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Abstract 

BACKGROUND: Chemical modifications such as PEG, polyamine and radiolabeling on 

proteins can alter their pharmacokinetic behaviour and their blood-brain barrier (BBB) 

transport characteristics. NOTA, i.e. 1,4,7-triazacyclononane-1,4,7-triacetic acid, is a 

bifunctional chelating agent that has attracted the interest of the scientific community for its 

high complexation constant with metals like gallium. Until now, the comparative BBB 

transport characteristics of NOTA-modified proteins versus unmodified proteins are not yet 

described.  

METHODS: Somatropin (i.e. recombinant human growth hormone), NOTA-conjugated 

somatropin and gallium-labelled NOTA-conjugated somatropin were investigated for their 

brain penetration characteristics (multiple time regression and capillary depletion) in an in 

vivo mice model to determine the blood-brain transfer properties.  

RESULTS: The three compounds showed comparable initial brain influx, with Kin = 0.38 ± 

0.14 µL/(g×min), 0.36 ± 0.16 µL/(g×min) and 0.28 ± 0.18 µL/(g×min), respectively. 

Capillary depletion indicated that more than 80% of the influxed compounds reached the 

brain parenchyma. All three compounds were in vivo stable in serum and brain during the 

time frame of the experiments.  

CONCLUSIONS: Our results show that modification of NOTA as well as gallium chelation 

onto proteins, in casu somatropin, does not lead to a significantly changed pharmacokinetic 

profile at the blood-brain barrier. 
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Introduction 

Protein biopharmaceuticals have marched their way into the medicine landscape since the 

approval of the first recombinant protein insulin, Humilin®, in 1982. Since then, further 

research on protein modifications, either engineered (e.g. polyethylene glycol (PEG)-ylation, 

drug-conjugation, radiolabeling), originating from the expression host (e.g. post-translational 

modifications (PTM)) or resulting from the manufacturing process, have gained the interest 

by the biopharmaceutical community. Chemical modifications change the physicochemical 

properties, hence, alter the pharmacologic activity and pharmacokinetic profile of the protein 

under investigation. For example, changed elimination via a combination of changed 

proteolysis, renal ultrafiltration, liver clearance and/or starvation by the immune system, as 

well as specific interaction and/or accumulation within tissues is observed for PEGylations.1, 2 

Also modifications of proteins with bifunctional chelating agents (BFCA) such as 1,4,7-

triazacyclononane-1,4,7-triacetic acid (NOTA) allow the incorporation/chelation of 

radiometals (e.g. 68Ga and 67Cu) and conjugation onto a targeting ligand via a linker, thereby 

opening the way for theranostic applications.3-6 

Conjugating moieties typically target functional groups on proteins such as amine, carboxyl 

and sulfhydryl, which are generally present in multiple copies on the protein and which can 

lead to complex product outcomes.3, 7 The conjugate-targeting ligand ratio or substitution 

degree can influence the target-binding functionalities, the in vivo stability, clearance and 

biodistribution.8-10  

In general, the ability to freely cross the blood-brain barrier (BBB) depends on the 

physicochemical properties (e.g. molecular size, charge and lipophilicity) and is often a closed 

route for proteins. However, chemical modifications on proteins such as polyamine 

modifications have demonstrated a higher permeability at the BBB compared to their 

unmodified counterparts.11-13 

In this study, the model protein of interest is somatropin (i.e. a recombinant human growth 

hormone (rhGH), INN) modified with 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-

1,4,7-triacetic acid (p-SCN-Bn-NOTA) moieties.7 Currently, evidence points to the 

involvement of growth hormone (GH) and its receptor (GHR) on tumour progression.14-22 The 

GHR internalizes after signal transduction and nuclear GHR-localization is associated with 

different cancers, which makes GHR an interesting target to further explore for theranostic 

purposes.23-26 



 

 

Previously, speculations were made on the passage of somatropin over the BBB, because 

expression of the GHR has been demonstrated in the central nervous system (CNS) (amongst 

others choroid plexus, hypothalamus, pituitary, hippocampus and putamen 27-29) and 

administration of somatropin has established positive effects on the CNS (reviewed in 30, 31). 

