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With more than 71 million chronically infected people, the hepatitis C virus (HCV) is 
a major global health concern. Although new direct acting antivirals have significantly 
improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant 
viral variants, and unavailability of a protective vaccine represent challenges for complete 
HCV eradication. Relevant animal models are required, and additional development 
remains necessary, to effectively study HCV biology, virus–host interactions and for the 
evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, 
the only non-human primate susceptible to experimental HCV infection, has been 
used extensively to study HCV infection, particularly to analyze the innate and adaptive 
immune response upon infection. However, financial, practical, and especially ethical 
constraints have urged the exploration of alternative small animal models. These include 
different types of transgenic mice, immunodeficient mice of which the liver is engrafted 
with human hepatocytes (humanized mice) and, more recently, immunocompetent 
rodents that are susceptible to infection with viruses that are closely related to HCV. In 
this review, we provide an overview of the currently available animal models that have 
proven valuable for the study of HCV, and discuss their main benefits and weaknesses.

Keywords: hepatitis C virus, animal models, humanized mice, homologs, vaccine, antiviral therapy

iNTRODUCTiON

The worldwide prevalence of hepatitis C virus (HCV) infection is 3% with an estimated 71 million 
people who are persistently infected. The severity of HCV infection ranges from mild symptoms to 
serious illness with chronic hepatitis. Chronic infection may lead to liver cirrhosis and eventually 
hepatocellular carcinoma (HCC) (1). In recent years, new direct acting antivirals (DAAs) have first 
supplemented the treatment combination of ribavirin and pegylated interferon alpha (IFNα), reach-
ing cure rates of up to 90% in genotype 1 infected patients. The latest DAA combinations are even 
more effective and do not require additional ribavirin or interferon administration. Despite these 
recent advances, significant concerns remain about drug resistance, high cost, and worldwide acces-
sibility of these new antivirals. Besides, DAAs do not necessarily ameliorate the long-term effects of 
chronic infection and predisposition for liver disease (2). In addition, since therapy-induced HCV 
clearance does not provide immunity to a new infection, an effective preventive vaccine remains an 
important need (3).

The first accessible system to study HCV replication in cell culture was the sub-genomic replicon 
system (4). This approach allows efficient viral replication in human hepatoma (Huh7) cells, transfected 
with sub-genomes that contain a selectable marker linked to the non-structural region (NS2-NS5B) 
of HCV (4, 5). Using this system, HCV RNA replication and cellular immunity (6, 7) can be studied 
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and novel antiviral compounds (8) can be evaluated. Important 
to note is that no infectious viral particles are produced using 
this sub-genomic replicon system. In parallel, in  vitro systems 
for the study of viral entry were developed. Virus-like particles, 
produced in a baculovirus system and containing the structural 
proteins core, E1 and E2, resemble HCV virions and are capable of 
inducing humoral immune responses against HCV (9). However, 
these particles are not secreted and have no infectious potential. 
The first infectious systems consisted of pseudotyped vesicular 
stomatitis virus or influenza virus containing chimeric E1 and/
or E2 glycoproteins (10–13). However, due to modifications that 
allow assembly at the cell surface, the conformation and functions 
of the E1/E2 complexes are disturbed (13). The development of 
infectious HCV pseudo-particles (HCVpp), which consist of 
defective retroviral particles expressing HCV E1 and E2 glyco-
proteins on their surface, represented a major breakthrough for 
investigating the HCV entry process (14–16). More specifically, 
the role of putative HCV (co-) receptors, the host range, and the 
E1 and E2 glycoproteins can be examined. This system also allows 
screening of potential entry inhibitors. In this way, the HCVpp 
are shown to be hepatotropic and can specifically be neutralized 
by anti-E2 monoclonal antibodies and HCV-infected patient sera 
(15). Further steps in the HCV life cycle are not supported by 
HCVpp and can, therefore, not be explored using HCVpp (15). In 
2005, transfection of in vitro transcribed full-length genotype 2a 
HCV (JFH1) isolate and chimeric derivatives thereof into Huh7 
cells was described, showing RNA replication and secretion 
of infectious viral particles (17–20). In contrast to the HCVpp 
system, this cell culture-derived HCV (HCVcc) system allows the 
study of all aspects of the viral life cycle and still plays a major role 
in the identification and evaluation of novel antivirals (19, 20).

Cell culture systems are very useful for initial studies of dif-
ferent aspects of HCV. However, culture conditions are artificial; 
hence, in  vivo studies are required to more closely mimic the 
natural situation. Due to the narrow tropism of HCV, in  vivo 
studies were long restricted to chimpanzees. Over the years, other 
animal species have been evaluated for their susceptibility to HCV 
infection, although most of them seemed resistant. Therefore, 
several modified models have been developed in recent years, 
which allow either complete or partial study of HCV infection. In 
this review, we provide an overview of currently existing in vivo 
models for HCV infection. We will also discuss their applicability, 
major advantages, and limitations (Table 1; Figure 1).

HOST SYSTeM ReQUiReMeNTS  
FOR HCv RePLiCATiON

As with any experimental system for human disease, a model 
for HCV infection should mimic as many, if not all, relevant 
clinical features as observed in human patients. Desirably, the 
model should be susceptible to all HCV genotypes with result-
ing persistent viremia in the majority of exposed animals. The 
ideal model should also be fully immunocompetent in order to 
study protective immunity, persistence, and immune-mediated 
pathogenesis. From a practical point of view, the animal model 
for HCV infection should be cheap, highly reproducible, easy to 

propagate and high in throughput (21). Finally, the ethical impact 
should be as minimal as possible. Up to this day, no such model 
exists.

