

of Tribolium castaneum, Acyrthosiphon pisum, and Manduca sexta were synthesized in cell-

free condition, dissolved in liquid artificial food or overlaid on the surface of solid foods for 

these insects. The ingestion of the vATPase dsRNAs led to 50–75% mortality for all three 

insects (Whyard et al., 2009). In another RNAi study, the expression of β1 integrin subunit 

(βSe1) in the gut epithelium of fourth instar Spodotera exigua was transiently suppressed when 

pieces of cabbage soaked in a dsRNA solution, targeting βSe1, was fed to the larvae (Surakasi 

et al., 2011).   

Nanoparticle or liposome-mediated dsRNA feeding 

Nanoparticles can be used to reduce dsRNA degradation in the insect gut and to increase the 

cellular uptake of intact dsRNA. For example, dsRNA encapsulated in chitosan nanoparticles 

and mixed with diet was used to achieve RNAi in mosquitoes through oral feeding (Zhang et 

al., 2010; Zhang et al., 2015b). Chitosan nanoparticles are designed by self-accumulation of 

polycations with dsRNA via electrostatic forces between positive charges of the amino groups 

in the chitosan and negative charges of the phosphate groups on the backbone of the nucleic 
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acid. Additionally, chitosan polymers are nontoxic and easily biodegradable (Dass and 

Choong, 2008). When newly hatched larvae of the RNAi recalcitrant lepidopteran pest, Asian 

corn borer (Ostrinia furnacalis), were fed on four different treatments (diet containing the 

mixture of fluorescent nanoparticle (FNP) and CHT10-dsRNA; naked CHT10-dsRNA; FNP and 

GFP-dsRNA; and GFP-dsRNA treatments), only the larvae fed on the diet containing the 

mixture of FNP and CHT10-dsRNA showed clear RNAi gene silencing (He et al., 2013). The 

study clearly indicated that the use of nanoparticles to protect dsRNA can be vital in eliciting a 

strong enough gene knockdown in an RNAi recalcitrant pest. 

Liposomes are composed of natural lipids and they are non-toxic and easily biodegradable 

(Van Rooijen and van Nieuwmegen, 1980). They are already used in drug formulations, where 

the drugs are enclosed in the liposome and these liposomes are then transferred without quick 

degradation and minimum side effects to the receivers (Gregoriadis, 1977). Liposome-

mediated efficient uptake of dsRNA molecules and silencing response have been reported in 

insects (Whyard et al., 2009; Taning et al., 2016b). D. melanogaster is known to lack the sid-

1 homologous genes and uptake of the dsRNA happens through receptor-mediated 

endocytosis (Saleh et al., 2006; Ulvila et al., 2006). This appears to be a slow process, which 

reduces RNAi efficiency and transfection reagents are required to enhance the dsRNA delivery 

to gut cells to high enough amounts to induce RNAi effects. For example, it was demonstrated 

that four different Drosophila species (D. melanogaster, Drosophila sechellia, Drosophila 

yakuba, and Drosophila pseudoobscura) were selectively killed when larvae were fed on 

γTub23C-dsRNA encapsulated in cationic liposomes, which target the 3′ UTR of the γ-tubulin 

gene (Whyard et al., 2009). None of the drosophilid species exhibited any RNAi-silencing when 

fed on non-encapsulated dsRNA.  
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Feeding of dsRNA expressed in micro-organisms 

The delivery of dsRNA using micro-organisms can have many advantages, including 

protection of dsRNA from degradation in the insect gut. Following reports that RNAi can 

successfully be elicited in C. elegans after feeding with a strain of Escherichia coli 

(HT115(DE3)) engineered for dsRNAs production (Kamath et al., 2003), the same strategy 

was tested in insects. Colorado potato beetles (L. decemlineata) fed on the same strain of E. 

coli (HT115(DE3)) but engineered to express dsRNAs targeting five different mRNAs in the 

beetles led to target gene silencing and mortality in the beetles (Zhu et al., 2011). 

Symbionts can also be engineered to deliver dsRNA to their hosts. In symbiont-mediated RNAi, 

the relationship between the symbiont and its host is exploited to continuously produce dsRNA 

and induce RNAi in the host (Whitten et al., 2016). It was recently reported that ingested 

recombinant bacteria successfully competed with the wild-type microflora in the long-lived 

hematophagous insect Rhodnius prolixus and the short-lived polyphagous insect Frankliniella 

occidentalis (Whitten et al., 2016). In the study, the authors engineered dsRNA expression 

cassettes suitable for an actinobacterium and a proteobacterium from R. prolixus and F. 

occidentalis, respectively. The transformation of the RNase III-deficient bacteria with a plasmid 

producing insect-specific dsRNA allowed stable synthesis of specific dsRNA molecules, 

penetration in the insect gut cells and initiation of RNAi.  

Virus induced gene silencing (VIGS) 

VIGS (Lu et al., 2003) may be used to transiently silence target genes of insects or pathogens 

of host plants. In VIGS, an RNAi inducer sequence is introduced into an engineered virus, 

leading to the production of dsRNAs in the virus’ host cell. This could be exploited in crop 

protection, for example by infecting the host plant with a virus specifically expressing a dsRNA 

targeting an essential target gene of a pest or pathogen of the host plant or the pest/pathogen 

itself (Nandety et al., 2015). VIGS in an insect or pathogen can be induced when it feeds on a 
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plant infected with the engineered virus (Kumar et al., 2012; Kolliopoulou et al., 2017). The 

plant virus Tobacco rattle virus (TRV), expressing the antisense fragments for a dsRNA 

specific to a chewing insect, M. sexta, in Nicotiana attenuata plants, was reported to specifically 

silence three midgut-expressed MsCYP RNAs when the larvae were fed on these plants. In 

addition to the use of plant viruses as insect-specific dsRNA delivery vectors, another potential 

VIGS approach is the use of recombinant insect viruses, which can infect and replicate in the 

host insect. After infection, the engineered virus will spread through the insect cells, triggering 

RNAi which will then result in the production of insect gene-specific siRNAs and subsequently 

gene silencing (Kolliopoulou et al., 2017). The application of this technology, however, requires 

the identification of viruses that can naturally infect and replicate in the target insect, as the 

replication and/or transcription of the viral genome is essential for triggering RNAi (Kolliopoulou 

et al., 2017). The classical use of viruses to control insects (e.g. baculoviruses to control 

caterpillars) depends on finding a virulent and highly pathogenic viral strain and is mostly 

species-specific. However, non-pathogenic viruses could be engineered to express specific 

dsRNAs/siRNAs and deliver them to insect populations directly. 

Feeding of dsRNA expressed in transgenic plants 

The delivery method that has at this moment come the closest to a field application is the use 

of transgenic crops producing pest-specific dsRNAs. Many studies have demonstrated that 

transgenic plants can be engineered to express hairpin dsRNAs targeting genes from insects 

to increase their resistance to herbivorous insects (Baum et al., 2007; Mao et al., 2011). 

Delivery of dsRNAs through transgenic plants has been reported to effectively silence genes 

in lepidopterans, coleopterans and hemipterans (Baum et al., 2007; Pitino et al., 2011; Zha et 

al., 2011). Transgenic cotton plants (Gossypium hirsutum), expressing dsCYP6AE14, acquired 

enhanced resistance to cotton bollworm, which indicated the usefulness of RNAi technology 

in engineering an insect-proof cotton cultivar (Mao et al., 2011).  
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The US-EPA recently registered a product containing a new and innovative RNAi-based PIP 

called ‘SmartStax PRO’ that will help US farmers to control the Western corn rootworm (WCR: 

Diabrotica virgifera virgifera). The RNAi-based trait in SmartStax PRO results in the formation 

of a dsRNA transcript containing a 240-bp fragment of the WCR snf7 gene. Upon consumption, 

the plant-produced dsRNA in MON87411 (transgenic event) is specifically recognized by the 

RNAi machinery of WCR and other closely related WCR species, resulting in down-regulation 

of the targeted Snf7 gene, leading to mortality (Head et al., 2017). However, in many cases, 

the use of transgenic crops is not always realistic. This can be for political or legislative 

reasons, or because the crop in question is technically difficult or impossible to transform.  

Other delivery methods through feeding  

RNA can be translocated through the vascular systems of a plant (Melnyk et al., 2011). Hence, 

topical application of dsRNA on leaves or soil application for root absorption can be exploited 

to suppress pest infestation (Hunter et al., 2012; de Andrade and Hunter, 2016). In planta 

dsRNA delivery as a non-transgenic delivery approach has been reported to successfully 

deliver dsRNAs to target insect pests feeding on the plant (Hunter et al., 2012; de Andrade 

and Hunter, 2016; Taning et al., 2016a). Full-sized citrus and grapevines trees were treated 

with dsRNA using a foliar spray, root drenching or trunk injections. Two hemipteran insects as 

well as a xylem-feeding leafhopper took up the dsRNA after feeding on plants previously 

treated with dsRNA. This demonstrates that plant roots can take up dsRNA molecules and 

moreover trunk injections enable the delivery of dsRNA through both vessels (xylem and 

phloem) (Hunter et al., 2012; de Andrade and Hunter, 2016; Andrade and Hunter, 2017). These 

findings open up a range of possibilities for several difficult to control pest insects such as root-

feeding and sap-feeding insects, especially in perennial crops (e.g. fruits such as grapes and 

citrus), where plant transformation takes years to develop and is costly. 
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The topical application of pathogen-specific dsRNA for pest resistance in plants also presents 

an alternative to transgenic RNAi. However, the instability of naked dsRNA sprayed on plants 

has been a major challenge to its practical application. Nevertheless, it was recently 

demonstrated that dsRNA could be protected by loading it on designer, non-toxic, degradable, 

layered double hydroxide (LDH) clay nanosheets, also known as ‘BioClay’. Once loaded on 

LDH, the dsRNA does not wash off, shows sustained release and can be detected on sprayed 

leaves even 30 days after application. Furthermore, a single spray of dsRNA loaded on LDH 

afforded virus protection for at least 20 days when sprayed and newly emerged unsprayed 

leaves were challenged with virus (Mitter et al., 2017). This confirms that dsRNA can 

move/translocate to untreated parts of the plant. Topically applied dsRNA, however, only 

produces a temporary modification of the targeted gene transcript and does not alter the 

genome. This means that it will require multiple applications as a consequence of degradation 

by sunlight (Li et al., 2015a), by environmental microbes (Dubelman et al., 2014) and in the 

cells by the natural dsRNA processing mechanism (Palli, 2014). Nevertheless, this innovative 

delivery method translates nanotechnology developed for delivery of RNAi for human 

therapeutics to use in crop protection as an environmentally sustainable and easy to adopt 

topical spray. 

In insects, it is largely accepted that the RNAi machinery is triggered by the presence of 

dsRNA. Long dsRNAs are required for efficient uptake and biological activity in the insect pest 

(Bolognesi et al., 2012). However, the dsRNAs expressed in planta are diced into siRNAs 

(Kumar et al., 2009), which are afterward ingested by insects. This might lead to a limited 

RNAi-effect in many insects, due to the preferential uptake of long dsRNA in some species, 

which is further elaborated on in section 2.3.3 of this Introduction. To overcome this, potato 

plants were engineered to express dsRNA in organelles lacking RNAi processing machinery, 

such as chloroplasts (Zhang et al., 2015a). These chloroplasts (plastids) are derived from free-

living cyanobacteria, which have no RNAi pathway, leading to an accumulation of dsRNA in 
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these organelles. When potato plants, producing ACT-dsRNA in their chloroplasts were fed to 

Colorado potato beetle (CPB) larvae, a 100% larval mortality was observed, whereas no larval 

mortality was observed when larvae were fed on ACT-dsRNA expressing nuclear transgenic 

plants (Zhang et al., 2015a). 

2.3 Potential challenges for a successful RNAi in insects 

Despite the tremendous utility of RNAi as a promising strategy for studying fundamental 

biological questions and for the control of insect pests, there are still some common challenges 

that can prevent a successful RNAi experiment. RNAi efficacy remains variable among 

different genes, tissues, organisms and life stage of insect. For example, the RNAi effect has 

been found to be more successful in hemocytes of D. melanogaster as compared to other 

tissues when injected with target gene dsRNAs (Miller et al., 2008). The success of RNAi 

experiments in different species can also be influenced by many biological variables such as 

variation in the core RNAi machinery, cellular uptake and propagation of the silencing signal 

and dsRNA degrading enzymes, as well as other differences in genetic backgrounds (Miller et 

al., 2008; Kitzmann et al., 2013). Most of these challenges can be pacified by considering 

different experimental factors during the design of the experiment, some which include the 

mode of delivery, the dose of the dsRNA molecule and the target gene. The following sections 

describe some potential challenges which can hamper the achievement of a successful RNAi-

based pest control strategy. 

2.3.1 Degradation of dsRNA by nucleases in the insect gut and haemolymph  

Nucleic acid degrading enzymes found inside the gut of insects form an integral part of the 

digestive cocktail of insects. This implies that ingested dsRNA molecules are potent substrates 

for these nucleases inside the gut and can easily be degraded by them. The rapid clearance 

and degradation of circulating dsRNA (Thompson et al., 2012; Christensen et al., 2013) limits 

the potential for ingested dsRNA to trigger the RNAi mechanism. In general, dsRNA is much 
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more stable than single-stranded RNA (ssRNA), but it must be rapidly taken up in the cells and 

digested into siRNA by Dicer-2 (Katoch and Thakur, 2012). The presence of salivary nucleases 

in the midgut can quickly degrade the ingested dsRNA molecules, which is considered to be 

an important barrier for RNAi efficiency (Terenius et al., 2011; Liu et al., 2013; Christiaens et 

al., 2014; Wynant et al., 2014a). For example, the existence of dsRNases in the saliva of Lygus 

lineolaris, a hemipteran insect pest, which performs an extra-oral digestion of plant material 

prior to the uptake, was found to quickly digest dsRNA (Allen and Walker III, 2012). 

Furthermore, it has been proven that dsRNA is degraded by dsRNases in the salivary 

secretions and also in the haemolymph of the pea aphid, A. pisum (Christiaens et al., 2014). 

The presence of dsRNases in the midgut makes the insect recalcitrant to RNAi by oral feeding. 

The pest desert locust, Schistocerca gregaria, expresses dsRNases in the midgut making it 

recalcitrant to ingested dsRNA (Wynant et al., 2014a), whereas, an effective systemic RNAi-

response to injected dsRNA has been reported for this species (Wynant et al., 2012). Similarly, 

dsRNAs are rapidly degraded in the haemolymph of RNAi recalcitrant lepidopteran Manduca 

sexta (tobacco hornworm), but not in the RNAi sensitive Blatella germanica (German 

cockroach) (Garbutt, 2011; Garbutt et al., 2013). The study proposed that the rate of 

persistence of dsRNA in insect haemolymph, which is mediated by the action of one or more 

nucleases, could be an important factor in determining the susceptibility of insect species to 

RNAi. A hypothesis which was further supported by two studies conducted on two closely 

related African sweet potato weevils (Cylas puncticollis and Cylas brunneus; (Christiaens et 

al., 2016; Prentice et al., 2017)). These studies showed that the more RNAi-sensitive weevil 

of the two, Cylas brunneus, was characterized by a slower enzymatic degradation of dsRNA 

in the midgut. Furthermore, the Colorado potato beetle, which is far more sensitive to RNAi 

than any of these two weevils, exhibited an even much longer stability of dsRNA in the midgut. 
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2.3.2 Amount of dsRNA molecules delivered to the insect 

Various factors such as; the insect species, life stage, delivery method, abundance of the target 

gene transcript, and the spatial and temporal expression profiles of the target gene, all 

determine the requisite amount of dsRNA molecules for optimal silencing. The optimal 

concentration has to be determined for every target gene and insect species, in order to induce 

silencing. It is not true that surpassing that optimal concentration necessarily leads to higher 

silencing (Meyering-Vos and Müller, 2007; Shakesby et al., 2009). In addition, the introduction 

of multiple dsRNAs leads to competition in cellular uptake between the dsRNAs, and also 

saturation of the RNAi machinery can occur (competitive inhibition), resulting in a poor RNAi 

response (Parrish et al., 2000; Miller et al., 2012). As the miRNA and siRNAi pathways share 

components, saturation of these components can interfere with the miRNA pathway leading to 

phenotypes related with the loss of the miRNA function. This restraint might lead to lethality, 

since miRNAs are important for growth and development (Grimm et al., 2006; Tomoyasu et 

al., 2008). In the context of crop protection, mortality will not be a problem, however, in the 

context of functional genomic studies, this can prevent the observation of a phenotype other 

than mortality, which is linked to the target gene. Furthermore, in another study, it was reported 

that dsRNA targeting V-ATPase in the Colorado potato beetle (L. decemlineata) also caused 

silencing in the WCR (D. virgifera virgifera) in a concentration-dependent manner (Baum et al., 

2007).  

2.3.3 Length of dsRNA molecules 

An important question which arises when designing RNAi experiments is the length of the 

dsRNA. The minimal length of dsRNA, required to obtain maximum RNAi silencing, varies 

among insect species. For example, Bolognesi et al. (2012) found that in the WCR, siRNAs 

specific to the snf7 gene do not cause any adverse phenotypical effects, while the use of longer 

(240 bp) dsRNA led to 100% mortality. Further cell-based experiments demonstrated that, at 

least in this species, the dsRNA requires a certain minimal length of around 60 bp to be taken 
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up efficiently into the cells. A study in another beetle, T. castaneum, demonstrated that 60 and 

30 bp dsRNAs induce 70 and 30% of gene knockdown, respectively (Miller et al., 2012). On 

the other hand, several successful RNAi studies in other insects, using siRNA instead of 

dsRNA, have been published as well (Upadhyay et al., 2011; Gong et al., 2013; Chen et al., 

2014; Mao et al., 2015). This suggests that the dsRNA length dependency of successful RNAi 

in insects might vary from species to species. Most RNAi studies in insects have reported 

dsRNA lengths ranging from 140 to 600 nucleotides as successful for RNAi and some even 

reported success using a dsRNA of 1842 nucleotides (Huvenne and Smagghe, 2010). 

Additionally, dsRNA longer than 200 nucleotides after dicer cleavage results in many siRNAs, 

which contributes to the RNAi response as well as prevents resistance which might arise due 

to polymorphism variation encoded by the nucleotide sequence (de Andrade and Hunter, 

2016). The length of the designed dsRNA influences the uptake and silencing efficiency both 

in the insect cell lines (Saleh et al., 2006), as well as in whole insects (Mao et al., 2007). 

2.3.4 Life stage of insects 

Some studies in insects suggest that the RNAi effect might be more prominent in the early 

stages as compared to the late stages. For example, silencing of nitropin 2 (NP2) was 42 % in 

second instars of Rhodnius prolixus as compared to none in the fourth instars even though 

treated with the same concentration per gram body weight of dsRNA (Araujo et al., 2006). In 

S. frugiperda, a higher gene silencing was observed in the fifth instar larvae as compared to 

adult moths (Griebler et al., 2008). It has been recently shown that when dsRNA is injected at 

the last larval stage, the RNAi effect can last for many months and could extend to the entire 

lifespan of the individual (Miller et al., 2012). However, the role of the life stage in RNAi 

efficiency has not really been studied extensively, so it is difficult to conclude anything at this 

moment. In parental RNAi, where the female pupae or adults are injected with dsRNA, the 

effect is seen in the offspring for several months (Bucher et al., 2002). However, this parental 

RNAi is less efficient when last instar larvae are injected with dsRNA. One of the possible 
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reasons for this is that the female reproductive organs do not complete formation until the 

pupal stage. For the oocytes to efficiently uptake dsRNA, they must be formed at the time of 

dsRNA introduction to the body (Bucher et al., 2002). 

2.3.5 Saturation of the RNAi machinery 

The siRNA pathway is an anti-viral mechanism in many plants and animals. This implies that 

viral infections in the insect can interfere with the efficiency of siRNAs by saturating the RNAi 

core machinery, as demonstrated for vertebrate studies (Kanasty et al., 2012). Additionally, 

the co-evolution between these viruses and RNAi defense has also led to the development of 

RNAi-blocking proteins called viral suppressors of RNA silencing (VSRs) in some viruses 

(Haasnoot et al., 2007). In lepidopterans, many specific viruses have been reported to be 

present in the haemolymph (Garbutt, 2011), which may be an additional factor explaining why 

most are recalcitrant to RNAi, besides the harsh conditions in the gut for dsRNA. Furthermore, 

it was reported that viruses can interfere with the RNAi mechanism in very specific ways, for 

example, by producing RNAi suppressor genes and/or RNA decoys, and manipulation of host 

gene expression (Swevers et al., 2013). These all imply that the presence of viruses may 

influence RNAi efficiency in insects. 

2.3.6 Target gene selection for RNAi in insects 

The outcome of a successful RNAi gene silencing in the insect mainly depends upon the 

selection of an ideal target gene. For pest control purposes, the ideal gene target for RNAi 

should be vital for insect survival, and must be highly expressed. It should not have functional 

redundancy, so that the silencing effect has a profound effect on the target insect (Li et al., 

2013). Terenius et al. (2011) summarized the response of lepidopteran insects to RNAi and 

found that out of 130 genes, 50 genes showed robust RNAi. Thus, variation in RNAi response 

for different genes will depend upon the importance of the target gene to insect survival and 

redundancy of the gene in its function. Longer half-life of protein/mRNA also contributes to the 
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weak RNAi responses, e.g. silencing of nicotinic acetylcholine receptor subunit (Da6) gave a 

very limited phenotypical RNAi response in both D. melanogaster and T. castaneum due to 

the long half-life of its protein (Rinkevich and Scott, 2013). 

2.3.7 Off-target effects and silencing effects in non-target species  

One of the major concerns regarding the use of RNAi in insect pest control includes the 

specificity of action and off-target effects (Auer and Frederick, 2009). For a gene knockdown 

in insects, dsRNA is designed to target one particular gene, but off-target effects may occur if 

siRNAs have sequence homology with genes (especially, 3′ untranslated regions of genes) not 

intended for RNAi targeting (Birmingham et al., 2006; Kulkarni et al., 2006). Of course, in a 

pest control context, the presence of off-target effects in the target species might not 

necessarily be a great concern. However, possible adverse effects on non-target organisms 

should definitely be considered. These could be either due to sequence-dependent 

mechanisms (e.g. gene silencing of a homologous gene) or due to non-sequence-dependent 

effects, such as immunostimulation or saturation of the RNAi machinery (Christiaens et al., 

2018). 

