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Abstract

A stochastic hybrid system (SHS) is a dynamic system that exhibits both a continuous and
a discrete dynamical behavior. In the scientific literature on SHS the principle of causality
is commonly assumed, but more realistic models should account on history dependence. In
this thesis we developed and analyze a new mathematical model called Hereditary Stochastic
Hybrid System which, with the help of a generalization of stochastic time change, allows for
general history dependence. We apply the above model to the study of the movement of the
bacterium E. coli: when these bacteria swim in a field of chemoattractant molecules, they
perform a random walk characterized by a run-and-tumble motion. This random walk is
biased towards regions of higher concentration of the chemoattractant. These bacteria are,
however too small to sense spatial gradients along their body axis. Instead they developed
a history-dependent strategy to search of food, namely the use of memory of previous mea-
surements of chemical concentrations. In this way the bacteria are able to infer whether they
swim up or down a chemical gradient. By using our framework we are able to generalize the
existing models for E. coli movement and have a better fitting of the experimental data. We
developed also a software that simulates and compares the different models existing in the
literature, with special care for high performance and usability.
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Zusammenfassung

Ein stochastisches Hybrid-System (SHS) ist ein dynamisches System, welches sowohl kon-
tinuierliches als auch diskretes dynamischen Verhalten zeigt. In der wissenschaftlichen Lit-
eratur zu SHS wird allgemein das Prinzip der Kausalität angenommen, aber realistischere
Modelle sollten auch eine Abhängigkeit von längeren vorhergehenden Zeitsegmenten ein-
beziehen. In dieser Arbeit wird ein neues mathematisches Modell entwickelt und analysiert,
welches wir hereditäres stochastisches Hybrid-System nennen. Dieses erlaubt durch eine
Generalisierung der stochastischen Zeitdynamik eine allgemeine Abhängigkeit von der Ver-
gangenheit des Systems. Mit Hilfe dieses Modells beschreiben wir den Bewegungsprozess von
E. coli Bakterien. Diese bewegen sich in einer Lösung chemischer Lockstoffe in Form eines
Random Walks, welcher einen Bias in Richtung höherer chemischer Konzentrationen des
Lockstoffs aufweist. Da E. coli Bakterien zu klein sind, um räumliche Gradienten entlang
des Zellkörpers wahrzunehmen, entwickelten sie eine Gedächtnis-basierte Strategie für die
Nahrungssuche. Dafür wird in einem intrazellulären Signalpfad, der auch das Bewegungsver-
halten steuert, die Lockstoffkonzentration früherer Zeitschritte gespeichert. Durch den Ver-
gleich der derzeitigen zur vorherigen Konzentration können die Bakterien nun entscheiden,
ob sie entlang oder entgegen eines Gradienten schwimmen. Mit Hilfe unseres Modells kön-
nen wir bestehende Modelle für die Bewegung von E. coli Bakterien verallgemeinern, und
eine bessere übereinstimmung mit experimentellen Daten erreichen. Desweiteren entwickel-
ten wir eine Software die die verschiedenen Bewegungsmodelle simuliert und vergleicht, mit
besonderem Fokus auf hohe Effizienz und Benutzerfreundlichkeit.
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INTRODUCTION

E. coli and Chemotaxis. Micro-organisms that live in liquids have developed several
strategies to explore their environment in order to find regions that are more favorable for
their development. One of the most studied organisms, in this respect, is the petrichously
flagellated bacterium Escherichia coli (E. coli), a bacterium with flagella that can be grown
easily and inexpensively in a laboratory setting, and has been intensively investigated for
over 60 years.

The 4-8 flagella of E. coli are distributed over the entire cell surface. Each one of the flag-
ella is anchored to a motor, which can rotate counterclockwise (CCW) or clockwise (CW).
When all the flagella rotate CCW, they form a flagellar bundle and the bacterium is pushed
forward in an almost straight line with a characteristic speed u ∼ 16 − 30µm

s
. This phase

of the motion is called run, and it is interrupted when at least one flagellum rotates CW.
In this phase, called tumble, the bundle unravels, the bacterium stops and starts to reorien-
tate its swimming direction: the average duration of a tumbling is approximately 0.1 s [45].
E. coli, to survive, searches for nutrients in space by maintaining a remarkable system of
biochemical reactions inside the cell, called the chemotaxis-signaling pathway. Chemotaxis
allows each bacterium to move toward the nutrient and to avoid poisonous substances with
great precision, and it is robust against external and internal fluctuations [87].

In the last 40 years, bacterial chemotaxis has been an area of increasing interest to both
experimentalists and theoreticians. This interest has been stoked by ever-increasing exper-
imental insight into the behavior of bacteria, both on the population and individual scale,
coupled with insight provided by new and more detailed mathematical models, at various
scales. The fundamental challenges today are in seeking to provide an appropriate description
on the macro-scale population level while accounting for variation of specific characteristics
amongst individual cells.

The E. coli bacterium belongs to the species that are unable to sense spatial chemoattrac-
tant gradients reliably due to their small size. In evolution therefore it has then developed a
history-dependent strategy for food searching, mainly based on the use of memories of pre-
vious chemical concentrations. As reported by Brown, the question of whether cells respond
to spatial or temporal stimuli had been considered earlier in a simpler way by [82]. These
experiments showed that E. coli senses temporal stimuli. In this way the bacterium is able
to infer whether the swimming is done up or down a chemical gradient [106]
In the presence of chemoattractants, the duration of the runs is modulated by a chemotactic

xv



xvi INTRODUCTION

pathway. The chemotaxis signaling pathway of E. coli has been extensively studied and
modeled on various levels of microscopic detail. The first attempt to quantitatively model
the chemotaxis signaling pathway was the two-state model by Asakura and Honda [4], which
was later extended and improved several times leading to the identification of an optimal
reaction network, which satisfies the requirements of robustness and adaptivity.
Although the chemotaxis signaling network has a relatively simple topology, when it comes
to the study and simulation of a great number of cells computation becomes demanding.
It is convenient and necessary to describe the chemotaxis signaling pathway via a cartoon
model that captures the essential structure of the dynamics of the run-and-tumble strategy
[2, 22, 45]. In this way it is possible to derive macroscopic equations for the dynamics of the
bacterial density.
Understanding the behavior of chemotactic bacterial populations is interesting for a number
of reasons. While bacteria behave independently, populations exhibit a collective behavior.
In the natural environment, bacterial populations are generally found to exist in the form
of biofilms which can have substantial impact upon industry and medicine [35]. Hence, un-
derstanding the comparative importance of mechanisms which affect and cause the observed
behavior within bacterial populations, for example chemotaxis and diffusion, would greatly
facilitate in the prediction of bacterial behavior in the natural environment. To this aim
continuum models (particularly early models of bacterial populations) have generally used
the Keller-Segel model of chemotaxis, originally devised by Keller and Segel [70, 71] in mod-
eling the movement of slime molds.

Brief Review of the Existing Literature. A growing number of approaches have been
taken in modeling and understanding the impact that microscopic (individual) behavior has
on the macro-scale (population) level.
The derivation of a stochastic description, incorporating individual cell behavior, was the
focus of work by Alt [2]. Alt undertook asymptotic analysis of the governing equations and
considered small limits of certain parameters affecting run lengths and turn angles of the
bacteria. It is interesting to notice that this model differs substantially from the others pre-
sented in the literature since the distribution of runs is not exponentially distributed: the
probability rate to tumble for an individual running in a specific direction depends on the
chemical ligand as well as on the run time, counted from the beginning of the run. Recently,
two further pieces of work (De Gennes [39], Clark, Damon A., and Lars C. Grant [28]) have
considered the effect that internal delays within the intracellular signaling cascade have on
the bacterial response. De Gennes [39] considered the motion of a single bacterium during
one run, i.e. a counter-clockwise (CCW) rotation of its flagella, and related the response
function (the receptor to motor response) describing the bacterial movement to the macro-
scopic scale chemotactic coefficient.
Other recent work on developing multi-scale models of bacterial chemotaxis using equation-
free methods has been undertaken by Setayeshgar et al. [13, 113] and Erban and Othmer
[45]. Bialek, William, and Sima Setayeshgar [13] describe the microscopic behavior of a single
bacterium using a system of ordinary differential equations for the internal state variables of
the bacterium describing for instance, the pathway molecule concentration. Applying this
theory, Setayeshgar et al. [113] propose a simplified model of excitation and adaptation.
Erban and Othmer [45] incorporated the above microscopic description into a macroscopic
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description of bacterial chemotaxis as defined by the telegraph process. The turning rates
were assumed to depend on the concentration of CheYP. By use of appropriate scalings
and moment closure techniques, they derive both a hyperbolic system of equations and the
classical parabolic Keller-Segel description of chemotaxis. Expressions for the form of the
chemotactic coefficient in terms of individual state variables are derived.
Vergassola and Celani [22] exploited the regularity of some kernel function for the memory
of the bacteria to derive refined macroscopic equations for the population dynamics. This
model was generalized a year later in collaboration with T. S. Shimizu [21]. This work is
of fundamental importance and can be pointed as a great synthesis of years of studying: it
can be considered as a generalization of [22] and [126]: they propose that E. coli adopts
the strategy called minimax, i.e. a decision rule used for minimizing the possible loss for
a worst case (maximum loss) scenario, against the environment. They show that this opti-
mization principle provides a systematic possibility to get around the need to know precisely
the statistics of environmental fluctuations.

Hypotheses. In all the literature we have consulted about E.coli models the run phase
follows an exponential distribution. By considering the data in [12] we noticed that the
mean and the variance of the distribution of the runs are incompatible with respect to an
exponentially distributed random variable. We can still use exponentially distributed ran-
dom variables as a first approximation: they will, though, underestimate the variance of
the distribution of the runs. There are, however, lots of reason why one might keep using
such a distribution and why it is so popular in the literature: first of all, the memoryless
property which simplifies the Kolmogorov equation related to the stochastic process that
describes the bacterial movement. In this case the tumble and run events are generated by a
Poisson process. In the present work we propose a microscopic description of the dynamics
of the bacterium via a subordinated diffusion process, which models the internal state of the
bacterium: this allows to weaken the assumption that the bacterial tumbling process obeys a
Poisson distribution. The core of the thesis is the description of a new mathematical model
which generalizes a great number of published models mentioned in this introduction. We
call this model Hereditary Stochastic Hybrid System (HSHS). We consider the bacterium as
a system which can switch between two discrete states, namely running and tumbling, and
we force the jumping from one state to the other via appropriate hitting times of a stochastic
process. In this sense it is an extension of the theory of stochastic hybrid systems (SHS)
[63], into which we introduce functional (hereditary) dependency in the controlling dynam-
ics. It represents a bridge between SHS of the theory of stochastic differential equations with
Markovian switching [84].
The model makes use of the theory of subordinated diffusion processes to model the internal
state of the system. With this approach we weaken the assumption that the probability
distribution to switch between different states follows an exponential distribution.

The second model (One-Point Memory Model) that we propose is a generalization of the work
of Stroock [119]: in the framework of Piecewise Deterministic Markov Processes (PDMP)
[36] we allow a weak dependence of the turning rate with respect to the level of chemoat-
tractant measured at the beginning of the run.
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The last model (Moderately Interacting Particles Model) exploits the theory of moderately
interacting multi-particle systems [97, 98, 92, 38, 115]. We introduce functional dependences
in the governing equations and undertake heuristic analysis.

Additionally we develop a software written in C++ to simulate and analyze data relative to
the movement of E. coli with the following characteristics:

i) platform independent;

ii) fast to perform simulation, visualization and statistical analysis of the data;

iii) implementation of different models in the literature to easily compare them;

iv) freedom to set a great number of parameters;

v) versatile to include easily and with minimum effort new models.

Results and Contributions. The results and new contributions of this thesis are the
following:

• the study of E. coli movement leads to the structure of a dynamical system that goes
behind the mere application to bacteria movement and chemotaxis. In this sense:

– we propose a new mathematical model which generalizes HHS [19], velocity-jump
models [45] including functional dependency in the coefficient of the leading equa-
tions;

– we generalize the Feynman-Kac formula for SFDE in [130] and study the exit-time
distribution for SFDE from a bounded domain;

• we apply the general framework to the special case of E. coli movement.

– we generalize the large-scale approximation of generalized velocity-jump models
[122], considering that between two tumble events, the direction of the bacterium
follows a Brownian motion on the sphere;

– we study and conjecture a new limit theorem for moderately interacting particles
in presence of a memory term;

– we develop a portable and easy-to-use software to compare and analyze existing
models for the dynamics of E. coli.

Overview of the thesis
The first part of the thesis is devoted to the biology of the microorganism E. coli, by re-
viewing the approaches that have already been taken to model the E. coli movement and
introducing the mathematical model Hereditary Hybrid Stochastic System as well as the
One-Point Memory Model and Moderately Interacting Particle Model.

In Chapter 1: Biological Background, we start with the physical and biological de-
scription of the bacterium E. coli. In Section 1.1 we set the problem of gradient sensing ;
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Section 1.2 deals with the signaling pathway that controls the communication between
the receptors and the flagellar motors, and Section 1.3: Memory and Signaling Path-
way is devoted to describe the connection between temporal gradient and signaling pathway.

InChapter 2: Hereditary Hybrid Stochastic Model we introduce, develop and analyze
the mathematical model Hereditary Hybrid Stochastic System. In Section 2.2 we give the
formal definition of the model: the system is characterized by two components. The discrete
component can have values in a discrete set (at most numerable). The jump between the
discrete states is described via a given probability kernel. The continuous component evolves
following a system of stochastic functional differential equations (SFDE). The moment in
which the system jumps to a new state is given by an appropriate stopping time depending
on the state of the system as well as on its configuration during a temporal window in the
past. Section 2.3 focuses on the analysis of the basic properties of the model: we investi-
gate under which hypotheses the system HSHS has a unique well defined solution, study the
regularity of the solution with respect to the initial conditions and examine in which sense
we may speak of the Markov property for this system with memory. In Section 2.4.2 we
investigate the probabilistic properties of the duration of the time spent by the system in a
given state: we study the associated martingale problem, generalize the Feynman-Kac rep-
resentation problem for SFDE [130] and the related exit time distributions from a bounded
domain.

In Chapter 3: Mathematical Model for E. coli, we apply the model developed in
Chapter 2 to study the E. coli motion. We first briefly review three fundamental papers
[119, 2, 22] that have stimulated the present work, and then focus on describing the appli-
cation of the model HSHS to the case of the E. coli movement. In Section 3.3 we have a
closer look at the hypothesis that the distribution of runs follows an exponential distribution:
by studying the confidence intervals of the involved distributions, we motivate our approach
to use a more general distribution. The following Section 3.4 deals with the study of the
macroscale limit of the model in case the environment is constant in space and time and
extends the results obtained in [56]. In Section 3.5 we specialize the general model to the
memory kernel derived in [21] and [22]: we study the generalized Fokker-Plank equation
for the model on a line and the general formulation with non-zero tumbling time [6]. We
consider an approximating set of equations for the general model and conjecture the form of
the macroscopic equation for the dynamics of the bacterial density at scales larger than the
length of a single run.

In Chapter 4 various simplifications of the models are considered. In Section 4.1 we
present a scheme that links HSHS to existing literature, showing that it generalizes many
existing models and find the connection between them: we find that the underlying structure
refers to the theory of random time change processes and briefly recall it. In Section 4.2
we consider a random time change performed via a functional of the Brownian motion and
link HSHS to the theory of Fractional Poisson processes and Lévy Walks [8, 123]. Section
4.3 deals with Stochastic Hybrid Systems, while Section 4.4 offers an overview of Poisson
Time Change: in this context we show that HSHS generalizes the classical Velocity-Jump
process [102, 45, 128] as well as the process described in [22].
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In Chapter 5 we introduce a new model called One-Point Memory Model : the bacterium
follows a run and tumble random walk in which the duration of a tumble is negligible and the
time spent swimming along a given direction follows an exponential distribution, whose pa-
rameter depends on the difference of the current ligand concentration and the one recorded
at the beginning of a current run. Section 5.1 deals with the standard PDMP setting,
where the new direction (selected instantaneously during a tumble) is selected from an at
most countable set of values: we investigate its infinitesimal generator and propose a related
process to study the performance of the model. In Section 5.2 we generalize the content of
the previous chapter to the case of a continuous range of values for the direction and study
the parabolic limit in distribution of the rescaled process.

In the second part of the thesis, we concentrate on the simulation of the model described in
the first part. We describe the software E.coli_Simulator written to simulate, compare
and analyze the models presented in the literature and the ones proposed in this work.

Chapter 6 is devoted to computer simulation of the model using methods of non-parametric
estimation to derive the density distribution of the population. We performed simulations for
different landscapes of the ligand concentrations. In Chapter 7 we give a detailed descrip-
tion of the software we have developed: the requirements, mode of use, structure and outputs.

Chapter 8 we summarize the results of the thesis and in Section 8.2 we propose a new
model which takes inspiration from the theory of moderately interacting multi-particle sys-
tems [97, 98, 92, 38, 115]. We introduce functional dependence in the governing equations
and undertake a heuristic analysis. The functional calculus in this section follows the ap-
proach in [32].

The third part contains Appendix A: Probabilistic Zibaldone, where we provide the
reader with the definitions needed to formulate the problem, as well as some results from
the literature we need throughout the text, and Appendix B, where we present in detail
the paper [22].
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Mathematical Models
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Chapter 1

BIOLOGICAL BACKGROUND

This chapter gives a brief introduction to the biological background of the present thesis,
with particular attention to the meaning of temporal gradient and memory in the context
of the the random walk performed by E. coli.

1.1 The bacterium Escherichia coli

Escherichia coli (E. coli), originally known as bacterium coli commune, was identified in 1885
by the German pediatrician, Theodor Escherich [46]. E. coli is a member of the family En-
terobacteriaceae [49], which includes many genera, such as the known pathogens Salmonella,
Shigella, and Yersinia [52]. E. coli is a gram-negative, rod-shaped bacterium propelled by
long, rapidly rotating flagella. It is part of the normal flora of the mouth and gut and helps
protect the intestinal tract from bacterial infection, aids in digestion, and produces small
amounts of vitamins B12 and K [80].The bacterium, which is also found in soil and water,
is widely used in laboratory research and is often referred to as the best or most-studied
free-living organism [44].

As we may read in [11], ”[if you happen to look] through a microscope at a suspension
of cells of motile E. coli, [you might be impressed] by the intense activity. Nearly every
organism moves at speeds of order 10 body lengths per second. [A cell swims in a direction
roughly parallel to its body axis for more or less a second], moves erratically for a small
fraction of a second, reorienting itself, and then swims steadily again in a different direction.
[...]. A few just seem to fidget”. Although the movement appears as a random walk, or
better a random swim, we can observe that the environment influences the behavior of the
bacterium. More precisely, when a nutrient or a chemorepellent are added to the liquid,
E. coli bacteria bias their motion towards high nutrient concentrations and away from re-
gions where the chemorepellent concentration is high. In this case we talk about bacterial
chemotaxis, i.e. the ability of bacteria to sense changes in their extracellular environment
and to bias their motility towards favorable stimuli (attractants) and away from unfavorable
stimuli (repellents).

A typical E. coli cell is propelled by a bundle composed of multiple flagella which are
located at random points on the bacterial membrane. Each flagellum is controlled by a rotary
motor that can switch between clockwise (CW) and counter-clockwise (CCW) rotation.

3
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Figure 1.1: The polar flagella of E. coli viewed by transmission elec-
tron microscopy. (B) A scheme of the organization of the components
associated with the flagella in E. coli [1]-> Adler, J. (1975). "Chemo-
taxis in Bacteria." Annual Review of Biochemistry 44(1): 341-356.

When flagella on a cell rotate CCW, they collectively bundle together to propel the bacterium
through the medium along an approximately straight path. This behavior is called a run.
When some of the flagella rotate CW, the bundle disintegrates causing an abrupt change in
the direction. This behavior is called a tumble [83, 12]. E. coli modulates the probability
of being in one of these two swimming states in response to its environment, allowing it
to navigate in chemical, temperature, and light gradients [12, 11]. At any point in time,
the probability that a flagellar motor rotates CW is determined by the concentration of
phosphorylated signaling protein CheY (CheY-P). By coupling CheY phosphorylation to
chemicals from the environment the cell is able to bias its random walk and migrate towards
more favorable conditions [89].

1.1.1 Temporal gradient

When the cells are swimming along a positive gradient of attractant, CCW rotation is
favored resulting in longer running intervals. This rises the question whether cells respond
to spatial or temporal stimuli. That is, is a favorable run extended because the cell finds more
attractant near its nose than near its tail (spatial gradient), or because the concentration
goes up as it moves along (temporal gradient)?
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Figure 1.2: The polar flagella of E. coli viewed by transmission electron
microscopy (B) A schematic of the organization of the components
associated with the flagella in E. coli [1]

Figure 1.3: Left: A random walk in isotropic environments. When the
cell’s motors rotate CCW, the flagellar filaments form a trailing bundle
that pushes the cell forward. When one or more of the flagellar mo-
tors reverses to CW rotation, that filament undergoes a shape change
(owing to the torque reversal) that disrupts the bundle. Until all mo-
tors turn again in the CCW direction, the filaments act independently
to push and pull the cell in a chaotic tumbling motion. Tumbling
episodes enable the cell to try new, randomly-determined swimming
directions. Right: A biased walk in a chemo-effector gradient. Sensory
information suppresses tumbling whenever the cell happens to head in
a favorable direction. The cells cannot head directly up-gradient be-
cause they are frequently knocked off course by Brownian motion. [79]

Experiments [82] showed that E. coli senses temporal stimuli. Cells suddenly exposed to a
positive step of serine swam smoothly (without tumbling) for up to 5 minutes. Cells exposed
to a negative step tumbled incessantly for about 12 seconds. The finding was supported
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by another experiment of Berg et al. [17], who found an alternative way to not expose
cells to spatial inhomogeneities. They found an enzyme, available commercially, that would
convert an innocuous substance into a chemical attractant. The reaction was reversible, so
alternatively the attractant could be destroyed. Thus, no matter where a cell might be or
where it might be headed, it would always find the concentration of the attractant rising or
falling. The experiments showed that when the attractant was generated, all the runs got
longer. When it was destroyed, the cells failed to respond. The response to the positive
temporal gradient was large enough to account for the results obtained in spatial gradients
[17].

