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Abstract

Correlation clustering, or multicut partitioning is widely used for image segmentation
and graph partitioning. Given an undirected edge weighted graph with positive and
negative weights, correlation clustering partitions the graph such that the sum of
cut edge weights is minimized. Since the optimal number of clusters is automatically
chosen, multicut partitioning is well suited for clustering neural structures in EM
connectomics datasets where the optimal number of clusters is unknown a-priori. Due
to the NP-hardness of optimizing the multicut objective, exact solvers do not scale
and approximative solvers often give unsatisfactory results.
In chapter 2 we investigate scalable methods for correlation clustering. To this end
we define fusion moves for the multicut objective function which iteratively fuses
the current and a proposed partitioning and monotonously improves the partitioning.
Fusion moves scale to larger datasets, give near optimal solutions and at the same
time show state of the art anytime performance.
In chapter 3 we generalize the fusion moves frameworks for the lifted multicut ob-
jective, a generalization of the multicut objective which can penalize or reward all
decompositions of a graph for which any given pair of nodes are in distinct compo-
nents. The proposed framework scales well to large datasets and has a cutting edge
anytime performance.
In chapter 4 we propose a framework for automatic segmentation of neural structures
in 3D EM connectomics data where a membrane probability is predicted for each
pixel with a neural network and superpixels are computed based on this probability
map. Finally the superpixels are merged to neurites using the techniques described
in chapter 3. The proposed pipeline is validated with an extensive set of experiments
and a detailed lesion study. This work substantially narrows the accuracy gap between
humans and computers for neurite segmentation.
In chapter 5 we summarize the software written for this thesis. The provided imple-
mentations for algorithms and techniques described in chapters 2 to 4 and many other
algorithms resulted in a software library for graph partitioning, image segmentation
and discrete optimization.
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Zusammenfassung

Correlation Clustering oder Multicut Partitionierung ist eine weit verbreitete Technik
zur Bildsegmentierung oder Graphpartitionierung. Correlation Clustering partitioniert
einen kantengewichteten Graph mit positiv und negativ gewichteten Kanten sodass die
Summe der Kantengewichte der geschnittenen Kanten minimiert wird. Da die optimale
Anzahl der Kluster automatisch ausgewählt wird, ist die Multicut Paritionierung gut
geeignet um neuronale Strukturen in sogenannten EM-Konnektom Datensätzen zu
segmentieren, da dort die optimale Anzahl von Klustern nicht a-priori bekannt ist. Da
es NP-hart ist die Multicut Zielfunktion zu optimieren skalieren exakte Algorithmen
nicht und approximative Verfahren geben schlechte Resultate.
In Kapitel 2 untersuchen wir skalierende Methoden für Correlation Clustering. Wir
definieren Fusion Moves für die Multicut Zielfunktion. Fusion Moves ist ein iteratives
Verfahren das die momentane Partitionierung mit einer Kandidatenpartitionierung
fusioniert und so monoton die Partitonierung verbessert. Fusion Moves skaliern zu
großen Datensätzen, geben nahezu optimale Lösungen und haben eine gute Perfor-
mance selbst wenn sie vor der Terminierung unterbrochen werden.
In Kapitel 3 generalisieren wir Fusion Moves für die Lifted Multicut Zielfunktion, eine
Generalisierung der Multicut Zielfunktion welche alle Partitionierungen eines Graphes
belohnen oder bestrafen kann in der ein beliebiges paar von Knoten in verschiedenen
Klustern ist. Die vorgeschlagenen Methoden skalieren gut und haben ein guten Per-
formance selbst wenn sie vor der Terminierung unterbrochen werden.
In Kapitel 4 wird ein Framework zur automatischen Segmentierung von neuronalen
Strukturen in 3D EM Daten vorgestellt. Startend von einer mit einem neuronalen
Netz gelernten pixelweisen Membranwahrscheinlichkeit wird eine Superpixel Überseg-
mentierung erzeugt. Die Superpixel werden mit den in Kapiteln 2 und 3 vorgeschla-
genen Methoden zu Neuronen zusammengefügt. Das vorgeschlagene Framework wird
durch umfangreiche Experimente und eine detailreiche Läsion Studien validiert. Der
Qualitätsunterschied zwischen menschlich erzeugten Segmentierungen und automa-
tisch erzeugten Segmentierungen wurde durch das vorgeschlagene Framework deutlich
verringert.
In Kapitel 5 wird die für diese Thesis geschriebene Software zusammengefasst. Die be-
reitgestellten Implementierungen für die Algorithmen aus Kapitel 2-4 und viele andere
Algorithmen resultierten in einer Software Bibliothek zur Graph Partitionierung und
Bildsegmentierung.
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1 Introduction

1.1 Image Segmentation

Image segmentation is arguably the most important task in computer vision. It is
the fundamental building block for many application and therefore fast and accurate
segmentations algorithms are needed. Many flavors of segmentation exists: i) Class-
level segmentation where each pixel is assigned to a single class from a discrete set
as {sky, car, road,person}. ii) Instance-level segmentation where each pixel is not
only assigned to a single class from a discrete set as {sky, car, road,person} but
also a unique instance id, e.g. person-1, person-2, car-1. The number of instances per
class is not known beforehand in this setting and iii) One-Class-Instance-Level as a
special case of Instance-level segmentation with only a single class. Again, the number
of instances is not known in advance. An example for this kind of segmentation is given
in fig. 1.1 where each pixel is assigned to the id of the corresponding neural process,
e.g. neuron-1, neuron-2, neuron-3.
In this thesis we will focus on the latter one, One-Class-Instance-Level segmentation
for connectomics as described in the following section.

1.2 Segmentation for Connectomics

To understand how the brain is working neuroscientists are acquiring large volumes
of electron microscopy (EM) images of the brain of animals with the aim of analyzing
the neural circuit connectivity of the brain. This circuit formed by neurons which are
connected via synapses is the so called connectome. Connectomics is the field of science
acquiring and studying connectomes. The connectome can be acquired by sequencing
techniques [149] or by segmentation based approaches. Here, we only discuss the latter
one. Given a segmentation of the neurons in EM volumes, synapses and their synaptic
partners need to be detected [88, 90, 128] to form the graph known as connectome. In
this thesis we will focus on automated segmentation of neurons. Detection of synapses
and their synaptic partners is beyond the scope of this thesis.
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(a) Stack of raw data and corresponding segmentation

(b) 3D visualization of result from a multicut approach [9]

Figure 1.1: Figure 1.1a: A stack of 2 × 2 microns slices of from a transmission Electron Mi-
croscopy (ssTEM) data set of the Drosophila first instar larva ventral nerve cord
(VNC) with a resolution of 4×4×50nm/pixel [19] and a manual created segmenta-
tion where each individual neural process is assigned a random color. Figure 1.1b:
Andres et al. [9] used a muticut approach to automatically segment the neuron
in a volumetric 3D EM dataset. The elongated structures are the individual neu-
rons. Each instances of a neuron is depicted in a random color. Image source: With
permission from [94].
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Despite impressive progress in collaborative annotation [79], the sheer size of these
volumes make manual analysis infeasible. To handle large whole-brain datasets au-
tomated segmentation is needed. In chapters 4 and 5 we present algorithms and a
software package to automatically segment such data sets with low error rates. The al-
gorithms are based based on the multicut [8, 68] and lifted multicut [7, 78] formulation
which we will briefly described in the following sections.

1.2.1 Multicut
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Figure 1.2: The multicut formulation guarantees a valid segmentation by disallowing violated
cycle constraints (eq. (3.2)): The edge between node v3 and v8 is cut. But there
is a path of uncut edge connecting v3 and v8 depicted in orange. The multicut
objective can be optimized by adding violated constraints to an ILP in a cutting
plane fashion [8, 68].

The multicut [25] and lifted multicut problem [7, 78] have become increasingly popular
in the recent years [8, 23, 26, 27, 29, 68, 81, 83, 92, 99, 112, 113, 135, 146, 147].
Given a graph G = (V,E) with edge weights w : E → R the minimum multicut
minimizes the sum of weights between clusters. Formally the minimum multicut is
defined as:

y∗ = arg min
y∈{0,1}E

∑
e∈E

weye (1.1)

subject to ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (1.2)

︸ ︷︷ ︸
Ensures valid segmentations without dangling edges as illustrated in fig. 1.2

Multicuts have several advantages compared to traditional algorithms operating on a
weighted graph:
i) Graph-cuts [85] and normalized cuts [123] can only model positive weight (attrac-
tion) and ii) suffer from a shrinking bias [45, 141] while the multicut formulation allows
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for positive (attraction) and negative (repulsion) edge weights and does not suffer from
a shrinking bias. iii) While QPBO [118] and multi-label variants [84] can handle posi-
tive and negative weights, the maximum number of classes/ clusters needs to be fixed
beforehand. The multicut approach does not need a specified number clusters, the
optimal number of classes is implicitly choose by the optimal solution.
On the down-side, solving the multicut problem is in general NP-hard. Since the set
of constraints in eq. (1.2) is of exponential size any exact solver will have scalability
issues.
A detailed review of the multicut objective and optimizer is given in sections 2.1.2
and 3.2.1.

1.2.2 Lifted Multicut

The minimum lifted multicut problem [7, 78] is an optimization problem whose feasible
solutions are decompositions of a graph. The objective function can penalize or reward
all decompositions for which any given pair of nodes are in distinct components. Given
a graph G = (V,E) and a larger graph G′ = (V,E′) with E ⊆ E′ and edge weights
w : E′ → R, where the weights penalize or reward precisely the decompositions of G
for which the nodes v and w are in distinct components. The lifted multicut problem
is defined as:

y∗ = arg min
y∈{0,1}E′

∑
e∈E′

ceye (1.3)

subject to ∀Y ∈ cycles(G) ∀e ∈ Y : ye ≤
∑

e′∈Y \{e}

ye′ (1.4)

︸ ︷︷ ︸
Ensures valid segmentations without dangling edges as depicted in fig. 1.2

∀vw ∈ E′ \ E ∀P ∈ vw-paths(G) : yvw ≤
∑
e∈P

ye (1.5)

︸ ︷︷ ︸
If additional edges wv is cut, ensure that no path
of uncut edges between u and v in G exists

∀vw ∈ E′ \ E ∀C ∈ vw-cuts(G) : 1− xvw ≤
∑
e∈C

(1− ye) (1.6)

︸ ︷︷ ︸
If additional edges uv is not cut, ensure that no cut
in G exists which separates uv
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Like the multicut, solving the lifted multicut problem is in general NP-hard. A detailed
review of the lifted multicut objective and optimizer is given in sections 3.1 and 3.2.2.
In chapters 2 and 3 we will propose a fusion moves based algorithm for optimizing
the multicut and lifted multicut algorithm respectively. The concept of fusion moves
is described in the following section.

1.3 Fusion Moves

For energy minimization problems fusion moves have become increasingly popular [66,
96, 102, 148]. The fusion move is an algorithm to combine pairs of suboptimal solutions
using graph-cut [85] or QPBO [118]. For many large scale computer vision applications
fusion moves yield good approximations with state of the art anytime performance [66].
Fusion moves can be described as a class of constrained search algorithms. They consist
of two procedures. The first procedure is proposal generation that computes a feasible
solution in a possible randomized randomized fashion. Second is fusion where the
proposal is combined with the current best solution. This can be formalized in the
following way: Given pairwise MRFs / CRFs in the form of

y∗ = arg min
y∈Y

∑
u∈V

Uu(yu) +
∑
uv∈E

Vuv(yu, yv) (1.7)

and pair of labels ya, yb ∈ Y (also called proposals), the fusion move is defined as:

y∗ = arg min
y∈Y

∑
u∈V

Uu(yu) +
∑
uv∈E

Vuv(yu, yv) (1.8)

s.t. xi ∈ {yai , ybi} ∀yi ∈ Y

Equation (1.8) can be optimized with graph-cut [85] or QPBO [118]. We will use
FMMRF to refer to eq. (1.8). The proposals themselves can be computed by a domain
specific method most suitable for the given task.

1.4 Contribution and Overview of this Thesis

The chapters are structured in the following way: In chapter 2 we generalize fusion
moves [96] for the minimum multicut objective: Instead of directly optimizing the
multicut objective, we iteratively fuse a current best solution with candidate solutions
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such that the best energy is improved. The fusion procedure in itself is again a min-
imum multicut optimization problem with additional must-link constraints. We show
how to formulate this as an unconstrained1 minimum multicut problem with a smaller
number of variables and constraints. We investigate how to generate high quality can-
didate solutions in an efficient manner. To this end we define two candidate solution
generators based on the watershed transform and agglomerative clustering in conjunc-
tion with perturbed edge weights. We use these generators in an iterative manner and
fuse the generated solutions with the current best solution. Based on this we derive a
set of scalable algorithms with state-of-the art anytime performance yielding solutions
close to global optimality.
In chapter 3 we generalize the fusion moves framework [96] and the algorithm presented
in chapter 2 to the minimum lifted multicut problem [7, 78]: Again, we iteratively
fuse a current best solution with candidate solutions to minimize the minimum lifted
multicut objective function. The fusion procedure in itself is a minimum lifted multicut
problem with additional must-link constraints. We show how to reformulate this as
an unconstrained minimum lifted multicut problem2. We propose efficient candidate
solution generators to quickly generate diverse high quality solutions which are fused
with the current best solution. Based on this, we derived a set of scalable algorithms
with state-of-the art anytime performance.
In chapter 4, we apply the algorithms proposed in chapters 2 and 3 to the problem of
segmentation of neural structures in EM data. We propose a state-of-the art pipeline
and validate every step in the pipeline with extensive experiments. We predict the
membrane probability for each pixel using a convolutional neural network. We use
the watershed transform on a distance transform height map based on the membrane
probabilities to generate superpixels for each 2D slice of the 3D stack. Finally, we use
a Random Forest to learn and predict which pairs of superpixels should be merged
and jointly optimize this with the multicut and lifted multicut algorithms proposed in
chapter 2 and chapter 3 respectively.
In chapter 5 we discuss the software implemented to conduct the experiments through-
out this thesis. We provide implementations for algorithms and techniques described
in chapters 2 to 4 resulting in a C++ software framework for graph partitioning and
image segmentation. Not only do we provide fast and readable modern C++ code, but
also a fully functional Python API.
In chapter 6 is a enumeration of all peer reviewed publication where I was author or
co-author. Chapters 2 to 4 are based on publications [26, 27, 30] in top ranked venues.

1The initial multicut constraints are still part of the model, but no additional must-link constrains
2See footnote 1
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2 Fusion Moves for Multicut Partitioning

Correlation clustering, or multicut partitioning, is widely used in image segmentation
for partitioning an undirected graph or image with positive and negative edge weights
such that the sum of cut edge weights is minimized. Due to its NP-hardness, exact
solvers do not scale and approximative solvers often give unsatisfactory results.
We investigate scalable methods for correlation clustering. To this end we define fusion
moves for the correlation clustering problem. Our algorithm iteratively fuses the cur-
rent and a proposed partitioning which monotonously improves the partitioning and
maintains a valid partitioning at all times. Furthermore, it scales to larger datasets,
gives near optimal solutions, and at the same time shows a good anytime performance.