In terms of sequence-dependent effects on non-target organisms, a number of studies have 

been published, demonstrating that RNAi can be highly species specific but is not always 

necessarily so. For example, Bolognesi et al. (2012) reported that feeding WCR-specific 

dsSnf7 to the closely related CPB (both Chrysomelidae), and vice versa, did not lead to any 

adverse effects in the non-target species. However, the same setup, but using dsRNA targeting 

the vATPase A or E subunits in these species did lead to mortality in the non-target species 

(Baum et al., 2007). Other studies have also shown that silencing effects in non-target 

organisms could arise, even in more distantly related species such as a dipteran fruitfly 

(Bactrocera dorsalis) and a hymenopteran parasitic wasp (Diachasmimorpha longicaudata) 

(Zhu et al., 2012; Chen et al., 2015). Therefore, dsRNA design will be crucial in avoiding these 
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kinds of unintended effects.  Of course, using more evolutionarily conserved target regions for 

the dsRNA design could allow targeting a group of species, belonging to a certain taxonomical 

group, rather than targeting only one species. 

2.4 Current status of RNAi applications in insect pest management 

A proof-of-concept milestone paper demonstrated that a dsRNA construct in a genetically 

engineered maize (Zea mays) plant could incite larval mortality in WCR (Baum et al., 2007). 

This research awakened researchers to the potential of dsRNA as a new pest control agent 

through the use of transgenic plants. The Canadian Food Inspection Agency (CFIA) approved 

in September 2016 the commercialization and release of a new maize event, MON87411, 

which expresses a Crystal (Cry) gene and a dsRNA containing a 240-bp fragment of the WCR 

sucrose non-fermenting 7 (DvSnf7) gene (Head et al., 2017). This event will be stacked with 

two other events, expressing two more Cry proteins and a glyphosate resistance gene, in the 

commercial SmartStax PRO corn plant. In June 2017, the United States Environmental 

Protection Agency (US-EPA) followed to also approve this event for commercial planting. The 

DvSnf7 gene codes for an essential protein in vacuolar sorting and, until now, no insecticide 

has been developed that interferes with this process. However, as a consequence of the 

mechanism of RNAi, the Snf7 dsRNA alone takes a long time to effectively kill WCR. Therefore, 

the event MON87411 was developed in combination with the faster acting Cry genes from 

Bacillus thuringiensis (Bt) which will target both key lepidopteran pests and WCR as well as 

the Diabrotica spp. complex. The main purpose of the combination of these mechanisms (i.e. 

Bt and RNAi) is to reduce the occurrence of insects resistant to Bt technology, which has 

already been reported for the WCR. Furthermore, these combinations will also prevent or 

postpone possible resistance development to RNAi-based products. 
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A completely different application route is the approach of using sprayable dsRNAs, which, in 

comparison to chemical pesticides, would be an environmentally friendly alternative, given 

their expected short half-life in the environment (Dubelman et al., 2014; Fischer et al., 2016; 

Fischer et al., 2017). While the dsRNA molecules in foliar application were sufficiently stable 

for at least 28 days to control CPB, under greenhouse conditions, once dried on the leaves, 

the dsRNA was not leachable (San Miguel and Scott, 2016). An RNAi strategy to control the 

root weevil Diaprepes abbreviates has been developed which uses foliar spraying of dsRNA 

onto citrus leaves, and this has shown promise in controlling these biting/chewing insects (de 

Andrade and Hunter, 2016). These experiments using sprayable dsRNA are encouraging and, 

although more progress is needed on several fronts, the dsRNA-containing end-use products 

are expected to reach the market in the coming years. 

The applicability of sprayable dsRNA relies on the development of cost-effective methods for 

the mass production and formulation of the dsRNA. Regular molecular biology kits are not 

suitable to produce large quantities of dsRNA intended for field application. Luckily, the costs 

of producing dsRNA are decreasing rapidly. For example, the cost to produce 1 g of dsRNA 

using NTP synthesis has dropped from $12 500 USD in 2008 to $100 USD in 2016, and to 

$60 USD today (de Andrade and Hunter, 2016; AgroRNA, 2017). E. coli (HT115 (DE3)) 

deficient in the RNase III enzyme that degrades dsRNAs can be used to produce large 

quantities of dsRNA. The bacteria-produced dsRNA pesticides can be sprayed on crops at any 

time, because of the facility of producing large amounts of bacteria expressing dsRNAs. This 

may be considered the most cost-effective method for production of dsRNA (∼ $4 USD per 1 

g), as for most countries bacteria-produced dsRNA would provide an affordable production 

system, which could advance RNAi (de Andrade and Hunter, 2016). More recently, a 

biotechnology company developed a technology called ‘Apse RNA Containers’ (ARCs) that 

allows the mass production of encapsulated dsRNA using bacteria with costs near $2 USD per 

1 g (APSE, 2017). Plasmids coding for naturally occurring proteins such as capsids are co-
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transformed with another plasmid coding for dsRNA sequences plus a ‘packing site’. While 

bacteria are growing in culture, they produce protein subunits that self-assemble around RNA 

in the cell, including the packing site sequence. After purification of the bacteria, the resulting 

RNA is environmentally stable and a ready-to-spray product. The amount of dsRNA required 

per hectare and the required frequency of application are as yet unknown, as a consequence 

of the lack of field experiments, but the amount required per hectare is predicted to be 2–10 g 

($4 USD–$40 USD/ha). In comparison to spinetoram (spinosyn), zeta-cypermethrin 

(pyrethroid) and malathion (organophosphate) currently used in the management of D. suzukii, 

and assuming that they are applied at their maximum label rates (by conventional producers) 

and with generic purchase prices observed in 2015, the per-hectare material costs of these 

chemical insecticide applications are $179.40 USD, $7.22 USD and $29.78 USD, respectively 

(Farnsworth et al., 2016). However, the predicted amount of dsRNA required may vary greatly, 

depending on species sensitivity to RNAi, systemic RNAi and the efficiency of the formulation 

developed for delivery. Nevertheless, the growing interest in the market for dsRNA is expected 

to result in better production systems, more efficient formulations and lower costs for dsRNAs. 

Certainly, insect resistance is always a concern when new control strategies are introduced. It 

is known that insects have great phenotypic and genetic plasticity, and some individuals in a 

corn rootworm population could be more or less sensitive to the DvSnf7 dsRNA trait introduced 

into the new maize event MON87411. An experiment (Chu et al., 2014) using field-collected 

populations with and without crop rotation resistance demonstrated a differential response to 

ingested dsRNA treatments. This demonstrated that phenotypic responses to RNAi-based 

pesticides vary across corn rootworm populations and confirmed that there is a potential for 

resistance development. Following the principles of IPM would mitigate this selection in order 

to delay the onset of resistance. The possible mechanisms of resistance to transgenic RNAi 

crops discussed at a US-EPA Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 

meeting (EPA, 2016) are as follows. Changes in dsRNA target sequence was considered 
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improbable with a 240 bp target such as in the case of DvSnf7 dsRNA, but could occur with 

shorter targets, and the presence of single nucleotide polymorphisms could reduce the 

complementarity of the dsRNA with its target. Longer dsRNAs (>200 nt) may be advantageous, 

as they result in a larger number of siRNAs matching the target mRNA, and therefore could 

increase the RNAi response and prevent the selection of individuals as a result of the natural 

genetic variation (Napoli et al., 1990). More likely routes of resistance development could be 

changes in the kinetics of dsRNA imposed by natural barriers that are important for events 

such as uptake, (systemic) transport, among others. Also, changes in the RNAi machinery 

enzymes or components such as reduction of recognition by the RISC complex of siRNA 

molecules, malfunction of the RISC complex in degrading the target mRNA, reduction in 

processing by Dicer ribonucleases, or the blocking of systemic spread of the RNAi signal could 

be considered (Fishilevich et al., 2016). In addition, insects could develop different 

mechanisms to compensate for the specific gene silencing by increasing transcription rates or 

up-regulating other genes that can perform the same function as, or a similar function to, the 

silenced gene. Also, resistance to dietary dsRNA could arise from reduced uptake during insect 

feeding on modified plants, which may present different olfactory or gustative cues. However, 

SmartStax PRO maize showed no difference from non-transgenic lines regarding these 

parameters. During the US-EPA FIFRA meeting, a report was presented showing that about 

134 adults of corn rootworm emerged from crop plots treated with SmartStax PRO, but the 

attendees at the meeting stated that there was no evidence that those individuals were in fact 

resistant to dsRNA DvSnf7. Some of the mechanisms mentioned above could be potential 

resistance mechanisms, but to date none has been identified. Adoption of classical refuges, 

which are areas within the crop without the trait/pesticidal substance, and the combination of 

multiple insecticidal substances with different modes of action as well as different control 

strategies delay the evolution of insect resistance to RNAi genetically engineered crops. 
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1 Introduction 

The development of a new biotechnological approach to manage D. suzukii, based on RNAi, 

could provide environmental benefits compared to the chemical alternatives. RNAi is a gene 

silencing mechanism at the cellular level triggered by dsRNA and is likely to play a significant 

role in the next generation of insecticides to be developed. In some studies, successful delivery 

of dsRNA molecules to insects by ingestion resulted in the target gene being silenced, which 

led to death or affected the viability of the target insect (Andrade and Hunter, 2017; Prentice 

et al., 2017; Zotti et al., 2017). However, while RNAi has proven to be very promising in the 

control of some insect species, RNAi efficiency and specificity varies from species to species 

and from gene to gene. Therefore, a successful RNAi-mediated pest control strategy requires 

the validation and evaluation of RNAi for each insect species prior to its development as a pest 

control tool. 

In this chapter, we verify whether the RNAi machinery is functional in D. suzukii and whether 

the sensitivity of D. suzukii to dsRNA could induce a significant RNAi response suitable for 

further developing an RNAi-based management strategy for D. suzukii. In the first part, we 

describe the development of a microinjection protocol for D. suzukii. While in the second part, 

we describe the methods and findings of RNAi bioassays designed to both verify the 

functionality of the RNAi machinery in D. suzukii and to screen for potential target genes to be 

further exploited in the development of an RNA-based control strategy for D. suzukii.   

2 Materials and methods  

2.1 Microinjection protocol for D. suzukii adults 

Over the years, entomologists have been developing several bio-manipulation techniques to 

study various insect species. An important embodiment of bio-manipulation involves the 
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injection of foreign substances into insects for functional genomic studies. Microinjection is a 

physical delivery system that offers a unique advantage by incorporating precise amounts of 

test/foreign substances into the insect with ease. However, microinjection has certain 

limitations as it is a physical assault to the insect and can directly affect the viability of the 

target organism. An important feature of all current microinjection protocols is that they vary to 

a great extent by accommodating the unique physical and developmental characteristics of the 

target insect. Furthermore, the efficiency of microinjection is greatly dependent on several 

factors such as injection volume, developmental stage of the target host insect, desiccation, 

injection pressure, the buffer and its pH, compatibility of the foreign substance with the target 

insects, post injection care, etc. (Lobo et al., 2006). As such, microinjection can achieve high 

efficacy only by ensuring higher (>90%) survivability (defined as the number of surviving 

insects after a span of 24 h with normal developmental characteristics, indicating that they 

have survived the physical assault) of target insects after injection (Ringrose, 2009). Major 

constraints encountered during manual microinjection include poor reproducibility and 

inconsistency. However, this can be solved through optimization. Optimizing a microinjection 

protocol would include; standardization of injection time, volume, buffer temperature and 

proper developmental stage, which will then result in higher survivability rates in the injected 

insects. This chapter presents a modified protocol for the injection of D. suzukii adults, based 

on the protocol for injecting D. melanogaster (Obadia and Saleh, 2011).  

2.1.1 Microinjection setup 

Prior to microinjecting D. suzukii adults, the necessary equipment was setup as shown in 

Figure 9. D. suzukii adults are small in size (1-3 mm), implying that only very little amounts 

ranging in the nanoliters can be injected into their haemocoel. As such, a nanoinjector 

(Femtojet, Invitrogen) was used as a pressure source during injection. Injected volumes are 

determined by the combination of a certain injection pressure and injection time. The injection 

pressure and time are in turn dependent on the aperture size at the tip of the injection needle. 
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Hence, these parameters have to be calibrated for each capillary needle with different tip 

aperture size. The injections of D. suzukii adults were performed under a Leica 

stereomicroscope with the help of a Narishige micromanipulator. A micromanipulator is a 

device in which a capillary needle can be placed, permitting the capillary needle to be carefully 

moved in three dimensions. This is helpful for the precise movements needed during this 

procedure. The microinjection setup presented here can equally be used for the injection of 

other insect species. 

 

Figure  9: Microinjection setup consisting of a stereomicroscope, a micromanipulator, microinjector and 

a needle puller (for preparing the glass capillary needles used for injection) (Photo credit: Clauvis NT 

Taning, Ghent University) 
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2.1.2 Microcapillaries  

An important element in the optimized microinjection protocol for D. suzukii adults was the 

needles used for injection. At first, commercially available glass micro-capillary needles, such 

as Eppendorf’s Femtotip needles, were tested. However, injection of D. suzukii adults with 

these needles proved rather difficult, since the tip of the needle was not really equipped to 

easily penetrate the tough cuticle of D. suzukii adults. The needles either bent or broke while 

attempting to pierce through the cuticle. This implied that a needle with a much shorter, yet 

stronger tip was needed for injecting the flies. As such, self-made capillary needles were 

created, by using glass capillaries (BLAUBRAND IntraMARK, 50 µl) in a two-step pulling 

procedure, on a Narishige PC-10 needle puller (temperature settings 80 and 83 for step 1 and 

step 2, respectively). The resulting capillary needle with the shortest tip of the two could be 

successfully used for injecting D. suzukii adults. However, just before use, the  tip  of  the  

capillary needle was carefully broken with thin tweezers, taking care of making the tip thin 

enough to avoid  major  injury  to D. suzukii adults,  but  thick  enough  to ensure easy 

penetration of the cuticle. One of the main drawbacks of the self-made needles is the lack of 

uniformity in the aperture size at the tip of the needle compared to commercially available 

needles, and hence, the need to calibrate the volume for each newly made needle. 

2.1.3 Sedation and immobilization  

To prevent D. suzukii adults from flying away during injection, they had to be immobilized. The 

use of any type of glue-based method proved difficult given the fragility of these flies, especially 

the limbs and the wings. This prompted the search for other methods to sedate the flies. A 

sedation method commonly used to temporally immobilize insects, is the use of cool 

temperatures, by temporarily placing the insect on ice for a short time. However, in the case 

of D. suzukii adults this proved insufficient. Too long exposure times to cool temperatures led 

to the death of the fly, while moderate exposure times did not immobilize the flies long enough 

for injection. Subsequently, the effect of diethyl ether, a common method of anaesthetizing 
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insects, was tested on D. suzukii adults. The sedation effect proved sufficient for the length of 

the injection procedure and importantly, the procedure was non-toxic for the flies. In order to 

prevent direct physical contact between the flies and ether, the flies were placed in a 2 ml 

Eppendorf tube with tiny holes bored in the cap and then introduced into a 50 ml falcon 

containing cotton soaked with diethyl ether (Fig. 10a). This setup created a sort of ‘gas 

chamber’ for the sedation of D. suzukii adults for injection. Exposure for 2 min inside the falcon 

was enough to knock out D. suzukii adults for at least 5-9 min, which gave more than enough 

time to inject the flies. Once sedated, the flies were placed in little gutters on agarose plates 

that acted as cushion, preventing the flies from being crushed during injection, while also 

preventing the flies from sliding over the surface while inserting the needle into the body (Fig. 

10b). 

 

Figure 10: Sedation and injection surface for D. suzukii (a) Picture of the falcon used for sedation, (b) 

The agarose plate on which the D. suzukii adults were placed for injection. Agarose was poured in a 

glass petri dish and a plastic, grooved dish was floated on the agarose. After the agarose solidified, the 

plastic floater was taken off. (Photo credit: Clauvis NT Taning, Ghent University) 

2.1.4 Needle insertion and volume of injected solution 

The shape of the tip of the capillary needle and the angle at which it penetrates the cuticle of 

D. suzukii adults is very important. Not only because it determines the ease by which the 
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needle penetrates the cuticle, but more importantly, it is vital not to damage anything internally 

in the D. suzukii adults. This is because any form of internal damage, especially to the gut, 

could have detrimental effects to the fitness of the fly. Theoretically, injecting at a very small 

angle and as close as possible in a parallel position, along the dorsal or ventral side, would be 

ideal to avoid internal damage. However, it is practically easier to inject at about 45° through 

the cuticle. The angle to insert the needle can differ depending on the morphology of each fly 

individually because some flies are either smaller or have a tougher cuticle than others. 

However, intrathoracic injection of D. suzukii adults between the supra-alar bristles and the 

presutural bristle, in the intrascutal suture region, should not encounter any resistance (Fig. 

11).  

 

Figure 11: Microinjection of D. suzukii adult (a) Thoracic injection of blue colorant in the intrascutal 

suture region, (b) Visible blue colorant in the thorax of the fly after injection (Photo credit: Clauvis NT 

Taning, Ghent University) 

Another critical factor which was considered in adapting a microinjection protocol for D. suzukii 

adults was the injected volume. Different volumes of water mixed with a blue colorant dye 

(bromophenol blue) were injected into D. suzukii adults and then survivability was evaluated. 

Volumes between 50-200 nl did not cause any mortality in D. suzukii adults, presenting a wide 

range of options for injection volumes that could be used in the actual RNAi bioassays. The 

blue dye used for injection is useful in providing a visual confirmation of a successful injection 
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(Fig.11). Although the blue dye was not used in the actual RNAi bioassays in this research, it 

is very useful in optimizing the microinjection of insects and in the training of people who are 

interested in using this technique.  

2.2 RNAi Bioassays 

Once the technical aspects of the microinjection procedure were adapted for D. suzukii adults, 

RNAi bioassays were set up to investigate whether RNAi was functional in D. suzukii.  

2.2.1 Insect culture and life cycle under controlled laboratory conditions 

In order to have enough D. suzukii adults and larvae for subsequent experiments during the 

research period, a laboratory culture of D. suzukii was initiated. The D. suzukii individuals used 

to initiate the colony were obtained in 2013 from a laboratory culture in France. The flies were 

originally field collected from infested fruits from the south of France (N: 43.754059 E: 4.4595) 

and subsequently maintained as a laboratory culture. The flies were reared in 50 ml tubes on 

an agar-yeast-cornmeal diet slightly modified from Lebreton et al. (2014) (8 g agar–agar, 60 g 

corn meal, 60 g brewer’s yeast, 25 g sucrose, 600 ml distilled water and 2.5 g methyl-4-

hydroxybenzoate dissolved in 25 ml of 70% ethanol) at standard laboratory conditions of 25 

°C, 65 % relative humidity (RH) and under a 12:12h light: dark photoperiod (incubator model: 

MIR-154-PE, Panasonic). Prior to the RNAi bioassays, the life cycle of D. suzukii was also 

carefully studied under these controlled laboratory conditions. Three male and female flies 

were placed in 10 cm diameter Petri dishes for 4 h. An average of 1-3 eggs were laid per Petri 

dish and the life cycle of the larvae in each Petri dish was followed throughout development 

(Fig. 12). Adult flies were transferred to 50 ml centrifuge tubes (plugged with cotton) after 

eclosion and daily observed till death. Understanding the life cycle of D. suzukii was vital in the 

planning of the RNAi bioassays.  
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Figure 12: Life cycle of D. suzukii under controlled laboratory conditions of 25°C, 65% relative humidity, 

light intensity of 3LS by a fluorescent lamp and a 12:12h light: dark photoperiod (incubator model: MIR-

154-PE, Panasonic). It took an average of 11-14 days from when the eggs were laid till when they 

emerged as adults. The adults then survived up to 32 days. (Photo credit: Clauvis NT Taning, Ghent 

University)   

2.2.2 In silico search and confirmation of RNAi core genes in D. suzukii 

The siRNA pathway core genes (R2D2, Dicer 2 and Argonaute 2) were searched for in the D. 

suzukii genome database (http://spottedwingflybase.oregonstate.edu/) (Chiu et al., 2013) by 

BLAST analysis using known query sequences from other insect species. The peptide 

sequences of the RNAi core genes were aligned with that of other insects and Mega 6.06 was 

used to generate phylogenetic trees, using the neighbour joining algorithm, examining the 

evolutionary similarities of the identified genes to that of other known insect species and hence 

to confirm the correct annotation. Bootstrap analysis with 1,000 replicates for each branch 

position was used to assess support for nodes in the tree (Felsenstein, 1985).  
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2.2.3 Target gene selection 

To test the functionality of the RNAi machinery in in vivo RNAi bioassays, a selection of target 

genes (Table 2) was made. Some genes were selected on the basis of previous reports on 

their effectiveness in causing mortality in other insect species (Baum et al., 2007; Zhu et al., 

2011) and others on the basis of current running in-house RNAi studies on other insect 

species. The target gene sequences were retrieved from the D. suzukii genome database 

(http://spottedwingflybase.oregonstate.edu/) (Chiu et al., 2013) by BLAST analysis using 

known query sequences from other insects. To avoid cross-silencing of other genes, each 

dsRNA sequence was screened for cross-homologies within the D. suzukii genome using 

BLAST analyses to ensure that there were no shared fragment identities greater than 19 

nucleotides in length. The chosen target gene regions were also screened against other 

genomes by BLAST searches against the Genbank database (NCBI) to check for specificity 

of the sequences to only the target species, D. suzukii. 
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Table 2: Target genes in D. suzukii and their biological and molecular functions 

Gene ID Target gene name Function 

 

References 

DS10_00007684 V/A-type ATP synthase catalytic 

subunit A (vha68)  

ATP binding; proton-transporting ATPase activity, 

endosomal lumen acidification; imaginal disc 

growth. 

(Baum et al., 2007; Christiaens et al., 2016; 

Prentice et al., 2017) 

 

DS10_00008303 Adenylate kinase-3 (adk3)  Adenylate kinase activity. ADP biosynthetic 

process 

(Christiaens et al., 2016; Prentice et al., 2017)  

 

DS10_00007384 Gamma-coatomer protein (gamma 

COP)  

Single-organism developmental process; open 

tracheal system development; cellular component 

organization or biogenesis; biological regulation; 

localization; cellular process; system development; 

gland morphogenesis; cytokinesis; regulation of 

anatomical structure size; regulation of lipid 

storage; chitin-based cuticle development; instar 

larval development; establishment of protein 

localization. 