Pan et al. demonstrated that rat and mouse GH are characterized with a significant blood-to-

brain influx transfer constant in rats.32 However, as chemical modifications of proteins, such 

as NOTA-conjugation, are often required in radiopharmaceutical medicines, an unresolved 

question was if those modifications influence the BBB transport and if they do show a 

different behaviour once complexed with a metal? To our knowledge, the comparative BBB 

transport characteristics of NOTA-modified proteins versus unmodified proteins are not yet 

reported. We investigate here the blood-brain barrier behaviour of NOTA-modified 

somatropin and gallium-chelated NOTA-modified somatropin as model compounds. 

 

Materials and methods 

Chemicals and reagents 

Zomacton® 4 mg (Ferring, somatropin Ph.Eur.) was obtained from Ghent University Hospital 

(Ghent, Belgium) and p-SCN-Bn-NOTA was purchased from Macrocyclics Inc. (Dallas, TX, 

USA). Bovine serum albumin (BSA) was obtained from Merck KGaA (Darmstadt, Germany). 

Dermorphin was synthesised at Hanhong (Shanghai, China). Ultrapure water was purified 

with a quality of 18.2 MΩ.cm using an Arium 611 purification system (Sartorius, Göttingen, 

Germany). For the purification of gallium-chelated NOTA-somatropins, the PD-10 sephadex 

G-25M column was obtained from GE healthcare (Diegem, Belgium). The Pierce® Pre-

Coated iodination tubes, iodine-125 carrier free radionuclide and argent filters used during 

radiolabeling of the compounds were purchased at Thermo Scientific (Erembodegem, 

Belgium), Perkin Elmer (Zaventem, Belgium) and Sterlitech (Kent, USA), respectively. The 

other chemicals and reagents were purchased at Sigma Aldrich (Diegem, Belgium): gallium 

trichloride, potassium chloride, calcium dichloride dihydrate, sodium lactate, magnesium 

sulphate, hydrated sodium dihydrogen phosphate, urethane, D-glucose, sodium hydroxide, 

trichloroacetic acid (TCA), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 

protease inhibitor cocktail; VWR (Leuven, Belgium): disodium hydrogen phosphate dihydrate 

and sodium chloride; and AppliChem GmbH (Darmstadt, Germany): dextran. Gradient grade 

acetonitrile and trifluoroacetic acid (TFA) came from Fisher Scientific (Erembodegem, 

Belgium). 



 

 

 

Animals 

The animal experiments were performed according to the Ethical Committee principles of 

laboratory animal welfare and approved by our institute (Ghent University, Faculty of 

Veterinary Medicine, Prof. Dr. K. Hermans, approval number EC2014/128, approved on 17th 

of November 2014). All efforts were made to minimize suffering. Female, Institute for Cancer 

Research, Caesarean Derived-1 (ICR-CD-1) mice of age 7-10 weeks and weighing 29-32 g, 

were obtained from Envigo RMS B.V. (Venray, Netherlands).  

 

Compounds under investigation 

The BBB behaviour of somatropin, 10:1 NOTA:somatropin and gallium-chelated 10:1 

NOTA:somatropin (or Ga-10:1 NOTA:somatropin) was investigated. The synthesis and 

analytical characterization of 10:1 NOTA:somatropin is described in Bracke et al.7 The 

NOTA-moieties of 10:1 NOTA:somatropin were chelated with gallium by incubating 1 mg of 

10:1 NOTA:somatropin, dissolved in 500 µL ammonium acetate buffer (0.1 M pH 5.5, 

supplemented with 0.2 mM acetylaceton) together with 1500 µL of a 571 µM gallium 

solution (285 µL of a 4 mM GaCl3 bulk solution in 0.1 M HCl added to 570 µL 0.05 M 

NaOH and 1140 µL ammonium acetate buffer) and incubated for 1 h at 37°C in the dark, 

while shaking at 750 rpm. The sample was loaded onto a PD-10 column (previously rinsed 

using 25 mL of 25 mM phosphate buffer, pH 7.4) and eluted using 2 mL of a 25 mM 

phosphate buffer, pH 7.4. BSA and dermorphin were included as negative and positive 

controls in the MTR study, both dissolved in 25 mM phosphate buffer pH 7. Both control 

compounds are specific for their BBB-influx purpose, while in other experiments like CD or 

stability, these 2 controls are of no relevance, and assurance of the experimental results are 

obtained by good laboratory practices. 