Since the number of unmodified hosts perceptive to HCV 
infection is limited, extensive research is performed to create  
a suitable model by modifying existing models. From all animal  
models used in research, rodents are currently the most popu-
lar species for genetic modifications and are therefore highly 
explored, also in the field of HCV research. Genetic manipulation 
of the host can be applied to knock down certain host factors 
that interfere with viral replication or on the other hand, to 
complement the host with human factors that are essential for 
this process. The propagation of HCV in rodent cells is inefficient, 
presumably due to genetic incompatibility of rodent cofactors 
and/or due to suppression of HCV replication by rodent innate 
immune defenses. Thus, engineering mice expressing the relevant 
human genes and/or with deleted mouse restriction factors may 
permit HCV propagation (22).

A large number of human factors have been determined 
to be involved in the uptake of HCV into human hepatocytes: 
glycosaminoglycans (23), low density lipoprotein receptor (24), 
CD81 (25), scavenger receptor class B type 1 (SR-BI) (26), tight 
junction proteins claudin-1 (CLDN1) (27) and occludin (OCLN) 
(28, 29), the receptor tyrosine kinases epidermal growth factor 
receptor and ephrin receptor A2 (30), the cholesterol transporter 
Niemann-Pick C1-like 1 (31), transferrin receptor 1 (32), cell 
death-inducing DFFA-like effector b (33), and E-cadherin (34). 
The entry of HCV into primary hepatocytes is mediated by 
CD81, OCLN, CLDN1, and SR-BI. To our current knowledge, 
CD81 and OCLN comprise the minimal human factors required 
for HCV uptake by rodent cells (35). However, these animals do 
not sustain viral replication and chronic infection. Finally, it is 
still not entirely clear which host factors should be humanized, 
because there is little knowledge about the specific host factors 
that cause inhibition of HCV RNA replication or host factors that 
determine species tropism.

NON-RODeNT MODeLS

The chimpanzee (Pan troglodytes) played an important role in the 
discovery of HCV. In fact, the viral genome of HCV was cloned 
from a chimpanzee that was experimentally infected with non-A, 
non-B hepatitis (36). For a long time, the chimpanzee was the only 
available model to study HCV, and their use has greatly advanced 
our knowledge on this virus. Humans and chimpanzees share more 
than 98% of their genome sequence. Despite this high genomic 
homology, there are some clear differences between the two which 
makes that the disease pattern and outcome in chimpanzees does 
not necessarily reflect that in humans. Whereas only a minority of 
humans spontaneously clear an acute infection (15%), few chim-
panzees evolve to chronicity (30–40%) (37), and to date, no fibrosis 
and only one HCC case has been observed in this model (38). 
Nevertheless, the chimpanzee proved very valuable for the study of 
the molecular, immunological, and clinical aspects of HCV infec-
tion. Furthermore, while it is very difficult to study the acute phase 
of HCV infection in humans because specific symptoms are usually 
absent during that phase, experimental infection of chimpanzees 
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FiGURe 1 | Different approaches to study hepatitis C virus (HCV) in animal models. First panel: animal species that can be experimentally infected with wild-type 
HCV (chimpanzee and tree shrew). Second panel: hepaciviruses and pegiviruses that infect animal species such as wild mice, rats, tamarins, bats, and horses. 
These viruses can be studied in their natural host, where they cause a HCV-like infection. Third panel: in vitro adaptation of HCV to mouse hepatocytes may allow 
the isolation of viral variants that can establish an infection in wild-type mice. Fourth panel: transient or stable expression of human factors that are essential to 
support infection of wild-type HCV or transgenic expression of viral proteins. Fifth panel: in xenotransplantation models, either the liver alone or both the liver and 
immune system are humanized.
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allows close monitoring of viral kinetics, host immune response, 
disease manifestation, and outcome in a highly controlled manner 
(39–43). Immunological studies in chimpanzees have also led to 
the development and evaluation of several candidate vaccines  
(44, 45). Moreover, in the context of antiviral efficacy studies, they 
have been successfully used to track resistance associated with the 
use of entry (46), protease, NS5A (47), and polymerase (48, 49) 
inhibitors and combinations thereof (50).

The chimpanzee model fulfills many of the requirements for 
a good animal model. However, limited availability and ethical 
and financial constraints associated with these studies are major 
drawbacks. Recently, the National Institute of Health of the United 
States Department of Health and Human Services decided to 
effectively end its support for invasive research on chimpanzees.  
Other primates have been tested for their susceptibility to HCV 
infection, with little success. Although HCV can infect induced 
pluripotent stem cells derived from hepatocyte-like cells from 
pigtail macaques (51, 52), HCV does not seem to be able to 
establish persistent infection in non-human primates except for 
chimpanzees (53).

In addition, several other non-primate species have been 
tested for their susceptibility to HCV. The tree shrew (Tupaia 
belangeri) is for example a non-rodent squirrel-like mammal that 
is permissive for persistent low-level HCV viremia, including 
HCV-related liver disorders (54, 55). Still, limited availability and 
incompatibility of the Tupaia host environment with robust HCV 
replication limits the use of this animal for the study of HCV 
pathogenesis and vaccine development.

