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Abstract—This paper proposes a analytical model to predict Memory-
Level Parallelism (MLP) in a superscalar processor. We profile the
workload once and measure a set of distributions to characterize the
workload’s inherent memory behavior. We subsequently generate a virtual
instruction stream, over which we then process an abstract MLP model
to predict MLP for a particular micro-architecture with a given ROB
size, LLC size, MSHR size and stride-based prefetcher. Experimental
evaluation reports an improvement in modeling error from 16.9% for
previous work to 3.6% on average for the proposed model.

I. INTRODUCTION

Analytical performance models are useful to speed up design
space exploration and provide a mental model for architects to reason
about application-architecture interactions. One of the important and
challenging components to model is the total time an application
spends waiting for main memory. This is a challenge in particular
because current superscalar processors hide part of the memory
access latency by exploiting Memory-Level Parallelism (MLP), i.e.,
by servicing multiple memory requests in parallel [3].

The key contribution in this paper is an analytical model that
requires profiling an application of interest only once, after which
MLP can be accurately estimated for a range of superscalar processor
architectures while varying reorder buffer (ROB) size, last-level cache
(LLC) size, number of Miss Status Handling Registers (MSHR)
entries, stride-based hardware prefetching, etc. This is a non-trivial
endeavor as MLP is a result of complex interactions between an
application’s inherent memory access patterns and the available hard-
ware resources. More specifically, characteristics such as burstiness of
misses, inter-load dependences, locality, memory access patterns, etc.
have an (in)direct effect on the exploitable MLP. Existing models fall
short in various dimensions, as we will discuss in the next section.

The MLP model proposed consists of three steps. We first collect
a number of distributions to characterize the relative positions of
memory references in the instruction stream (to model burstiness),
their dependences (dependent loads cannot be processed in parallel),
their reuse distances (to model temporal locality), and their strided
access patterns (to model spatial locality and their prefetchability).
In the second step, we generate a virtual instruction stream with
characteristics following these distributions. Finally, in the third step,
we estimate MLP by processing the virtual instruction stream using
an abstract MLP model; we take burstiness, inter-load dependences,
locality and strided access patterns into account to estimate the
amount of MLP.

Our experimental evaluation reports significant improvements
over prior work. Compared to detailed simulation, the proposed MLP
model achieves an average absolute error of 3.6% for predicting the
total time waiting for main memory for a superscalar processor (with
a stride-based prefetcher)1. This is a significant improvement over
prior work with a 16.9% average error [10].
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1The model is available at https://github.com/samvandensteen.

II. PRIOR WORK

There exist a number of models to predict MLP in superscalar
processors. Karkhanis and Smith [8] consider the number of inde-
pendent cache misses within an ROB-sized sequence of instructions
from the dynamic instruction stream as a measure for MLP. Chen et
al. [2] refine that model and consider pending cache hits, prefetching
and MSHR registers for estimating the time spent waiting for main
memory. A key limitation of these works is the reliance on a cache
simulator to generate a stream of main memory accesses. This implies
that the memory access stream needs to be re-generated whenever a
change in the cache hierarchy is considered. Our model on the other
hand requires profiling the application only once. Miftakhutdinov et
al. [9] describe hardware extensions to accurately measure the time
waiting for memory on real hardware with the goal of dynamically
steering voltage and frequency for optimum energy efficiency.

The model proposed in this paper is most closely related to
our own previous work in which we model superscalar processor
performance from a micro-architecture independent profile [10]. This
prior model includes a fairly simple MLP model, which basically
assumes that conflict and capacity misses are uniformly distributed
across the instruction stream, and that the burstiness in cache miss
behavior results from cold misses. This paper presents a significant
improvement over this prior work.

Wang et al. [11] propose a stochastic DRAM access model which
assumes that a memory access stream from the processor side is
given. In contrast, our work focuses on the processor side; we plan
to combine our model with a model that captures the memory side
as part of our future work.

Our approach also bears some similarity with prior work in
statistical simulation, see for example [7] for a paper specifically
focusing on modeling the memory data flow in superscalar processors.
In contrast to statistical simulation which generates a synthetic trace
that is then simulated using a detailed processor timing model, we
generate a virtual instruction stream which is then processed by an
abstract analytical MLP model.