We have to notice that E. coli does not encounter temporal stimuli of this magnitude
when swimming in spatial gradients in nature. Unless there is a strong source and a strong
sink, spatial gradients are rapidly smoothed out by diffusion [11]. In any event, cells do not
swim fast enough to generate large temporal stimuli. Such stimuli saturate the response: in
the mixing experiments, cells either swam without tumbling or tumbled incessantly, although
much longer in the former than in the latter case. What one measures is the time required
for the cells to recover (i.e., to return to a mode in which they run and tumble). However,
such stimuli have proved quite useful for probing the chemotaxis machinery [11].

It is possible to infer that, unable to sense a change in extracellular gradient along
their own length due to the small dimension of the cell body (∼ 0.7 − 1.4µm diameter,
∼ 2 − 4µm length, ∼ 0.5 − 5µm3 in volume [94, 59, 93, 74]), bacteria use a system of
membrane receptors and intracellular signals to sense, adapt, and respond to changes in
their environment and developed a history-dependent strategy in order to find region of high
density chemoattractant [124].

The following are common characteristics to be taken into account when bacterial systems
are under investigations:

Adaptation: Many bacterial systems show an inherent ability to adapt to local changes
in the levels of extracellular attractant or repellent over quite wide ranges (approximately five
orders of magnitude) of background concentrations. Exact adaptation in a bacterial chemo-
taxis context means the ability to respond to changes in the external environment and return
the intracellular protein phosphorylation levels to their pre-stimulus levels. Adaptation is
not necessarily always exact as in the case of E. coli responding to serine. Following this pro-
cess, the bacteria are then able to detect any further changes in the attractant concentration
[124].

Sensitivity: Studies have shown that even small changes in the local extracellular envi-
ronment of bacteria, as small as ten attractant molecules per cell, can initiate a chemotactic
response from the bacteria [124].

Gain: The ability to sense small changes in the extracellular environment means that the
bacterium must be able to amplify the received signal, in order to modulate the intracellular
signaling cascade. Gain is generally defined as the change in motor bias with respect to the
change in occupancy of the receptors [124].

Robustness: In order to cope with cell-to-cell variations in levels of the signal trans-
duction proteins the intracellular signaling network must be robust [124].

All of the above concepts are closely interwoven. For instance, gain requires the sensitivity
of the system to be high enough to initiate the downward cascade of biochemical signals. The
system must be robust to cope with variability in levels of the signal transduction proteins
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between cells in order to be able to adapt across an extremely wide range of background
concentrations. It is important to note that these events all occur on different timescales. In
strong contrast, adaptation can take up to seconds or minutes dependent on the magnitude
of the stimulus [124].

1.2 The chemotaxis signaling pathway

The signal transduction between the receptors and the flagellar motors is controlled by a set
of well defined intracellular protein-protein interactions. In the case of E. coli, one of the
most common attractants used to study the bacterial response is aspartate. A number of
intracellular proteins (known as chemotaxis (Che) proteins) provide the necessary signaling
cascade which links the membrane receptors to the flagellar motor.

Figure 1.4: Signaling components and circuit logic. E. coli receptors
employ a common set of cytoplasmic signaling proteins: CheW and
CheA interact with receptor molecules to form stable ternary com-
plexes that generate stimulus signals; CheY transmits those signals
to the flagellar motors, CheZ controls the lifetime of CheYp. CheR
(methyltransferase) and CheB (methylesterase) regulate receptor com-
plex. Abbreviations: OM (outer membrane); PG (peptidoglycan layer
of the cell wall); CM (cytoplasmic membrane).

E. coli senses chemo-effector gradients in a temporal fashion by comparing current con-
centrations to those encountered over the past few seconds. E. coli has four transmem-
brane chemoreceptors, known as methyl-accepting chemotaxis proteins (MCPs), that have
periplasmic ligand binding sites and conserved cytoplasmic signaling domains. MCPs record
the cell’s recent chemical past in the form of reversible methylation of specific glutamic acid
residues in the cytoplasmic signaling domain. Whenever the current ligand occupancy state
fails to coincide with the methylation record, the MCP initiates a motor control response
and a feedback circuit that updates the methylation record to achieve sensory adaptation



8 CHAPTER 1. BIOLOGICAL BACKGROUND

and cessation of the motor response. A fifth MCP-like protein, Aer, mediates aerotactic re-
sponses by monitoring redox changes in the electron transport chain. Aer undergoes sensory
adaptation through a poorly-understood, methylation-independent mechanism.

The five MCP-family receptors in E. coli utilize a common set of cytoplasmic signaling
proteins to control flagellar rotation and sensory adaptation. CheW and CheA generate
receptor signals; CheY and CheZ control motor responses; CheR and CheB regulate the
MCP methylation state.

1.2.1 Molecular implementation of chemotaxis signaling

A population of receptors at the cell surface binds chemo-effector ligands and affects the
rate at which an intracellular kinase, CheA, hydrolyzes ATP on a time scale of ∼ 0.1 s. The
phosphate group produced in this hydrolysis reaction is then passed to a response regulator
protein, CheY, which affects stochastic switches in the direction of motor rotation (CCW or
CW) on a time scale ∼ 1 s [21].

Figure 1.5: The E. coli Chemotaxis signaling network. The input lig-
and concentration, L, is sensed by the membrane-associated receptor-
kinase complex, A, to regulate its autophosphorylation activity, a. A
then transfers phosphate to the response regulator, CheY (Y), the
phosphorylated form of which (Y-P) interacts with the flagellar mo-
tor (M), to control swimming behavior. The feedback loop is closed
by the methyltransferase CheR (R) and the methylesterase/deamidase
CheB (B), by regulation of the receptor methylation level, m. CheZ
(Z), the phosphatase for CheY-P, decreases the signal lifetime, thus
accelerating the response of the pathway. Redraw from [21]

• The receptor-kinase complex is stable on the time scale of the response, and hence
can be considered a single molecular species in signaling function. In addition to the
input ligand concentration, L, the receptor-kinase activity, a, is modulated by chemical
modifications at specific amino acid residues of the receptors cytoplasmic domains.
These covalent modifications are catalyzed by two enzymes: CheR, which adds methyl
groups, and CheB, which removes them. The balance between the activity of these two
enzymes determines the average methylation level, m, which can take values between
0 and a maximal value, M , corresponding to the number of modification sites per
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receptor monomer (4 for the aspartate receptor Tar). Thus, the kinase activity, a, is
determined by a function of both of these variables [21]:

a = G(m,L).

������������������������

Figure 1.6: Shape of the function used to model the receptor kinase
activity.

• Kinase activity decreases with attractant ligand concentration and increases with
methylation. The activities of both CheR and CheB, which determine the dynam-
ics of m, in turn, depend on the kinase activity, a, in a manner that provides negative
feedback. These reactions occur on a much slower time scale (∼ 10s.) than that of the
modulation of a, so these dynamics must be considered explicitly, and in general can
be written as [21]:

d

dt
m = F (a,m).

• Transmission of changes in a to the motor is accelerated by CheZ, which shortens the
lifetime of the signal by accelerating the dephosphorylation of CheY-P back to CheY.
The equation for the phosphorylation/dephosphorylation cycle of CheY then reads [21]

d

dt
y = kaa(1− y)− kzy.

• The equilibrium probability of the motor being in the CCW state (run mode) is called
the CCW bias, and is a function of y [21]:

h(y) =
1

1 +
(
y
y0

)H .
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where y0 is the CheY-P concentration at which the bias is 1/2, and the parameter H
accounts for the steepness of the sigmoidal response [29]. It follows that the ratio of
the probabilities for the CW state and the CCW state is (y/y0)H .

�����������������������������

Figure 1.7: De/-phosphoralization of CheY.

The chemotactic transduction pathway is conveniently modeled by the following set of
mean-field equations [126]:

a = G(m,L), (1.2.1)
d

dt
m = F (a,m), (1.2.2)

d

dt
y = kaa(1− y)− kzy, (1.2.3)

d

dt
pr =

1− pr
h(y)

τt
. (1.2.4)

The detailed expressions for the functions that appear above are

G(m,L) =
1

1 + ef(m,L)
,

f(m,L) = naαm(m0 −m) + na ln
1 + L

Koff

1 + L
Kon

,

F (a,m) = kr[CheR](1− a)
M − a

M −m+KR

− kb[CheB]a
m

m+KB

;

h(y) =
1

1 +
(
y
y0

)H .
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Figure 1.8: Simulation of the random walk of E. coli implementing
the chemotaxis signaling pathway in [126]. Top left: trajectory: the
initial position is marked red. The trajectory is colored blue if the run
goes up the gradient, red if the ligand concentration remains constant,
gray in all other cases. Top right: distribution of the length of the
runs in plot with logarithmic scale on the y-axes: the abrupt behavior
in the tails is due to the limited amount of data. we simulated a single
trajectory for a time interval of 100 seconds. Bottom: plot of the
ligand concentration measured during the random walk. The simula-
tion was performed using the program EcoliSimulator discussed in
Chapter 7.

1.3 Memory and signaling pathway

As pointed out, the bacteria are too small to measure any spatial gradient: they have de-
veloped a strategy based on the comparison of the current level of a chemical substance and
the one measured and memorized in the past to measure the temporal gradient.
In mathematical terms this translates to the following formulations: bacteria continuously
modulate their instantaneous probability of tumbling as a function of a weight of past mea-
surements of chemoattractant concentration. The differential weight constitutes the chemo-
tactic response function [28].
We may have many different functions and hypotheses on how the temporal sensing is per-
formed. Here we consider the following simple and heuristic cases:

∇[t−r 7→t]
F,µ c(X) := F

(
c(X(t), t)−

∫ 0

−r
c(X(t+ s), t+ s)µ(ds)

)



12 CHAPTER 1. BIOLOGICAL BACKGROUND

 Internal Dynamic Molecular-rExp-tExp

 0.0078

 0.0082

 0.0086

 0.009

 0  10  20  30  40  50  60  70  80  90  100
run(sec)

methylation level(meth)

m

 0.479

 0.482

 0.485

 0.488

 0  10  20  30  40  50  60  70  80  90  100
run(sec)

CheY-P(y)

y

 0.61

 0.62

 0.63

 0.64

 0  10  20  30  40  50  60  70  80  90  100
run(sec)

receptor kinase activity (a)

a

Figure 1.9: Evolution of the functionsm(t), y(t) and a(t) of the system
1.2.1 during the simulation of the random walk of E. coli implement-
ing the chemotaxis signaling pathway in [126] (see Figure 1.8). We
started the simulation from the steady state for the internal variable.
We notice that the receptor kinases activity (a) and CheY-P (y) pro-
ceed parallel, while the methylation level m has the opposite growth
pattern. The simulation was performed using the program EcoliSim-
ulator discussed in Chapter 7.

and the discrete-time analog:

δ
[t−r 7→t]
F,µ c(X) := F

(
c(X(t), t)˘

N∑
k=0

c(X(t+ sk), t+ sk) · µk
)
, (1.3.1)

where {sk}k=0...N is a partition of the interval [−r, 0].
The bacterium senses a certain average via the weight function µ (resp. for the discrete case
the weights µk ):∫ 0

−r
c(X(t+ s), t+ s)µ(ds) (resp.

N∑
k=0

c(X(t+ sk), t+ sk) · µk)

and compares it to the concentration currently measured, i.e. c(X(t), t).
The obtained result, say c − E[c], which is a real number, is given to the function F ,

which is the response function for such stimuli. The function F generally takes the form of
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Figure 1.10: Response function ∇[t−r 7→t]
F,µ c(X). The response function

is the link between the environment and the strategy of the bacterium,
i.e. it modulates the duration of runs and tumbles. We notice that
the response function does not assume the value 0 at the point where
the bacterium does not sense a change in the environment: in all the
models that we discuss and analyze the response function is related to
the mean duration of a run for a given scenario, more precisely it is the
inverse of this mean. For a deeper explanation we refer to Chapter
2, in particular subsection 2.2.1 and Remark 2.2.1.

a arctan-type function.

F (c) := γ + β · arctan
(
φε(α+ · c+ + α−c

−)
)
,

where φε(·) is a mollifier, c± is the positive (+) or negative(-) part of c, α±, γ and β are
constants.

1.3.1 Memory kernel and signaling pathway

In the presence of a uniform distribution of chemoattractant, the average duration of runs
can be obtained by looking at the stationary solutions of the model equations [21] and will be
indicated with a ?: in this case any mild variation in the concentration can be decomposed
as the superposition of responses to elementary stimuli.
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In the linear response limit, the evolution of the running probability pr takes the customary
form of a two-state inhomogeneous Poisson process: following [21] we develop the expression
of this probability around the equilibrium value and obtain:

dpr
dt

=
1

τt
(1− pr)−

1− h
τth

pr ∼
1

τt
(1− pr)−

1

τr,?

(
1− h′?∆y

h?(1− h?)

)
pr

Introducing a linear response function K(t) we obtain the rate of conversion between run to
tumble as follows:

Q(t) :=
h′?∆y

h?(1− h?)
=

∫ t

−∞
K(t− s)L(s)ds

The explicit form of this response function is obtained by integrating the linearized dynamical
equations and can be found in [21] pages 237 - 239. In conclusion the expression is given by:

K(t) = ka
h′(y?)(1− y?)
h(y?)(1− h(y?))

(∂G
∂L

)
?
· 1

τ−1
y − τ−1

m

[
(τ−1
y e−t/τy−τ−1

m e−t/τm)−
(∂F
∂m

)
?
(e−t/τy−e−t/τm)

]
where τ−1

y = kz + kaa? and τ−1
m = −(∂F

∂a
∂G
∂m

+ ∂F
∂m

)?.

We adopt, however, another option for the response to an impulsive stimulus. We follow [22]
and we will refer to the expression

∇K
t c(X, s) =

1

τr

[
1−

∫ s

−∞
K(s− r)c(X(r), r)ds

]
,

with K(t) = λe−λt
∑kM

k=1 βk(λt)
k · 1{t≥0}, since it it more general and readable.

These functions are the bridge between the information coming from the environment and
the decision to tumble, it is the modulation of the rate of transition from run to tumble.



Chapter 2

HEREDITARY STOCHASTIC
HYBRID SYSTEMS

In this chapter we are going to develop a general mathematical model which can be considered
as a generalization of Hybrid Systems and of Stochastic Functional Differential Equations
with Markovian Switching (SFDEwMS) [84].

2.1 Introduction

A hybrid system is a dynamic system that exhibits both a continuous and a discrete dynam-
ical behavior: in other words it is a system that can both flow (described by a differential
equation) and jump (described by a difference equation). Although the deterministic frame-
work captures many characteristics of the real systems in practice, in other cases, the missing
favor of randomness will indeed be a fatal flaw because of the inherent uncertainty in the
environment of most real world applications [63]. One obvious choice is to replace the de-
terministic jumps between discrete states by random jumps governed by some prescribed
probabilistic law. Another choice is to replace the deterministic dynamics inside the in-
variant set of each discrete state by a stochastic differential equation [63, 19]. We talk in
this case of stochastic hybrid systems (SHS): intuitively, a SHS can be described as an in-
terleaving between a finite or countable family of diffusion processes and jump processes [19].

The features of stochastic hybrid processes can be summarized as follows [73]:

• The time t is measured continuously. The state of the system is represented by a
continuous variable x and a discrete variable i. The continuous variable evolves in
some open set in the Euclidean space and the discrete variable belongs to a countable
set Q. The intrinsic difference between the discrete and continuous variables consists
in the way that they evolve through time.

• switching diffusion: between the random switches of the discrete valued component,
the Euclidean valued component evolves as a diffusion;

• random hybrid jumps: switches of discrete and Euclidean valued components can
be driven by a Poisson random measure;

15
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• boundary hybrid jumps: simultaneous and dependent jumps and switches of dis-
crete and Euclidean valued components are initiated by boundary hittings;

• mode dependent dimension: the dimension of the Euclidean state space depends
on the discrete valued component measure.

The abstract structure of the movement of E. coli described in the previous chapter can be
seen as an example of a SHS, in the following sense:

• the bacterium undergoes two different modes: run and tumble, the discrete component
in the hybrid space;

• during a run the system evolves following a differential equation (ordinary/ stochastic/
partial differential equation) which incorporates some memory term;

• during a tumble we have a change in the direction: the velocity jumps to a new value;

• the duration of a run and the one of a tumble is random.

This analogy leads us to develop a generalization of Hybrid Systems in the direction of
Stochastic Functional Differential Equations with Markovian Switching [84]. We call it
Hereditary Stochastic Hybrid Model/Systems (HSHM, HSHS) and think it might find wider
applicability then the random movement of bacteria. For a review of SSS we refer to [19,
63, 73] and the Appendix.

2.2 Hereditary Stochastic Hybrid Systems
In the following we make use of some standard notions from Markov process theory, (Stochas-
tic) Functional Differential Equations, Malliavin Calculus and Martingale Theory. For more
details see Appendix A.
We will start by giving a short description of the Hereditary Stochastic Hybrid Systems
(HSHS) in the context of the specific application we have in mind, to justify some assump-
tion and notation, i.e. E .coli movement.
Bacteria are characterized by position X, direction θ, internal dynamics ζ, a satisfaction
index Λ and a variable indicating in which state the bacterium is, i.e. rum or tumble. We
have that X and ζ take value in Rd and Rn, while θ is a process living on the sphere Sd−1.
The process Λ behaves like a time-change process and has its value in R.

• θ is defined as the solution of a jump-diffusion process on the sphere: the direction of
the bacterium evolves following a Brownian motion on the sphere during a run and
jumps to a new position when the E. coli performs a tumble.

• X and ζ satisfy a stochastic differential equation with values in Rd: because in this
chapter we are interested in the general structure of the model, we are going to merge
the two processes and call it again ζ, i.e. let X and ζ satisfy

dX(t) = FXdt+GXdWX(t),

dζ(t) = Fζ(t)dt+Gζ(t)dWζ .
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We redefine ζ as the vector in Rd+n given by

ζ(t) := (X(t), ζ(t)),

which satisfies
dζ(t) = F (t)dt+G(t)dW (t),

with
F := (FX , Fζ),

W := (WX ,Wζ),

and the matrix G is given by

G :=

[
GX 0
0 Gζ

]
.

2.2.1 Definition of HSHS

Let (Ω,F,P) be a probability space where F is a filtration that satisfies the usual assumptions.
If E is a Banach space, the space L2(Ω, E) consists of all F-measurable maps x : Ω 7→ E
such that

‖x‖L2(Ω,E) =
[ ∫

Ω

‖x(ω)‖2
E dP(ω)

] 1
2

=
√

E[x]2E <∞.

If r > 0, let I := [−r, 0] and C := C (I,Rn) the space of continuous functions from T to Rn

with the sup-norm ‖γ‖C := sups∈J |γ(s)|, where | · | denotes the Euclidean norm on Rn. As
a metric space we associate with C (I,Rn) its Borel σ-algebra BC (I,Rn). The space L2(Ω,C )
is complete when endowed with the semi-norm

‖η‖2
L2(Ω,C ) := E[‖η‖2

C ].

We will use for the segment process the notation in [61]:

Let x : [0,∞)→ E, then for all t ∈ [0,∞) we write xt for the r-segment process

xt(u) := x(t+ u) u ∈ [−r, 0].

We are ready to introduce and define the general model. Now we describe briefly the stochas-
tic processes appearing in the definition of the model.

• Let Q(t) be a stochastic process with values in an at most countable space MQ: it
describes the state of the system: in case of E. coli the cardinality of MQ is two, i.e.
MQ = {qr, qt}, run, tumble.

• Let us define a process N(t) on (Ω,F,P) as follows: it is a piecewise constant càdlàg
process a.s. bounded on compact intervals given by

N(t) :=
∞∑

j=−1

1[τj ,∞)(t),

with τ−1 = −r, τj = τj−1 + aj where {aj}j∈N can be deterministic quantities or F0-
measurable random variables.
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Remark 2.2.1. In order to have a better understanding on the meaning of this process
let us explain in what sense it is a generalization of the standard Poisson process.
Let {aj}j∈N be a sequence of independent exponentially distributed random variables.
As before, let τj be recursively defined by τ−1 = −r, τj = τj−1 + aj.
If we consider the counting process

N(t) :=
∞∑

j=−1

1[τj ,∞)(t),

we have that N(t) is a Poisson process. We can immediately obtain a non-homogenous
Poisson process by performing a stochastic time change. In fact let Λ be defined as

Λ(t) =

∫ s

0

λ(s)ds,

where λ is some positive function. If we consider now the stochastic process

Nλ(t) :=
∞∑

j=−1

1[τj ,∞)(Λ(t)), (2.2.1)

we have that Nλ is a non-homogenous Poisson process with parameter λ(t). In general
we have that the time of jump for the Poisson process are given as the hitting time of
the barrier τj by the process Λ.
We borrow this idea in order to construct the process that drive the system to a new
state: more precisely we use a monotonic functional of the solution of a stochastic
functional differential equation to model the time-change process Λ and force a jump
to a new state, whereby the jump is recorded by the process N(t).

• Let us consider the following Wiener processes:

– {W (t)}t∈[−r,T ] be a one dimensional Wiener process [20] such that for u ≤ 0
W (u) = 0 a.s.;

– {Wζ(t)}t∈[−r,T ] am-dimensional Wiener process [20] such that for u ≤ 0 W (u) = 0
a.s;

– {WSd−1(t)}t∈[−r,T ] be a Wiener process on the sphere Sd−1 [131, 16, 118].

We suppose for simplicity that these stochastic objects are independent of each other.

• The system under investigation does not react to the change of the environment di-
rectly, but the informations gathered from the outside are processed internally: the
output of this elaboration is used to decide if the system will jump to a new state. Let
ζ be this internal process: we underline that this process has values in Rd. We will
call it internal dynamics and is defined as the solution of a a stochastic differential
equation, whose general form can be expressed as

ζ(t) = x0 +

∫ t

0

φX(s)ds+

∫ t

0

µX(s)δN,
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with a noise source δN.
In the present general context, the process ζ has no special meaning, apart from the
binding between the system and the external environment. As mentioned in the in-
troduction, if we, instead, look at the particular application we have in mind, i.e. the
study of the movement of E. coli, we are better off separating the vector ζ in two com-
ponents: let the first one be the position of the bacterium, say X(t), and the second
one the internal dynamic, i.e. the description of the processes happening inside the
cell which influence the run and tumble behavior of the bacterium. For this particular
case we refer to the next chapter.
• On the space (Ω,F,P) let (Yn)n∈N be a sequence of i.i.d. F0-measurable L2(Ω) random

variables with values on the sphere Sd−1: these random variables represent the reori-
entation of the direction of a bacterium.
Let the law of Yk be µY , i.e. Yk ∼ µY and write

∑
for the sum of elements on the

sphere Sd−1.

• Let c : [−r,∞)×R3 → (0,∞) be a given (deterministic) function, sufficiently regular.
The function c(t, x) describes the density of attractant for the bacterium - we can
consider it to be of class C∞([−r, T ]× Rr,R+).

