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Zusammenfassung

Diese Dissertation befaßt sich mit der Entwicklung von methodischen und mathematis-
chen Grundlagen von Plane Wave Ultrasound Particle Image Velocimetry (partikelun-
terstützte Geschwindigkeitsmessung mittels ebene Ultraschallwellen). Diese innova-
tive Technologie, auch bekannt als Echo PIV, ist eine nichtinvasive Bildgebungsmeth-
ode, die entwickelt wurde, um den Blutfluss im Gefäßsystem zu bestimmen.

In dieser Arbeit behandeln wir zwei grundlegende Probleme im Zusammenhang
mit In-Vitro-Echo PIV. Zunächst betrachten wir das Problem der Bildrekonstruktion,
welches darin besteht, die Positionen kleiner isolierter Streuer, welche in einem ho-
mogenen Medium eingebettet sind, aus Messungen mittels ebenen Ultraschallwellen
(plane waves) abzuschätzen. Dazu verbinden wir die gängige Delay- und Sum-Methode
mit der Lösung des linearen Ausgleichsproblems zum linearisierten inversen akustis-
chen Streuungsproblem. Numerische Ergebnisse zeigen, dass das lineare Ausgleich-
sproblem akkurate Rekonstruktionsergebnisse liefert sowohl für synthetische als auch
für In-Vitro-Daten.

Im zweiten Teil der Arbeit konzentrieren wir uns auf das Problem der Bewe-
gungsschätzung für die Rohrströmung. Für laminaren und stetigen Fluss entwickeln
wir einen globalen Dictionary-basierten Ansatz, der den Strömungsparameter über
ein konvergierendes iteratives Verfeinerungsschema schätzt. Weiterhin zeigen wir,
dass der Strömungsparameter aus der Geometrie der aus der Bildsequenz ermittel-
ten Spektren ermittelt werden kann. Um zwischen der stationären und der turbulen-
ten Strömung zu unterscheiden, konstruieren wir eine Filterbank, die auf alle Strö-
mungsrichtungen reagiert und extrahieren das lokale Geschwindigkeitsfeld durch Anal-
yse der Phasenkomponente der Antwortfunktion für kombinierte Filter. Wir validieren
unsere Methoden auf synthetischen und In-Vitro-Daten.
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Abstract

This thesis is concerned with the development of methodological and mathematical
foundations of plane wave ultrasound particle image velocimetry. This innovative
technology, also known as Echo PIV, is a non-invasive imaging technique developed
to estimate the blood flow in the vascular system.

In this thesis, we address two relevant problems related to in-vitro Echo PIV. First,
we consider the image reconstruction problem which amounts to estimating the lo-
cation of small isolated scatterers, embedded in a homogeneous medium, from plane
wave ultrasound measurements. We link the Delay and Sum method with the least-
squares solution for the linearized inverse acoustic scattering problem. Numerical
studies show that the least-squares approach provides accurate reconstruction results
for synthetic and in-vitro data.

In the second part of the thesis, we focus on the motion estimation problem for
pipe flow. For laminar and steady flow, we develop a global dictionary-based approach
that estimates the model flow parameter via an converging iterative refinement scheme.
Furthermore, we show that the flow parameter can be the determined from the geom-
etry of the image sequence spectra. To discriminate between the steady and turbulent
flow, we design a filter-bank that is sensitive to all flow directions and extract the local
velocity field by analyzing the phase component of the response function for combined
filters. We validate our methods on synthetic and in-vitro data.
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Chapter 1

Introduction

1.1 Motivation

Ultrasound imaging is a non-invasive technique widely used in clinical applications for
diagnosis, therapeutic procedures, visualization of the internal structures and measure-
ment of the blood flow in the body [Sza04]. Accurate assessment of the blood flow
velocity field provides significant information for early detection of flow abnormalities
and the diagnosis of diseases such as atherosclerosis or carotid stenosis.

Established Doppler-based methods for blood flow measurements suffer from large
errors in estimating velocities due to dependencies upon the relative angle between
the transmitted acoustic beam and the flow direction [Shu15]. In [KHS04], based on
ideas from optical PIV in experimental fluid dynamics, a novel ultrasound velocimetry
technique, so-called Echo PIV, has been proposed for estimating the in-plane velocity
components of the blood flow. The experimental part of Echo PIV consists in seeding
uniformly the blood stream with tracer particles and capturing the flow of these tracer
particles by imaging a fixed region of the blood vessel for a short period. It is assumed
that for this period the tracer particles follow the flow dynamics and move within the
imaging plane. The in-plane velocity field of the flow is then estimated from the ac-
quired sequence of ultrasound images. In contrast to Doppler-based methods, Echo
PIV is independent of the beam transmission angle and can provide an accurate ve-
locity field estimate. Specifically, accurate measurements of the velocity field near the
vessel wall is needed for computing the wall shear stress and the blood vessel stiff-
ness [PvdMM+12]. These parameters are important for the diagnosis of atheroscle-
rosis. Moreover, Echo PIV is an excellent tool to study vortex dynamics in ventricles
[HPT+08]. For an extensive review on Echo PIV we refer to [Poe17] and references
therein.

Recent technological developments have made it possible to image wide field of
views at very high frame rates by simultaneously transmitting and receiving with all
ultrasound transducer elements [SCT+99, TBSF02, TF14]. This image acquisition
scheme is called plane wave ultrasound imaging. Hence, the plane wave ultrasound
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particle image velocimetry, or plane wave Echo PIV, is capable to resolve fast and
dynamic flow due to an enhanced temporal resolution of the image sequence. The
plane wave imaging was implemented in in-vitro Echo PIV [RJG13, LBE+15] and
further extended to 3D imaging in the works [PPA+14, CPTP16].

Mathematical challenges related to ultrasound-based imaging primarily consists in
interpreting and extracting relevant information from the received ultrasound signals.
In particular, the research on plane wave Echo PIV is concerned with the problems of
(i) image reconstruction and (ii) motion estimation.

Image reconstruction can be formulated as an inverse acoustic scattering problem
for the wave equation. The literature on this subject is vast, here, we mention the books
[CCM00, BCS01, AGJ+13] for theoretical insights. Various reconstruction approaches
have been adopted from geophysicists and generalized to plane wave ultrasound imag-
ing such as Delay and Sum [MTB+09], topological imaging [RSGJ12, DG10] and
Stolt’s f-k migration [GTM+13]. Recently, reconstruction with sparsity promoting pri-
ors in the context of compressive sensing [FR13] has received much attention from
practitioners [SS12, CE14, DRZL15, BZV+16]. Resolution analysis and recovery
guarantees have been presented in [CMP13, CMP14, Bor15] for asymptotic scenar-
ios and point-like scatterers. Those studies for narrow- and broad-band imaging are
based on mutual coherence of the sensing matrix in frequency domain. From a practi-
cal point of view, however, the sensing matrix in the frequency domain does not scale
well for the large problem sizes encountered in ultrasound imaging problems, due to
memory requirements for non-sparse sampling operators.

The problem of motion estimation in image sequences occur in many application
areas. In particular, in Echo PIV motion estimation amounts to determining the com-
ponents of the in-plane velocities that describe the flow of tracer particles from one
image to another. As in optical PIV, the velocity field is commonly estimated by using
cross-correlation based methods [RWWK07, Adr11].

2



1.2 Contribution
This thesis studies the problem of image reconstruction and motion estimation related
to plane wave in-vitro Echo PIV, illustrated in Figure 1.1. The contributions are:

• First, we propose a mathematical model based on acoustic scattering theory to
recover the location of isolated scatterers from plane wave ultrasound measure-
ments. Relying on specific assumptions, we derive a linear relationship between
the measured data and the unknown medium reflectivity. We solve numerically
the discrete sparse linear system using least-squares minimization with various
regularization terms. We experimentally validate the proposed approach on re-
alistic large scale problems, see Chapter 3.

• Second, we propose to estimate the motion by computing the flow model pa-
rameter defining the velocity profile in pipe flow, see Section 2.2.3. For laminar
and steady flow we propose a global dictionary-based approach which amounts
to defining a twice continuously differentiable map with respect to the flow pa-
rameter, and estimate the flow model parameter by minimizing an appropriate
objective function, see Chapter 4. In addition, we analyze properties of the im-
age sequence spectrum for affine flows and show that the flow model parameter
can be estimated from the spectrum geometry, see Section 5.1. In Section 5.3,
we propose a filter-based method to compute the local flow velocity field.

x1

x2

0

0.5

1

1.5

2

(a) (b) (c)

Figure 1.1: (a) The ultrasound measurements of the backscattered waves recorded
at several temporal frames. (b) Reconstructed images of tracer particles with the
approach presented in Chapter 3. (c) Velocity field estimated with the local spatio-
temporal approach presented in Section 5.3. The image reconstruction step (a)→ (b)
and motion estimation step (b)→ (c) are the main topics treated in this thesis.
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Chapter 4 extends the dictionary-based method for flow parameter estimation intro-
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Chapter 2

Background

In this chapter we present the basics of acoustic scattering theory and plane wave ul-
trasound particle image velocimetry. We introduce the forward scattering problem in
temporal and frequency domain, the Born approximation, and review the Foldy-Lax
method for solving the forward acoustic scattering problem for point-like scatterers.
For a detailed treatment of these topics we refer to [CK13, BCS01, Pie89]. The second
part of the chapter is dedicated to practical aspects of plane wave ultrasound imaging
and in-vitro Echo PIV.

2.1 Acoustic Scattering Theory

2.1.1 Wave Equation

Propagation of acoustic waves in linear, lossless and static medium is described by the
scalar wave equation(

∇2 − 1
c2(x)

∂2

∂t2

)
u(x, t) = 0, x ∈ R3, t > 0, (2.1.1)

where c(x) denotes the local speed of sound and u(x, t) is the pressure field of the
acoustic wave. The radiating solution of the wave equation satisfies the Sommerfeld
radiation condition

lim
r→∞

[
r

(
∂u

∂r
+ 1
c

∂u

∂t

)]
= 0, r = ‖x‖2, (2.1.2)

uniformly in all directions x/‖x‖2. We further assume that medium inhomogeneities
are contained inside a compact subset Ω ∈ R3 and that the speed of sound c(x) is a
perturbation of the constant background speed of sound c0 > 0, namely

1
c2(x) = 1

c2
0

(1− ρ(x)) , (2.1.3)
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where ρ(x) denotes the reflectivity due to the medium inhomogeneities. Hence, we
have ρ(x) = 0 for x /∈ Ω. Substituting (2.1.3) into (2.1.1) yields the non-homogeneous
wave equation (

∇2 − 1
c2

0

∂2

∂t2

)
u(x, t) = f(x, t), x ∈ R3, t > 0, (2.1.4)

with

f(x, t) = −ρ(x)
c2

0

∂2u(x, t)
∂t2

. (2.1.5)

In acoustic scattering problems, when a known incident field interacts with inhomo-
geneities and produces a scattered field, it is convenient to split the total field, the
pressure field, into two parts as follows

u(x, t) = u(i)(x, t) + u(s)(x, t). (2.1.6)

The first term, u(i)(x, t), denotes the incident field and satisfies the homogeneous wave
equation (

∇2 − 1
c2

0

∂2

∂t2

)
u(i)(x, t) = 0, x ∈ R3, t > 0. (2.1.7)

The second term, u(s)(x, t), is the scattered field resulting from the interaction of the
incident field with the medium inhomogeneities or scatterers, which in view of (2.1.4)-
(2.1.7) must satisfy(

∇2 − 1
c2

0

∂2

∂t2

)
u(s)(x, t) = f(x, t), x ∈ R3, t > 0, (2.1.8)

and the Sommerfeld radiation condition (2.1.2). In the following analysis, we restrict
the time domain to t > 0 due to the causality condition, meaning that the interaction of
the incident field with the inhomogeneities (scatterers) is initiated at some finite time
that we take to be t = 0. Furthermore, we can impose the initial conditions

u(s)(x, 0) = 0, ∂u(s)(x, 0)
∂t

= 0, x ∈ R3, (2.1.9)

and use Duhamel’s principle [Eva10] to express the scattered field in terms of an inte-
gral equation

u(s)(x, t) =
t∫

0

∫
R3

f(y, s)G(x− y, t− s)dyds, (2.1.10)

where G(x− y, t− s) is the causal Green’s function satisfying(
∇2
x −

1
c2

0

∂2

∂t2

)
G(x− y, t) = δ(x− y)δ(t), x, y ∈ R3, t > 0, (2.1.11)

G(x− y, t) = 0, t < 0, (2.1.12)
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in the sense of distributions. Physically speaking, the function G(x − y, t) represents
the acoustic pressure at the point x 6= y and t > 0, caused by a source located at point
y and time t = 0. Because the Green’s function and f(x, t) are assumed to be causal1,
we rewrite (2.1.10) as

u(s)(x, t) =
∫
R3

f(y, t) ?t G(x− y, t)dy (2.1.13a)

(2.1.5)−(2.1.6)= − 1
c2

0

∫
R3

ρ(y) ∂
2

∂t2
(u(i)(y, t) + u(s)(y, t)) ?t G(x− y, t)dy,

(2.1.13b)

where ?t denotes the convolution operator.

2.1.2 Forward Scattering Problem
The forward scattering problem is to find the scattered wave given the incident wave
and the reflectivity of the medium, that is, to solve the non-linear equation (2.1.13)
for u(s)(x, t). It is convenient to reformulate the scattering problem in the frequency
(Fourier) domain. We will use the following forward and inverse temporal Fourier
transform convention

(Fu)(x, ω) = û(x, ω) =
∫
u(x, t)e+iωtdt, (2.1.14)

(F−1û)(x, t) = u(x, t) = 1
2π

∫
û(x, ω)e−iωtdω. (2.1.15)

From now on, we assume that the known incident field û(i)(x, ω) is a smooth function
supported at ω > 0. In the frequency domain, equation (2.1.1), (2.1.6), (2.1.7) and
(2.1.8) form the system of equations(

∇2 + ω2

c2
0

(1− ρ(x))
)
û(x, ω) = 0, (2.1.16)

û(x, ω) = û(i)(x, ω) + û(s)(x, ω), (2.1.17)(
∇2 + ω2

c2
0

)
û(i)(x, ω) = 0, (2.1.18)

(
∇2 + ω2

c2
0

)
û(s)(x, ω) = ω2

c2
0
ρ(x)û(x, ω), (2.1.19)

for x ∈ R3 and ω > 0. For the outgoing scattered wave, the system is complemented
by the Sommerfeld radiation condition

lim
r→∞

[
r

(
∂û(s)

∂r
− ikû(s)

)]
= 0, r = ‖x‖2. (2.1.20)

1Causality condition assumes that G(x− y, t) = f(x, t) = 0 for t < 0.
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uniformly in all directions x/‖x‖2. The angular frequency ω is related to the wave
number k and the wave speed c0 via k = ω/c0. It is measured in radians per seconds
and differs by a factor 2π from the frequency (measured in Hz).