 

Radiolabeling of the compounds 

The radiolabeling of the compounds was performed using the Iodogen method.33-35 In brief, 

the Pierce® Pre-Coated iodination tubes were pre-rinsed with 1 mL 25 mM phosphate buffer 

pH 7.4. Then, 50 μL of a 1.1 mM NaI in 500 mM phosphate buffer pH 7.4 and 15 μL Na125I 

(eq. 1 mCi) were added in the Iodogen tubes, mixed and incubated for six minutes at room 

temperature. The iodonium solution was transferred to a tube containing 50 µg protein or 

peptide and the reaction was proceeded for six minutes at room temperature. Purification (i.e. 



 

 

separation of the unbound iodonium vs. radiolabeled protein) was performed by adding 500 

µL 25 mM phosphate buffer pH 7.4 to the reaction mixture, followed by filtration through an 

argent filter. The appropriate protein and peptide concentrations (i.e. 30 000 cpm/µL for 

multiple-time regression analysis (MTR) and 10 000 cpm/µL for capillary depletion (CD)) 

were prepared using Lactated Ringer’s solution containing 1% of BSA (LR/BSA).  

 

Multiple-time regression analysis 

After anesthetization of the ICR-CD-1 mice by intraperitoneal injection with a 40% (m/V) 

urethane solution (3 g/kg), the jugular internalis vein and carotid artery were isolated and 200 

µL of the compound solution was injected into the jugular vein. Blood was collected from the 

carotid artery at regular time points after injection (1, 1, 3, 5, 10, 12.5, 15 and 15 min; one 

time point per mouse and a total of eight mice per compound, which is in accordance to 

previous MTR designs reported by our group), followed by immediate decapitation.35-39 This 

was done independently for each of the compounds (somatropin, 10:1 NOTA:somatropin, Ga-

10:1 NOTA:somatropin and both controls). Next, the brains were collected and weighed, and 

serum was prepared by centrifugation of the blood at 10 000 g for 15 min at 21°C. 

Radioactivity of the blood, serum and brain was measured using a Wallac Wizard automatic 

γ-counter (Perkin Elmer, Shelton, CT, USA). 

In order to determine the BBB permeability of the compounds, the ratio of the brain and 

serum concentration (µL/g) was plotted versus the exposure time (Θ).40 The exposure time is 

calculated as the integral of the concentration of compounds in the serum (Cp) from start (t=0 

min) to the experimental time T (i.e. the area under the curve), divided by the concentration of 

compound in serum at time T:  (1). Working with the exposure time instead of 

the experimental time, allows to correct for the serum radioactivity decay over time and 

represents the theoretical steady state serum concentration level. A linear model of the blood-

brain transfer was used to derive the influx parameters as elaborated by Gjedde and Patlak: 

           (2) 

where Am(t) is the amount of radioactivity in brain (cpm/g) at time T, Cp(t) is the amount of 

radioactivity in serum (cpm/µL) at time T, Kin is the influx rate constant and Vi is the initial 

volume of distribution.41-43 



 

 

The elimination rate constant (ke) and serum half-life (T1/2) were calculated from the serum-

concentration time curves, based on a one compartment model:  (3) and 

 (4).44 

 

Capillary depletion 

The CD method was performed to distinguish the distribution of the compounds (somatropin, 

10:1 NOTA:somatropin and Ga-10:1 NOTA:somatropin) between brain parenchyma and 

cerebral capillaries.35-39, 45, 46 Each compound was injected in two anesthetized mice as 

described in the MTR section. Before decapitation at 10 minutes post injection, blood was 

collected from the abdominal aorta followed by cardiac perfusion with 20 mL LR buffer, after 

clamping the aorta and severing the jugular veins. Brains were collected and radioactivity was 

measured, followed by homogenisation of the brain in 0.7 mL ice cold capillary buffer (10 

mM HEPES, 141 mM NaCl, 4 mM KCl, 2.8 mM CaCl2, 1 mM MgSO4, 1 mM NaH2PO4 and 

10 mM D-glucose, pH 7.4) and 1.7 mL of ice cold 26% m/V dextran solution in capillary 

buffer. The resulting homogenate was weighed and centrifuged at 4500 g for 30 min at 4°C. 