2.1 Introduction

Correlation clustering [24], also known as the multicut problem [41] is a basic primitive
in computer vision [5, 8, 9, 146] and data mining [16, 38, 40, 120]. See Sec. 2.2 for its
formal definition of clustering the nodes of a graph.
Its merit is, firstly, that it accommodates both positive (attractive) and negative (re-
pulsive) edge weights. This allows doing justice to evidence in the data that two nodes
or pixels do not wish or do wish to end up in the same cluster or segment, respectively.
Secondly, it does not require a specification of the number of clusters beforehand.
In signed social networks, where positive and negative edges encode friend and foe
relationships, respectively, correlation clustering is a natural way to detect communi-
ties [38, 40]. Correlation clustering can also be used to cluster query refinements in
web search [120]. Because social and web-related networks are often huge, heuristic
methods, e.g . the PIVOT-algorithm [3], are popular [40].
In computer vision applications, unsupervised image segmentation algorithms often
start with an over-segmentation into superpixels (superregions), which are then clus-
tered into “perceptually meaningful” regions by correlation clustering. Such an ap-
proach has been shown to yield state-of-the-art results on the Berkeley Segmentation
Database [5, 8, 80, 146].
While it has a clear mathematical formulation and nice properties, correlation cluster-
ing suffers from NP-hardness. Consequently, partition problems on large scale data,
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e.g . huge volume images in computational neuroscience [9] or social networks [97], are
not tractable because reasonable solutions cannot be computed in acceptable time.

2.1.1 Contribution

In this chapter we present novel approaches that are designed for large scale correlation
clustering problems. First, we define a novel energy based agglomerative clustering al-
gorithm that monotonically increases the energy. With this at hand we show how to
improve the anytime performance of Cut, Clue & Cut [29]. Second, we improve the
anytime performance of polyhedral multicut methods [71] by more efficient separa-
tion procedures. Third, we introduce cluster-fusion moves, which extend the original
fusion moves [96] used in supervised segmentation to the unsupervised case and give
a polyhedral interpretation of this algorithm. Finally, we propose two versatile pro-
posal generators, and evaluate the proposed methods on existing and new benchmark
problems. Experiments show that we can improve the computation time by one to two
magnitudes without worsening the segmentation quality significantly.

2.1.2 Related Work

A natural approach is to solve the integer linear program (ILP) directly 2.2. To this
end, efficient separation procedures have been found [68, 71] that allow to iteratively
augment the set of constraints until a valid partitioning is found. Alternatively, it is
possible to relax the integrality constraints of the ILP formulation [71]. Such an outer
relaxation can be iteratively tightened. However, intermediate solutions are fractional
and therefore rounding is required to obtain a valid partitioning. For the latter ap-
proach column generating methods exist, which work best on planar graphs [146].
Another line of work uses move making algorithms to optimize correlation cluster-
ing [23, 29, 76]. Starting with an initial segmentation, auxiliary max-cut problems are
(approximately) solved, such that the segmentation is strictly improved. As shown
in [29] only Cut, Glue & Cut (CGC) can deal with large scale problems, but can also
suffer from very large auxiliary problems.
Recently, a promising dual decomposition algorithm has been proposed [131] which
relies on fast primal heuristics as proposed here for so called rounding.
Outside computer vision, greedy methods [3, 48, 55, 110, 126] have been suggested for
correlation clustering problems, see [49] for an overview. The PIVOT Algorithm [3]
iterates over all nodes in random order. If the node is not assigned it constructs a cluster
containing the node and all its unassigned positively linked neighbors. A widely used
post-processing method is Best One Element Move (BOEM) [55], which iteratively
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Figure 2.1: Representing a clustering by node labels is ambiguous. 2.1a and 2.1b encode the
same partition. Edge labels as in 2.1c do not suffer from such ambiguities, but can
have dangling edges as in 2.1d. Node 1 and 4 are in the same connected component,
even tough e14 is cut. This is not a valid partition, and must be ruled out by
constraints.

reassigns nodes to clusters.
For energy minimization problems fusion moves have become increasingly popular [66,
96]. For many large scale computer vision applications fusion moves lead to good
approximations with state of the art anytime performance [66] Due to the ambiguity
of a node-labeling, classical fusion moves [96] cannot be applied directly for correlation
clustering ( see fig. 2.3). We will show how to overcome this problem in Sec. 2.4.

2.1.3 Outline

In Sec. 2.2 we give a detailed problem definition and introduce the correlation clus-
tering objective. Next we give a description of energy based hierarchical clustering in
Sec. 2.3 and our proposed correlation clustering fusion moves in Sec. 2.4. We evaluate
the proposed methods in Sec. 2.5 and conclude in Sec. 2.6.

2.2 Notation and Problem Formulation

Let G = (V,E,w) be a weighted graph of nodes V and edges E. The function
w : E → R assigns a weight to each edge. We will use we as a shorthand for w(e).
A positive weight expresses the desire that two adjacent nodes should be merged,
whereas a negative weight indicates that these nodes should be separated into two
distinct regions. A segmentation of the graph G can be either given by a node label-
ing l ∈ N|V | or an edge labeling y ∈ {0, 1}|E|, cf . Fig. 2.1. An edge labeling is only
consistent if it does not violate any cycle constraint [41]. We denote the set of all
consistent edge labelings by P (G) ⊂ {0, 1}|E|. The convex hull of this set is known as
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Figure 2.2: Energy-based Hierarchical clustering can be used to greedily optimize Eq. 2.2. In
each step, the two nodes connected via the edge with the highest weight are merged
by contracting this edge. (edge to be contracted is shown in green). Due to edge
contraction parallel edges can occur, which are merged into single ones, and their
weights are summed up. The algorithm terminates when the highest edge weight
is smaller or equal to zero (edge shown in blue).

the multicut polytope MC(G) = conv(P (G)). By l(y) we denote some node labeling
for a segmentation given by y.
Given a weighted graph G = (V,E,w) we consider the problem of segmenting G
such that the costs of the edges between distinct segments is minimized. This can be
formulated in the node domain by assigning each node i a label li ∈ N

l∗ = arg min
l∈N|V |

∑
(i,j)∈E

wij · [li 6= lj ], (2.1)

or in the edge domain, by labeling each edge e as cut ye = 1 or uncut ye = 0

y∗ = arg min
y∈P (G)

∑
(i,j)∈E

wij · yij . (2.2)

As shown in [71] both problems are equivalent, but formulation 2.1 suffers from am-
biguities in the representation, cf . Fig. 2.1.

2.3 Energy Based Hierarchical Clustering

Agglomerative hierarchical clustering (HC) is widely used in graph / image segmenta-
tion [18]. In each step, the edge with the highest weight w is contracted (green edges
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in Fig. 2.2). Doing so, parallel edges can occur. In agglomerative clustering, weights
of parallel edges are merged into single edges. For image segmentation, the length
weighted mean is used to do this update [18].
Because we, contrary to [18], directly work on energies, we use energy based agglom-
eration with the following update rule: Whenever there are multiple edges between a
pair of nodes, these edges are merged into a single edge and the weights are summed
up, since we minimize the sum of the cut edges. We call HC with this update method
Energy based Hierarchical Clustering (EHC).
We stop EHC if the highest edge weight is smaller or equal to zero (blue edge in
Fig. 2.2). Any further edge contraction does not improve the energies.
Given the intrinsic greediness of hierarchical clustering, we cannot expect EHC to yield
optimal solutions in general.
However, EHC is very fast and can be used to initialize CGC [29]. Excessive time in
CGC is spent in the cut phase to solve the first two coloring on the complete graph. As
shown in Sec. 2.5, allowing CGC to start from the EHC solution instead can improve
performance drastically.

2.4 Correlation Clustering Fusion Moves

Fusion moves as defined in [96] work in the node domain and do not work properly
for objective functions as Eq. 2.1 since the node coloring is ambiguous and has no
semantic meaning, cf . Fig. 2.3. In the following, we propose a more suitable fusion
move for correlation clustering which works on the edge domain. Given two proposal
solutions y′ and y′′, E y̆0 is the set of edges which are uncut in y′ and y′′.

y̆ij = max{y′ij , y′′ij} ∀ij ∈ E (2.3)

E y̆0 = {ij ∈ E | y̆ij = 0} (2.4)

The fusion move for correlation clustering is solving Eq. 2.2 with additional must-link
constraints for all edges in E y̆0 .

y∗ = arg min
y∈P (G)

∑
(i,j)∈E

wij · yij . (2.5)

s.t. yij = 0 ∀(i, j) ∈ E y̆0

By construction, solving Eq. 2.5 cannot increase the energy w.r.t. the proposals y′ and
y′′, because y′ and y′′ are feasible solutions for problem 2.5.
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As Lempitsky et al . [96], we iteratively improve the best solution by fusing it with
proposal solutions. The inherent difference is how we define the fusion.
As classical fusion, CC-Fusion does not provide a lower bound on the objective and
has no sound stopping condition. For the latter we use a maximal number of iterations
and maximal number of iterations without improvement.
A further difference is how we efficiently calculate the correlation clustering fusion move
and how we generate proposals. Both will be discussed next. The overall framework is
sketched in Fig. 2.5.
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For all different colorings l′′, the binary fusion move subproblem is different.

All these node labelings encode the same partition

Figure 2.3: To fuse two edge labelings y′ and y′′ with fusion moves as defined by Lempitsky et
al . [96] y′ and y′′ need to be transferred to the node domain. The mapping from
edge labels to node labels is ambiguous and even for this small graph there are seven
node labels which result in different binary fusion move problems. Enumerating all
labelings for a graph of non trival size becomes intractable.

2.4.1 Fast Optimization of CC-Fusion Moves

In general the auxiliary fusion problem 2.5 is, as for classical fusion [96], NP-hard.
However, many variables have been fixed to be zero and we can reformulate 2.5 into
a correlation clustering problem on a coarsened graph, where all nodes which are
connected via must-link constraints are merged into single nodes. We call this graph
a contracted graph.
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Definition 1. (Contracted Graph) Given a weighted graph G = (V,E,w) and a
segmentation of G given by y ∈ P (G), we define the contraction of graph Gy =
(Vy, Ey, w̄) by Vy = {li(y)|i ∈ V }, Ey = {li(y)lj(y)|ij ∈ E}, and ∀ūv̄ ∈ Ey : w̄ūv̄ =∑

ij∈E,li(y)=ū,lj(y)=v̄ wij

Any clustering ȳ of the contracted graph Gy = (Vy, Ey) can be back projected to a
clustering ỹ of the original graph G = (V,E) by

ỹij =

{
ȳli(y)lj(y) if li(y) 6= lj(y)

0 else
∀uv ∈ E (2.6)

Theorem 1 (Equivalence). The back projection of the optimal segmentation ȳ′ of the
contracted graph Gy = (Vy, Ey, w̄) is an optimal solution of problem 2.5.

Proof. Let y′ be the back propagation of ȳ′, which is by definition feasible for 2.5. If y′

would not be an optimal solution, there must be a y′′ with
∑

e∈E wey
′
e >

∑
e∈E wey

′′
e .

Since y′e and y′′e are 0 for all e ∈ E y̆0 we would have∑
ē∈Ey

w̄ēȳ
′
ē =

∑
e∈E\E y̆0

wey
′
e =

∑
e∈E

wey
′
e

>
∑
e∈E

wey
′′
e =

∑
e∈E\E y̆0

wey
′′
e =

∑
ē∈Ey

w̄ēȳ
′′
ē

where ȳ′′ is the projection from y′′ on Gy. This contradicts that y′ is a optimal seg-
mentation of Gy.

Instead of problem 2.5 we can now solve problem 2.2 on the contracted graph Gy̆.
This is, depending on the intersection of the current and proposed solution, magni-
tudes smaller than G. The correlation clustering problem on Gy̆ can be solved by any
correlation clustering solver. Since Gy̆ is smaller, exact methods or good approximative
methods like multicuts [65] or CGC [29] are very fast.

25



0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

{0, 3} {1, 4} {2, 5}w01+
w34

w12+
w45

(a)

{0, 3} {1, 4} {2, 5}w01+
w34

w12+
w45

0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

(b)

Figure 2.4: (a) Given a graph G = (V,E,w) and a consistent edge labeling y ∈ P (G), shown
by solid and dotted lines, the contraction graph Gy = (Vy, Ey, wy) is constructed by
contracting uncut edges in G w.r.t. y. (b) Given an edge labeling ȳ of a contracted
graph Gy = (Vy, Ey, wy), we can back project the edge labeling to the original
graph.

2.4.2 Polyhedral Interpretation

A polyhedral interpretation of fusion moves is shown in Fig. 2.6. In each iteration the
current and proposed segmentation define an inner polyhedral approximation of the
original polytope. This interpretation holds for original fusion moves [96] as well as for
the proposed CC-Fusion.
In our case, optimizing over the inner polytope is the same kind of problem as the
original multicut polytope, but much smaller. Furthermore, the cost do not change
and an improvement in the smaller polytope will be the same in the original graph, as
shown in Theorem 1.
The choice of the proposal defines the shape of the inner polytope. In the given toy
example, the first (red) polytope gives a huge improvement, the second proposal defines
the blue polytope which does not lead to an improvement. The third proposal generates
the green polytope that includes the globally optimal solution.
This procedure is fundamentally different from common polyhedral multicut meth-
ods [65, 67], which tighten an outer relaxation of the multicut polytope and contrary
to our method do not operate in the feasible domain.