The scattering problem for an inhomogeneous medium (2.1.16) - (2.1.20) is equiv-
alent to an integral equation, known as the Lippmann-Schwinger equation

û(x, ω) = û(i)(x, ω) + ω2

c2
0

∫
R3

ρ(y)û(y, ω)g(x− y, ω)dy (2.1.21)

where g(x − y, ω) is known as the fundamental solution, or the free space Green’s
function of the Helmholtz equation(

∇2
x + ω2

c2
0

)
g(x− y, ω) = 0, x ∈ R3 \ {y} (2.1.22)

satisfying the radiation condition (2.1.20), given by

g(x− y, ω) := 1
4π

eiω‖x−y‖/c0

‖x− y‖
, x 6= y. (2.1.23)

From (2.1.21) we see that

û(s)(x, ω) = ω2

c2
0

∫
R3

ρ(y)û(y, ω)g(x− y, ω)dy (2.1.24a)

= ω2

c2
0

∫
R3

ρ(y)(û(i)(y, ω) + û(s)(y, ω))g(x− y, ω)dy. (2.1.24b)

In the frequency domain the scattered field still fulfills a non-linear integral equation,
however, the advantage of working in the frequency domain is that the second deriva-
tive with respect to time in (2.1.13) is substituted by the term −ω2 and the convolution
becomes a product. We refer to [CK13, Kir11, Kre10] for an extended discussion
on the uniqueness and existence of the solution for the Lippman-Schwinger integral
equation (2.1.21), which is a Fredholm integral equation of the second kind.

2.1.3 Born Approximation

We notice that for ρ(y) ≡ 0 the scattered field in (2.1.24) vanishes. Therefore, it is
reasonable to assume that when the reflectivity ρ is small, the scattered field is also
small, in particular ρ(y)û(s)(y, ω)� ρ(y)û(i)(y, ω). The Born approximation replaces
the total field on the right hand side of (2.1.24) with the known incident field, resulting
in

û(s)(x, ω) ≈ ω2

c2
0

∫
R3

ρ(y)û(i)(y, ω)g(x− y, ω)dy. (2.1.25)

8



The above scattered field is accurate up to the first order in reflectivity ρ(y). The Born
approximation turns the forward and inverse scattering problem into a linear problem
and therefore is often employed in practical applications. It is also known as the weak-
scattering or single-scattering approximation as it ignores multiple scattering effects.
We refer to [Nat15] for an error estimation of this approximation.

2.1.4 Foldy-Lax Equation

The multiple scattering effects, neglected in the Born approximation, can be modeled
via the Foldy-Lax equation [Fol45, Lax51] that is valid for isotropic point-like scat-
terers. We consider the scattering of monochromatic incident waves by S ∈ N \ {0}
point-like scatterers located at yj , j ∈ [S], in a homogeneous medium. The Foldy-Lax
equation states that the total field at the location of the scatterer j is given by

u(yj) = u(i)(yj) +
∑

j′=[S],j′ 6=j
ρj′u(yj′)g(yj − yj′ , ω), (2.1.26)

where ρj′ ∈ R \ {0} is the reflectivity of the j′ scatterer, g(yj − yj′ , ω) is the Green’s
function defined in (2.1.23), u(yj) denotes the spatial component of the monochro-
matic total field û(yj, ω) = u(yj)eiωt and u(i)(yj) denotes the spatial component of
incident field û(i)(yj, ω) = u(i)(yj)eiωt. The above equation defines the total field as
the sum of the incident wave and spherical waves diverging from all scatterers except
from scatterer j. The total field at a different point in space y 6= yj , j ∈ [S] is given by

u(y) = u(i)(y) +
∑
j=[S]

ρju(yj)g(y − yj, ω). (2.1.27)

The system of linear equations in (2.1.26) can be written in matrix form

b = Mu, (2.1.28)

where M is the Foldy-Lax matrix with entries

Mij =
{

1, if i = j,

−ρjg(yi − yj, ω), if i 6= j,
(2.1.29)

and
b = (u(i)(y1) u(i)(y2) . . . u(i)(yS))T ∈ RS,

u = (u(y1) u(y2) . . . u(yS))T ∈ RS,

are vectors whose components are the incident and total fields at the location of S
scatterers. Matrix M is a perturbation of the S × S identity matrix, which becomes
diagonal dominant and hence invertible for a sufficiently large separation distance be-
tween scatterers or for small reflectivity ρj , j ∈ [S].
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Lemma 2.1.1. Matrix M defined in (2.1.29) can be decomposed as M = I−A. If the
matrix norm

‖A‖∞ = max
i

∑
j∈[S],j 6=i

|ρi|
4π‖yi − yj‖

< 1,

(in particular, when ρi is sufficiently small or ‖yi − yj‖ is sufficiently large) then M is
invertible and

M−1 = (I − A)−1 = 1 + A1 + A2 + . . . (2.1.30)

Proof. The assertion follows immediately from [Wer11, Theorem II.1.11].

Solving (2.1.28) for vector u and substituting the corresponding entries u(yj),
j ∈ [S], in equation (2.1.27) we obtain the total field as a function of position and
reflectivity, that accounts for multiple scattering. In the case of very weak scatterers,
the total field in (2.1.26) can be approximated by the incident field u(yj) ≈ u(i)(yi) in
(2.1.27), resulting in

u(y) = u(i)(y) +
∑
j=[S]

ρju
(i)(yj)g(y − yj, ω), (2.1.31)

for y 6= yj , ∀j ∈ [S], which is the total field under the Born approximation.

2.1.5 Inverse Scattering Problem
The inverse scattering problem is to determine the reflectivity ρ(x) from the observed
data, i.e. the scattered field, and the known incident field. The non-linear equation
(2.1.24) relates the reflectivity ρ(y) and the scattered field, which can not be solved
in general for incomplete observation data. The simplest strategy is to linearize the
problem using Born approximation. The resulting equation (2.1.25) is a Fredholm
integral equation of the first kind, which usually is unstable and hence ill-posed, i.e. a
small change in the data term u(s) may lead to an arbitrarily large change in the solution
for reflectivity ρ. The definition given by Hadamard [Had23] states that a problems is
well-posed if it satisfies three requirements: a solution exist, the solution is unique, and
the solution depends continuously on the data. Otherwise, the problem is ill-posed.

In this thesis, we consider a simpler version of the inverse scattering problem. We
seek an approximative location of the inhomogeneous structures by further simplifying
(2.1.25) and thus making simplifying assumptions on the waves propagate through the
medium.

2.2 Ultrasound Particle Image Velocimetry
Ultrasound imaging, widely used in medical applications, provides a non-invasive
imaging modality to visualize internal body structures. In ultrasound imaging, a region
of interest is probed by acoustic waves emitted by an array of transducer elements, i.e.
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sources of acoustic waves. With the measured backscattered waves picked up at the
receivers, which are the same transducer elements, one can reconstruct a two dimen-
sional gray scale image of the medium.

In this thesis, we focus on a particular type of ultrasound imaging technique,
namely plane wave ultrasound particle image velocimetry (also known as Echo PIV),
that was developed to assess blood flow velocity field and the wall shear stress in blood
vessels [KHS04, PvdMM+12]. The main idea of Echo PIV is to seed the blood flow
with tracer particles and capture a temporal image sequence of these moving particles.
In a post-processing step, the in-plane velocity field components of the flow can then
be estimated.

2.2.1 Ultrasound Imaging

Line-per-line imaging with focused acoustic beams is currently implemented in almost
all medical ultrasound machines, where an image of a wide field of view is created se-
quentially. This works as follows. A small subset of transducer elements (or only one
element) emit a focused beam which probes a narrow segment in the medium, as il-
lustrated in Figure 2.1 (a). Then the same subset of elements receive the backscattered
signal and after a fairly simple signal processing step, that assumes straight line prop-
agation of the sound, a column in the image is reconstructed. Next column is obtained
by probing the medium in the same way with the following subset of elements and
so-forth, until the entire field of view is scanned. For motion estimation tasks, line-
per-line imaging is rather slow, limiting the resolvable range of velocities and inducing
beam sweeping effects [PvdMM+12].

(a) (b)

Figure 2.1: Illustration of source-receiver configurations. (a) Sequential line-per-line
imaging. (b) Plane wave imaging.

Recent hardware and software developments made it possible for an ultrasound
transducer to simultaneously transmit and receive with all elements. By emitting an
acoustic pulse with all elements of a linear array, a quasi-planar wavefront of an acous-
tic pulse is generated and transmitted into the medium, probing simultaneously a wide
field of view, as shown in Figure 2.1 (b). From the measurements of the backscattered
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Figure 2.2: Schematic overview of the
in vitro Echo PIV experiment. A linear
transducer array aligned along the tube
axis probes a thin slice at the center of
the tube by transmitting and receiving
acoustic waves. The received data are
radio frequency signals. After a recon-
struction step, a gray scale image of the
tracer particles is obtained.

Lx

Lz
R

waves at the location of the transducer elements, an image of the medium can be re-
constructed. We refer to this source-receiver configuration as plane wave ultrasound
imaging.

In contrast to sequential line-per-line acquisition, the imaging frame rate with plane
waves transmission is limited only by the speed of acoustic waves inside the probed
medium and the relaxation time between receiving and transmitting modes of the ul-
trasound transducer [CFT12]. With a frame rate of thousands of images per seconds
(kHz range), plane wave ultrasound imaging provides an excellent tool for measuring
complex and dynamic flows such as cardiac and vascular blood flow.

2.2.2 In Vitro EchoPIV
In this thesis we restrict our attention to the in-vitro Echo PIV experiment, which is
designed as follows. A fluid imitating blood is seeded with tracer particles, i.e. gas-
bubbles, and pumped through a straight horizontal cylindrical tube that mimics a blood
vessel. The flow of the fluid is set to a specific, constant flow rate. The flow of tracer
particles is imaged at the central plane of the tube by aligning the ultrasound linear
transducer array along the tube axis, as illustrated in Figure 2.2. With plane wave
image acquisition scheme, the moving fluid is probed at a very high frame rate. After
the image reconstruction step, the image sequence capturing the tracer particles flow
is analysed and the in-plane velocity field at the central plane of the tube is estimated.

2.2.3 Laminar Pipe Flow
If the pipe flow in in-vitro Echo PIV is laminar and steady, also known as Poiseuille
flow, then in-plane velocity field is given by

u = u(x) =
(
u1(x2), 0

)>
, u1(x2) = vm

(
1−

(
x2

R

)2)
, vm ≥ 0, (2.2.1)

where vm denotes the peak velocity of the flow in a pipe of radius R, assumed to be
centered at x2 = 0. Thus, the flow has a parabolic profile, does not depend on x1, and
hence has a single degree of freedom vm.
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R
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R

x1

x2

Figure 2.3: LEFT: A Poiseuille flow governed by (2.2.1). The background illustrates
the parabolic velocity profile parametrized by the pipe radius R and the peak velocity
vm. RIGHT: An unknown set of randomly located particles that are moving with the
flow. The task is to robustly estimate the unknown peak velocity vm and consequently
the velocity field under adverse imaging conditions from noisy image sequence data.

This smooth and laminar flow occurs at moderate Reynolds numbers. At larger
Reynolds numbers the flow becomes turbulent and exhibits motion instability. Such
flows are unsteady and irregular, yet appear steady and predictable after temporal aver-
aging of the velocity field [Whi09]. There are many empirical formulas describing the
velocity profile of turbulent flow in a pipe. Here, we adopt the representation proposed
in [Sti14] in terms of the velocity field

u = u(x) =
(
u1(x2), 0

)>
, u1(x2) = vm

(
1−

( |x2|
R

)N+1)
. (2.2.2)

With this representation, for N = 1 we recover the parabolic velocity profile of (2.2.1)
and for N > 1 a deformed velocity profile is obtained.
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Chapter 3

Ultrasound Image Reconstruction

In this chapter we formulate ultrasound imaging as an inverse acoustic scattering prob-
lem for the wave equation, where for a given incident plane wave pulse, the problem
is to estimate the location of medium inhomogeneities (i.e. the tracer particles) from
the backscattered waves received by the ultrasound transducer array. Based on a set of
specific assumptions, we derive a simplified relationship between the measured data
and the unknown medium reflectivity. We discretize the problem by using the col-
location method and solve the corresponding algebraic system of linear equations by
least-squares minimization. The approach is validate on synthetic and in-vitro Echo
PIV data.

3.1 Imaging Operator

3.1.1 The Model Problem
Under the Born approximation, presented in Section 2.1.3, the reflectivity and the scat-
tered field are related by the linear integral equation

û(s)(x, ω) = ω2

c2
0

∫
R3

ρ(y)û(i)(y, ω)g(x− y, ω)dy. (3.1.1)

In the ultrasound imaging context, the function û(s)(x, ω) represents measured data at
a finete set of points in time domain and the function ρ contains information about the
location of the acoustic scatteres that has to be determined. Furthermore, the incident
field and the Green functions is known. In particular, the transmitted incident field is a
plane wave pulse focused in one direction probing only a thin slice of the medium as
can be seen in Figure 2.2. Therefore, we assume the incident field to be given by

û(i)(y, ω) = f(ω)eiω〈d,y〉/c0χ[−ε3/2,ε3/2](y3), y = (y1, y3, y3), (3.1.2)

where χ is a characteristic function, ε3 > 0 is the width of the probed slice, f(ω)
denotes the frequency-dependent amplitude of the incident wave defining the shape
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of the pulse (for example a Gaussian pulse), and d ∈ S2 specifies the direction of
incidence. Substituting (2.1.23) and (3.1.2) into (3.1.1), yields

û(s)(x, ω) = ω2f(ω)
4πc2

0

∫
R3

ρ(y)e
iω(〈d,y〉+‖x−y‖)/c0

‖x− y‖
χ[−ε3/2,ε3/2](y3)dy. (3.1.3)

By applying the inverse Fourier transform (2.1.15) we obtain the scattered field in time
domain

u(s)(x, t) = 1
2π

∫
R

û(s)(x, ω)e−iωtdω (3.1.4a)

= 1
8π2c2

0

∫
R

dω
∫
R3

ω2f(ω)ρ(y)e
iω(〈d,y〉+‖x−y‖)/c0

‖x− y‖
e−iωtχ[−ε3/2,ε3/2](y3)dy.