Recently, Ding et al. (56) developed a zebrafish model for sub-
genomic HCV replication. The zebrafish is often used as a model 

organism for human diseases, including liver disease (57). The 
sub-replicon is created using two vectors: one containing HCV 
NS5B and the other containing the minus strand of HCV 5′UTR, 
core, and 3′UTR, under the control of the mouse hepatocyte 
nuclear factor 4 promoter. These vectors are then co-injected into 
zebrafish zygotes. The sub-replicon is able to replicate in the liver 
and causes alterations in the expression of certain genes, which 
is similar to HCV infection in human liver cells. Administration 
of ribavirin and oxymatrine significantly inhibits the replication 
of the HCV sub-replicon in the larvae (56). To conclude, the 
zebrafish is small, easy to handle experimentally, and useful for 
investigating mechanisms of HCV replication and liver pathology 
in vivo. Also, this model may aid in drug evaluation studies and 
thus the discovery of new anti-HCV drugs.

viRAL PROTeiN TRANSGeNiC MiCe

Mice that transgenically express viral proteins have been created 
to study the in  vivo interactions between these viral proteins 
and the host cell. Transgenic mice, containing the genetic code 
for HCV structural proteins E1, E2 or core (or combinations 
thereof); or the non-structural NS3/4A protein, show conflicting 
results in the development of liver pathologies. Some reports do 
not show any evidence of hepatocellular damage (58–61), while 
other groups describe progressive hepatic steatosis and HCC 
(62–65). These discrepancies may be explained by the relationship 
between inflammation-associated hepatocarcinogenesis and the 
host genetic background (66). A major drawback of these HCV-
transgenic mice is that the transgene integrates randomly and in 
high copy numbers. Consequently, the viral proteins are highly 
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overexpressed, often in an uncontrolled manner. Certain aspects 
of the HCV-transgenic mouse phenotype may be attributed to the 
artificial overexpression and/or interference with the regulation 
of genes located near the integration site. If the expression of viral 
proteins can be controlled and fine-tuned, the limitations of these 
models may be overcome. The Cre/Lox system (67) or hydrody-
namic injection (68) allows inducible expression of the transgene. 
Using the murine major urinary protein (MUP)-promoter, the 
expression can be delayed (58). The immune system of this model 
closely resembles that of a chronically infected patient. Hence, 
it allows the evaluation of potential therapeutic vaccine strate-
gies (69). Lerat et al. (70) created a transgenic FL-N/35 mouse 
model expressing the full HCV genome at levels corresponding 
to natural human infection (70, 71). The FL-N/35 mouse model 
is certainly the most relevant transgenic mouse model available 
at this time, especially for investigating hepatic steatosis, fibrosis, 
and HCC.

iMMUNOCOMPROMiSeD (HUMAN) LiveR 
XeNOGRAFT MOUSe MODeLS

Because mice are naturally not susceptible to HCV infection, 
an interesting approach to overcome the species barrier is by 
humanizing the liver via transplantation of primary human 
hepatocytes. In this way, mice can not only be infected with HCV 
but also with other human hepatotropic pathogens. However, 
if immunocompetent rodents are transplanted with xenogeneic 
hepatocytes, rejection of donor cells by the host cellular immune 
system is observed (72–74). In order to prevent this rejection, 
mice need to be immunocompromised. In addition, recipients 
must suffer from some type of liver disease to ablate murine 
hepatocytes and to allow proliferation of donor hepatocytes in 
the mouse liver parenchyma. This liver injury can be generated 
in three ways: chemically, surgically, or genetically (75). Several 
humanized mouse models have been developed and explored for 
HCV infection during the past 20 years.

The Trimera Mouse Model
The Trimera mouse was the first chimeric model and is composed 
of three genetically disparate sources of tissue (i.e., recipient 
mouse, bone marrow donor mouse, and human liver tissue), 
hence its name (76). After the recipient mouse is preconditioned 
by lethal total body irradiation, it is radioprotected by immediate 
injection of bone marrow cells from an immunodeficient SCID 
mouse (76). Then, human liver fragments, infected ex vivo with 
hepatotropic virus, are transplanted in ectopic sites of the recipient 
mouse such as the ear pinna or under the kidney capsule (76–78). 
Using this method, Ilan et al. (77, 78) were able to generate mice 
that can be infected with HBV and HCV. Higher serum HCV 
loads are obtained when pre-infected liver fragments from HCV-
positive patients are employed compared to ex vivo infected liver 
fragments (78). HCV viremia persists for approximately 1 month 
and declines thereafter as a result of fibrosis and necrosis of the 
human graft (78). These observed histological abnormalities of 
the transplant can be attributed to their transplantation at an 
extrahepatic location (79). Also, de novo infection of Trimera 

mice, transplanted with healthy liver grafts, has so far not been 
achieved. This means that viral entry or neutralization studies 
cannot be performed using this model (79). Nevertheless, the 
1-month time window may be sufficient for the evaluation of 
certain anti-HCV therapeutics or HCV vaccines (78). In fact, 
an HCV internal ribosomal entry site inhibitor was successfully 
tested in the Trimera mouse model (78, 80).

The Alb-uPA-SCiD Mouse Model with 
Humanized Liver and variants
The Alb-uPA mouse model was initially designed to study the 
pathophysiology of plasminogen hyperactivation and to evaluate 
new therapy regimens for bleeding disorders (81). These trans-
genic mice carry a tandem repeat of four murine urokinase-type 
plasminogen activator (uPA) genes under the control of a mouse 
albumin (Alb) promoter/enhancer (Alb-uPA mice) (81, 82). The 
hepatic uPA transgene overexpression results in elevated uPA 
plasma levels, but also leads to accelerated hepatocyte death, 
hypofibrinogenemia, and serious hemorrhagic events such as 
intra-abdominal and intestinal bleedings in neonatal transgenic 
mice (81–83). However, the high uPA concentration gradually 
returns to normal levels by the age of 2 months (82). This is prob-
ably due to somatic deletions of (parts of) the transgene construct 
within hepatocytes (82). Consequently, these transgene-deficient 
cells can selectively proliferate and regenerate the diseased liver 
tissue (82). On the other hand, when newborn Alb-uPA mice are 
transplanted with healthy donor hepatocytes, their functional liver 
deficit is also restored by the transplanted cells that repopulate the 
diseased liver (82, 84). In order to prevent rejection of hepatocyte 
transplants of xenogeneic origin, Alb-uPA mice should be back-
crossed to an immunotolerant genetic background (84).