26



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

+
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

=

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

{1} {2, 3, 4}

{5} {6, 7, 8}

{9, 13} {10, 11, 12,
14, 15, 16}

w(1,2)

w(1,5)w(1,5)

w(5,6)

w(5,9)

w(9,10) + w(13,14)

w(2,6) + w(3,7) + w(4,8)

w(6,10) + w(7,11) + w(8,12)

{1} {2, 3, 4}

{5} {6, 7, 8}

{9, 13} {10, 11, 12,
14, 15, 16}

w(1,2)

w(1,5)w(1,5)

w(5,6)

w(5,9)

w(9,10) + w(13,14)

w(2,6) + w(3,7) + w(4,8)

w(6,10) + w(7,11) + w(8,12)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

contract run CC project

update current best(a) current best y′

(b) proposal y′′
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Figure 2.5: To fuse a current best segmentation y′ (2.5a) with a proposal segmentation y′′

(2.5b) we propose the following algorithm: ŷ is defined as y′ + y′′ as in (2.5c). The
contraction graph (2.5d) Gŷ is constructed by contracting all uncut edges in ŷ. The
actual fusion move is solving eq. (2.2) for Gŷ as in (2.5e) and projecting the result
back to G as in (2.5f). The result of the fusion move is guaranteed to be no worse
than y′ or y′′. Therefore the current best solution can be updated from the result
of the fusion move. In summary, the correlation clustering fusion move algorithm
iteratively fuses the current best solution with different proposals.
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Figure 2.6: Each fusion move can be interpreted as an optimization of an inner polytope.
Each inner polytope includes the current vertex. Starting with y0 we optimize over
the red polytope and find y1 as optimum. Finally, when optimizing over the blue
polytope we stay in y1 as optimum, when optimizing over the green polytope we
find y2 which we will never leave again.
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2.4.3 Proposal Generators

As discussed in [96], proposals should have two properties: high quality and large
diversity.
A proposal has a high quality if it has a low energy at least in some regions. For high
quality proposals the chance that the inner polytope includes a better solution (vertex)
is larger than for those with low quality.
Diversity between the individual proposals increases the chances to span diverse in-
ternal polytopes, cover with the intersection of inner polytopes a large part of the
original polytope and find more likely the globally optimal solution or escape from
local minima.
For correlation clustering fusion we add a third property: size. The size of the con-
tracted graph directly depends on the number of connected components of the inter-
section of the proposal solution and the current best solution. In one extreme case,
where each node is in a separate connnected component, the fusion move is equivalent
to solving the original problem. In the other extreme, where the proposal has a single
connected component, the current best solution will not change. Therefore the size
of the proposals should be small enough, such that solving eq. 2.5 can be done fast
enough, but on the other side large enough to define a large internal polytope and
therefore a powerful move. To this end we suggest two proposal generators.
Randomized Hierarchical Clustering (RHC): To generate fast energy aware
proposals we can use energy based hierarchical clustering (EHC) as defined in Sec. 2.3.
EHC follows the energy function, therefore the quality of the proposals is high. To get
diversity among the different proposal, we add normally distributed noise N (0, σehc) to
each edge weight. To get proposals of the desired size, we use a different stop condition
for EHC, and stop only if a certain number of connected components is reached.
Randomized Watersheds (RWS): Watersheds have become quite popular for
graph segmentation and have a strong connection to energy minimization [45]. The
edge weighted watershed algorithm [109] with random seeds can be used to find cheap
proposals. To improve quality we do not use n seeds distributed uniformly over all
nodes but use the following. We draw n/2 negative edges, and assign different seeds
to the endpoints of each edge. Doing so, a random subset of negative edges is forced
to be cut within each proposal. For additional diversity, noise N (0, σws) is added to
the edge weighs [130].
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2.5 Experiments

In our experiments we compare to the following methods with publicly available im-
plementation. For CGC [29] we used a branch of OpenGM 1 and for KL [76] the
implementation in OpenGM2. For integer multicuts (MC-I) and relaxed multicuts
(MC-R) [65] we modified OpenGM2, as described in Sec. 2.5.2.
From the field of data-mining we compare to the PIVOT-algorithm [3] followed by
a round of BOEM [55] denoted by PIVOT-BOEM3. This implementation uses full
adjacency matrices it does not scale and cannot be applied to all datasets. We also
run classical fusion moves [96] (Fusion) and select distinct labels for the two candi-
date segmentations. According to [29], CGC is faster and gives better energies than
PlanarCC [146] and Expand & Explore [23]. Therefore we exclude those in our exper-
iments.
We compare all of the above to the following methods suggested in the present pa-
per: Energy Based Hierarchical Clustering (EHC), as described in Sec. 2.3. CGC
warm started with the solution from EHC (EHC-CGC). The proposed correlation
cluster fusion algorithm with EHC-based and watershed-based proposals and MC-I
and CGC as subproblem solvers (CC-Fusion-HC-MC, -HC-CGC, -WS-MC, and
-WS-CGC) respectively. We set the number of connected components in the propos-
als to 10% of the number of nodes of and use random edge noise with σ = 1.5. As
stopping condition we choose 104 iterations and 100 iterations with no improvement.
All experiments were run on Intel Core i5-4570 CPUs with 3.20 GHz, equipped with
32 GB of RAM. In our evaluation we make no use of multiple threads. The methods
were stopped once they exceed 30 minutes at the next possible interrupt point.

2.5.1 Datasets

Social Networks. One important application for large scale correlation clustering are
social networks. We consider two of those networks from the Stanford Large Network
Dataset Collection4. Both networks are given by weighted directed graphs with edge
weights −1 and +1. The first network is called Epinions. This is a who-trust-whom
online social network of a general consumer review site. Each directed edge a → b
indicates that user a trusts or does not trust user b by a positive or negative edge-
weight, respectively. The network contains 131828 nodes and 841372 edges from which

1github.com/opengm/opengm/tree/cgc-cvpr2014
2github.com/opengm/opengm
3http://www.ling.ohio-state.edu/~melsner/resources/correlation-readme.html
4http://snap.stanford.edu/data/index.html
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85.3% are positively weighted. The second network is called Slashdot. Slashdot is a
technology-related news website known for its specific user community. In 2002 Slash-
dot introduced the Slashdot Zoo feature which allows users to tag each other as friend
or foe. The network was obtained in November 2008 and contains 77350 nodes and
516575 edges of which 76.73% are positively weighted.
We consider the problem to cluster these graphs such that positively weighted edges
(E+
→) link inside and negatively weighted edges (E−→) between clusters. In other words

friends and people who trust each other should be in the same segment and foes and
non-trusting people in different clusters. To compensate the large impact of nodes with
high degree we can normalize the edge weights such that each person has the same
impact on the overall network, by enforcing.∑

i→j∈E→

|wi→j | = 1 ∀i ∈ V, degout(i) ≥ 1 (2.7)

We define the following energy function

J(y) =
∑

i→j∈E+
→

yij · wi→j +
∑

i→j∈E−→

(yij − 1) · wi→j

=
∑
ij∈E

yij · (wi→j + wj→i)︸ ︷︷ ︸
wij

+const (2.8)

which is zero if the given partitioning does not violate any relation and larger otherwise.
We name these two datasets social nets and normalized social nets.
Network Modularity Clustering. As another example for network clustering we
use the modularity-clustering models from [70] which are small but fully connected.
2D and 3D Image Segmentation To segment images or volumes into a previously
unknown number of clusters, correlation clustering has been used [8, 9].
Starting from a super-pixel/-voxel segmentation, correlation clustering finds the clus-
tering with the lowest energy. The energy is based on a likelihood of merging adja-
cent super-voxels. Each edge has a probability to keep adjacent segments separate
(p(yij = 1)) or to merge them (p(yij = 0)). The energy function is

J(y) =
∑
ij∈E

yij · log
(
p(yij = 0)

p(yij = 1)

)
+ log

1− β
β︸ ︷︷ ︸

wij

(2.9)

where β is used as a prior [8].
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Figure 2.7: Comparison of the Multicut implementation of OpenGM and our modified imple-
mentation, which improves the runtime. However, for large scale problems it still
does not scale.

We use the publicly available benchmark instances from [69, 70]. For 2D images from
the Berkeley Segmentation Database [107] we took the segmentation problems called
image-seg [8, 69]. For 3D volume segmentation we use the models knott-3d-150, -300
and -450 from [9, 70] as well as the large instance from the 3d-seg model [8, 69]. These
instances have underlying cube sizes of 1503, 3003, 4503, and 9003, respectively. We
also requested larger instances from the authors of [9] who kindly provided us the
dataset knott-3d-550 with cube size 5503.

2.5.2 Improvements for the Multicut Algorithm

When using the publicly available implementation in OpenGM2, we have noticed that
their implementation has some limitations on large problems. This results in a very
slow separation and we make the following modifications. Firstly, we used index-min-
heap [122] within the shortest path search by the Dykstra algorithm, which speeds
up MC-R. Secondly, we follow [9] and search for shortest paths and add those only
if they are non-chordal,instead of searching for the shortest non-chordal path during
the separation procedure. In [9] this was used for MC-I only. For MC-R this search
procedure is not sufficient and needs to be followed by a search for shortest non-
chordal paths. Fig. 2.7 shows the improvements with our modifications compared to
the implementation in OpenGM for the knott-3d-450 dataset. This procedure is one
magnitude faster, but might cause a few extra outer iterations.
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2.5.3 Parameter Choice for CC-Fusion

Beside the choice of the proposal generator and fusion method, CC-Fusion has some
more parameters, which need to be set. The most crucial one is the number of segments
in the proposal. For HC we also have to set the noise which is used to generate diversity.
Fig. 2.8 shows an evaluation of the impact of this parameters for a single instance of
knott-3d-450 averaged over several random seeds. The runtime depends on the number
of clusters in the proposal (Fig. 2.8 left), which controls the size of the auxiliary move
problems. The level of noise has no major impact on the runtime. The energy of the
final solution improves with finer proposals since this increases the search space of the
moves. The level of noise has to be large enough to generate diverse proposals, but not
too large as this would lead to proposals with low quality. As shown in Fig. 2.8 right
the useful parameter set is quite large. This allows us to use the same parameters for
all experiments. However we would like to note that in practice we can improve the
performance by adjusting these parameters for the specific problem setting.
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Figure 2.8: Empirical evaluation of the impact of noise used for proposal generation and the
size of the proposals. Proposals with many segments cause longer runtime. Noise
seemed not to be a critical parameter but should be selected large enough.

2.5.4 Evaluation

For the evaluation of the different methods on the datasets introduced in Sec. 2.5.1,
we show zoomed anytime plots in Fig. 2.9 and variation of information (VOI) [108]
and rand index (RI) [116] of the final solutions in Tab. 2.1. Anytime plots with no
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zooming and a detailed evaluation are given in the supplementary material. For social-
nets CC-Fusion methods provide the best results for the first minutes . Only CGC
and HC-CGC are able to find better solutions after more than 1000 seconds. MC-
I and MC-R cannot be applied to such large problems. We believe that with better
proposal generators, which are more suited for such network problems, we can improve
CCFusion. One candidate for such a generator would be a scalable implementation of
the PIVOT algorithm. For modularity-clustering CC-Fusion performs on par with
competitive methods, even though CC-Fusion and the used parameters have not been
designed and chosen for this type of problem. In particular, it does a better job than
MC-I. For image-seg CC-Fusion is faster than other methods and competitive in terms
of energy, VOI, and RI. Because the models are designed to have a high boundary recall
(oversegmentation), classical fusion, which returns undersegmentations, has best VOI
but worse RI and energy. Proposals generated by EHC are a bit better than WS-
based ones. For the knott-datasets CC-Fusion-HC-MC and CC-Fusion-WS-MC have
a better performance with increasing problem size compared to competitive methods,
cf . Fig. 2.9(b-e). Also in terms of VOI and RI they are only slightly worse than the
globally optimal solution found by MC-I. The initialization of CGC by HC, denoted by
HC-CGC, also improves the performance compared to native CGC. For the largest 3D
volume seg-3d, HC-CGC gives the first useful solution, cf . Fig. 2.9(f). However, after
a few minutes CC-Fusion-HC-MC and CC-Fusion-WS-MC give much better results
and are also overall best in terms of energy, VOI, and RI. Pure EHC, Fusion and
PIVOT-BOEM do not give useful results on any dataset.

2.6 Conclusion

We have presented a fast and scalable approximate solver for correlation clustering,
named Correlation Clustering Fusion (CC-Fusion). It is orthogonal to previous re-
search, i.e. it can be combined with any correlation clustering solver. The best solution
is iteratively improved by a fusion with proposal solutions. The fusion move itself is
formulated as correlation clustering on a smaller graph with fewer edges and nodes and
can therefore be solved much faster than the original problem. Our evaluation shows
that several CC-Fusion algorithms outperform many existing solvers w.r.t. anytime
performance with increasing problem size.
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Figure 2.9: Among all proposed solvers, Fusion-HC-MC has the best overall anytime perfor-
mance. With increasing problem size (2.9b-2.9e and 2.9f) the runtimes of MC-I,
MC-R and CGC increase drastically, while the proposed solvers still scale well. For
these instances, the EHC started version of CGC outperforms GCG in terms of
runtime and energy.
Overall, energy hierarchical clustering based proposals work better than water-
shed based proposals. They converge to similar energies but the clustering based
approach is faster on all tested instances. On all instances except for modular-
ity clustering, it is better to solve the fusion move to optimality (Fusion-HC-MC)
than using approximations (FUSION-HC-GCG). The warm EHC started version
of GCG (EHC-CGC) performs better than GCG itself, but both are outperformed
by the proposed algorithms w.r.t. anytime performance.
For the modularity clustering instances in fig. 2.9i we see an interesting behav-
ior. On these complete graphs, Kernighan Lin (KL) has the best performance.
The proposed methods perform reasonably, but KL is faster and leads to better
energies.
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Table 2.1: Evaluation by Variation of Information (VOI) and Rand Index (RI) for datasets
with available ground truth.
VOI image-seg knott-3d-150 knott-3d-300 knott-3d-450 3d-seg

PIVOT-BOEM 4.9633 2.9936 4.4986 – –

HC 2.5967 1.5477 2.3513 2.9155 2.8395

HC-CGC 2.5164 0.9052 1.7636 2.2256 1.7603

CGC 2.5247 0.9267 1.8822 2.3104 6.8908

KL 2.6432 2.0648 4.1318 4.9270 7.1057

FUSION 2.1406 2.8787 4.0744 4.6616 6.5366

MC-R 2.5471 0.9178 1.6369 2.8710 6.5058

MC-I 2.5367 0.9063 1.6352 2.0037 4.3319

CC-Fusion-HC-MC 2.5319 0.9629 1.6516 2.0801 1.3347

CC-Fusion-HC-CGC 2.4961 0.9679 1.7673 2.3809 2.1347

CC-Fusion-WS-MC 2.5340 0.9629 1.6742 2.0739 1.3334

CC-Fusion-WS-CGC 2.5192 1.0585 2.1344 2.7487 3.3514

RI image-seg knott-3d-150 knott-3d-300 knott-3d-450 3d-seg

PIVOT-BOEM 0.7438 0.7851 0.8792 – –

HC 0.7560 0.8139 0.8084 0.7610 0.9651

HC-CGC 0.7724 0.9226 0.8713 0.8433 0.9861

CGC 0.7590 0.9206 0.8666 0.8341 0.6024

KL 0.6400 0.8085 0.6858 0.6409 0.5849

FUSION 0.5480 0.2849 0.1420 0.0998 0.0345

MC-R 0.7822 0.9232 0.8849 0.6713 0.0432

MC-I 0.7821 0.9236 0.8849 0.8670 0.5461

CC-Fusion-HC-MC 0.7801 0.9042 0.8824 0.8573 0.9906

CC-Fusion-HC-CGC 0.7780 0.9031 0.8763 0.8470 0.9775

CC-Fusion-WS-MC 0.7825 0.9042 0.8802 0.8582 0.8895

CC-Fusion-WS-CGC 0.7750 0.8951 0.8596 0.8394 0.9906
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3 Fusion Moves for Lifted Multicut
Partitioning

Many computer vision problems can be cast as an optimization problem whose feasible
solutions are decompositions of a graph. The minimum cost lifted multicut problem
is such an optimization problem. Its objective function can penalize or reward all
decompositions for which any given pair of nodes are in distinct components. While
this property has many potential applications, such applications are hampered by the
fact that the problem is NP-hard. We propose a fusion move algorithm for computing
feasible solutions, better and more efficiently than existing algorithms. We demonstrate
this and applications to image segmentation, obtaining a new state of the art for a
problem in biological image analysis.