(3.1.4b)

According to [Bor15], the term ω2f(ω) can be safely ignored if the incident pulse is
very short in time. Equation (3.1.4b) can be further simplified by ignoring the term

1
‖x−y‖ . Hence, the measured data d(x, t) ∝ u(s)(x, t) can be expressed as

d(x, t) ∝
∫
R

dω
∫
R3

ρ(y)eiω(〈d,y〉+‖x−y‖)/c0−iωtχ[−ε3/2,ε3/2](y3)dy (3.1.5a)

∝
∫
R2

ρ(y)δ
(
〈d, y〉
c0

+ ‖x− y‖
c0

− t
) ∣∣∣∣

y3=0
dy1dy2. (3.1.5b)

Next, we remove the redundant dimension in y3 direction, and regard the reconstruc-
tion problem as two dimensional. We denote the image domain by

Ω = (0, l1)× (0, l2) ∈ R2, l1, l2 > 0,

as illustrated in Figure 3.1, and set the location of receivers array at

x = (x1, x2) ∈ (0, l1)× {0}.

We consider the incident wave to be transmitted in the direction d = (0, 1) and the
backscattered waves to be measured at the time t ∈ [0, T ], T > 0, with T = 2l2/c0.
Furthermore, we define the forward map K : L2(Ω) → L2((0, l1) × [0, T ]) as a linear
integral operator

[Kρ] (x1, t) := d(x1, t) (3.1.6a)

=
∫
Ω

ρ(y1, y2)δ
y2 +

√
(x1 − y1)2 + y2

2

c0
− t

 dy1dy2, (3.1.6b)

that takes the reflectivity function and maps it to the measurements. The reflectivity
function describes the medium inhomogeneities, which in our application is repre-
sented by the tracer particles. We may assume that those tracer particles are smooth
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objects with compact support so that ρ ∈ C∞0 (Ω) and both (3.1.6a) and (3.1.6b) are
well defined.

An estimate of the unknown reflectivity can be obtained by minimizing the data
misfit

O(ρ) = ‖d−Kρ‖2
L2((0,l1)×[0,T ]) (3.1.7a)

=
∫

t∈[0,T ]

∫
x1∈(0,l1)

‖d(x1, t)− [Kρ] (x1, t)‖2dtdx1. (3.1.7b)

The minimizer of (3.1.7) satisfies the normal equation

[K∗Kρ] (y) = [K∗d] (y), ∀y ∈ Ω, (3.1.8)

where the operator K∗ : L2((0, l1) × [0, T ]) → L2(Ω) is the adjoint of K, defined by
the relation

〈d,Kρ〉L2((0,l1)×[0,T ]) = 〈K∗d, ρ〉L2(Ω), (3.1.9)

for all d ∈ L2((0, l1) × [0, T ]) and all ρ ∈ L2(Ω). The symmetric operator K∗K :
L2(Ω)→ L2(Ω) is called the normal operator.

3.1.2 Delay and Sum (DAS)
In Kirchhoff migration imaging, the normal operatorK∗K is approximated by the iden-
tity operator [Bor15, CMP13]. Thus, according to (3.1.8), the reflectivity can be eval-
uated by applying the adjoint operator K∗ directly to the data, that is

ρ(y) ≈ [K∗d] (y) (3.1.10a)

=
∫

t∈[0,T ]

∫
x1∈(0,l1)

d(x1, t)δ
y2 +

√
(x1 − y1)2 + y2

2

c0
− t

 dtdx1. (3.1.10b)

Equation (3.1.10) provides an approximative solution of the least squares problem
in (3.1.7). In the applied literature on plane wave ultrasound imaging, image for-
mation via (3.1.10) is known as Delay and Sum (DAS) method [SCT+99, MTB+09,
BGPT01]. The DAS approach can be physically interpreted as follows. The measured
data d(x1, t) are backprojected to the two-way travel time

t = τ1(y) + τ2(x, y) = y2

c0
+

√
(x1 − y1)2 + y2

2

c0

by the delta distribution, and summed up coherently over all receivers to obtain an
estimate of the reflectivity ρ(y) at any point y = (y1, y2) ∈ Ω. The stability of the
Kirchhoff migration imaging with respect to the measurement noise is investigated in
[AGK+11, AGJ+13].
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3.1.3 Discretization by Collocation Method

For numerical treatment, we discretize the continuous problem (3.1.6) using the collo-
cation method [Kir11] and reduce it to a finite system of linear equations. We discretize
the image domain Ω into an N = n1 × n2 array of pixels and approximate the reflec-
tivity by series expansion as follows

ρ(y1, y2) =
∑
j∈[N ]

ρjψj(y1, y2), (3.1.11)

where the orthogonal basis functions {ψj}j∈[N ] are induced by the discretization of Ω
and chosen as

ψj(y1, y2) =
{

1, if (y1, y2) is inside the jth pixel,
0, otherwise.

(3.1.12)

Receivers array

incident plane wave

Ω

x1p(i)

1
2 c0tq(i) (y1, y2)

Figure 3.1: Configuration of the plane wave ultrasound imaging. The receivers are
located along the x1 axis and the image domain Ω is discretized uniformly into pixels
in order to approximate the reflectivity by (3.1.11). The blue solid curve is the ith
isochrone given by (3.1.13) and corresponds to the measured data at the receiver x1p(i)
and time tq(i).

In practice, the data d(x1, t) in known only at a discrete set of points from physical
measurements. We denote by Nr ∈ N \ {0} and Nt ∈ N \ {0} the number of receivers
and temporal samples, and by M = NrNt the total number of measurements collected
at the receiver position

x1p(i) = (p(i)− 1/2)∆x, ∆x > 0, p(i) ∈ [Nr],
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and time
tq(i) = (q(i)− 1/2)∆t, ∆t > 0, q(i) ∈ [Nt],

where q(i) = (i − 1) mod Nt + 1 and p(i) = (i − q(i))/Nt + 1, so that each pair
(x1p(i), tq(i)) is counted by index i = Nt(p(i)− 1) + q(i), i ∈ [M ].

According to the argument of the delta distribution in (3.1.6b), the pair (x1p(i), tq(i))
defines a parabola or an isochrone in the image domain Ω, see Figure 3.1, which is
given by

y2 = y2(y1) = − y2
1

2c0tq(i)
+ x1p(i)

c0tq(i)
y1 −

x2
1p(i)

2c0tq(i)
+ c0tq(i)

2 , (y1, y2) ∈ Ω. (3.1.13)

Let di = d(x1p(i), tq(i)), i ∈ [M ]. Then from (3.1.6) and (3.1.11) we obtain

di =
∑
j∈[N ]

ρjKij, (3.1.14)

and the linear system
d = Kρ, (3.1.15)

for vectors d = (d1, . . . , dM)T , ρ = (ρ1, . . . , ρN)T , and matrix K ∈ RM×N whose
elements given by

Kij = [Kψj] (x1p(i), tq(i)). (3.1.16)

Notice that the matrix elementKij is equal to the intersection length of the ith isochrone
with the jth pixel, and as a result the matrix K is sparse. Hence, to form an image we
need to solve the linear system (3.1.15) for the reflexivity vector ρ.

3.1.4 Image Reconstruction
A straightforward approach to solve (3.1.15) is using least squares minimization, where
the reflectivity is obtained by minimizing a quadratic objective function

ρ∗ = arg min
ρ
‖Kρ− d‖2

2. (3.1.17)

The minimizer of (3.1.17) with the smallest `2 norm can be computed via ρ∗ = K†d,
where K† is the pseudo-inverse of K. On the other hand, the Delay and Sum method
in Section 3.1.2 evaluates the reflectivity via

ρ∗DAS = KTd, (3.1.18)

where KT denotes the transpose of K. Since for large matrices K, the operator K†

can be ill-conditioned, it makes sense to add a regularization term to the cost function.
The standard technique is to consider Tikhonov regularization by adding a quadratic
penalty term

ρ∗l2 = arg min
ρ
‖Kρ− d‖2

2 + λ‖ρ‖2
2, (3.1.19)
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where the weight λ > 0 provides a trade-off between the data fidelity and smoothness
of the solution. To give preference to sparse solutions, we also consider the basic
pursuit denoising problem

ρ∗l1 = arg min
ρ
‖Kρ− d‖2

2 + λ‖ρ‖1, λ > 0, (3.1.20)

where the regularization parameter controls the sparsity of the solution.

3.2 Experiments
In this section we present the reconstruction results for two data sets:

1. synthetic data from the PICMUS dataset [LRMC+16] generated with Field II
[Jen96, JS92] in a realistic ultrasound imaging scenario and,

2. in vitro Echo PIV data.

The unconstrained minimization problems (3.1.17), (3.1.19) and (3.1.20) are solved
numerically using LSQR and YALL1 [YZ11] packages in MATLAB.

3.2.1 Synthetic data
In this part we compare the reconstruction approacher described in Section 3.1.4. Fig-
ure 3.2 shows the scatterers configuration with the corresponding measurements. The
measurements are collected at Nr =128 receivers and Nt =1353 temporal points.
The background speed of sound is set to c0 =1540 m/s and the image domain mea-
sures 38 mm × 50 mm. The image domain is discretized by a regular grid of size
N = n1×n2 = 387× 676. Hence, the M×N = 173184×261612 matrix K is under-
determined. Due to the large scale of the problem, we simplify the definition (3.1.16),
and set

Kij =
{

1, if the ith isochrone intersects jth pixel,
0, otherwise,

(3.2.1)

for all i ∈ [M ] and j ∈ [N ].
In Figure 3.3 we present the reconstruction results for reflectivity vector on abso-

lute scales. We note that all methods visually recover the location of scatterers with
good precision. In particular, by choosing a sparsity promoting regularized we reduce
the strength of the sidelobes around the scatterers which are visible if we plot recon-
struction of logarithmic scale, see Figure 3.4.
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Figure 3.2: LEFT: The configuration of scatterers distributed horizontally and verti-
cally in a homogeneous medium. In the simulation setup, a linear array located at
(y1, 0) transmits an incident plane wave pulse and receives the backscatterd waves
which we assume to propagate with constant speed c0. RIGHT: Time dependent data
d(x1, t) measured at the receiver array. Notice the hyperbolic patterns in the backscat-
tered field due to the isolated scatterers and the decreasing amplitude in the signal for
waves traveling longer distances through the medium.
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Figure 3.3: Reconstruction of the reflectivity vector with (a) least squares minimization
(3.1.17), (b) Delay and Sum (3.1.18), (c) least squares with `2 regularization (3.1.19),
λ = 1, and (d) basic pursuit denoising (3.1.20), λ = 4, . Here, we show the absolute
value of the reflectivity. The exact location of the scatterers is indicated with small
red dots. We observe that all methods are give comparable visual results and that
deep scatterers can not be recovered due to the weak backscattered signal. However,
the difference between the sparsity promoting approach and other methods is better
observed on logarithmic scale shown in Figure 3.4.
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Figure 3.4: Reconstruction of the reflectivity vector with (a) least squares minimization
(3.1.17), (b) Delay and Sum (3.1.18), (c) least squares with `2 regularization (3.1.19),
λ = 1, and (d) basic pursuit denoising (3.1.20), λ = 4. Here, we show the reflectivity
on logarithmic decibel scale (dB) defined by 20 log10(|ρ|/max

j
|ρj|) where the absolute

value and logarithm are computed component-wise. The exact location of the scatter-
ers is indicated with small red dots. We observe that by promoting sparse solution via
`1 regularization we reduces the side-lobe artifacts around scatterers that are present in
other reconstruction methods.
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3.2.2 Ultrasound PIV data
In vitro Echo PIV data consists of a sequence of frames probing the motion of tracer
particles (gas bubbles) in a static tube, see Section 2.2.2. Typically, the collected 3D
data is corrupted by strong reflections coming from rigid tube walls. For the motion
estimation task, these signals must be removed to obtain clear images of the moving
bubbles. The signal from the static walls can be subtracted out by exploiting its tem-
poral coherence.

(a) (b) (c)

y1

y2

y1

y2

y1

y2

(d) Walls and bubbles (e) Walls (f) Bubbles

Figure 3.5: Principal component analysis applied to plane wave Echo PIV data. Here,
we show a single column from each matrix reshaped into an image. The measured data
(a) is decomposed into the strong backscattered signal due to the static and rigid walls
(b) and weak backscattered signal coming from the moving bubbles (c). In (d)-(f) we
show of the reconstructed image via least square minimizer (3.1.17) in the absolute
value scale. The recostructed region is 38 mm wide and reanges from 37 mm to 59
mm in depth. Here, the measured data were multiplied with a time gain compesation
factor to acount for depth attenuation effects [Sza04, Chapter 4].

One method to accomplish this, proposed in [DDP+15, AARW17], is to assume
that the collected data lie near some low-dimensional subspace. This means, if we
stack all temporal frames as columns of the matrix A, then A can be decomposed as

A = W +B, (3.2.2)

where W is a low-rank matrix corresponding to the stationary signal originating from
the walls, and B is a small perturbation which captures the signal due to the moving
bubbles. We apply Principal Component Analysis (PCA) to find the low-rank matrix
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W that solves the minimization problem

min
W
‖A−W‖F subject to rank(W ) ≤ k, (3.2.3)

where ‖.‖F denotes the Frobenius norm. The minimizer of (3.2.3) can be expressed
in terms of the singular values and singular vector of A. For an m × n matrix A with
singular value decomposition

A = UΣV T , (3.2.4)

the k-rank matrix solving (3.2.3) is given by

W ∗ =
k∑
i=1

σiuiv
T
i , (3.2.5)

where U is an m × m orthogonal matrix, V is an n × n orthogonal matrix, Σ is an
m× n diagonal matrix containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σmin{n,m} ≥ 0,
k ≤ min{n,m}, and ui and vi denote the ith column of U and V , respectively.

In Figure 3.5 we shows the resulting decomposition (3.2.2) via (3.2.5) for the in
vitro Echo PIV data. The measured data contain 299 temporal frames of size Nr ×
Nt =128×600, which we stack as columns of the matrix A ∈ R76800×299. For this
particular set of data, we notice that σ1 � σ2 ≈ σ3 and therefore set k = 1. The signal
from the static wall is computed via W ∗ = σ1u1v

T
1 and the signal due to the tracer

particles is obtained from B = A−W ∗. Artifacts due to the Born approximation can
be seen in the reconstructed images (d)-(f), where parallel stripes below tube wall are
cause by multiple scattering effects.
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Chapter 4

Dictionary Based Flow Reconstruction

In this chapter we introduce a global spatio-temporal velocimetry technique for lam-
inar and steady pipe flows that extracts the flow model parameter from the entire im-
age sequence. We define a sparse dictionary of particle trajectories parametrized by a
single variable and propose to estimate the unknown flow model parameter by using
iterative refinement schemes. The approach is validated on synthetic and real, in-vitro
ultrasound data.