Mouse, rat, and woodchuck hepatocytes can be successfully 
transplanted into immunodeficient Alb-uPA mice using intras-
plenic injection (84–86). Mouse livers are chimerically composed 
of both donor-derived and host-derived cells, the latter having a 
survival advantage by deletion of (parts of) the transgene (84–86). 
This transgene inactivation occurs less frequently in homozy-
gous uPA animals compared to their hemizygous counterparts, 
because in the former two transgene arrays must be inactivated 
which is less likely to occur (82, 86). Accordingly, liver chimerism 
can be sustained for a much longer period and at higher levels in 
homozygous mice (86). Up to 90% of the liver may be reconsti-
tuted with donor hepatocytes and initially these cells appear to 
grow in a nodular fashion (84, 85).

By extension, this model is suitable for evaluating the suscep-
tibility of donor hepatocytes to liver infections with a specific 
tropism for the donor species. Petersen et al. (85) were able to 
detect persistent non-cytotoxic woodchuck hepatitis virus infec-
tion in chimeric livers of uPA/recombination activating gene 2 
(RAG2) mice transplanted with woodchuck hepatocytes (85). 
Accordingly, the same group (87) was able to transplant adult 
human hepatocytes early after birth in immunotolerant uPA/
RAG2 mice. Up to 15% of the livers consist of human hepatocytes 
and homozygosity of the Alb-uPA transgene is also required to 
ensure sustained human engraftment (83, 87). The human hepat-
ocytes seem to repopulate the liver in a well-organized fashion 
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with preservation of normal cell function and pharmacological 
responses (88, 89). In addition, human albumin, which indicates 
the functionality of the chimeric liver, is detected in plasma for at 
least 2 months after transplantation (87). Besides mature human 
hepatocytes, also hepatic progenitor cells are observed in these 
livers (90). Better humanization is obtained using commercially 
available, cryopreserved human hepatocytes (91). Remarkably, 
after inoculation with human HBV infectious serum, productive 
infection is initiated (87). Mercer et al. (83) showed for the first 
time that chimeric immunotolerant uPA-SCID mice were sus-
ceptible to HCV infection, thereby permitting the in vivo study of 
HCV biology and the evaluation of different antivirals. Efficient 
infection is independent from HCV genotype, but human albumin  
plasma levels exceeding 1  mg/ml are required for a consistent 
HCV infection in chimeric mice, whereas infectivity criteria for 
HBV infection are clearly less stringent (91, 92).

However, several shortcomings can be highlighted regarding 
the uPA-SCID mouse model: high neonatal lethality, a tendency 
to develop kidney disorders, lower body size, reduction of donor 
hepatocytes (even in homozygotes), less efficient breeding, tech-
nically challenging surgical manipulation in young and fragile 
mice, and finally the inability to expand engrafted hepatocytes 
(83, 88, 93–96). Tateno et al. (93) hypothesized that the first four 
mentioned limitations are caused by inadequate transgene struc-
ture and/or very high expression levels of the uPA gene before 
or after birth. Therefore, they produced chimeric mice using 
embryonic stem cell techniques in order to generate a number 
of transgenic lines. In addition, transgenic lines with the most 
appropriate uPA expression for a damaged, but not a detrimental 
liver were selected (93). This variant is called the hemizygous 
cDNA-uPA-SCID mouse model (93). More albumin-positive 
human hepatocytes are present compared to the original model, 
potentially due to an overgrowth of mouse hepatocytes in the 
uPA-SCID mouse by somatic deletion of uPA genes (97). After 
HBV infection, high titers of HBV viremia that persisted for at 
least 34 weeks are found in cDNA-uPA-SCID mice, but entecavir 
treatment results in a similar viremia decline in both models (97). 
HCV viremia is significantly more observed in cDNA-uPA-SCID 
mice in comparison with uPA-SCID mice, but not one mouse 
remains HCV-positive 8  weeks post-inoculation (97). Finally, 
fewer kidney disorders, higher body weight, and a higher survival 
rate are observed in the cDNA-uPA-SCID model (93, 97). Taken 
together, the cDNA-uPA-SCID mouse model may be preferred 
over the original uPA-SCID model for the study of HBV and 
HCV biology and by extent for the evaluation of anti-HBV/HCV 
drugs.

A second variant consists of transgenic mice carrying the 
uPA gene driven by the MUP promoter (98). These mice can 
be backcrossed onto a SCID/Beige background, resulting in the 
MUP-uPA SCID/Bg mouse model (99). The initial purpose of 
this model was to study liver regeneration after repopulation of 
the diseased liver, but Tesfaye et al. (100) were able to show that, 
upon humanization, these mice are susceptible to infection with 
HBV, genotypes 1–6 of HCV and tissue culture-derived virus 
(98, 99). Interestingly, these mice are in better health compared 
to the classical uPA-SCID mouse model and they offer a longer 
time window (up to 4–12  months of age) for transplantation 

of human hepatocytes (100). The same group (101) reported 
successful HCV infection after engraftment with hepatocyte-
like cells, generated from both human embryonic stem cells and 
patient-specific human-induced pluripotent stem cells. Finally, 
this model is also valuable for the study of HCV-associated 
HCC and for the analysis of tumor-promoting factors in liver 
cancer (102).