The dynamics of a bacterium is governed by the following system of stochastic functional
differential equations, namely in the sequel (HSHS).

θ(t) = θ0(0) +

∫ t

0

Dθ(Q(s)) · dWSd−1(s) +
∑Ψ(t)

j=0
Yj,

ζ(t) = ζ(0) +

∫ t

0

F (Q(s)), s, c(ζ(s), s), θ(s))ds+

∫ t

0

G(Q(s), s, c(ζ(s), s), θ(s))dWζ(t),

Λ(t) = Λ0 +

∫ t

0

λ(Q(s), s, ζ(s), ζs,Λs, θ(s))ds+

∫ t

0

σ(Q(s), s, ζ(s), ζs,Λs, θ(s))dW (s).

(2.2.2)
where we have for 0 ≤ t ≤ T,

Q(t) = H(Ψ(t),Q(t−));

Ψ(t) = N(Ξ(t−));

Ξ(t) = β(Λ(t− s)|s≤t),
(2.2.3)

and for t ∈ [−r, 0] supposed that the following initial conditions are given:

(θ(t))t∈[−r,0], (Λ0(t))t∈[−r,0], (ζ0(t))t∈[−r,0].

The coefficients of the equations presented above are here reported with special attention on
the spaces they take value in:

λ : MQ × [0,∞)× R× C ([−r, 0],R)× C ([−r, 0],R)× Sd−1 → R;

σ : MQ × [0,∞)× R× C ([−r, 0],R)× C ([−r, 0],R)× Sd−1 → (0,∞);

F : MQ × [0,∞)× R× Sd−1 → Rn;

G : MQ × [0,∞)× R× Sd−1 → Rn×m;
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H : Ω× [0,∞)×MQ →MQ;

Dθ : MQ → (0,∞);

β : MQ × C ([−∞, 0],R)→ (0,∞),

where β has to be a monotonic function in the following sense: if t ≤ s, then

β(·,Λ(·))|t ≤ β(·,Λ(·))|s.

An example of such a function is the premium of the process Λ. We notice the dependency
on the infinite dimensional space C ([−r, 0],R).

Remark 2.2.2. The three stochastic processes (θ(t), ζ(t),Λ(t)) in (2.2.2) have specific ana-
lytics and topological characteristics:

• θ(t) is a stochastic process on the sphere composed by overlapping a Brownian motion
(with constant diffusion coefficient Dθ for every discrete state the process is in) and a
jump process. It might be possible to include mode general processes and more general
spaces:

– we might substitute the sphere with a Lie group [65];

– me might also substitute the Brownian motion on the sphere with a more general
Itô’s diffusion with jumps [27].

For clarity and simplicity of exposition and analytical details we confine ourself to this
setting.

• the process ζ(t) represents the link between the environment (the function c(x, t)) and
the of the system. It is a classical Itô diffusion with values in Rn: we call it internal
variable.

• Λ(t) is the process which drives the time-change: it is a one dimensional SFDE which
is coupled with the process N(t) to produce a jump in the process θ(t): we call it
generalized subordinator, since it can be seen as a generalization of the concept of
subordinator. We recall that a subordinator is a stochastic process of the evolution of
time within another stochastic process, the subordinated stochastic process: we define
a subordinator as an (a.s.) increasing Lèvy process. In our general framework we do
not deal with Lèvy processes.

Equation (2.2.3) describes what happens to the system at the time-points of discontinuity
and the nature of the functional dependency:

• H is a probability kernel that controls the probability distribution of the state into
which the system will jump. We might add a probability kernel that performs a
discontinuity in the process ζ as well, but we have to be careful when we study existence
of the system due to the coupling of the segment process ζt with Λ.
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• Ξ(t) represents the functional dependency that links the process Λ to the counting
process N(t): we obtain an inhomogeneous Poisson process N(t) with intensity Λ(t)
when we impose the following :

σ(·) ≡ 0, β(Λ(t− s)s≤t) ≡ Λ(t), λ(·) > 0,

and {aj}j is a i.i.d. sequence of exponential random variables (RV).

• Ψ counts the number of jumps: we perform the same trick as in (2.2.1), by changing
the time of the counting process.

Remark 2.2.3. We begin underlying that the process θ takes values in the group Sd−1. If the
jump part has a Lévy measure, θ reduce to a diffusion process with jumps with values in a
group: a well studied problem in the theory of Lévy processes [3, 81].
The process that drives the time change is a one dimensional SDFE, while the process ζ
is a multidimensional SFDE. We could have combined these last two processes, but for
readability we decided to keep them separate.

Remark 2.2.4. The model (HSHS) is different from the standard setting of HHS in the
following sense:

i) the continuous component evolves according to a Stochastic Functional Differential
Equation (SFDE), a discontinuity during the transition between different states might
be present.;

ii) in the standard setting the transition between different states can be due to a controlled
Markov Chain or forced when the continuous component reaches the boundary of its
domain. We adapt, instead, the idea of a random time change: one of the component
of the continuos time will be used to stretch and shrink the time-scale; in this sense the
time of transition will be defined as the time when this (one dimensional) process hits
a certain threshold. We stress that the nature of this barrier (whether deterministic
or stochastic) is fixed for every particular state. We could have had the possibility of
the coexistence of these two different sources of noise, but for clarity of the theory we
decided to separate them.

iii) we explicitly separate the different components of the continuous part of the hybrid
system according to their analytical and topological properties.

Remark 2.2.5. There’s a great deal of modification that can be done to the system of equa-
tions for other practical applications: here we point out one with respect to the functional
dependency of the coefficient of the functions.
Let the system be in the state qi: we might assume that the functional dependency of the
process Λ is confined only to the time windows, during which the system is in the current
state, i.e. the system is renewed when a discrete transition is performed.
Let τ be the last transition time, then the expression Xs will indicate the segment process
X(t − s)s∈[τ,t]. In this case it may be useful to adopt the functional stochastic calculus
developed by Dupire [42, 32].
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2.3 Basic Analysis of the Mathematical Model

In this section we focus on the analysis of the system of equations (2.2.2) based on its
stochastic and analytical properties, i.e. existence and uniqueness of a solution, Markov
properties, extended generators, associated martingale problems etc.

2.3.1 Existence of Solution

In order to prove the existence of a solution and its uniqueness, we will first state some
lemmas and specify what is meant in the present context with the term solution of the
system (2.2.2).

We begin with a simple result to illustrate the nature of the problem: the process Λ is
strongly related to an Itô diffusion and in particular, due to the hypotheses of Lipschitz
continuity, to one with constant coefficients: because of its pedagogical value we analyze it
here.

Lemma 2.3.1. Let Z∗ be the stochastic process Z∗(t) = η(0) + H∗ · t + σ∗ ·W (t). If τ kZ∗ is
defined as τ kZ∗ := inf{t > 0 : Z∗(t) = k}, then for all T ≥ 0

lim
k→∞

τ kZ∗ > T, a.s.

that is
P(ω ∈ Ω : lim

k→∞
τ kZ∗(ω) =∞) = 1.

Proof. The distribution of the kth-stopping time follows an Inverse Gaussian distribution:
τ kZ∗ ∼ IG

(
k
H∗
, k2

σ∗2

)
, i.e.

P
(
ω ∈ Ω : τ kZ∗(ω) ≤ T

)
:= Φ

(TH∗ − k
σ∗
√
T

)
+ e

2k H
∗

σ∗2 · Φ
(−TH∗ − k

σ∗
√
T

)
.

To prove that

P
(
ω ∈ Ω : τ kZ∗(ω) ≤ T, infinitely often

)
= 0,

one can appeal to Borel-Cantelli’s lemma. So what we have to check is that

∞∑
k=1

P
(
ω ∈ Ω : τ kZ∗(ω) ≤ T

)
<∞.

From the standard upper bound for the cumulative normal distribution, x > 0:

Φ(−x) = 1− Φ(x) ≤ 1√
2π

1

x
e−

x2

2 ,
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by using the monotonicity of Φ(x):
∞∑
k=1

P
(
ω ∈ Ω : τ kZ∗(ω) ≤ T

)
=
∞∑
k=1

[
Φ
(TH∗ − k

σ∗
√
T

)
+ e

2k H
∗

σ∗2 · Φ
(−TH∗ − k

σ∗
√
T

)]
≤

∞∑
k

Φ
(TH∗ − k

σ∗
√
T

)
(1 + e

2k H
∗

σ∗2 )

≤ Const+
∞∑

k=N(H)

(1 + e
2k H

∗

σ∗2 )
1√
2π

σ∗
√
T

|TH∗ − k|
e
− (TH∗−k)2

2σ∗2T ,

which converges.
Since it holds for all T ≥ 0, we have: limk→∞ τ

k
Z∗ =∞, a.s.

The following lemma [127] is a very powerful result to guarantee the non-explosion of the
process Λ: if we decompose a process into the sum of a martingale part and a finite variation
process, the control over the finite variation part of the process guarantees the non-explosion
of the process.

Lemma 2.3.2. Let τ be a stopping time such that lims→τ Λ(s) =∞ and let λ(s) be a function
such that

∫∞
0
λ(s)−1ds =∞. If it holds

Λ(t) ≤
∫ t

0

λ(sup
u≤s

Z(u))ds+ M(t) + C,

then τ =∞ almost surely.

Proof. For the proof we refer to [127].

Lemma 2.3.3. Let Λ(·) : [0, T ]×Ω→ R+ be an Ft-adapted stochastic process a.s. continuous
and let N(·) : [0,∞)×Ω→ R+ be a càdlàg stochastic process almost surely bounded for every
compact interval. Then the stochastic process

N
(

sup
s≤t

Λ(s)
)

is well defined, i.e. is Ft-adapted and is not exploding in a finite time.

Proof. The structure of the process is that of a stochastic time change. It is necessary to
prove that the map

t 7→ Tt := sup
s≤t
{Λ(s)}

is Ft-adapted. One has the following chain of equality:

{ω|T ωt ≤ u} = {ω| sup
s≤t

Λ(s;ω) ≤ u}

=
{
ω|t ≤ inf{r ∈ [0, T ] : Λ(r;ω) ≥ u}

}
= {ω|t ≤ τΛ;ω

u } ∈ Fu+ ,

where τΛ
u is the hitting time for the process Λ at the level u.
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Once the system of equations we are dealing with is fixed, we focus on the spaces where
we look for a solution and the meaning of such a solution.

Definition 2.3.4. Let α and β be two stopping times such that a.s. α ≤ β and consider
the spaces, for 1 ≤ p <∞,

Mp
W [α, β] :=

{
f ∈ L0

W [α, β] : ‖f‖pp := EW
[ ∫ β

α

|f(t)|pdt
]
<∞

}
,

where EW [] is the expectation w.r.t. W , L0
W [α, β] is the set of non-anticipating processes

indistinguishable on (α, β) with values in an appropriate subspace D of Rn, e.g. if we study
the process (ζ(t), θ(t),Λ(t)), we have D := Rd × Sd−1 × R.

The following result guarantees that the chosen spaces have good geometrical and ana-
lytical properties:

Proposition 2.3.5. The space Mp
W [α, β] is a Banach space equipped with the norm

‖f‖pp := EW
[ ∫ β

α

|f(t)|pdt
]
.

We have now all the tools to give the definition of a solution for the system of equations
(2.2.2):

Definition 2.3.6. We say that the random object

(ζ(·),Λ(·), θ(·), (τn)n∈N)

is a strong (resp. weak )solution of the system (2.2.2), if

(ζ(·),Λ(·), θ(·)) ∈
⊕
n∈N

M2
W [τn ∧ T, τn+1 ∧ T ]

and each component is a strong (resp. weak ) solution of the corresponding SFDE [91] on
[τn ∧ T, τn+1 ∧ T ].

The problem HSHS is actually well posed, as guaranteed by the following:

Theorem 2.3.7. Let us assume that the following hypotheses are satisfied:

• suppose that there exists a Lipschitz continuous function c : [0, T ]× Rn → R ;

• the stochastic process W (·) is a P-Wiener process and N(·) as before;

• the functions
λ : [0, T )× R× L2(Ω,C ([−r, 0],R))× L2(Ω,C ([−r, 0],R))× S2 → L2(Ω, L(Rm,Rn)),
σ : [0, T )× R× C ([−r, 0],R)× C ([−r, 0],R)× S2 → L2(Ω, L(Rm,Rn))
G : MQ × [0,∞)× R× S2 → (0,∞);
H : MQ × [0,∞)× R× S2 → (0,∞)
u : MQ × [0,∞]× R× S2 → (0,∞);
D : MQ× → (0,∞);
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are continuous, uniformly bounded in all variables and are also uniformly Lipschitz in
the second and third variable with respect to the first 1

• for all adapted processes y1, y2 ∈ C ([0, T ], L2(Ω,C (J,Rn)), the processes

[0, T ] 7→ λ(t, y1(t), y2(t)),

[0, T ] 7→ σ(t, y1(t), y2(t))

are also adapted to (F)t∈[0,T ] (similarly for the other coefficients).

• The function β(·) is a either a bounded function or β(x(t− ·)) := sup(x(s) : s < t).

Then the system of equations (HSHS) has a unique solution.

Remark 2.3.8. The proof of the theorem uses the decomposition
⊕

n∈N M2
W [τn ∧T, τn+1 ∧T ]

presented in the definition of the solution for (HSHS):

• we can construct a unique local solution in every random interval [τn ∧ T, τn+1 ∧ T ]
using standard results in the theory of SFDE (see Appendix);

• we use the compactness and the boundedness of the interval [0, T ] to avoid explosion;

• we conclude by glueing the different local solutions together.

Proof. By the hypotheses on the process N(t) there exists a sequence of F0-measurable
random variables {τj}j∈N such that a.s. τj < τj+1 →∞. Consider now the stopping time

τΛ
j := inf{t ∈ [τj−1, T ] : Λ(t) ≥ τj} ∧ T.

We have that the processes involved in the system of equations on the stochastic interval
[0, τΛ

1 ] are bounded:

• θ(t) for t ∈ [0, τΛ
1 ] is a pure diffusive process on the sphere and since this random

interval is a.s. bounded, the process θ(t) a.s. does not leave the sphere.

• By Theorem 2.1 on page 36 in [91] the stochastic functional differential equation for Λ
has for t ∈ [0, τΛ

1 ] a unique solution.

– If β is a bounded function, we have clearly no explosion of the counting process
in a finite time.

1 i.e. there exists L > 0 such that, with ψ = (η, ζ)

sup
(t,x,η,ζ,θ)∈[0,T )×R×C ([−r,0],R)×C ([−r,0],R)×S2

λ(t, x, η, ζ, θ) ≤ Λ∗

sup
(t,x,η,ζ,θ)∈[0,T )×R×C ([−r,0],R)×C ([−r,0],R)×S2

σ(t, x, η, ζ, θ) ≤ σ∗

‖λ(t, ψ1, η1)− λ(t, ψ2, η2)‖L2 ≤ L(‖ψ2 − ψ1‖L2(Ω,C ) + ‖η2 − η1‖L2(Ω,C ))

‖σ(t, ψ1, η1)− σ(t, ψ2, η2)‖L2 ≤ L(‖ψ2 − ψ1‖L2(Ω,C ) + ‖η2 − η1‖L2(Ω,C ))

for all t ∈ [0, T ], for all ψ1, ψ2 ∈ C (J,R) and for all η1, η2 ∈ C (J,Rn)
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– If β is the function β(a(t)) := sup{a(s) : s < t} we have to be more careful:
we can invoke Lemma 2.3.2 to ensure that the process Λ does not explode in a
finite time. It implies that

P
(
ω ∈ Ω : sup

t∈[0,T ]

Λ(ω) =∞
)

= 0.

• A similar argument as for Λ holds for the process ζ(t).

We next consider the equations on t ∈ [τΛ
1 , τ

Λ
2 ]. Again we know that the system of equations

has a unique continuous solution on this random interval. Repeating this procedure we have
the existence of a solution as long as we can show that

P
{

sup{j : τj < sup
t∈[0,T ]

Λ(t)} =∞} = 0,

i.e. that there are non infinite jumps in finite time for the process θ(t). Combining the results
of the previous lemmas, the property that supk>0 τk > T a.s. and that a.s. supt∈[0,T ] |Λ(t)| <
∞, we obtain the result.

2.3.2 Continuous Dependence of the Generalized Subordinator with
respect to the Internal Variable

In this section we concentrate our attention on the regularity of the system of equations
(2.2.2), in a sense to be clarified in what follows. Let us consider the case in which the
thresholds for the process Λ are deterministic quantities. In this case, due to the nature
of forced jumps, there is no hope to have some kind of continuity property with respect to
the initial data for the process solution (ζ(t), θ(t),Λ(t))t∈[−r,T ] [6]. We study the relationship
between the trajectory and the process Λ. We will first study a particular case of the process
(2.2.2).

Let us consider the system of equations defined on a probability space (Ω,F, (F)t∈[0,T ],P)
satisfying the property stated above:

Λ(t) =

{
η0(t) −r ≤ t < 0

η0(0) +
∫ t

0
λ(Λs, c(ζs, ·s), s)ds+

∫ t
0
σ(Λ(s), c(ζ(s), s), s)dW (s) 0 ≤ t ≤ T

ζ(t) =

{
ζ(t) −r ≤ t < 0

ζ0(0) +
∫ t

0
θ(s)ds 0 ≤ t ≤ T

θ(t) =

{
θ0(t) −r ≤ t < 0

θ0(0) +
∑N(t)

j=0 Yj 0 ≤ t ≤ T

where

N(t) =

{
n0(t) = sup{n ∈ N : n ≤ sups∈[0,t] Λ(s)} −r ≤ t < 0

N(t) = n0 +
∑∞

k=1 χ[τn0+k,∞)(s) 0 ≤ t ≤ T
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τn =

{
0 n = 0

inf{s > τn−1 : Λ(s) = τNn } n ≥ 1

One may consider the following system into which our problem seems to be naturally im-
mersed, with φ ∈ Φ given by

Φ := W 1,2
T := {f ∈ W 1,2[0, T ] : f(0) = 0 and |f(T )|R ≤ T},

where W 1,2[0, T ] is the Sobolev space2 endowed with the usual norm.

Λ(t) =

{
η0(t) −r ≤ t < 0

η0(0) +
∫ t

0
λ(Λs, c(ζs, ·s), s)ds+

∫ t
0
σ(Λs, c(ζs, ·s), s)dW (s) 0 ≤ t ≤ T

ζ(t) =

{
ζ0(t) −r ≤ t < 0

ζ0(0) + φ(s) 0 ≤ t ≤ T

Let us consider the following operator:

Tt : L2(Ω,Φ)→ L2(Ω,C (J,R;Ft)

Tt(φ) := Λφ
t ∈ C (J,R).

Where Λφ
t is the unique solution guaranteed by the previous results.

Remark 2.3.9. Notice that for all the processes φ, ζ0 is the same, i.e. the initial path for
the process ζ is the same. We investigate how the internal dynamics is influenced by similar
trajectories.

The functions λ and σ are continuous, uniformly bounded in all variables and are also
uniformly Lipschitz in the second and third variable with respect to the first, i.e. there exists
L > 0 such that

‖H(t, ψ1, η1)−H(t, ψ2, η2)‖L2 ≤ L(‖ψ2 − ψ1‖L2(Ω,C ) + ‖η2 − η1‖L2(Ω,W 1,2
T (J))),

‖σ(t, ψ1, η1)− σ(t, ψ2, η2)‖L2 ≤ L(‖ψ2 − ψ1‖L2(Ω,C ) + ‖η2 − η1‖L2(Ω,W 1,2
T (J))),

for all t ∈ [0, T ], for all ψ1, ψ2 ∈ C (J,R) and for all η1, η2 ∈ L2(Ω,W 1,2
T (J)), whereW 1,2

T (J) :=
{f : J → Rd, f ∈ W 1,2

T }.
2This particular space has been used since one has:

• a.s it is valid the fundamental theorem of integral calculus with the weak derivatives
• The Poinacré’s inequality guarantees that the L2-norm of the gradient alone is equivalent to the

"complete" norm
• the form of the straightforward estimation due to the properties of λ and σ which leads to

E

∫ t

0

‖·s‖W 1,2
T
ds
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Proposition 2.3.10. Under all the hypotheses stated above, for the operator Tt defined we
have

Tt ∈ C
(
L2(Ω,W 1,2

T ), L2(Ω,C(J,R;Ft)
)

;

in particular we have

∥∥Tt(φ1)− Tt(φ2)
∥∥
L2(Ω,C(J,R;Ft)

≤ C1

∥∥φ1 − φ2
∥∥
L2(Ω,W 1,2

T )
eC2t.

Proof. Let3 s+ t ≥ 0, by writing [H(·), σ(·)] := H(·) and ξ(u) := [u,W (u)]T one has

∥∥Tt(φ1)− Tt(φ2)
∥∥
L2(Ω,C(J,R;Ft)

= E
[

sup
s∈J

∣∣∣ ∫ s+t

0

[H(Ts(φ
1), φ1

s, s)−H(Ts(φ
2), φ2

s, s)]dξ(s)
∣∣∣2]

≤M1

∫ t

0

E
∥∥H(Ts(φ

1), φ1
s, s)−H(Ts(φ

2), φ2
s, s)

∥∥2
ds

≤M2

∫ t

0

∥∥Ts(φ1)− Ts(φ2)
∥∥
L2(Ω,C(J,R;Ft)

ds

+M2

∫ t

0

∥∥φ1
s − φ2

s

∥∥
L2(Ω,W 1,2

T (J))
ds.

To use in a profitable way Gronwall’s lemma it is important to try to write and estimate the
last integral in term of ‖φ1 − φ2‖L2(Ω,W 1,2

T ).

Since φ ∈ W 1,2, with φ(0) = 0, then it is possible to write φ(t) :=
∫ t

0
∂wt [φ](s)ds, so we

have with g(·) :=
∣∣∣∂wt [φ1](·)− ∂wt [φ2](·)

∣∣∣2, where ∂wt is the weak derivative w.r.t. t:

∫ t

0

∥∥φ1
s − φ2

s

∥∥
L2(Ω,W 1,2

T (J))
ds = E

∫ t

0

∥∥φ1
s − φ2

s

∥∥
W 1,2
T (J)

ds

≤ CW 1,2 · E
∫ t

0

∥∥∂wt [φ1]s − ∂wt [φ2]s
∥∥
L2(J)

ds

≤ CW 1,2 · E
∫ t

0

[ ∫ 0

−r

∣∣∣∂wt [φ1](s+ u)− ∂wt [φ2](s+ u)
∣∣∣2du]ds

= C1 · E
∫ t

0

[ ∫ 0

−r
g(s+ u)du

]
ds

= C · E
∫ t

0

g(s) · Leb{[max(t− s,−r), 0]}ds

≤ C2 · E ·
∫ t

0

g(s)ds.