4.1 Recovery Problem
Let f denote the input data, which is a sequence of Nt consecutive temporal frames
imaging tracer particles moving with the laminar and steady flow and merged together
as shown in Figure 4.1. We assume that f is well-approximated by a superposition
of trajectory atoms from a flow dictionary A(v∗) ∈ RN×N

+ (that will be introduced in
Section 4.1.2) and takes the form

f ≈ A(v∗)u∗, (4.1.1)

where u∗ ∈ [0, 1]N is an indicator vector selecting active trajectories in A(v∗) and
v∗ ∈ R is the flow model parameter corresponding to value of the maximal velocity
for laminar and steady pipe flow, see (4.1.4). The model parameter and the indicator
vector are unknown and have to be determined from the input data f . To this end we
introduce the function

J : RN × R→ R, J(u, v) := ‖A(v)u− f‖2
2, (4.1.2)

and propose to minimize the “distance” between the input data f and the model A(v)u
in the least squares sense, i.e. we solve

(u∗, v∗) = arg min
(u,v)∈X

‖A(v)u− f‖2
2, X = [0, 1]N × [0, v(MAX)], (4.1.3)

where v(MAX) is an upper bound for the velocity range, which we assume to be smaller
than the resolvable critical velocity for the given temporal resolution of the image
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sequence. In other words, we estimate the unknown parameter v∗ ∈ [0, v(MAX)] by
adapting a trajectory dictionary A(v) and an indicator vector u to the image sequence
f . The sufficient conditions for the convergence on the numerical schemes, employed
to solve the nonlinear optimization problem with box constrains (4.1.3), are guaranteed
by the continuity and differentiability of the map v → A(v), discussed in Section 4.1.2.

Image 1 Image 2 Image 3 Image Nt

Lx

Nt Lz

Image 1 Image 2 Image 3 Image Nt

Lx

Nt Lz

Figure 4.1: TOP ROW: Few temporal frames that illustrate the tracer particles driven
by the Poiseuille flow model following linear trajectories. For each particle located at
the space-time grid point (xi, zj, tk) we attribute a trajectory defined by the equation of
motion (4.1.4) and the model flow parameter v, and assign a column in the dictionary
A(v). BOTTOM ROW: Realistic input data f consisting of several noisy frames which
display the motion of multiple tracer particles. From such an image sequence we wish
to extract the unknown v which parametrizes the flow. In all images the particles move
upwards.

4.1.1 Flow Parameter
The laminar and steady flow in a straight cylindrical tube of radius R is governed by
the following equations of motion: x(t) = x(t′) + (t− t′) vm α(z),

z(t) = z(t′) = const.,
(4.1.4)

where z ∈ [0, 2R], α(z) = 1− (R−z)2/R2 and t, t′ ≥ 0. The non-negative parameter
vm is the maximal flow velocity - the velocity of particles moving at the tube center.
Subsequently we will omit the index m and denote vm by v.
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4.1.2 Trajectory Matrix
We further detail the construction of the space-time trajectory dictionary A(v), which
depends on the maximal flow velocity introduced in (4.1.4). For Lz = 2R, let

Ω := [0, Lx]× [0, Lz] ⊂ R2,

denote a fixed field of view in the x/z-plane corresponding to the insonified area inside
the tube, see Figure 2.2. We uniformly discretize Ω into NxNz rectangular cells

Ωi,j := [(i− 1) ∆x, i∆x]× [(j − 1) ∆z, j∆z], i ∈ [Nx], j ∈ [Nz] (4.1.5)

of size ∆x∆z with ∆x = Lx/Nx, ∆z = Lz/Nz. Using the continuous B-spline basis
function of degree one

ψ : R→ R, ψ(x) :=


2x, 0 ≤ x < 1

2 ,

2− 2x, 1
2 ≤ x ≤ 1,

0, otherwise,

(4.1.6)

and the continuously differentiable B-spline basis function of degree three given by

φ : R→ R, φ(x) :=



32
3 x

3, 0 ≤ x < 1
4 ,

−2
3(−1 + 12x− 48x2 + 48x3), 1

4 ≤ x < 1
2 ,

2
3(−11 + 60x− 96x2 + 48x3), 1

2 ≤ x < 3
4 ,

−32
2 (−1 + 3x− 3x2 + x3), 3

4 ≤ x ≤ 1,
0, otherwise,

(4.1.7)

we define for every (xi, zj) = ((i− 1/2)∆x, (j − 1/2)∆z) where

(i, j) ∈ {−1, 0, . . . , Nx + 1, Nx + 2} × {0, . . . , Nz + 1},

the cell-centered 2-dimensional basis functions

ϕi,j : R2 → R, (x, z) 7→ ϕi,j(x, z) := φi

(
x− xi
4 ∆x + 1

2

)
ψj

(
z − zj
2 ∆z + 1

2

)
, (4.1.8)

that form a partition of unity of Ω. Figure 4.2 (a) and (b) illustrate this property for
linear and cubic functions (4.1.6) - (4.1.7) in 1D-domain [0, Lx] with Lx = Nx = 5
and ∆x = 1. Note that Nx + 2 and Nx + 4 basis functions are required for linear and
cubic partition, respectively.

A point particle located at (x0, z0) ∈ Ω in a 2D-fluid is mathematically represented
as a Dirac measure δ(x − x0, z − z0) with unit mass. The discrete approximation,
δ̂(x0,z0)(x, z), of the Dirac measure is expressed by the corresponding coefficients

ci,j =
∫
R2
δ(x0 − x′, z0 − z′)ϕi,j(x′, z′)dx′dz′ = ϕi,j(x0, z0), (4.1.9)
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with i ∈ {−1, 0, . . . , Nx + 1, Nx + 2}, j ∈ {0, . . . , Nz + 1} and it takes the form

δ(x− x0, z − z0) ≈ δ̂(x0,z0)(x, z) = ci,j = ϕi,j(x0, z0), for (x, z) ∈ Ωi,j. (4.1.10)

Note that for any (x0, z0) ∈ Ω the mass of δ̂(x0,z0)(x, z) sums up to one

Nx+2∑
i=−1

Nz+1∑
j=0

ϕi,j(x0, z0) =
Nx+2∑
i=−1

φi

(
x0 − xi
4 ∆x + 1

2

)
︸ ︷︷ ︸

=1

Nz+1∑
j=0

ψj

(
z0 − zj
2 ∆z + 1

2

)
︸ ︷︷ ︸

=1

= 1,

(4.1.11)
and the mass of δ̂(x0,z0)(x, y) is no longer concentrated at (x0, z0) but “smeared over”
the cells containing the location (x0, z0) of the point particle and two or three adjacent
cells along the x direction, as illustrated in Figure 4.3 (a). This larger, but still focused
support of functions representing point particles ensures the sufficient smoothness of
the map v 7→ A(v) that is required for the design of convergent algorithms.

-2 -1 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

-2 -1 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

0 2 4 6

0.2

0.4

0.6

0.8

1.0

(a) (b) (c)

Figure 4.2: (a) Partition of unity of the domain [0, 5] using the linear B-spline functions
(4.1.6). (b) Partition of the domain using cubic B-spline functions (4.1.7). (c) Two unit-
mass Dirac measures located at x1 and x2, respectively, indicated by the two black
lines. The corresponding coefficients φi(x1) and φi(x2), for i ∈ {−1, 0, . . . , 7} are
indicated by the blue and yellow points, respectively, located at the cell centroids i −
1/2.

Regarding the latter matching task, we set up a dictionary of discretized particle
trajectories, based on the flow model (4.1.4). Specifically, we consider a sequence
of Nt frames imaging the flow within the region Ω at time steps tk = (k − 1)∆t,
k ∈ [Nt]. The dictionary is composed of all particle trajectories that meet the center
positions (xi, zj) = ((i− 1/2)∆x, (j − 1/2)∆z) ∈ Ωi,j of all cells given by (4.1.5)
for any time tk, k ∈ [Nt]. Such a dictionary will have the size NxNzNt ×NxNzNt.

Let us consider the trajectory of a single particle which is located at (xi, zj) at an
arbitrary but fixed point of time tk, k ∈ [Nt]. Due to the flow model (4.1.4), this
particle is moving through space-time points

Ti,j,k :=
{

(xi,k,l, zj, tl
)

: l ∈ [Nt]
}
. (4.1.12)

Here, xi,k,l denotes the x-coordinate of the considered particle at time tl, l ∈ [Nt], i.e.

xi,k,l = xi + (tl − tk)vα(zj), (4.1.13)
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and xi,k,k = xi according to our initial assumption. The union of all such sampled
trajectories defines the set of space-time positions

T :=
⋃

i∈[Nx],j∈[Nz ],k∈[Nt]
Ti,j,k. (4.1.14)

Each space-time position (xi,k,l, zj, tl) ∈ Ti,j,k ⊂ T in (4.1.12) corresponds to a parti-
cle δ(x− xi,k,l, z − zj), which for the purpose of numerical matching is approximated
by

δ̂(xi,k,l,zj)(x, z) = ϕi′,j′(xi,k,l, zj), for (x, z) ∈ Ωi′,j′ , (4.1.15)

according to (4.1.10).
The final step concerns the definition of a matrix A which collects the coefficients

ϕi′,j′(xi,k,l, zj) corresponding to all functions (4.1.15) indexed by T of (4.1.14). We
first define the auxiliary function

ind: (i, j, k) 7→ (k−1)NxNz+(j−1)Nx+i, i ∈ [Nx], j ∈ [Nz], k ∈ [Nt], (4.1.16)

which indexes the collection of Nt cell-discretized domains Ω corresponding to the
frames of a given image sequence. We now define the matrix

Aind(i′,j′,l),ind(i,j,k) := ϕi′,j′(xi,k,l, zj) (4.1.17)

based on (4.1.15).
In words, each column of A corresponds to the coefficients of the particle approxi-

mations (4.1.15) at locations given by Ti,j,k of (4.1.12). For an illustration we refer to
Figure 4.3.

xi

zj

tk

tk+1

tk−1

A(v) =

Column ind(i, j, k)

(a) (b)

Figure 4.3: (a) A particle located at (xi, zj) at time tk moves forward or backward to the
space-time point (xi,k,k+1, zj, tk+1) or (xi,k,k−1, zj, tk−1), respectively. In the discrete
representation, the mass of the particle is no longer concentrated at its space-time point
(red dots), rather ”smeared over” (blue areas). (b) The index function, ind(i, j, k) of
(4.1.16), defines a column in A with coefficients according to (4.1.17) for all particle
locations specified by the set Ti,j,k.
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Lemma 4.1.1. The matrixA ∈ RN×N ,N = NxNzNt, defined in (4.1.17) is symmetric.

Proof. Let p = ind(i′, j′, l) and q = ind(i, j, k), for i, i′ ∈ [Nx], j, j′ ∈ [Nz] and
k, l ∈ [Nt]. Plugging (4.1.8) into (4.1.17) we obtain that

Apq = ϕi′,j′(xi,k,l, zj) = φi′
(
xi,k,l − xi′

4∆x + 1
2

)
ψj′

(
zj − zj′

2∆z + 1
2

)
, (4.1.18a)

Aqp = ϕi,j(xi′,l,k, zj′ , tk) = φi

(
xi′,l,k − xi

4∆x + 1
2

)
ψj

(
zj′ − zj

2∆z + 1
2

)
. (4.1.18b)

Since the basis functions (4.1.6) and (4.1.7) are symmetric and satisfy the relation

ψ
(
x+ 1

2

)
= ψ

(
−x+ 1

2

)
, (4.1.19a)

φ
(
x+ 1

2

)
= φ

(
−x+ 1

2

)
, (4.1.19b)

for all x ∈ R, we obtain that

ψj′

(
zj − zj′

2∆z + 1
2

)
= ψj

(
zj′ − zj

2∆z + 1
2

)
. (4.1.20)

In particular, for zj = (j − 1/2)∆z and j ∈ [Nz] we have

ψj′

(
zj − zj′

2∆z + 1
2

)
= ψj

(
j − j′

2 + 1
2

)
=
{

0 for j 6= j′,

1 for j = j′,
(4.1.21)

since ψ(x) = 0 for x /∈ (0, 1). Hence, for j 6= j′ the function ψ in (4.1.18a) and
(4.1.18b) vanishes, implying Apq = Aqp = 0. For j = j′, we have

xi,k,l = xi + (tl − tk)v α(zj), xi′,l,k = xi′ + (tk − tl)v α(zj′) (4.1.22)

due to (4.1.13), which yields xi,k,l − xi′ = −(xi′,l,k − xi) as zj = zj′ and α(zj) =
α(zj′). In view of (4.1.19b) and (4.1.18), we obtain that Apq = φi′

(
xi,k,l−xi′

4∆x + 1
2

)
=

φi
(
xi′,l,k−xi

4∆x + 1
2

)
= Aqp.

Lemma 4.1.2. Let v ∈ R+ be a non-negative variable representing the flow parameter
in (4.1.4). Then (4.1.17) defines a twice continuously differentiable mapping

v 7→ A(v) ∈ RN×N
+ , N = NxNzNt, (4.1.23)

with the first and the second derivatives of element Apq given by

Ȧpq(v) = dApq(v)
dv

= (tl − tk)α(zj)
4∆x

dφi′(ṽ)
dṽ

ψj′

(
zj − zj′

2∆z + 1
2

)
, (4.1.24)

Äpq(v) = d2Apq(v)
dv2 = (tl − tk)2α(zj)2

16∆x2
d2φi′(ṽ)
dṽ2 ψj′

(
zj − zj′

2∆z + 1
2

)
, (4.1.25)
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where p = ind(i′, j′, l), q = ind(i, j, k) for i, i′ ∈ [Nx], j, j′ ∈ [Nz], k, l ∈ [Nt],

ṽ = xi + (tl − tk)α(zj)− xi′
4∆x + 1

2 , (4.1.26)

and

φ̇(x) = dφ(x)
dx

=



32x2, 0 ≤ x < 1
4 ,

−8(12x2 − 8x+ 12x− 1), 1
4 ≤ x < 1

2 ,

4(24x2 − 32x+ 10), 1
2 ≤ x < 3

4 ,

−32(x2 − 2x+ 1), 3
4 ≤ x ≤ 1,

0, otherwise,

(4.1.27)

φ̈(x) = d2φ(x)
dx2 =



64x, 0 ≤ x < 1
4 ,

−64(3x− 1), 1
4 ≤ x < 1

2 ,

64(3x− 2), 1
2 ≤ x < 3

4 ,

−64(x− 1), 3
4 ≤ x ≤ 1,

0, otherwise.

(4.1.28)

Proof. Only the first term of the right-hand side of (4.1.17) depends on v according
to (4.1.8) and the equation of motion (4.1.4). By definition, the cubic B-spline func-
tion in (4.1.7) is twice continuously differentiable. Hence A(v) is twice continuously
differentiable with respect to flow parameter v. Finally, equations (4.1.24) - (4.1.28)
follow from the differentiation of (4.1.7).