As a third uPA-based variant, the non-obese diabetic (NOD)/
Shi-scid IL2Rgnull (NOG) background is employed, resulting in 
the uPA/NOG mouse model (94). Donor hepatocytes can be 
transplanted in 6-week-old uPA/NOG mice which enable easier 
surgical manipulation and moreover an improved survival rate of 
the transplanted mice (94). In addition, absence of neonatal lethal-
ity increases the efficacy of homozygote production by mating 
and finally, the severely immunocompromised NOG background 
allows higher xenogeneic cell engraftment (94). Another advantage 
is that a relatively low frequency of physical loss of the transgene 
is observed (94). However, HCV infection is not reported in this 
model yet. Importantly, Hasegawa et al. (103) generated another 
model by using an alternative strategy for the endogenous liver 
injury: targeting the expression of herpes simplex virus type 
1 thymidine kinase to the liver of the NOG mice. Hepatocytes 
that express this transgene can be ablated after brief exposure of a 
non-toxic dose of ganciclovir (103). Thereby, mouse livers can be 
stably replaced with mature and functional human liver tissue at 
a chosen time (103). This model can be successfully infected with 
HBV and HCV and is therefore useful to test different antiviral 
agents (104).

Taken together, the chimeric human liver uPA-SCID mouse 
model or discussed variants thereof have proven valuable for 
in  vivo metabolism studies, basic biology research of HCV 
infection, and the evaluation of different antiviral therapies and 
passive immunization strategies (79, 105–113). Our group also 
contributed by demonstrating the prophylactic effect of mono-
clonal and polyclonal antibodies, isolated from a chronically 
infected patient, against challenge with different HCV genotypes 
(107, 108, 114). In addition, anti-receptor antibodies are shown 
to protect these mice from a subsequent challenge with HCV of 
different genotypes (106, 115–117). Next to chimpanzees, this 
human liver chimeric mouse model is also attractive for moni-
toring HCV drug resistance (118). Our laboratory has particular 
interest in this matter and showed that the combination of DAAs 
with entry inhibitors restricts the breakthrough of DAA-resistant 
viruses (119, 120). Finally, the uPA-SCID mouse model is also 
applicable for studies concerning malaria, which is caused by the 
parasite Plasmodium falciparum, and the study of the hepatitis E 
virus (HEV) (121–125).

The FRG Mouse Model with Humanized 
Liver
In the original uPA-SCID mouse model, hepatocyte transplanta-
tion needs to be performed very shortly after birth (i.e., in very 
fragile and small animals) (126). Because of this practical incon-
venience, other models were explored in which liver injury can be 
induced at a later age, such as in certain earlier discussed variants 
of the uPA-SCID model. Another example is based on mice 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


7

Burm et al. Animal Models of HCV Infection

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1032

that have a genetic knockout for fumarylacetoacetate hydrolase 
(Fah−/−), a metabolic enzyme that catalyzes the last step of the 
tyrosine catabolism pathway (127, 128). This knockout results in 
an accumulation of toxic compounds (e.g., fumarylacetoacetate 
and maleylacetoacetate), which in turn leads to liver dysfunction 
and lethality, unless mice are rescued by the protective drug 
2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione 
(NTBC) (127–129). NTBC blocks the enzyme hydroxyphe-
nylpyruvate dioxygenase upstream of FAH, thus preventing 
the accumulation of hepatotoxic metabolites (130). Using this 
approach, Grompe et  al. (129) showed that liver injury can be 
induced at any desired time point when NTBC is withdrawn. 
The resulting prolonged lifespan of these Fah−/− mice resembles 
a phenotype of humans suffering with hereditary tyrosinaemia 
type I (HT1), which is an inborn error of metabolism caused by 
deficiency of the Fah enzyme (127–129). As a result, the adult 
Fah−/− mouse, when removed from NTBC treatment, is a valuable 
model for studying the pathophysiology and evaluating the treat-
ment options of HT1 and by extension hepatic cancer (128, 129). 
In the immunodeficient FRG mouse, the aforementioned Fah, 
RAG2, and common γ-chain of the interleukin receptor (Il2rg) are 
knocked out. The livers of these mice can be successfully repopu-
lated with human hepatocytes after NTBC withdrawal (95, 130). 
In support of enhanced engraftment, Azuma et al. (95) admin-
istered an uPA-expressing adenovirus before transplantation 
which induces cell-autonomous hepatotoxicity rendering a more 
favorable niche for transplantation (131). In later experiments, 
Bissig et al. (96) showed higher transplantation rates (up to 95%) 
using an increased human hepatocyte dose per mouse. They also 
demonstrated successful infection of the FRG mouse with HBV 
and HCV, however, infection with HCV is only achieved in mice 
with a high human liver chimerism (96).

The FRG mouse model is in some ways favorable over the uPA-
SCID mouse model. First, the deficiency caused by the Fah deletion 
cannot revert back to its wild type form, as seen in the uPA-SCID 
model (95). As a result, serial transplantations are possible and 
transplantation can be performed in adult animals (at any age) 
which simplifies surgery (95). Second, mutant breeders are com-
pletely viable and finally, there is no renal disease observed (95). 
Unfortunately, there are also drawbacks for such a model. First, 
primary engraftment does not occur in 100% of the recipients, 
even when the aforementioned urokinase-expressing adenovirus 
is administered (95). Second, the growth disadvantage of mouse 
hepatocytes in the FRG mouse depends on the absorbed tyrosine 
and the use of NTBC, whereas the growth advantage in uPA-SCID 
mice is sustained as long as the transgene is expressed (130).