III. MLP MODEL

Our MLP model relies on a number of statistics that we capture
on a per micro-trace basis. A micro-trace is a short sequence of
instructions (e.g., 1000 instructions);2 we collect 100 micro-traces
per 100M instructions (one micro-trace per 1M instructions). The
reason for considering micro-traces is to reduce profiling time, and
more importantly, to be able to capture MLP burstiness — an
average profile across a number of micro-traces would average out
the statistics which would compromise model accuracy.

Within each micro-trace, we measure a load-spacing distribution,
inter-load dependence distribution, reuse distance distribution and
stride distribution. Figure 1 serves as an illustrative example: it
shows a trace of 32 instructions consisting of 16 loads with the
oldest instruction appearing on the left. Loads are indicated as Lx

with x indicating recurrences of the same static load instruction.

2We find a micro-trace of 1000 instructions to strike a good balance between
profiling speed and model accuracy.
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Fig. 1: Illustrative virtual memory access stream.

Dependences between loads are shown through arrows; the addresses
accessed are shown below the loads. We collect these distributions
for each static load in each micro-trace.3

A. Load Spacing Distribution
We profile the positions of recurrences of each static load in the

micro-trace using a load spacing distribution that records a load’s first
position in the micro-trace along with the number of instructions in-
between recurrences of the same static load. For load LC in Figure 1,
the load spacing distribution equals ‘5; (8, 3)’ meaning that the first
occurrence appears at position 5 and there are 8 instructions between
the next three recurrences. The rationale behind the load spacing
distribution is to capture the burstiness of loads, i.e., load instructions
that miss in the on-chip caches and that occur within the same ROB
is a necessary condition to expose MLP.

B. Inter-Load Dependence Distribution
The inter-load dependence distribution quantifies inter-load data

dependences in a statistical way. Inter-load dependences have an
important impact on MLP, i.e., loads that depend upon each other
(either directly or indirectly) cannot be issued simultaneously, hence
they cannot expose MLP. The inter-load dependence distribution
quantifies the probability that a load depends on any of the n previous
loads in the instruction stream. For example, in Figure 1, load LC

(always) depends on load LB . Because of this dependence, loads LB

and LC will serialize their execution, and hence no MLP can be
exploited.

C. Reuse Distance Distribution
The reuse distance distribution quantifies temporal locality by

quantifying the number of (not necessarily unique) memory accesses
between two accesses to the same memory location. This reuse
distribution is then transformed using StatStack [4] into a stack
distance distribution, which quantifies the number of unique accesses
between two accesses to the same memory location. Once the stack
distance distribution is known, it is trivial to derive the miss rate
assuming a fully associative LRU cache of arbitrary size, i.e., if
there are more unique accesses between two accesses to the same
memory address than there are sets in the cache, the last access to
the same memory address will be a miss. Note that the reuse distance
distribution is measured per static load, hence it enables estimating
the miss rate per static load for any cache size. Moreover, we can
use the reuse distance distribution for predicting hits and misses at
all levels of cache, from the L1 cache to the LLC.

D. Stride Distribution
The last distribution we consider is the stride distribution. A stride

is defined as the relative memory address difference between two
subsequent recurrences of the same static load. The stride distri-
bution collects this stride information. Whereas the reuse distance
distribution quantifies temporal locality in a statistical way, the stride
distribution is a measure for spatial locality. For example, a load that
follows a strided access pattern with stride equal to 4, i.e., it accesses
the following stream of memory locations: 0, 4, 8, 12, . . . will result
in a cache miss for every other load assuming a cache line size of

3Collecting distributions requires on average 25× less disk space than
recording micro-traces.

8 bytes. The stride distribution is also critical to model stride-based
prefetching, as we will describe in Section V.

Memory accesses do not always follow (in fact, they rarely
follow) a neat stride pattern, i.e., some patterns can be a mixture
of several strides, other memory accesses may appear to be random.
We classify loads into three categories based on their access patterns.
The first category includes loads that follow some stride pattern. The
second category includes loads that occur only once in our micro-
trace. The third category includes loads that do not fit in either of
the above two categories; we refer to this category as random-strided
loads.