The pellet (i.e. capillaries) and supernatant (i.e. parenchyma and fat tissue) were weighed and 

measured in the γ-counter. Serum was prepared from the collected blood by centrifugation at 

10 000 g for 15 minutes at 21°C and measured in the γ-counter as well. The compartmental 

distribution was calculated as follows: 

   (5) 

 

Tissue distribution after IV injection 

From the 15 minutes time points from the MTR study, tissues (spleen, kidney, liver, lungs, 

heart and serum) were collected after decapitation, weighed (Wtissue) and radioactivity was 

measured in the γ-counter (Atissue). The percentage of injected dose (i.d.) for each tissue was 

calculated as follows, with AIV injected the measured radioactivity of the MTR stock solution 

and Wmouse the weight of the injected mouse: 

        (6) 

 

In vivo stability 



 

 

The in vivo stability evaluation was performed according to Pan et al.32 Proteins in serum 

samples from the MTR study were precipitated by addition of 15% TCA. Supernatant and 

pellet, corresponding to degradation fragments and intact protein, respectively, were separated 

by a 30 minutes centrifugation step at 4000 g. The brains collected during the MTR study, 

were homogenized in 1 mL of ice cold LR/BSA solution and 10 µL protease inhibitor 

cocktail. This mixture was centrifuged for 2 minutes at 4000 g and 500 µL of the supernatant 

was transferred into a new tube. Intact protein was precipitated by addition of 15% TCA, 

vortexed and separated from supernatant by a 30 min centrifugation step at 4000 g and 4°C. 

Radioactivity (A) of the supernatant and the pellet of brains and serum were measured in the 

γ-counter. The percentage intact protein was calculated as follows 

.7 For the kinetic evaluation, the 

percentage of intact protein at 1 minute post injection was taken as a 100% reference. 

Assuming first-order kinetics, a linear regression analysis of the ln(percentage intact protein) 

versus the post-injection time was performed to calculate the half-lives of the somatropins in 

mouse serum and brain. 

 

Statistics 

Regression analysis was performed using the least squares method. Regression lines of the 

MTR study were statistically compared using the Prism 5 software (Graphpad, La Jolla, 

USA). Slopes were not statistically significantly different if the P-value was greater than 0.05. 

 

Results 

Blood-to-brain transport kinetics  

In Figure 1 and Table 1, the MTR results of somatropin, 10:1 NOTA:somatropin, Ga-10:1 

NOTA:somatropin and both controls are given. The investigated somatropins all showed a 

significant influx with a Kin between 0.28 and 0.38 µL/(g×min) and similar initial distribution 

volumes, i.e. Vi between 17.12 and 22.11 µL/g, which were not significantly different from 

each other (Figure 1A). The Vi resembles the effective vascular brain distribution volume of 

the protein including the protein in the vascular space and bound to or accumulated in 

capillary endothelial cells. Based on the peptide classification according to their BBB influx, 

somatropin, 10:1 NOTA:somatropin and Ga-10:1 NOTA:somatropin have a low influx.47 

The data of BSA and dermorphin (Figure 1B) demonstrated the validity of the results and 

were comparable to previous influx data published by our group or found in literature: 



 

 

iodinated BSA shows brain Kin values of around 0.13 µL/g×min and brain Vi of around 

15 µL/g, which is considered as almost absent, and thus a class 1 compound according to 

Stalmans et al.; dermorphin is considered a positive control which shows a significant but 

relatively low brain influx (class 2 according to Stalmans et al.). 35-39, 47, 48 The combination of 

both controls serves as a system suitability quality test of the MTR-experiment: a clear 

difference between the brain influxes of both compounds should be observed to assure this in-

vivo experiment.  

Overall, the somatropins had a higher Kin and Vi value than the negative control BSA. 

 

Figure 1: Multiple time regression curves of the exposure time versus the ratio of the brain and serum activity. A: Somatropin, 10:1 

NOTA:somatropin and Ga-10:1 NOTA:somatropin. B: BSA and dermorphin, negative and positive controls respectively. Data were 

fitted using the linear Gjedde-Patlak model.  