3.1 Introduction and Related Work

In 2011, Andres et al. [8], Bagon and Galun [23], Kim et al. [80, 81] and Yarkony
et al. [146] independently proposed formulating the image segmentation problem [17]
as a minimum cost multicut problem [25, 46] on a suitable graph. Given, for every
pair of neighboring nodes, a cost or reward (negative cost) to be paid if these nodes
are assigned to distinct components, the minimum cost multicut problem consists in
finding a decomposition of the graph with minimal sum of costs. In 2015, Keuper
et al. [78], using a construction from [7], proposed the minimum cost lifted multicut
problem, a generalization with an identical feasible set whose objective function can
assign a cost or reward to every pair of nodes, not just neighboring ones. These non-
local interactions are represented in the graph by “lifted” edges which are subjected to
slightly different constraints than the regular edges. The introduction of lifted edges
is appealing for image segmentation, because non-local interactions can now be added
without losing two key advantages of the multicut: (i) Every feasible solution of the
optimization problem corresponds to a decomposition of the graph, i.e. to a consis-
tent segmentation. (ii) No assumptions on the number or size of segments are made,
making the method applicable in the typical and important scenario where such prior
knowledge is not available. Since standard and lifted multicut are both NP-hard in-
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teger linear programming problems [25, 46] – even for planar graphs [22, 142] – this
paper proposes a new family of efficient heuristics inspired by [44, 96] and on the basis
of fusion moves [66, 96] .
So far, the computer vision community has studied three classes of algorithms address-
ing optimization problems of this type: (i) branch-and-cut algorithms [8, 9, 72] that
converge to an optimal integer solution but do not admit polynomial time complexity
bounds and are too slow for lifted multicuts; (ii) linear programming relaxations with
subsequent rounding to an integer solution [68, 72, 146] which can yield a log-factor
approximation [46] in polynomial time; (iii) constrained search algorithms [12, 29, 78]
that find approximate integer solutions directly in polynomial time. Although no the-
oretical guarantees are known for the latter approximations, they tend to be better
than relaxation followed by rounding.
Constrained search algorithms for the lifted multicut problem were introduced in [78].
They generalize multicut algorithms of the Kernighan/Lin [76] type from [12] and
greedy additive edge contraction from [29]. We show in this chapter that fusion move
algorithms for the multicut as proposed in [27] can be generalized as well and actually
perform better in terms of approximation quality and speed.

3.1.1 Contribution

With this chapter, we make the following contributions:

1. We generalize the fusion move algorithm [27] into a new constrained search
algorithm for the minimum cost lifted multicut problem defined in [78].

2. We show that our algorithm outperforms the constrained search algorithms
of [78] on the same problem instances in approximation quality and speed.

3. We introduce novel non-local potentials for the segmentation problem and in-
corporate them into a lifted multicut formulation of the objective.

4. We apply the proposed algorithm to the biological image segmentation bench-
mark [21, 37], achieving the highest accuracy known at the time of writing.

3.2 Optimization Problem

3.2.1 Minimum Cost Multicut Problem

The minimum cost multicut problem is an optimization problem whose feasible solu-
tions can be identified with the decompositions of a graph. Below, we recall only the

38



necessary basic definitions and otherwise refer to [41, 56] for details.
A decomposition of a graph is a partition of the node set into connected subsets. More
rigorously, a decomposition of a graph G = (V,E) is a partition Π of the node set
V such that, for every U ∈ Π, the subgraph of G induced by U is connected. Every
decomposition of a graph can be identified with the set of edges that straddle distinct
components. Such subsets of edges are called the multicuts of the graph.
A subset M ⊆ E of edges is a multicut of G iff there exists a decomposition Π of
G such that M is the set of edges straddling distinct components. Moreover, M is a
multicut of G iff no cycle in the graph intersects with M precisely once. Rigorously,
for every cycle Y ⊆ E of G: |M ∩ Y | 6= 1. This characterization is intuitive: If one
transitions from one component to another along the cycle, one needs to transition
back before returning to the node from which one has started. It is used to state the
minimum cost multicut problem:
For every graph G = (V,E) and every c : E → R, the instance of the minimum cost
multicut problem w.r.t. G and c is the optimization problem

min
x∈{0,1}E

∑
e∈E

cexe (3.1)

subject to ∀Y ∈ cycles(G) ∀e ∈ Y : xe ≤
∑

e′∈Y \{e}

xe′ . (3.2)

3.2.2 Minimum Cost Lifted Multicut Problem

The minimum cost multicut problem has a limitation: A multicut makes explicit only
for neighboring nodes whether these nodes are in distinct components of the decom-
position induced by the multicut. It does not make this explicit for non-neighboring
nodes. Thus, the cost function can introduce only for pairs of neighboring nodes a
cost or reward to be paid by feasibles solutions that assign these nodes to distinct
components. It cannot introduce such a cost for pairs of non-neighboring nodes. As
illustrated in Fig. 3.1, simply considering a graph with more edges does not overcome
this limitation in general.
This limitation led Andres [7] to define the minimum cost lifted multicut problem
w.r.t. one graphG = (V,E) whose decompositions are identified with feasible solutions,
and a possibly larger graph G′ = (V,E′) with E ⊆ E′ for whose every edge vw ∈ E′ it
is made explicit whether the nodes v and w are in distinct components. By assigning
a cost cvw ∈ R to this edge, one can penalize or reward precisely those decompositions
of G (!) for which the nodes v and w are in distinct components. This property is used
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for image segmentation in [78]. We recall the minimum cost lifted multicut problem
from [7, Def. 10].
For any graphs G = (V,E) and G′ = (V,E′) with E ⊆ E′ and every c : E′ → R,
the instance of the minimum cost lifted multicut problem w.r.t. G, G′ and c is the
optimization problem

min
x∈{0,1}E′

∑
e∈E′

cexe (3.3)

subject to ∀Y ∈ cycles(G) ∀e ∈ Y : xe ≤
∑

e′∈Y \{e}

xe′ (3.4)

∀vw ∈ E′ \ E ∀P ∈ vw-paths(G) : xvw ≤
∑
e∈P

xe (3.5)

∀vw ∈ E′ \ E ∀C ∈ vw-cuts(G) : 1− xvw ≤
∑
e∈C

(1− xe) . (3.6)

The cycle constraints (3.4) are identical to those in (3.2). Additional constraints (3.5)
and (3.6) ensure, for every edge vw ∈ E′ \ E that xvw = 0 if (3.5) and only if (3.6)
v and w are connected in G by a path of edges labeled 0, i.e., iff v and w are in the
same component of G defined by the multicut M := {e ∈ E|xe = 1} of G. Or in other
words, iff a lifted edge (vw ∈ E′ \E) is not cut, there must be a path of non-cut edges
in the original graph connecting v and w.

3.3 Optimization Algorithm

3.4 Constrained Search Algorithms

Constrained search is a class of heuristic optimization algorithms. In the computer
vision community, they are also commonly referred to as move making algorithms.
Examples are α-expansion [86] αβ-swap [86], lazy flipping [10] and fusion [96].
Given a map f : X → R and the optimization problem min {f(x) |x ∈ X}, the idea
of constraint search is this: Instead of optimizing f over the entire feasible set X,
which might be hard, start from an initial feasible solution x0 ∈ X, optimize f over
a neighborhood N(x0) ⊆ X to obtain a new feasible solution x1. Iff f(x1) < f(x0),
re-iterate, starting from x1. Note that this algorithm does not require that x1 be
optimal.
Typically, the neighborhood function N : X → 2X is chosen such that, for every
x ∈ X, we have x ∈ N(x). If N is chosen such that, for every x ∈ X, the problem
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Figure 3.1: Depicted above in (a) is an instance of the minimum cost multicut problem (3.1)–
(3.2). The solution is the multicut consisting of those edges that are depicted as
dotted lines. I.e. all edges except v1v6 are cut. Depicted above in (b) is an instance
of the minimum cost lifted multicut problem (3.3)–(3.6) with one edge in E′ \ E
depicted in green. Here as well, the solution is the lifted multicut consisting of
those edges depicted as dotted lines. Note that, unlike in (a), the lifted edge with
cost 5 causes the nodes v1 and v6 to be connected in G by a path of edges labeled
0. Thus, positive costs assigned to lifted edges are called an attraction.

min {f(x′) |x′ ∈ N(x)} is of polynomial time complexity, then every iteration of the
algorithm is efficient. If the optimization over the neighborhood is not known to be of
polynomial complexity, it can still be less complex or smaller than the original problem
and can thus be tractable in practice.

3.4.1 Fusion Move Algorithms

Fusion move algorithms [96] are a class of constrained search algorithms. They consist
of two procedures. First is proposal generation that computes, for every feasible solu-
tion x ∈ X given as input, another feasible solution pg(x) ∈ X as output, possibly
in a randomized fashion. Second is fusion, an optimization algorithm that computes a
feasible solution of an optimization problem min {f(x) |x ∈ N(x)} for a neighborhood
N(x) defined w.r.t. x and pg(x) such that x ∈ N(x) and pg(x) ∈ N(x), to obtain a
feasible solution x′ with f(x′) ≤ f(x) and f(x′) ≤ f(pg(x)). In a fusion move algo-
rithm, proposal generation and fusion can be combined in different ways, as depicted
in Fig. 3.2.

3.4.2 Fusion Moves for the Lifted Multicut Problem

Lempitsky introduced fusion moves for unconstrained quadratic programming in [96].
In chapter 2 we define a fusion move algorithm for the minimum cost multicut prob-
lem. Here, we generalize the idea from chapter 2 to the minimum cost lifted multicut
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Figure 3.2: In a fusion move algorithm, proposal generation (PG) and fusion moves (FM) can
be combined in different ways. We implement and study serial fusion moves (a)
and parallel fusion moves (b).

problem. The fusion moves are defined in this section. Proposal generators are defined
in the next section.
Given any feasible solutions x1 and x2 of the minimum cost lifted multicut problem
(3.3)–(3.6), a constrained minimum cost lifted multicut problem in the variables x ∈
{0, 1}E′ is defined by (3.3)–(3.6) and the additional constraints

∀e ∈ E : xe ≤ x1
e + x2

e . (3.7)

That is, all edges which are labeled 0 (join) in the feasible solution x1 and the feasible
solution x2 are constrained to be labeled 0 in the problem (3.3)–(3.7). By construction,
x1 and x2 are feasible solutions of the constrained problem (3.3)–(3.7).
Next, we reduce the constrained minimum cost lifted multicut problem (3.3)–(3.7)
to an unconstrained minimum cost lifted multicut problem w.r.t. a smaller graph
(Lemma 1). The latter problem can be solved by existing algorithms. In practice, we
solve it approximatively by means of the Kernighan-Lin-type algorithm published by
Keuper et al. [78]. The construction of the smaller graph is depicted in Fig. 3.3 and is
described below.
Let G = (V, E) be the graph obtained from the graph G by contracting the edges
{e ∈ E |x1

e = 0 ∧ x2
e = 0}1. Moreover, let E ′ ⊆

(V
2

)
such that V ′W ′ ∈ E ′ iff there exist

v ∈ V ′ and w ∈ W ′ such that vw ∈ E′. Finally, let C : E ′ → R such that, for every
1I.e., V is a decomposition of G with every V ′ ∈ V a maximal subset V ′ ⊆ V of nodes of G connected
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Figure 3.3: To perform a fusion move, we solve a minimum cost lifted multicut problem with
some edge labels fixed to 0 (join). In (a) such edges are depicted by bold lines. To
solve this constrained problem, we reduce it to an unconstrained minimum cost
lifted problem w.r.t. a contracted graph, depicted for this example in (b).

V ′W ′ ∈ E ′:

CV ′W ′ =
∑

{vw∈E′ | v∈V ′∧w∈W ′}

cvw (3.8)

Lemma 1. For every feasible solution X : E ′ → {0, 1} of the instance of the minimum
cost lifted multicut problem w.r.t. G, G′ := (V, E ′) and C, the x : E′ → {0, 1} such that

∀vw ∈ E′ : xe =

XV ′W ′ if ∃V ′W ′ ∈ E ′ : v ∈ V ′ ∧ w ∈W ′

0 otherwise
(3.9)

is well-defined and a feasible solution of the constrained minimum cost lifted multicut
problem (3.3)–(3.7). Moreover,∑

vw∈E′
cvwxvw =

∑
V ′W ′∈E ′

CV ′W ′XV ′W ′ . (3.10)

Proof. If there exist V ′W ′ ∈ E ′ such that v ∈ V ′ and w ∈ W ′, then V ′ and W ′ are
unique (because V is a partition of V ). Thus, x is well-defined.
The feasible solution X defines a decomposition of G (because M := {V ′W ′ ∈
E |XV ′W ′ = 1} is a multicut of G). Every decomposition of G induces a decompo-
sition of G (as the node set V of G is itself a decomposition of G). The multicut

by edges e ∈ E for which x1
e = 0 and x2

e = 0. In addition, for every V ′W ′ ∈
(V

2

)
, we have V ′W ′ ∈ E

iff there exist v ∈ V ′ and w ∈W ′ such that vw ∈ E.
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M := {vw ∈ E |xvw = 1} of this decomposition of G is defined by the multicutM of
G by (3.9) (by definition of G). Thus, x satisfies (3.4).
Moreover, for every vw ∈ E′ \ E, we have xvw = 0 iff v is connected to w by a path
P in G with xP = 0 (by (3.9) and definition of G and E ′). Thus, x satisfies (3.5) and
(3.6). Finally, (3.10) holds by (3.8) and (3.9). �

3.4.3 Proposal Generation for the Lifted Multicut Problem

As pointed out in [96], a proposal generator is designed with four objectives in mind.
Firstly, proposed feasible solutions should be diverse. Otherwise, the fusion move al-
gorithms can get trapped in local minima. Secondly, some proposed feasible solutions
should be good. Otherwise, the fusion move algorithms cannot get close to the opti-
mum. In the context of the minimum cost lifted multicut problem, a feasible solution
is good if the recall of edges that are cut in an optimal solution is close to 1. Thirdly,
the proposed feasible solutions should be sparse. In the context of the minimum cost
lifted multicut problem, a feasible solutions is sparse if the precision of edges that
are cut in an optimal solution is close to 1. Fourthly, the proposed feasible solutions
should be cheap, i.e., proposals should be computable efficiently and in parallel. We
study three proposal generators that emphasize different design objectives.
Randomly Perturbed Proposals. In order to obtain a proposal of high quality
efficiently, we apply greedy additive edge contraction (GAEC) [78]. The key idea of
this algorithm is to greedily contract edges with maximum cost until this maximum
cost is equal to or smaller than zero. In order to get diverse solutions, we follow [27]
and add normally distributed noise of zero mean to edge costs. In order to control the
sparsity of the proposal, we replace the stopping criterion of GAEC and continue until
a maximum allowed number of components is reached.
Subgraph Proposals. In order to obtain an objective-aware proposal for a large
problem instance, we solve the minimum cost lifted multicut problem for a small
subgraph. Technically, the procedure works as follows: We choose a center node v ∈ V
and the subgraph induced by the set U of all nodes within a fixed path-length distance
from v. For E0 := {vw ∈ E | v /∈ U ∧ w /∈ U} and E1 := {vw ∈ E | v ∈ U ∧ w /∈ U},
we solve the instance of the minimum cost lifted multicut problem w.r.t. the graph G
and the cost function c, with the additional constraints

∀e ∈ E0 : xe = 0 (3.11)
∀e ∈ E1 : xe = 1 . (3.12)

Watershed Proposals. In order to obtain diverse proposals cheaply, we follow [27]
in using the weighted watershed algorithm [109] with random seeds. From the set
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{vw ∈ E′ \ E | cvw < 0} of lifted edges with negative cost, we draw a fixed number
without replacement and assign different seeds to v and w. Thus, a random subset of
lifted edges with negative cost is cut.