For the strided-load category, we search for up to four distinct
strides per load, and we use a cutoff percentage to filter out accesses
that are not part of a real stride pattern. To categorize a load as an
instruction with a single stride, one element in the stride distribution
needs to have a percentage of occurrence of at least 60%. For a two-
strided load, their cumulative percentage needs to exceed 70%, for a
three-strided load 80%, and for a four-strided load 90%. We always
choose the simplest stride pattern; this means that if the cumulative
percentage of occurrence exceeds a threshold, we stop searching for
additional strides, such that we can easily filter out random strides.

In Figure 1, LA recurs six times and exhibits a single-strided
pattern with stride 8. Load LB recurs five times with memory
addresses: 48, 52, 56, 64, 72. There are two strides of 4 and two
strides of 8. Each stride thus has an occurrence equal to 50%, hence
this load is classified as a two-strided load.

E. Putting It All Together
The distributions as just described need to be collected only

once per application, from which we can predict MLP for a range
of architecture configurations. We first generate a virtual instruction
stream from these distributions; this virtual instruction stream is built
up as a data structure by the MLP modeling software. We then hover
over this virtual instruction stream with an abstract MLP model to
estimate the amount of MLP for a particular architecture. This is done
for each micro-trace.

1) Virtual instruction stream generation: The load spacing distri-
bution is first used to build up a skeleton virtual instruction stream.
We position loads in the instruction stream using the load spacing
distributions which determine the first position of each static load
in the stream as well as the subsequent recurrences of the load;
this is done for all static loads in the micro-trace. We then use the
stride distribution to assign (relative) memory addresses for each load
occurrence of the same static load. The stride distribution points out
hits and misses in the cache, at least for those loads that exhibit a
strided access pattern. We predict hits and misses at all levels in the
cache hierarchy. More in particular, we mark the first access of a
stride pattern as a miss and we mark the following accesses that fit
the same cache line as hits. We use the reuse distance distribution
and StatStack [4] to predict whether an address has been used before
and the respective load will turn into a hit or a miss. We leverage the
inter-load dependence distribution to impose dependences between
loads.



2) Abstract MLP model: The abstract MLP model then hovers
over this virtual instruction stream to estimate MLP for a particular
architecture with a specific ROB size. MLP is defined as the number
of outstanding memory requests (LLC misses) if at least one is
outstanding. The abstract model breaks up the virtual instruction
stream into ROB-sized instruction sequences over which it estimates
the available MLP.4 MLP is affected by various factors including
the number and burstiness of cache misses; inter-load dependences,
i.e., two loads that depend on each other cannot be serviced simul-
taneously; and the ROB size, i.e., independent loads need to reside
in the same ROB is a necessary condition for MLP. For a given
ROB-size sequence of instructions, MLP is computed as the number
of independent main memory accesses in the ROB. MLP for the
micro-trace is computed as the average MLP across all ROB-sized
instruction sequences.

IV. MODELING MSHRS

The MLP model discussed so far makes a number of simplifying
assumptions. It assumes that all independent memory references
access main memory simultaneously; in addition, it does not consider
hardware prefetching. This section and the next discuss extensions to
the MLP model to overcome these assumptions.

Modern processors typically feature Miss Status Handling Regis-
ters (MSHR) to coalesce multiple requests to the same cache line. An
MSHR entry is allocated upon an access to a cache line that is not
yet outstanding. Subsequent requests to an already outstanding cache
line are then coalesced, avoiding yet another request being sent to
the next level in the memory hierarchy. The size of the Miss Status
Handling Register (MSHR) is (obviously) limited, and hence it may
limit MLP, i.e., a memory access to a not yet outstanding cache line
may be stalled if the MSHR runs out of available entries.