Lemma 4.1.3. The matrices Ȧ ∈ RN×N and Ä ∈ RN×N , N = NxNzNt, given by
(4.1.24) and (4.1.25) are symmetric.

Proof. See the proof of Lemma 4.1.1.

Corollary 4.1.4. For f ∈ RN , the function

J : RN × R→ R, J(u, v) := ‖A(v)u− f‖2
2, (4.1.29)

is twice continuously differentiable with respect to both variables.

Proof. The differentiability of J(u, v) with respect to variable u is trivial, and the
differentiability with respect to v is an immediate consequence of Lemma 4.1.2.
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Figure 4.4: Illustration of the matrix A(v) for Nx = 5, Nz = 4 and Nt = 3, where
the red vertical and horizontal lines separate submatrices corresponding to different
temporal frames. A column in A is determined by a point-particle whose space-time
coordinates are specified in (4.1.12). (Left) In the motionless scenario, i.e. v = 0,
the space coordinates remain unchanged over time, resulting in identical patterns for
each submatrix. (Center) Common representation of A(v) for moderate flow model
parameter values, smaller than the resolvable critical velocity vc given by the temporal
resolution of the image sequence. (Right) In extreme cases of very large flow maximum
velociy, a point particle will be observed at the space-time coordinate (xi, zj, tk) only
once and is not visible in other frames.

4.2 Numerical Optimization
In this section we consider the minimization problem

min
w∈X

J(w), X = [0, 1]N × [0, v(MAX)], (4.2.1)

where the objective function J(w) is given by (4.1.29) and w = (uT , v)T . We solve the
problem by employing the nonmonotone gradient-projection algorithm [BMR00] and
the trust region method for constrained optimization problems, extensively discussed
in [CGT00, Chapter 12]. The resulting iterative technique produces a sequence of
iterates {wk} that converges to a first-order critical point w∗ of the problem (4.2.1), i.e.

〈∇J(w∗), w − w∗〉 ≥ 0, ∀w ∈ X. (4.2.2)

Our ansatz is to estimate the flow model parameter v∗, from the stationary point

w∗ = ((u∗)T , v∗)T .
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4.2.1 Spectral Projected Gradient Method

The non-monotone spectral projected gradient (SPG) algorithm [BMR00] is a nu-
merical scheme for minimization of differentiable functions on nonempty closed and
convex sets, that extend the classical projected gradient schemes to include a non-
monotone steplength strategy. The algorithm works as follows. For the current iterate
wk ∈ X , the new trial iterate is given by

w+ = PX(wk − λk∇J(wk)), (4.2.3)

where PX(w) denotes the unique projection of the vector w on X , ∇J(wk) denotes
the gradient of J at the point wk, and λk ≥ 0 denotes the step size. The new iterate is
accepted and set to wk+1 = w+ if the non-monotone Armijo condition

J(w+) ≤ min
0≤j≤κ

J(wk−j) + γ〈∇J(wk), w+ − wk〉, (4.2.4)

is satisfied, where γ ∈ (0, 1) is a sufficient decrease parameter, κ = min{k,M − 1}
and M ∈ N is the non-monotone parameter. If the condition (4.2.4) fails, the step
size λk is decreased and a new point is generated via (4.2.3). The steps in (4.2.3) and
(4.2.4) are repeated until the stopping criteria

‖PX(wk −∇J(wk))− wk‖ ≤ ε

is met for small ε > 0. Due to Theorem 2.3 in [BMR00] the algorithm is well defined
and has the property that every accumulation point of the resulting sequence {wk} is a
constrained stationary point that satisfies (4.2.2).

4.2.2 Trust Region Method

The trust region method (TRM) is the second algorithmic strategy implemented to
solve (4.2.1). A basic trust-region algorithm works as follows. At each iterate wk, we
construct a model function mk(wk) that approximates the actual objective function J
within a suitable neighborhood of wk, i.e. trust region, given by We choose a quadratic
model of the form

mk(wk + s) = Jk(wk) + 〈∇Jk(wk), s〉+ 1
2〈s,∇

2Jk(wk)s〉, (4.2.5)

so that mk and J are in agreement up to second order, namely

mk(wk) = J(wk), ∇mk(wk) = ∇kJ(wk), ∇2mk(wk) = ∇2J(wk). (4.2.6)

and the trust region

Bk = {w ∈ Rn : ‖w − wk‖2 ∈ ∆k}, (4.2.7)
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where ∆k is called the trust-region radius. Next, we search for an approximate mini-
mizer of the model function and a trail step sk by solving the subproblem

sk = arg min
‖s‖∈∆k

mk(wk + s) such that wk + sk ∈ X. (4.2.8)

A trail pointwk+sk that approximately minimizes the model is located on the projected-
gradient path. This point is called the generalized Cauchy point and is given by

wGCk = wk + sk = PX [wk − tk∇mk(wk)]. (4.2.9)

Here, tk > 0 satisfies a set of conditions that ensure a sufficient model decrease within
the trust-region. Having determined the trail point, we compute the objective function
at wGCk , and compare it with the value predicated by the model. If the candidate wGCk
does not produce a sufficient decrease in J , we conclude that the trust region is too
large, and we shrink it and solve (4.2.8) again. If the sufficient reduction predicted by
the model is realized by the objective function, the trail point is accepted as the next
iterate and the trust region is expanded or kept the same. For a set of assumptions (that
are fulfilled in problem (4.2.1)), the convergence to first-order critical points of the
trust region algorithm with convex constraints is shown in [CGT00, Section 12.2.2].

4.2.3 Parametric and Univariate Optimization

If we would know the maximal velocity v∗ of the flow profile, then we could approxi-
matively tracer particles along trajectories by determining the indicator vector u∗ via

u∗ = arg min
u∈[0,1]N

‖A(v∗)u− f‖2
2. (4.2.10)

This idea suggests that we should consider the function

g : [0, v(MAX)]→ R+, g(v) = min
u∈[0,1]N

‖A(v)u− f‖2
2, (4.2.11)

and assume that the minimizer of g(v) provides an estimate of the unkown flow pa-
rameter v∗. In the following, we recast (4.2.1) as a parametric optimization problem of
the form

(Pv) min
u∈RN

J(u, v) s.t. u ∈ F (v), (4.2.12)

where J(u, v) : RN × R → R, J(u, v) := ‖A(v)u − f‖2
2 and F (v) := [0, 1]N is the

constant feasible set and thus independent of v. Then g from (4.2.11) is the optimal
value function of (4.2.12), given by g(v) = min

u∈F (v)
J(u, v). We denote by S(v) =

arg min
u∈F (v)

J(u, v) the optimal solution set and investigate continuity of v 7→ g(v) and

the associated set valued mapping v ⇒ S(v). Continuity of g is a minimal requirement
for reliable numerical optimization.
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Theorem 4.2.1. [BS00, Prop. 4.4] Let v0 ∈ R be an arbitrary point in the parameter
space. Suppose that

(i) the function (u, v) 7→ J(u, v) is continuous on RN × R,

(ii) the multifunction v ⇒ F (v) is closed,

(iii) there exist an α ∈ R and a compact set K ⊂ RN such that for every v in a
neighborhood of v0, the level set

levα J(·, v) := {u ∈ F (v) : J(u, v) ≤ α} (4.2.13)

is nonempty and contained in K,

(vi) for any neighborhood Vu of the set S(v0) there exists a neighborhood Vv of v0
such that Vu ∩ F (v) 6= ∅ for all v ∈ Vv.

Then the optimal value function g(v) is continuous at v = v0, and the multifunction
v ⇒ S(v) is upper semi-continuous at v0.

Corollary 4.2.2. The optimal value function g(v) from (4.2.11) is continuous on R.

Proof. We apply Theorem 4.2.1. (i) holds since J is continuous in both arguments in
view of the definition of J and the continuity of v 7→ A(v) by Lemma 4.1.2. (ii) and
(iv) hold automatically since the feasible set F (v) = [0, 1]N is constant and closed.
Finally, (iii) holds since for any v ∈ R the solution set S(v) is nonempty in view of the
compactness of the feasible set and continuity of J(·, v). Hence ∀α ≥ g(v) ∈ R we
have ∅ 6= S(v) ⊂ levα J(·, v) ⊂ [0, 1]N =: K.

A straightforward way of approximating the minimizer of g(v) from (4.2.11) in
the interval 0 ≤ v ≤ v(MAX) would be to evaluate the function at a fine grid of points
in [0, v(MAX)] and choose the one corresponding to the lowest value, as illustrated in
Figure 4.5. Alternatively , we can solve the problem

min
v∈[0,v(MAX)]

g(v), (4.2.14)

using the algorithm proposed in [MS93], where the authors presented a rapidly con-
verging five-point algorithm closely related to the well-known bisection method [Min89]
for continuous univariate functions, which uses function evaluations, but no deriva-
tives. The method uses function values at five points, denoted and ordered such that

v̂− < v− < v0 < v+ < v̂+, (4.2.15)

to construct quadratic and polyhedral approximations to the function and then choose
a point among the minimizers of the approximating functions via rules that do not
require additional function evaluations. We refer to the original paper [MS93] for
further details and the convergence analysis of the five-point algorithm.
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4.3 Experiments
We implemented the nonmonotone spectral projected gradient algorithm (SPG), trust
region method (TRM) and five point algorithm (for univariate minimization) to esti-
mate the flow model parameter for two data sets. The first data set is a synthetic, noise
free, small size image sequence of tracer particles transported by a Poiseuille flow. The
second set is a real, noisy in-vitro Echo PIV image sequence.

Lz = 2R Lx ∆t Nt Nx ×Nz N = NxNzNt

Synthetic data 0.5 cm 4 cm 1/750 s 10 30× 30 900
Ultrasound data 0.5 cm 4 cm 1/6667 s 10 372× 135 502200

Table 4.1: The data set parameters used in the experiments. For Nt temporal frames
of size Nx × Nz the input data vector f and the sparse trajectory matrix A(v) have
the dimension N and N × N , respectively, which for large-scale problems can be
computationally prohibitive.

In Table 4.1 we provide the relevant parameters for both data sets. In addition, we
implemented the projected gradient algorithm within the framework of SPG with a
monotone steplength strategy, which corresponds to M = 1. In the numerical exper-
iments we used the default parameters for SPG and TRM as specified in the original
works [BMR00] and [CGT00], respectively. We used the same initial iterate for all
minimization schemes. The performance of all algorithms is illustrated in Figure 4.6
and the estimated model flow parameter are summarized in Table 4.2. We observe
that univariate minimization solved with the five point algorithm [MS93] significantly
outperforms SPG and TRM with respect to number of iteration required to attain the
minimum of the objective function and hence to obtain a fast estimate of the flow
model parameter. As can be seen from Figure 4.6, the algorithm converges in very few
iterations even for large scale problems. The formulation of (4.2.1) as an univariate
minimization problem is the essential feature of this method.
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Figure 4.5: The univariate function g(v) for (a) synthetic and (b) ultrasound data sets.
The constrained convex optimization problem (4.2.11) is solved using FISTA [BT09].
The naı̈ve strategy for finding the minimizer of g(v), which provides an estimate of
the unknown flow parameter v∗, consists in evaluating the function for a finite set of
velocities in an interval v ∈ [0, v(MAX)] and selecting the argument with the lowest func-
tion value. A numerically faster solution scheme is the five point algorithm [MS93]
for univariate functions. For numerical results we refer to Table 4.2.

Synthetic data Ultrasound data

Reference v∗ 25.0 38.2
Naı̈ve g(v) minimization 25.0 32.5
Univariate minimization [MS93] 25.0 32.4
Monotone SPG, M = 1 25.1 32.1
Non-monotone SPG, M = 10 25.0 32.0
Trust Region Method 25.6 31.8

Table 4.2: The results for model flow parameter v∗ (in cm/s) estimated with the pro-
posed numerical schemes. The ground truth maximal flow velocity, i.e. the reference
value, is know for synthetic data. For the case of ultrasound data, the reference value
was estimated from the volume flow rate and is subject to experimental errors.
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Figure 4.6: Performance of iterative minimization schemes considered to solve the
constrained convex optimization problem (4.2.1). TOP ROW: Synthetic data. BOTTOM

ROW: Ultrasound data. LEFT: Objective function given in (4.1.29) at each iteration
step. RIGHT: Model flow parameter at each iteration step. For the case of noise free
synthetic data the optimal value of the objective function (4.2.1) is zero.
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Chapter 5

A Spectral Approach to Velocity
Estimation

The previous chapter introduced a dictionary based method for estimating the flow
parameter vm under the assumption of the Poiseuille flow model (2.2.1).

In this chapter we continue our study of velocity field estimation from an image
sequence function f(x, t). We analyze its spectrum in Fourier domain and approach
the problem from two different points of view. The first one is global and concerns the
overall behavior of the spectrum f̂(ω) for affine flows. The second view point is local
and concerns the behavior of the phase component of a filter response function.

5.1 Image Sequence Spectra
The d-dimensional Fourier transform and its inverse are given by

f̂(ω) = F(f)(ω) =
∫
Rd
f(x)e−i〈ω,x〉dx, (5.1.1a)

f(x) = F−1(f̂)(x) = 1
(2π)d

∫
Rd
f̂(w)e+i〈ω,x〉dω, (5.1.1b)

where f is an integrable function, 〈ω, x〉 = ∑
i∈[d] ωixi denotes the Euclidean inner

product and [d] := {1, 2, . . . , d}.
The Fourier transform is an one-to-one mapping on the Schwartz space S(Rd) of

functions with rapidly decreasing derivatives of any order. It can be extended by duality
to the space S ′(Rd) of tempered distributions, i.e. the space of linear and continuous
functionals acting on S(Rd). We refer to e.g. [Geo15, Ch. 8.1-3] for details.

The motion of a tracer particle restricted to a 2D imaging plane and driven by
laminar and steady pipe flow is governed by the affine equation x = x0 + ut, where
u ∈ R2 is a time independent velocity and x0 ∈ R2 is a constant initial coordinate.
To describe the motion of Np non-interacting particles we define the image sequence
function

f(x, t) =
∑
i∈[Np]

δ(x− x(i) − u(i)t), u(i) = u(x(i)), (5.1.2)
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where u(i) = (u(i)
1 , 0)> and x(i) = (x(i)

1 , x
(i)
2 )> are the time independent velocity and

initial position of particle i, respectively, and u(i) is given by (2.2.1) or (2.2.2). Note
that the image sequence function f(x, t) is an element of S ′(R3), that is a tempered
distribution. However, it will be convenient to use the term ’function’ for f even if a
distribution actually is meant.