3.5 Experiments

We now describe experiments in which we compare the fusion move algorithm for the
minimum cost lifted multicut problem with the Kernighan/Lin-type algorithm (KLj)
and Greedy Additive Edge Contraction (GAEC) of [78] for the same problem.
In the tables below, FM-R, FM-SG and FM-WS stand for the fusion move algorithm
with the randomized, subgraph and watershed proposal generators, respectively. Indi-
vidual fusion problems, i.e., those problems denoted by boxes labeled “FM” in Fig. 3.2,
are solved by KLj initialized with the output of GAEC.
In each experiment, the outer loop of fusion is terminated when no improvement is
achieved for 5 consecutive iterations. Each experiment is conducted with 1, 2, 4 and
8 threads, respectively, to examine concurrency. All experiments are conducted on an
Intel Core i7-4700MQ CPU operating at 2.40GHz × 8, and equipped with 32 GB of
RAM.

3.5.1 ISBI 2012 Challenge

The ISBI 2012 Challenge [21, 37] offers a set of segmentation tasks where images of
the Drosophila larva ventral nerve cord acquired by a serial section transmission elec-
tron microscope are to be decomposed into distinct neurons, as depicted in Fig. 3.4c.
The data set contains of 30 training images and 30 test images. Human annotations
(Fig. 3.4b) are provided for each training image.
We propose a processing pipeline. Describing this pipeline in every technical detail
is beyond the scope of this work. For the sake of reproducibility, the source code is
available 2 . Overall, the pipeline consists of the following steps:

1. Start from the region adjacency graph (RAG) of an over-segmentation generated
by seeded region growing [33], as shown in Fig. 3.4e.

2. Add lifted edges F for all pairs of superpixels within a path-length distance
of rnl = 4. The difference between lifted and non-lifted edges can be seen in
Fig. 3.4f.

2https://github.com/DerThorsten/lifted_fusion_moves_eccv_2016
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(a) training data (b) ground truth (c) overlay

(d) test data (e) superpixel (f) local and lifted
edges in the RAG

(g) result

Figure 3.4: The ISBI 2012 Challenge [21, 37] offers a set of segmentation tasks where neu-
rons are to be delineated correctly in two-dimensional electron microscopy images,
cf. (a)–(c). We start from the region adjacency graph of a superpixel segmentation
(e) and train two classifiers to estimate the probability of adjacent and, respec-
tively, non-adjacent superpixel pairs to belong to the same neuron. I.e., for edges
like A-B and C-D in (f) or lifted edges E-F and G-H in (f). Solving, by fusion
moves, a minimum cost multicut problem with costs defined in (3.13), our results
on independent test images (with undisclosed ground truth) achieve the highest
accuracy known at the time of writing. See (g) and Tab. 3.1.

3. Train two random forest classifiers: A first classifier RFl learns to predict if a pair
of adjacent superpixels should be in the same neuron or not. A second classifier
RFnl predicts the same for non-adjacent pairs of superpixels.

4. Solve an instance of the minimum cost lifted multicut problem (3.3)–(3.6) with
superpixels as nodes, non-lifted and lifted edges and costs defined w.r.t. the
probabilities estimated by RFl and RFnl as

cvw := log
p(xvw = 0)

p(xvw = 1)
. (3.13)
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To train RFl we use features on local image statistics as described in [9, 14]. To train
RFnl, we compute the following features for of lifted edges:

1. Features based on hierarchical clustering inspired by [18, 145]: We apply UCM to
generate the complete dendrogram and use the thus defined ultrametric distance
between pairs of nodes (height in the dendrogram at the moment when the nodes
are merged) as a feature for the corresponding lifted edge, if it exists.

2. Features inspired by maximum intervening contours [51, 98, 106]: We compute
simple statistics of local image features (e.g. average gradient) along multiple
straight lines between two superpixels.

3. Shortest path based features: Using various local features (raw intensities, gradi-
ents etc.), we compute multiple shortest paths between non-adjacent superpixels
and measure statistics along these paths.

4. Candidate segmentation features: We compute multiple candidate segmentations
using the minimum multicut objective (with varying parameter and without
lifted edges), and each edge is assigned the proportion of the segmentation where
it got cut.

For all features above we use the raw data itself as input, but also a pixel wise proba-
bility map learned with a CNN [101].
A quantitative evaluation is shown in Tab. 3.1. It can be seen from this table that
segmentations of the images defined by feasibles solutions of the minimum cost lifted
multicut problem define a new state of the art on this highly competitive segmentation
challenge. FM-R, FM-SG and KLj yield the same objective. Even with only a single
thread, FM-R and FM-SG are slightly faster than KLj. With 8 threads, the proposed
methods outperform KLj by a factor of 4.

3.5.2 Image Decomposition

Keuper et al. [78] pose the image decomposition problem [17] as a minimum cost
lifted multicut problem. Instances of this problem are defined w.r.t. pixel grid graphs
and lifted edges connecting each pixel to the (about 300) pixels within a path-length
distance of 10. Costs of non-lifted edges are derived from structured edge detection
according to [47]. Costs of lifted edges are defined by probabilistic geodesic lifting [78].
These large instances of the minimum cost multicut problem pose a challenge to op-
timization algorithms and are thus suitable for benchmarking. Here, we compare the
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Table 3.1: At the time of publishing [30] feasible solutions of the minimum cost lifted multicut
problem define the state of the art on the ISBI 2012 Challenge [21, 37]. The perfor-
mance measures VRand and VInfo are defined in [21]. A value of 1 indicates a perfect
segmentation; values close to zero indicate poor segmentations. Using 8 threads, the
proposed methods (FM-R, FM-SG) outperform KLj by a factor of 4. Leader board:
http://brainiac2.mit.edu/isbi_challenge/leaders-board-new

Algorithm Objective Time to convergence [s] VRand VInfo
(1/2/4/8 threads) (higher is better)

FM-SG -13560.18 0.62 / 0.37 / 0.28 / 0.21 0.9804 0.9884
FM-R -13560.18 0.77 / 0.42 / 0.32 / 0.28 0.9804 0.9884
KLj -13560.18 0.89 0.9803 0.9884

Leader Board 2 - - 0.9796 0.9870
Leader Board 3 - - 0.9768 0.9886
Humans - - 0.9978 0.9990
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fusion move algorithm with watershed proposal generator (FM-WS) with GAEC and
KLj initialized with the output of GAEC.
Results are shown in Tab. 3.2. It can be seen from these results that FM-WS out-
performs the current state of the art (KLj) in terms of runtime and objective value.
Moreover, FM-WS is about twice as fast with one thread and about six times as fast
with 8 threads. The gap between FM-WS and KLj is comparatively larger than that
between of KLj and GAEC. Therefore, we consider FM-WS a significant improvement
over the state of the art.

3.5.3 Averaging Multiple Segmentations

Fusing multiple segmentations into a single one is not only important as an image
analysis sub-task, but can also be used to combine multiple manually derived ground
truth solutions into a “master" ground truth image. Multiple user-provided solutions
are, for example, available for the BSDS-500 data set [17].
Recently, [4] proposed to solve this problem with an EM-algorithm based on the multi-
cut objective. Their algorithm is defined on a complete graph derived from the region
adjacency graph of an initial superpixel segmentation. In contrast to our approach,
they use the plain multicut objective where all edges of the complete graph are con-
sidered local, and there are no lifted edges. Before constructiong the complete graph,
every proposed segmentation xl from the given set L is projected on the superpixel
RAG, and all edges which are not cut in any proposal are contracted, resulting in a
dramatic reduction of the graph’s size. The edge costs of the remaining edges measure
how often this edge is cut in L. Furthermore, a weight pl measuring the estimated
reliability of each segmentation relative to the others is assigned to each member of
L. The multicut objective is then optimized with pl kept fixed, and the pl are up-
dated according to the proportion of edges in xl that agree with the current master
segmentation. This is repeated in an EM manner until convergence.
We modify this aproach as follows: We optimize directly on the pixel-level, i.e. on a
4-connected grid graph instead of a superpixel RAG, to eleminate superpixel compu-
tation as an additional source of error. Moreover, we replace the multicut objective
with a lifted multicut objective containing only a sparse set of lifted edges up to a
graph distance of 5. We do not contract any edges in pre-processing. Edge costs are
defined as in [4] by

cvw := log
∑
l∈|L|

(1− xlvw)pl − log
∑
l∈|L|

xlvwpl (3.14)
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As in [4], we use an EM-type algorithm to update pl according to the number of edges
in xl that agree with the current master segmentation x̂:

pl =
1

|EF |
∑

xvw∈EV

1− |xlvw − x̂vw| (3.15)

In every iteration of EM, we solve an instance of the minimum cost lifted multicut
problem using FM-SG and, for comparison, KLj. Both are initialized with the output
of GAEC. We only use FM-SG results to update the pl since they were always better
than the KL results. In addition to the proposals generated by the subgraph method,
all xl are included into the proposal set, leading to a significant speed-up.
Results are shown in Tab. 3.3 and Fig. 3.5. It can be seen from Tab. 3.3 that FM-SG
outperforms KLj in terms of objective value and run-time. Even with a single thread,
FM-SG is twice as fast as KL. Using 8 threads, the FM-SG is six times as fast.

3.6 Conclusion

We have defined a fast, scalable and easy to implement fusion move algorithm for
the minimum cost lifted multicut problem. Experiments with diverse instances of the
problem have shown that this algorithm typically outperforms existing methods in
terms of objective value and run-time. We conjecture that efficient algorithms such as
the one proposed in this chapter facilitate a variety of applications of the minimum
cost lifted multicut problem in computer vision of which the averaging of multiple
segmentations is just one example.
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Combined with KL:

Combined with FM-SG:

Combined with KL:

Combined with FM-SG:

Combined with KL:

Combined with FM-SG:

Figure 3.5: To average multiple segmentations, we solve instances of a minimum cost lifted
multicut problem as in (3.14)–(3.15). Above, Rows 1–5 show different man-made
segmentations of images from the BSDS-500 benchmark [17]. Row 6 shows the
combination of these segmentations by the solution using KL, row 7 shows the
result with the proposed algorithm (FM-SG).
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Table 3.2: The proposed algorithm FM-WS outperforms KLj and GAEC on the large and hard
instances of the minimum cost lifted multicut problem of [78].

Algorithm Objective Time to convergence [s]
(1,2,4,8 threads)

FM-WS −62748200 61 / 32 / 25 / 22

GAEC −62744700 10 / n.a.
KLj −62745500 121 / n.a.

Table 3.3: To average multiple segmentations, we solve instances of a minimum cost lifted
multicut problem as part of the EM algorithm proposed in [4]. FM-SG is an efficient
algorithm to solve these instances.

Algorithm Objective Time to convergence [s]
(1/2/4/8 Threads)

FM-SG -2.29e+07 14.8 / 8.83/ 6.33/ 5.21

GAEC -1.53e+07 13.8
GAEC + KLj -2.27e+07 29.3
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4 Multicut brings automated neurite
segmentation closer to human
performance

This chapter is based on [26] where many authors have contributed to. In particular
Nasim Rahaman contributed the neural network in section 4.3, Timo Prange con-
tributed the superpixels in section 4.4. Constantin Pape conducted the experiments in
section 4.5 and section 4.7 and contributed to the software library (section 5.2).

4.1 Introduction

The connectomics community is acquiring volumetric electron microscopy (EM) im-
ages of the brain at an unprecedented rate with the aim of mapping out and under-
standing in detail the physical correlates of information processing in animals. Reliable
automatic segmentation is urgently needed for upcoming whole-brain data sets (>100
terabytes (TB) per volume). Manual analysis, despite impressive progress in collabo-
rative annotation [79], will not scale to this massive task. We present an algorithm and
software package to segment such data sets with low error rates. The software is made
available open source at online repositories, and we also provide precompiled binaries
(see section 5.2).
At the ISBI 2012 conference, a challenge for segmenting anisotropic 3D EM images
was launched [19]. In this “blind” challenge, which remains open to new submissions,
participants can submit tentative segmentations of the test data set. The organizers
then measure the accuracy of the submitted segmentation in terms of Rand error. The
latter is a statistic summarizing—for each and every pair of points—how often these
points are correctly assigned to the same segment, or to different segments, as dictated
by ground truth. The organizers publish the Rand error of a submission without giving
away the ground truth segmentation itself, thus ensuring fair comparison and minimal
bias [21].
At the time of writing, our algorithm produces the best known result on the ISBI 2012
blind challenge, halving the error of the 2012 winner. Our pipeline comprises three
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major steps (see section 4.3). First, we apply a cascaded random forest (which needs
less training data) or a convolutional neural network (which gives even better accuracy)
to predict membrane probabilities. In the neural network, we found skip layers, elastic
data augmentation during both training and prediction, and inception-like modules to
be critical for performance (Section 4.3).
Second, we aggregate pixels into superpixels to coarse grain the problem and to extract
higher order region information in a data- dependent fashion. Superpixels should be
few (and thus large) to reduce the problem size for the final processing stage; but
superpixel boundaries must also form a strict superset of true neurite boundaries.
Distance transform watershed superpixels (see section 4.4) offered the best trade-off
in our experiments, yielding large superpixels that are robust against minor gaps in
the boundary probability maps. Finally, we merge superpixels to tentative neurites
while respecting consistency constraints across distances that are larger than a neural
network’s field of view. Specifically, we solve the Lifted [78] Multicut [9] problem, which
introduces attractive or repulsive potentials between (nonadjacent) superpixels, and
we find the graph partitioning that optimally balances these cues. We always reason
in 3D, even for
anisotropic data (Figure 4.1 and sections 4.5 and 4.6). This NP-hard partitioning prob-
lem is solved approximately using the the methods from chapters 2 and 3. Each of these
choices is the result of extensive experimentation, and the lesion study summarized
in Figure 1 and in section 4.7. Section 4.7.2 shows how performance degrades when
deviating from these choices. The same pipeline works well on the anisotropic murine
neocortex “SNEMI3D” data and the isotropic Drosophila medulla “Neuroproof” data
(section 4.7).
This work substantially narrows the accuracy gap between humans and computers for
neurite segmentation (section 4.7. Section 4.7.2). We expect this gap to close within
the decade, at least for high-quality data, allowing neuroscientists to make the most
of the impressive data sets that are currently being acquired.