 

(Christiaens et al., 2016; Prentice et al., 2017) 

 

DS10_00005153 Delta-coatomer protein (delta 

COP)  

Regulation of tube diameter, open tracheal system; 

regulation of lipid storage; protein secretion; 

phagocytosis, engulfment. 

(Christiaens et al., 2016; Prentice et al., 2017) 
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DS10_00004477 Alpha-coatomer protein, isoform A 

(alpha COP)   

Lipid storage regulation. Vesicle-mediated Coat 

Protein Complex I (COPI) transport complex 

(Christiaens et al., 2016; Prentice et al., 2017) 

 

DS10_00012146 lethal (2) NC136 (l(2)NC136)  Nuclear-transcribed mRNA poly (A) tail shortening; 

neurogenesis. 

(Christiaens et al., 2016; Prentice et al., 2017) 

 

DS10_00003341 Mitotics arrest deficient-like 1 

(mad1)  

 

Mitotic cell cycle spindle assembly checkpoint; 

attachment of spindle microtubules to kinetochore 

involved in mitotic sister chromatid segregation; 

spindle checkpoint 

 

(Christiaens et al., 2016; Prentice et al., 2017) 

 

DS10_00000374 Ribosomal protein S13 (rps13)  Mitotic spindle elongation; mitotic spindle 

organization. 

(Christiaens et al., 2016; Prentice et al., 2017) 

 

DS10_00009030  

 

ATPase alpha subunit (atpalpha)  Sodium: potassium-exchanging ATPase activity; 

cation transmembrane transporter activity. 

In-house RNAi studies 

 

DS10_00003320 Shrub (shrb) (homolog of snf7) Neuron projection morphogenesis; dendrite 

morphogenesis; negative regulation of growth of 

symbiont in host 

(Ramaseshadri et al., 2013; Koči et al., 2014; 

Christiaens et al., 2016; Prentice et al., 2017) 

 

DS10_00010885 Vacuolar H[+]-ATPase 26kD E 

subunit (vha26) 

Proton-transporting ATPase activity (Whyard et al., 2009; Zhu et al., 2011; Murphy 

et al., 2016)  
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2.2.4 In vitro dsRNA synthesis 

After the selection of potential target genes, dsRNAs designed to specifically silence these 

target genes in D. suzukii were synthesized using a standard protocol based on the use of 

commercial kits. Total RNA was extracted from D. suzukii adults, using an RNeasy RNA 

extraction kit (Qiagen), following the manufacturer’s instructions. RNA was treated with 

amplification grade DNase I (Invitrogen) and 1 μg was used to synthesize complementary DNA 

(cDNA) using a First Strand cDNA Synthesis kit (Invitrogen), following the manufacturer’s 

instructions. DsRNA templates were then produced by PCR using cDNA as template and 

gene-specific primers with a T7 promoter region (TAATACGACTCACTATAGGGAGA) added 

to the 5′ end of each primer (Table 3). The primers were designed using the software Primer3, 

Version 4 (http://bioinfo.ut.ee/primer3-0.4.0/) and the PCR reactions included 0.2 µl of Taq 

DNA polymerase (Invitrogen), 2 µl of 10x PCR buffer (Invitrogen), 0.6 μl of 10 μM forward 

primer (Invitrogen), 0.6 μl of 10 μM of reverse primer (Invitrogen), 0.6 µl of 50 mM MgCl2, 0.6 

µl of 10 mM dNTPs, 15 μl of nuclease-free water and 0.9 µl of cDNA, in a total volume of 20.5 

μl. The amplification conditions were 2 min at 94 °C followed by 33 cycles of 30 s at 94 °C, 30 

s at 60 °C and 45 s at 72 °C, and then 10 min at 72 °C and infinity at 10 °C. The resulting PCR 

products were purified using the CyclePure E.Z.N.A. kit (Omega Bio-Tek) and immediately 

used for in vitro dsRNA synthesis using MEGAscript RNAi kit (Ambion), following the 

manufacturer’s instructions. The synthesized dsRNAs (length 380-500 bp) were eluted with 

nuclease free water, verified by agarose gel electrophoresis, quantified with a DS-11 

spectrophotometer (DeNovix) and stored at –20 °C until use for the RNAi bioassays.
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Table 3: Primers used to amplify templates for dsRNA synthesis in injection bioassays 

Gene name dsRNA size Primer sequence (5’- 3’) 

V/A-type ATP synthase catalytic subunit A 

(Vha68)  

400bp F-CGCACCCTGGACAACTACTA 

R-CCAGCTTGGGATCGATGAAC 

Adenylate kinase-3 (adk3)  413bp F-CCAAGGAGTTTATCGCTGCC 

R-AACCAGGCCCTTCTCTTTGT 

Gamma-coatomer protein (gamma COP)  390bp F-TCTCTGAAAAGGTGCCCGAG 

R-TTTCAAAGGATGCATCGCGG 

Delta-coatomer protein (delta COP)  381bp F-GACGTGGCCATTGTCATCC 

R-ATGGCTAGTGTGACCGAACA 

Alpha-coatomer protein, isoform A (alpha 

COP)   

397bp F-GAATTACAAGACGGCCGCC 

R-AACTAAACTAAGGGGTCTCGC 

lethal (2) NC136 (l(2)NC136)  387bp F-AATCGAAACCACAGCCACAG 

R-ATGGGGCTTGGAGATTGACA 

Mitotics arrest deficient-like 1 (mad1)  476bp F-GACTGGAAGGAGGTGACCAA 

R-AAGTTCTTGTGGCGCTTCAG 

Ribosomal protein S13 (rps13)  411bp F-CAACGTGCCAAAAGTCTCCA 

R-CTCGACCAGAATCAGACGGA 

ATPase alpha subunit (atpalpha)  473bp F-ACACCCAGACACTCGAGTTT 

R-CGGAGGGCGAAAGAACAAAA 

Shrub (shrb) (homolog of snf7) 394bp F-CACAAACACTGCCGTCTTGA 

R-GTTGGACCAGGATAGCAGCT 

Vacuolar H[+]-ATPase 26kD E subunit 

(vha26) 

460bp F-GTGCAGCGATTAGAAGGAGC 

R-GAGCCTGAAATGATGGTGCA 
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2.2.5 Microinjection 

Using the in vitro synthesized dsRNAs, microinjections were performed using 5-day-old D. 

suzukii adult flies. Prior to these bioassays, female and male adult flies were transferred to 

new diet tubes for 6 h for egg laying. The resulting synchronized mixed population of both male 

and female flies were then used for the RNAi bioassays. Briefly, D. suzukii adults were 

anesthetized with diethyl ether for 2 min and immobilized in a 1.5 % agarose plate. A volume 

of 100 nl of the in vitro synthesized dsRNA based on the target genes (Table 3) and green 

fluorescent protein (gfp) as control was injected into the haemolymph of the flies. GFP-derived 

double-stranded RNA was used as control in the RNAi experiments, since its gene does not 

exists in the genome of D. suzukii. This controls for unknown effects which could arise from 

the simple fact that dsRNA is being introduced into the insect. The injections were performed 

at a concentration of 3 µg/µl, corresponding to a ratio of 1.36 μg/mg fresh body weight (BW), 

using a microinjector (FemtoJet, Eppendorf) and needles prepared with glass capillary tubes. 

A total of 21 adult flies were injected per treatment. After injection, the flies were allowed to 

recover for 10 min in a horizontally placed 50 ml tube, and then transferred into 50 ml tubes 

containing 10 ml of diet and incubated at 25 °C and 65% RH. Mortality was evaluated every 

day for 15 days. The injection assays were repeated twice (total number of injected adults = 

42) and for each replication of the experiment, 3 insects per treatment were taken at 48 h post 

injection, homogenized in RLT buffer (Qiagen) + β-mercaptoethanol for RNA extraction and 

stored in the buffer at −80 °C until further purification and transcript analysis (total number of 

injected adults collected for transcript analysis = 6). 

2.2.6 Reverse transcription quantitative PCR (RT-qPCR) 

Following the RNAi bioassay, transcript analysis was performed to verify if gene silencing had 

occurred. Total RNA was extracted from the stored homogenized whole insect samples 

obtained 48 h post treatment, using the RNeasy Mini Kit (Qiagen). From the microinjection 

RNAi bioassay, two biological replicates of 3 pooled insects were used. After DNase I 
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treatment (Ambion) to remove residual genomic DNA, the RNA was quantified using a DS-11 

spectrophotometer (DeNovix) and verified by 1.5 % agarose gel electrophoresis. Total RNA (1 

µg) was reverse transcribed using the SuperScript II kit (Invitrogen) according to 

manufacturer’s instructions. RT-qPCR was performed on a CFX 96™ real-time system and 

data were analysed using the CFX manager software (Bio-Rad). The reaction included 10 μl 

of SYBR green Supermix (Bio-Rad), 0.4 μl of 10 μM forward primer (Invitrogen), 0.4 μl of 10 

μM of reverse primer (Invitrogen), 8.2 μl of nuclease-free water and 30 ng of cDNA, in a total 

volume of 20 μl. The amplification conditions were 3 min at 95 °C followed by 39 cycles of 10 

s at 95 °C and 30 s at 60 °C. The reactions were set-up in 96-well format Microseal PCR plates 

(Bio-Rad) in triplicates. Transcript levels of the target genes were normalized to the 

endogenous reference genes encoding ribosomal protein L32 (rpl32) and glyceraldehyde-3-

phosphate dehydrogenase 1 (gapdh1) by the equation ratio 2−ΔΔCt (Livak and Schmittgen, 

2001) (See primer sequences in Tables 4 and 5). The target gene transcript levels in the 

samples from insects treated with the target gene-specific dsRNA were first normalized to the 

endogenous reference genes and then normalized relative to the level of target gene 

transcripts in the control samples which were from insects treated with the GFP-specific 

dsRNA. Appropriate controls, such as no-template controls and no RT control, were also 

included in the assay. 
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Table 4: Target genes primer sequences used for quantitative PCR in injection bioassays 

Gene name Product size Primer sequence (5’- 3’) 

Shrub (shrb) (homolog of snf7) 100bp F-AAGACAGCCCACCAGAACAT 

R-GGTTGGAAATGGCATCGGAA 

alpha-coatomer protein, isoform A (alpha 

COP)  

104bp F-GGCAACACACTTCCTGAGGT 

R-CCCTTGGAAACGGACAACAG 

lethal (2) NC136 (I(2)NC136)  

 

103bp F-TGGAGGAGGGGTTGGTGATA 

R-TCGTACGGGTGTTGGCTTAA 

ATPase alpha subunit (atpalpha) 

 

118bp F-TCTGACAAAGCGGCTAGGG 

R-GTGGGTGTGACTGTGGGT 

Adenylate kinase-3 (adk3) 

 

104bp F-GATCGGGTCAAGCATCGTTG 

R-GGTTCTCCCGTGACATCATC 

Vacuolar H[+]-ATPase 26kD E subunit 

(Vha26) 

106bp F-GTGCAGCGATTAGAAGGAGC 

R-CATTTCGGTGTTTCGGCGG 

Ribosomal protein S13 (rps13) 99bp F-TCCAAGATCGGCATCATCCT 

R-CAGACCCACCGACTTCATGA 

Mitotics arrest deficient-like 1 (mad1) 99bp F-GAGGGCTACGATACCGTCAA 

R-GTGCATCATCTCCAGTTCCA 

gamma-Coatomer protein (gamma COP)  
 

103bp F-AGATCGTGTCCTCGATCACC 

R-AAGTGAATACGGGGGTAGGG 

delta-Coatomer protein (delta COP)  
 

102bp F-TTCCGTGTTCGGTCACACTA 

R-ATGGGCGAGGCTTTTAATTC 

V/A-type ATP synthase catalytic subunit A 

(vha68) 

101bp F-GTCCATTGTGGGAGCTGTCT 

R-TCTTGTCCAGTCCCCAGAAC 
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Table 5: Reference genes primer sequences used in quantitative PCR  

Gene ID Gene name Product size Primer sequence (5’- 3’) 

DS10_00012899 

 

Ribosomal Protein L32 

(rpl32) 

110bp F-CCCAAGATCGTGAAGAAGCG 

R-CGCACTCTGTTGTCGATACC 

DS10_00002887 Glyceraldehyde-3-

phosphate 

dehydrogenase 1 

(gapdh 1)  

101bp F-GATCACCGTCTTCAGCGAAC 

R-TGTCGATGGTGGTGAAGACA  

 

2.2.7 Statistical analysis 

The data were analysed using the SPSS 21 statistical software. Mortality data of D. suzukii 

larvae and adults from the microinjection assays were analysed using a generalized linear 

model (GLM) with Log link function and Poisson error distribution. As the data from the RT-

qPCR assays could not be fitted to a parametric distribution, a non-parametric analysis was 

applied, namely bootstrapped median regression. Significant differences between appropriate 

groups were identified at a significance level of 0.05. 

3 Results  

3.1 RNAi in D. suzukii 

Prior to performing RNAi bioassays, the presence of siRNAi core genes such as r2d2, dcr2 

and ago2 were confirmed in the genome of D. suzukii through in silico sequence analysis. A 

neighbour joining phylogenetic tree was constructed for the translated amino acid sequences 

of Dcr2, AGO2 and the dsRNA-binding cofactor R2D2 (Fig. 13). The phylogenetic tree was 

meant to confirm the identity of the identified genes, by comparing the identified siRNAi core 



Chapter 2 

80 
 

genes from the D. suzukii genome with their homologs in other insect species, hence, 

confirming the correct annotation of these genes. 

 

Figure 13: Evolutionary similarity between D. suzukii siRNA pathway core genes and that of other insect 

species. A neighbour joining phylogenetic tree was constructed in MEGA 6, using amino acid sequences 

of the R2D2, Dcr2 and AGO2 of a selection of insect species: Tribolium castaneum, Drosophila 

melanogaster, Bombyx mori, Drosophila suzukii, Danaus plexippus. A bootstrap analysis was performed 

on 1,000 replicates.  

To confirm the functionality of the siRNA pathway, dsRNA targeting shrb and alpha COP was 

injected into the haemolymph of the adult flies. These injections resulted in a 94 ± 4% and 51 

± 10% reduction in transcript levels for shrb and alpha COP in the treated groups, respectively 

(Fig. 14a). Resulting mortality percentages of 46 ± 9% and 27 ± 8% were observed in both the 

ds-alpha COP- and ds-Shrb-treated groups, respectively (Fig. 14b). 
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Figure 14: Confirmation of a functional RNAi machinery in D. suzukii (a) Gene silencing efficiency in 

adult D. suzukii 48 h post injection of gene-specific dsRNA at a concentration of 1.36 µg/mg body weight. 

The bars in the figure indicate different silencing efficiencies for the different target gene dsRNA 

treatments relative to the control group (ds-GFP-treated group) with a silencing efficiency of zero. The 

error bars indicate the standard error of the mean (SEM). All target gene silencing efficiencies differed 

significantly from the control (Bootstrapped median regression, p < 0.05). The silencing efficiency was 

analysed using two biological replicates of 3 pooled insects (n = 6) per treatment, (b) Mortality in D. 

suzukii adult flies following the injection of in vitro synthesized gene-specific dsRNA. The bars in the 

figure indicate the mean ± SEM. Mortality in all the target gene dsRNA-treated groups was significantly 

different from mortality in the ds-GFP-treated control group (GLM, p < 0.05). Mortality was analysed 

using a total of 36 insects per treatment. Bars labelled with different letters in this figure indicate a 

significant difference in the mean between the different target gene treatments.  

3.2 Selection of potential target genes for RNAi in D. suzukii 

Once the functionality of the RNAi machinery was confirmed, we sought to screen for additional 

target genes for subsequent RNAi experiments in D. suzukii. DsRNAs targeting nine 

endogenous D. suzukii genes were injected into the haemolymph of the adult flies. These 

injections resulted in a reduction in transcript level for all target genes (Fig. 15a), however, the 



Chapter 2 

82 
 

resulting mortality in the treated groups was variable, depending on the gene targeted (Fig. 

15b).  

 

Figure 15: Screening of potential target genes for RNAi in D. suzukii (a) Gene silencing efficiency in 

adult D. suzukii 48 h post injection of gene-specific dsRNA at a concentration of 1.36 µg/mg body weight. 

The bars in the figure indicate different silencing efficiencies for the different target gene dsRNA 

treatments relative to the control group (ds-GFP-treated group) with a silencing efficiency of zero. The 

error bars indicate the SEM. All target gene silencing efficiencies differed significantly from the control 

(Bootstrapped median regression, p < 0.05). The silencing efficiency was analysed using two biological 

replicates of 3 pooled insects (n = 6) per treatment, (b) Mortality in D. suzukii adult flies following the 

injection of in vitro synthesized gene-specific dsRNA. The bars in the figure indicate the mean ± SEM. 

Mortality in all the target gene dsRNA-treated groups was significantly different from mortality in the ds-

GFP-treated control group (GLM, p < 0.05). Mortality was analysed using a total of 36 insects per 

treatment. Bars labelled with different letters in this figure indicate a significant difference in the mean 

between the different target gene treatments. 

No mortality was recorded in the ds-Adk3, ds-I(2)NC136 and ds-Mad1-treated groups following 

a decrease of 5 ± 2%, 20 ± 4% and 11 ± 2% in their transcript levels, respectively.  Furthermore, 

the ds-Vha68, ds-gamma COP and ds-delta COP- treated groups showed low mortality of less 

than 16%, following their silencing efficiencies of 13 ± 5%, 13 ± 9% and 19 ±7%, respectively. 
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Based on these results, these genes were not selected as potential target genes for further 

development.  

4 Discussion 

4.1 RNAi is functional in D. suzukii 

In arthropods, it is well established that the core RNAi pathways consist of Argonaute 

endonucleases, Dicer enzymes and dsRNA binding proteins (Jinek and Doudna, 2008; Siomi 

and Siomi, 2009). More specifically, the siRNA pathway is activated by exogenous dsRNA and 

involves Dcr2/R2D2 and AGO2. The Dcr2/R2D2 complex enables dicing of the long dsRNA 

into siRNA molecules, while AGO2 is an integral element of the RNA induced silencing 

complex, eventually leading to the degradation of the target mRNA. The presence of these 

core genes in the genome of D. suzukii stipulated the presence of an siRNAi machinery. 

However, whether it was functional, still needed to be verified.  

Direct injection of dsRNAs has proven to be an effective way to demonstrate RNAi efficacy in 

numerous insect species (Zhu et al., 2008; Prentice et al., 2017; Wilkins et al., 2017). Our 

results suggest that RNAi can be induced in D. suzukii by microinjection of dsRNA into the 

haemolymph of the insect. Two essential genes, shrb and alpha COP, were targeted in the 

injection assays. The shrb gene encodes a class E vacuolar protein sorting (Vps) protein (also 

known as Vps32), involved in the trafficking of transmembrane proteins to the lysosome via 

multivesicular bodies (MVBs) (Babst et al., 2002). The alpha COP gene encodes the alpha 

subunit of a non-clathrin-coated vesicular coat protein (COP), which mediates protein transport 

between the endoplasmic reticulum and Golgi compartments (Gerich et al., 1995). 

The first interesting observation is a large difference in silencing efficiency between the two 

target genes at 48 h after injection. The shrb transcript level was reduced by 94% compared 
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to the control, while the injection of the same amount of dsRNA targeting alpha COP only 

resulted in a 51% silencing. There are several factors that can explain the difference in 

silencing between both genes. For example, the gene region and dsRNA fragment itself have 

been shown to influence silencing efficiency (Wang et al., 2000; Zhou et al., 2002). Other 

possible factors are differential mRNA transcription rate, leading to a faster recovery of the 

RNAi silencing effect in the case of alpha COP or it is possible that alpha COP has many more 

mRNA copies, so less relative knockdown is observed compared to shrb. Although the 

silencing efficiency in this study was much higher for shrb (snf7 orthologue) than for alpha 

COP, the mortality in the latter was significantly higher. This could indicate that the protein 

coded for by shrb could have a slower turnover than that of alpha COP. Alternatively, it could 

also mean that shrb might not be as essential in D. suzukii, contrary to its homologue (snf7) in 

a number of beetle species, including D. virgifera, where lower levels of silencing by RNAi 

caused rapid and widespread mortality (Bolognesi et al., 2012; Koči et al., 2014). Based on 

the results in the injection assays, shrb was considered not to be an optimal target gene to 

induce mortality while alpha COP was selected as a target gene for subsequent oral bioassays. 

4.2 Potential target genes for RNAi in D. suzukii 

Two promising target genes were identified, that is, rps13 and vha26. With a silencing 

efficiency of 28 ± 2%, ds-RPS13 caused 32 ± 9% mortality to the injected insects. This was 

the most effective target among all nine genes tested. With a silencing efficiency of 23 ± 5%, 

ds-Vha26 caused the second highest mortality (18 ± 11%) among the nine tested genes. The 

variation in gene silencing efficiency, for example between ds-shrub and many of the other 

target genes, is difficult to explain. Several factors have been hypothesized in insects, which 

could cause differential gene silencing efficiencies between target genes. For example, tissue-

specific effects might play a role. Genes which are tissue-specific might result in higher 

silencing efficiency, for example due to a more efficient uptake of dsRNA in these tissues, a 
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more active RNAi machinery or even a higher RNA extraction efficiency from these tissues 

when preparing the qPCR samples. However, since all these target genes are considered 

essential elements in any cell’s functioning, and should therefore be expressed in all cells, it is 

difficult to say whether this indeed plays a major role. Nonetheless, it is possible that some of 

these genes do have a higher expression in some tissues than others, which might at least 

partly explain the differences. Furthermore, the variation observed amongst the targeted genes 

could also be explained by two hypotheses which are related to interactions between siRNAs 

and the target mRNA. The first hypothesis is that the local secondary structure of the targeted 

mRNA may affect the accessibility of the siRNAs generated from the dsRNA (Bohula et al., 

2003; Kretschmer‐Kazemi Far and Sczakiel, 2003). Bohula et al. (2003) reported that the ability 

of siRNAs to block the expression of type 1 insulin-like growth factor receptor (IGF1R) 

overexpressed by tumours, correlated with the accessibility of the target sequence within the 

transcript. Therefore, siRNAs corresponding to weakly hybridizing oligonucleotides caused 

minor IGF1R down-regulation, whereas siRNAs homologous to accessible target regions on 

the transcripts induced profound sequence-specific IGF1R gene silencing. This indicates that 

secondary structure in the target transcript has a major effect on siRNA efficacy and silencing 

efficiency. The second hypothesis is that the local protein factor(s) on different regions of the 

mRNA may cause a positional effect (Holen et al., 2002). That is, the presence of local proteins 

on the target mRNA may interfere with the binding of siRNAs to the target transcripts, hence, 

leading to low silencing efficiency. These two hypothesis are not mutually exclusive. However, 

at present, there is still lack of clear understanding on the mechanisms that determine the 

gene-silencing efficiency of a given siRNA. Hence, we cannot completely explain the variation 

and low silencing efficiencies observed in this study at the moment. Nevertheless, our results 

indicate that by injecting a known amount of dsRNA into adult D. suzukii, potential target genes 

for use in the development of an RNAi-based control method for D. suzukii can be screened 

based on lethality. 
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5 Conclusion 

Based on the results presented in this chapter, we can conclude that RNAi is functional in D. 

suzukii and can be induced through injection of exogenous dsRNA into D. suzukii. 