Proposition 5.1.1. Let ω = (ω>x , ω3)> = (ω1, ω2, ω3)> denote the angular frequency
vector. Then the Fourier transform of the image sequence function (5.1.2) is given by

f̂(ω) = f̂(ωx, ω3) =
∑
i∈[Np]

e−i〈ωx,x
(i)〉δ(ω1u

(i)
1 + ω3). (5.1.3)

Proof. Let h(x) = h(x1, x2) denote an arbitrary 2D image function. Then, for any
fixed vector u ∈ R2, the image sequence function h̃(x, t) = h(x− ut) corresponds to
the translation of the function h(x) with constant velocity u. Applying the 3D Fourier
transform to this image sequence yields

F(h̃)(ω) =
∫
R3
h(x− ut)e−i(〈ωx,x〉+ω3t)dxdt (5.1.4a)

=
∫
R2
h(z)e−i〈ωx,z〉dz

∫
R
e−i(〈ωx,u〉+ω3)tdt (5.1.4b)

= ĥ(ωx)δ(〈ωx, u〉+ ω3), (5.1.4c)

where we did a change of variable z = x− ut to obtain (5.1.4b) and the evaluation of
the last integral follows from δ(ω) =

∫
R
e−iωtdt. Now, setting h(i)(x) = δ(x − x(i)),

Eq. (5.1.2) reads
f(x, t) =

∑
i∈Np

h(i)(x− u(i)t). (5.1.5)

Applying relation (5.1.4) and taking into account the linearity of the Fourier transform,
we get

f̂(ω) =
∑
i∈Np

ĥ(i)(ωx)δ(〈ωx, u(i)〉+ ω3) (5.1.6a)

=
∑
i∈Np

e−i〈ωx,x
(i)〉δ(〈ωx, u(i)〉+ ω3), (5.1.6b)

which due to the specific form of the velocity field u(i) = (u(i)
1 , 0)>, is equal to (5.1.3).

Equation (5.1.3) states that the spectrum f̂ of the image sequence f is the sum
of complex phase functions on a corresponding pencil of planes through the origin
ω = 0 with normal vectors n(i) = (u(i)

1 , 0, 1)>. Figure 5.1 depicts the resulting support
of f̂(ω), which is bounded by two extremal planes corresponding to zero velocity
u = 0 with normal (0, 0, ω3)T , and to the peak velocity u = (vm, 0)> with normal
(vm, 0, 1)>, where vm = max

i∈[Np]
u

(i)
1 .

This observation suggests to determine the peak velocity vm by estimating the spec-
tral support of the Fourier transform of a given image sequence.
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Figure 5.1: Spectral support of the Fourier transform of an image sequence correspond-
ing to the pipe flow model. This non-pointed cone, that extends along the ω2 axis, is
bounded by two planes, namely ω3 = 0 and vmω1 + ω3 = 0. The normal vector of the
other plane depends on the unknown peak velocity vm that we wish to estimate from
image sequence data.

5.2 Peak Velocity Estimation
In the following we derive a piecewise linear model of the cone geometry depicted in
Figure 5.1 that takes into account noise suppression and the symmetry of real signals
in the complex Fourier domain. Based on this model, we develop a numerical method
for estimating the spectral support, and hence, the unknown vm.

5.2.1 Direct Spectral Support Estimation
The cone shown in Figure 5.1 is bounded by the box [−π, π]×[−π, π]×[−π, π] and the
planes ω3 = 0, vmω1 + ω3 = 0. Due to the high noise level of real data, we discard the
spectrum at large frequencies as well as a redundant half-space due to the symmetry of
real signals f(x, t) in Fourier space. As a consequence, we only consider the spectrum
in the smaller box [0, π/4]×[−π/4, π/4]×[−π/4, 0]. Assuming a uniform distribution
of the amplitude spectrum

|f̂(ω)| ≈ Cf , (5.2.1)

of the image sequence signal f(x, t) for some constant Cf > 0, we define the region

Ω(v) =
{
ω ∈ R3 : 0 ≤ ω1 ≤

π

4 , −
π

4 ≤ ω2 ≤
π

4 , −min
{
v ω1,

π

4

}
≤ ω3 ≤ 0

}
,

(5.2.2)
for v ≥ 0 and estimate the spectral support of f̂ by the volume integral

s(v) = 1
|Ω(vm)|

∫
Ω(v)

|f̂(ω)|dω, vm, v > 0. (5.2.3)
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Figure 5.2: This figure illustrates the set Ω(vm) that defines the spectral support of
f̂ for (a) vm < 1, (b) vm = 1, and (c) vm > 1. Conversely, estimating the actual
support for a given spectrum f̂ corresponding to real image sequence data f , enables
to estimate the parameter vm.

Because the support of |f̂(ω)| is restricted to Ω(vm), the volume integral attains its
maximum for v ≥ vm, in which case s(v) = Cf . The geometry of the set Ω(vm),
illustrated in Figure 5.2, suggests to distinguish between the following two cases for
the analytical evaluation of s(v).

Case 1: If vm ≤ 1, then |Ω(vm)| =
(
π
4

)3
vm and (5.2.3) takes the form of a piecewise

linear function with one breakpoint at vm

s(v) =


Cf
vm
v, 0 ≤ v < vm,

Cf , v ≥ vm.
(5.2.4)

This case is illustrated in Figure 5.2 (a) and (b).

Case 2: If vm > 1, then |Ω(vm)| =
(
π
4

)3
(2− 1

vm
) and (5.2.3) is given by

s(v) =



Cf
2− 1

vm

v, 0 ≤ v < 1,
Cf

2− 1
vm

(1− 1
v
), 1 ≤ v < vm,

Cf , v ≥ vm,

(5.2.5)

which is a piecewise non-linear function with breakpoints at 1 and vm. This case
is illustrated in Figure 5.2 (c).

In practice we can compute f̂(ω) from the image sequence f(x, t) using Fast Fourier
Transform (FFT) and then evaluate s(v) numerically as a Riemannian sum that ap-
proximates (5.2.3). Equations (5.2.4) and (5.2.5) suggest that one breakpoint of s(v)
corresponds to vm, that we wish to estimate.
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Figure 5.3: (Left) The dependence |Ω(vm)| on vm. The red dashed line is the upper
bound of |Ω(vm)| as vm → ∞ that equals π3/32. (Right) The normalized function
s(v) for case 1 when vm < 1 and case 2 when vm > 1.

5.2.2 Parameter Estimation
We first develop smooth parametric representations of (5.2.4) and (5.2.5) that are amenable
to efficient numerical optimization, followed by sketching the numerical approach for
evaluation of the piecewise linear/non-linear fitting.

5.2.2.1 Piecewise Linear Model

Equation (5.2.4) suggests that the data set {v̂i, s(v̂i)}i∈[n] estimated numerically from
(5.2.3) via the Riemannian sum is best approximated by a two-segment piecewise lin-
ear continuous function of the form

g : R 7→ R, g(x) =
{
a1 + b1x, x ≤ ξ,

a2 + b2x, x > ξ.
(5.2.6)

We define
l1(x) = a1 + b1x, l2(x) = a2 + b2x, (5.2.7)

and rewrite (5.2.6) as
g(x) = −max{−l1(x),−l2(x)}. (5.2.8)

A smooth approximation of g(x) can be achieved by using the log-exponential func-
tion,

gε(x) = −ε ln
(
e−l1(x)/ε + e−l2(x)/ε

)
, (5.2.9)

where ε > 0 is the smoothing parameter that enables a uniform approximation, to any
accuracy, of (5.2.8) as ε→ 0 [RW09, Ch. 1.-H].

From (5.2.7) and the continuity of g(x) at the breakpoint ξ, which implies that
a1 + b1ξ = a2 + b2ξ, we can express (5.2.9) as

gε(x) = −ε ln
(
e−(a1+b1x)/ε + e−(a1+(b1−b2)ξ+b2x)/ε

)
(5.2.10a)

= α + βx− ε ln
(
1 + e−γ(x−ξ)/ε

)
, (5.2.10b)
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where
α = a1, β = b1, and γ = b2 − b1. (5.2.11)

5.2.2.2 Piecewise Non-Linear Model

In view of (5.2.5) we consider the piecewise non-linear continuous function

h(x) : R+ \ {0} 7→ R, h(x) =


a1 + b1x, 0 < x ≤ ξ1,

a2 + b2
x
, ξ1 < x ≤ ξ2,

a3 + b3x, x > ξ2,

(5.2.12)

where 0 < ξ1 ≤ ξ2 are the breakpoints.

Lemma 5.2.1. For two breakpoints 0 < ξ1 ≤ ξ2 the function defined in (5.2.12) has
the canonical representation

h(x) = α + βx+
∑
i∈[2]

δi

∣∣∣∣∣1x − 1
ξi

∣∣∣∣∣+ ∑
i∈[2]

φi|x− ξi| (5.2.13)

where

α = a1 + a3

2 , β = b1 + b3

2 , δ1 = −δ2 = −b2

2 , φ1 = −b1

2 , and φ2 = b3

2 . (5.2.14)

Proof. The result follows immediately from the continuity of h(x) at the breakpoints
ξ1, ξ2 and the expansion of absolute value terms for the cases 0 < x ≤ ξ1, ξ1 < x ≤ ξ2
and x > ξ2.

Lemma 5.2.2. The piecewise non-linear function (5.2.13) can be approximated uni-
formly by the smooth function

hε(x) = A+Bx+
∑
i∈[2]

Di ln
(

1 + e−2
(

1
x
− 1
ξi

)
/ε
)

+
∑
i∈[2]

Fi ln
(
1 + e−2(x−ξi)/ε

)
,

(5.2.15)
where A = α− δ1/ξ1− δ2/ξ2−φ1ξ1−φ2ξ2, B = β+φ1 +φ2, Di = εδi and Fi = εφi,
for i ∈ {1, 2}.

Proof. The absolute value of x ∈ R can be expressed as

|x| = max{−x, x}, (5.2.16)

and, similar to the discussed above, is approximated uniformly by the smooth function

|x|ε = ε ln
(
e−x/ε + ex/ε

)
= x+ ε ln

(
1 + e−2x/ε

)
. (5.2.17)

The replacement of the absolute value terms in (5.2.13) with the corresponding smooth
approximations

∣∣∣ 1
x
− 1

ξi

∣∣∣
ε

and |x− ξi|ε, for i ∈ [2], yields (5.2.15).
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Figure 5.4: Smooth approximation of two-segment piecewise linear functions defined
in (5.2.6) and of the piecewise non-linear function defined in (5.2.12), for smoothing
parameter values ε1 = 0.1 and ε2 = 0.03.

5.2.2.3 Numerical Parameter Estimation

Returning to our application, equations (5.2.4) and (5.2.5) suggest that the breakpoints
ξ and ξ2 in (5.2.6) and (5.2.12), respectively, correspond to the unknown flow parame-
ter vm > 0. For small ε > 0 we define the functions

ĝε : Rn ×R4 → Rn, ĝε(v̂;α, β, γ, ξ) = α1+ βv̂ − ε ln
(
1 + e−γ(v̂−ξ1)/ε

)
(5.2.18)

ĥε : Rn
+ \ {0} × R5 × R+ \ {0} → Rn, (5.2.19)

ĥε(v̂;α, β, δ, φ1, φ2, ξ2) = (α− δ/ξ1 + δ/ξ2 − φ1ξ1 − φ2ξ2)1+ (5.2.20)

(β + φ1 + φ2)v̂ + ε ln

(
1 + e−2

(
1
v̂
− 1
ξ1
1

)
/ε
)δ (

1 + e−2(v̂−ξ11)/ε
)φ1

(
1 + e−2

(
1
v̂
− 1
ξ2
1

)
/ε
)δ

(1 + e−2(v̂−ξ21)/ε)−φ2

, (5.2.21)

where δ = δ1 = −δ2 and ξ1 = 1 is fixed. In both definitions, division, the logarith-
mic and exponential functions are applied component-wise. Using the non-monotone
spectral projected gradient method, see Section 4.2.1, we numerically minimize the
functions

fg(α, β, γ, ξ) = 1
2‖ĝε(v̂;α, β, γ, ξ)− ŝ(v̂)‖2

2, 0 ≤ ξ ≤ 1, (5.2.22)

and

fh(α, β, δ, φ1, φ2, ξ2) = 1
2‖ĥε(v̂;α, β, δ, φ1, φ2, ξ2)− ŝ(v̂)‖2

2, ξ2 ≥ 1, (5.2.23)

where v̂ = (v̂1, . . . , v̂n)T ∈ Rn and ŝ(v̂) ∈ Rn, with respect to all parameters. The
functions ĝε and ĥε are smooth with respect to α, β, γ, ξ and α, β, δ, φ1, φ2, ξ2, respec-
tively, which implies smoothness of fg and fh. The constraints on variables ξ and ξ2
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express the model conditions on the breakpoints for each case specified in (5.2.4) and
(5.2.5).

Thus, numerically computed optimal values for ξ and ξ2 yield an estimate for the
unknown maximal velocity vm. We illustrate this approach in the next section by
estimating vm with the proposed method on synthetic and real data.

5.2.3 Experiments
We demonstrate the proposed method for estimating the maximal velocity vm using
both synthetic and plane wave ultrasound data. The synthetic images are generated in
order to validate the method with respect to the known true value for vm, and to show
that the method copes well with a range of realistic particle patterns that frequently
occur in practice. The considered textures include:

(a) uniform distribution of Dirac particles at low density,
(b) uniform distribution of Dirac particles at high density, and
(c) white noise.
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x2
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(a) (b) (c)

Figure 5.5: Synthetic textures of (a) uniformly distributed particles at low density, (b)
uniformly distributed particles at high density and (c) uniform white noise. The flow
is from left to right with periodic boundary conditions.

5.2.3.1 Ground Truth Data

Ground truth data consists of three synthetic textures, see Figure 5.5, driven by the
Poiseuille flow model (2.2.1). For this, we choose two peak velocities vm = {0.5, 5}
pixels/frame corresponding to the vm ≤ 1 and vm > 1 case. We generated a discrete
image sequence function f(x, t) with 256 temporal frames of size 256 × 256 pixels.
After computing the Fourier spectrum using Fast Fourier transform (FFT), see Figure
5.6, we numerically evaluated the integral (5.2.3) for a range of velocities {v̂n}n. For
the data set {(v̂n, ŝ(v̂n))}n, we minimized the objective (5.2.22) or (5.2.23) and es-
timated the parameters of the smooth piecewise linear or non-linear functions which
were fitted to the data. Figure 5.6, Table 5.1 and Table 5.2 summarize the obtained
results.
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Figure 5.6: Fourier spectrum |f̂(ω)| of the image sequence signal for each texture: (a)
uniform distribution of particles at low density, (b) uniform distribution of particles at
high density and (c) uniform white noise. TOP ROW: vm = 0.5 pixels/frame. BOTTOM

ROW: vm = 5 pixels/frame. The images show a section of the spectral support in the
plane ω2 = 0. The support of |f̂(ω)| resembles the cone geometry illustrated in Figure
5.1.