 

Table 1: Overview of the multiple time regression results, with the 65% confidence interval indicated. 

Parameter Somatropin 
10:1 

NOTA:somatropin 

Ga-10:1 

NOTA:somatropin 
BSA Dermorphin 

Kin (µl/(g × min)) 0.38 ± 0.14 0.36 ± 0.16 0.28 ± 0.18 0.13 ± 0.05 0.48 ± 0.09 

Vi (µl/g) 17.12 ± 2.60 20.28 ± 2.80 22.11 ± 3.05 15.12  ± 0.69 18.24 ± 1.64 

Kin = unidirectional influx rate 

Vi = initial brain distribution volume 

 

The radioactivity in serum (corrected for injected dose) was plotted versus time (Figure 2) 

and the serum half-lives were estimated. The serum half-lives were in the same order of 

magnitude, i.e. between 7 and 10 min, for somatropin, NOTA-modified somatropin and 

gallium-labeled NOTA-modified somatropin (Table 2). 



 

 

 

Figure 2: Serum concentrations of somatropin, 10:1 NOTA:somatropin and Ga-10:1 NOTA:somatropin in function of time (min), as 

obtained during the MTR experiments. Data were fitted using a one compartment model (dashed lines). 

 
Table 2: Serum radioactivity time curve parameters. 

Parameter Somatropin 10:1 NOTA:somatropin Ga-10:1 NOTA:somatropin 

ke (min-1) 0.100 0.097 0.072 

c0 20883 16245 12617 

T1/2 (min) 6.911 7.138 9.673 

R2 0.859 0.795 0.899 

Parameters are based on a one compartment model 

Capillary depletion 

The compartmental distribution of the radiolabelled compounds in the brain was estimated 

using the capillary depletion method. In the CD method, a cardiac perfusion step washes out 

the residual radioactivity in the brain vasculature, thereby allowing to distinguish between 

compounds that have reached the brain parenchyma and compounds that are trapped in the 

capillaries. The parenchymal fraction amounted 80% for somatropin, which is comparable to 

previous obtained results and confirms the validity of the method.32 Parenchymal fractions of 

82% and 81% were obtained for 10:1 NOTA:somatropin and Ga-10:1 NOTA:somatropin, 

respectively (Figure 3). This indicates that only about 20% of the measured radioactivity was 

trapped in the brain capillaries. 



 

 

 

Figure 3: Capillary depletion compartmental distribution results normalized for brain weight (mean absolute amounts in μL/g ± 

SEM, n=2), showing a very high brain parenchymal penetration for all investigated compounds. Atissue and Aserum are the measured 

activities in the concerned tissue and serum, respectively.  

 

Tissue distribution 

After 15 minutes post injection, both somatropin and 10:1 NOTA:somatropin were mainly 

found in serum, kidney and liver. Once gallium is complexed in 10:1 NOTA:somatropin, the 

compound was mainly distributed in serum (Figure 4). The tissue distribution of the positive 

and negative control corresponded well with previously obtained research results.35, 37-39 

 

Figure 4: Relative tissue distribution at 15 minutes post injection, expressed as the percentage of the injected dose (ID) (mean ± 

SEM, n=2). From left to right: brain, spleen, kidney, lungs, heart, liver and serum. A 100% ID indicates that the concentration of the 

compound within the tissue is the same as the mean concentration over the entire animal (i.e. homogeneous distribution).  

 



 

 

In vivo stability 

The in vivo stability was evaluated according to the TCA precipitation method of Pan et al.32 

Using this method, a separation is made between intact protein (precipitate) and degradation 

products (e.g. metabolites (peptides) or free iodine as a result of deiodination; supernatant). A 

first-order kinetic is assumed in the calculation of the rate constant (k) and related half-life 

(Figure 5). The calculated metabolic half-lives were for all three compounds between 17 and 

30 min in serum and brain.  

 

Figure 5: First-order kinetics of the in vivo stability in serum (left) and brains (right). Black: somatropin, gray: 10:1 

NOTA:somatropin and blue: Ga-10:1 NOTA:somatropin. Fitting results and calculated half-lives are shown in the insets. 