Furthermore, alpha COP, rps13 and vha26 are good potential target genes for further 

optimization in the development of an RNAi-based insecticide for D. suzukii, although 

screening on a larger scale could potentially deliver better target genes. This Chapter also 

presents a microinjection approach for such screening of potential target genes in D. suzukii.



  

 
    



  

 
    

 

Chapter 3 

RNAi induction by oral feeding in Drosophila suzukii 

Modified from: Taning, C. N. T., Christiaens, O., Berkvens, N., Casteels, H., Maes, M., & 

Smagghe, G. (2016). Oral RNAi to control Drosophila suzukii: laboratory testing against larval 

and adult stages. Journal of pest science, 89(3), 803-814. 
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1 Introduction 

Having demonstrated that the RNAi machinery is present and functional in D. suzukii by 

microinjection of dsRNA in the haemolymph, the next step in the development of an RNAi-

based pest control strategies is examining whether oral delivery of dsRNA is also capable of 

eliciting a meaningful silencing response. The delivery of dsRNA by oral feeding is 

comparatively attractive as it is convenient, causes less damage to the insect, is easy to 

execute, and is a more natural method of introducing dsRNA into the insect body (Chen et al., 

2010). However, the efficiency of RNAi by ingestion of dsRNA varies between different species 

due to many reasons such as; the degradation of dsRNA in the insect body, poor cellular 

uptake of dsRNA, poor processing of the dsRNA and variation in the expression levels of the 

RNAi core machinery genes (Terenius et al., 2011; Joga et al., 2016). This implies that RNAi 

by oral ingestion will have to be evaluated and optimized independently for each insect 

species. Furthermore, for RNAi to be a useful pest control method in the field, the development 

of easy and reliable methods for production and delivery of dsRNA will be required. The use 

of transgenic plants expressing dsRNA has been exploited for the production and delivery of 

dsRNA (Baum et al., 2007; Mao et al., 2007). However, the major limitation of the transgenic 

plant approach for RNAi pest management is public hesitancy in accepting transgenic food. 

Delivering dsRNA by spraying on the crop plants fits well with current insecticide delivery 

methods and several research groups have explored the possibility of delivering dsRNA to 

insects using this method (Huvenne and Smagghe, 2010; Joga et al., 2016; Zotti et al., 2017). 

However, this method will require that large amounts of dsRNA are produced elsewhere and 

sprayed on the plants. The use of bacteria as biofactories to produce dsRNA could be 

exploited. In C. elegans, an efficient induction of RNAi using bacteria to deliver dsRNA was 

developed and successfully used for a rapid and effective genome-wide analysis of gene 

functions (Timmons and Fire, 1998; Kamath et al., 2003). The bacteria-mediated feeding RNAi 



Chapter 3 

90 
 

is considered as a highly efficacious and cost-effective tool, showing potential in the eventual 

field control of some insects such as the Colorado potato beetle (Zhu et al., 2011). 

In this chapter, we verify whether RNAi can be effectively induced by oral feeding and how we 

could exploit this to develop an RNAi-based control for D. suzukii. In the first part, we describe 

an oral feeding protocol for laboratory testing of RNAi in D. suzukii adults and larvae. In the 

second part, we discuss the findings of oral RNAi in D. suzukii while presenting how bacteria 

can be engineered to become a micro-factory to produce D. suzukii target gene dsRNAs for 

oral delivery. Furthermore, we report how the use of lipid-based nanoparticles can improve the 

oral delivery of dsRNAs in D. suzukii. 

2 Materials and methods  

2.1 Development of a feeding assay protocol for D. suzukii adults and larvae 

Various simulations of oral bioassay setups were performed on D. suzukii adults and larvae 

and the best method for oral feeding was then applied for the actual bioassays with D. suzukii 

adults and larvae. Two main feeding setups were tested; exposure to a known amount of liquid 

diet and exposure to a known amount of solid diet. 

2.1.1 Exposure to liquid diet containing a food dye 

This simulation was aimed at verifying whether D. suzukii adults and larvae could take up 

dsRNA from solution within a certain exposure time.  

In this simulation, adult D. suzukii flies were exposed to 50 µl drops of 5% glucose solution 

containing bromophenol blue dye for 5 h. The flies were observed every hour to verify if they 

had fed on the dyed glucose solution within the exposure time. We observed that all flies fed 

within the second hour after exposure. Dry starving the adult flies in empty 50 ml Falcon tubes 
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for 1-3 h before the feeding assays caused the flies to feed within the first 30 min after exposure 

(Fig. 16a and b).   

In a similar simulation, larvae were partially submerged in 5% glucose solution containing 

bromophenol blue dye for 1 h. Larvae were initially wet starved for 1 h by partial submersion 

in water in a 10 cm Petri dish before the feeding assay simulation. Wet starving prevents 

desiccation of the larvae, which can lead to mortality. Additionally, partial submersion was 

important in this simulation to prevent drowning. However, after a 1 h exposure time not all the 

larvae had fed on the glucose solution (Fig. 16c and d). Based on these results, a different oral 

bioassay feeding method was setup and tested. 

 

Figure 16: First oral feeding simulation (a) D. suzukii adult flies exposed to 50 µl drops of 5% glucose 

solution containing bromophenol blue placed on the cover (blue) of the Falcon tube. Tiny holes bored 

on the top end of the inverted tubes provide air for respiration, (b) Blue dye observed in the abdomen 

of the flies after feeding on drops of glucose solution containing bromophenol blue, (c) Larvae with no 

visible blue dye in the midgut implying that it did not feed during the exposure time, (d) Larvae with blue 

visible dye in the mid gut indicating that they fed during the exposure time. (Photo credit: Clauvis N T 

Taning, Ghent University) 

2.1.2 Exposure to solid diet containing a food dye 

In a second simulation, designed in a way to be applicable to both adults and larvae following 

the same protocol, D. suzukii adults and larvae were exposed to diet containing a bromophenol 

blue dye for a certain period. The aim of this simulation was to ascertain if, and how fast, the 
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adults and larvae will feed on their usual corn meal diet within the exposure time. This will let 

us predict if all the exposed insects will take in dsRNA in the diet during the exposure time 

when the actual experiment is performed. 

D. suzukii adults and larvae were exposed for 5 h to 50 mg of a yeast corn meal diet mixed 

with 32 µl of bromophenol blue. They were observed every 30 min for food intake. All adults 

and larvae fed within 30 min after exposure (Fig. 17a-d). This method was then optimized for 

use in the actual oral bioassays with D. suzukii. The only drawback of this setup compared to 

the previous one is that it requires a lot more dsRNA, making it more costly. 

 

Figure 17: Second oral feeding simulation (a) Adult D. suzukii prior exposure to diet containing blue 

dye. No visible dye in the abdomen and flat abdomen from starvation, (b) Adult D. suzukii post exposure 

to diet containing blue dye. Visible dye in the swollen abdomen indicating that feeding occurred, (c) D. 

suzukii larvae prior exposure to diet containing blue dye. No visible dye in the mid gut, (d) D. suzukii 

larvae post exposure to diet containing blue dye. Visible dye in the midgut. 

2.2 RNAi bioassays  

Once the feeding setup was established, RNAi induction through feeding was evaluated in D. 

suzukii adults and larvae. Rps13, alpha COP and vha26 were selected during the screening 

step in chapter 2 and were used as targets in the oral feeding assays.  
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2.2.1 DsRNA synthesis 

In vitro synthesized dsRNA 

In vitro synthesis of dsRNA was performed as described in chapter 2 (section 2.2.4). The 

primers which were used are shown in Table 6. 

Table 6: Primers used to amplify templates for dsRNA synthesis for oral bioassays 

Gene name dsRNA size Primer sequence (5’- 3’) 

alpha-coatomer protein, isoform A (alpha 

COP)   

397bp F-GAATTACAAGACGGCCGCC 

R-AACTAAACTAAGGGGTCTCGC 

Ribosomal protein S13 (rps13)  411bp F-CAACGTGCCAAAAGTCTCCA 

R-CTCGACCAGAATCAGACGGA 

Vacuolar H[+]-ATPase 26kD E subunit 

(vha26) 

460bp F-GTGCAGCGATTAGAAGGAGC 

R-GAGCCTGAAATGATGGTGCA 

 

DsRNA synthesis in engineered bacteria 

The dsRNA templates used for cloning were produced by PCR using cDNA and gene-specific 

primers (Table 6). Restriction enzyme sites for BamH1 (CGGGATCCCG) and EcoR1 

(CGGAATTCC) were added to the 5′ end of the forward and the reverse primers, respectively. 

The PCR products were then cloned into the multiple cloning site (MCS) of the LITMUS 38i 

plasmid, flanked by two convergent T7 polymerase promoters in opposite orientations (Evans 

et al., 1995). The 38i plasmid is a small (2814 bp), high copy number Escherichia coli plasmid 

vector designed for efficient transcription of dsRNA. The plasmid vector containing the PCR 

product was transformed into competent HT115 (DE3) cells, an RNase III-deficient E. coli 

strain with an IPTG-inducible T7 polymerase activity. Single colonies of E. coli containing the 

38i vector plus insert, cultured on Luria–Bertani (LB) agar plates, were inoculated into 4 ml of 

LB medium containing 4 µl of ampicillin (100 µg/ml) and 4 µl of tetracycline (12.5 µg/ml), and 
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cultured overnight at 37 °C while shaking at 200 rpm. The bacterial solution was then diluted 

100 times by transferring 250 µl of the overnight culture into 25 ml of fresh LB medium 

containing ampicillin and tetracycline, and allowed to grow to an OD600 = 0.4. Then, 12 µl of 

1 M IPTG was added to the culture medium and incubated for another 3 h at 37 °C on a shaker 

(200 rpm). The culture medium was centrifuged at 6000 g for 10 min to harvest the bacteria 

cells, which were then suspended in 0.8 % NaCl solution and stored at -80 °C until the 

purification of the dsRNA from the bacteria cells. To purify and analyze the dsRNA synthesized 

in the bacteria, total RNA was extracted from the bacterial cells using TRI reagent (Sigma-

Aldrich) with some modifications. After the cell lysis step from the TRI reagent protocol, an 

extra step where single-stranded RNA was removed by incubating the lysate with 5 µl RNAse 

A (1000U/µl) and 25 µl of 10X RNase A buffer (4 M NaCl, 0.1 M Tris–HCl) at 37 °C for 25 min 

was added. After purification, the dsRNA pellets were re-suspended in 25 µl nuclease-free 

water, and the concentration of the dsRNA was quantified using a DS-11 spectrophotometer 

(DeNovix). The synthesized dsRNA was also evaluated by loading the suspension onto a 1.5 

% agarose/TBE gel, stained with ethidium bromide and photographed to determine integrity 

and estimate the quantity relative to the standard marker. 

2.2.1 Oral feeding bioassays 

Second-instar larvae and 4-days-old adult flies were starved for 3 h before the initiation of 

feeding assay. While the adult flies were dry starved (no water and no food) in 50 ml Falcon 

tubes, the larvae were partially submerged in water (in 10 cm Petri dish) to prevent desiccation 

and mortality. The dsRNAs used for the bioassays were encapsulated in liposomes with the 

intention of facilitating uptake in the gut. 

First, RNAi was evaluated by feeding in vitro synthesized dsRNA to D. suzukii larvae and 

adults. This was done by placing the insects for 5 h on 50 mg of diet mixed with 32 µg of the 

in vitro synthesized gene-specific dsRNA encapsulated with Lipofectamine 2000 (Invitrogen) 
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in a mixture of buffered sucrose (20 % sucrose, 10 mM Tris, pH 7.5) and 0.05 mM spermidine. 

For all assays where Lipofectamine 2000 was used, a 1:1 mixture with dsRNA was prepared 

as follows: 8 µl of dsRNA (4 µg/µl) was mixed with 7 µl of buffered sucrose (20 % sucrose, 10 

mM Tris pH 7.5) containing 0.05 mM spermidine and 1 µl of Lipofectamine 2000. The mixture 

was incubated at room temperature for 5 min and then mixed with 50 mg of diet. 

Secondly, RNAi was evaluated using dsRNA synthesized in and purified from bacteria. Similar 

to the feeding assay using in vitro synthesized dsRNA, the insects were exposed for 5 h to 50 

mg of diet mixed with 32 µg of purified dsRNA from bacteria encapsulated with Lipofectamine 

2000 (Invitrogen) in a mixture of buffered sucrose (20 % sucrose, 10 mM Tris, pH 7.5) and 

0.05 mM spermidine. 

Feeding assays with a combination of 2 gene-specific dsRNAs, each targeting a separate 

gene, were also evaluated in D. suzukii larvae and adults. This was done by exposing the 

insects for 5 h on 50 mg of diet mixed with 32 µg of each of the gene-specific dsRNAs 

encapsulated with Lipofectamine 2000 (Invitrogen) in a mixture of buffered sucrose (20 % 

sucrose, 10 mM Tris, pH 7.5) and 0.05 mM spermidine. Both the in vitro synthesized and 

bacterially produced and purified dsRNA were evaluated in these assays. 

For all the experimental groups, both the larvae and adults were transferred to fresh diet 

without dsRNA after the 5 h exposure period. A total of 32 insects were used for each of the 

treatments with the gene-specific dsRNA and the assays were repeated 3 times (total number 

of insects per treatment = 96). Mortality was recorded daily for 15 days and for each repetition 

of the experiment, 2 insects per treatment were collected 48 h post treatment, homogenized 

in RLT buffer + β-mercaptoethanol for RNA extraction and stored in the buffer at −80 °C until 

further purification and transcript analysis (total number of insects per treatment collected for 

transcript analysis = 6). Transcript and statistical analysis were performed in the same way as 
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described in chapter 2 (section 2.2.6 and 2.2.7, respectively). The primers used for transcript 

analysis are listed in Table 7 and 8. 

Table 7: Target genes primer sequences used for quantitative PCR for oral bioassays  

Gene name Product size Primer sequence (5’- 3’) 

alpha-coatomer protein, isoform A (alpha 

COP)  

104bp F-GGCAACACACTTCCTGAGGT 

R-CCCTTGGAAACGGACAACAG 

Ribosomal protein S13 (rps13) 99bp F-TCCAAGATCGGCATCATCCT 

R-CAGACCCACCGACTTCATGA 

Vacuolar H[+]-ATPase 26kD E subunit 

(vha26) 

106bp F-GTGCAGCGATTAGAAGGAGC 

R-CATTTCGGTGTTTCGGCGG 

 

Table 8: Reference genes primer sequences used in quantitative PCR for oral bioassays 

Gene name Product size Primer sequence (5’- 3’) 

Ribosomal Protein L32 (rpl32) 110bp F-CCCAAGATCGTGAAGAAGCG 

R-CGCACTCTGTTGTCGATACC 

Glyceraldehyde-3-phosphate 

dehydrogenase 1 (gapdh 1)  

101bp F-GATCACCGTCTTCAGCGAAC 

R-TGTCGATGGTGGTGAAGACA  

 

3 Results   

3.1 RNAi effects in D. suzukii following feeding with naked dsRNA  

To verify whether RNAi could be induced in D. suzukii adults and larvae through the oral route, 

dsRNA was administered via feeding by mixing dsRNA with the artificial diet of the insects. 

Directly feeding in vitro synthesized D. suzukii target gene dsRNAs to the adults and larvae 



Chapter 3 

97 
 

did not result in gene silencing and mortality. Similarly, when bacteria expressing the dsRNAs 

were directly fed to the adults and larvae, no gene silencing and mortality was observed. As 

such, in vitro synthesized dsRNAs encapsulated in a liposome or bacterially synthesized 

dsRNAs extracted and encapsulated in liposomes were used in all subsequent feeding 

experiments. 

3.2 RNAi effects in D. suzukii following feeding with dsRNA encapsulated in 

liposomes 

Upon feeding in vitro synthesized gene-specific dsRNA encapsulated in a liposome to the 

larvae, significant silencing of rps13 (32 ± 3%), alpha COP (34 ± 2%) and vha26 (42 ± 2%), 

was observed in the ds-RPS13-, ds-alpha COP- and ds-Vha26-treated groups, respectively 

(Fig. 18a). Figure 18b shows the resulting mortality from silencing the targeted genes in the 

larvae. The highest mortality of 42 ± 7% was observed in the ds-Vha26-treated group, while 

the ds-RPS13- and ds-alpha COP-treated group resulted in 32 ± 7% and 22 ± 6% mortality, 

respectively. The mortality between the ds-Vha26 and ds-alpha COP group was found to be 

significantly different (p = 0.03). However, no significant difference was found between the ds-

RPS13 treatment and the other treatments (Fig. 18b).  

The oral treatment of adults with the gene-specific dsRNAs (ds-RPS13, ds-alpha COP and ds-

Vha26) also resulted in gene silencing and mortality. However, a much lower transcript 

silencing (19–24%) and mortality (10–23%) was observed in the adults (Fig. 18c and d).  
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Figure 18:  RNAi effects in D. suzukii adults and larvae following oral treatment with in vitro synthesized 

dsRNA targeting a single gene; a) and c) Gene silencing efficiency in D. suzukii larvae and adults, 

respectively, 48 h post feeding with dsRNA. The bars in the figure indicate different silencing efficiencies 

± SEM for the different target gene dsRNA treatments relative to the control group (ds-GFP-treated 

group) with a silencing efficiency of zero. All target gene silencing efficiencies differed significantly from 

the control (Bootstrapped median regression, p < 0.05) and bars labelled with different letters indicate 

a significant difference in mean between target gene treatments. The silencing efficiency was analysed 

using three biological replicates of 2 pooled insects (n = 6) per treatment, b) and d) Mortality in D. suzukii 

larvae and adults respectively. The bars in the figure indicate the mean mortality ± SEM for the different 

dsRNA treatments targeting single genes (rps13, alpha COP and vha26) in one dsRNA treatment. 

Mortality was analysed using a total of 90 insects per treatment. Bars labelled with different letters 

indicate a significant difference in mean mortality rates between treatments (GLM, p < 0.05). No mortality 

was observed in the ds-GFP-treated control group.  
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3.3 RNAi effects in D. suzukii following feeding with combinations of dsRNAs 

targeting different genes  

In a second set of experiments carried out together with the single-target dsRNA treatment 

assays, combinations of the different dsRNAs were administered orally to D. suzukii larvae 

and adults. The objective was to investigate whether high mortality percentages could be 

obtained in D. suzukii groups treated with two dsRNAs targeting two different target genes in 

the same insect. Figure 19a–c shows the transcript silencing of rps13 (30–35%), alpha COP 

(36–38%) and vha26 (40–46%) when a combination of two dsRNAs targeting two different 

genes was orally administered to the larvae. The combination of dsRNA specific for rps13 and 

alpha COP resulted in 40 ± 7% mortality, the combination of ds-RPS13 and ds-Vha26 caused 

44 ± 7% mortality and the combination of ds-alpha COP and ds-Vha26 caused 50 ± 7% 

mortality. No significant difference in mortality was found between the three treatments (Fig. 

19d).  
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Figure 19: RNAi effects in D. suzukii larvae following oral treatment with in vitro synthesized gene-

specific dsRNA targeting two genes in a single treatment; a)-c) Gene silencing efficiency in D. suzukii 

larvae at 48 h post feeding with dsRNAs. The bars in the figure indicate different silencing efficiencies ± 

SEM for the different target gene dsRNA treatments relative to the control group (ds-GFP-treated group) 

with a silencing efficiency of zero. All target gene silencing efficiencies differed significantly from the 

control (Bootstrapped median regression, p < 0.05) and bars labelled with different letters indicate a 

significant difference in mean between target gene treatments. The silencing efficiency was analysed 

using three biological replicates of 2 pooled insects (n = 6) per treatment, d) Mortality in D. suzukii larvae. 

The bars in the figure indicate the mean mortality ± SEM for the different dsRNA treatments targeting 

two genes (rps13 + alpha COP, rps13 + vha26 and alpha COP + vha26) in one dsRNA treatment. 

Mortality was analysed using a total of 90 insects per treatment. Bars labelled with different letters 

indicate a significant difference in mean mortality rates (GLM, p < 0.05). No mortality was observed in 

the ds-GFP-treated control group 

The mean silencing efficiencies in adult D. suzukii for the different target genes were rps13 

(19–21%), alpha COP (20–21%) and vha26 (21–22%) (Fig. 20a-c), and the resulting mortality 

for the different combination treatments were ds-RPS13+ds-alpha COP (15–21%), ds-

RPS13+ds-Vha26 (17–25%), and ds-alpha COP+ds-Vha26 (17–25%), respectively. No 

significant difference in mortality was observed between the different treatments (Fig. 20d). 
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Figure 20: RNAi effects in D. suzukii adults following oral treatment with in vitro synthesized gene-

specific dsRNA targeting two genes in a single treatment; a)-c) Gene silencing efficiency in D. suzukii 

adults at 48 h post feeding with dsRNA. The bars in the figure indicate different silencing efficiencies ± 

SEM for the different target gene dsRNA treatments relative to the control group (ds-GFP-treated group) 

with a silencing efficiency of zero. All target gene silencing efficiencies differed significantly from the 

control (Bootstrapped median regression, p < 0.05) and bars labelled with different letters indicate a 

significant difference in mean between target gene treatments. The silencing efficiency was analysed 

using three biological replicates of 2 pooled insects (n = 6) per treatment, d) Mortality in D. suzukii adults. 

The bars in the figure indicate the mean mortality ± SEM for the different dsRNA treatments targeting 

two genes (rps13 + alpha COP, rps13 + vha26 and alpha COP + vha26) in one dsRNA treatment. 