α β γ ξ = vm

Ground Truth 0 2.000 -2.000 0.500

(a) low density -0.041 1.403 -1.390 0.713
(b) high density -0.031 1.408 -1.402 0.703
(c) white noise -0.028 1.418 -1.412 0.698

Table 5.1: Model parameters for piecewise linear function (5.2.4) and (5.2.6). Ground
truth values are calculated from (5.2.11) for vm = 0.5. By minimizing the objective
function (5.2.22) we obtain the parameters of the smooth piecewise linear function
(5.2.10b) that fits the data points {v̂, ŝ(v̂)} with the least squared error. The break-
point ξ of this function coincides with the maximal flow velocity vm that we wanted to
determine.
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Figure 5.7: TOP ROW: Results for piecewise linear fitting for all considered textures
driven by Poiseuille flow with maximal velocity vm = 0.5 pixels/frame. BOTTOM

ROW: Results for piecewise non-linear for vm = 5 pixels/frame. The gray line marks
the theoretical curve s(v) predicted by (5.2.4) for vm = 0.5 and (5.2.5) for vm = 5,
where Cf = 1. Blue dots denote the set {v̂, ŝ(v̂)}, where ŝ(v̂) was evaluated as a
Riemannian sum which approximates the integral (5.2.3) with the Fourier spectrum
|f̂(ω)| estimated numerically for each texture, see Figure 5.6. The red solid line shows
the smooth piecewise linear function (5.2.10b), with ε = 0.1 and parameters listed in
Table 5.1, and the smooth piecewise non-linear function (5.2.15), with ε = 0.03 and
parameters listed in Table 5.2, that minimizes (5.2.22) and (5.2.23), respectively.

α β δ φ1 φ2 ξ2 = vm

Ground Truth 0.500 0.273 0.273 -0.273 0 5.000

(a) low density 0.486 0.220 0.214 -0.189 -0.028 4.754
(b) high density 0.489 0.216 0.215 -0.187 -0.027 4.880
(c) white noise 0.487 0.211 0.230 -0.181 -0.028 4.797

Table 5.2: Model parameters for piecewise non-linear function (5.2.5) and (5.2.12).
Ground truth values are calculated from (5.2.14) for vm = 5. We estimated the param-
eters for each flowing texture by minimizing the objective function (5.2.23). According
to (5.2.5), the breakpoint ξ2 coincides with the maximal flow velocity vm.
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5.2.3.2 Ultrasound PIV: In-Vitro Data

We evaluated the proposed method on two sets of plane wave ultrasound images that
image air-/micro-bubbles flow in a straight tube with different particle density, flow
and frame rates. Table 5.3 summarizes all relevant imaging parameters. In Figure 5.8
we show one frame for both image sequences. Due to absorption of the acoustic wave
the illumination of the tracer particles within the image is non-uniform.

The in-vitro experiment was performed under controlled conditions and the volume
flow rate was measured with a flow-meter. This allows us to experimentally estimate
the peak velocity using the equation

vm = 2 ∆Φ
πR2 ·

Nx∆t
Lx

, (5.2.24)

that is valid for fully developed, laminar and steady pipe flows, where R is the radius
of the tube and ∆Φ is the volume flow rate. Here, the term Nx∆t

Lx
is used to convert the

velocity units form m/s into pixels/frame. We refer to [VKV+16] for a more detailed
description for this type of experiments.

As in the previous section, for each image sequence function f(x, t) we compute
the Fourier transform via FFT and the integral (5.2.3) as a Riemannian sum to obtain
the set {(v̂, ŝ(v̂))}. Next, we fit a liner or non-linear piecewise smooth function to the
data {(v̂, ŝ(v̂))} by minimizing the appropriate objective function (5.2.22) or (5.2.23).
We illustrate all intermediate steps in Figure 5.8 and summarize the final results in
Table 5.4.

Air-bubbles data Microbubbles data

Tube radius R 0.005 m 0.005 m
Temporal frames 299 99
Image size Nx ×Nz 372× 135 396× 131
Frame rate 6.666 kHz 2.222 kHz
Temporal resolution ∆t 0.150 ms 0.450 ms
Field of view size Lx × Lz 3.8× 1 cm2 3.8× 1 cm2

Volume flow rate ∆Φ 15 ml/s 40 ml/s
Estimated vm in m/s 0.382 1.019
Estimated vm in px/frame 0.561 4.777

Table 5.3: Imaging parameters for air-/micro-bubbles data sets acquired in a plane
wave ultrasound PIV experiment. In the last two rows we give the reference value for
maximal flow velocity vm calculated via equation (5.2.24).
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Figure 5.8: TOP ROW: Air-bubbles. BOTTOM ROW: Microbubbles. (a) An ultrasound
frame. (b) Fourier spectrum |f̂(ω)| of the image sequence signal in the plane ω2 = 0.
(c) Results for the piecewise linear and non-linear fitting for air-bubbles and microbub-
bles data sets, respectively, with model parameters listed in Table 5.4.

α β γ ξ = vm

Reference 0 1.783 -1.783 0.561

Air-bubbles flow -0.022 1.166 -1.162 0.828

α β δ φ1 φ2 ξ2 = vm

Reference 0.500 0.279 0.279 -0.279 0 4.777

Microbubbles flow 0.459 0.152 0.203 -0.104 -0.044 4.723

Table 5.4: Model parameters for piecewise linear (5.2.4)/(5.2.6) and non-linear
(5.2.5)/(5.2.12) functions evaluated by minimizing the objective function (5.2.22) and
(5.2.23) for air-bubbles and microbubbles data sets, respectively. The reference values
were calculated via (5.2.11) and (5.2.14) for vm given by (5.2.24).

We remark, that in practice the discrete and finite image sequence function does not
have a constant amplitude of the spectrum as assumed in equation (5.2.1). Rather we
have |f̂(ω)| ≤ Cf . This leads to a more complicated behavior of the support function
s(v). The difference between the numerical ŝ(v̂) and a piecewise linear or non-linear
function modeling s(v) can be noticed in all plots of Figure 5.7. The model mismatch
could be the source of the slight but systematic overestimation for small subpixel peak
velocities observed for both synthetic and ultrasound data as observed in the numerical
results in Tables 5.1 and 5.4.
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5.3 Local Spatio-Temporal Approach
High temporal resolution of the signal acquired in plane wave ultrasound measure-
ments leads to displacements that enable the application of differential motion estima-
tion techniques. This motivates the use of a spatio-temporal filter bank approach for
local motion extraction. The design of orientation- and motion-sensitive local filters
has a long tradition in image processing and computer vision [Hee88, FJ90, Hag92], in
models of early natural vision [AB85, MH08] and in the wavelet community [MK98].
Our goal is a proper discretization of a half-space in the spatio-temporal Fourier do-
main (which only is relevant for real-valued signals), in terms of a collection of motion-
sensitive filters whose spectral support form a partition of unity to achive uniform mo-
tion sensitivity.

5.3.1 Spatio-Temporal Filter Bank
In this section, we detail the design of a spatio-temporal filter bank. The representation
in spherical coordinates enables to illustrate the radial dependency in 1D and the two
angular dependencies in 2D and 3D, respectively.
Design Criteria. The major aspects are:

• Self-similar parametrization in terms of a sequence of center frequencies, such
that all filters form a partition of unity of the frequency interval [ π16 ,

π
4 ]. The range

originates from the following considerations: structures that generate lower fre-
quencies are not relevant in our scenario, and the dependency on the global mean
is removed. Frequencies larger than π

2 are regarded as noise.

• All filters form a partition of unity of both angular ranges. We thereby ignore an
arbitrary half-space due to the symmetry of real signals in the Fourier domain.

The Log-Normal Filters. The transfer function of the one-dimensional log-normal
filter with center frequency ωi ≥ 0 and width σi ≥ 0 is given by

ĝi(ω) = 1
C(σi)

ωi
ω

exp
[
− 1

2

( log( ω
ωi

)
σi

)2]
, ω ≥ 0, (5.3.1)

where C(σi) =
√

2πσi. The norm of each filter is

‖ĝi‖L1(R+) = ωi. (5.3.2)

The set of center frequencies and frequency widths

ωi = c(i−1)ω1, σ2
i = log ωi+1

ωi
= log c, c > 1, i = 1, 2, . . . (5.3.3)

defines a filter bank {ĝi(ω)}i≥1 given by (5.3.1) such that ĝi+1(ω) = ω√
ωiωi+1

ĝi(ω).
These parameters are also used below in the case of 2D and 3D filter banks.
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Figure 5.9: (a) The log-normal bandpass filter bank with ω1 = π/50 and c = 1.5
defining the parameter values (5.3.3). (b) Summing up the filter responses enables
almost uniform detection of spectral signal support within the interval ω ∈ [ π16 ,

π
4 ],

cf. (5.3.4). (c) The angular part ĝj(φ) defined by (5.3.5) also provides a partition of
unity within the interval φ ∈ [0, π].

Figure 5.9 illustrates this filter bank and also shows that it approximately provides
a partition of unity of the frequency range of interest,∑

i∈[12]
ĝi(ω) ≈ constant, for ω ∈

[
π

16 ,
π

4

]
. (5.3.4)

In particular, very low frequencies and the global mean value of a signal, to which
these filters are applied, are suppressed, as is the high-frequency range ω > π

2 which is
likely to be dominated by noise under realistic imaging conditions.

Extension to 2D. The extension of (5.3.1) to 2D reads

ĝi,j(ω) = ωi
‖ω‖

ĝi(‖ω‖)ĝj(φ) = (5.3.5)

= 1
C(σi)C(nφ)

(
ωi
‖ω‖

)2

exp
[
− 1

2

( log(‖ω‖
ωi

)
σ

)2
]

cos
(
φ− φj

2

)2nφ
, (5.3.6)

with polar coordinates ω = (ω1, ω2) 7→ (‖ω‖, φ) on the right hand side and parame-
ters: center frequency ωi, frequency width σ, center angle φj , parameter nφ ∈ N and
C(nφ) = 2π

22nφ

(
2nφ
nφ

)
. In comparison to the one-dimensional case (5.3.1), this filter

consists of a radial and an angular part. This separability is relevant for implemen-
tations of the filter in the spatial domain as convolution operators. The angular part
yields orientation-selective filters whose selectivity can be tuned by selecting nφ. In
connection with the filter parameters (5.3.3), we fixed nφ = 16.

Figure 5.10 (c) illustrates the filters {ĝi,j(ω)} corresponding to the parameters
(5.3.3), with additional center angles φj given by

φj = (j − 1)π7 , j ∈ {0, 1, . . . , 9}. (5.3.7)
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Figure 5.10: (a) Two dimensional log-normal filter defined by (5.3.5) for i = 6, j = 2.
(b) The composed log-normal filter Gi(ω) given by (5.3.11) illustrates the contribution
of all filters at a single center frequency to the entire angular range. (c) Contours of log-
normal filters illustrate the self-similar design and the partition of unity. (d) Contours
of the composed log-normal filters used as a filter bank for our application.
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(a) (b) (c)

Figure 5.11: (a) Illustration of the extensions of the 2D filter to 3D defined by (5.3.8)
for parameters i = 7, j = 1, k = 5. (b)

∑
j
ĝi,j,k(ω) for fixed i = 7 and k = 5. (c)

Gi(ω) = ∑
j,k
ĝi,j,k(ω) for fixed i = 7 (cf. (5.3.11)).

Extension to 3D. In spherical coordinates ω = (ω1, ω2, ω3) 7→ (‖ω‖, θ, φ), our
three-dimensional version of the log-normal filter reads

ĝi,j,k(ω) =
(
ωi
‖ω‖

)2

ĝi(‖ω‖)ĝj(φ)ĝk(θ) = (5.3.8)

1
C

(
ωi
‖ω‖

)3

exp
[
− 1

2

( log(‖ω‖
ωi

)
σ

)2
]

cos
(
φ− φj

2

)2nφ
cos

(
θ − θk

2

)2nθ
, (5.3.9)

with the normalizing factor C = C(σ)C(nφ)C(nθ), C(nφ) = C(nθ) and nφ = nθ.
The center values of the additional angular variable are

θk = (k − 1)π7 , k ∈ [8]. (5.3.10)

Figure 5.11 illustrates the resulting filters. The proposed filter bank is designed to
be sensible to flow in all directions and independent of the orientation angle. For
this reason we sum up several filters along the angular parameters and consider the
remaining radial component ωi as the only filter parameter.

Spatio-Temporal Filter Bank. The filter bank is parametrized by the finite set of
center frequency values ωi and defined by

Ĝi(ω) =
∑
j

ĝi,j(ω) (in 2D) and Ĝi(ω) =
∑
j,k

ĝi,j,k(ω), (in 3D) (5.3.11)

where ĝi,j(ω) and ĝi,j,k(ω) are given by (5.3.5) and (5.3.8), respectively. The parame-
ters are listed in (5.3.3), (5.3.7), (5.3.10).
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5.3.2 Local Velocity Estimation

For an image sequence f(x, t), the response function of a filter Gi (5.3.11) reads

hi(x, t) = (f ∗Gi)(x, t) = F−1(f̂ · Ĝi)(x, t) = ri(x, t)eiψi(x,t), (5.3.12)

with the amplitude function ri(x, t) = |hi(x, t)| and the phase function

ψi(x, t) = arg(hi(x, t)) = =(ln(hi(x, t))) ∈ (−π, π]. (5.3.13)

The basic assumption underlying local motion estimation is that phase functionsψi(x, t)
are approximately conserved under motion, that is

d
dt
ψi = 〈∇ψi(x, t), (ẋ, 1)〉 = 〈∇xψi(x, t), ẋ〉+ ∂tψi(x, t) ≈ 0, ∀(x, t). (5.3.14)

As a result, after estimating the partial derivatives of all functions ψi, we estimate the
velocity v = ẋ for any fixed space-time point (x, t) by minimizing the squared residual
error of the latter equation, namely

u(x, t) = arg min
v

∑
i

(〈∇xψi(x, t), v〉+ ∂tψi(x, t))2 . (5.3.15)

Estimating the partial derivatives of ψ(x, t). We express the partial derivatives ∇ψ
by partial derivatives of a smooth signal h, as follows

h = reiψ, ∇h = (∇r)eiψ + (reiψ)(i∇ψ) = eiψ∇r + ih∇ψ (5.3.16a)

∇ψ = 1
|h|2
=(h∇h), h∇h = re−iψ∇h = r∇r + i|h|2∇ψ. (5.3.16b)

We numerically estimate the partial derivatives of ∇h by separable 3D filters whose
frequency response are obtained by an orthogonal expansion of the desired behaviour
in the Fourier domain (derivative filter at low frequencies, noise suppression at high
frequencies) using Krawtchouk polynomials [HS87, YPO03]. These filters are similar
to derivative-of-Gaussian filters but avoid aliasing artefacts in the case of filters with
small spatial support, that would result from merely sampling the continuous impulse
response.