Applications of this FRG mouse model with humanized liver 
are wide-ranging. First, human lipid and bile acid metabolism 
can be studied, next to the metabolism of candidate pharma-
ceuticals or toxicity of drug metabolites (95, 132). Second, after 
inoculation with pathogens that are dependent on human liver 
cells for replication such as HBV, HCV, and HEV, the life cycle 
can be studied, but also experimental treatment options can be 
evaluated (95, 133–137). Finally, because the FRG mouse model 
also supports complete P. falciparum liver stage development, this 
model is suitable for evaluating existing drugs and screening of 
candidate antimalarials (138).

iMMUNOCOMPeTeNT XeNOGRAFT 
MOUSe MODeLS

The human liver xenograft mouse models are very valuable as 
challenge models for HCV or other human hepatotropic patho-
gens, but their major drawback is the lack of a functional immune 
system. As a consequence, they cannot be used for the study of 
HCV-specific immune responses or HCV immunopathogenesis 
after infection, nor for HCV vaccine studies (79). Second, histopa-
thology such as fibrosis, cirrhosis, or HCC has not been reported, 
in contrast to what is seen in humans that are chronically infected 
with HCV (75). In human patients, an ongoing inflammatory 
response is probably responsible for disease progression, so the 
presence of a functional human immune system in HCV mouse 
models is highly demanded and explored (75).

The Tolerized Rat Model
Another way to avoid rejection of allogeneic transplants, in addi-
tion to generalized immunosuppression or the use of genetically 
immunodeficient animals, is by induction of immunological tole-
rance to transplanted cells in immunocompetent animals (76, 77, 
85, 139, 140). Therefore, Huh7 cells can be injected in utero into the 
peritoneal cavity of fetal rats (139). In this time frame, the immune 
system is still in development, so tolerance toward engrafted 
hepatocytes can be established (139, 140). Corresponding cells 
are then intrasplenically injected into the newborn rats within 
the first 24 h after birth (139). The major benefit of this model 
is that there is no need for genetic or pharmacological immu-
nosuppression (139). However, engraftment rates are much 
lower compared to the uPA-SCID model for example, because 
there is no mechanism for host hepatocyte depletion (141). The 
use of hepatoma cells instead of primary hepatocytes also limits 
further applications. Another drawback is the mismatch between 
the human major histocompatibility complex (MHC) antigens 
on the transplanted cells and the rat immune system, so there 
will be no recognition of HCV antigens by the immune cells of 
the rat (141). Despite these limitations, HCV gene expression, 
viral replication, and hepatitis symptoms can be observed when 
these tolerized immunocompetent rats are intrasplenically 
injected with HCV inocula 1  week after transplantation (141). 
Unfortunately, HCV viremia is low (peak at 22,500 copies/ml) and 
the observed inflammation is probably due to cytokine-mediated  
effects (141).

The Dually (immune System and 
Hepatocytes) engrafted Mouse Models
To overcome the human/rodent MHC mismatch as in the tole-
rized rat model, it would be favorable to introduce both human 
hepatocytes and human immune cells from the same donor into 
the same recipient animal. The first mouse model that supported 
this double engraftment was generated in 2011 (142). A fusion 
protein of the FK506 binding protein (FKBP) and caspase 8 under 
the control of the albumin promoter (AFC8) is therefore trans-
genically expressed in hepatocytes of immunodeficient Balb/C 
Rag2-γCnull mice. After administration of an FKBP dimerizer, 
hepatocytes that expressed the transgene are depleted (142, 143). 
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This induced liver-specific cell death provides a niche for engraft-
ment with human hepatocyte progenitors (142). Moreover, after 
irradiation, these mice are transplanted with human CD34+ 
hematopoietic stem cells (HSCs) from the same human fetal liver 
tissue, providing these AFC8-hu HSC/Hep mice with a, to some 
extent, functional human immune system (142, 144). Following 
inoculation with primary HCV isolates, HCV infection can be 
observed that in turn induces infiltration of human immune 
cells in the livers with liver inflammation and fibrosis as a result  
(142, 145). This model enables the study of HCV-specific immune 
responses (i.e., T-cell responses) and HCV immunopathogenesis 
(142, 145). However, HCV RNA could only be detected in the 
liver and not in plasma, probably due to the low level of human 
liver engraftment (~15%) in this model (126, 142). Another limi-
tation is the suboptimal activity of the immune system inherent 
in human CD34+ HSC transplanted mice and also the lack of 
functional B-lymphocytes that hampers the study of antibody 
responses and vaccine development (126, 142, 146).

A second immunocompetent model was launched by Gutti 
et  al. (147) who used non-myeloablative conditioning with 
treosulfan as a safe and well-tolerated alternative to total 
body irradiation for HSC transplantation. Long-term dual 
reconstitution is achieved in uPA/NOG mice with HSCs and 
allogeneic mature hepatocytes (not fetal hepatoblasts) (147). 
Even MHC mismatched transplantation is sustained without 
any evidence of hepatocyte rejection by the human immune 
system (147). Wilson et  al. (148) also accomplished double 
humanization of mice. Following preconditioning with a DNA-
damaging chemical for enhanced HSC engraftment and an 
uPA-expressing adenovirus for enhanced hepatocyte engraft-
ment, they co-transplanted adult human hepatocytes and HSCs 
in immunodeficient FRG mice on a NOD-strain background 
(FRGN mice) (95, 148). Another variant is achieved in BALB/c 
RAG2−/− IL-2Rγc−/− NOD.sirpα (BRGS) mice that harbor the 
uPA transgene (uPA/BRGS mice) (149). Irradiated newborn 
pups are injected with human HSCs and later implanted with 
human hepatocytes to generate dually engrafted mice that are 
not haplo-type matched. Engraftment (~20–50% of chimerism) 
is stable for at least 5 months and is similar as observed in the 
uPA/NOG and FRGN host, but higher than in the AFC8 host 
(142, 147–149). Interestingly, a complete viral life cycle can be 
observed after HBV infection in this model (150). This enables 
the evaluation of experimental anti-HBV therapies, but also the 
study of anti-HBV immune responses (150). Bility et al. (151) 
also reported successful HBV infection in a similar human liver 
progenitor cell and human CD34+ HSC cell engraftment model 
using mice on a NOD-SCID IL2rγ−/− background (HLA-A2/
NSG mice). These mice carry the human HLA-A2 transgene 
that enhances the development of human MHC-restricted 
T-lymphocytes (151, 152). To promote efficient hepatocyte 
repopulation, mice are first treated with an anti-Fas agonistic 
antibody (151, 153). Chen et al. (154) performed one-step engraft-
ment of hepatoblasts and a matching human immune system 
using fetal liver-derived HSC cells in the same NSG mouse 
(human immune system and liver or HIL mice) and this with-
out the need for transgenic modification or drug treatment. 
HIL mice support HCV infection, liver inflammation, human 