Mortality was analysed using a total of 90 insects per treatment. Bars labelled with different letters 

indicate a significant difference in mean mortality rates (GLM, p < 0.05). No mortality was observed in 

the ds-GFP-treated control group 
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3.4 RNAi effects in D. suzukii following feeding with dsRNA produced in bacteria 

In a final experiment, the larvae were fed with lipofectamine-encapsulated dsRNA that was 

purified from the RNase III-deficient E. coli bacteria expressing the dsRNA. Similarly, a 

significant silencing effect against rps13 (24 ± 1%), alpha COP (28 ± 3%) and vha26 (36 ± 2%) 

was observed in the ds-RPS13-, ds-alpha COP- and ds-Vha26-treated groups, respectively 

(Fig. 21a). The ds-Vha26-treated group showed the highest mortality of 26 ± 7% (p = 0.027), 

while the ds-RPS13- and ds-alpha COP-treated group resulted in 14 ± 6 and 15 ± 6% mortality, 

respectively (Fig. 21b).  

In adults, a significant silencing effect against rps13 (15%), alpha COP (19%) and vha26 (19%) 

was observed in the ds-RPS13, ds-alpha COP and ds-Vha26 treated groups, respectively 

(Figure 21c). However, very low mortality (<11%) was observed in all treated groups (Figure 

21d). 
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Figure 21:  RNAi effects in D. suzukii larvae and adults following oral treatment with bacterially 

synthesized gene specific dsRNA targeting a single gene in a single treatment, (a) and (c) Gene 

silencing efficiency in D. suzukii larvae and adults, respectively, 48 h post feeding with dsRNA. The bars 

in the figure indicate different silencing efficiencies ± SEM for the different target gene dsRNA treatments 

relative to the control group (ds-GFP treated group) with a silencing efficiency of 0. All target gene 

silencing efficiencies differed significantly from the control (gfp) (Bootstrapped median regression, p < 

0.05) and bars labelled with different letters indicate a significant difference in mean between target 

gene treatments. The silencing efficiency was analysed using three biological replicates of 2 pooled 

insects (n = 6) per treatment, (b) and (d) Mortality in D. suzukii larvae and adults. The bars in the figure 

indicate the mean mortality ± SEM for the different dsRNA treatments targeting single genes (rps13, 

alpha COP and vha26) in one dsRNA treatment. Mortality was analysed using a total of 90 insects per 

treatment. Bars labelled with different letters indicate a significant difference in mean mortality rates 

(GLM, p < 0.05).  

Administering a combination of two dsRNAs targeting two genes to the larvae resulted in 

significant transcript silencing of rps13 (25–26%), alpha COP (31–37%) and vha26 (35–37%) 

(Fig. 22a-c). The combination of dsRNA specific for rps13 and alpha COP resulted in 21 ± 8% 

mortality, the combination of ds-RPS13 and ds-Vha26 caused 26 ± 7% mortality and finally, 

the combination of ds-alpha COP and ds-Vha26 caused 21 ± 8% mortality (Fig. 22d). No 

mortality was observed in both the ds-GFP- and water-treated control groups. 
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Figure 22: RNAi effects in D. suzukii larvae following oral treatment with bacterially synthesized gene-

specific dsRNA targeting two genes in a single treatment; a)-c) Gene silencing efficiency in D. suzukii 

larvae at 48 h post feeding with dsRNA. The bars in the figure indicate different silencing efficiencies ± 

SEM for the different target gene dsRNA treatments relative to the control group (ds-GFP treated group) 

with a silencing efficiency of 0. All target gene silencing efficiencies differed significantly from the control 

(gfp) (Bootstrapped median regression, p < 0.05) and bars labelled with different letters indicate a 

significant difference in mean between target gene treatments. The silencing efficiency was analysed 

using three biological replicates of 2 pooled insects (n = 6) per treatment, d) Mortality in D. suzukii larvae 

following feeding assays with bacterially synthesized gene specific dsRNAs targeting two genes in a 

single treatment. The bars in the figure indicate the mean mortality ± SEM for the different dsRNA 

treatments targeting two genes (rps13 + alpha COP, rps13 + vha26 and alpha COP + vha26) in one 

dsRNA treatment. Mortality was analysed using a total of 90 insects per treatment. Bars labelled with 

different letters indicate a significant difference in mean mortality rates (GLM, p < 0.05).   
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In the adults, a significant transcript silencing (<20%, Fig. 23a-c) relative to the control (0% for 

ds-GFP treatment) and less than 20% mean mortality (Fig. 23d) was observed for all of the 

treated groups. 

 

Figure 23: RNAi effects in D. suzukii adults following oral treatment with bacterially synthesized gene-

specific dsRNA targeting two genes in a single treatment; a)-c) Gene silencing efficiency in D. suzukii 

adults at 48 h post feeding with dsRNA. The bars in the figure indicate different silencing efficiencies ± 

SEM for the different target gene dsRNA treatments relative to the control group (ds-GFP treated group) 

with a silencing efficiency of 0. All target gene silencing efficiencies differed significantly from the control 

(gfp) (Bootstrapped median regression, p < 0.05) and bars labelled with different letters indicate a 
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significant difference in mean between target gene treatments. The silencing efficiency was analysed 

using three biological replicates of 2 pooled insects (n = 6) per treatment, d) Mortality in D. suzukii adults 

following feeding assays with bacterially synthesized gene specific dsRNAs targeting two genes in a 

single treatment. The bars in the figure indicate the mean mortality ± SEM for the different dsRNA 

treatments targeting two genes (rps13 + alpha COP, rps13 + vha26 and alpha COP + vha26) in one 

dsRNA treatment. Mortality was analysed using a total of 90 insects per treatment. Bars labelled with 

different letters indicate a significant difference in mean mortality rates (GLM, p < 0.05).  

4 Discussion 

4.1 RNAi can be induced in D. suzukii by oral feeding of liposome-encapsulated 

dsRNA 

Feeding dsRNA to insects to induce RNAi has often proven to be less efficient than through 

microinjection (Rajagopal et al., 2002). Previous studies (Whyard et al., 2009; Zhang et al., 

2010; Zhang et al., 2015b) have suggested that the use of RNA carriers or transfection 

reagents is required to deliver dsRNA orally to several insects including Drosophila species, 

and this was in line with the findings in this study. No significant mortality was observed when 

naked dsRNAs, targeting rps13, alpha COP or vha26, were fed to D. suzukii larvae and adults. 

However, in the presence of the transfection reagent, Lipofectamine 2000 (Invitrogen), 

significant silencing and mortality were observed in the treated groups compared to the 

controls. The mechanisms that facilitate dsRNA uptake in the insect guts are still not yet 

completely understood and therefore, it is difficult to predict in which species this method of 

delivery might work. Compared to other insect species where a trans-membrane channel-

mediated uptake mechanism, involving sid1-like genes, can mediate dsRNA uptake in the gut 

(Gordon and Waterhouse, 2007; Tomoyasu et al., 2008; Cappelle et al., 2016), drosophilid 

species apparently lack any sid ortholog and endocytosis appears to facilitate cell uptake of 

dsRNA (Saleh et al., 2006). This process may, however, be too slow to facilitate a strong RNAi 
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response without the use of transfection reagents to improve delivery to gut cells. Also, naked 

dsRNA degradation in the gut could contribute to the decrease in the total amount of dsRNA 

available for uptake in the gut. Studies in other insect species have shown that dsRNA can be 

degraded in the insect (Allen and Walker III, 2012; Christiaens et al., 2014). More research 

into D. suzukii gut physiology and uptake mechanisms may lead to the development of better 

helper molecules to facilitate uptake of dietary dsRNA. 

The data presented in this chapter show that oral feeding of gene-specific dsRNA, combined 

with Lipofectamine, to D. suzukii larvae and adults can be used to successfully knock down 

the expression of target genes. Both bacterially expressed and in vitro synthesized dsRNA 

successfully triggered the silencing of target genes and caused significant mortality in the 

treated larvae. A brief exposure time of 5 h was sufficient to cause significant mortality in the 

treated individuals. Similar feeding assays in adults also showed successful silencing and 

mortality, but at much lower levels than in larvae. While the mechanisms by which the dsRNA 

enters and distributes itself in D. suzukii have not been fully elucidated, the fact that ingested 

dsRNA can induce RNAi in both the adults and the larvae, offers some intriguing possibilities 

for future applications. 

Three target genes, alpha COP, rps13 and vha26, were screened in this study for RNAi 

induction through the oral route. Alpha COP codes for the subunit of the cytosolic coatomer 

protein complex that binds to dilysine motifs and reversibly associates with Golgi non clathrin-

coated vesicles, which further mediate biosynthetic protein transport from the endoplasmic 

reticulum (ER), via the Golgi up to the trans Golgi network (Kitazawa et al., 2012). Vha26 

encodes a subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or 

catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments 

in eukaryotic cells (Dow, 1999). RPS13 codes for a constituent of the small ribosomal subunit. 

Ribosomes translate all mRNAs produced from nuclear genes and perform the majority of 
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cellular protein synthesis (Alonso and Santarén, 2006). Among the three tested target genes, 

silencing vha26 resulted in the highest mortality in these feeding assays (42%), compared to 

32% for rps13 and 22% for alpha COP. Transcript silencing efficiencies did not differ greatly 

between the three target genes indicating that, from the three genes that were evaluated in 

this analysis, vha26 is the best possible target gene for further RNAi optimization. In a second 

set of experiments, combinations of the different dsRNAs were also tested. The dsRNA doses 

used in these experiments were the same as used for each dsRNA in the single-target gene 

treatments, leading to a double amount of total dsRNA added to the diet. While the combination 

of dsRNA specific for rps13 and alpha COP resulted in 40% mortality, the mortality observed 

for the separate single dsRNA experiments for rps13 and alpha COP were 32% and 22%, 

respectively. Given the fact that the total amount of dsRNA that was administered in the 

combination assays was double the concentration given in the single target gene assays, we 

could not prove that using combinations is a better strategy than targeting single genes. 

Nevertheless, further research testing different genes, combinations and doses to D. suzukii 

will allow us to assess better whether combinations of gene targets could have potential for 

future applications. 

4.2 Bacterially produced dsRNA can induce RNAi in D. suzukii  

In view of the possibility of applying RNAi to control D. suzukii using an economically viable 

and a non-transgenic approach, we evaluated dsRNAs produced in a microbial system and 

also evaluated the silencing efficiency and mortality resulting from oral feeding bioassays using 

these dsRNAs. The dsRNAs were produced by transforming an RNase III-deficient E. coli 

strain (HT115) having an IPTG-inducible T7 polymerase activity, with a 38i plasmid (2814 bp) 

containing the gene-specific sequence to be transcribed. However, directly feeding the 

bacteria expressing the dsRNAs to adults and larvae did not lead to gene silencing and 

mortality. A possible explanation to this observation could be that when the dsRNA is released 
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from the bacteria in the insect gut, it faces a similar drawback of slow cellular uptake by the 

gut cells. Hence, the dsRNAs were purified from the bacteria and encapsulated into a 

liposome, to facilitate uptake into the insect gut cells. Like the feeding assays with in vitro 

synthesized dsRNA encapsulated in a liposome, RNAi effects were observed, with the ds-

Vha26-treated group showing the highest mortality (26%). A possible explanation for the low 

mortality in the groups treated with bacterially synthesized dsRNA could be the overestimation 

of the amount of dsRNA administered to the treated groups. The overestimation could have 

been caused by the presence of residual bacterial nucleic acids in the sample, which when 

measured spectrophotometrically gave a false positive result. Furthermore, the mortality 

values obtained in these experiments are the result of a single 5 h long exposure of the insects 

to the dsRNA. The situation in the field, where a continuous supply of dsRNA could be 

provided, could lead to a higher mortality, provided that the dose to which the insects are 

exposed to is high enough. Since dsRNA has been shown to be vulnerable to fast degradation 

in several insects (Allen and Walker III, 2012; Christiaens et al., 2014), protection of the dsRNA 

by nanoparticles could provide a more efficient silencing and cause more toxicity. Further 

research towards new formulation methods, which could improve the dsRNA persistency and 

stability both inside and outside the insect, might therefore lead to better results. 

4.3 Can RNAi be exploited as a crop protection strategy against D. suzukii? 

Concerning delivery of RNAi products against D. suzukii in the field, one of the biggest 

challenges is the fact that the larvae feed and grow inside the fruit, making it difficult for most 

control methods to get in contact with the larvae. This results in a limited range of current 

control methods to target the adult flies and prevent them from laying eggs. The transgenic 

delivery option presents the possibility of targeting the larvae in the crop since it constantly 

expresses the dsRNA against the pest. However, in many cases, the use of transgenic crops 

is not realistic. This can be due to political or legislative reasons, or because the crop in 
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question is technically difficult or unable to be transformed. Another major challenge is that the 

dsRNA expressed in the transgenic plant against D. suzukii will probably encounter the same 

difficulties in the gut of D. suzukii as the in vitro synthesized naked dsRNA. However, 

considering that D. suzukii (especially the larvae feeding inside the fruits) will constantly be 

exposed to the target gene dsRNA expressed in the transgenic plant, this might result to 

optimal levels of dsRNA being taken up by the insect cells to induce RNAi effects. 

Nevertheless, the transgenic delivery option will still face an additional challenge which is the 

wide food range for D. suzukii, offering shelter for the flies in or around the field. Besides the 

transgenic option, new alternative routes for dsRNA delivery such as the use of recombinant 

virus vectors, engineered to express the desired insect gene-specific dsRNA could be 

exploited in the future to control the larvae in the fruits. Kumar et al. (2012) demonstrated that 

the plant virus, tobacco rattle virus (TRV), expressing the antisense fragments for a dsRNA 

specific to a chewing insect, Manduca sexta, in Nicotiana attenuata plants, could specifically 

silence three midgut-expressed MsCYPs RNAs when the larvae were fed on these plants. 

Similarly, Wuriyanghan and Falk (2013) also used recombinant tobacco mosaic virus (TMV) to 

induce RNAi effects in Bactericera cockerelli on tomatillo plants. Plant root drenching and direct 

injection of dsRNA into the plant also present alternative delivery methods to target the in-fruit 

D. suzukii larvae. Hunter et al. (2012) demonstrated that dsRNA introduced into citrus trees 

through root drenching or stem injection could be detected in the leaves of the trees 53 days 

post treatment. In these experiments, the persistence of dsRNA in psyllids and leafhoppers 

was also detectable for 5–8 days post ingestion from treated citrus plants. Similarly, Li et al. 

(2015a) also demonstrated that exposing the brown plant hopper (Nilaparvata lugens) and 

Asian corn borer (Ostrinia furnacalis) to rice or maize that had been irrigated with a solution 

containing the dsRNA of an insect target gene, resulted in a significant increase in the insect’s 

mortality rate. Nevertheless, targeting in-fruit pest will require sufficient amounts of dsRNA to 

reach the fruits and be taken up by the larvae, and this remains to be verified. 
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In the framework of an integrated pest management (IPM) system, a developed dsRNA-based 

insecticide against D. suzukii can be used in several ways and in combination with other control 

methods. Besides direct spraying on the plant, the dsRNA-based insecticide in combination 

with attractants could be used to lure the flies towards traps placed around the field. Landolt 

et al. (2012a) showed that using a combination of food materials in place of the recommended 

baits of apple cider vinegar or grape wine (Beers et al., 2010) would provide a significant 

increase in the power of a trap-bait system for D. suzukii. One possibility of applying a dsRNA-

based insecticide will be through the use of bait sprays. Bait sprays are mainly based on 

phagostimulants (mainly proteins and sugars) combined with small amounts of insecticides 

(Vayssieres et al., 2009; Böckmann et al., 2014). They can substantially reduce insecticide 

use in agriculture because the mode of application is by only partial treatment of the canopy, 

as spots or bands. Bait sprays containing the target gene dsRNAs against D. suzukii could be 

applied in small amounts (an optimal concentrations) on the trunk of the trees to attract and 

kill the flies just before fruit maturation. Although this method will mostly target the adults, the 

fly population could be significantly reduced depending on the efficacy of the dsRNA-based 

insecticide and the attractiveness of the lure. Moreover, alternating control methods will also 

reduce the probability of resistance to the insecticide arising. 

Field usage of dsRNA for pest control will only be feasible if it is species specific and cost 

effective. Given that species are defined by the uniqueness of their gene sequences, it is 

possible to target portions of genes unique to one species but not to other closely related 

species (Baum et al., 2007; Whyard et al., 2009). Singh et al. (2013) also reported that even 

for a highly conserved gene such as β-tubulin, it was possible to design a dsRNA that can kill 

one species (A. aegypti) but not adversely affect another (D. melanogaster).  

Production of dsRNA in large scale will have to be cost effective. Microbial biofactories 

producing gene-specific dsRNAs present a cheaper option. There are many advantages in 
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using bacteria to produce and deliver dsRNA in insect pest control when compared with using 

in vitro synthesized dsRNA or plant-mediated dsRNA delivery. The most significant advantage 

is the lower cost per application of bacteria-expressed dsRNA when compared with that of in 

vitro synthesized dsRNA. Mass production of target gene dsRNAs may be achievable using 

engineered microorganisms as biofactories to produce the dsRNA in vivo. Since RNAi is not a 

knockout, but a knockdown method which is generally transient, to maximize the potential use 

of RNAi in crop protection, continuous and large-scale delivery of dsRNA for target gene 

silencing might be necessary to kill the insect pests (Huvenne and Smagghe, 2010). With the 

ease in manufacturing large quantities, the bacteria-expressed dsRNA could be used 

whenever necessary. Furthermore, the possibility of using either heat-killed bacteria containing 

dsRNA or dsRNA purified from the bacteria in the field may facilitate its public acceptance 

compared to the transgenic option. Although RNAi technology provides vast opportunities, 

species specificity is a critical issue that needs to be addressed before the use of RNAi-based 

pest control measures in the field. However, RNAi technology has the potential to address this 

problem by using sequence-specific and species-specific dsRNAs (Whyard et al., 2009). 

6 Conclusion 

Based on the results presented in this chapter, we can make several conclusions. Feeding 

naked dsRNA (either synthesized using an in vitro system or in bacteria) to D. suzukii adults 

and larvae does not induce RNAi effects in the insects. However, encapsulating either the in 

vitro or bacterially synthesized dsRNA in a liposome and feeding to D. suzukii adults and larvae 

leads to clear knockdown of the target genes. This implies that the protection of dsRNA in the 

insect gut and/or the facilitated uptake of dsRNA into the insect gut cells are vital for a 

successful RNAi-based approach for D. suzukii. Nevertheless, RNAi can be induced through 

the oral route in D. suzukii using both in vitro and bacterially synthesized dsRNA. This can be 

exploited to develop better delivery systems for RNAi-based control strategies for D. suzukii. 



  

 
    

 



 

 
    

 

Chapter 4 

Engineered flock house virus for targeted gene suppression 

through RNA interference in fruit flies: A proof of concept in 

Drosophila melanogaster 

Modified from: Taning, C. N. T et al. (2018). Engineered Flock House Virus for targeted gene 

suppression through RNAi in fruit flies (Drosophila melanogaster) in vitro and in vivo. Frontiers 

in physiology (submitted). 
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1 Introduction 

The oral feeding bioassay experiments, presented in Chapter 3, indicated that in D. suzukii, 

oral RNAi using naked dsRNA is not highly efficient. The successful use of liposomic 

nanoparticles, which encapsulate the dsRNA and facilitate cellular uptake, to improve oral 

RNAi efficiency suggested that this insect does not possess an efficient cellular uptake 

mechanism for naked dsRNA in the gut. Looking at possible application in the field, spraying 

of liposome-encapsulated dsRNAs is not very practical. Firstly, because these nanoparticles 

still carry a high cost but, equally important, also because the larvae, which are the most RNAi-

sensitive life stages (see chapter 3), are living inside the fruits and will therefore be difficult to 

expose to a sprayable dsRNA. This last problem could be remediated using transgenic plants, 

but as was discussed in the previous chapter, this is not always an option. Furthermore, 

transgenic plants would express naked dsRNA which might not be efficacious anyway, even 

when the larvae are constantly exposed to a high dose of dsRNAs.  

One possible alternative delivery method, which has proven successful in insects is to employ 

engineered micro-organisms that produce dsRNA molecules. While several studies have 

shown the successful use of engineered E. coli to produce and deliver dsRNA in insects (Zhu 

et al., 2011; Kumar et al., 2013; Taning et al., 2016b; Whitten et al., 2016), the same constraints 

as with sprayable dsRNA apply here. The dsRNA either needs to reach the larvae in the fruit, 

or it has to elicit a strong enough RNAi response in the adults, which has proven to be difficult. 

However, among the use of engineered micro-organisms for improved delivery, the possible 

application of engineered insect viruses for this purpose has received much less attention. 

Nevertheless, viruses have several attractive properties that make them excellent delivery 

vehicles for nucleic acids such as, efficiency and specificity of infection and the evolved 

avoidance of the immune response. We hypothesized that virus-induced gene silencing (VIGS) 
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could be a practical delivery method for D. suzukii, since it could cause a high expression of 

insecticidal dsRNAs inside virus-infected individuals (larvae and adults). 

VIGS is an RNA silencing-based technology that can be exploited to silence genes of interest 

in insects (Kolliopoulou et al., 2017). Briefly, infection by a virus triggers RNA silencing, an 

insect innate defense pathway that specifically degrades the viral genome. If the virus is 

engineered to carry a fragment of an insect gene transcript, RNA silencing would be directed 

to target this particular endogenous gene. In the past decade, a number of viral vectors have 

been developed as a powerful reverse genetic tool for the functional characterization of genes 

in plants (Kumagai et al., 1995; Ruiz et al., 1998; Purkayastha and Dasgupta, 2009; Lange et 

al., 2013). However, the majority of the published VIGS vectors have a host range limited to 

some plant species, and very few have been developed for application in insects (Kolliopoulou 

et al., 2017). Currently, only two insect virus-based RNAi delivery systems have been 

developed. The baculovirus system based on Autographa californica nuclear polyhedrosis 

virus (AcMNPV) (Huang et al., 2007; Kontogiannatos et al., 2013) and the densovirus system 

based on Aedes aegypti Densovirus (AeDNV) (Gu et al., 2011). Briefly, AcMNPV and AeDNV 

are DNA viruses which have a limited host range (lepidopterans and mosquitoes, respectively) 

and can be easily manipulated and produced in cell lines. These properties have driven 

research on these viruses for potential applications in environmentally safe pest control, and 

as gene transduction and RNAi delivery vectors. However, their specificity to a limited number 

of insect species is also a drawback in research, since it limits the exploitation of these virus-

based RNAi delivery systems for use in many other insects.  