3the case s + t < 0 leads to the above norm being 0 since the starting path - ζ0(t + s) - is the same for
all φ
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then, ∫ t

0

∥∥φ1
s − φ2

s

∥∥
L2(Ω,W 1,2

T (J))
ds = C2 · E

∫ t

0

∣∣∣∂wt [φ1](s)− ∂wt [φ2](s)
∣∣∣2ds

= C2 · E
∥∥∂wt [φ1](·)− ∂wt [φ2](·)

∥∥2

L2(0,t)

≤ C3 · E
∥∥φ1(·)− φ2(·)

∥∥2

W 1,2(0,t)

= C3 ·
∥∥φ1(·)− φ2(·)

∥∥2

L2(Ω,W 1,2(0,t))
.

Hence, ∥∥Tt(φ1)− Tt(φ2)
∥∥
L2(Ω,C(J,R;Ft)

≤ C1

∥∥φ1 − φ2
∥∥
L2(Ω,W 1,2(0,t))

+ C2 ·
∫ t

0

∥∥Ts(φ1)− Ts(φ2)
∥∥
L2(Ω,C(J,R;Ft)

ds,

which implies, through Gronwall’s inequality, the desired relation, i.e.∥∥Tt(φ1)− Tt(φ2)
∥∥
L2(Ω,C(J,R;Ft)

≤ C1

∥∥φ1 − φ2
∥∥
L2(Ω,W 1,2(0,t))

eC2t.

2.3.3 Markov Property

In this section we investigate the Markov property of the solution process. In some cases,
apparently non-Markovian processes may still have Markovian representations, constructed
by expanding the concept of the current and future states. The process Λ(t) is clearly non-
Markovian when the dependence involves the segment process Λt. In order to obtain some
kind of Markov property it is necessary to enlarge the spaces in the same fashion as it is
done in the standard SFDE [91].

Since the notation for the full system might lead to a quite unreadable result, we decide
to perform explicitly the analysis on a simpler version of our model.

We concentrate our attention on the following system of equations:

θ(t) = θ0(0) +
∑N(t)

j=0
Yj

Λ(t) = Λ0 +

∫ t

0

λ(Q(s), s,Λs, θ(s))ds+

∫ t

0

σ · dW (s),

(2.3.1)

where for 0 ≤ t ≤ T, we have

N(t) =

{
n0(t) = sup{n ∈ N : n ≤ sups∈[0,t] Λ(s)} −r ≤ t < 0

N(t) = n0 +
∑∞

k=1 χ[τn0+k,∞)(s) 0 ≤ t ≤ T

τn =

{
0 n = 0

inf{s > τn−1 : Λ(s) = τNn } n ≥ 1,
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and for t ∈ [−r, 0] assuming the initial processes:

(θ(t))t∈[−r,0], (Λ0(t))t∈[−r,0], (n0(t))t∈[−r,0].

Theorem 2.3.11. Assume that the condition of existence and uniqueness for the system
(2.3.1) stated in Theorem 2.3.7 holds. Let us consider the space F , that takes into account
the space where the segment for each components lives, i.e.

F := C ([−r, 0],R)× C ([−r, 0],R)× C ([−r, 0],N).

Let Φφ0(t) = (Λ(t), θ(t), N(t)) be a stochastically continuous solution of the system (2.3.1)
with initial value φ0 := (Λ0, θ0, n0) ∈ M2

F . For each of such φ0, Φφ0 describes a Markov
process on F . That means that for all BF ∈ B(F )

P
(

Φt ∈ BF

∣∣∣Fs) = P
(

Φt ∈ BF

∣∣∣σ{Φs}
)
.

In order to proof this result, we need the following

Lemma 2.3.12 (Factorization Lemma, [33]). Let T : Ω→ Ω′ be a function of a set Ω in a
measure space (Ω′,A′) and let f : Ω → R be a scalar function on Ω. Then f is measurable
with respect to the σ-algebra σ(T ) = T−1(A′) generated by T in Ω if and only if there exists
a measurable function g : (Ω′,A′)→ (R,B(R)) such that f = g ◦ T , where B(R) denotes the
Borel set of the real numbers. If f only takes finite values, then g takes only finite values,
too.

Proof of Theorem 2.3.11. Let us fix u ≥ 0 and consider for t ≥ u the system of equations
(2.3.1) with initial condition for t ∈ [u − r, u] the vector φ0 := (Λ0, θ0, n0) ∈ M2

F , which is
Fu-measurable.
Let us denote by (ψ,uΦ(t))t∈[u−r,T ] := (Λ(t), θ(t), N(t))t∈[u−r,T ] the unique solution. We will
be using the usual notation for the segment process, i.e (ψ,uΦt)t∈[u,T ].
Let us define Gu as Gu := σ{W (s)−W (u) : s ≥ u}. We have from Theorem 2.3.7 that this
σ-algebra is independent of Fu. From the stochastic continuity and Gu-measurability of the
process solution for t ≥ u one has by Lemma 3.2 in [108] the Gu-measurability of the segment
process as well.
The uniqueness of the solution implies that, with probability one,

Φu,uΦ(s) = Φ(s), s ≥ u− r,

and thus
Φu,uΦt = Φt, t ≥ u.

By construction the solution process is, via a Borel-measurable map, the image of the (Borel-
measurable) initial condition.
Let us consider the function:

A : F × Ω→ R,

(ψ, ω) 7→ χBF

(
ψ,uΦ(ω)

)
.
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This function is measurable for all BF ∈ B(F ) and is independent of Fu for a fixed ψ.

An application of the factorization lemma concludes the proof of the result.
Let B := BF , then from the following equalities

P
(

Φt ∈ B
∣∣∣Fu) = E

[
χB

(
Φu,uΦt

)∣∣∣Fu] = E
[
A(Φu, ·)

∣∣∣Fu] = E
[
A(ψ, ·

]∣∣∣
ψ=Φu

,

we conclude the proof, since the right hand side is σ(Φu)-measurable.

2.4 Distribution of the time spent in a specific state
In this section we investigate the distribution of the time spent by the system in a specific
state, i.e. we will study the distribution of the following random variable:

αjΛ := inf{s > αj−1
Λ : Λ(s) > τj}.

In the next subsection we will start investigating some special cases in order to show how
complex the problem might become. We will then approach the problem from another
prospective and related the random time αjΛ with a martingale problem associated with the
system of equations HSHS.

2.4.1 Distribution of the time of the first state-change in various
scenarios

The analysis of the stochastic system described in the previous sections is far too complicated
for us to be treated in a general way: in the present section some special cases and some
associated distributions are considered. Let λ, σ > 0 and constant. In what follows we show
that special values of the parameters and the distribution of the random variables aj, which
define the process N(t) might lead to an interesting situation:

Exponential Barrier

Let aj ∼ Exp(β) then the probability of the first jump for the process N(sup(Λ∗)) is given
by a random variable X whose distribution can be called Compound-Exponential-Inverse
Gaussian Distribution.

d

dt
P
(

inf{s > 0 : Λ := λs+ σW (s) = a1} < t
)

=

∫ ∞
0

fIG

(α
λ
,
α2

σ2

)
fE(α)dα,

where fIG(a, b) is the density function of an inverse Gaussian distribution and fE the one of
an exponential distribution with parameter β, explicitly using formula [G.R. 3.462.5]4

fX(t) = βe−
λ2

2σ2 t
{ σ√

2πt
− σ2

2

(
β − λ

σ2

)
e
σ2

2

(
β− λ

σ2

)2

t
[
1− Φ

(√σ2

2

(
β − λ

σ2

))]}
,

4
∫∞

0
xe−µx

2−νxdx = 1
2ν −

µ
4ν

√
π
µe

ν2

4µ

[
1− Φ

(
ν

2
√
µ

)]
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whose moment generating function is given by

M(u) = βσ2 1√
λ2 − 2σ2u

[
1−

(
β − λ

σ2

) σ2

σ2(β − λ
σ2 ) +

√
λ2 − 2σ2u

]
.

Pareto-Type Barrier

Let the random variable a1 follow a Pareto distribution with parameters (xm, α), i.e.

Fa1(x) = Pr(a1 > x) =

{(
xm

x

)α
x ≥ xm,

1 x < xm.
.

In this case we were not able to obtain an explicit formula for the density. We specialize it
to a Pareto distribution starting from the level xm = 1 and parameter β.
We obtain

fX(t) =
β

σ
√

2πt3
e−

λ2

2σ2 t

∫ ∞
1

α−βe
λ
σ2 α−

1
2σ2t

α2

.

In this case not all the moments of the distribution are finite. Using Fubini’s Theorem and
the properties of the modified Bessel function of the second kind, it can be shown that if
λ =

√
2σ, then Xβ /∈ L1 for β ∈ (0, 1), Xβ ∈ L1/L2 for β ∈ (1, 2) and Xβ ∈ Ln for all the

other β.
For the mean of this random variable let us consider:

E[X] =

∫
Ω

XPX(dω) =

∫ ∞
0

dt

∫ ∞
1

dα
[
β

1

αβ
t

σ
√

2πt3
exp

{
− λ2

2σ2
t− α2

2σ2t
+

λ

σ2
α
}]

=

∫ ∞
1

dα
β

αβ
e
λ
σ2 α

∫ ∞
0

dt
[ 1

σ
√

2πt
exp

{
− λ2

2σ2
t− α2

2σ2t

}]
.

From formula [G.R. 3.471.9]5 it follows that:

E[X] =

∫ ∞
1

β

αβ
e
λ
σ2 α

1

σ
√

2π
2

√
α

λ
K1/2

(
2
α

λ

)
dα.

We were not able to find the explicit formula for this integral, but only conditions on con-
vergence or divergence.

By employing formulae for the modified Bessel functions of the second kind with index
of multiple of half order:

Kν(z) =

√
π

2

[|ν|−1/2]∑
j=0

(j + |ν| − 1
2
)!

j!(−j + |ν| − 1
2
)!

(2z)−j, ν − 1

2
∈ Z.

In particular for ν = 1
2

K 1
2
(z) =

√
π

2

e−z√
z
.

5
∫∞

0
xν−1e−

β
x−γxdx = 2

(
β
γ

) ν
2

Kν(2
√
βγ)
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So the integral

E[X] ∼ C

∫ ∞
0

α−β exp
{( λ

σ2
− 2

λ

)
α
}
dα⇒


E[X] =∞ λ

σ2 − 2
λ
> 0 ∧ ∀β

E[X] =∞ λ
σ2 − 2

λ
= 0 ∧ β ≤ 1

E[X] <∞ λ
σ2 − 2

λ
< 0 ∧ ∀β

E[X] <∞ λ
σ2 − 2

λ
= 0 ∧ β > 1

.

In a similar way it is possible to check the second moment: employing formula [G.R.
3.471.9] for E[X2], one has

E[X2] =

∫
Ω

X2PX(dω) =

∫ ∞
0

dt

∫ ∞
1

dα
[
β

1

αβ
t2

σ
√

2πt3
exp

{
− λ2

2σ2
t− α2

2σ2t
+

λ

σ2
α
}]

=

∫ ∞
1

2β

αβ−1
e
λ
σ2 α

1

σ
√

2π
2
(α2

λ2

) 3
4
K3/2

(
2
α

λ

)
dα.

And from the formulae above stated for K3/2(z), which reads

K3/2(z) =

√
π

2

e−z√
z

(
1 + C

1

z

)
one obtains

E[X2] ∼ C

∫ ∞
0

α−β+ 5
2 exp

{( λ
σ2
−2

λ

)
α
} 1√

α

(
1+

C

α

)
dα⇒


E[X2] =∞ λ

σ2 − 2
λ
> 0 ∧ ∀β

E[X2] =∞ λ
σ2 − 2

λ
= 0 ∧ β ≤ 2

E[X2] <∞ λ
σ2 − 2

λ
< 0 ∧ ∀β

E[X2] <∞ λ
σ2 − 2

λ
= 0 ∧ β > 2

.

Deterministic Barrier

Let us suppose that the process Λ needs to reach a deterministic level a1 = 1. In this case
the distribution jumps of the process N is connected with the supremum of the stochastic
process Λ: more precisely with the supremum of a Brownian motion with drift.
Let Tj be the time of the j-th jump, then

P
(
N(t) = 0

)
= P

(
τΛ

1 ≤ t
)

= 1− Φ
(λ(t− 1/λ)

σ
√
t

)
− e2 λ

σ2 Φ
(
− λ(t+ 1/λ)

σ
√
t

)
P
(
N(t) = 1|T1 = s

)
= P

(
τΛ

2 ≥ t|T1 = s
)

= P
(
τΛ

1 > t− s
)

= 1− Φ
(λ(t− s− 1/λ)

σ
√
t− s

)
− e2 λ

σ2 Φ
(
− λ(t− s+ 1/λ)

σ
√
t− s

)
.

similarly
P
(
N(t) = k|Tk−j = s

)
= P

(
τΛ
j ≥ t− s

)
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= 1− Φ
(λ(t− s− j/λ)

σ
√
t− s

)
− e2 λ

σ2 Φ
(
− λ(t− s+ j/λ)

σ
√
t− s

)
,

and in particular

P
(
N(t) = 1|T1 ≤ s

)
=

∫ s

0

P
(
τΛ

1 ≥ t− u
)
PτΛ

1
(du).

Remark 2.4.1. We notice that an opportune choice of the parameters can lead to very different
behavior:

• the distribution of the first jump belongs to L2: in this case we might infer that a
Central Limit result can be applied

• the distribution of the first jump does not belong to L2: in this case we have to consider
fractional processes when we investigate the limit distribution of the rescaled process.

2.4.2 Distribution of the time of the first state-change and a related
martingale problem

The structure of the system is intimately connected with the one of the cádlág processes

θ(t) =

{
θ0(t) −r ≤ t < 0

θ0(0) +
∑Ψ(t)

j=0Yj 0 ≤ t ≤ T

Ψ(t) = N(Ξ(t−)),

Ξ(t) = sup
s≤t

Λ(s).

In order to deal with this quite difficult problem in what follows we assume that N is defined,
for a fixed a0, as follows:

N(t) =
∑
k∈N

k · a01[k,k+1[(t).

Now the jumping points for the cádlág part are determined by the hitting times of the
underlying functional diffusion Λ(t).
Let us define

µ(dt, dx) =
∞∑
n=1

1{Tn<∞}ε(Tn,Zn)(dt, dx).

By following [68], and denoting by Gn(ω, ds, dx) the regular version of the conditional dis-
tribution of (Tn+1, Zn+1) with respect to G(n) then

Theorem 2.4.2. Under suitable conditions on the filtration a version of the compensator of
the E-valued multivariate point process µ is

ν(dt, dx) =
∞∑
n=1

1

Gn([t,∞], E)
1{t≤Tn+1}Gn(dt, dx).

The problem now moves to the determination of the probability distribution of these
stopping times. The idea is to follow the approach in [55, 104] connecting the desired
probability distribution to the solution of a certain differential equation: this approach can
be considered as a generalization of the classical Feynman-Kac formula.
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2.4.3 The Feynman-Kac Formula

In this section we prove the Feynman-Kac Formula for SFDE and extend the results in [64]
and [26].
Let us consider the following autonomous SFDE:

dX(s) = H(X(s), Xs)ds+G(X(s), Xs)dW (s), s ∈ [0, T ], (2.4.1)

with the initial condition η ∈ L2(Ω, L2([−r, 0],Rd)), at time t = 0.

Assumption A: H ∈ L1,2 and G ∈ L1,2 are adapted functions that satisfy the hypoth-
esis of Lipschitz continuity with respect to both arguments.

Remark 2.4.3. We stress that Assumption A guarantees existence and uniqueness of the
solution of equation (2.4.1) (see [91]).

2.4.4 Representation Formula

The following theorem extends Theorem 9.5 in [64].

Theorem 2.4.4. Suppose f ∈ D(Aw) and c : L2([−r, 0])×Rd → R+ bounded and Lipschitz
continuous. If u solves weakly

∂

∂t
u(t) + Aw(u(t)) + c · u(t) = 0,

u(T, η, x) = f(η, x),

with Aw as defined in Theorem A.3.2, then

u(t, η, x) := E(t,η,x)

[
f(ηXT ,

ηXT (0))e
∫ T
t c(ηXs,ηXs(0))ds

]
.

Proof. Let us suppose that u is a solution of the above FPDE.

Fix 0 ≤ t0 < T . Define for all t0 ≤ t ≤ T

q(t) := E
[
u(t,Xt, Xt(0))e

∫ t
t0
c(Xs,Xs(0))ds‖Ft0

]
.

Now we calculate the right derivative (if it exists) of q(t).
Since the process (Xt, X(t)) is a Markov process, the following equality holds:

q(t2)− q(t1) = E
{

E
[
u(t2, Xt2 , Xt2(0))e

∫ t2
t0
c(Xs,Xs(0))ds

− u(t1, Xt1 , Xt1(0))e
∫ t1
t0
c(Xs,Xs(0))ds‖Ft1

]
‖Ft0

}
= E

{
E
[
u(t2, Xt2 , Xt2(0))e

∫ t2
t1
c(Xs,Xs(0))ds − u(t1, Xt1 , Xt1(0))‖Ft1

]
· e

∫ t1
t0
c(Xs,Xs(0))ds‖Ft0

}
.
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Consider the process
Y (t) = e

∫ t
t1
c(Xs,Xs(0))ds

,

solution of the following stochastic integral equation:

Y (t) = 1 +

∫ t

t1

c(Xs, Xs(0))Y (s)ds.

The idea is to apply now the Itô-Mohammed-Yan formula (Theorem A.3.2) to the process

h(t,Xt, Xt(0), Y (t)) = u(t,Xt, X(0)) · Y (t)

and calculate explicitly the right derivative of the projection of the random variable h(t) on
the space L2(Ft1). We have that the processes involved are adapted (see [91]), in particular
for the process Y , DsY (α) = 0. A straightforward use of the formula leads to

h(t,Xt, Xt(0), Y (t)) = h(t1, Xt1 , Xt1(0), Y (t1))

(i) =

∫ t

t1

c(Xs, Xs(0))u(s,Xs, X(s))e
∫ s
t1
c(Xu,Xu(0))du

ds

(ii) +

∫ t

t1

∂u

∂s
(s,Xs, X(s))e

∫ s
t1
c(Xu,Xu(0))du

ds

(iii) +

∫ t

t1

〈∂u
∂η

(s,Xs, X(s))e
∫ s
t1
c(Xu,Xu(0))du

, dXs〉V

(iv) +

∫ t

t1

∂u

∂x
(s,Xs, S(s))e

∫ s
t1
c(Xu,Xu(0))du

dX(s)

(v) +

∫ t

t1

∂2u

∂η2
(s,Xs, X(s))(Θs)e

∫ s
t1
c(Xu,Xu(0))du

ds

(vi) +

∫ t

t1

∂2u

∂η∂x
(s,Xs, X(s))[(GΛ)sX(s)]e

∫ s
t1
c(Xu,Xu(0))du

ds

(vii) +

∫ t

t1

∂2u

∂x∂η
(s,Xs, X(s))[G(s)DsXs]e

∫ s
t1
c(Xu,Xu(0))du

ds

(viii) +
1

2

d∑
i=1

∫ t

t1

e
∫ s
t1
c(Xu,Xu(0))du∂

2u

∂x2
(s,Xs, X(s))[(∇i

+X)(s)⊗Gi̇(s)]ds,

where
Θs(α, β) =

1

2
((GΛ)sXs(α, β) + (GΛ)sXs(β, α))

(GΛ)sXs(α, β) = I{0≤s+α∧β}G(s+ α)Ds+αX(s+ β)

(∇i
+X)(s) = lim

ε→0
(Di

tX(t+ ε) +Di
tX(t− ε)).

We treat now every single term (identified by the Roman number (α)), calculating the
limit for t approaching t1 of the quantity 1

t−t1 · E[(α)‖Ft1 ].
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Since we consider the limit of the projection on the σ-algebra Ft1 , we consider for t > t1 the
SFDE with B a Brownian motion s.t. B(t) = 0 in [−r, t1] and Z(t) = X(t),

Z(t) = Xt1(0) +

∫ t∨t1

t1

H(Zs, Z(s))ds+

∫ t∨t1

t1

G(Zs, Z(s))dB(s),

so that ‖Θs‖(V⊗V )∗ → 0.
In this case it follows that the addends (v),(vi) and (vii) converge to 0.
A straightforward calculation for the terms (i), (ii), (iv), using the boundedness and Lipschitz
continuity of the function c, leads to:

• for the term (i):

lim
t2↘t1

E
[ 1

t2 − t1

∫ t2

t1

c(Xs, Xs(0))u(s,Xs, X(s))e
∫ s
t1
c(Xu,Xu(0))du‖Ft1

]
= c(Xt1 , Xt1(0))u(t1, Xt1 , X(t1));

• for the term (ii):

lim
t2↘t1

E
[ 1

t2 − t1

∫ t2

t1

∂u

∂s
(s,Xs, X(s))e

∫ s
t1
c(Xu,Xu(0))du

ds‖Ft1
]

=
∂u

∂t
(t1, Xt1 , X(t1));

• for the term (iv):

lim
t2↘t1

E
[ 1

t2 − t1

∫ t2

t1

∂u

∂x
(s,Xs, S(s))e

∫ s
t1
c(Xu,Xu(0))du

dX(s)‖Ft1
]

= lim
t2↘t1

E
[ 1

t2 − t1

∫ t2

t1

∂u

∂x
(s,Xs, S(s))e

∫ s
t1
c(Xu,Xu(0))du

·H(Xs, Xu(s))ds‖Ft1
]

+ 0

= H(Xt1 , X(t1))
∂u

∂x
(t1, Xt1 , X(t1));

• we now concentrate our attention on the third term (iii).

This term contains an integral with respect to the segment process (we refer to the Appendix
for its definition and properties).
We have to check that for the function

g(t) :=

∫ t

t0

〈∂u
∂η

(s,Xs, X(s)e
∫ t
0 c(Xu,Xu(0))du, dXs〉V ,

it holds:

lim
t2↘t1

E
[g(t2)− g(t1)

t2 − t1
‖Ft1

]
= 〈∂u

∂η
(t1, Xt1 , Xt1(0), dXt1〉V · e

∫ t1
t0
c(Xu,Xu(0))du.
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By taking into account that c is Lipschitz continuous and bounded, by the stochastic Fubini’s
theorem (Lemma 4.2 in [64]) and the definition of segment integral, we may compute the
following limit: Let us define (∗), as follow

lim
t2↘t1

E
[g(t2)− g(t1)

t2 − t1
‖Ft1

]
= (∗),

then we have

lim
t2↘t1

E
[ ∫ 0

r

∫ t2

t1

e
∫ t2
t1
c(Xu,Xu(0))du∂u

∂η
(s,Xs, X(s))(α)dX(α + s)dα

∥∥∥Ft1]e∫ t1t0 c(Xu,Xu(0))du.