HCV-specific immune responses, as well as liver fibrosis, how-
ever, in a low number of hepatocytes (154, 155). This can be 
explained by the low human chimerism rate (<10%) (154, 155).  
Antiviral treatment using IFNα-2a is able to block the pro-
gression of the HCV-associated liver pathogenesis (154, 155). 
These HCV-infected mice also show expansion of monocytes/
macrophages and (especially CD4+) T-cells, suggesting exhaus-
tion of immune cell phenotypes as seen in HCV patients (156). 
Unfortunately, HCV infection is not reported in every discussed 
dually engrafted model and this will also be challenging, espe-
cially due to the very low engraftment rates.

viRAL ADAPTATiON

Hepatitis C virus exhibits a narrow species tropism which is 
incompletely understood. Resistance of mice to HCV infection 
is determined to be at the level of viral entry and/or replication. 
There are two ways of surmounting this barrier: either the host 
can be adapted to the virus or the virus can be adapted to the 
host. First, utilizing the error-prone replication of RNA viruses, 
the HCV virus can be adapted to the murine environment. More 
specifically, long-term cultivation in the presence of mouse cells 
could allow the virus to adapt to murine entry factors (CD81, 
OCLN, CLDN1, and SR-BI). Bitzegeio et al. (157) attempted to 
adapt an HCV genotype 2a strain (Jc1) to the murine CD81. They 
identified three adaptive mutations in the HCV envelope proteins 
E1 and E2. This Jc1/mCD81 virus has increased affinity for the 
extracellular loops of human CD81, indicating a more accessible 
binding site for human CD81 (157). The uptake of this murine-
tropic HCV in mouse primary hepatocytes in vitro and in vivo is 
rather inefficient and more modifications are required to increase 
efficiency. There is unfortunately no persistent infection observed, 
even in mice with impaired innate and adaptive immune system. 
To conclude, additional barriers may exist in the replication 
and post-entry steps (158). In addition, the applicability of such 
systems for the study of entry processes might be affected by the 
influence of the adaptive mutations on the envelope conforma-
tion and receptor usage.

GeNeTiCALLY HUMANiZeD MOUSe 
MODeL

Rather than to adapt the virus to a new host, an alternative 
strategy could be to genetically adapt the host to natural HCV 
isolates. Despite differences to the natural human host of HCV, 
an immunocompetent animal model can be generated in this 
way. Transient expression of the minimal human factors (CD81, 
OCLN, CLDN1, and SR-BI) by adenoviral delivery in Rosa26-
Fluc mice allows entry of HCVcc in mouse hepatocytes (35). 
Furthermore, mice transgenic for these four human receptors 
(4hEF-mice), but with deficiencies in several innate immune 
signaling pathways (STAT1−/−), support not only viral entry 
of HCVcc but also low-level replication and sustained HCV 
infection for 90 days. The infection elicits antiviral cellular and 
humoral responses, but does not result in development of liver 
disease (159).
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However, these models express non-physiologically high 
levels of the entry factors and impair tight junction formation 
and B-cell development (160). Interestingly, by selectively 
humanizing the second extracellular loops of CD81 and OCLN, 
required for HCVcc entry, the chimeric alleles are expressed at 
physiological levels and mice support HCV uptake at similar 
levels as mice expressing HCV receptors using transgenical or 
adenoviral methods. Also, tight junctions are formed normally 
and the defects in B-cell development are absent (160).

However, since replication in immunocompetent mice is 
inefficient, the latter model does not allow a profound study of 
all complex virus–host interactions. Viral RNA replication in 
mouse cells appears to be the final hurdle to overcome in order 
to reconstitute the entire viral life cycle in mice. Chen et al. (161) 
described an immunocompetent animal model permissive for 
HCV infection and ensuing development of liver disease. They 
created transgenic mice expressing OCLN and CD81 on an 
outbred ICR (CD-1) background (C/OTg). These mice can be 
infected with serum- or cell culture-derived HCV and sustain this 
infection for over 12  months. Moderate hepatic inflammation, 
micro- and macro-vesicular steatosis, and fibrosis are observed 
in some of the infected animals. However, none of the animals 
develop HCC (161). It is rather striking that HCV can establish 
a persistent infection in ICR-C/OTg mice, whereas a similar 
approach on a C57BL/6 background fails to show sustained 
HCV replication. Backcrossing C/OTg to a C57BL/6 background 
(B6-C/OTg) significantly reduces the RNA copy number in 
serum and liver. ICR hepatocytes express higher levels of apoli-
poprotein E, which is shown to improve HCV production (162). 
Also, miR-122 is not upregulated upon HCV infection in B6-C/
OTg (161). In conclusion, the ICR-C/OTg mouse model appears 
to fulfill to a large extent the criteria for a suitable HCV animal 
model and is therefore a valuable addition to the current pool of 
animal models.

HCv HOMOLOGS

Alternative models are based on the use of HCV homologs. These 
HCV-related viruses infect either rodents, horses or dogs and can 
therefore be used to study viral biology, pathogenesis, and host 
immune responses in an immunocompetent setting. The GB 
virus B has long been the only known homolog to HCV. This virus 
was first discovered in tamarins experimentally infected with 
serum of a surgeon (G.B.) suffering from acute hepatitis (163). 
The infected tamarins developed acute hepatitis (164) and are 
used together with marmosets as a surrogate model for the study 
of protective immunity (165) and evaluation of antivirals (166). 
However, persistence is rare in these animals and the natural host 
is yet to be identified (163, 167, 168).