In this chapter, we aimed to design a proof-of-concept for VIGS in fruit flies by engineering 

Flock House virus (FHV) as a virus-based RNAi delivery system in Drosophila. Since FHV is 

known to infect and replicate in many other insect species (Selling and Rueckert, 1984; 

Gallagher and Rueckert, 1988; Swevers et al., 2016), this will additionally provide an ideal 
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delivery system for functional studies in different RNAi recalcitrant insects. FHV belongs to the 

Nodaviridae family and the Alphanodavirus genus, and was first isolated from the grass grub 

Costelytra zealandica (Coleoptera) in New Zealand (Dearing et al., 1980). Although no 

information is available about its ecological epidemiology, it is a well-studied insect model virus 

in the laboratory. FHV has a simple genome organization composed of two positive-sense, 

single-stranded RNAs packaged by a single capsid into a non-enveloped icosahedral virion 

(Scotti et al., 1983; Schneemann et al., 1998). RNA1 is 3.1 kb in length and encodes the 

autonomous viral RNA-dependent RNA polymerase (RdRp, protein A; 112 kDa) (Friesen and 

Rueckert, 1981; Poch et al., 1989; Price et al., 2000). During FHV replication, a subgenomic 

RNA3 (0.4 kb) is also synthesized which encodes two proteins, B1 and B2 (Guarino et al., 

1984). The function of translated B1 protein is poorly defined, but may be important for 

maintenance of RNA replication (Ball, 1995), whereas protein B2 is responsible for 

suppressing Dicer-mediated RNA silencing (Li et al., 2002). Genomic RNA2 (1.4 kb) encodes 

the viral capsid protein precursor, CP-α (43 kDa), that is later cleaved into 40 kDa (β) and 4 

kDa (γ) fragments after provirion assembly (Friesen and Rueckert, 1981; Schneemann et al., 

1998). The autonomous ability of the FHV RNA1 to replicate and the robust intracellular 

genome synthesis and protein expression directed by subgenomic promoters make FHV an 

ideal candidate for amplifying heterologous sequences. 

A FHV plasmid-based system was designed, whereby an expression cassette that transcribes 

RNA1 with precise 5′- and 3′-ends can initiate high levels of FHV replication. The precise 5’- 

and 3’-ends of RNA1 were realized by positioning a promotor sequence and a self-cleaving 

ribozyme at the 5’ and 3’ end of RNA1, respectively. In the presence of RNA2, the replication 

system will generate functional virions. Since FHV infection results in production of viral 

siRNAs (Gammon and Mello, 2015), an insertion of foreign sequences in the FHV genome 

could therefore be employed to deliver specific RNAi effects in infected cells (Fig. 24).  
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Figure 24: Schematic illustration of FHV-based RNAi delivery in Drosophila. Cell transfection and 

activation of FHV RNA1 and RNA2-based plasmids lead to the expression of the FHV genome. During 

the replication of FHV RNA1, dsRNAs are formed. Through the production of viral siRNAs, an insertion 

of target gene sequences in the FHV genome could lead to a specific RNAi effect in infected cells. 

Furthermore, the system will generate functional recombinant virions that can infect neighbouring cells, 

spreading the RNAi signal. 

Herein, using D. melanogaster for the proof of concept, since no cell lines are currently 

available for D. suzukii, we first developed a recombinant FHV expressing selected D. 
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melanogaster target gene sequences and then assessed whether it could replicate and induce 

targeted gene suppression in D. melanogaster. To this end, we first examined whether the 

engineered FHV plasmids could express the recombinant FHV clones in S2 cells. We then 

investigated whether the resulting infective recombinant FHV can induce gene silencing in vitro 

in S2 cells and in vivo in adult D. melanogaster.  

2 Materials and Methods  

2.1 Cell culture  

Schneider 2 (S2) cells, derived from a primary culture of D. melanogaster embryos (Schneider, 

1972), were maintained at 27 °C in InsectXpress culture medium (Lonza) supplemented with 

10% Fetal Bovine Serum (FBS) (Sigma-Aldrich) at the Laboratory of Agrozoology, Ghent 

University, Belgium. 

2.2  Insect culture 

D. melanogaster adults and larvae used in this research came from the same culture and were 

reared on a similar agar-yeast-cornmeal diet as described in chapter 2, section 2.2.1. 

2.3 Target gene selection 

The target genes used in this study, alpha COP, rps13 and vha26, were selected based on 

our findings in chapter 2 and 3, which reported on their effectiveness in causing mortality to 

the closely related species, D. suzukii. Homologous target gene sequences for D. 

melanogaster were retrieved from the database of Drosophila genes and genome 

(http://flybase.org/) by BLAST analysis using known query sequences from D. suzukii. The 

chosen target region from each gene selected was amplified using designed synthetic primers 
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containing restriction sites for AsiSI (GCGATCGC) and BsrGI (TGTACA) flanking both the 5’ 

and 3’ ends, respectively (Table 9). The Enhanced green fluorescent protein gene (eGFP) was 

used as a reporter gene in this study. The entire eGFP sequence was amplified with synthetic 

primers including restriction sites for NsiI (ATGCAT) and AsiSI flanking its 5’ and 3’ ends, 

respectively (Table 9)  

Table 9: Primers for genes used in designing the FHV-based RNAi delivery system 

Target genes Accession Primer sequence (5′-3′)* Product size  

alpha-coatomer protein, 

isoform A (alpha COP) 

NM_058047.

5 

F-TGATCGCCTTGTGAAGT 

R- GATCGTAGGTGCTGTTCTCCA  

499bp 

Ribosomal protein S13 

(rps13) 

X91854.1 F-GCAGATGATGTCAAGGA 

R- ATGTAGGACCCCGCAAGAC 

421bp 

Vacuolar H[+]-ATPase 26kD 

E subunit (vha26) 

U38198.1 F-AGCACCGAAATGGACCT 

R-ATTGGCGAACATGCGAATA 

449bp 

Enhanced Green Fluorescent 

protein (Reporter) (egfp) 

/ F-ATGGTGAGCAAGGGCGAGGA 

R-TTACTTGTAGAGCTCGTCCA 

720bp 

*Restriction enzyme sites are not included in the primer sequence 

2.4 Plasmid constructs for the expression of both eGFP and target gene sequences  

Standard molecular cloning techniques were used unless otherwise stated. A plasmid 

(pMT/V5-His A) containing the full FHV RNA1 genome and a ribozyme sequence derived from 

hepatitis delta virus (HDV) attached to its 3’ end was kindly provided by Professor Ronald Van 

Rij (Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands) (Fig. 25a). Self-

cleaving ribozymes such as the HDV ribozyme catalyse sequence-specific intramolecular 

cleavage of RNA. Hence, by placing the HDV ribozyme sequence directly after the 3’ end of 

the FHV RNA1 sequence in the recombinant plasmid, the exact 3’ end of FHV RNA1 will be 
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maintained in the expressed FHV RNA1 transcript (required for the generation of a functional 

virus), after the HDV ribozyme has catalysed its own scission from the transcript. Based on 

Maharaj et al. (2014), an insertion site was created at position 3037 bp of the pMT-FHV RNA1 

genome for the introduction of the reporter gene (egfp) and subsequently a D. melanogaster 

target gene sequence for dsRNA production during viral replication. First, a polylinker, 

ATGCATGCGATCGCTGTACA, composed of three restriction sites, NsiI, AsiSI and BsrGI was 

inserted into position 3037 bp of the pMT-FHV RNA1 genome (Fig. 25b). After confirmation by 

sequencing and restriction digest analysis, egfp was introduced in between the NsiI and AsiSI 

restriction sites to create pMT-FHV RNA1-GFP replicons (Fig. 25c). Additional expression 

constructs were generated where D. melanogaster target genes (vha26, rps13 and alpha 

COP) were inserted after egfp in between AsiSI and BsrGI restriction sites (Fig. 25d). The FHV 

RNA2 sequence tailed at its 3’ end by the HDV ribozyme sequence (Fig. 25e) was synthesized 

(by gene synthesis: ThermoFisher Scientific) and cloned into the vector backbone of the pMT-

FHV RNA1 plasmid (plasmid without FHV RNA1). A non-virus positive control construct for 

eGFP expression was made by replacing the FHV RNA1 genome in the plasmid with egfp (Fig. 

25f). All constructs were sequenced to ensure maintenance of sequence identity and to assess 

for spurious mutations in the constructs. 
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Figure 25: Schematic illustration of FHV RNA1-based plasmid systems for foreign gene expression in 

Drosophila S2 cells. 

2.5 Transfection of S2 cells and virus detection by fluorescence microscopy 

S2 cells were transiently transfected with the engineered plasmids using Escort IV (Sigma-

Aldrich), according to the manufacturer’s instructions. Briefly, each well of a 6-well plate was 

filled with 3 x 106 S2 cells and washed twice with serum-free culture medium. 14 µL of the 

Escort IV was first pre-incubated alone for 30-45 min in serum-free culture medium and then 
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30 min together with 1.5 µg of each of the pMT-FHV RNA1 plasmids plus 1.5 µg of the pMT-

FHV RNA2 plasmid (1:1 ratio). The transfection medium was added to the cells and incubated 

for 16 h at 27°C. After incubation, the transfection medium was replaced with fresh medium 

containing serum (10% FBS) and further incubated for 24 h for cell recovery. Following cell 

recovery, copper sulfate (CuSO4) was added to the medium to a final concentration of 700 µM 

to activate the plasmid promoter to express FHV RNA1 and 2. S2 cells were then observed for 

eGFP expression at 72 h post-activation using a Nikon Eclipse TS-100 microscope (Melville, 

NY, USA) and NIS Elements BR 4.11.00 imaging software (Nikon, Melville, NY). The plasmid 

containing only egfp (pMT-eGFP) was used as positive control for transfection and plasmid 

activation for eGFP expression, while the plasmid containing the wild type (WT) genome, pMT-

FHV RNA1, was used as a negative control (no eGFP expression). 

2.6 Detection of FHV expression by PCR 

After confirmation of eGFP expression by imaging, cells obtained from each treatment were 

lysed and total RNA was extracted using the RNeasy Mini Kit (Qiagen). After DNase I treatment 

(Ambion) to remove residual genomic and plasmid DNA, the RNA was quantified using a 

NanoDrop ND-1000 (Thermo Scientific) and verified by 1.5% agarose gel electrophoresis. 

Total RNA (1 µg) was reverse transcribed using the SuperScript IV kit (Invitrogen) according 

to manufacturer’s instructions. The resulting complementary DNA (cDNA) was used as a 

template in a PCR reaction for the detection of FHV using designed primers (Table 10). The 

primers used for FHV detection were designed to detect the negative strand of the virus, to 

further confirm for virus replication. The PCR reactions included 0.2 µl of Taq DNA polymerase 

(Invitrogen), 2 µl of 10x PCR buffer (Invitrogen), 0.6 μl of 10 μM forward primer (Invitrogen), 

0.6 μl of 10 μM of reverse primer (Invitrogen), 0.6 µl of 50 mM MgCl2, 0.6 µl of 10 mM dNTPs, 

15 μl of nuclease-free water and 0.9 µl of cDNA, in a total volume of 20.5 μl. The amplification 
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conditions were 2 min at 94 °C followed by 33 cycles of 30 s at 94 °C, 30 s at 60 °C and 45 s 

at 72 °C, and then 10 min at 72 °C and infinity at 10 °C. 

 Table 10: Primers used for PCR detection of FHV RNA1 and 2 

Target genes Primer sequence (5′-3′) Product size 

FHV RNA1 F-GTTGGGACGGTTTATTCAGC  

R-ATCGGTATGGGACACAAGGA 

400bp 

FHV RNA2 F-ATCAAGAGGTGGCGAGTCAT 

R-GCATTTACCCAACGTCGAAC 

500bp 

 

2.7 Virus amplification 

While some cells were collected for FHV detection by PCR, the infectious viral particles were 

harvested from the remaining cells and supernatant (72 h post-transfection). First, the cells 

from each treatment were centrifuged at 1000 rpm for 5 min and then 90% of the medium was 

taken out. The cells and residual medium were subjected to two cycles of freeze-thawing and 

later centrifugation at 8000 rpm for 10 min to remove cell debris. The unpurified infectious virus 

supernatant was used to infect virus-free S2 cells and the cells were then incubated for 72 h 

at 27 °C. After incubation, the infectious virus was extracted from the cells as described above 

and the process was repeated three times with the aim of increasing the viral load. Based on 

preliminary experiments, concentrating the viral load three times was just enough to avoid 

more than 90% S2 cell mortality after 72 h. The supernatant containing the infective virus, 

obtained from the third repeat, was used to infect S2 cells and adult D. melanogaster in the in 

vivo and in vitro bioassays, respectively. This step was repeated four times for each separate 

biological repeat per treatment. Prior to the bioassays, qRT-PCR was used to confirm that the 

viral titer was the same between the gene targeting and non-gene targeting FHV inoculums 

(Table 11).  
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Table 11: Primers used for detecting the virus in the inoculums 

Target  Primer sequence (5′-3′) Product size  

FHV RNA1 F-GCCTGGTGTAGGCGTTAAAA 

R-CAGGATGCTCAAAGGTCAGAG 

101bp 

 

2.8 Cell viability assays 

For these assays, 100 µl of the unpurified viral supernatant (for each treatment) was added to 

each well of a 6-well plate filled with 3 x 106 S2 cells and then incubated at 27 °C. The infected 

cells were observed daily under a light microscope. After 72 h, a time point where a clear 

difference in cell growth could be visually observed between the different treatments, live and 

dead (stained with 0.4% Trypan blue) cells were enumerated manually under a light 

microscopy (10 X magnification), using a Neubauer haemocytometer according to Decombel 

et al. (2004) and Chan et al. (2015). Cell viability was calculated as the ratio of live cells to 

death cells in the total cell population. This experiment was repeated four times for each 

separate biological repeat per treatment. 

2.9 Survival bioassay 

Survival bioassays were performed by infecting D. melanogaster adults with the engineered 

virus and then monitoring their survival over time. Three to four-day-old D. melanogaster adult 

flies were anesthetized with diethyl ether for 2 min, immobilized in a 1.5% agarose plate and 

injected with the unpurified virus supernatant. A volume of 100 nl of the treatments (RNA1 

RS13, RNA1 Vha26, RNA1 alpha COP) and controls (RNA1 eGFP, RNA1, no virus), obtained 

as described above, was injected into the haemolymph using a microinjector (FemtoJet, 

Eppendorf) and needles prepared with glass capillary tubes. Since the virus was produced in 

an in vitro cell based system where the cells were incubated in a growth medium, the medium 
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was included as an extra control in the experiment. This controls that the medium has no effect 

on the survival of the insects after injection. Sixteen adult flies were injected per treatment and 

this was repeated four times to give a total number of 64 adults injected per treatment. After 

injection, the flies were allowed to recover for 10 min in a horizontally placed 50 ml tube, and 

then transferred into 50 ml tubes containing 10 ml of diet and incubated at 25 °C and 65% RH. 

The flies were evaluated for mortality every day for 12 days. Four surviving insects per 

treatment were taken on the fourth day (the day with the highest observed mortality), pooled 

and homogenized in RLT buffer (Qiagen) + β-mercapto ethanol for RNA extraction, and stored 

in the buffer at -80 °C until further purification and transcript analysis. This was repeated for 

each replication of the bioassay (total number of infected adults collected per treatment for 

transcript analysis = 16).  

2.10 Reverse transcription quantitative PCR (RT-qPCR) of insect mRNA 

Transcript analyses were performed as described in chapter 2 and 3 using the primers in Table 

12.  

Table 12: Primers used in quantitative RT PCR 

Target genes Accession Primer sequence (5′-3′) Product size  

alpha-coatomer protein, 

isoform A (alpha COP) 

NM_058047.5 F-GGGTCAGAGCATCATTGCTT 

R-CTCCAGAGCGAGTCCAAATC  

100bp 

Ribosomal protein S13 

(rps13) 

X91854.1 F-CCGTCTGATTCTGGTCGAGT 

R-GCAGTGCTCGACTCGTATTTC 

99bp 

Vacuolar H[+]-ATPase 

26kD E subunit (vha26) 

U38198.1 F-GCACGCGACACTTAATACCC 

R-GTGAAAGCTGCACTTGATGG 

99bp 

Alpha-tubulin at 84B 

(αTub84B) 

NM_057424.4 F- TGTCGCGTGTGAAACACTTC 

R-AGCAGGCGTTTCCAATCTG 

96bp 
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The endogenous control gene, alpha-tubulin at 84B (αTub84B) was used for normalization of 

the data. The relative amounts of the target gene transcripts in the S2 cell samples with the 

engineered FHV containing the D. melanogaster target gene specific sequence were 

normalized to the endogenous reference gene by the equation ratio 2-ΔΔCt (Livak and 

Schmittgen, 2001). Appropriate controls, no-template control and no reverse transcriptase 

control, were also included in the assay.  

2.11 Statistical analysis 

Cell viability data between the treated groups was tested using ANOVA followed by 

Bonferroni’s multi comparison tests. Survival data from treated D. melanogaster adults was 

analyzed according to the Kaplan–Meier method (Kaplan and Meier, 1958). The Gehan–

Breslow–Wilcoxon and log-rank (Mantel–Cox) tests were used to compare the statistical 

significance (p < 0.05) between the datasets (controls and treatments). The Gehan–Breslow–

Wilcoxon test measures more at early time points, while the log-rank (Mantel–Cox) test 

measures equally at all time points. The analyses were performed using GraphPad Prism v5.0 

software (GraphPad, La Jolla, CA). For the qRT-PCR analysis, the differences between groups 

were calculated by an unpaired t-test (p < 0.05) and performed in qBase+ software. 

3 Results  

3.1 Organization and generation of recombinant FHV expressing eGFP as a reporter 

gene 

The modified FHV vectors for targeted gene suppression in D. melanogaster were designed 

by inserting a reporter gene (egfp) and D. melanogaster target gene sequences under the 

control of the B2 subgenomic promoter as shown schematically in Fig. 25d. More specifically, 
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the insertion occurs after the critical residues necessary for the functioning of the B2 protein 

(Chao et al., 2005) (Fig. 26). 

 

Figure 26: Comparison between wild type FHV B2 and Recombinant FHV B2 protein. Alignment of 

recombinant B2 Protein amino acid sequence from recombinant FHV with wild type FHV B2 Protein 

amino acid sequence (P68831-B2_FHV) using CLUSTAL OMEGA (1.2.4)  

This design results in the expression of egfp, which provides a robust marker for confirming 

the expression of the recombinant vectors in the transfected cells. Direct visualization of green 

fluorescence in S2 cells at 72 h post-transfection confirmed the expression of the recombinant 

FHV (Fig. 27a). As expected, eGFP fluorescence was not observed in the cells expressing the 

wild type FHV genome (pMT-FHV RNA1). However, we could confirm the presence of FHV by 

PCR in wild type FHV transfected cells which showed no fluorescence (Fig 27b). 



Chapter 4 

130 
 

 

 

Figure 27: Detection of recombinant FHV RNA1 by fluorescence and PCR (a) Fluorescence microscopy 

analysis of S2 cells expressing the engineered FHV plasmids, containing an eGFP construct, indicating 

successful expression of the inserted gene. The FHV RNA1 plasmid, not containing an eGFP fragment, 

was used as negative control, while the plasmid expressing only eGFP without FHV was used as a 

positive control for eGFP expression. Nikon Eclipse TS-100 microscope and NIS Elements BR 4.11.00 

imaging software (Nikon, Melville, NY) were used for the microscopy analysis, (b) PCR detection of FHV 

RNA1 and RNA2 expression. 
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3.2 Recombinant FHV can induce targeted gene suppression and mortality in 

Drosophila S2 cells 

With the aim of evaluating the potential bioactivity of the infectious recombinant FHV, the 

infective virions were harvested from the cells and used to inoculate virus-free S2 cells. qRT-

PCR analysis confirmed that the viral titers in the different treatments were comparable (Fig. 

28). 

 

Figure 28: qRT-PCR confirmation that the viral titer was the same between the gene- targeting and 

non-gene targeting FHV inoculums for the in vitro and in vivo bioassays. Bars represent the mean ± 

SEM of the quantification cycle value (Cq-value). Different letters indicate statistically significant 

differences (p < 0.05). 

At 72 h post-inoculation, a significant decrease (p < 0.05) in cell viability was observed for all 

the samples infected with the gene targeting recombinant virus, RPS13 (27 ± 9%), Vha26 (48 

± 13%), alpha COP (40 ± 10%) compared to the non-gene targeting controls, RNA1 eGFP (83 

± 10%), RNA1 (76 ± 11%), pMT eGFP (92 ± 6%) and No virus (94 ± 5%) (Fig. 29a and b). 
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Figure 29: Cell viability at 72 h post-infection with a virus supernatant containing either the wild type 

FHV (RNA1), either of the four recombinant FHV (RPS13, Vha26, alpha COP and RNA1eGFP), or No 

virus controls (pMT eGFP and No virus) (a) Cell viability post-infection. Bars represent the mean ± SEM. 

Different letters indicate statistically significant differences (p < 0.05), (b) Images showing cell viability 

at 72 h post-infection. 
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Next, we verified whether the observed significant decrease in cell viability for the FHV target 

gene treatments was linked to the silencing of the targeted genes. To this end, qRT-PCR was 

performed on samples collected from the infected cells. The transcript level for RPS13 in the 

FHV RPS13 infected cells was reduced to 13 ± 3% compared to its transcript level in the FHV 

eGFP infected cells (Fig. 30). Similarly, for the FHV Vha26- and FHV alpha COP-infected cells, 

the transcript levels for Vha26 and alpha COP were reduced to 33 ± 12% and 35±16%, 

respectively, compared to their transcript levels in the FHV eGFP control (Fig. 30). No 

significant difference (p ˃  0.05) in expression of the targeted genes was observed between the 

controls, FHV eGFP, FHV WT (wild type) and No virus. 