We omit in what follows the factor e
∫ t1
t0
c(Xu,Xu(0))du.

(∗) = lim
t2↘t1

E
[ ∫ 0

r

1

t2 − t1

∫ t2

t1

e
∫ s
t1
c(Xu,Xu(0))du

· ∂u
∂η

(s,Xs, X(s))(α)1{s+α≥t1}dX(α + s)dα
∥∥∥Ft1]

+ lim
t2↘t1

E
[ ∫ 0

r

1

t2 − t1

∫ t2

t1

e
∫ s
t1
c(Xu,Xu(0))du

· ∂u
∂η

(s,Xs, X(s))(α)1{s+α>t1}H(α + s)dsdα
∥∥∥Ft1]

+ lim
t2↘t1

E
[ ∫ 0

r

1

t2 − t1

∫ t2

t1

e
∫ t2
s c(Xu,Xu(0))du

· ∂u
∂η

(s,Xs, X(s))(α)1{s+α>t1}G(s+ α)dW (α + s)dα
∥∥∥Ft1]

= 〈∂u
∂η

(t1, Xt1 , Xt1(0), dXt1〉V = Su(t1, Xt1 , Xt1(0),

since the second and third integrals are 0. From the hypothesis( ∂
∂t

+ Aw + c · I
)
u(t, η, ηt1(0)) = 0,

so that we can conclude that on Ft0

lim
t2↘t1

q(t2)− q(t1)

t2 − t1
=

= E
{

E
[( ∂
∂t

+ Aw + c · I
)
u(t1, Xt1 , Xt1(0))‖Ft1

]
e
∫ t1
t0
c(Xs,Xs(0))ds‖Ft0

}
≡ 0.

Thus the function q is continuous and has continuous right derivatives. By a well-known
Lemma ([131], p. 239), q is differentiable and hence a constant. We conclude that

q(t0) = q(T ) = E
[
u(T,XT , X(T ))e

∫ T
t0
c(Xs,Xs(0))ds‖Ft0

]
= E

[
f(XT , X(T ))e

∫ T
t0
c(Xs,Xs(0))ds‖Ft0

]
.
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This theorem can be generalized to the case where c is time in-homogenous by using the
same approach.

Corollary 2.4.5. Suppose f ∈ D(Aw) and c : [−r, T ]×L2([−r, 0])×Rd → R+ bounded and
(maybe Lipschitz) continuous: if u solves weakly

∂

∂t
u(t) + Aw(u(t)) + c(t, ·) · u(t) = 0,

u(T, η, x) = f(η, x),

with Aw as defined in Theorem A.3.2, then

u(t, η, x) := E(t,η,x)

[
f(ηXT ,

ηXT (0))e
∫ T
t c(s,ηXs,ηXs(0))ds

]
In what follows, we assume that Assumption A is satisfied. Consider the following

SFDE:
Set η0 : [−r, t]→ Rd, with η0(s) = η0(0) for s ≥ 0 and tt,ηs = t− s. If s ∈ [−r, t]

X t,η(s) = η0(s) +

∫ s∨0

0

H(tt,ηs , X
t,η
u , X t,η(u))ds+

∫ s∨0

0

G(tt,ηs , X
t,η
u , X t,η(u))dW (u).

In accordance with the previous section, it is possible to define a Markov family(
tt,ηs ,

ηXs,
ηXs(0)

)
∈ R× L2([−r, 0],Rd)× Rd.

In this case the infinitesimal generator is given by A−w , defined as

Ã−wΦ(t, φ) =− ∂

∂t
Φ(t, φt) + S(Φ)(t, φt) +DΦ(t, φt(H(t, φt)1{0})

+
1

2

m∑
j=1

D2Φ(t, φt(G(t, φt)(ej)1{0}, G(t, φt)(ej)1{0}).

If the coefficients are homogenous in time, then we have the following result:

Corollary 2.4.6. Suppose f ∈ D(A−w). If u solves weakly

∂

∂t
u(t) = Ã−w(u(t)),

u(0, η, x) = f(η, x),

then
u(t, η, x) = E(0,η,x)

[
f(ηXt,

ηXt(0))
]

Proof. Let u(t, η, x) be a solution of ∂
∂t
u(t) = Aw(u(t)), u(0, η, x) = f(η, x). Consider now,

for a fixed but arbitrary T , the function v(t, η, x) := u(T − t, η, x). Let us consider now the
random variable

q(t) := E[v(t,Xt, X(t))‖F0].
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Exactly as before d
dt+
q(t) = 0 on F0, one has the equalities:

q(0) = q(T ) = E
[
v(T,XT , X(T ))‖F0

]
= E

[
v(0, X0, X(0))‖F0

]
= E

[
u(0, XT , X(T ))‖F0

]
= E

[
f(XT , X(T ))‖F0

]
= u(t, η, x).

2.4.5 Viscosity Solution

To state the reverse result we need to introduce the concept of a viscosity solution.

Definition 2.4.7. Let V ∈ C ([0, T ]C ). We say that V is a viscosity sub-solution of

∂

∂t
u(t) + Aw(u(t)) + c · u(t) = 0,

u(T, η, x) = f(η, x),

with Aw as defined in Theorem A.3.2, if, for every Γ ∈ C 1,2
lip ([0, T ],C ) ∩ D(S), and for

(t, ψ) ∈ [0, T ]× C satisfying Γ ≥ V on [0, T ]× C and Γ(t, ψ) = V (t, ψ), we have

∂

∂t
Γ(t)− SV +

[
H(Γ(t)) · ∇x +

1

2
tr(〈G,D2(·)G〉)

]
(Γ(t)) ≤ 0.

It is a super-solution if the analogous condition is met: Γ ≤ V on [0, T ]×C, Γ(t, ψ) = V (t, ψ)
and we have

∂

∂t
Γ(t)− SV +

[
H(Γ(t)) · ∇x +

1

2
tr(〈G,D2(·)G〉)

]
(Γ(t)) ≥ 0.

A function V is called a viscosity solution if it is simultaneously a sub-solution and a super-
solution.

We are ready to state the reverse of Theorem 2.4.4.

Theorem 2.4.8. Suppose f ∈ D(Aw) and c : L2([−r, 0])×Rd → R+ bounded and Lipschitz
continuous. The function

u(t, η, x) := E(t,η,x)

[
f(ηXT ,

ηXT (0))e−
∫ T
t c(ηXs,ηXs(0))ds

]
is a viscosity solution of

∂

∂t
u(t) + Aw(u(t))− c · u(t) = 0,

u(T, η, x) = f(η, x).
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In order to prove this result we need first a lemma that emphasizes the concept of Marko-
vianity of the solution of the SFDE (X(t), Xt).

Lemma 2.4.9. For s, t ∈ [0, T ] with t ≤ s, we have

u(t, η, x) := E(t,η,x)

[
u(ηXs,

ηXs(0))e−
∫ s
t c(

ηXs,ηXs(0))ds
]
.

Proof. Let s, t ∈ [0, T ] such that t ≤ s. Then the following equality holds:

u(s,Xs, Xs(0)) =E
[
f(XT , XT (0))e−

∫ T
u c(ηXs,ηXs(0))ds

∥∥∥Xu, Xu(0)
]

=E
[
f(XT , XT (0))e−

∫ T
u c(ηXs,ηXs(0))ds

∥∥∥Fu].
Since (ηXu,

ηXu(0)) is Markovian, it follows from the Tower Property of the conditional
expectation

E(t,η,x)

[
u(ηXs,

ηXs(0))e−
∫ u
t c(

ηXs,ηXs(0))ds
]

=

E(t,η,x)

[
E
[
f(XT , XT (0))e−

∫ T
u c(Xs,Xs(0))ds

∥∥∥Fu]e− ∫ u
t c(

ηXs,ηXs(0))ds
]

=

E
[
e−

∫ T
u c(Xs,Xs(0))dse−

∫ u
t c(Xs,Xs(0))dsE

[
f(XT , XT (0))

∥∥∥Fu]∥∥∥Ft] =

E
[
f(XT , XT (0))e−

∫ T
t c(Xs,Xs(0))ds

∥∥∥Ft] = u(t, η, x).

Proof of the Theorem. We will be using the notation

Eηx [·] := E[·‖Xt = η,Xt(0) = x].

Let Γ ∈ C1,2
lip in the domain of the shift operator. For 0 ≤ t ≤ t1 ≤ T , following Theorem 3.1

in [91], we have that

Eηx
[
e−

∫ t1
t c(Xs,Xs(0))dsΓ(t1, Xt1 , Xt1(0))

]
− Γ(t, η, x)

= Eηx
[ ∫ t1

t

e−
∫ u
t c(Xs,Xs(0))ds

( ∂
∂t

Γ(u) + Aw(Γ(u))− c · Γ(u)
)]
,

where we have used the notation Γ(u) = Γ(u,Xu, Xu(0)).
From the previous lemma, for any t1 ∈ [t, T ]

u(t, η, x) ≥ E(t,η,x)

[
u(ηXs,

ηXs(0))e−
∫ s
t c(

ηXs,ηXs(0))ds
]
.

By using Γ ≥ u the previous formula leads to

0 ≥ Eηx
[
e−

∫ t1
t c(Xs,Xs(0))dsu(t1, Xt1 , Xt1(0))

]
− u(t, η, x)

≥ Eηx
[
e−

∫ t1
t c(Xs,Xs(0))dsΓ(t1, Xt1 , Xt1(0))

]
− u(t, η, x)

≥ Eηx
[ ∫ t1

t

e−
∫ u
t c(Xs,Xs(0))ds

( ∂
∂t

Γ(u) + Aw(Γ(u))− c · Γ(u)
)]
.
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By dividing by (t1 − t) and letting t1 towards t in the previous inequality, it follows

∂

∂t
Γ(t)− SV +

[
H(Γ(t)) · ∇x +

1

2
tr(〈G,∆(·)G〉)

]
(Γ(t)) ≥ 0.

In a similar fashion the other inequality is obtained. For any t1 ∈ [t, T ]

u(t, η, x) ≤ E(t,η,x)

[
u(ηXs,

ηXs(0))e−
∫ s
t c(

ηXs,ηXs(0))ds
]
.

Now set Γ ≥ u, and thus

0 ≤ Eηx
[
e−

∫ t1
t c(Xs,Xs(0))dsu(t1, Xt1 , Xt1(0))

]
− u(t, η, x)

≤ Eηx
[
e−

∫ t1
t c(Xs,Xs(0))dsΓ(t1, Xt1 , Xt1(0))

]
− u(t, η, x)

≤ Eηx
[ ∫ t1

t

e−
∫ u
t c(Xs,Xs(0))ds

( ∂
∂t

Γ(u) + Aw(Γ(u))− c · Γ(u)
)]
.

Let us divide the previous inequality by (t1 − t) and let t1 towards t: it follows

∂

∂t
Γ(t)− SV +

[
H(Γ(t)) · ∇x +

1

2
tr(〈G,∆(·)G〉)

]
(Γ(t)) ≤ 0.

And the conclusion of the theorem follows.

The following result implies the uniqueness of the solution.

Theorem 2.4.10. Comparison principle. Assume that V1(t, c) and V2(t, c) are both con-
tinuous with respect to the argument (t, c) and are respectively viscosity sub-solution and
super-solution of the FPDE with at most a polynomial growth. Then

V1(t, c) ≤ V2(t, c)∀(t, c) ∈ [0, T ]× C[−r, 0].

Proof. The proof follows the same argument as in Chang et al. [25].

2.4.6 The Feynman-Kac Formula - Boundary Value problem.

In this section we develop the Feynman-Kac’s formula for the solution of a SFDE constrained
to a domain D. Let us consider an open bounded domain D of Rd and the set of continuous
functions A = C ([−r, 0], D) bounded uniformly by M . Let us consider the random time

τ tη,x := inf{s ∈ [0, T ] : (ηXs,
ηX(s)) ∈ ∂(A×D)} ∧ t,

and the stopped process

Xτ tη,x(t) = η0(t) +

∫ τ tη,x∨0

0

H(Xs, X(s))ds+

∫ τ tη,x∨0

0

G(Xs, X(s))dW (s),

where η is defined as in the previous section and H ∈ L1,2 and G ∈ L1,2 are Ft-adapted
functions that satisfy the hypothesis of Lipschitz continuity with respect to both arguments
that implies existence and uniqueness.

Let us confine ourselves to the class of quasi-tame functions [91].
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Definition 2.4.11. A function φ : C ([−r, 0],Rm) → R is quasi-tame if there is an integer
k > 0, C∞ maps fj : Rm → Rm, h : Rn×k → R and a piece-wise C 1 function gj : [−r, 0]→ R,
with 1 ≥ j ≥ k − 1, such that for all η ∈ C ([−r, 0],Rm) we have

φ(η) = h
(

(

∫ 0

−r
fj(η(s))gj(s)ds)

k−1
j=1 ; η(0)

)
.

Theorem 2.4.12. Suppose ψ ∈ L2(Ω,C ) and the operator Aq defined in Theorem A.3.2
applied to the class of quasi-tame functions. Then the martingale problem for (Aq, ψ) is well
posed.

Lemma 2.4.13. Suppose f ∈ D(Aw) and E[τDx,η] <∞. If u solves classically

Aw(u(x, η))− c(x, η)u(x, η) = f(x, t) (η, x) ∈ A×D,

u(η, x) = g(η, x) (η, x) ∈ ∂(A×D),

where g(η, x) belongs to the class of quasi tame functions, then

u(η, x) = −E(0,η,x)

[ ∫ τ tx,η

0

f(ηXs,
ηX(s))e−

∫ s
0 c(

ηXu,ηX(0))du
]
,

+E(0,η,x)

[
g(ηXτ tη,x ,

ηX(τ tη,x))e
−

∫ τtη,x
0 c(ηXu,ηX(u))du

]
.

Proof. The proof can be done following the proof in [55], Theorem 2.1 page 127, using the
Itô formula for quasi-tame functions.

Similarly as in the previous section, let us suppose that Assumption A is satisfied.
Consider the following SFDE:

Set η0 : [−r, t]→ Rd, with η0(s) = η0(0) for s ≥ 0. Let us define tt,ηs = t− s.
If s ∈ [−r, t]

X t,η(s) = η0(s) +

∫ s∨0

0

H(tt,ηs , X
t,η
u , X t,η(u))ds+

∫ s∨0

0

G(tt,ηs , X
t,η
u , X t,η(u))dW (u).

In accordance with the previous section, it is possible to define a Markov family(
tt,ηs ,

ηXs,
ηXs(0)

)
∈ R× L2([−r, 0],Rd)× Rd.

In this case the infinitesimal generator is given by A−w , defined as

Ã−wΦ(t, φ) =− ∂

∂t
Φ(t, φt) + S(Φ)(t, φt) +DΦ(t, φt(H(t, φt)1{0})

+
1

2

m∑
j=1

D2Φ(t, φt(G(t, φt)(ej)1{0}, G(t, φt)(ej)1{0}).

The following theorem holds:
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Theorem 2.4.14. Suppose f ∈ D(Aw). If u solves weakly

∂

∂t
u(t) = Aw(u(t)) + c(x, η)u(x, η) (t, η, x) ∈ [0, T ]× A×D,

u(0, η, x) = f(η, x) (η, x) ∈ A×D,
u(t, η, x) = g(t, η, x) (η, x) ∈ ∂(A×D),

then

u(t, η, x) =E(0,η,x)

[
f(ηXt,

ηXt(0))1{τ tη,x=t}e
−

∫ t
0 c(

ηXu,ηX(u))du
]

+ E(0,η,x)

[
g(τ tη,x,

ηXt,
ηXt(0))1{τ tη,x 6=t}e

−
∫ τtη,x
0 c(ηXu,ηX(u))du

]
.

The reverse holds for viscosity solutions of the FPDE.

Theorem 2.4.15.

u(t, η, x) =E(0,η,x)

[
f(ηXt,

ηXt(0))1{τ tη,x=t}e
−

∫ t
0 c(

ηXu,ηX(u))du
]

+ E(0,η,x)

[
g(τ tη,x,

ηXt,
ηXt(0))1{τ tη,x 6=t}e

−
∫ τtη,x
0 c(ηXu,ηX(u))du

]
is a viscosity solution of the system

∂

∂t
u(t) = Aw(u(t)) + c(x, η)u(x, η) (t, η, x) ∈ [0, T ]× A×D,

u(0, η, x) = f(η, x) (η, x) ∈ A×D,
u(t, η, x) = g(t, η, x) (η, x) ∈ ∂(A×D).

2.4.7 First Exit Time Probability for SFDE

Let us denote by τD the first exit time of Xx,η(t), where Xx,η(t) is the solution of the SFDE
with initial conditions x, η. Let Q(t, x, η) be the probability that Xx,η starting from x, η did
not exit the domain D ⊂ Rd × C([−r, 0],Rd) before t, i.e.

Q(t, η, x) = 1−Px,η

(
τA < t

)
.

2.4.8 First Exit Time Probability as a Viscosity Solution

Let us consider the process solution of the SFDE:

X(t) = η0(t) +

∫ t∨0

0

H(Xs, X(s))ds+

∫ t∨0

0

G(Xs, X(s))dW (s).

Throughout this section we impose the following stringent hypothesis about the FPDE:
∂
∂t
u(t) = Aw(u(t)) (t, η, x) ∈ [0, T ]×D

u(0, η, x) = 1 (η, x) ∈ D
u(t, η, x) = 0 (t, η, x) ∈]0, T [×∂D

. (2.4.2)
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Hypothesis B: the variational problem (2.4.2) belongs to

u ∈ C 0
(

[0, T ]; C 2([0, T ], D) ∩ C 2(D)
)
.

It is then possible to state the following result:

Theorem 2.4.16. Under Hypothesis B, the function

Q(t, η, x) = 1−Px,η

(
τA < t

)
is a viscosity solution of the problem:

∂
∂t
u(t) = Aw(u(t)) (t, η, x) ∈ [0, T ]×D

u(0, η, x) = 1 (η, x) ∈ D
u(t, η, x) = 0 (t, η, x) ∈]0, T [×∂D

.



46 CHAPTER 2. HEREDITARY STOCHASTIC HYBRID SYSTEMS



Chapter 3

MATHEMATICAL MODELS FOR
E. COLI

This chapter deals with the application of the HSHS Model developed in Chapter 2 to the
special case of modeling of E. coli movement.

3.1 Introduction

The study of E. coli traces back to the end of the 17th century: since then the knowledge
of this little and simple microorganism developed so deep that nowadays we have a good
understanding of almost every single process that happens in the cell. The immense scientific
literature related to E. coli underlines that it is a paradigmatic example of how nature works
and evolves. For an organic review we invite to have a look at the paper [124]. Despite of
this deep knowledge, though, there are still open problems and interesting questions that
this little bacterium is able to rise.

A very popular branch of research connected with E. coli is chemotaxis: the evolution-
ary and functional reasons for the experimentally observed response to chemoattractants
remain a riddle [22]. In general regular environmental conditions allow for the evolution
of specifically adapted responses, whereas complex environments usually lead to conflicting
requirements upon the organism’s response. Sensing and motility requirements are in fact
optimized by different responses, which strongly depend on the chemoattractant profile in
the environment. It is not clear then how those conflicting requirements quantitatively com-
bine and compromise in shaping the chemotaxis response [22].

The work of Berg and colleagues [17, 11, 12] has conclusively demonstrated that E. coli
employ a temporal sensing mechanism, engaging in a biased random walk consisting of al-
ternating periods of straight runs and random tumbles. When the concentration of chemoat-
tractant (L) is increasing in time (dL/dt > 0), the bacteria tend to have longer runs (i.e.,
the probability of a tumble decreases), thus allowing the bacteria to move up the gradient.
If the chemoattractant concentration is decreasing (dL/dt < 0), then the bacteria are more
likely to reorient their direction by tumbling.

47



48 CHAPTER 3. MATHEMATICAL MODELS FOR E. COLI

In what follows we summarize three articles [119, 2, 22], which have, in various senses,
inspired the present work.

3.1.1 Model by Daniel W. Stroock

D.W.Stroock [119] modeled the data of the experiments in [12] and proposed the following
model for the movement of a single E. coli:

• the bacterium performs a run&tumble random walk, in which the speed is constant
and the direction is a process which lives on the sphere S2.

• the duration of a twiddle is negligible and therefore it is possible to talk about the
direction of the bacterium at a given instant;

• the motion is Markovian in the phase space. This leads to the conclusion that the
direction of the bacterium (say θ(t)) is a Poisson-type process on the sphere Sd−1, d =
3 whose intensity depends not only on its position in S2 but also on the time and
location (say x(t)) of the bacterium. Then a temporally inhomogeneous Markov process
(x(t), θ(t)) on R3 × S2 is constructed with the property that

x(t)− x(s) = (t− s) · θ(s),

if θ(·) is constant during [s, t);

• the conditional probability of θ(·) being constant during [t, s) given the past up to time
s is

P
(
θ(u) = θ(s), u ∈ [s, t)‖Fs

)
= exp

[
−
∫ t

s

λ(u, x+ (u− s)θ, θ)du
]
,

where λ is a given function

λ : [0,∞)× R3 × S2 → (0,∞);



3.1. INTRODUCTION 49

• the conditional distribution of the first place at which θ(·) jumps after time s given the
past up to time s is given by µθ(s), a probability measure on S2.

Those assumptions give rise to a temporally inhomogeneous Lèvy-type diffusion on R3 × S2

whose backward equation is

∂u(t, x, θ)

∂t
+ θ · ∇xu(t, x, θ) + λ(t, x, θ)

∫
S2

[u(t, x, η)− u(t, x, θ)]µθ(dη) = 0,

u(t, x, θ) = Et,x,θ[f(x(T ), θ(T ))] = E[f(x(T ), θ(T ))‖x(t) = x, θ(t) = θ], t ≤ T,

where f is a generic function of class C 1,1([0, T ]× R3,R).

Remark 3.1.1. This model (as well as [103] of the following year) contains many of the
features of a piecewise deterministic Markov Process described by Davis in [36].

Figure 3.1: Chemotaxis in a peritrichously flagellated bacterium such
as Escherichia coli. (a) In the absence of a chemical attractant the cell
swims randomly in runs, changing direction during tumbles. (b) In the
presence of an attractant runs become biased, and the cell moves up
the gradient of the attractant.