By using deep sequencing virome analyses, novel HCV-
related hepaciviruses and pegiviruses have been identified in 
dogs, horses, bats, rodents, and non-human primates (168). 
Several of these viruses have the potential to serve as a surrogate 
model for HCV. However, not all are hepatotropic or mimic the 
natural course of HCV infection. The non-primate hepacivirus 
(NPHV) was first discovered in dogs and therefore termed canine 
hepacivirus (169), but subsequent studies revealed that horses are 

the natural host for this virus (168). NPHV infection in horses 
greatly resembles HCV infection in humans. It is a hepatotropic 
virus that is able to establish a persistent infection, although the 
chronicity rate is considerably lower than for HCV infection. The 
host immune response is similar to that in humans, including 
the delayed seroconversion and immune-related liver pathol-
ogy (168). These characteristics allow NPHV to be a valuable 
animal model for HCV, especially since it is immunocompetent. 
Drawbacks, however, are the large size and animal care costs that 
accompany this model. Conceivably, rodents are still the desired 
animal model, due to their small size, easy handling, and possibil-
ity to be genetically manipulated. Therefore, the newly discovered 
rodent hepaciviruses (RHV) are of particular interest (170–172). 
Infections of these viruses in their natural host, or possibly in 
immunocompetent laboratory inbred mouse strains, require 
further investigation.

Methodical searches for hepaciviruses in several wild rodent 
species have led to the identification of potential small animal 
models for HCV. Some of these rodents, including bank voles 
(Myodes glareolus) and rats (Rattus norvegicus), experience 
signs of liver inflammation after infection with a RHV. During a 
metagenomics survey in commensal Norway rats (Nr) in New York 
city, Firth et al. (172) also discovered some new viruses, including 
two novel hepaciviruses (NrHV-1 and NrHV-2) and one novel 
pegivirus (NrPgV). These hepaciviruses were demonstrated to be 
hepatotropic and are consequently the first small-mammal hepa-
civiruses known to replicate in the liver (172). Although rats are 
the natural hosts of NrHV, Billerbeck et al. (173) aimed to develop 
a mouse model of NrHV infection. NrHV is able to establish a 
persistent infection in immunocompromised mice lacking type I 
interferon and adaptive immunity (A129, AG129, and NRG). On 
the other hand, immunocompetent mice (C57BL/6J and BALB/c) 
clear the virus in a few weeks (173). NrHV, passaged through NRG 
mice, is cleared significantly slower than NrHV derived from rats, 
indicating possible adaptation to the mouse host. The developed 
immunocompetent inbred mouse model can potentially help 
to unravel certain mechanisms of hepacivirus host adaptation, 
immune activation and evasion, and development of liver dis-
ease (173). Because this inbred mouse model only results in an 
acute, self-limiting infection, Trivedi et al. (174) searched for a 
fully immunocompetent surrogate model in which a persistent 
infection can be established. The natural host of NrHV, the rat, 
was therefore further investigated. Inbred Brown Norway rats 
fail to even partially control the infection, while different outbred 
lines [Spraque–Dawley, Holtzman (HTZ), Long Evan, and Wistar 
Han] show limited suppression of viral replication. HTZ rats 
display the largest suppression of viremia and were explored in 
more detail. The rats exhibit hepatic inflammation characterized 
by dense lymphocytic aggregates focused on the portal tracts, 
parenchymal damage, associated with apoptotic hepatocytes and 
macro- and micro-vesicular steatosis, characteristic for human 
HCV infection (174). This model is also suitable to study the role 
of various interferon stimulating genes and immune responses 
in hepacivirus pathogenesis. Thus, NrHV infected rats can 
serve as an informative, fully immunocompetent surrogate 
to study the mechanisms of HCV persistence, immunity, and  
pathogenesis.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


10

Burm et al. Animal Models of HCV Infection

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1032

CONCLUSiON

Despite extensive research, there is still no vaccine available for 
the prevention of HCV infection. In order to design and test new 
vaccines, the immunocompetent human liver xenograft mouse 
models are very promising. Next to the study of HCV immune 
responses, these models also allow investigation of disease pro-
gression. Contrary to this, the immunocompromised human liver 
xenograft mouse models only allow passive immunization. In 
this way, antibodies targeting different genotypes of HCV can be 
evaluated. Vaccine studies are not relevant, because these mice lack 
or only show limited cellular immunity. Furthermore, during the 
past decade, especially the uPA-based mouse with humanized liver 
has considerably contributed to our understanding of the HCV 
life cycle and the development of antiviral strategies. Alternatively, 
for studying the basic aspects of HCV biology, viral replication 
or for the evaluation of certain antiviral strategies, it may not be 
necessary to establish complicated dual-chimeric models. The 
genetically humanized models are adequate to study viral biology. 
However, they can only be used to evaluate prophylactic vaccines, 
not therapeutic vaccines. Finally, the HCV homologs, more spe-
cifically NrHV, can be used for vaccination studies and for the 
evaluation of both humoral and cellular immune responses. The 
knowledge that is built from this model can be partially transferred 
to the existing HCV models, but it is important to consider that 
HCV and hepaciviruses comprise different viruses. In conclusion, 

it is clear that the HCV model of choice is highly dependent upon 
the specific research question. The development and characteriza-
tion of new HCV animal models or the improvement of existing 
models, especially those with a human immune system, is highly 
demanded to develop a potent HCV vaccine. An effective vaccine 
is probably the most essential key for eradication of HCV.
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