5.3.3 Experiments

In Section 5.3.3.1 we report synthetic experiments for 1D image sequences that vali-
date and illustrate the filter bank design, followed by 2D pipe flow scenarios in Sections
5.3.3.2 and 5.3.3.3, including real in-vitro data in laminar and turbulent flow scenarios.
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5.3.3.1 One-Dimensional Synthetic Sequences with Ground Truth

We illustrate the filter characteristics for the following 1D scenarios:

(a) Harmonic oscillation of a single particle, x(t) = a sin(ωt), where a > 0 is the
amplitude and ω > 0 is the angular frequency.

(b) Elastic collision of two point particles moving with constant velocity.
(c) Flow of multiple particles with velocities

ẋ = v(x) =
{
−αx2, x ≤ 0
αx2, x > 0 , α > 0. (5.3.17)
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Figure 5.12: TOP ROW: Space-time trajectories for the 1D image sequences of Section
5.3.3.1. CENTER ROW: Ground truth velocities with velocity magnitude depicted in
the colormap. BOTTOM ROW: Estimated velocities for the harmonic oscillator (a), the
elastic collision of two particles (b) and for the flow of multiple particles (c), using
the phase functions displayed by Figure 5.13. These estimates are accurate except for
small regions close to the boundaries in trajectory direction, that exhibit natural errors
caused by overlapping filter supports.
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Figure 5.12 illustrate the image sequences in terms of space-time trajectories of the
particles and their velocities. Figure 5.13 illustrate the phase functions of the aggre-
gated complex filter responses (5.3.11). Due to the smoothness of these functions,
velocity estimates are accurate even though moving particles cause sharp intensity
changes in the spatio-temporal domain.

(a) (b) (c)

Figure 5.13: COLUMNS: Phase output ψi due to (5.3.13) for center frequencies ωi given
by (5.3.3) and i ∈ {5, 7, 9}. ROWS: The 1D image sequences of Section 5.3.3.1. These
plots illustrate that even for the 1D sequences with low particle density, combining
multiple filter responses due to (5.3.11) enables to locally estimate motion information
at every spatio-temporal point (x, t).

5.3.3.2 Laminar Pipe Flow: Ground Truth Data

We validated the proposed method in 2D using synthetic image sequences of uniformly
distributed point-particles, driven by laminar pipe flow in (2.2.1). We generated a
spatial-temporal dataset of size 256 × 256 × 256 with peak velocities in the range
vm ∈ {0.5, 1, ..., 4, 4.5} pixels/frame. We estimated the velocity field by minimizing
(5.3.15) using the 3D filter bank in (5.3.11). The results are shown in Figure 5.14.

59



x2

-R 0 R

0.5

1

1.5

2

2.5

3

3.5

4

4.5
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 5.14: Estimates of time-averaged velocity profiles for several peak velocities
vm. The parabolic profile is well reconstructed if vm < 3. For vm ≥ 3, motion-induced
temporal frequencies cause aliasing effects (cf. [BPS15, Section 2.2.3]) at the center
of the tube, which could be fixed by spatial subsampling.
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Figure 5.15: Estimated time-averaged velocity fields for maximal velocity (a) vm = 1
pixels/frame and (b) vm = 4 pixels/frame with velocity magnitude depicted in the
colormap. The local approach can not estimate large particle displacements due to the
high velocities in the center of the tube as observed in Figure 5.14.

5.3.3.3 Ultrasound PIV: In-Vitro Data

Figure 5.16 depicts real in-vitro flows for both a laminar and a turbulent scenario,
along with time-averaged local flow estimates û(x(k)) =

(
û1(x(k)), û2(x(k)))

)>
based

on (5.3.15) and parameter estimates vm and N of the flow model (2.2.2). The in-vitro
Echo PIV experiments imaging the flow in a pipe of a fluid seeded with air bubbles
were performed under controlled conditions. The relevant experimental parameters
include: image acquisition rate f = 6.66 kHz, fluid density ρ = 1038 kg/m3, viscosity
µ = 4.1 mPa·s, radius of the pipe R = 5 mm, field of view 21.3 × 37.8 mm2, image
size 288× 384 and number of temporal frames 298.
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Q [m3/s] Re vm N v(ave) v∗(ave)

laminar flow 15 · 10−6 484 0.356 1.361 0.193 0.295
turbulent flow 80 · 10−6 2579 1.557 3.547 1.081 1.577

Table 5.5: In-vitro ultrasound experiments. Relevant parameters: volume flow rate
Q, measured with a flow-meter, and Reynolds number Re. Estimated parameters
(cf. (2.2.2)): vm, N ; relation to the average velocity v(ave) = vm(N + 1)/(N + 3);
independent reference value for the average velocity: v∗(ave) = Q/(πR2). The veloci-
ties are given in pixels/frame.
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Figure 5.16: In-vitro data. TOP ROW: laminar steady flow. BOTTOM ROW: turbulent
flow. (a) An image of the tracer particles, (b) time-averaged local velocity field estimate
and (c) flow model estimate with velocity magnitude depicted in the colormap. Table
5.5 reports quantitative results.

We obtain parameter estimates vm and N by minimizing the objective

f(vm, N) =
∑
k

∥∥∥û(x(k))−R(ϑ)u(x(k); vm, N)
∥∥∥2
, vm ≥ 0, N ≥ 1, (5.3.18)

where the rotation matrix R(ϑ) accounts for the tilted pipe (indicated by the dashed
lines in Figure 5.16) and u(x(k); vm, N) is given by (2.2.2). The sum runs over all
image points x(k) contained in the interior of the tube. The minimization problem
was solved using the spectral projected gradient method, see Section 4.2.1, using the
default parameters specified in [BMR00] and with the non-monotone parameter value
M = 2. The initial values for vm and N where randomly chosen in the intervals (0, 2)
and (1, 4), respectively. The program was stopped after 10 iterations. The estimated
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velocity fields depicted by Figure 5.16 and the quantitative results in Table 5.5 show
that our method achieves realistic estimates. The reference value v∗(ave) is calculated
from the volume flow rate Q that was measured during the experiment.
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Chapter 6

Conclusion

In this thesis we investigated the problem of image reconstruction and motion estima-
tion related to plane wave ultrasound particle image velocimetry.

In Chapter 3 we considered a simplified model of wave propagation in uniform
medium, which neglects multiple scattering in view of the Born approximation, the
shape of the incident wave and the decay factor in the amplitude of the travel waves,
in order to formulate an image reconstruction approach that scales well with the size
of the problems encountered in realistic applications such as plane wave ultrasound
imaging. We discussed the Delay and Sum reconstruction method and its relation to the
solution of the inverse problems via least squares minimization. Numerical evaluations
showed that Delay and Sum and least squares minimization methods visually produce
similar results.

In Chapter 4 we reformulated the velocity estimation problem in Echo PIV for
laminar and steady flows as a parametric sparse reconstruction problem. We defined
a sparsifying dictionary consisting of space-time trajectories of individual particles,
which is updated during the iterative process and robustly refines the unknown velocity
information. We analyzed and tested the several minimization schemes on synthetic
and real in-vitro data. The generalization of the trajectory dictionary to multiple-flow
parameter models, e.g. the pulsatile blood flows [Wom55] remains as future work.

In the first part of Chapter 5, we presented a global method for estimating the max-
imum velocity for pipe flows based on the cone geometry of the spectral support in the
Fourier domain of the image sequence function. In the second part, we proposed a vari-
ational method for extracting the local velocity field information based on a carefully
design spatio-temporal filter bank that is sensitive to all flow directions.

The proposed motion estimation approaches have several attractive features. First,
they work directly on given image sequence data without the need for any image pre-
processing. Second, since they are global methods it is expected to cope better with
noisy scenarios that are encountered in real applications. Finally, the numerical com-
putations are simple enough to make conceivable real-time implementations.
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[MH08] C. Massot and J. Hérault. Model of Frequency Analysis in the Visual
Cortex and the Shape from Texture Problem. International Journal of
Computer Vision, 76:165–182, 2008.

[Min89] M. Minoux. Mathematical Programming. Theory and Algorithms. John
Wiley and Sons, 1989.

[MK98] J. Margarey and N. Kingsbury. Motion Estimation Using a Complex-
Valued Wavelet Transform. IEEE Transactions on Signal Processing,
46(4):1069–1084, 1998.

[MS93] R. Mifflin and J. J. Strodiot. A rapidly convergent five-point algorithm
for univariate minimization. Mathematical Programming, 62:299–319,
1993.

[MTB+09] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink. Coherent
Plane-Wave Compounding for Very High Frame Rate Ultrasonography
and Transient Elastography. IEEE Transactions on Ultrasonics, Ferro-
electrics and Frequency Control, 56(3), 2009.

[Nat15] F. Natterer. Sonic imaging. In O. Scherzer, editor, Handbook of Math-
ematical Methods in Imaging, pages 1253–1278. Springer, 2015.

[Pie89] A. D. Pierce. Acoustics: An Introduction to Its Physical Principles and
Applications. American Institute of Physics, 1989.

[Poe17] C. Poelma. Ultrasound Imaging Velocimetry: A Review. Experiments
in Fluids, 58(1):3, 2017.

[PPA+14] J. Provost, C. Papadacci, J. E. Arango, M. Imbault, M. Fink, J.-L. Gen-
nisson, M. Tanter, and M. Pernot. 3D ultrafast ultrasound imaging in
vivo. Physics in Medicine & Biology, 2014.

[PvdMM+12] C. Poelma, R. M. E. van der Mijle, J. M. Mari, M. X. Tang, P. D.
Weinberg, and J. Westerweel. Ultrasound Imaging Velocimetry: To-
ward Reliable Wall Shear Stress Measurements. European Journal of
Mechanics - B/Fluids, 35:70–75, 2012.

69



[RJG13] S. Rodriguez, X. Jacob, and V. Gibiat. Plane wave echo particle image
velocimetry. In Proceeding of Meeting of Acoustic, volume 19 of Pro-
ceeding of Meeting of Acoustic. Acoustical Society of America (ASA),
2013.

[RSGJ12] S. Rodriguez, P. Sahuguet, V. Gibiat, and X. Jacob. Fast topological
imaging. Ultrasonics, 52(8):1010–1018, 2012.

[RW09] R.T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, 2nd
edition, 2009.

[RWWK07] M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans. Particle
Image Velocimery – A Practical Guide. Springer, 2007.

[SCT+99] L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink. Time-
resolved pulsed elastography with ultrafast ultrasonic imaging. Ultra-
sonic Imaging, 1999.

[Shu15] K. K. Shung. Diagnostic Ultrasound: Imaging and Blood Flow Mea-
surements. CRC Press. Taylor & Francis Group, 2015.

[SS12] M. F. Schiffner and G. Schmitz. Fast image acquisition in pulse-echo
ultrasound imaging using compressed sensing. IEEE International Ul-
trasonics Symposium (IUS), 2012.

[Sti14] J. Stigler. Analytical Velocity Profile in Tube for Laminar and Turbulent
Flow. Engineering Mechanics, 21(6):371–379, 2014.

[Sza04] T. L. Szabo. Diagnostic Ultrasound Imaging: Inside Out. Elsevier
Academit Press, 2004.

[TBSF02] M. Tanter, J. Bercoff, L. Sandrin, and M. Fink. Ultrafast compound
and imaging for 2-d and motion and vector estimation : Application
to transient elastography. IEEE Ultrasonics, Ferroelectrics, and Fre-
quency Control, 2002.

[TF14] M. Tanter and M. Fink. Ultrafast Imaging in Biomedical Ultrasound.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-
trol, 61(1), 2014.

[VKV+16] J. Voorneveld, P. Kruizinga, H. J. Vos, F. J. H. Gijsen, E. G. Jebbink,
A. F. W. van der Steen, N. de Jong, and J. G. Bosch. Native blood
speckle vs ultrasound contrast agent for particle image velocimetry
with ultrafast ultrasound - in vitro experiments. In International Ul-
trasonics Symposium. IEEE, 2016.

70



[Wer11] D. Werner. Funktionalanalysis. Springer-Lehrbuch, 2011.

[Whi09] F. M. White. Fluid Machanics. McGraw-Hill, New York, 2009.

[Wom55] J. R. Womersley. Method for the calculation of velocity, rate of flow and
viscous drag in arteries when the pressure gradient is known. J. Phys-
iol., 127:553–563, 1955.

[YPO03] P.-T. Yap, R. Paramesran, and S.-H. Ong. Image Analysis by
Krawtchouk Moments. IEEE Transactions on Image Processing,
12(11):1367–1377, Nov 2003.

[YZ11] J. Yang and Y. Zhang. Alternating direction algorithms for l1-problems
in compressive sensing. SIAM Journal on Scientific Computing, 33(1),
2011.

71


	Introduction
	Motivation
	Contribution

	Background
	Acoustic Scattering Theory
	Wave Equation
	Forward Scattering Problem
	Born Approximation
	Foldy-Lax Equation
	Inverse Scattering Problem

	Ultrasound Particle Image Velocimetry
	Ultrasound Imaging
	In Vitro EchoPIV
	Laminar Pipe Flow


	Ultrasound Image Reconstruction
	Imaging Operator
	The Model Problem
	Delay and Sum (DAS)
	Discretization by Collocation Method
	Image Reconstruction

	Experiments
	Synthetic data
	Ultrasound PIV data


	Dictionary Based Flow Reconstruction
	Recovery Problem
	Flow Parameter
	Trajectory Matrix

	Numerical Optimization
	Spectral Projected Gradient Method
	Trust Region Method
	Parametric and Univariate Optimization

	Experiments

	A Spectral Approach to Velocity Estimation
	Image Sequence Spectra
	Peak Velocity Estimation
	Direct Spectral Support Estimation
	Parameter Estimation
	Piecewise Linear Model
	Piecewise Non-Linear Model
	Numerical Parameter Estimation

	Experiments
	Ground Truth Data
	Ultrasound PIV: In-Vitro Data


	Local Spatio-Temporal Approach
	Spatio-Temporal Filter Bank
	Local Velocity Estimation
	Experiments
	One-Dimensional Synthetic Sequences with Ground Truth
	Laminar Pipe Flow: Ground Truth Data
	Ultrasound PIV: In-Vitro Data



	Conclusion