4.2 Related Work

Electron microscopy is producing images at a rate that surpasses the human capacity
of neurite tracing [6, 32, 34, 36, 73, 95, 134], even when allowing for massively parallel
annotation [35, 37, 58, 75, 79, 100, 119, 143]. In response, the computer vision com-
munity is developing segmentation algorithms that decrease the manual proof-reading
effort, with the ultimate aim of generating accurate segmentations fully automatically.
Open segmentation challenges [19, 20] have been instrumental in this improvement.
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Figure 4.1: The automated neurite segmentation pipeline and the influence of its compo-
nents on performance. (a, i) Example of ISBI 2012 data. Membrane probability
estimates(a, ii) are used to find superpixels (b,i). Pairs of these regions are as-
sociated with attractive (cyan) or repulsive (red) potentials that are informed by
local appearance (b, ii). A region adjacency graph is constructed in 3D, even
for strongly anisotropic data (c). We consider next neighbor interactions (straight
lines and straight dashed lines) and longer range interactions (curved lines) for the
Lifted Multicut. Solving the (Lifted) Multicut graph partitioning problem yields
tentative neurites (d). The table (e) shows the performance reached on the ISBI
2012 challenge using; from top to bottom: a cascaded Random Forest; the same
with distance transform watershed superpixels (DT WS) and multicut (MC); our
neural network; the same with standard watershed superpixels and MC; the same
with DT WS and MC; and finally the proposed pipeline. Accuracies are measured
by scores derived from the Rand index (RI) and the variation of information (VI),
and higher scores are better.
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Since many neurites are locally similar, most segmentation procedures rely on bound-
ary information (alone). Such cell membrane probabilities can be estimated using
neural networks (e.g. [42, 61, 137]) or other classifiers such as Random Forest [13],
possibly augmented with a conditional random field [74].
Ideally, the connected components of thresholded boundary predictions would already
correspond to neurites. Given that all boundary predictions available to date are im-
perfect, it is useful to first conservatively group pixels into larger clusters, so-called
superpixels, that afford the extraction of more expressive features. These superpix-
els can then be grouped into tentative neurites in a second step, using a variety of
techniques ([9, 13, 52, 63, 103, 111, 139, 140] and others).

4.3 Neurite Boundary Probability Prediction

Multiple neural network architectures have been used to predict pixel-wise membrane
probability or pixel affinity given stacks of raw EM data (e.g. [42, 50, 61, 117, 129, 138]).
Recent networks are both wider and deeper than their predecessors, and often combine
high-resolution “geometric” with low-resolution but deep “semantic” pathways [104,
117].

4.3.1 Architecture of our Network

Figure 4.2 illustrates the network architecture, which we call ICv1. The network builds
on important previous work, notably Inception Modules [132], uses strided convolu-
tions, max-pool operations and deconvolutions in a fully convolutional setting [104],
and combines high- and low-resolution pathways [117] to aggregate geometric and
semantic features.
The key idea is to have the network, through a succession of stages, trade spatial
resolution for a rich semantic representation; and to then restore the former, in a
further succession of layers, to obtain a high-resolution but single channel prediction:
for all pixels in the image, the probability of it showing a neurite boundary. A single
skip connection helps conserve high-resolution information and propagate gradients
back to the early layers.
Throughout the network, inception-like structures feed the output from the previous
layer into independent pathways or “towers” whose outputs are concatenated down-
stream. Compared to a standard architecture with the same number of layers and neu-
rons, this structure induces topological sparsity in the network architecture, thereby
(a) reducing computational cost and (b) clustering features in layer activations.
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Deviating from recent trends [124], we use relatively large convolution kernels (up
to 9 × 9 pixels) to enhance the field of view without introducing significant memory
overhead. For instance, a 9× 9 field of view could also be obtained by four subsequent
3 × 3 convolutions that, assuming no intermediate dimensionality reduction, would
consume more memory to store layer activations for the backward pass. To mitigate
the internal covariate shift [60] to some extent, we use Exponential Linear Units [43]
instead of Rectified Linear Units [91]. An ensemble of three ICv1’s together with test
time data augmentation (see below) is currently the best performing neural model on
the ISBI 2012 dataset.

4.3.2 Data Augmentation

Our network makes extensive use of train and test time data augmentation. Test time
data augmentation with linear transformations has been proposed by [50] and [117] as
a computationally cheap way to build an ensemble at test time. In addition to random
linear transformations, we also include nonlinear transformations in our ensemble to
further boost the results. In this process, the input image is elastically transformed
(by displacing all pixels according to the realization of a smooth bivariate 2D Gaussian
random field) and fed into an ensemble. Then, its outputs are transformed back with
the inverse elastic transformation. The process is repeated using different random
transformations, and the results are averaged over. We profit from the fact that the
resulting synthetic images are clearly distinct from the originals, but in appearance
are still similar to real tissue images.
One single network has approximately 35 million parameters, which can be learned
from the limited training data only thanks to extensive regularization and data aug-
mentation.

4.3.3 Experimental Setup

The network was trained as a regression model with pixel-wise binary cross-entropy
loss. Binary boundary / no-boundary target labels were smoothed [133] by computing
the pixelwise negative exponential of the Euclidean distance transform, while the raw
image batches were normalized to zero mean and unit variance. The training dataset
(for the ISBI 2012 challenge: 28 out of the 30 slices in the training volume) was
iterated over for 1000 epochs, and the set of parameters yielding the smallest pixel-
wise mean squared error (for ISBI 2012: on the remaining 2 out of the 30 slices)
was chosen for inference. The networks were optimized with ADAM [82] with the
following optimization hyperparameters: step size α = 0.0002, exponential decay rates
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Figure 4.2: ICv1 neural network architecture. Purple boxes represent convolutional layers with
kernel size M ×N , ELU non-linearity, and “same” border handling (i.e. the input
and output images have identical shapes). Green boxes annotated with pM×N ; sS
denote max-pooling layers overM×N patches with stride S; while those annotated
with M ×N ; sS represent convolutional layers with stride S. Both layers reduce
the image width and height by a factor S. Orange boxes annotated us M × N
show upscaling layers, where pixels in the input feature maps are repeated M
times vertically and N times horizontally. The numbers next to arrows specify the
number of feature maps flowing from one layer to the next. Boxes withM outgoing
arrows imply that the output of the layer is replicated M times, while boxes with
N incoming arrows imply that the layer receives N inputs, which are concatenated
depth-wise (i.e. along the feature axis) before being processed.
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for moment estimates β1 = 0.9, β2 = 0.999, and a fuzz factor ε = 10−8 for numerical
stability. A L2 weight decay term with coefficient λ = 0.0005 was added to the objective
and dropout [127] (p = 0.5) was used. For test-time data augmentation, 20 elastic
transformations (including also random rotations and flips) were used. The network
was implemented using Theano [31] and CuDNNv4 [39]. Training a network for 1000
epochs with a batch size of 4 required 20 hours on a GeForce Titan X GPU. We
built an ensemble of three networks by training in parallel and independently on three
GPUs.

4.3.4 Baseline: Boundary Prediction with a Cascaded Random Forest

At the time of writing, the above neural network architecture achieves higher accu-
racy than all previous work on the ISBI 2012 challenge (except for the full pipeline
introduced here). However, the many free parameters in neural networks generally call
for copious amounts of labeled training data. Seeking to alleviate this requirement, we
also performed membrane probability prediction by a cascaded Random Forest trained
interactively with sparse labels.
Following ideas from Autocontext [64, 136], we perform two rounds of prediction using
Random Forest. More specifically, the first Random Forest is trained interactively with
ilastik [125], using multiple semantic classes: membrane, cytoplasm, mitochondria,
mitochondrial membrane, intracellular structure, synaptic sites and “everything else”.
The predictions for all classes are concatenated to the raw data as new channels.
In a second round, the linear and nonlinear features from the ilastik filter bank are
computed both on the original raw data and the predictions from the first round. At
this stage, labels are again provided interactively in ilastik, this time annotating only
“boundary” and “background” classes. For the ISBI challenge dataset, such interactive
labeling took about 15 hours in total for both stages.

4.4 Superpixel Generation

Even present-day deep neural networks have difficulty in modeling very long-range
interactions. For instance, if the receptive field of a neural network is 5122 pixels,
it cannot reconcile cues that may be a thousand or more pixels apart. Given that
neurites are tube- or tree-like structures that extend across thousands of pixels at
standard electron microscopy resolutions, this is a practically relevant limitation.
One way forward is to first aggregate those pixels that, with a very high confidence,
can be assumed to belong to the same neurite into a “superpixel”. A second stage
in the pipeline can then represent the original image, and reason in terms of, these
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superpixels. Besides spanning larger distances and reducing the number of objects
involved in the second-stage reasoning, superpixels have the advantage that they allow
the extraction of a rich set of features that are not defined at the pixel level. For
example, at the level of superpixels it is possible to answer questions like “how many
mitochondria are in this superpixel” or “what is the diameter of this section of neurite”
that would be ill-posed at the level of individual pixels.
In the downstream processing of superpixels, it is typically easy to merge sets of
superpixels, but difficult to split these. As a consequence, a good superpixel should

• encompass as many pixels as possible, but

• not extend beyond a single neurite.

4.4.1 Standard superpixels

In standard computer vision tasks, algorithms such as SLIC [2] that group pixels of
similar appearance are popular. Such algorithms are not useful for the present task,
where neurite diameters have a large range and boundaries are the strongest cues that
delineate a neurite from its neighbor. In the present setting, the watershed (e.g. [33])
works well when applied to a smoothed pixelwise boundary probability map [13].

4.4.2 Distance transform watershed superpixels

Standard electron microscopy sample preparation and staining protocols often lead
to seeming small perforations of neurite boundaries, or even to thin slashes in such
boundaries. These artifacts are a nuisance for the standard watershed, as it may result
in undesirable superpixels that span two adjacent neurites.
As a consequence, we here propose to first threshold a pixelwise boundary proba-
bility map as obtained from a neural network or cascaded Random Forest; to then
filter out tiny connected boundary components; and to finally compute the smoothed
signed Euclidean distance transform on the remaining boundaries. See Fig. 4.3 for an
illustration.
This is related to prior work on the stochastic watershed [15] and has the effect of
closing slashes that are narrower than the diameter of either adjacent neurite in the
proximity of the slash.
Finally, following [89] we use ilastik [125] pixel classification to train a myelin detector.
Large myelin connected components are then turned into additional superpixels, see
Fig. 4.4.
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100 nm

Figure 4.3: Generating distance transform watershed superpixels. From left to right: raw data,
boundary probability map, thresholding thereof, distance transform on the latter,
and watershed superpixels seeded by distance maxima. Note how the resulting
superpixels are confined to single neurites, in spite of ambiguous boundary evidence
(arrow).

400 nm

Figure 4.4: Generating superpixels in the presence of heavy myelination. From left to right:
Part of SNEMI3D test data, boundary probability map courtesy of [42], distance
transform watershed before and after myelin correction.

With suitable choice of parameters for both the standard and distance transform
watershed, the former generates around 12k and the latter less than half that number of
superpixels. This both reduces the number of objects to be reasoned with downstream,
and allows aggregating features over larger areas.

4.5 Multicut Segmentation

The electron microsocopic images can now be represented at a higher level of ab-
straction, in terms of a region adjacency graph. Each node in this graph corresponds
to one superpixel, and every edge represents the boundary between two adjacent su-
perpixels (we will use the terms “edge” and “boundary” interchangeably). The seg-
mentation problem can then be expressed as a graph partitioning problem. Here,
cutting an edge means preserving the boundary between two incident superpixels.
Vice versa, preserving an edge means that the two respective superpixels are merged
into a single component. Note that only select edge labelings amount to a valid par-
titioning. For example, consider a triangular graph with nodes A,B,C. The labeling
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{(AB) = 0, (BC) = 0, (CA) = 1} is not a consistent partitioning: nodes A and C are
assigned to the same cluster via their mutual connection to B; and at the same time,
they should be in distinct clusters due to the cut edge between them: a contradiction.
In keeping with literature, we have used the arbitrary convention that a cut edge has
value 1 and a preserved edge has value 0.
Each edge is associated with a positive (attractive) or negative (repulsive) score. By
solving the multicut or correlation clustering problem as described in chapter 2, we
identify amongst all consistent edge labelings the one that best obeys these attractive
and repulsive potentials.

4.5.1 Multicut for Anisotropic Data

The attractive or repulsive edge scores can be estimated based on the appearance of
the boundary itself, and from the appearance of the incident superpixels. For isotropic
data, we first generate 3D superpixels and then train a Random Forest to predict,
based on these features, for each edge whether its score should be positive / attractive
or negative / repulsive. For isotropic data, the fundamental procedure is described
in [9].
For anisotropic data, some adjustments are important. To the best of our knowledge,
this is the first time that the multicut is adapted to anisotropic connectomic data. For
large degrees of anisotropy, no good 3D superpixels can be generated using the kind of
procedure described in the previous section. As a consequence, we find 2D superpixels
and connect these in a 3D region adjacency graph, that is, edges are also introduced
between superpixels in adjacent slices.

4.5.2 Edge Features

Edge Features Based on the Appearance of the Corresponding Boundary These
features are computed in three steps: First, filter bank outputs with Gaussian smooth-
ing, Hessian of Gaussian eigenvalues, Laplacian of Gaussian, each at scales (using the
vigra [87] convention) σ = {1.6, 4.2, 8.3} are calculated for one or more inputs. These
inputs are the raw data plus possibly probability maps for certain semantic classes in
the data, such as specific organelles. In our experiments, we use the raw data and the
very membrane probability maps that were used to find superpixels. For anisotropic
data, these filter banks are calculated either strictly in 2D (for high anisotropy) or in
3D but with reduced filter size in the anisotropic direction. Next, the filter bank out-
puts are accumulated over the boundary of interest and summarized in terms of the
following aggregate statistics: mean, sum, minimum, maximum, variance, skewness,
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kurtosis and the {0.1, 0.25, 0.5, 0.75, 0.9} quantiles.