In this work we consider an MSHR table at the L1 data cache
level, however, the approach can be trivially generalized to MSHRs at
other levels of cache. We predict whether the number of outstanding
L1 data cache misses in the virtual instruction stream exceeds the
number of MSHR entries. If it does, we compute a scaling factor
that accounts for the extra latency added to the loads waiting for
an available MSHR entry. This model differs from the one proposed
by Chen et al. [2] in which the MLP is simply capped to an upper
bound; our model puts a ‘soft’ cap on the MLP and models partially
overlapping memory accesses.

We estimate the impact of a limited number of MSHR entries
as follows. The micro-trace is split up into ROB-size sequences of
instructions of which the first instruction is a (predicted) access to
main memory and the last instruction the one that still fits within
the ROB. The first few memory accesses that miss in L1 all fit in
the MSHR table and are hence considered to execute in parallel. All
subsequent main memory accesses that would overflow the MSHR
table have to wait until one of the outstanding accesses is resolved.
Hence, they only partially overlap with the previous accesses. We
model this phenomenon by considering the time it has to wait for
a free MSHR slot. Intuitively, this means that the first part of the
latency is serialized and the remaining part is hidden underneath
another access. This results in the following formula which puts a
‘soft’ cap on the exploitable MLP:

MLP = DRAMMSHR +DRAM wait ·
TDRAM − TMSHRfree

TDRAM

4We considered two possibilities: an ROB that slides versus steps over
the instruction stream; both gave similar results according to our preliminary
results, hence we opt for the stepping approach which is slightly simpler to
implement.

with DRAMMSHR the number of main memory accesses in the
MSHR table, i.e., this is the number of parallel main memory
accesses; DRAM wait is the number of main memory accesses
that have to wait; TDRAM equals the main memory access latency
and TMSHRfree is the average time before an MSHR slot becomes
available, which is computed as the weighted average access latency
across all allocated MSHR entries.

V. MODELING STRIDE-BASED HARDWARE PREFETCHING

A key feature of the proposed MLP model is that it enables
estimating the performance impact of stride-based prefetching. In this
work, we consider a stride prefetcher that is able to track the stride
patterns of a number of static loads (per-PC stride prefetching) [6].
If a load exhibits a stride pattern, we mark it as a prefetchable load,
subject to a number of constraints as discussed below.

A stride prefetcher needs to keep track of previously executed
loads and their addresses to compute a load’s stride pattern. There is
obviously a limit to the number of static loads the prefetcher is able
to track. If there are more static loads than the maximum tractable
loads in the prefetch table, the load is marked non-prefetchable.

Second, prefetchers often only prefetch within a DRAM page,
meaning that if two subsequent accesses are not part of the same
DRAM page, the second one will not be prefetched. We also model
this by considering the stride between two subsequent accesses by
the same load; if the stride exceeds a DRAM page, we mark the load
as non-prefetchable.

The third component relates to timeliness. If the prefetcher starts
fetching new data just before the data is requested, the prefetch will
not be timely, and the latency of the load will be hidden only partially.
We model this by assuming that a prefetch for a load that is ROB-
size instructions away in the dynamic instruction stream, is timely.
If the load appears in the same ROB-size instruction window as the
prefetch, we then subtract the fraction of the latency equal to the time
it would take for the latter load to hit and stall the ROB head.

VI. EVALUATION
A. Experimental Setup

We consider the 29 SPEC CPU2006 benchmarks5 which we
simulate using Sniper v6.0 [1]. We use a periodic sampling strategy to
limit experimentation time while still covering the entire benchmark
execution. To compute the ground truth to evaluate the model against,
we fast-forward 800M instructions, warm up the memory hierarchy
for 100M instructions, and then simulate 100M instructions in detailed
mode; this is repeated till the end of the execution. We consider a
similar sampling strategy for collecting our profile: we fast-forward
900M instructions and collect our profile during the next 100M
instructions; this procedure guarantees that the profile corresponds
to the detailed simulation region. The simulated processor is based
on the Intel Nehalem architecture; see Table I with our reference
architecture shown in bold. We assume a fixed memory access latency.