 

Figure 30: Target gene knockdown (a) alpha COP, (b) vha26 and (c) rps13 in D. melanogaster S2 cells 

at 72 h post-infection with the respective recombinant FHV (FHV alpha COP, FHV Vha26 and FHV 

RPS13) compared to the controls (No virus, wild type FHV and FHV eGFP). Bars represent the mean ± 

SEM. Different letters indicate statistically significant differences (p < 0.05). 
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3.3 Recombinant FHV can induce targeted gene suppression and mortality in adult 

D. melanogaster 

Once the bioactivity of the recombinant FHV was confirmed in vitro in S2 cells, we next aimed 

to verify whether similar results could be obtained in vivo in live insects. To this end, D. 

melanogaster adult flies were infected by microinjection of FHV into the haemocoel and 

observed daily. Interestingly, between days four to six post-infection, a big difference could be 

observed in the survival rates between the groups treated with the recombinant virus 

expressing the target gene sequences (rps13, vha26 and alpha COP) compared to the control 

groups (FHV eGFP, FHV WT, Medium and Water) (Fig. 31).  

 

Figure 31: Effect of virus induced gene silencing (VIGS) in Drosophila melanogaster flies, using a 

designed FHV-based RNAi delivery system. Survival of adult flies over 10 days post-injection with a 

virus supernatant containing either the wild type FHV (RNA1), either of the four recombinant FHV (RNA1 

RPS13, RNA1 Vha26, RNA1 alpha COP and RNA1eGFP), water or S2 cell culture medium. Mortality 

was analysed using a total of 48 insects per treatment.  
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By 10 days post-infection, none of the flies infected with the recombinant virus expressing the 

target genes survived (0%) in contrary to the control groups, where a significant proportion of 

the flies survived; FHV eGFP (49%), FHV WT (29%), Medium (88%), Water (92%) (Fig. 31).  

To determine whether this observed difference in mortality between the recombinant FHV 

target genes treated groups and the control groups was linked to target gene silencing, 

samples were collected on the fourth day (day with first high mortality in test groups) for gene 

expression analysis. For the FHV Vha26-treated insects, a significant decrease (p < 0.05) in 

the transcript level for Vha26 (18 ± 5%) compared to the FHV eGFP-treated control was 

observed (Fig. 32).  

 

Figure 32: VIGS in D. melanogaster adults infected with the recombinant virus. Inhibition of the 

expression of the target genes (a) vha26, (b) alpha COP and (c) rpS13 in D. melanogaster adults at 4 

days post-infection with the respective recombinant FHV (FHV Vha26, FHV alpha COP and FHV 

RPS13) compared to the controls (No virus, wild type FHV and FHV eGFP). Transcript levels were 

analysed using 4 biological replicates of 4 pooled insects (n = 16) per treatment. Bars represent the 

mean ± standard error. Different letters indicate statistically significant differences (p < 0.05). 
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Similarly, for FHV alpha COP and FHV RPS13-infected insects, the transcript levels for alpha 

COP (11 ± 1%) and RPS13 (22 ± 2%) were significantly (p < 0.05) lower when compared to 

the control FHV eGFP-infected insects (Fig. 32). No significant difference (p ˃ 0.05) in 

expression of the targeted genes was observed between the controls (FHV eGFP, FHV WT 

and Medium-injected insects (No virus)) (Fig. 32).  

4 Discussion 

In this study, we hypothesized that engineering FHV to express D. melanogaster target gene 

sequences could lead to VIGS when D. melanogaster cells are infected by recombinant clones 

of the virus. The findings of this study have three important implications. First, we show that a 

single stranded RNA insect virus can be engineered as a virus-based delivery system, for both 

in vitro and in vivo RNA silencing in Drosophila. Second, FHV is known to infect a wide range 

of insect species, hence this system could be easily adapted for RNAi- related studies in RNAi-

recalcitrant insect species. Finally, by using RNAi mediated by the recombinant FHV, we have 

shown that targeting essential genes such as rps13, alpha COP and vha26 causes cell 

mortality, which in turn leads to the death of the insect. 

4.1 Generation of infective recombinant virions 

In an efficient process, FHV RNA1 combines the properties of a message for an RNA replicase 

subunit with those of a template for replication by the same enzyme, to specifically direct its 

own replication in the cytoplasm of appropriate cells. To reconstruct this autonomous RNA 

replication system from cDNA clones, we based our strategy on Maharaj et al. (2014), where 

we inserted either egfp alone or egfp and one D. melanogaster target gene sequence (rps13, 

alpha COP or vha26) at position 3032 bp of FHV RNA1. Through a CuSO4 inducible pMT 

vector system, primary transcripts of FHV RNA1 were expressed in the cytoplasm of the 

Drosophila S2 cells. These transcripts were designed to undergo ribozyme-mediated autolysis 
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to generate competent templates for self-directed RNA replication. Like FHV RNA1, FHV 

RNA2 transcripts were also designed to undergo ribozyme-mediated autolysis to generate 

competent templates for capsid protein expression. This was done in accordance with previous 

studies which have shown that minimizing terminal extensions at the 3’end of the FHV primary 

transcript is critical in generating RNA molecules which can replicate (Ball, 1995). Using eGFP 

as a convenient reporter, we demonstrated that all recombinant FHV RNA1 transcripts with an 

eGFP open reading frame (ORF) were expressed, as evidenced by green fluorescence 

emitted by the cells. Additionally, the replication of the virus was confirmed by the detection of 

the reverse genome of the virus. These findings are in line with previous studies, which have 

also demonstrated successful FHV replication and eGFP expression, by using a similar 

strategy as described in this study (Cho and Dreher, 2006; Zhou et al., 2015; Zhou and 

Kearney, 2017). Nevertheless, eGFP fluorescence was only used in this study for detecting 

the expression of the virus. We were more interested in obtaining infective virions which could 

infect and replicate in Drosophila cells. To this regard, we prepared an unpurified virus 

supernatant through cycles of freeze-thawing and finally centrifugation. This virus supernatant 

was used to infect virus-free cells, which were then verified after three days for the presence 

of the virus through eGFP fluorescence and transcript detection. The observation of 

fluorescence and detection of the reverse genome of the virus, confirmed its replication in the 

newly infected cells.  

4.2 FHV-based RNAi delivery system is efficient in vitro 

Besides the infectivity of the virus, we were also interested to know if the recombinant virus 

could induce targeted gene suppression in S2 cells. To this regard, we infected virus-free S2 

cells with the unpurified virus supernatant and then evaluated the transcript level of the 

targeted genes when a visible decrease in cell viability was observed. Preliminary experiments 

had indicated that after concentrating and infecting new virus-free cells successively three 
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times, the resulting virus supernatant would cause less than 100% mortality after three days 

in newly infected cells. This data was vital for the planning on when to evaluate both cell viability 

and the transcript levels of the targeted genes in the surviving cells. Our results indicated a 

significant decrease in cell viability for all recombinant virus-infected cells, expressing D. 

melanogaster target gene sequences in comparison to the controls, which consisted of the 

recombinant virus expressing only eGFP and the wild type virus. Furthermore, transcript 

analysis of the treated samples indicated that mRNA levels for the targeted genes significantly 

decreased in the recombinant virus-treated samples in comparison to the controls. The 

correlation of a decrease in cell viability to the decrease in target gene transcripts could be 

explained by the essential role played by the expression products of these genes in the cell. 

Three target genes, alpha COP, rps13 and vha26, were chosen to evaluate the designed FHV-

based RNAi delivery system based on their essential functions, making them good RNAi 

targets (see chapters 2 and 3). By using a mosquito recombinant densovirus RNAi-based 

system, Gu et al. (2011) also reported that a 90% decrease in the expression of V-ATPase in 

C6/C36 cells led to increased cell mortality. However, in this case RNAi was triggered after 

expression of a short RNA hairpin by an RNA polymerase III promoter, which is predicted to 

be processed to a single siRNA by Dicer. In the FHV system, on the other hand, many different 

siRNAs are expected to be produced from the targeted gene region during RNA1 replication. 

Whether this results in more efficient gene silencing may require a direct comparison of both 

VIGS systems. 

4.3 FHV-based delivery RNAi system is efficient in vivo 

Once the ability of the virus-based RNAi delivery system was confirmed in vitro in cells, we 

proceeded to evaluate its efficiency in vivo in adult D. melanogaster flies. We used a simple 

bioassay set up, where we injected the flies with the same batch of unpurified virus supernatant 

used in the cell bioassays, and then evaluated for target gene silencing at the first signs of high 
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mortality. On day four after infecting the flies with the virus, we observed a slight increase in 

insect mortality. This was however not significantly different between the test groups (insects 

treated with the recombinant virus expressing the target genes) and the control groups (treated 

with either the recombinant virus expressing only eGFP or the wild type virus). Interestingly, 

from day six till day ten, we observed a significant difference in insect mortality between the 

test groups and the control groups. Samples collected on day four for transcript analysis, 

exhibited over 70% reduction in the transcript level for the target genes, explaining the 

significant increase in mortality observed in these test groups compared to the controls.  

These data demonstrate that our engineered VIGS system successfully induces a highly 

efficient gene silencing, which leads to an increase in mortality compared to the controls, 

including the wild type virus infection. A possible limitation for the use of the designed FHV-

based RNAi delivery system for functional genomics in live insects could arise from the fact 

that the FHV will eventually cause mortality in the insect, as it multiplies. This will make it 

difficult to study a phenotype other than mortality, which arises at a further point in the 

development of the insect, particularly for insects with long life cycles. Our results in this study 

indicated that up to 30% of the adult Drosophila flies survived for more than thirteen days 

following infection with the wild type FHV. Therefore, the FHV-based delivery system will only 

be practical if the expected phenotype arises before the virus causes mortality in the insect in 

question. A possible solution to decrease insect mortality and improve the FHV-based delivery 

system will be the use of a mild form of FHV to construct the delivery system. This could for 

instance be achieved through altered expression or mutations of the B2 protein (Han et al., 

2011; van Cleef et al., 2014), which will lead to less pathogenic effects in its host. Picorna-like 

viruses, such as iflaviruses and dicistroviruses (to which FHV belongs), have been reported to 

often occur as quasi-species in which multiple viral forms complement each other to support 

infection (Ojosnegros et al., 2011). In this quasi-species population, mild variants/mutants are 

present and can be selected for further modification and production in cells lines, given 
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appropriate genetic methods. Once this mild recombinant virus infects the cell, the difference 

in pathogenic effect with the mild wild type-infected cell will be determined by the expected 

phenotypic effect from target gene silencing. In such case, recombinant FHV could trigger 

specific gene silencing and concomitant phenotypes in the relative absence of non-specific 

effects due to viral replication. In another study, where recombinant BmNPV was used to 

deliver dsRNA targeting a juvenile hormone esterase-related (JHER) gene in the 

Mediterranean corn borer, Sesamia nonagrioides, many non-specific pathogenic effects 

associated with disrupted metamorphosis were observed in both the tests and controls 

(Kontogiannatos et al., 2013), despite the restricted host specificity of BmNPV (Maeda et al., 

1993). A solution for the wild type virus pathogenic effects was either the isolation or generation 

of incapacitated baculoviruses (that is baculoviruses that are deficient for an essential gene in 

the infection cycle, such as ie-1 or lef-8 (Efrose et al., 2010; Ioannidis et al., 2016)). In this way, 

the incapacitated baculoviruses can enter target cells and initiate early gene expression 

without progressing to the late phase of the infection cycle and cell lysis. 

In this study, the unpurified virus was used for both the in vitro (cell) and in vivo (live flies) 

bioassays. This is not an uncommon source of inoculum for infection. In fact, Gu et al. (2011) 

reported that when Aedes albopictus larvae were infected with unpurified recombinant Aedes 

aegypti densovirus (AeDNV), the expression of V-ATPase was downregulated by nearly 70% 

compared to controls. Virus-based expression systems are particularly useful for their easy 

manipulation, higher transfection efficiency, longer-term expression, and more persistent 

silencing effects in vivo (Sliva and Schnierle, 2010). Further studies to improve the use of this 

FHV-based RNAi delivery system will involve evaluating the infectivity of the virus through the 

oral route. Although injection, as used in this study, is one of the most commonly used delivery 

methods for in vivo delivery, it is technically demanding. Hence, optimizing an oral delivery 

method will facilitate the usage of this novel virus-based RNAi delivery system. Another aspect 

to be evaluated is the mutational rate of the recombinant virus. This is important to verify the 
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changes that may occur in the inserted sequence in the virus genome after long term 

maintenance of the recombinant virus in cell cultures or in live Drosophila populations. This is 

because RNA viruses are known to exhibit high mutation rates (Elena and Sanjuán, 2005). 

Nevertheless, as reported in this study, this novel FHV-based RNAi delivery system can be 

exploited, for functional genomic studies in Drosophila, including the agriculturally important 

spotted wing drosophila (D. suzukii). Furthermore, the ability of FHV to infect many insect 

species, gives this developed virus-based delivery system a unique ability to be broadly used 

for functional genomic studies in different RNAi-recalcitrant insect species. 
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General discussions and perspectives for future research 
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1 RNAi induction in D. suzukii through feeding in the context of field application 

For RNAi to be used in pest control in the field, the target pest must ideally ingest dsRNA 

through the oral route. In many insects, it has been observed that RNAi through oral uptake of 

dsRNA works less efficiently than by injecting into the haemolymph (Upadhyay et al., 2011; 

Luo et al., 2013; Prentice et al., 2017). This is also the case in many dipteran species to which 

D. suzukii belongs. Several factors have been implicated to explain why oral RNAi often works 

less efficiently (Christiaens et al., 2014; Wang et al., 2016b; Spit et al., 2017). One of the most 

important ones is that many insects are capable of rapidly degrading dsRNA in their digestive 

system, by nucleases which are either present in the saliva, or expressed in the gut itself 

(Christiaens et al., 2014; Wynant et al., 2014b; Garcia et al., 2017; Spit et al., 2017). In Diptera, 

the stability of dsRNA in the gut has never been investigated, to the best of our knowledge. 

However, another important factor has been shown to affect RNAi efficiency in these species. 

A recent review has highlighted that all successful oral RNAi studies in Diptera were obtained 

using certain formulations, similar to the ones we used in our study (Christiaens et al., 2018). 

Whyard et al. (2009) reported successful silencing of the ubiquitously-expressed γ-tubulin gene 

(γTub23C) in four Drosophila species (D. melanogaster, D. sechellia, D. yakuba, and D. 

pseudoobscura) following feeding with conspecific dsRNA encapsulated in liposomes. 

Similarly, in the African malaria mosquito (Anopheles gambiae), successful silencing of two 

chitin synthase genes (CHSI and CHSII) was achieved by feeding the larvae with 

dsRNA/chitosan self-assembled nanoparticles. These studies all affirm the need to optimize 

cellular uptake of dsRNAs in Diptera for an improved RNAi efficiency. 

In our oral RNAi experiments in D. suzukii, we also observed that feeding naked dsRNA did 

not elicit a strong enough silencing response for RNAi to be useful for future pest control 

applications. However, mixing the dsRNA with a liposome, often used to facilitate or enhance 

cellular uptake of nucleic acids, resulted in a clear silencing response and associated 
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phenotypical effects, implying that also in D. suzukii, cellular uptake might be a limiting factor 

for efficient oral RNAi using naked dsRNA. While the use of liposomes might not be ideal for 

field application, given the high cost of these products, alternatives could be further 

investigated as well, such as polymers, which are usually much cheaper to produce. In 

vertebrates, these polymers have shown to not only protect nucleic acids against nucleolytic 

degradation, but in some cases, can also improve cellular uptake (Patil and Panyam, 2009; 

Ardana et al., 2015; Sarett et al., 2016; Wang et al., 2016a; Zhou et al., 2018). The perceived 

advantages in using polymers (e.g. chitosan) such as being low-cost, enabling high-throughput 

evaluation of phenotypes (Mysore et al., 2014), and being nontoxic besides their 

biodegradable nature (Dass and Choong, 2008) make them a novel tool for dsRNA delivery in 

the context of pest control (Zhang et al., 2010). Chitosan polymers have been used to 

demonstrate gene knockdown effects in A. gambiae (Zhang et al. 2015) and diet-based 

delivery of chitosan nanoparticles suppressed gene expression in the Asian corn borer (He et 

al., 2013). Recently, topical application of pathogen-specific dsRNA for virus resistance in 

plants was reported (Mitter et al., 2017). DsRNA was loaded on designer, nontoxic degradable, 

layered double hydroxide (LDH) clay nanosheets, and the complex is referred to as “BioClay.” 

BioClay offered protection against cucumber mosaic virus (CMV) and pepper mild mottle virus 

(PMMov) in both local lesion and systemic infection assays. In a similar way, by spraying fruits 

with BioClay containing dsRNA targeting genes in D. suzukii, LDH-based nanoparticle 

technology could also be exploited to offer protection to fruits against D. suzukii. 

The use of virus-like particles (VLPS) presents another interesting way of potentially delivering 

dsRNA into D. suzukii cells. VLPs are molecular vehicles assembled from key structural 

components of viral origin that have been repurposed to deliver a cargo different from the initial 

viral genome. The VLPs' components are proteins which participate in the formation of the viral 

capsid, and sometimes of the envelope as well. Although they do not retain their infective 

properties, VLPs are empty shells that are able to enter the respective target cells (Ludwig and 
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Wagner, 2007; Lund et al., 2010). Agricultural biotechnology could use VLPs and exploit 

certain properties that these particles possess, such as their capacity for packaging of foreign 

RNA to improve dsRNA delivery in D. suzukii. An example of a popular VLP system is derived 

from the tobacco mosaic virus (TMV) particle, which consists of its coat protein (CP) and has 

been the first macromolecular structure identified as capable of self-assembling in vitro. TMV 

carries a 300 nt stem-loop signal sequence in its RNA (origin of assembly, Oa), that interacts 

with CP to initiate packaging and capsid formation. Importantly, propagation of packaging in 

TMV is independent of RNA sequence, allowing for packaging of heterologous RNAs since 

only the initial nucleation requires the Oa sequence, while the process of elongation of 

packaging is independent of the sequence (Butler, 1999). This implies that foreign sequences 

engineered to contain the Oa sequence of TMV can be trans-packaged in vitro, inside the 

capsid protein of TMV, forming pseudo-virions (Smith et al., 2007, Maharaj et al., 2014). 

However, despite the efficiency in encapsidation, TMV does not infect or transverse the gut in 

insects and further engineering is required to achieve this goal, for instance by incorporation 

of peptide sequences in the CP protein to allow interaction with receptors in the insect gut 

epithelial cells. An alternative approach will be the use of viral CPs from viruses that can 

replicate in the plant host but are transmitted by the insect vector. Such viral CPs could be 

used as delivery vehicles of insecticidal molecules in the absence of formation of VLPs. For 

example, the RNA viruses of the family Luteoviridae replicate in plant hosts but are transmitted 

via a hemipteran vector in a persistent circulative non-replicative manner (Whitfield et al., 

2014). After fusion of the CPs with an insect-specific peptide toxin and expression in 

Arabidopsis plants, the fusion proteins were found to cross the gut barrier into the haemocoel 

of the insect vector to deliver their aphicidal cargo (Bonning et al., 2014). Instead of fusion with 

a toxin, this property could be exploited by engineering CPs to transport dsRNA targeting D. 

suzukii, for instance by fusion with a dsRNA binding domain. However, for this to work several 

challenges will first need to be addressed such as, finding a virus that can infect both the fruit 

plant and D. suzukii, and engineering the viral CP to successfully carry the target dsRNA.   
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The exploitation of cell-penetrating peptides (CPPs) could also present an alternative way to 

improve dsRNA uptake in D. suzukii. The hydrophobic nature of the cell membrane makes it 

impenetrable to most peptides, proteins, and oligonucleotides. However, certain peptides 

known as CPPs have been observed to have the ability to pass through cell membranes 

(Cermenati et al., 2011; Chen et al., 2012; Hughes et al., 2012; Parsons et al., 2018). In 

general, CPPs are short (less than 35 amino acid residues), water-soluble and partly 

hydrophobic, and/or polybasic peptides with a net positive charge at physiological pH. Their 

ability to translocate across cell membranes is attributed to their highly cationic and partly 

hydrophobic structure and this could be exploited to transfer dsRNAs into insect cells. Chen et 

al. (2012) demonstrated that three arginine-rich CPPs (SR9, HR9 and PR9) were able to form 

stable complexes with plasmid DNA and deliver DNA into in vitro cultured Spodoptera 

frugiperda cells (Sf9 cells) in a non-covalent and non-cytotoxic manner. Similarly, in a recent 

study with live insects, Gillet et al. (2017) reported that a chimeric CPP, PTD-DRBD (peptide 

transduction domain-dsRNA binding domain), combined with dsRNA targeting ChSII in the 

cotton boll weevil (Anthonomus grandis), forms a ribonucleoprotein particle (RNP) that 

improves RNAi efficiency through feeding in the insect. They further reported that the RNP 

slowed down nuclease activity (probably by masking the dsRNA) and internalization in insect 

gut cells was achieved within minutes after plasma membrane contact, limiting the exposure 

time of the RNPs to gut nucleases. The RNP therefore provided an approximately 2-fold 

increase in the efficiency of insect gene silencing upon oral delivery when compared to naked 

dsRNA. Taken together, these studies demonstrate the potential of CPPs in improving dsRNA 

stability and cellular entry, representing a path towards the design of enhanced RNAi strategies 

against insect pests, including D. suzukii.  

Nevertheless, moving towards an in-field application for D. suzukii, there are other aspects to 

consider as well. These fruit flies spend their larval life stages feeding inside the fruit in which 

they hatched from their egg. Therefore, conventional spraying applications of dsRNA will not 
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allow farmers to target these larvae, no matter which formulations are used to improve cellular 

uptake. And while there are several ways to get naked dsRNA into the plant, either via 

transgenic plants, via plant viruses expressing dsRNA or via root absorption/stem injection, 

these will only allow to expose the larvae to naked dsRNA. An alternative approach could be 

to target only adults, since they do not live inside the fruit, and could be targeted directly. In 

such an approach, bait sprays could be used. Bait spraying is a common method used in the 

control of fruit flies in the field (Vayssieres et al., 2009; Böckmann et al., 2014). The bait 

contains a protein attractant that is laced with an insecticide and is applied to the trunk of trees 

to attract and kill both male and female fruit flies. In the bait spray approach against D. suzukii, 

the insecticidal compound will be dsRNA-based and will be applied on the trunk of the trees to 

attract and kill the flies just before fruit maturation. However, the effectiveness of the bait 

approach will depend on both the ability of the bait to effectively lure the flies and on the efficacy 

of the dsRNA-based product as an insecticide. Current trapping strategies for D. suzukii are 

based on the use of traditional “fruit fly” traps baited with apple cider vinegar, vinegar and wine, 

or yeast/sugar water mixtures (Kleiber et al., 2014). Lure research has focused mainly on 

attractants based on fermentation products (Landolt et al., 2012b), and a synthetic lure based 

on these fermentation products, which is attractive to D. suzukii, has been formulated (Cha et 

al., 2014). The four-component (acetic acid, ethanol, acetoin and methionol) synthetic lure has 

been optimized to reduce the trapping of non-target insects (Cha et al., 2015) and has been 

developed into a commercially available product (TRÉCÉ Inc., Adair, OK, USA). Moreover, 

host plant volatiles from both fruit and leaves have also been identified as D. suzukii-specific 

feeding and oviposition attractants (Keesey et al., 2015). Another important aspect to consider 

when using baits is that insects vary in their response to baits depending on their physiological 

status and behavioural priorities (Browne, 1993). In D. suzukii, three studies have addressed 

its reproductive status and behavioural response to baited traps or odours. Burrack et al. 