Edge Features Based on the Appearance of Incident Superpixels For each super-
pixel, we compute: its size, the eigenvalues of its inertial tensor, as well as the histogram
(64 bins), kurtosis, maximum, minimum, {0.1, 0.25, 0.5, 0.75, 0.9} quantiles, skewness,
sum and variance of the raw image. These numbers are then mapped to the edges by
taking the min, max, sum and absolute difference of the incident superpixels’ values. In
addition, we compute the squared distance between the incident supervoxels’ centers
of mass. The latter are found both with uniform pixel weights, and with pixel weights
given by the raw intensity.

Inter-slice Features for Anisotropic Data When constructing 2D superpixels, the
inter- and intra-slice edges are different in nature: intra-slice edges correspond to 1D
curves in image space, whereas inter-slice edges correspond to 2D surfaces in image
space.
For such inter-slice edges we compute all of the above features, plus the following:

• size of the union (when projecting orthogonally onto the same slice) of the two
superpixels of interest

• size of their intersection

• ratio of intersection and union

We also compute the ratio of the area of a 2D superpixel to its circumference, and map
this information to an edge by taking the min, max and absolute difference between
the values obtained for its incident superpixels.
In total, all of the above result in 625 features per superpixel edge. Empirically, we find
that it is best to train a single Random Forest to predict scores for all types of edges.
For intra-slice boundaries, the last set of features is set to zero. Finally, we normalize
the predicted score for each edge by its length (for 1D edges) or area (for 2D edges).

4.6 Lifted Multicut for Anisotropic Data

The lifted multicut as described in chapter 3 is a generalization of the multicut objec-
tive . Its objective function can accommodate a cost or reward for every pair of nodes,
not just neighboring ones; and its constraints make sure that all nodes ending up in
the same cluster are also connected in the spatial domain, not merely by the non-local
“lifted” edges. Overall, the lifted multicut is empirically computationally harder; but
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it also represents a more expressive model (the standard multicut model is a strict
subset of the lifted multicut model).
To obtain an attractive / repulsive score for each edge connecting two adjacent su-
perpixels, we follow the procedure outlined in section 4.5. For the lifted edges, we use
additional features as outlined next.

4.6.1 Lifted Edge Features

To predict if two non-neighboring nodes should be in the same segment we use the
following features:

Multicut Connectedness The multicut procedure from section 4.5 is executed five
times, where a bias is added to / subtracted from all edge scores, making them more
attractive / repulsive. For each lifted edge and for each of the five biases, we record
in a binary variable whether or not the two incident regions ended up in the same
connected component.

Ultrametric distance We apply the ultrametric contour map transform [18] to gen-
erate a complete dendrogram. The ultrametric distance (the height in the dendrogram
at which the two regions merge) is used as an additional feature for each lifted edge.

Region features Equivalent to those described in “Edge Features Based on the Ap-
pearance of Incident Superpixels” in section 4.5.2.

To account for the fact that we have a considerably larger number of lifted edges
than local edges, we weight the scores for both by their number. For anisotropic data,
inter-slice lifted edges that are d slices apart are further weighted by 1/(1+d). Finally,
the lifted multicut objective is optimized approximately using using the fusion move
algorithms descried in chapter 3.

4.7 Benchmark Experiments

We have evaluated the Multicut and Lifted Multicut on the blind ISBI 2012 chal-
lenge, as well as on the publicly available SNEMI3D and Neuroproof datasets, each
containing separate training and test volumes of EM images. For evaluation, we re-
port the measures V rand

0.5 and V info
0.5 as defined in [19]. These are the F1-scores derived

from the structured segmentation accuracy measures “Rand Index” and “Variation of
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Information” [19]. Both measures go beyond aggregating single pixel errors, and in-
stead summarize statistics of point pairs, verifying if they are or are not in the same
segment, as prescribed by ground truth. Note that the border thinning procedure from
[19] is not needed for our (Lifted) Multicut segmentations because the resulting region
labelings are already dense.

4.7.1 ISBI 2012

The ISBI 2012 challenge [19] is the most popular and competitive connectomics chal-
lenge to date. Here, we used the anisotropic pipeline to obtain the accuracies summa-
rized in Fig. 1g in the main text.
The training data consists of images which have neurite boundaries and extracellular
space marked. We used the neurite connected components as seeds for a watershed
on the probability map to obtain ground truth with thin boundaries. These were
then projected to the superpixel boundaries, according to the overlap of a superpixel
with ground truth segments. Ground truth boundaries with ambiguous assignment
to our superpixels are ignored at the training stage. An example for the resulting
segmentation and labels can be found in Figure 4.5.

200 nm

200 nm

Figure 4.5: ISBI 2012 training data generation. Left: Raw data and ground truth. Right: In-
ferred superpixel boundary labels for training (blue = repulsive, yellow = attrac-
tive, cyan = unlabeled).

Given that ground truth is available only for intra-slice boundaries, we could not
explicitly train the classifier for inter-slice edges. Even so, these were still used in the
3D Multicut. The Lifted Multicut results reported for this dataset were produced using
all the features described in 4.6, and lifted edges were created between all superpixels
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within a distance of four in the region adjacency graph.

4.7.2 SNEMI3D

The SNEMI3D dataset (http://brainiac2.mit.edu/SNEMI3D/) has been a blind
challenge from 2013 to 2015, when a labeled superset of training and test block was
released with [73].
There are a number of important differences in the nature of raw data and annotations
with respect to ISBI 2012. First, the training ground truth is given in terms of a 3D
segmentation (as opposed to a stack of 2D segmentations, as in ISBI 2012). Second, the
data is better resolved along the z-axis. Third, segment boundaries in the ground truth
are not always properly aligned with the actual membranes in the raw data. Fourth,
individual neurites are separated by a “negative” class that covers membranes, but also
intercellular space, myelin sheaths and a few erroneously omitted thin processes.
To exploit the higher z-resolution, we supply each slice along with its two adjacent
slices as input to the network. To mitigate the mentioned inaccuracies in the training
data, we weigh the positive pixels (intracellular space) uniformly; but downweight the
negative pixels (covering everything else plus a few omitted processes) with increasing
distance from the positive regions, reaching zero weight beyond a distance of seven
pixels. Seeds for the distance transform watershed are found in 3D, and superpixels
are grown in 2D on smoothed probability maps.
Training labels for intra- and inter-slice superpixel pairs are obtained with the mapping
procedure described in Section 4.7.1, and all edge weights are normalized by edge size.
Lifted edges were introduced between all pairs of superpixels with a maximum distance
of three in the region adjacency graph.
The SNEMI3D website provides boundary probability maps graciously shared by the
authors of [42], which we also feed into our postprocessing. Both the Ciresan and ICv1
networks give similar peformance on SNEMI3D when followed up by our superpixels
and (lifted) multicut, see Table 4.1.

SNEMI3D accuracy
(
V rand

0.5

)
ICv1 Ciresan

Multicut 0.92698 0.92568
Lifted Multicut 0.93122 0.92892

Table 4.1: Results of Lifted and standard Multicut on SNEMI3D for probability maps gener-
ated with the proposed ICv1 architecure and the Ciresan network [42]. The evalu-
ation is done completely in 3D, and higher numbers are better.
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4.7.3 Neuroproof

To study performance on fully isotropic data, we have turned to the example datasets
provided with the NeuroProof software1 [134]), which includes focused ion beam scan-
ning electron microscopic (FIBSEM) volumes along with pixelwise membrane proba-
bilities and 3D superpixels. All of these were used as input for the final stage of our
pipeline, producing the results reported in Table 4.2. For the Lifted Multicut, only the
ultrametric distance and region features were used, with lifted edges between superpix-
els within a distance of two in the region adjacency graph. The resulting segmentation
accuracies are higher than the published state of the art. The numbers given are rel-
ative to an updated ground truth where we have detected and fixed a single obvious
segmentation error.

Neuroproof accuracy V rand
0.5 V info

0.5

Multicut 0.93646 0.96173
Lifted Multicut 0.94047 0.96400

Table 4.2: Results for the isotropic neuroproof dataset. The evaluation is done completely in
3D.

Computational footprint All experiments were run on either a commodity notebook
or a workstation with 20-core intel Xeon processor and 256 GB of RAM. Predicting
boundary probability maps for the ISBI 2012 test set with the neural network took
less than an hour on a single GPU. Running the remainder of the pipeline took less
than an hour for the smallest problem (Multicut on Watershed Distance Transform
Superpixels for the ISBI 2012 data) and less than a day for the largest problem (Lifted
Multicut on SNEMI3D data).

4.8 Lesion Study

To study the effectiveness of different alternatives in our pipeline, we have conducted
a lesion study with the data from the ISBI2012 challenge, the best-studied of the three
data sets. Note that all measures reported for this dataset are calculated in 2D for
each slice individually and then averaged.

1https://github.com/janelia-flyem/neuroproof_examples
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ISBI 2012 accuracy V rand
0.5 V info

0.5

Cascaded RF 0.89390 0.95440
ICv1 0.97735 0.98865

Table 4.3: Results of different probability maps on the ISBI test block.

ISBI 2012 accuracy standard watershed DT watershed
V rand

0.5 V info
0.5 V rand

0.5 V info
0.5

Cascaded RF & MC 0.96229 0.98436 0.97907 0.98844
Cascaded RF & LMC 0.97040 0.98375 0.97852 0.98798

ICv1 & MC 0.98039 0.98855 0.98257 0.98946
ICv1 & LMC 0.97510 0.98757 0.98262 0.98946

Table 4.4: Performance of different boundary probability estimators, and different superpixel
generators combined with standard and Lifted Multicut.

First, we have investigated the use of different classifiers for predicting the membrane
probability. Table 4.3 shows the scores for the probability maps without any addi-
tional processing by a (Lifted) Multicut. Specifically, the segmentation accuracy of a
probability map alone is evaluated by thresholding at a particular probability value
and using the resulting connected components as segmentation. In this case, the bor-
der thinning described in [19] is relevant. Our best neural network, ICv1, performs
substantially better than the Cascaded Random Forest.
Table 4.4 shows that the (Lifted) Multicut greatly improves the segmentation accuracy
beyond what even the best boundary probability estimators can deliver. Apparently,
the (Lifted) Multicut can compensate for many errors made in the estimation of the
probability map, because this additional processing substantially reduces the perfor-
mance difference between neural network and Cascaded Random Forest.
Furthermore, we compare the superpixel generation using standard and distance trans-

ISBI 2012 accuracy V rand
0.5 V info

0.5

2D 0.97775 0.98886
3D 0.98257 0.98946

Table 4.5: 2D vs. 3D Multicut on the ISBI test set.
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form watersheds: according to Table 4.4 again, the latter clearly yields better results
in all combinations. The results shown above were obtained from a 3D Multicut. This
is better than solving the Multicut problems separately for each slice, as shown in
Table 4.5.
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5 Software

5.1 Nifty

We implemented a C++ software library with a fully functional Python API for graph
based image segmentation and discrete optimization for image segmentation named
nifty [28] in approximate 45000 line of code (see section 5.1 for details).
Nifty was developed with the following design aspects in mind:

• C++ is used as core implementation language: Following [1, 12, 87, 115] the
main implementation language is C++. Support for other programing languages
as Python is achieved by using wrapper code as pybind11 [62].

• Modern C++ 14 is utilized to write maintainable, elegant and readable code:
We use C++ 14 since i) all major compiler support C++ 141, ii) new features
as the auto keyword and range based for loops (for(auto & var : vector){}) have
increased the readability of C++ 11/14 code drastically compared to C++ 98.
iii) New features as smart pointer decrease the risk of bugs and memory leaks
and iv) to be compatible with modern C++ libraries as xtensor [115] and py-
bind11 [62]. Code sample 1 clearly illustrates the benefits and importance of
proper C++ 14 usage.

• A fully functional Python API: Not only is Python well known for its rapid
prototyping capabilities, Python is the currently leading language for machine
learning2. To serve the Python community we implemented a fully functional
Python API using pybind11 [62] to generate wrapper code.

Not only do we provide reference implementations for the algorithms proposed in
chapter 2 and chapter 3 but also a broad set of other optimizers for the multicut and
lifted multicut objective. Furthermore we provided a flexible agglomerative clustering
framework and implemented many flavors of agglomerative clustering within it. In the
1http://en.cppreference.com/w/cpp/compiler_support
2https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_
For_Machine_Learning_And_Data_Science?lang=en
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following we will give a brief overview of the aforementioned features implemented
within nifty.

N
if
ty

for(auto u : g.nodes()){
for(auto adj : g.adjacency(u)){

auto edge = adj.edge();
auto v = adj.node();

}
}

A
n
d
re
s
G
ra
p
h for (auto u = 0; u < g.numberOfNodes(); ++u){

for (auto it = g.adjacenciesFromVertexBegin(u); it !=
g.adjacenciesFromVertexEnd(u); ++it){↪→

auto edge it.edge();
auto v = it.vertex();

}
}

L
em

on

for (lemon::ListGraph::NodeIt u(g); u!=lemon::INVALID; ++u){
for (lemon::ListGraph::OutArcIt edge(g, u); edge!=lemon::INVALID; ++edge){

auto v = edge.target();
}

}

Code Sample 1: C++ code to Iteration over all nodes and their respective neighbors
nodes for a graph g using different graph frameworks. With the nifty framework we
can fully utilize modern C++ 11/14 features as the auto keyword and range based for
loops. Therefore, the code using the nifty framework is shorter and arguably better
than the competitors in terms of understandability.

5.1.1 Multicut

Not only is nifty currently the largest collection of open source multicut solvers avail-
able, but also nifty provides arguably the most convenient interface to these solvers as
illustrated in code sample 2. Advanced examples can be found in the online example-
gallery3.
Below is a list of all the solvers which are currently available within nifty.

• Energy Based Hierarchical Clustering / Greedy Additive [27]: Optimizes the
multicut via agglomerative clustering. The algorithm is very fast but suffers from

3http://derthorsten.github.io/nifty/docs/python/html/auto_examples/index.html#
gallery-of-multicut-related-examples
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Figure 5.1: We compared the runtime of different multicut algorithms implemented within
nifty and the Andres graph library [11]. We use a synthetic graph with a sparse
randomized connectivity structure and random edge weights as input. On the left
we used Greedy-Additive and on the right Kernighan-Lin. Note that x and y axis
are in log-scale in both plots. Greedy-Additive implemented within nifty runs about
twice as fast while Kernighan-Lin is approximately equally fast in both frameworks.
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Language files comment code
C++ 312 4373 48714
Python 68 1221 7085
CMake 45 253 1232
others 8 203 822
SUM: 433 6050 45329

Table 5.1: Code Metrics of the nifty library [28].

the intrinsic greediness. See section 2.3 for more details. The implementation
within nifty runs twice as fast as the same algorithm implemented within the
Andres graph library [11] (see fig. 5.1a).

• Kernighan-Lin [76]: Local move making heuristic which has been adapted to
solve the multicut objective. TheKernighan-Lin algorithm strongly benefits from
a good starting point and the solutions form Greedy Additive can serve as such.