This model has various properties that make it very interesting and a solid base for all
the developments that have followed during the last 40 years.

• although wrapped in a quite technical set-up 1 the underling idea is rather simple and
intuitive and is able to catch most (but not all) of the characteristics of the movement of
E. coli; it developed in what in the literature is commonly referred to as velocity-jump
model (see for example [102, 128, 45]);

• in the last section he developed the parabolic scaling of the process leading to a diffusive
approximation with space-dependent coefficients using a limit theorem for random
processes with values in a group [102].

1First of all the existence of the process by Martingale properties, merging of regular-probabilities condi-
tional distributions, ergodic theorem for Poisson processes on a commutative group etc.
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We have underlined many times that E. coli builds up its strategy to find food with the use
of some kind of temporal gradient, and this is absent in the work by Stroock: it turns out
to be the key ingredient to add to Stroock’s model to make it more realistic.

The other important hypothesis is that run lengths are exponentially distributed. It can
be viewed as a first approximation of the real distribution: it makes the model analytically
tractable and is still able to capture many features. We will have a closer look to this aspect
in Section 3.3.

3.1.2 Model by Wolfgang Alt

A partial answer to the unsolved question in Stroock’s paper was given by Alt in 1980 [2]. In
his approach, which is a generalization of Stroock’s model [53], he considers the locomotion
of individuals, moving independently of each other in the following way:

• the motion of each individual or of a well defined observable part of it (the nucleus of
a cell, for instance) is piecewise linear, where the (mean) speed of such a linear run
equals c(t, x), depending on time t and position x of the individual;

• supposed that an individual at (t, x) has been running in direction θ for a time τ
(counted from the beginning of the run): it will then stop at (t, x) to tumble with a
probability rate given by β(t, x, τ, θ);

• if an individual stops a run with direction θ at (t, x), then after a negligibly short time
it chooses a new direction η of motion with a given probability k(t, x, θ; η) (tumble of
bacteria).

Alt assumed that the density σ(t, x, θ, τ) of individuals, moving at (t, x) in direction θ and
having started their run a time τ ago is a smooth function of its variables. With the aid of
Gauss’ theorem applied to suitable test domains one concludes that σ satisfies the following
differential-integral system:

∂

∂t
σ(x, t, θ, τ) +

∂

∂τ
σ(x, t, θ, τ) + θ · ∇x

(
c(t, x)σ(x, t, θ, τ)

)
= −(βσ)(x, t, θ, τ)

σ(x, t, η, 0) =

∫ ∞
0

∫
S

(βσ)(x, t, θ, τ)k(t, x, θ; η)dθdτ,
(3.1.1)

where we use the notation (βσ)(x, t, θ, τ) to shorten the product β(x, t, θ, τ)σ(x, t, θ, τ).
Remark 3.1.2. If β is independent of the run time τ , then the system for the time-space-
velocity density

σ̄(t, x, θ) :=

∫ ∞
0

σ(t, x, θ, τ)dτ

directly gives the differential integral equation obtained by Stroock.

One has to notice that, while Stroock works with backward Kolmogorov equations, Alt
deals with the Fokker-Plank equation directly for the density of the process, assuming its
smooth existence. In case of an unbounded domain, one obtains that the probability P (t, x, θ)
satisfies the equation for the adjoint of the backward Kolmogorov operator [51].
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Remark 3.1.3. The model by Alt is really interesting also from an analytic point of view.
We refer to the problem of the definition of a stochastic process by its infinitesimal generator
and the Kolmogorov equations [51].
In [51] arises the important issue that the general Fokker-Planck equation is not a differential
equation. In this respect we may adapt the framework of PDMP (see Appendix A Section
A.4) and derive that the infinitesimal generator AΦ associated with the process Φ discussed
in [2] is given by:

AΦf(t, x, θ, τ) : = − ∂

∂τ
f(t, x, θ, τ) + θ · ∇xf(t, x, θ, τ)

+

∫
Sd−1×R

[
f(t, x, η, τ ′)− f(t, x, θ, τ)

]
dk(t, x, η, τ ′)⊗ δ0(dτ ′).

When we derive the corresponding Fokker-Plank equation we end up with the differential-
integral system (3.1.1).

Remark 3.1.4. We may consider the model by Alt as a special case of the Velocity-Jump
models (see for example [128]): In Alt’s model the internal variable (here τ) satisfies the
differential equation τ̇ = −1 and is reset to the value 0 at every arrival time of a non-
homogenous Poisson process.

Alt undertook multilayer analysis and ended up with a generalization of the Keller-Segel
equation; he managed to express the macroscopic coefficients as functions of the microscopic
parameters: he thus obtained the Patlak-Keller-Segel diffusion equation:

∂

∂t
u(t, x) = ∇x

(µ
c
∇x(c · u(t, x))− χu(t, x)∇xρ(t, x)

)
.

where the coefficients are related to the microscopic parameters (Proposition 2 on page 164
in [2]). That paper is quite technical and presents non trivial calculations. It is a first
attempt to introduce the memory in the model. Because of the chosen chemical reaction
which takes place inside the cell and influences the run length, this memory term is somehow
smoothed out. What Alt could not capture, is the main feature of the work by Celani and
Vergassola [22]: they simplify the form of the underlying jump process, turning it into a
non-homogenous Poisson process [119].

3.1.3 Model by Celani & Vergassola

Celani and Vergassola [22] investigate what might be the strategy followed by E. coli in
the search for food: they show that the experimental bacterial response corresponds to the
maxmin strategy that ensures the highest minimum uptake of chemoattractants for any
profile of concentration. They consider a quite complete model which can be considered a
generalization of the velocity-jump model [45].

Bacteria are supposed to run at (fixed) velocity u in the direction θ, and the transition
rate from the running to the tumbling phase at time t depends on the detection history
experienced by the bacterium via the quantity Q(t) =

∫ t
−∞K(t − s)c(X(s), s)ds. Here the

convolution kernel is the one presented in the first chapter;
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• X(t) is the trajectory followed by the bacterium;

• c(x, t) is the chemoattractant concentration field;

• τr is the running time in the absence of chemoattractants.

We refer to the Appendix for a deeper review of their article.

They use homogenization methods to analyze the hydrodynamic limit of the distribution
of the population. They rescale x 7→ εx and t 7→ ε2t, and obtain the final form of the
effective diffusion equation:

∂

∂t
n(x, t) +∇ ·

(
χ · n(x, t)∇c(x, t)

)
= D0∆

[(
1 + γc(x, t)

)
n(x, t)

]
,

where
γ :=

α

σ

∫ ∞
0

K(t)dt and χ := D0
α

σ

∫ ∞
0

e−σtK(t)dt.

3.1.4 Our Proposed Model

We are ready to present our model and analyze it.

In order to have a model that at the population level predicts the desired properties
of the system, one must first have a detailed model of a single cell, and then lift
it to the collective behavior of the population of individuals: we can understand
the qualitative behavior of the continuous equations in order to obtain a better
understanding of how parameters in the microscopic movement rules translate
into macroscopic parameters in the integro-partial differential equations.

freely adapted from [117]

Guided by this principle, the model we propose tries to describe as many features as
possible of the complex dynamics of this simple bacterium, with particular attention to the
memory-dependence.
We introduce a dissatisfaction index, denoted by Λ, which is a stochastic process satisfy-
ing a functional stochastic differential equation. The moment when this process crosses a
threshold determines the moment when a run ends and a tumble begins. This dissatisfaction
index controls only the transition from run to tumble: the reverse transition is controlled
by a Poisson process. The process Λ depends on the previous measurements of chemical
concentrations and, in order not to loose generality, we make it dependent on the process
itself and all the other random objects that build the model.

We can say that the swimming bacterium will discover the environment around it via
recording and memorizing the concentration of the chemical substance during the move-
ment. Via a comparison between the current concentration and the one previous measured,
the bacterium realizes whether it is going up or down the gradient, adjusting consequently
its strategy. This is controlled by a simple signaling pathway. We try to be as general as
possible and talk abstractly of internal dynamics, which measure the level of dissatisfaction
of the bacterium. The dissatisfaction will grow at a high rate, if the comparison leads to the
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Figure 3.2: Hereditary Hybrid Stochastic Model for the Movement of
E. coli: the bacterium switches between two states: run (left) and
tumble (right)

conclusion that it is swimming against the gradient, it will grow at a low rate in the opposite
situation. In this chapter we assume that the growth rate for the process Λ is always positive,
since even in a favorable environment, the bacterium will eventually turn.

The dynamics of a bacterium is described via five different stochastic processes, whose
explicit description is postponed to the next section:

• the position, X;

• the swimming direction, θ;

• the internal dynamics, ζ

• the dissatisfaction index, Λ, which depends on the difference of the level of chemical
concentration measured in the past and the one registered at the present time;

• the levels of saturation or threshold, {τj}j∈N.

In what follows we consider that the chemical concentration (or the ligand), c(x, t), is a given
function which is sensed by the bacterial population but not produced or ingested.
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We shall assume that the locomotion of individuals, moving independently of each other,
is characterized as follows:

• the bacterium follows a run-and-tumble strategy;

• the duration of the tumbling is not negligible;

• during the run of the bacterium, the direction is characterized by a Brownian motion
around the direction selected at the tumbling;

• the distribution of a run lengths depends on the memory (whose length is r) of previous
measurements of chemical concentrations and is not a priori exponentially distributed.

• the new swimming directions are supposed to be independent and identically dis-
tributed random variables, say Yj, j = 1, 2, . . . .

The above assumptions give rise to the following algorithm in order to simulate one
realization of the stochastic processes controlling the swim of the bacterium:

0 Initial condition: x0(t), θ0(t) and Λ0(t), for t ∈ [−r, 0], and the function of chemical
concentration c(x, t) for t ∈ [−r, T ] and x ∈ Rd.

1 - run: the bacterium swims in direction θj(t) := θ(τj−1) +DθWS(t) until the process Λ
reaches the next level τj at time τΛ

j .

3 - tumble: when the level is reached the bacterium stops for a random time, exponen-
tially distributed, and the swimming direction is updated to θj+1 = θj + Yj

4 while τΛ
j < T , restart from step 1 with j 7→ j + 1.

3.2 General Mathematical Model

The dynamic of a bacterium is governed by the following system of stochastic functional
differential equations. Let us call it HHSEcoli.

X(t) =

{
x0(t) t ∈ [−r, 0[

x0(0) +
∫ t

0
u(Q(s)) · θ(s)ds+ σXW (t) t ∈ [0, T ]

θ(t) =

{
θ0(t) t ∈ [−r, 0[

θ0(0) +Dθ(Q(t)) ·WSd−1 +
∑Ψ(t)

j=0Yj t ∈ [0, T ]

ζ(t) =


ζ0(t) t ∈ [−r, 0[

ζ(0) +
∫ t

0
F (Q(s)), s, c(X(s), s), θ(s))ds

+
∫ t

0
G(Q(s), s, c(X(s), s), θ(s))dWζ(t) t ∈ [0, T ],

Λ(t) =


Λ0(t) t ∈ [−r, 0[

Λ0 +
∫ t

0
λ(Q(s), s, ζ(s), ζs,Λs, θ(s))ds

+
∫ t

0
σ(Q(s), s, ζ(s), ζs,Λs, θ(s))dW (s) t ∈ [0, T ],

(3.2.1)
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where we have for 0 ≤ t ≤ T,
Q(t) = H(Ψ(t),Q(0)),

Ψ(t) = N(Ξ(t−)),

Ξ(t) = β(Λ(t− s)s≤t).
(3.2.2)

H(ψ, q) is a function that governs the transition of the discrete component Q(t): more
precisely if we know the initial state of the bacterium, say Q(0), then the value of Ψ(t) tells
us if we are now performing a run or a tumble.
We may suppose that the jumps of the function N are exponentially distributed if the current
phase is a tumble; in this case σ ≡ 0.
We may also consider that the process ζ and Λ might be reset during a the transition from
two phases via a deterministic as well as stochastic reset map.

Remark 3.2.1. The form of the dependency is general: due to the biological explanation
stated in the introduction, it may be given by:

∇[t−r 7→t]
F,g c(X) := F

(
c(X(t), t)−

∫ 0

−r
c(X(t+ s), t+ s)g(ds)

)
,

or in case r =∞,

∇K
t c(X, s) =

1

τr

[
1−

∫ s

−∞
K(s− r)c(X(r), r)ds

]
,

with K(t) = λe−λt
∑kM

k=1 βk(λt)
k · 1{t≥0}

Remark 3.2.2. When we impose u ≡ 1, σ ≡ 0 and λ(s, ζ(s), ζs, θ) ≡ λ(s, ζ(s), θ), Dθ ≡
0, instantaneous reorientation and {aj}j∈N exponentially distributed, we obtain Stroock’s
model, i.e.

• (X, θ) is a Markov Process

• the backward equation is

∂

∂t
u(t, x, θ) + θ · ∇xu(t, x, θ) + λ(t, c(x, t), θ)

∫
S2

[u(t, x, η)− u(t, x, θ)]µθ(dη) = 0,

u(t, x, θ) = Et,x,θ[f(x(T ), θ(T ))] = E[f(x(T ), θ(T ))‖x(s) = x, θ(s) = θ], s ≤ T.

It follows from [119, paragraph 3, Example 2], , that if λ(x) is continuously differentiable and
uniformly positive, then the distribution of Xε(t) := X(0)+ε(X( t

ε2
)−X(0)) as ε goes to zero

tends to the distribution of a diffusion whose generator on C2(Rd) is given by ∇x

(
1

λ(x)
∇x

)
.

In particular, if λ(x) is constant, then Xε(t) tends to a Brownian motion. In other words, if
the medium is homogeneous, then the limiting behavior of the bacterium with this scaling
is that of a Brownian particle in R3.

Remark 3.2.3. We are recast into the model by Alt if ζ(t) records the time when the bacterium
jumps; more precisely let ζ(t) be evolving as ζ̇(t) = −1 during a run and let it jump back to
0 at the time of a tumble.
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3.3 Model vs. Data

If we look at the literature the distribution for the run lengths of E. coli is usually considered
to be exponential [22, 21, 45, 128]. We decided to have a general approach which allows the
distribution of runs and tumbles to be different from the exponential distribution.

Figure 3.3: The black and white part of the picture is taken from [12]:
Top: the fractional number of tumbles (a) or runs (b) of different
lengths. There were 1201 data points for each state. Bottom: For the
same data: number of tumbles (a) and runs (b) greater than a given
length, displayed on semi-logarithmic axes. Curve c was obtained by
scaling the run lengths of each bacterium so that its mean run length
was equal to the ensemble mean. The red curve is the distribution
of an exponential with mean given by the experiments, and the green
one is the distribution obtained by an inverse gaussian interpolation.
The pink arrow underlines that the gap between the smallest run and
zero is not zero.

This choice is motivated by two observations (see Figure 3.3):

1. the minimum length of a run is much larger then 0: of course it might be ascribed
to the modality of how the run length was measured, but this time interval should be
taken into account. In the large scale approximation it might have implications on the
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AW405 Unc 602 CheC 497
Number of bacterial tracked 35 10 14
Total tracking time (min) 20 3.0 2.7
Mean speed (µm/2) 14.2±3.4 14.4±3.9 20.0±4.9
Mean twiddle length (s) 0.14± 0.19 0.14± 0.24 0.10± 0.13
Mean run length (s) 0.86± 1.18 0.42± 0.27 6.3± 5.2

Table 3.1: Statistics of runs and tumbles reported in [12]: the data-
point were generated at the rate of 12.6 per seconds. The experiments
were done with three different cultures. The value mean speed, mean
twiddle and mean run length for homogenous environment are so for-
matted: E[X]±

√
Var[X]

magnitude of the diffusion coefficient: in fact after a tumble there will be some kind of
persistent interval, during which the bacterium will not turn its swimming direction;

2. in the of Table 3.1 we report the statistics of runs and tumbles [12]: By having a closer
look at it, we may notice that the mean and the variance of the distribution of the
runs are incompatible with exponentially distributed random variables:
More precisely, let X be an exponentially distributed random variable with parameter
α. We would have

E[X] =
1

α
=
√

Var[X] =
1

α
.

This is in contrast with the data in Table 3.1.
As an answer to the last remark, one might impute error estimation and confidence
intervals for the statistics of the first two moments of the distribution of runs. Although
we are aware of the validity of this hypothesis we decide, however, to undertake a more
general analysis: we believe it to be interesting both from a purely theoretical point of
view and a modeling one.

Remark 3.3.1. We mentioned that the discrepancies between the theoretical values and the
sample mean and variance might find a justification considering confidence intervals of the
estimated parameters: we now look closely in this direction. There are several ways to obtain
confidence intervals for a random variable which is exponentially distributed:

First Method: The 100 · (1 − β)% confidence interval for the rate parameter of an ex-
ponential distribution is given by [109]:

2n

α̂χ2
1−β

2
,2n

<
1

α
<

2n

α̂χ2
β
2
,2n

, (3.3.1)

which is also equal to:
2nx

χ2
1−β

2
,2n

<
1

α
<

2nx

χ2
β
2
,2n

,
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where χ2
p,v is the percentile of the chi-squared distribution with v degrees of freedom, n

is the number of observations of inter-arrival times in the sample, and x̄ is the sample
average. A simple approximation of the exact interval endpoints can be derived using a
normal approximation of the χ2

p,v distribution. This approximation gives the following values
for a 95% confidence interval:

αlow = α̂

(
1− 1.96√

n

)
αupp = α̂

(
1 +

1.96√
n

)
.

This approximation may be acceptable for samples containing at least 15 to 20 elements [60].
If we substitute the value given in [12] we obtain that the confidence intervals for a sample
of 100 and 1000 measurements 2 are given by:

Iα100 = [0.78, 0.93] Iα1000 = [0.83, 0.89].

Second Method: The Maximum Likelihood estimator for the parameter α of an Expo-
nential distribution is given by α̂ML = n∑n

i=1 xi
. We can calculate the asymptotic variance of

α̂ML : first of all we need the Fisher Information

I(α) = −E[
d2

dα2
ln f(x, α)] =

1

α2
,

where f is the pdf of a exponential random variable. The asymptotic variance of α̂ML is
given by Var (α̂ML) = 1

nI(λ)
= λ2

n
. For large n we have asymptotic normality, i.e.

α̂ML ∼ N(λ,
λ2

n
).

Therefore the 95% confidential Interval is given by:

I95 =
(√n− 1.96√

n
α̂ML,

√
n+ 1.96√

n
α̂ML

)
.

Remark 3.3.2. There are variants that can increase the degree of freedom of the statistics of
the distribution; we consider a variant based on the following simple consideration: when the
E. coli swims in a homogeneous and constant environment for a sufficiently long time, then
the run length distribution will be stationary, in the following sense: the dynamics will be
influenced only by the dissatisfaction index and the equation that the dissatisfaction index
solves is of the following form:

Λ(t) = λdt+ σdW (t).

If the threshold for the tumble level is a deterministic quantity, then the distribution of a
run follows an inverse Gaussian distribution with parameters:

IG(
n

λ
,
n2

σ2
),

2The number of data is not explicitly given in [12] but from the table we can infer it accounts more the
1000 measurements.
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Figure 3.4: Plot of the statistics for the parameter α of an exponen-
tially distributed random number [similar to the sample given in [12]]:
UB (resp. LB) is the upper (resp. lower) bound for the confidential
interval (CI) for the parameter α, std is the standard deviation (1.18)
and mean is the mean of the measurements (0.86). We notice that
the value of the inverse of the standard deviation lies outside the CI
for the parameter of the exponential distribution. From the formula
(3.3.1) we have that the number of samples is equal to half of the
degrees of freedom. From [12] the number of data are above 200. The
plot is drawn for a level β = 0.05.

where n is the magnitude of the threshold. For an inverse Gaussian distributionX ∼ IG(µ, λ)
it holds:

E[X] = µ Var[X] =
µ3

λ
.

We can now solve the relation to find stationary λ∗ and σ∗ in HHS. In the next section we
will study the case of a constant environment in greater detail.

Figure 3.5: Plot of the pdf of inverse Gaussian random variable with
parameters given by IG(2, λ) and λ = 1, 5, 30
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3.4 Constant Environment in Space and Time
We now consider a simplified problem, where we assume that the external stimulus is constant
in space and time. 

Λ(t) = η0 +H · t+ σ ·W (t) 0 ≤ t ≤ T

N(t) =
∞∑
k=1

χ[τk,∞)(s) 0 ≤ t ≤ T

X(t) = x0 +

∫ t

0

θ(s)ds 0 ≤ t ≤ T

θ(t) = θ0 +

N(t)∑
j=0

Yj 0 ≤ t ≤ T

τn =

{
0 n = 0

inf{s > τn−1 : Λ(s) = n} n ≥ 1

. (3.4.1)

The aim now is to write explicitly the transition probability for the vector Φ = (Λ(t), N(t))t∈[0,T ].
Let (η0, n0) ∈ R× N and A := B × {k} ∈ B(R× N), k ∈ N, η0 ≤ n0

P(t, (η0, n0); t+ h,A) = P
(

(Λ, N)(t+ h) ∈ A
∣∣∣(Λ, N)(t) = (η0, n0)

)
P
(

Λη0(t+ h) ∈ B, sup
s∈[t,t+h]

Λη0(s) ∈ [k, k + 1)
∣∣∣N(t) = n0

)
.

Let us consider now k ≥ n0 and B ∩ [k + 1,∞) 6= ∅, with Λ∗t,t+h = sups∈[t,t+h] Λη0(s)

P
(

Λη0(t+ h) ∈ B, sup
s∈[t,t+h]

Λη0(s) ∈ [k, k + 1)
∣∣∣N(t) = n0

)
= Eη0,n0

[
χB,[k,k+1]

(
Λ(t+ h),Λ∗t,t+h

)]
= Eη0,n0

{
E
[
χB,[k,k+1]

(
Λ(t+ h),Λ∗t,t+h

)∣∣∣Λ(t+ h)
]}

=

∫
B

P
(

Λ∗t,t+h ∈ [k, k + 1)
∣∣∣Λη0(t+ h) = x

)
PΛη0 (t+h)(dx)

= 2

∫
B

dα

∫
[k,k+1)

dβ
{2β − η0 − α

σ
√

2πh3
exp

(
− (α−Hh− η0)2 + 4σ2(β − η0)(β − η0 − α)

2σ2h

)}
.