 

Discussion 

The effect of NOTA-conjugation on the BBB transport characteristics of proteins, has not yet 

been described. The BBB is a unique, selective interface formed by the tight junctions 

between the endothelial cells that line the cerebral capillaries, as well as the metabolic barrier 

and the specific transport systems.49, 50 Molecules that readily pass the BBB under normal 

conditions are traditionally explicitly small and lipophilic; however, saturable transport 

systems are described for different proteins, e.g. interleukins, tumour necrosis factor α and 

interferons.46, 51-57 This means that molecules can diffuse passively through the BBB (mainly 

small, lipophilic molecules) or make use of a carrier- or receptor-mediated transport system as 

also for peptides and proteins.58 Receptor-mediated transport systems are now strategies used 

for the transport of protein therapeutics across the BBB, e.g. bispecific antibodies with 

binding to the transferrin receptor (TfR).59 Some proteins however, do not pass this BBB and 

are here used as vascular markers, characterized by a negligible vascular brain distribution 

volume (on average 8.0 µL/g).41, 60 BSA is a known protein vascular marker, but 

radioiodination of BSA has been demonstrated to show some nonspecific binding to cerebral 

capillaries in comparison to the tritiated form, explaining the observed brain influx and higher 



 

 

initial brain distribution volume (Vi = 15 µL/g).61 In fact, molecular modifications on 

substances is one of the nine mechanisms influencing brain penetration of compounds, but 

unfortunately, the pharmacokinetic outcome is often difficult to predict.62 As exemplified by 

Banks et al., PEGylations can both enhance and reduce the BBB permeation. Also glucose 

modifications enhanced the BBB penetration, but these modifications did not target the 

expected glucose transporter GLUT1.62-63 Therefore, the inclusion of a BBB permeability 

study is recommended to investigate the potential of drugs and their modification moieties to 

target the CNS, with (i) intentional passage e.g. for treatment of CNS diseases or (ii) 

unintentional passage e.g. to estimate non-selective tissue distribution in CNS during ligand-

targeted radiopharmaceutical development.64 

Rat GH was previously characterized by a low brain influx (Kin of 0.23 and 0.32 µL/(g×min) 

in mice and rat, respectively) demonstrated that a recombinant, human GH (somatropin) with 

cross-species reactivity (i.e. human ligand binds mouse receptor), has a similar brain influx of 

0.38 ± 0.14 µL/(g×min) in the mouse model.32, 65, 66 The 10:1 NOTA:somatropin sample 

contains a mixture of products with different NOTA-substitution degrees and positional 

isomers.7 No altered functional receptor binding potency was demonstrated for 10:1 

NOTA:somatropin and Ga-10:1 NOTA:somatropin compared to unmodified somatropin.67 In 

this study, we could not demonstrate a significantly different BBB kinetic transport behaviour 

for these three compounds. Moreover, the compartmental distribution in the brain parenchyma 

and brain capillaries was also similar for the three compounds, with an estimated higher 

parenchymal localisation (≥ 80%). From our results, we can conclude that for 10:1 

NOTA:somatropin with or without gallium chelation, there was no significantly different 

BBB behaviour compared to unmodified somatropin.  

The serum half-lives for somatropin, 10:1 NOTA:somatropin and Ga-10:1 NOTA:somatropin 

were calculated to be 6.9, 7.1 and 9.7 minutes, respectively. As seen from the tissue 

distribution after 15 minutes post injection, somatropin and 10:1 NOTA:somatropin are 

highly distributed in serum, liver and kidney. The kidney is the main clearance site for GH, 

the liver is the main target site for GH action with GHR expression; and the extracellular part 

of the GHR, known as the growth hormone binding protein (GHBp), circulates separately in 

the blood at nanomolar concentrations, where it will bind with a substantial part of plasma 

GH (40-50%).68-73 Binding to GHBp can positively influence the serum half-life. The Ga-

chelated 10:1 NOTA:somatropin showed a different tissue distribution profile: significantly 

high serum levels were found and no preferential tissue uptake was observed. 