• Cut&Glue&Cut [29]: A move making algorithm which iteratively refines the cut
between two adjacent connected components. We implemented this solver such
that any other solver implemented within nifty can be used to optimize the
internal two-coloring problem.

• Decomposing Solver [5]: As proven by [5] one can decompose the multicut ob-
jective into individual subproblems and solve these independently if and if only
there are only negative weighted edges between the individual subproblems. We
implemented this solver such that any other solver implemented in nifty can
be used to optimize the subproblems. Since the subproblems can be solved in-
dependently we allow for parallel optimization. The overhead to construct the
subproblems is usually negligible.

• Multicut ILP [9, 68]: A global optimal cutting plane integer linear programming
(ILP) solver. We support i) Cplex [59] ii) Gurobi [57] and iii) GLPK [54] as ILP
back-end. For any real world problem we strongly support to use either Cplex
or Gurobi. GLPK does not scale well for ILPs and is supported for educational
purpose since it is free and open source.

• Message Passing Multicut [131]: A dual decomposition based convergent message
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passing solver. We implemented a wrapper around [105], such that any of solver
implemented within nifty can be injected to compute the primal solution.

• Fusion-Moves [27]: Fusion Moves for Multicut Partitioning as described in chap-
ter 2. Any solver within nifty can be used to optimize the internal subproblem.
The proposal generator are implemented in an easy extendable way such that
problem specific proposal generator can easily be integrated.

• Chained-Solvers: This allows to chain multiple solvers which can be warm started
into a single meta-solver. This new meta-solver can be used to optimize the
internal subproblem in multiple algorithms. We found that it is very useful to
chain Greedy-Additive with Kernighan-Lin.

5.1.2 Lifted Multicut

We provide the largest collection of open source solvers for the lifted multicut objective,
but also we make lifted multicut solvers as accessible as possible via a convenient
interface as illustrated in code sample 3. The implementations within nifty run 1.5-
500 times faster as the the same algorithms implemented within the Andres graph
library [11] (see fig. 5.2a).

• Greedy Additive [78]: Optimizes the lifted multicut via agglomerative clustering.
Plain agglomerative clustering is extended, such that lifted non-graph edges are
only considered for merges once they are merged with local graph edges. The
algorithm is very fast but but suffers from the intrinsic greediness. See section 2.3
for more details.

• Kernighan-Lin [76, 78]: Local move making heuristic which has been adapted
to solve the lifted multicut objective. The Kernighan-Lin algorithm strongly
benefits from a good starting point and the solutions form Greedy Additive can
serve as such.

• Decomposing Solver [5]: As proven by [5] one can decompose the multicut ob-
jective into individual subproblems and solve these independently if and if only
there are only negative weighted edges between the individual subproblems. We
generalized this solver to also work for lifted multicut objectives. We imple-
mented this solver such that any other solver implemented in nifty can be used
to optimize the subproblems. Since the subproblems can be solved independently
we allow for parallel optimization. The overhead to construct the subproblems
is usually negligible.

75



import nifty,numpy

# create a graph with random edges and weights between -0.5 and 0.5
g = nifty.graph.randomGraph(numberOfNodes=20, numberOfEdges=30)
w = numpy.random.rand(g.numberOfEdges) - 0.5

# the multicut objective function
Obj = g.MulticutObjective
objective = Obj(g, w)

# create different solvers factories
factories = {

’greedy’ : Obj.greedyAdditiveFactory(),
’kl’ : Obj.kernighanLinFactory(),
# simple fusion move sover
’fm’ : Obj.ccFusionMoveBasedFactory(),
# advanced fusion move solver
’fm-ws’ : Obj.ccFusionMoveBasedFactory(

proposalGenerator=Obj.watershedCcProposals(),
# fusion move settings
fusionMove=Obj.fusionMoveSettings(

# chain 2 solvers and use chained solver
# to optimize the fusion move problem
Obj.chainedSolversFactory([Obj.greedyAdditiveFactory(),

Obj.kernighanLinFactory()])
)

)
}
# commercial solvers
if nifty.Configuration.WITH_CPLEX:

factories[’ilp_cplex’] = Obj.multicutIlpFactory(ilpSolver=’cplex’)
if nifty.Configuration.WITH_GUROBI:

factories[’ilp_gurobi’] = Obj.multicutIlpFactory(ilpSolver=’gurobi’)

# optimize the objective with different solvers
for solver_name in factories.keys():

solver = factories[solver_name].create(objective)
argmin = solver.optimize(objective.verboseVisitor())

Code Sample 2: This code sample illustrates the usage of different solver to optimize
the multicut objective with the nifty library. For the sake of simplicity a randomized
graph is used. While most solvers do not need any parameters, fusion move solvers
can be parameterized in a very sophisticated way. For ’fm-ws’ we explicitly specify
the proposal generator and the solver for the fusion move. We use a chained solver to
combine greedy additive and kernighanLin into a single solver and use this meta-solver
to optimize the fusion move subproblems.
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Figure 5.2: We compared the runtime of different lifted multicut algorithms implemented
within nifty and the Andres graph library [11]. We use a synthetic graph with a
sparse randomized connectivity structure and random edge weights as input. On the
left we usedGreedy-Additive and on the rightKernighan-Lin. Note that x and y axis
are in log-scale in both plots. It is clearly visible that the Greedy-Additive algorithm
implemented within nifty scales much better. The Kernighan-Lin implementation
within nifty is about 1.5 faster.
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• Lifted multicut ILP [7]: A global optimal cutting plane integer linear program-
ming (ILP) solver. We support i) Cplex [59] ii) Gurobi [57] and iii) GLPK [54]
as ILP back-end. For any real world problem we strongly support to use either
Cplex or Gurobi. GLPK does not scale well for ILPs and is supported for edu-
cational purpose since it is free and open source. Due to the NP-hardness and
highly combinatorial nature of the problem, ILP solvers are only applicable for
problems where not many violated constraints are expected.

• Message Passing Lifted Multicut [105, 131]: A dual decomposition based conver-
gent message passing solver. We implemented a wrapper around [105], such that
any of solver implemented within nifty can be injected to compute the primal
solution.

• Fusion-Moves [27]: Fusion Moves for lifted multicut partitioning as described in
chapter 3. Any solver within nifty can be used to optimize the internal fusion
move subproblem. The proposal generator are implemented in an easy extendable
way such that problem specific proposal generator can easily be integrated.

• Chained-Solvers: This allows to chain multiple solvers which can be warm started
into a single meta-solver. As for the multicut, we found that it is very useful to
chain Greedy-Additive with Kernighan-Lin.
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import nifty
import numpy as np
import nifty.graph.opt.lifted_multicut as lmc

# graph with 5 nodes and 6 edges:
# 0 - 2
# | | \
# 1 - 3 - 4
g = nifty.graph.undirectedGraph(numberOfNodes=5)
g.insertEdges([[0,1],[0,2],[1,3],[2,3], [2,4], [3,4]])

# setup the lifted multicut objective:
objective = lmc.liftedMulticutObjective(g)
Objective = objective.__class__

# add costs for some pair of nodes u,v
# u,v does not need to be an edge in g
uv = [[0,1], [2,3], [0,4], [2,3]]
weights = [0.2, 0.1, -0.9, -0.3]
objective.setCosts(uv, weights)

# solver factory (here we use an ilp solver)
factory = Objective.liftedMulticutIlpFactory()

# create solver from factory
solver = factory.create(objective)

# optimize
result = solver.optimize()
print(result)

Code Sample 3: Lifted multicut example: The code sample above illustrates how to
construct a lifted multicut objective for a simple graph. Here, we optimize the objective
with a cutting plane ILP solver.
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5.1.3 Agglomerative Clustering

a b c d e

root

ti
m
e

(a) Agglomerative Clustering: Clusters are
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Figure 5.3: Agglomerative clustering: Clusters are merged with increasing time. Top-Down
clustering: Clusters are divided with increasing time.

The main idea behind agglomerative clustering is very simple: Initially, all observa-
tions start in a single cluster. Next, adjacent clusters which have highest similarities
will be merged iteratively as illustrated in fig. 5.3a. Due to this merging, similarities
change and need to be updated or recomputed. As described in section 3.4.3 we use ag-
glomerative clustering to optimize eq. (3.1) and eq. (3.3). To this end we implemented
an easy to use and flexible agglomerative clustering framework (see code sample 4).
Different flavors of agglomerative clustering are implemented by providing so called
cluster-policies as illustrated in code sample 5.
Within nifty we implemented the following clustering algorithms:

• Ultrametric Contour Maps UCM [18]: UCMs allow to encode a whole dendro-
gramm of agglomerative clustering in a single scalar per edge merely by remem-
bering the priority/similarity at the time where the endpoints of the edge merge.
Iff the similarities are monotonously decreasing, thresholding the UCM yields a
closed contour segmentation for any possible threshold. We implemented this
technique in a generic fashion such that the UCM can be computed for any
cluster policy implemented within nifty.

• Median weighted clustering [53]: Funke et al. [53] successfully applied agglom-
erative clustering where edge weights are updated according to their median to
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import nifty
import nifty.graph.agglo as agglo
import numpy as np

# toy graph with 5 nodes and 6 edges:
g = nifty.graph.undirectedGraph(numberOfNodes=5)
g.insertEdges([[0,1],[0,2],[1,3],[2,3], [2,4], [3,4]])

# cluster-policy / the rules how to cluster
clusterPolicy = agglo.edgeWeightedClusterPolicy(graph=g,

edgeIndicators=np.random.rand(g.numberOfEdges),
edgeSizes=np.ones(g.numberOfEdges),
nodeSizes=np.ones(g.numberOfNodes),
numberOfNodesStop=2)

# - construct cluster algorithm, run clustering and get resutls
agglomerativeClustering = agglo.agglomerativeClustering(clusterPolicy)
agglomerativeClustering.run()
result = agglomerativeClustering.result()

print(result)

Code Sample 4: Agglomerative clustering example: The code sample above il-
lustrates how segment a graph using agglomerative clustering. We use random edge
weights for illustrative purpose only.

segment a region adjacency graph for the CREMI-challenge4. We implemented
this cluster-policies using a fast histogram based implementation.

• Energy Based Hierarchical Clustering / Greedy Additive Clustering [27, 78]: We
implemented algorithms for the multicut and lifted multicut objective based on
agglomerative clustering where the edge weights are update according to their
sum to approximate the multicut objective and lifted multicut objective respec-
tively (see section 2.3 for details). This implementation has led to solvers out-
performing other frameworks by factor of 2 in the case of the multicut objective
and by a factor 500 in the case of the lifted multicut objective (see figs. 5.1a
and 5.2a).

4https://cremi.org/
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5.2 Multicut-Pipeline

In chapter 4 we proposed a framework for automated segmentation of neural structures
in 3D EM data. To ensure maximum reproducible and accessibility the algorithms
and software proposed in chapter 4 have been made available open source at online
repositories, and we also provide precompiled binaries.
For software source code, binaries, sample data, and neural network parameters, please
visit the following link: http://files.ilastik.org/multicut/. The source code is
also available on github: http://github.com/ilastik/nature_methods_multicut_
pipeline.
Our pipeline uses the vigra image processing library [87] for image manipulation, the
OpenGM library [12, 27] and nifty [28] for solving discrete optimization problems and
the scikit-learn library [114] for the Random Forest. The pipeline itself is written in
Python and the complete source code has been made available. Besides the source
code, we provide pre-compiled binary files for recent releases of Linux, Windows and
OSX. Given the current limitations in GPU standardization, the neural network code
is provided open source with this publication, but is not precompiled into the exe-
cutables. The user of the binaries needs to provide probability maps by compiling the
neural network by them self, or by training a classifier as made available by open
source software including ilastik (http://ilastik.org), the ImageJ trainable Weka
segmentation (http://imagej.net/Trainable_Weka_Segmentation) or some other
tool.
The proposed pipeline has been well received by the community and is used by different
labs around the world. At the time of writing, half of the top 10 entries in the ISBI
challenge use the provided source-code in conjunction with their own probability maps.
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class ClusterPolicyAPI{
// which edge to contract next
std::pair<uint64_t, double> edgeToContractNext() const;

// stopping-criterion / is the clustering done
bool isDone() const;

// indicate that contraction of edge is started
void contractEdge(const uint64_t edgeToContract);

// merge endpoints of contracted edge into single node
void mergeNodes(const uint64_t aliveNode, const uint64_t deadNode);

// merge (possible) parallel edges into a single edge
void mergeEdges(const uint64_t aliveEdge, const uint64_t deadEdge);

// indicate that contraction of edge is started
void contractEdgeDone(const uint64_t edgeToContract);

};

Code Sample 5: We implemented a flexible agglomerative clustering framework
within nifty. To implement a new clustering algorithm only a so called cluster-
policy needs to be implemented. The cluster-policy informs the clustering algorithm
which edge to contract next via edgeToContractNext(). This will update the inter-
nal edge-contraction-graph and trigger four callbacks: i) contractEdge(const uint64_t

edgeToContract) indicates that the edge contraction procedure has been started,
ii) mergeNodes(const uint64_t aliveNode, const uint64_t deadNode) indicates how the end-
points are merged into a single note and iii) mergeEdges(const uint64_t aliveEdge,

const uint64_t deadEdge) is called whenever an edge contraction yields parallel edges.
iv) contractEdgeDone(const uint64_t edgeToContract) is called when the edge contraction
is done. To terminate the clustering process isDone() has to return true .
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6 Conclusion

In chapters 2 and 3 we have presented a fast and scalable approximate solver for the
minimum multicut objective and minimum lifted multicut objective respectively. The
presented algorithms are orthogonal to previous research, i.e. they can be combined
with any other multicut solver as [131]. Problem specific knowledge can easy be in-
corporated by providing a problem specific proposal generator and blockwise solvers
as [93, 113] are easy to formulate as fusion move when proposals are generated in a
blockwise fashion.
The proposed fusion move framework can be generalized to higher order multicut [65]
and higher order lifted multicut [77] problems, however this is part of future work. We
conjecture that efficient algorithms such as the one proposed in this thesis facilitate a
variety of applications of the minimum cost multicut and minimum cost lifted multicut
problem in computer vision of which image segmentation and the averaging of multiple
segmentations are just two examples.
In chapter 4 we proposed and validated a pipeline for automatic segmentation of
neural structured in 3D EM connectomics data. Any CNN can be incorporated in the
proposed framework and therefore the pipeline can easily be adapted to new state-of-
the-art networks. While a CNN is used all predictions on a pixel level, we rely on a set
of predefined features and a shallow classifier to predict if a pair of superpixels should
be in the same connected component or not.
Future work should focus on replacing the non learned components and predefined
features with their learned equivalent. A learned variant of the watersheds transform
[144] could be used to replace the distance transform watersheds in section 4.4 and
furthermore it might be possible to use Evolutionary Strategies [121] to end-to-end
learn the complete segmentation pipeline including the non differentiable NP-hard
multicut and lifted multicut optimization.
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