The last passage is justified by [15], where it is proven that for B0,y
t+h(s) being a Brownian

Bridge one has:

P
(

Λ∗t,t+h > x
∣∣∣Λη0(t+ h) = y

)
= P

(
sup

s∈[t,t+h]

B0,y
t+h(s) > x

)
,

and

P
(

sup
s∈[0,t0]

Bx,y
t+h(s) > z

)
=

{
exp

(
− 2 (z−x)(z−y)

t0

)
, z > max(x, y)

1 otherwise
.
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To calculate the generator, one should then proceed to the calculus of the following limit,
where f is a sufficiently regular function:

lim
h→0

2
∞∑

k≥n0

∫
B

∫
[k,k+1)

{f(α, β)− f(η0, n0)

h

2β − α− η0

σ
√

2πh3

· e−
(α−Hh−η0)2+4σ2(β−η0)(β−η0−α)

2σ2h

}
dβdα.

But it seems to be quite prohibitive.

3.4.1 Negligible Tumble Time

In this section we make use of the methods developed in [56, 122, 48]. In the next section
we will extend the results to the case of a finite tumble time.
In the case of a constant environment, the distribution of the jumps can be considered as
a sequence of independent and identically distributed random variables, say W(τ), where
W(τ)dτ represents the probability that a tumble occurs in the time interval [τ, τ + dτ ].
In what follows we suppose that the density function of the random vector representing the
marginals of the system for the variable (x, θ), p(t, x, θ)dtdxdθ and the distribution of the
system just starting a new run, f(t, x, θ)dtdxdθ exist and are smooth in all their components.
After a random time τ , distributed as W(τ)dτ , the bacterium changes direction according to
the probability distribution µ(θ). The corresponding conditional probability shall be called
q(t+τ, y, η|x, θ)dydηdτ . We suppose, in addition to [56] and [122], that during the run phase
the direction follows a diffusion process on the sphere with constant diffusion coefficient Dθ.
We can now write the integral equations for the evolution of the quantities described above:

f(t, x, θ)− f(0, x, θ) =

∫ t

0

∫
Rd

∫
S

q(t− s, x, θ|y, η)f(s, y, η)dxdθ.

The evolution of the components (x, θ) satisfies the following system of equations

∂

∂h
E[g(t+ h, x(t+ h), θ(t+ h))|(t, x, θ)]

∣∣
h=0

=
( ∂
∂t

+ θ · ∇x +Dθ∆θ

)
g(t, x, θ).

In what follows we indicate with e−(t−s)(η·∇x+Dθ∆η) the semigroup generated by the operator:

A := η · ∇x +Dθ∆η.

We obtain then that

f(t, x, θ)− f(0, x, θ) =

∫ t

0

∫
Rd

∫
S

q(t− s, x, θ|y, η)f(s, y, η)dxdη

=

∫ t

0

∫
S

W(t− s)e−(t−s)(η·∇x+Dθ∆η)f(s, y, θ)µη(θ)dxdη.

We can now study the joint position-velocity distribution function, say p(t, x, θ). Using
the notation w(t) = 1−

∫ t
0
W (s)ds we have
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p(t, x, θ) =

∫ t

0

∫
S

w(t− s)e−(t−s)(η·∇x−Dθ∆η)f(s, y, θ)µη(θ)dxdη.

We can then write the Laplace transform of this equation and proceed as in [56], Equations
(15-22). We have only to take care of the presence of the Laplacian for the evolution of the
direction between two jumps; for Example eq. (15) becomes in our case:

L{p}(λ, x, θ) = f(0, x, θ) +

∫
S

µη(θ)L{W}(λ+ η · ∇x +Dθ∆η)L{f}(λ, y, η),

where we use the notation

L{p}(λ, x, θ) :=

∫ ∞
0

e−λsp(s, x, θ)ds.

We obtain the master equation[ ∂
∂t

+ θ · ∇x −Dθ∆θ

]
p(t, x, θ) =

∫ t

0

∫
S

e−(t−s)(η·∇x−Dθ∆η)p(s, y, η)µη(θ)Φ(t− s)ds

−
∫ t

0

e−(t−s)(η·∇x−Dθ∆η)f(s, y, θ)Φ(t− s)(θ)ds,

where the kernel Φ(t) is defined via the equation for the Laplace transform:

L{Φ}(λ) =
1− λ · L{w}(λ)

L{w}(λ)
.

We can follow [122] to investigate the limit of the parabolically rescaled equation for large
time, i.e. for t 7→ t

ε2
and x 7→ εx as ε→ 0.

By expanding the kernel for small λ, which corresponds to large time, we have the
equation:

(1 + Φ′(0))
( ∂
∂t

+ θ · ∇x −Dθ∆θ

)
p(t, x, θ) = T0[p(t, x, θ)] + T1[p(t, x, θ)],

where
T0[p(t, x, θ)] = −Φ(0)

(
p(t, x, θ) +

∫
S

µη(θ)p(t, x, η)dθ
)
,

T1[p(t, x, θ)] = Φ′(0)

∫
S

µη(θ)
( ∂
∂t

+ η · ∇x +Dθ∆η

)
p(t, x, η)dθ.

Suppose that the turning kernel satisfies the relations:∫
S

∫
S

µη(θ)p(t, x, η)dθdη = 0,

∫
S

θµη(θ)dθ = ψd · θ,
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and using the Cattaneo Approximation (see [122]) we obtain for the moments

M(t, x) =

∫
S

p(t, x, θ)dθ) and J(t, x) =

∫
S

θ · p(t, x, θ)dθ),

the following two equations:
∂

∂t
M(t, x) +∇x · J(t, x) = 0,

∂

∂t
J(t, x) +

u2

d

(
1 + Φ′(0)− ψd · Φ′(0)

)
∇xM(t, x) + Φ(0)

(
1− ψd +Dθ

)
J(t, x) = 0.

Now using standard hydrodynamics theory, with the transformations ∂
∂t
7→ ε2 ∂

∂t
and

∇x 7→ ε∇x we derive the parabolic limiting equation. We suppose that it is possible to
expand the functions in powers of ε:

f(t, x, ) =
∞∑
k=1

f (k)(t, x) · εk.

By comparing terms of the same order in ε we have
∂

∂t
M (0)(t, x) = D ·∆xM

(0)(t, x).

Let µ be the mean of the distribution of the waiting time and σ its standard deviation, then
the constant D is given by

D =
1 + (1− ψd) · Φ′(0)

(1− ψd)
(

Φ(0) + Φ′(0) ·Dθ(d− 1)
)

+Dθ(d− 1)
.

3.4.2 Equation with Finite Tumble Time

Using the same technique as above it is possible to extend the results in [122] to the case in
which during a run the direction performs a diffusion on the sphere. In this case we obtain
a diffusion coefficient which depends also on the mean of the tumble time: we have

∂

∂t
M (0)(t, x) = D ·∆xM

(0)(t, x),

with the constant D given by

D =
u2

d

Φτ (0)

Φ(0) + Φτ (0)

1 + (1− ψd) · Φ′(0)

(1− ψd)
(

Φ(0) + Φ′(0) ·Dθ(d− 1)
)

+Dθ(d− 1)
.

If we use the relations
lim
λ→0

Φi(λ) =
1

µi
lim
λ→0

Φ
′

i(λ) =
σi
2µi
− 1,

we obtain that

D =
u2

d

µr
µt + µr

2µ2
rψd + (1− ψd)σ2

r

2µr(1− ψd) + (d− 1)Dθ(2µrψd + (1− ψd)σ2
r)
. (3.4.2)

We notice that this formula is consistent with previous publications, in fact if we impose
Dθ = 0 we obtain the result in [122]. We notice also that if ψd ∼ 1, then the contribution of
the variance of the duration of a run disappears.
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3.5 Infinite Fading Memory

The introduction of an explicit dependency upon the segment process in the SDE that drives
the internal dynamics destroys many nice properties in comparison with the standard set-
ting: in one word we have not not been able to describe the infinitesimal generator of the
modelHHSEcoli and the related Kolmogorov’s equation. This makes impossibility to use all
the tools and techniques to shift from the microscopic scale to the macroscopic one [2, 45, 22].

In the following section we will incorporate the memory term in a less general way [22]:
the memory term is identified as the solution of a particular system of ODEs, leading to a
process which is Markov without the need of enlarging the state space and adding infinite
dimensional Hilbert spaces. We say it is less general since it can be seen as a particular case
of HHSEcoli in a sense made clearer in the following section.

3.5.1 Mathematical Model

We make use of the same notation and hypotheses as in the general mathematical model.
The dynamic of a bacterium is governed by the following system of stochastic differential
equations; let t ∈ [0, T ]
for t ∈ [τn, τn+1]

Q(t) ∈ {0, 1}

X(t) = xτn +

∫ t

τn

u(Q(s)) · θ(s)ds

θ(t) = θτn +Dθ(Q(t)) ·WSd−1(t− τn)

Λ(t) = Λτn +

∫ t

τn

λ(R(s))ds+

∫ t

τn

σ(R(s))dW (s),

(3.5.1)

where σ(2n) = 0,
τn = inf{s > τn−1 : Λ(s) ≥ an},

where an is a sequence such that a2n is an exponentially distributed random variable and
a2n+1 may either be deterministic or stochastic quantities. The memory term is given by the
expression [22]:

R(t) =

kN∑
k=1

βkα
k+1mk(t),

mk(t) =

∫ t

−∞
e−α(t−s)(t− s)kc(X(s), s)ds k = 0, . . . kN .

(3.5.2)

We have the following rules for the jumping terms:

Q(τn+1) = 1− Q(τ−n+1)

θ(τn+1) = θ(τ−n+1) + Yn · δQ(t)
0

Λ(τn+1) = 0.

(3.5.3)
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Remark 3.5.1. The variable Q describes in which phase the bacterium is: Q = 1 represents
the running phase, Q = 0 the tumbling phase. We can identify the following features:

• at every discontinuity point the internal dynamics Λ is reset to the value 0;

• the process θ (the instantaneous direction) follows a Brownian motion on the sphere
and jumps to a new location when there is a transition between run and tumble;

• the tumbles are exponentially distributed.

Remark 3.5.2. The expression for R can be rewritten as a system of ODE’s [22]:
by taking time derivatives of mk, it is easy to verify that the internal variables obey a set of
closed equations. The equations have the common structure

d

dt
mk = −α ·mk + fk, (3.5.4)

featuring a relaxation term and a forcing term fk = k ·mk−1 for k ≥ 1 and f0 = c for k = 0.

3.5.2 One dimensional Process

In this section we study the Fokker Plank equation of the process living on a line, by sup-
posing that the duration of a tumble is negligible. In this case we can intensively use the
setting of the Stochastic Hybrid System [63]. Thanks to the property of the memory kernel
stated previously, we can simplify the general model and rewrite it in a cleaner way.

Suppose that a bacterium moves along the x-axis at a speed θ(t) that takes values in the
set Θ = {s,−s} and let us consider now the following vector-valued process:

(X(t),m0(t),m1(t),m2(t),Λ(t))t∈[0,T ],

whose components satisfy the following equations:

dX(t) = θ(t)dt

dmj(t) = fj(t)dt+
√

2η ·mjdW
m
j (t), j = 0, 1, 2

dΛ(t) = λ(R(t))dt+ σdWΛ(t),

where fj and R(t) are as before.
We write now

M = {−1} × X−1 ∪ {1} × X1,

where Xθ = R×R3× (−∞, r1) with r1 > 0 the level for which the system switches direction
for θ ∈ Θ. We consider the deterministic reset map Φ : ∂M→M as follows:

Φ(x, [mj]
2
j=0, r1,−1) = (x, [mj]

2
j=0, 0, 1),

Φ(x, [mj]
2
j=0, r1, 1) = (x, [mj]

2
j=0, 0,−1),

which means that the position x and the internal variables mj are not changed, the saturation
process Λ is reset to the value 0 and the speed θ is reversed.
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In this setting we can make use of Theorem 4 and Example 3.1 in [7], in particular by
writing the system in matrix form:

d


X(t)
m0(t)
m1(t)
m2(t)
Λ(t)

 =


θ(t)

c(t, x)− νm0(t)
m0 − νm1(t)

2 ·m1 − νm2(t)
λ(R(t))



+


0 0 0 0
0
√

2η ·m0(t) 0 0 0
0 0

√
2η ·m0(t) 0 0

0 0 0
√

2η ·m0(t) 0
0 0 0 σ



dWX(t)
dWm

0 (t)
dWm

1 (t)
dWm

2 (t)
dWΛ(t)

 .
The flux is given by

Jt =


θ(t)

c(t, x)− νm0(t)
m0 − νm1(t)

2 ·m1 − νm2(t)
λ(R(t)))

 pθ(t, x,mj,Λ)− 1

2


0

2η ·m0(t)
2η ·m1(t)
2η ·m2(t)

σ2

∇pθ(t, x,mj,Λ).

The application of Theorem 4 in [7] leads to the following parabolic differential equation
with boundary values for pθ(t, x,mj,Λ):

∂

∂t
pθ + θ

∂

∂x
pθ +

2∑
j=0

∂

∂mj

[(
fj − νmj − ηmj

∂

∂mj

)
pθ
]

+
(
λ(R)

∂

∂Λ
− 1

2

∂2

∂2Λ

)
pθ = 0.

We have to impose continuity on Xθ and the absorbing condition on the boundaries ∂Xθ.

3.5.3 General Case with Finite Tumble Time

In order to treat the general case (with special memory kernel K(t) as before) it is convenient
to extend the treatment to the case of finite time tumble. In this case some mathematical
difficulties are avoided. As in the previous section we will try to fit the model in the frame-
work of Stochastic Hybrid Systems. With the introduction of the tumble phase we can smooth
the irregularities on the border and make use of a stochastic reset for the direction of the
bacterium (in contrast with [7] where deterministic resets are allowed). The dynamics of the
system is as in the introduction with the following specification:

• the saturation process is reset to the value 0 when a tumble starts (thanks to the
properties of the kernel K(t));

• the duration of a tumble is exponentially distributed with parameter given by 1
τt
.
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As before we consider the discrete set R = {r, t}, where r stands for run and t for tumble
and the domain for the continuous dynamics:

Xθ = Rd × Sd × R3 × (−∞, r1),

where Sd is the d-dimensional sphere and r1 is the threshold level.

By following [6] we can write down the Fokker-Planck equation for the density

pr
(
t, x, θ,Λ, (mk)

kM
k=1

)
and pt

(
t, x, θ, (mk)

kM
k=1

)
,

where s ∈ R. We make a further hypothesis:

• we will assume that during a tumble the component Λ evolves as a diffusion with re-
flecting boundary in the domain [−ε1, ε1], where ε1 is a small parameter. This expedient
is used to approximate the model: instead of driving the transition from tumble to run
via the process Λ, we use standard techniques to write the Fokker-Plank equation for
a markovian system. In this case we should have that in the domain of the tumble,
the process Λ would have the constant value 0: this might lead pr and pt to become
singular. We allow it to diffuse in the stripe [−ε1, ε1], so that the boundary conditions
of the flux of the probability density are easily writeable.

∂

∂t
pr +∇x

(
θ · pr

)
+ M[pr] + AΛ[pr] = Dθ∆Sp

r +
1

τt

∫
S
pt(·, η)µθ(η),

∂

∂t
pt + Mpr = − 1

τt
pr,

with boundary conditions given by

∂np
t
∣∣∣
Λ=±ε1

= 0,

Jr = ΦJ t,

where M[pr] and AΛ[pr] are the generators of the SDE resp. for m and Λ.

3.5.4 Approximation

In this section we proceed in a first approximation of the general equation discussed previ-
ously. We can try to approximate the waiting time

τΛ(R(t)) =
N∑
k=1

Z(gk(R)),

where Z are independent exponential random variables with parameter gk(R), such that

E[τΛ] =
N∑
k=1

1

gk(R)
.
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We can follow the derivation of the hydrodynamic limit for the system with finite tumble
times as in the Supplementary Information in [22]. We show the procedure in the case of
N = 2 in the approximation of the time of the a run. The system is described by three
states: begin of a run, end of a run and tumble; the probabilities for the system to be in one
of the states are given respectively by pa, pe, pt. We can write the Fokker-Planck equation
for these quantities:

∂

∂t
pa +∇x

(
θ · pa

)
+ M[pa] = Dθp

a +
1

τt

∫
S
pt(·, η)µθ(eta)− g1(R(t))pa,

∂

∂t
pe +∇x

(
θ · pe

)
+ M[pe] = Dθp

e − g1(R(t))pa + g2(R(t))pe,

∂

∂t
pt + Mpr = − 1

τt
pr + g2(R(t))pe.

In case of a small value of R and asymptotic expansion of the functions gj(R) ∼ 1−α·R
τj

, we
conjecture that the form of the limit of the parabolically rescaled equation for the quantity

p(t, x) =

∫
S

∫
RNM

(
pa(t, x, θ,mj) + pe(t, x, θ,mj) + pt(t, x, θ,mj)

)
dθ ⊗j dmj,

is as follows

∂

∂t
p(t, x) +∇(D1(τj, τt)p(t, x)∇c(t, x)) = D2(τj, τt)∆

(
p(t, x)(1 +D3c(t, x))

)
.

Remark 3.5.3. We would like to conclude this chapter with some remarks:

• the use of an underlying counting process for the tumbles that is not Poisson leads to
extremely difficult mathematics which we were not able to overcome (only partially);

• the difference between the Poisson case and the non-Poisson case, in the field of chemo-
taxis for E. coli, is not so large to actually require such a complicate machinery;

• this chapter can be considered as a justification to keep using Poisson processes for the
tumble and run events as a good approximation of the real distribution.

Remark 3.5.4. It could be possible to extend the model further and include an extra source
of noise inside the coefficients of the SFDE for the process Λ. In fact we might consider
the function λ(·) itself random, i.e. ω 7→ λ(ω, ·). In this setting we can obtain non diffusive
behavior for the density of the population even using a standard Poisson process [87].



Chapter 4

SIMPLIFIED MODELS

The general model presented in Chapter 2 is very difficult to deal with in great generality,
first of all because of the great freedom in the choice the the parameters. A careful choice
of the form of the coefficient-functions for the different stochastic processes therein involved
recasts us into well established models in the existing literature. In this sense the general
model (HSHS) can be considered a generalization of the work that has been done in the
study of random dynamic systems.

4.1 The Parameters-Game
If we look carefully at the system HSHS (2.2.2, 2.2.3), we recognize that the parameters that
play a prominent work in the dynamics are the following:

• the sequence of random variables or deterministic numbers aj that control the cádlág
process N;

• λ(·), σ(·) the coefficients of the SFDE governing the random time change;

• Dθ the coefficient of the SDE on the sphere

• F (·) and G(·) the functions related to the internal dynamics.

In the following table we summarize some parameters: we use the notation

λ(K) =
1

τr

[
1−

∫ s

−∞
K(s− r)c(X(r), r)ds,

with K(t) = λe−λt
∑kM

k=1 βk(λt)
k · 1{t≥0} for the modek Vergassola and cellni.

For a better overview we refer to picture 4.1

Model in the Literature aj λ(·) σ(·) Dθ F (·), G(·)
Stroock [119] ∼ E(1) λ(s, θ,X) 0 0 0
Othmer [102, 45, 128] ∼ E(1) λ(s, θ,X) 0 Eq. 4.4.1
Orsingher [8] ∼ E(1) 0 const 0 0
Vergassola and Celani [22, 21] ∼ E(1) λ(K) 0 0 Eq. 3.5.4
Lèvy Walk aj = j 0 const 0

69
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HHSM

dΛ(t) =

F (Λ(t+ s) :

s ∈ [−r, 0])

r = 0
r > 0

and N(t) HS PDMP [36]

N(t)PP: N(t)SFDEwMS [84] not PP

Λ(·)dΛ(t) =
dW(t)

VJP
dΛ(t) =
λ(·, t)dt

Nν(t),
ċ(t) = 0

FPP [8] ζ(t)

Formula
(3.19)
in [45] ζ(t) = 0

Formula
(3.5.1)

[45, 128]

[119]

[22, 21]

τΛ(aj),
Λ(t)

aj ∼ Exp(1)
τaj =

inf{Λ(t) =
aj}

Λ̇(t) =

λ(·, t− τj−1)

[2]

LW
aj = j,

τΛ
j = inf{Λ(t) = j},

Λ(t) := W(t)

[123]

Figure 4.1: Branch-tree for the derivation from the HHSM to other
models in the literature
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In what follows we give a brief overview of different models and their connections with
HSHS.

Time-changed Semimartingale

We can shrink the general idea behind the HSHS model to the one of random-time change,
from this prospective we can better understand the connection between different models that
HSHS realizes:
In [72] conditions are given on a semimartingale and a time-change, when a stochastic inte-
gral driven by the time-changed semimartingale is a time-changed stochastic integral driven
by the original semimartingale. The central problem is to understand such integrals by
rephrasing them in terms of integrals driven by the original semimartingale. Solving this
problem is almost equivalent to providing a way to recognize SDEs driven by a time-changed
semimartingale, which aids the analysis of problems that appear in applications.

The main point is that any stochastic integral driven by a time-changed semimartingale
is a time-changed stochastic integral driven by the original semimartingale, as long as the
semimartingale is in synchronization with the time-change.

Theorem 4.1.1. (Time-changed Itô Formula) Let Z be an (Ft)-semimartingale. Let D and
E be a pair satisfying [[D → E]] or [[E → D]]. Define a filtration (Gt) by Gt := FEt. Let X
be a process defined by

Xt = (A •m)t + (F • E)t + (G • (Z ◦ E))t.

If f : R→ R is a C2 function, then f(X) is a (Gt)-semimartingale, and with probability one,
for all t ≥ 0,

f(Xt)− f(X0) =

∫ t

0

f ′(Xs−)Asds+

∫ Et

0

f ′(XD(s))FD(s)ds

+

∫ Et

0

f ′(XD(s))GD(s)dZs +
1

2

∫ Et

0

f ′′(XD(s)){GD(s)}2d[Z,Z]cs

+
∑

0<s≤t

{f(Xs)f(Xs)f
′(Xs)∆Xs}.

Formally we can write the process HSHS as[
X(t)
θ(t)

]
=

∫ t

0

[
θ(s)

0

]
ds+

[
0
Y

]
•
(

Ψ ◦ β(

∫ t

0

λ(s, ζ(s), ζs, θ(s))(ds, dW (s)))
)
.

4.2 Brownian Time Change

In this section the time change is performed via some functionals of a Wiener process:
the high irregularity of the simple path of the Wiener process leads to processes whose
distributions solve fractional equations.
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4.2.1 Fractional Poisson Process

Let us consider the following hypothesis:

• N is a Poisson process, i.e. aj are i.i.d exponentially distributed RVs;

• λ(. . .) ≡ 0;

• σ(. . .) ≡ σ, constant;

• Dθ ≡ 0.