 

 

Next to the tissue distribution, also the in vivo metabolic stability was evaluated which can 

contribute to the serum half-lives. All three compounds (somatropin, 10:1 NOTA:somatropin 

and Ga-10:1 NOTA:somatropin) were relatively stable during the 15 minutes time period of 

the MTR experiment with metabolic half-lives between 17-30 minutes in serum and brain. 

Because the compounds were labeled with 125I and the TCA precipitation method was used 

(precipitate vs. soluble radioactivity), no direct conclusions could be made for the in vivo 

stability of the lysine-isothiocyanate(linker)-NOTA conjugation and the Ga-NOTA chelation. 

However, isothiocyanates are amine-reactive groups, form thiourea bonds onto lysine residues 

and are more stable than other amine-reactive linkers such as N-hydroxysuccinimide (NHS) 

esters.4 The Ga-NOTA chelate is characterized with a high complexation constant (Log(KML) 

= 31.0) and remains intact in nitric acid over a period of 6 months, indicative for a high 

stability.74-75 Indeed, gallium-p-SCN-Bn-NOTA-peptide conjugates have been reported to be 

stable in serum for >90% over 4 h, in the presence of apotransferrin.76  

GH has been related to effects in the CNS such as sleep, mood, cognitive function, memory 

but also on neuroprotection, apetite and feeding behaviour.30, 31, 77 The expression of the GHR 

in the different brain regions support these functional observations. At this moment, data on 

GH mechanisms on brain function remains limited and has to be further elucidated.78 The 

NOTA-modified somatropins offer opportunities not only for targeting of GHR-

overexpressing tumours as diagnostic and/or therapeutic agent, but also for imaging toward 

more fundamental, mechanistic research in the brain. 

 

Conclusions  

The BBB transport properties of somatropin after NOTA-conjugation and gallium chelation 

were investigated. Somatropin, 10:1 NOTA:somatropin and Ga-10:1 NOTA:somatropin all 

showed a low brain influx rate in the in vivo mice model, which were not significantly 

different from each other. In comparison to somatropin and 10:1 NOTA:somatropin, both 

having a pronounced tissue distribution to liver, kidney and serum, Ga-10:1 

NOTA:somatropin showed a somewhat different tissue distribution profile with a high serum 

level and no preferential tissue distribution. The compounds had a relatively high in vivo 

metabolic stability during the timeframe of the study (T1/2 between 17-30 minutes). Our 

results thus indicate that NOTA-modification, including gallium chelation, onto a protein 

characterized with a low brain influx, does not lead to significantly altered pharmacokinetic 

profile at the blood-brain barrier. 
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Table 1: Overview of the multiple time regression results, with the 65% confidence interval 

indicated. 

Table 2: Serum radioactivity time curve parameters 
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Figure 1: Multiple time regression curves of the exposure time versus the ratio of the brain 

and serum activity. A: Somatropin, 10:1 NOTA:somatropin and Ga-10:1 NOTA:somatropin. 

B: BSA and dermorphin, negative and positive controls respectively. Data were fitted using 

the linear Gjedde-Patlak model.  

Figure 2: Serum concentrations of somatropin, 10:1 NOTA:somatropin and Ga-10:1 

NOTA:somatropin in function of time (min), as obtained during the MTR experiments. Data 

were fitted using a one compartment model (dashed lines). 

Figure 3: Capillary depletion compartmental distribution results normalized for brain weight 

(mean absolute amounts in μl/g ±SEM, n=2), showing a very high brain parenchymal 

penetration for all investigated compounds. Atissue and Aserum are the measured activities in the 

concerned tissue and serum, respectively. 

Figure 4: Relative tissue distribution at 15 minutes post injection, expressed as the percentage 

of the injected dose (ID) (mean ± SEM, n=2). From left to right: brain, spleen, kidney, lungs, 

heart, liver and serum. A 100% ID indicates that the concentration of the compound within 

the tissue is the same as the mean concentration over the entire animal (i.e. homogeneous 

distribution).  

Figure 5: First-order kinetics of the in vivo stability in serum (left) and brains (right). Black: 

somatropin, gray: 10:1 NOTA:somatropin and blue: Ga-10:1 NOTA:somatropin. Fitting 

results and calculated half-lives are shown in the insets. 

 

 