(2015) reported that reproductively mature females with mature eggs, were generally caught 

in higher numbers early in the season before fruits were ripe and suitable for oviposition. Later 
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in the season, reproductively mature flies were caught in lower numbers when fruits were 

presumably more attractive than most of the baits tested. A recent follow-up study reported 

that D. suzukii aspirated off caneberries had higher egg loads than females caught in nearby 

traps (Swoboda-Bhattarai et al., 2017). Additional results from a Y-tube olfactometer bioassay 

further confirmed that mated D. suzukii females with mature eggs are highly attracted to fresh 

fruit odours (Revadi et al., 2015), although these odours were not tested against fermentation 

odours. The findings from these studies could be exploited to plan when in the crop growing 

season, baits used in combination with the developed RNAi-based product, could be placed in 

the field to achieve a maximum lethal effect in the D. suzukii population.  

2 Virus induced gene silencing can be exploited to control D. suzukii 

In this project, we opted to investigate a novel way of dsRNA delivery, namely virus-induced 

gene silencing (VIGS). Hoping to achieve an efficient and direct delivery of dsRNA into D. 

suzukii cells in this way, we developed and evaluated a FHV-based RNAi delivery system for 

Drosophila. We decided to use the model insect D. melanogaster for our proof of concept, 

since cell lines are available for this species. Our results in chapter 4 clearly indicated that the 

virus delivery system was functional and was efficient in inducing both target gene silencing 

and mortality in Drosophila cultured cells and live adults. However, we did not evaluate the 

effects of delivering the recombinant virus through the oral route yet. Future experiments where 

a known concentration of the virus is mixed with diet (using a similar experimental setup as 

described in chapter 3) and directly fed to D. suzukii will provide extra information to properly 

evaluate the potential of the FHV-based RNAi delivery system. Nevertheless, these results 

present the possibility of exploiting Drosophila specific viruses in developing virus-based RNAi 

control strategies for D. suzukii. In such a scenario, a naturally occurring Drosophila specific 

virus will be modified to express D. suzukii dsRNAs. Then, when this recombinant virus infects 

Drosophila spp, it will specifically cause faster mortality in D. suzukii due to target gene 
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silencing. Furthermore, such a system could be cost effective for farmers as they will just have 

to collect the dead infected D. suzukii (from infested fruits), crush them, dilute in water and 

spray on the field again to further control the residual D. suzukii populations on the field. 

Another route of applying the virus-based RNAi product could be through baited traps as 

discussed above. Rather than using a “lure and kill” strategy, a “lure and infect” strategy could 

be employed, where the baits could be designed to provide maximum exposure of the flies to 

the virus-based RNAi product without immediately killing the flies. This will allow the infected 

flies to spread the virus-based RNAi product to uninfected flies in the field, ultimately leading 

to a decrease in the fly population. The use of viruses in insect pest control is not an uncommon 

practice. Baculoviruses have been used for years and in many regions in the world to combat 

the infestation of corn fields by several Lepidopteran pests (Moscardi and Sosa-Gomez, 1992; 

Moscardi, 1999; Lacey et al., 2001; Szewczyk et al., 2006; Sosa-Gómez, 2017; Arthurs and 

Dara, 2018).  

Although no natural viruses have been isolated from D. suzukii, potential target viruses can be 

inferred from numerous studies in D. melanogaster. D. melanogaster is susceptible to 

numerous viruses and is a powerful model to study host-pathogen interactions (Lemaitre and 

Hoffmann, 2007). The study of viral infection and antiviral defence in Drosophila spp. (Huszar 

and Imler, 2008; Webster et al., 2015) indicates that the majority of Drosophila viruses are 

RNA viruses, including the Sigmaviruses (Rhabdoviridae) (Berkaloff et al., 1965), drosophila C 

virus (DCV) (Jousset et al., 1972), the picorna-like nora virus (Habayeb et al., 

2006), drosophila X virus (DXV) (Teninges et al., 1979), drosophila F virus (DFV) (Plus et al., 

1975) and drosophila P virus (DPV) (Jousset et al., 1972; Plus et al., 1975). Two recent studies 

have reported the susceptibility of D. suzukii to two RNA viruses, DCV (which naturally infects 

drosophilids) and FHV (which only infects drosophilids under controlled conditions) (Cattel et 

al., 2016; Lee and Vilcinskas, 2017). The specificity of DCV to naturally infect only drosophilids 

and its moderate genome size of 9 kb makes it ideal for developing a virus-based RNAi delivery 
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system for D. suzukii. In such a system, the DCV (also a single stranded RNA virus as the 

FHV) will be modified to express D. suzukii rps13, vha26 and alpha COP dsRNAs in a similar 

way to FHV, when it infects Drosophila cells. However, like with most genetically engineered 

organisms, several biosafety aspects will have to be evaluated prior to the use of such a virus-

based RNAi delivery system for the field control of D. suzukii. 

3 Safety aspects associated to the use of recombinant viruses for pest control 

The evaluation of potential risks associated with the use of recombinant viruses should include 

at least two levels of enquiry: the virus which is genetically modified and the fate of the 

recombinant material (summarized in Table 13).
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Table 13: Safety aspects associated with the use of recombinant viruses for pest control. 

 Biosafety issues Recommendation 

Virus 

specificity 

Infection of non-target species Selection of viruses with restricted host range. Host range of used virus strain 

(infectious clone) should be evaluated during risk assessment, by performing 

when necessary in vitro or in vivo infection studies (such as infection of the cells 

of non-target organisms) in addition to traditional PCR and sequencing methods 

Transgene 1) Transgene may present hazardous properties or 

change the vector properties 

2) Non-target effects of dsRNA sequence 

1) Risk assessment should take into account the characteristics of the transgene 

(nature, stability, condition of expression), the construction/production process 

and the characteristics of the final recombinant vector (absence/presence of new 

properties compared to the virus backbone) and possible or known side effects 

related to the expression of the transgene. 2) Bioinformatic analyses of sequence 

complementarity between the pool of siRNAs and target genes in non-target 

species 

Recombination Establishment of a new vector with novel biological 

and genetic properties: a) Genes that are interrupted 

or deleted in virus could be rescued during 

recombination, b) Transgene could be transferred to 

replication competent closely related viruses 

Epidemiological data concerning the occurrence of natural closely related viruses 

in the area of administration should be analysed to consider the necessity for in 

vitro or in vivo co-infection studies (between the recombinant vector and the 

potential natural closely related virus) 



Chapter 5 

153 
 

At the virus level, the specificity aspect has to be seriously considered if the recombinant virus 

is to be exploited for pest control in the field. For example, several reports have shown that 

most baculoviruses are not infectious toward predatory or beneficial insects outside of the 

order Lepidoptera, or toward other non-targeted organisms. Hence, baculoviruses have 

unanimously been concluded in many studies as safe for use as pest-controlling agents 

(Kroemer et al., 2015). In contrast to baculoviruses, FHV is known to infect and replicate in 

insect cells of different insect orders (Dasgupta et al., 2003; Dasgupta et al., 2007). Therefore, 

while FHV might make a good model for genetic modifications as viral delivery vehicles of 

dsRNA under confined laboratory experiments, it could pose potential risks if applied as a pest 

control agent. The use of DCV in this case presents a better biosafety option. 

Besides the specificity of the recombinant virus to its target insect pest, special attention should 

also be put into the selection of the target gene sequence which will be exploited through the 

virus to control the insect pest. Non-target effects could arise if the RNAi targeted gene in the 

pest insect shares high sequence similarity to that of other insects, especially beneficial 

insects. The risk in this scenario could arise when beneficial insects, such as generalist 

predators, feed on the primary pest insects containing the virus-derived dsRNAs targeting a 

gene in the pest. As such, if a high degree of similarity exists between the target gene 

sequence in the pest and the beneficial insect, this could lead to gene silencing in the beneficial 

insect as well. 

Furthermore, the ecological consequences of the release of recombinant viruses must be 

experimentally addressed in terms of the competitive characteristics of recombinant vs. the 

wild-type viruses, both in the greenhouse microcosm and in the field. Insertions into a virus 

genome could reduce the replication efficiency of the resulting recombinant virus, could affect 

the ability of the viral nucleic acid to be encapsidated properly, or could limit the ability of the 

recombinant virus to move from cell-to-cell or long distance within the host by affecting the 
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folding of a native viral protein. However, considering that the virus-expressed insect-dsRNA 

is meant to accelerate the speed of kill of the target insect, and hence the recombinant virus 

itself in the process, this will imply that the modification does not confer any selective ecological 

advantage to the recombinant virus in comparison to the wild-type virus. In other words, 

compared with the wild-type virus, the recombinant virus is expected to show reduced fitness, 

resulting in lower concentration or even complete removal from the system if left alone. 

Another possible concern associated with recombinant viruses is the potential of genetic 

recombination resulting in the foreign gene “jumping” from the recombinant virus to another 

organism. This could pose a risk if genes that are interrupted or deleted in a recombinant virus 

are either rescued during recombination or the transgene is transferred to replication 

competent closely related viruses. Recombination is a widespread phenomenon in viruses and 

can have a major impact on their evolution. Indeed, recombination has been associated with 

the expansion of viral host ranges, the emergence of new viruses, the alteration of transmission 

vector specificities, increases in virulence and pathogenesis, the modification of tissue 

tropisms, the evasion of host immunity, and the evolution of resistance to antivirals (Martin et 

al., 2011; Simon-Loriere and Holmes, 2011). Recombination seems to be highly frequent in 

some dsDNA viruses, where recombination is intimately linked to replication and DNA repair 

and can prevent the progressive accumulation of harmful mutations in their genomes. In 

contrast, recombination occurs at variable frequencies in (+)ssRNA viruses, with some families 

showing high rates (e.g. Picornaviridae), while others show only occasional (e.g. Flaviviridae) 

or nonexistent (e.g. Leviviridae) occurrence. The evolutionary reasons for the occurrence of 

recombination in RNA viruses are not clear. Since RNA viruses exhibit high mutation rates and 

large population sizes, it is more likely that these factors, rather than recombination, drive their 

evolutionary fate, as they regularly produce advantageous mutations and protect themselves 

from the accumulation of deleterious ones. Nevertheless, this does not exclude the possibility 

that natural selection can favour specific genotypes generated by recombination. 
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Several key factors limit or exclude the occurrence of genetic recombination between donor 

and recipient DNAs, including physical proximity (that is, localization in the same compartment 

within a single cell), degree of homology and similar modes of replication. However, if a 

recombinant virus pesticide is used long enough and at high concentrations in the field, it is 

expected that genetic recombination can eventually occur. In the field, as in laboratory 

conditions, such an occurrence is expected to be highest between highly homologous viruses 

(that is, the recombinant virus donor and wild-type virus recipient) that are infectious within the 

same host. The key question in terms of safety, however, is whether such recombination will 

result in an environmentally detrimental trait that will become fixed in the population. This will 

likely not be the case for recombinant viruses carrying a transgene for insect dsRNA 

expression, since a strong negative selection pressure arising from the rapid death of the target 

insect will lead to the recombinant virus being quickly outcompeted by the wild-type. 

Nevertheless, factors such as the homogeneity of the virus to be modified, the transgene and 

the possibility of recombination will have to be properly evaluated for each recombinant virus, 

prior to field application. 

4 Conclusion 

In conclusion, this PhD accomplished three major goals. First, we confirmed the functionality 

of the RNAi machinery in D. suzukii. Secondly, in view of potential field application, we 

demonstrated that oral RNAi was feasible in D. suzukii. Finally, we developed an RNAi delivery 

system to improve RNAi efficiency in Drosophila spp. These findings all confirmed the potential 

of RNAi technology as a possible tool in the development of a management strategy for D. 

suzukii. However, as discussed above, several more factors will have to be evaluated before 

an RNAi-based product targeting D. suzukii is available for field application.  
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Drosophila suzukii, commonly known as spotted wing drosophila, was first described in Asia, 

but has recently become an invasive pest in many regions around the world, including Europe. 

Its movement into these new regions poses substantial risk to the fresh-fruit industry because, 

unlike most drosophila species, D. suzukii larvae feed on ripening and ripe fruit rather than 

overripe or rotting fruit. Moreover, D. suzukii is highly polyphagous and has been recorded 

feeding on many economically-important crops. Therefore, the dramatic expansion of D. 

suzukii's range has been accompanied by significant crop losses and large increases in 

pesticide usage. Because heavy pesticide use is unsustainable from economic and 

environmental standpoints, non-chemical strategies to manage D. suzukii are needed. Hence, 

this PhD evaluates the potential of RNAi technology as a tool in the development of a 

management strategy for D. suzukii. 

We began the study by verifying whether the RNAi machinery was functional in D. suzukii. 

Both in silico and experimental data shown in Chapter 2 indicated that the siRNAi core genes 

were present and that dsRNA introduced into the haemocoel of D. suzukii by injection leads to 

target gene silencing. The results clearly confirmed that the RNAi machinery is functional in D. 

suzukii, suggesting that it could be further developed and lead to an RNAi-based management 

strategy for D. suzukii. Moreover, the optimized microinjection protocol for D. suzukii that we 

developed in this study was also used to screen for potential target genes in D. suzukii. Based 

on gene silencing efficiencies and the resulting mortality caused in D. suzukii, rps13, vha26 

and alpha COP, were selected as promising target genes for use in further RNAi experiments 

designed to deliver dsRNAs through the oral route.  

In view of potential field application, in Chapter 3, feeding assays were developed and used 

to deliver dsRNA targeting, rps13, vha26 and alpha COP in D. suzukii adults and larvae. 

Surprisingly, feeding naked dsRNA did not cause any silencing or mortality to both D. suzukii 

adults and larvae. However, by encapsulating the dsRNAs in liposomes, cellular uptake was 
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significantly improved as evidenced in target gene silencing and the resulting mortality. 

Furthermore, when bacteria engineered to produce dsRNAs for targeting D. suzukii rps13, 

vha26 and alpha COP were directly fed to adults and larvae, no gene silencing and mortality 

was observed. However, when the dsRNA was purified from the bacteria, encapsulated in 

liposomes and fed to adults and larvae, significant gene silencing and mortality was observed. 

These results showed that dsRNA can induce RNAi effects following delivery through the oral 

route in both adults and larvae. However, efficient uptake of the dsRNA from the gut into the 

cells was key to obtaining a successful RNAi effect in both adults and larvae. This implied that 

to further develop an RNAi-based control method for D. suzukii, a better RNAi delivery system 

was required. 

Chapter 4 describes the engineering of FHV for improved delivery of RNAi to fruit flies, using 

D. melanogaster as a proxy for D. suzukii. Virus induced gene silencing presents an 

opportunity to exploit the natural ability of viruses to get into cells and replicate, to both deliver 

and mass produce dsRNAs targeting endogenous insect genes. As an initial proof of concept, 

we engineered FHV because of its small genome (hence easier to manipulate) and then tested 

it in the model system for fruit flies, D. melanogaster. Our results indicated that the FHV-based 

RNAi delivery system, designed to target rps13, vha26 and alpha COP in D. melanogaster, 

could successfully lead to gene silencing and mortality, both in vitro in Drosophila cultured S2 

cells and in vivo in adult flies. These results confirmed the possibility of exploiting virus induced 

gene silencing in developing an RNAi-based control strategy for D. suzukii. However, the 

further development of a VIGS system to control D. suzukii in the field will require a virus which 

specifically infects only Drosophila. Additionally, several biosafety aspects will have to be 

evaluated prior to its use in the field. Nevertheless, the data presented in this study all together 

confirms that RNAi could be exploited to develop a non-chemical RNAi-based control method 

for D. suzukii. 
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Drosophila suzukii, algemeen bekend als de Aziatische fruitvlieg, werd voor het eerst 

beschreven in Azië, maar is recent een invasieve plaag geworden in heel wat regio's over de 

hele wereld, waaronder Europa. De introductie in deze nieuwe regio's vormt een aanzienlijk 

risico voor de fruitindustrie omdat, in tegenstelling tot de meeste Drosophila-soorten, D. suzukii 

larven zich voeden met rijpend en rijp fruit in plaats van overrijp of rottend fruit. Bovendien is 

D. suzukii zeer polyfaag en kan het zich voeden op heel wat economisch belangrijke 

gewassen. De introductie van D. suzukii in Europa en elders gaat gepaard met aanzienlijke 

verliezen van gewassen en ook met een aanzienlijke toename in het gebruik van pesticiden. 

Omdat het gebruik van chemische pesticiden vanuit economisch en ecologisch oogpunt niet 

houdbaar is, zijn niet-chemische strategieën voor het beheer van D. suzukii nodig. Dit 

doctoraat onderzoekt om die reden het potentieel van de RNAi-technologie als een hulpmiddel 

bij de ontwikkeling van een plaagbestrijdingsstrategie voor D. suzukii. 

Onze studie begon met het nagaan of de RNAi-machine functioneel was in D. suzukii. Zowel 

in silico als experimentele data, weergegeven in Hoofdstuk 2, toonden aan dat de genen die 

centraal staan in de siRNAi-pathway aanwezig zijn en dat dsRNA, via microinjectie 

geïntroduceerd in het hemoceel van D. suzukii, leidt tot succesvolle silencing van het doelwit-

gen. De resultaten bevestigden dat de RNAi-machine functioneel is in D. suzukii, wat 

suggereert dat het verder zou kunnen worden ontwikkeld om een op RNAi gebaseerde 

bestrijdingsstrategie voor D. suzukii te bekomen. Bovendien werd het geoptimaliseerde 

protocol voor micro-injectie van D. suzukii in deze studie ook gebruikt om te potentiële 

doelwitgenen in D. suzukii te selecteren. Op basis van gensilencing-efficiëntie en de 

resulterende sterfte veroorzaakt in D. suzukii, werden rps13, vha26 en alfa-COP geselecteerd 

als veelbelovende doelwit-genen voor gebruik in verdere RNAi-experimenten waarin dsRNA 

via de orale route wordt toegediend. 



Samenvatting 

203 
   

Met het oog op mogelijke veldtoepassing, werden in Hoofdstuk 3 voedingsassays ontwikkeld 

en gebruikt om dsRNA, specifiek voor rps13, vha26 en alfa-COP, toe te dienen in volwassen 

en larvale stadia van D. suzukii. Echter leidde het voeden van naakt dsRNA niet tot een 

verminderde genexpressie, noch tot fenotypische gevolgen bij volwassen of larvale stadia van 

D. suzukii. Gebruik van liposomen bij de toediening van dsRNA, om cellulaire opname te 

bevorderen, zorgde wel voor een duidelijke gen-silencing en de daaraan gekoppelde sterfte. 

Wanneer bacteriën, die genetisch gemanipuleerd werden om rps13-, vha26- en alfaCOP-

specifieke dsRNA's te produceren, rechtstreeks gevoed werden aan D. suzukii adulten, werd 

geen gen-silencing of mortaliteit waargenomen. Toen het dsRNA echter werd opgezuiverd uit 

de bacteriën, en vervolgens opnieuw samen met liposomen werd gevoed aan adulten en 

larven, werd wel een significante gene silencing en mortaliteit waargenomen. De resultaten 

bekomen in dit hoofdstuk toonden aan dat orale toediening van dsRNA RNAi-effecten kan 

induceren bij zowel adulten als larven. Efficiënte cellulaire opname van het dsRNA uit de darm 

bleek echter de sleutel tot het verkrijgen van een succesvol RNAi-effect bij de Aziatische 

fruitvlieg. Dit had als gevolg dat om een RNAi-gebaseerde controlemethode voor D. suzukii 

verder te ontwikkelen, een geoptimaliseerd RNAi-toedieningssysteem vereist was. 

Hoofdstuk 4 beschrijft het modificeren van Flock House Virus (FHV) voor een efficiënte 

toediening van dsRNA aan fruitvliegen. Hierbij werd het modelorganisme D. melanogaster 

gebruikt als een proxy voor D. suzukii. Virus-geïnduceerde gensilencing (VIGS) biedt een 

mogelijkheid om het natuurlijke vermogen van virussen om cellen binnen te komen en te 

repliceren, te gebruiken voor intracellulaire productie van dsRNA's die zich richten op 

endogene insectengenen. Voor een eerste proof-of-concept gebruikten we FHV vanwege zijn 

kleine genoom (dus gemakkelijker te manipuleren) en hebben we het vervolgens getest in het 

modelsysteem voor fruitvliegen, D. melanogaster. Onze resultaten toonden aan dat het op 

FHV gebaseerde RNAi-toedieningssysteem, ontworpen om rps13, vha26 en alfa-COP in D. 

melanogaster te targeten, met succes kon leiden tot gen-silencing en mortaliteit, zowel in vitro 
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in D. melanogaster S2-celcultuur als in vivo bij volwassen fruitvliegen. Deze resultaten 

bevestigden de mogelijkheid om VIGS te gebruiken bij het ontwikkelen van een op RNAi 

gebaseerde controlestrategie voor D. suzukii. De verdere ontwikkeling van een VIGS-systeem 

voor de bestrijding van D. suzukii in het veld vereist echter een virus dat specifiek alleen 

Drosophila infecteert. Bovendien moeten verschillende bioveiligheidsaspecten worden 

geëvalueerd voorafgaand aan het gebruik ervan in het veld. Desalniettemin bevestigen de in 

deze studie gepresenteerde resultaten dat RNAi kan worden gebruikt voor de ontwikkeling van 

een niet-chemische RNAi-gebaseerde controlemethode van D. suzukii. 
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