B. Accuracy w/o Prefetching
We evaluate the MLP model’s accuracy by quantifying the total

time spent waiting for DRAM. In Sniper, the DRAM cycle component
is measured as the number of cycles between a load miss accessing
main memory and blocking the head of the ROB [5]. In our model, we
estimate the DRAM component by multiplying the estimated number
of LLC misses times DRAM access latency divided by the predicted

5We use train inputs as we run the benchmarks to completion — using
the reference inputs would be infeasible, even with the employed sampling
strategy.
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Fig. 2: Absolute error for predicting total time waiting for DRAM for
the new and old MLP models, assuming no hardware prefetching.
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Fig. 3: Absolute error for predicting total time waiting for DRAM for
the new and old MLP models, assuming hardware stride prefetching.

MLP. Figure 2 reports the model’s accuracy against simulation. The
average absolute error equals 3.3%. The highest error for the new
model is observed for gemsFDTD (26.0%).

The new model is substantially more accurate than our previous
model [10], which essentially assumes that conflict and capacity
misses are uniformly distributed across the execution whereas cold
misses incur bursty cache misses. The old model achieves an average
absolute error of 8.2% and a maximum error of 39.1%. Modeling the
relative spacing of memory references, their dependences and strides
clearly leads to a more accurate model.6

C. Accuracy w/ Prefetching
The results reported so far did not consider hardware prefetching.

Figure 3 reports the absolute prediction error assuming a stride-based
prefetcher. The new model achieves an average absolute prediction
error of 3.6% and at most 22.8%. The old model, which does not
model stride-based prefetching, leads to an absolute average predic-
tion of 16.9% and absolute errors up to 118%. This re-emphasizes
the importance of incorporating the impact of hardware prefetching
in an analytical MLP model.

D. Design Space Exploration
The most obvious use case for the model is to drive design space

exploration. We consider 35 processor designs in total while varying
two micro-architecture parameters that do have an immediate effect
on MLP, namely ROB size (7 sizes) and LLC size (5 sizes), see also
Table I. This rather limited design space already takes considerable
simulation time — more than 5 years of single core simulation time as
some of the benchmarks take over one week. Profiling the benchmarks
is a one-time cost, and the proposed MLP model (including the cost
of profiling) evaluates the same design space 160× faster.

More than 90% of the designs have an absolute error below 15%
for the new MLP model, whereas for the old model less than 80%
of the designs have an absolute error below 15%. The largest errors

6As a side note, it is interesting to note that the new model is also much
faster to profile while consuming less memory. A typical profiling run takes
approximately 40% less time and consumes up to 0.5 GB less memory.

TABLE I: Reference architecture, based on Intel Nehalem.
Core frequency 2.66 GHz
Dispatch width 4

ROB 64, 96, 128, 160, 192, 224, 256 entries
L1I and L1D 32 KB, latency = 1 and 4 cycles, respectively

L2 256 KB, latency = 8 cycles
LLC 1, 2, 4, 8, 16 MB, latency = 30 cycles

MSHR Between L1D and L2, entries = 10
Prefetcher stride prefetcher, streams = 16

Memory bus Bandwidth = 7.6 GB/s
DRAM latency = 45 ns

are typically observed for unbalanced processor designs (e.g., a big
ROB with 256 entries along with a relatively small 1MB LLC). If we
plug the new MLP model into the complete performance prediction
model, we see an average improvement of 2.2%.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel model for estimating MLP in a
superscalar processor by considering a set of distributions regarding
the relative position of memory references in the instruction stream,
their dependences, reuse distances and stride behavior. Generating a
virtual instruction stream using these distributions enables modeling
the impact of the processor’s ROB size, number of MSHR entries,
LLC size and stride-based prefetching on MLP, from a single profile.
The model was shown to improve accuracy for predicting the total
time waiting for DRAM from 16.9% to 3.6% on average.

This paper made a number of simplifying assumptions. In par-
ticular, we focused on the processor side only and did not consider
the impact DRAM may have on the exploitable MLP. We essentially
assumed that all memory requests that are sent out by the processor
are serviced simultaneously by the DRAM subsystem. We will extend
the proposed model to consider a more realistic DRAM subsystem
as part of our future work. In addition, we plan to incorporate the
impact of multi-core processing and multi-threaded workloads in
the model (including interference in shared resources, coherence,
synchronization), as well as more advanced hardware prefetchers.
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