We get the framework of the fractional Poisson process developed by Orsingher et al. in
[99, 100, 8, 9], in this case we have: for t ∈ [0, T ]

X(t) = x0(0) + c ·
∫ t

0

θ(s)ds

θ(t) = θ0(0) +
∑Ψ(t)

j=0
Yj

Ψ(t) = N(sup
s≤t

Λ(s)),

Λ(t) =

∫ t

0

σ · dW (s).

The process Ψ(t) has the same distribution as the fractional Poisson process, (Nν(t))t≤0,
with ν = 1

2
, whose distribution pk = P(Nν(t) = k), k ≥ 0 solves the following equation

dν

dtν
pk(t) = −λ(pk(t)− pk−1(t));

pk(0) = δ1
k,

where the fractional derivative is the one proposed by Dzerbayshan-Caputo [107]. It follows
from the observation:

Ξ(t) = sup
s≤t

Λ(s)
d
= σ · |W (t)|.

We can make use of the theory developed in [8]. Let Yj be uniformly distributed on the
unit circle and, for simplicity, σ ≡ 1. From this we obtain the fractional process governing the
changes of directions as N1/2(t) = N(|B(t)|), and derive that the conditional distribution
of the random vector (X(|W (t)|), Y (|W (t)|)), t > 0 which may be written, for k ≥ 0,
(x, y) ∈ R2, as

P
(
X(|W (t)|) ∈ dx, Y (|W (t)|) ∈ dy

∣∣∣N1/2(t) = k
)

=
dxdy

B
(

1
2
, k+1

2

) ∫ 1

0

w
1
2 (1− w)

k+1
2

1

4πtwc2
e−

x2+y2

4c2tw dw,

where B(α, β) denotes a Beta function of parameters α and β, andW (t), t > 0, is a standard
Brownian motion, independent of (X(t), Y (t))t≥0. This means that the planar motion with
a Brownian time can be regarded as a planar Brownian motion, whose volatility is itself
random and possesses a Beta distribution depending on the number of changes of directions.
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Figure 4.2: Distribution of the fractional planar random walk. The
initial position is in the origin of the axis (0, 0) and the distribution
of the new direction is assumed to be uniform over the unit circle.

4.2.2 Continuous Time Random Walk

CTRW - Deterministic Cádlág Process

Let us consider the system of HSHS in case c(x, t) is constant. To be more precise, the
general system becomes

X(t) = x0 +

∫ t

0

θ(s)ds, θ(t) = θ0 +

N(t)∑
j=0

Yj 0 ≤ t ≤ T

Λ(t) = η0 + λ · t+ σ ·W (t), N(t) =
∞∑
k=1

χ[τk,∞)(s) 0 ≤ t ≤ T

τn = inf{s > τn−1 : Λ(s) = n ≥ 1} τ0 = 0.

The vector (Λ,N, X, θ) is Markovian and the distribution for the stopping times {τn} is well
known: it is a sequence of random variables with inverse Gaussian distribution IN( 1

H
, 1
σ2 ).

We have already analyzed the problem when the parameter λ is positive and obtained that
on the macroscale level the probability distribution of the random process X(s) solves a
diffusion equation. Briefly: for λ > 0 we have that the distributions of the waiting times
and displacements are in L2. From the central limit theorem it follows that the limiting
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dynamics are given by the Wiener process.

From standard results on convergence of RV, we have that IN( 1
H
, 1
σ2 ) converges in distri-

bution as λ → 0 towards a RV which follows a Lèvy distribution with parameters L(0, 1
σ2 ).

When we study the limit case λ = 0, it turns out that the limiting behavior of the distribu-
tion of the random variable 1

nβ
X(
∑

j τj) is more complicated.

CTRW - Poisson counting process

Similarly, if we let aj in HSHS be exponentially distributed i.i.d RV’s: the vector (Λ, N,X, θ)
is Markovian and the distribution for the stopping times {τn} is well known: it is a se-
quence of random variables which have exponentially compound Inverse Gaussian distribu-
tions IN( α

H
, α

2

σ2 ), α ∼ Exp(β); a power law with exponent 1
2
.

Multidimensional Lévy walk and its scaling limits

The model HSHS, in this limiting case can be viewed as a multidimensional Lévy walk (LW),
we briefly recollect it [123]:

Cádlág case: We start studying the CTRW which underlies our stochastic process: we
will not follow the process along its trajectory, but only at the point when the process θ is
discontinuous: more precisely we consider that X(t) stays in a prescribed location and at τn
it jumps outright to the new location given by X(t) + τnθn.
We will assume that

(I) waiting times Ti are i.i.d. random variables distributed according to some heavy-tailed
power law with exponent α ∈ (0, 1), i.e.

P(Ti > x) ∼ C0x
−α as x→∞,

for some constant C0 > 0

(II) jumps Xi are of the form
Xi = TiVi,

where {Vi}i>0 is a sequence of i.i.d. random unit vectors in Sd with a distribution
which is independent of the sequence {Ti}i>1 and such that the distribution V1 is not
degenerated.

Unit vectors Vi govern the direction of jumps Xi, whereas Ti is the length of jump Xi.
In this case we have the following convergence results:

an

[nt]∑
i=1

Xi ⇒ Lα(t), n→∞. (4.2.1)

Here, Lα(t) is the d-dimensional α-stable Lévy motion with Fourier transform

log φLα(t)(k) = t

∫
Sd
|〈k, s〉|α

(
i · sgn(〈k, s〉)tan

(πα
2

)
− 1
)

Λ(ds).
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For Ti, they belong to the domain of attraction of some one-sided α-stable law

an

[nt]∑
i=1

Ti ⇒ Sα(t), n→∞,

where, Sα(t) is the strictly increasing α-stable subordinator with Fourier transform

log φSα(t)(k) = t|k|α
(
i · sgn(k)tan

(πα
2

)
− 1
)
.

The normalizing constants in (4.2.1) is given explicitly by

an =
(
C0Γ(1− α) cos

(πα
2

)
· n
)− 1

α
.

It is important to note that as sequences Xi and Ti are strongly dependent, so are the
processes Lα(t) and Sα(t). Particularly, Sα(t) has jumps in the same instants of time and of
the same length as Lα(t). From [123] we have

Theorem 4.2.1. Let R(t) be a LW process generated by the sequence {(Xi, Ti)}i∈N satisfying
conditions (I) and (II). Then

1

n
R(nt)⇒ Y(t),

where Y(t) is the right-continuous version of the process L−α (S−1
α (t)). The spectral measure

Λ of Lα(t) is equal to the distribution of the unit vector V1. Moreover, the exact joint
distribution of Lα(t) and Sα(t) is given by the formula

ν(Lα,Sα)(dx, ds) = ε‖x‖(ds)νLα(dx),

where

νLα(x ∈ Rd : ‖x‖ > r) :=
Λ(Sd)

C0Γ(1− α) cos
(
πα
2

) · 1

rα
.

Continuous case: Let us consider in detail the situation: The structure reminds us of
the one of Continuous Time Random Walks (CTRWs), but those are typically defined in
the way that their trajectories are discontinuous step functions. In the present context the
alternative definition of continuous time random walks with continuous trajectories (CP-
CTRW) given in [132] fits better.

Following this article we have that

X(t) = S(N(t)) +
S(N(t) + 1)− S(N(t))

T (N(t) + 1)− T (N(t))
· (t− T (N(t))),

where for t ≥ 0 S(t) =
∑[t]

j=1 Yj, T (t) =
∑[t]

j=1 τj and N(t) = max{k ≥ 0 : T (k) ≤ t}. The
idea is to apply the Theorem 2 in [132]. First it is necessary to clarify some notation: Let
us consider the triangular array of random vectors {(Yn,k, τn,k)}, where Yn,k are the random
vectors in Rd and τn,k are positive random variables. For this array we define, for t ≥ 0,

(
Sn(t), Tn(t)

)
:=
( [t]∑
j=1

Yn,j,

[t]∑
j=1

τn,j

)
,
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Nn(t) := max{k ≥ 0 : Tn(k/n) ≤ t},
and the sequence of CTRW processes

Rn(t) := Sn

(Nn(t)

n

)
=

Nn(t)∑
j=1

Yn,j.

The last process may be written in the form Rn = Φ(Sn, Tn) where the mapping

Φ : D([0, ), Rd × [0,∞))→ D([0,∞), Rd)

is given by the formula
Φ(x, y) := (x− ◦ (y−1)−)+.

The array {(Yn,k, τn,k)} generates also the sequence of CPCTRW, ξn(t). Exploiting the
mapping f : D([0,∞), Rd × [0,∞))→ D([0,∞), Rd), [132] Definition 2, defined as

f(x)(t) = x(ηx(t)) +
x(θx(t))− x(ηx(t))

θx(t)− ηx(t)
· (t− ηx(t)),

where, for t ≥ 0, ηx(t) = sup{s < t : x(s) 6= x(t)}, θx(t) = inf{s ≥ t : x(s) 6= x(t−)} the
function ξ(t) can be written as ξn(t) := f(Rn(t)).

Theorem 4.2.2. Assume that (Sn, Tn)⇒ (A,D) in the space D([0,∞), Rd×[0,∞)) equipped
with J1 topology, where almost surely the trajectories of process A are not constant on any
interval (a, b) ∈ [0,∞) and D has strictly increasing realizations. Then

ξn(t)⇒ R(t) := f(R) = f(Φ(A,D)),

in the space D([0,∞), Rd) equipped with SM1 topology.

The application of this theorem is not directly possible with τ ∼ IN(0, 1/σ2), and Y ∈ L2

since this leads to A given as an α-stable Y -Lévy motion -as in the previous section- and D
an 1/2-stable Lévy process:

Xn(t)⇒ Lα(D−1
1/2),

since there exists (a, b) such that almost surely the trajectories are constant on the interval
(a, b) ∈ [0,∞), but a little modification of the proof allows us to claim the same convergence
stated in the theorem. In fact holds:

Theorem 4.2.3. Assume that (Vn · Tn, Tn) ⇒ (A,D) in the space D([0, T ),Rd × [0,∞))
equipped with J1 topology, D has strictly increasing realizations and A is a α-stable Lévy
motion weighted on the sphere. Then

ξn(t)⇒ R(t) := f(R) = f(Φ(A,D)),

in the space D([0,∞), Rd) equipped with SM1 topology.

Proof. The part of the proof in [132] to be adapted is on page 14 line 6 where it is written
”Now we check that . . .”:
Assume that R′ is constant on ]ηR′(t), θR′(t)[ for some t > 0 and θR′(t) ∈ disc(R′). Note that
A′ and D′ jump at the same exact points, since the two process are coupled the way it is
stated above: so it follows that the two processes R′ = Φ(A′, D′) and Φ(D′, D′) are constant
on the same intervals. Then all the analysis is done on Φ(D′, D′).
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4.3 Stochastic Hybrid Systems
If we eliminate the functional dependency in the driving equation we are recast in the stan-
dard theory of HSS [63, 19, 7, 6, 73].
If we assume that the jump to different states is driven by an independent Poisson process,
then the same system with functional dependency in the coefficient is recast into the frame
work of SFDE with Markovian switching [84].

4.4 Poisson Time Change
In this section we make the following assumptions:

• F (·) and G(·) are regular functions, in the sense that the equation for ζ is well defined
and at least continuous;
• N(t) is a Poisson process N(t);
• λ(·) is a positive function which depends on (θ(t), X(t), ζ(t));
• σ ≡ 0;

In this case HSHS can be viewed in the framework of the random-time changes proposed
and intensively studied by Kurtz [47, 76]. Let Y : Ω×[0,∞)→ S2 such that for all t ∈ [0,∞),
E[Y (t)|θ(t−)] ∼ µθ(t−). For 0 ≤ t ≤ T

X(t) =x0(0) +

∫ t

0

θ(s)ds

θ(t) =θ0(0) +

∫ t

0

E[Y (t)|θ(t−)] · dΨ(t)

Ψ(t) = N
(∫ t

0

λ(s, ζ(s), ζs, θ(s))ds
)

dζ(t) = F (c(X(t), t), ζ(t))dt+G(c(X(t), t), ζ(t))dW (t).

4.4.1 Stroock

As mention in Chapter 3, HSHS is a generalization of the model of Stroock [119]. Under
the hypothesis stated above, if we eliminate the variable ζ, we are immediately recast into
that model, in particular we can construct a temporally inhomogeneous Markov process
(x(t), θ(t)) on R3 × S2 such that:

• x(t)− x(s) = (t− s) · θ(s), if θ(·) is constant during [s, t);

• the conditional probability of θ(·) being constant during [t, s) given the past up to time
s is

P
(
θ(u) = θ(s), u ∈ [s, t)‖Fs

)
= exp

[
−
∫ t

s

λ(u, x+ (u− s)θ, θ)du
]
,

where λ is a given function

λ : [0,∞)× R3 × S2 → (0,∞);
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• the conditional distribution of the first place at which θ(·) jumps after time s given the
past up to time s is given by µθ(s), a probability measure on S2.

4.4.2 Alt Model

In order to identify the model by Wolfgang Alt [2], we need some remarks:

• We may consider the model by Alt as a special case of the velocity-jump models (see
for example [128]): we have that the internal variable (here τ) satisfies the differential
equation τ̇ = −1 and it is reset to the value 0 at every arrival time of a non-homogenous
Poisson process: the process ζ is identified by the variable τ .

• We need to take care and proceed as in Section 3.5.1 to allow discontinuity and resetting
of the processes: we can do it, since we are in a natural Markovian setting.

• Supposed that an individual at (t, x) has been running in direction θ for a time τ
(counted from the beginning of the run): The hypothesis in [2], say that it will then
stop at (t, x) to tumble with a probability rate given by β(t, x, τ, θ): we identify β with
our function λ.

4.4.3 Othmer at al.

A development of the model of Alt [2] and Stroock [119] is performed in [45, 128], in the
sense the internal state variables were introduced to describe the time-dependent signal
transduction and response. When this is done the transport equation becomes

∂tp+ εv · ∇xp+ divy(F (y, S(x))p) = λ(S(x)y)(R(p)− p),

The entire signal transduction of bacteria is very complicated and detailed models involve
many state variables [33], but the major processes consist of fast excitation in response
to signal changes and slow adaptation that subtracts out the background signal. These
processes can be captured by the cartoon description

d

dt
y1(t) =

G(c(t, x))− (y1 + y2)

τa
,

d

dt
y2(t) =

G(c(t, x))− y2

τe
.

(4.4.1)

By using this cartoon description for the internal dynamics, applying moment closure
techniques and a regular perturbation method, the macroscopic equations are the classical
Keller-Segel diffusion equation:

∂

∂t
u(t, x) = ∇x

(µ
c
∇x(c · u(t, x))− χu(t, x)∇xρ(t, x)

)
.
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Particle-Based Models for Bacterial Chemotaxis

A special case of this model is developed in [111]. We write some detail of this model, since
it will be used and adapted in Chapter 5. The evolution of the individual position of each
bacterium, its internal state and jumps are given by

dXt

dt
= εVt Vt = Vnfort ∈ [Tn, Tn+1[,

dYt
dt

= F (Yt, S(Xt)),

∫ Tn+1

Tn

λ(S(Xt)− Yt)dt = E1
n+1.

The density of the probability distribution of the process with internal dynamics at time t
with respect to the measure dxM(dv)dy is denoted as p(x, v, y, t), suppressing the dependence
on ε for notational convenience, and evolves according to the Kolomogorov forward evolution
equation (or master equation). A standard probabilistic diffusion approximation argument
can be used to derive the pathwise diffusive limit of the process with internal state. We
denote by

Xε
t̄ = Xt/ε2 ,

the process with internal state on diffusive time scales. With the assumption stated in
[SR13], i.e.

λ(z) = λ0 − bT · z + cλO(|z|k),

Fε(y, s) = τ−1
ε (ys) + ε1δcFO(|sy|2),

the following holds

Proposition 4.4.1. Assume limε→0
τ

λ0ε+Id
exists and that δ > 1/k. Then, the process Xt/ε2

converges in distribution (for uniform convergence topology) towards the solution of the SDE

dXc,0
t =

(DA0(Xc,0
t )

λ0

dt+

√
2D

λ0

dWt

)
,

where
D =

∫
Sd−1

v ⊗ vM(dv)

and
A0(x) = bT lim

ε→0

τε
λ0ε + Id

∇S(x).

4.4.4 Vergassola and Celani

The model of Vergassola and Celani [22] is a generalization in some sense of [45, 128], by
allowing diffusion of the direction of the bacterium during a run, and a specialization of
the cartoon model 4.4.1 to the special case of E. coli. We recover [22] when we select the
following parameters:

• r =∞

• σX = 0;
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• F (·) follows Eq. 3.5.4 and G(·) is given by the relative formula in SI of [22].

• N(t) is a Poisson process with unit parameter;

• Λ(t) =
∫ t

0
1
τr

[
1−

∫ s
−∞K(s− r)c(X(r), r)dr

]
ds

• K(t) = λe−λt
∑kM

k=1 βk(λt)
k · 1{t≥0}

We refer to Appendix B for a review of this article.



Chapter 5

ONE POINT VARIABLE MEMORY

In this chapter a new model for the movement of E. coli is introduced and studied: it is a
generalization of the PDMP where the current concentration of ligand is compared with the
one at the beginning of the run.

5.1 PDMP - Countable numbers of directions
In 1984 M. H. A. Davis [36] proposed and studied intensively a special class of Markov
processes, whose main characteristics may be used to analyze the problem of the movement
of E. coli.

Let us construct the process: Let K be a countable (or a finite) subset of the unit sphere
Sd−1, and let M be Rd × R× R+. Consider then a given function c : [0, T ]× Rd → R

Denote the state of the process as ζ(t) := (x(t), η(t), t, θ(t)) ∈ M × K := E, whose
probability law is determined by the following objects.

• A measurable function λ : E → R;

• A transition measure Q : BM × E → [0, 1];

• A vector field (Hθ)θ∈K .

The motion of the process (ζ(t))t∈R+ starting from ζ0 := (x0, c(x0, 0), θ0) can be con-
structed as follows: Define a survivor function F by

F (t) = exp
{
−
∫ t

0

λ
(
x0 +

∫ s

0

Hθ

(
c(x(u), u)− c(x0, 0)

)
du, c(x0, 0), θ0

)
ds
}
.

Select a random variable T1 such that P
(
T1 > t

)
= F (t) and independently an E-valued

random variable (X,H,Θ) having distribution

Q
(
· ,
[ ∫ T1

0

Hθ

(
c(x(u), u)− c(x0, 0))

)
du, c(x0, 0), T1, θ0

])
,

where the structure of the measure is

Q
(
X×B× T ×A, [x, η, t, θ]

)
= δx(X)δc(x,t)(B)δt(T)µθ(A).

81



82 CHAPTER 5. ONE POINT VARIABLE MEMORY

Denote now
Λt
s(x, η, θ) := x+

∫ s

t

Hθ

(
c(x(u), u)− η

)
du.

The trajectory of ζ(t))t∈R+ for t ≥ T1 is given by

ζ(t) =
(
X(t), η(t), t, θ(t)

)
=


(

Λt
0(x0, c(x0, 0), θ), t, θ0

)
t ≤ T1(

X,H, T1,Θ
)

t = T1

,

where(
X,H, T1,Θ

)
=
(∫ T1

0
Hθ

(
c(x(u), u)−c(x0, 0)

)
du, c

(∫ T1

0
Hθ

(
c(x(u), u)−c(x0, 0)

)
du, T1

)
, T1,Θ

)
.

Starting from ζ(T1) we now select the next inter-jump time T2 − T1 and post jump location
ζ(T2) in a similar way.

Let us consider now t ∈ [Tk, Tk+1[, then the distribution of the random variable T2 − T1

is given by

P
(
T2−T1 > s

)
= exp

{
−
∫ s

0

λ
(
xTk+

∫ Tk+s

Tk

Hθ

(
c(x(u), u)−c(xTk , Tk)

)
du, c(xTk , Tk), θTk

)
ds
}
,

for s > t one has for ζ(t) = (xt, ηt, t, θt)

P
(
Tk+1 > s

∣∣∣ Tk, Tk+1 > t
)

= P
(
Tk+1 − Tk > s− Tk

∣∣∣ Tk, Tk+1 − Tk > t− Tk
)

= exp
{
−
∫ s−Tk

t−Tk
λ
(

Λu
Tk

(X(Tk)), η(Tk), θTk

)
du
}

= exp
{
−
∫ s−t

0

λ
(
←Λt+u

t (←ΛTk
t+uX(Tk)), ηt, t+ u, θt

)
du
}

= exp
{
−
∫ s−t

0

λ
(

Λt+u
t (X(t)), ηt, t+ u, θt

)
du
}
.

So the distribution of the next jump time depends only on ζ(t) = (xt, ηt, t, θt). Thus the
Markov property is verified.

Since the process under investigation is an inhomogeneous Markov process the associated
semigroup is a family of two index operators and the related infinitesimal generators is a
family of operators:

The Extended Generator of the PDMP Process

Let us consider the following family of operators with two indices (t and s):

T st f(x, η, t, θ) := E
[
f(X(t+ s), η(t+ s), t+ s, θ(t+ s))

∣∣∣ X(t) = x, η(t) = η, θ(t) = θ
]
.

The strong generator of this semigroup is given by

As[f(x, η, sθ)] := lim
t→0

(T s+hs − I
h

)
[f(x, η, sθ)].
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Let us supposed that the vector field Hθ in [36] works as follows:

Hθ := θg(c(x, t)− η) · ∇x.

The family of generators is then given by

Asf(ζ) :=
∂

∂t
f(ζ) + θ · g(c(x, t)− η) · ∇xf(ζ)

+ λ(c(x, t)− η)

∫
K

[f(x, c(x, t), t, µ)− f(x, η, t, θ)]Q(dµ;x),

where ζ := (x, η, s, θ).

Remark 5.1.1. We underline that the construction of such a generator allows us to write
down the Kolmogorov backward equation without effort. The question of the form of the
forward equation is much more complicated, and it involves the use of Gauss’s theorem and
the identification of boundary conditions that come from the form of the domain of the
generator [50, 51].

5.1.1 Related Models

In this section we give an overview of similar models that may be used to compare the
performance of a strategy based on the simple modification of PDMP.

• A deterministic model where the direction is given by the gradient of the chemical
substance, i.e.

d

dt
X(t) = g(‖∇c(X(t), t)‖2) · ∇c(X(t), t),

X(0) = x0.

• A perturbed deterministic model where the direction is given by the gradient of the
chemical substance, i.e. for 0 < ε << 1

d

dt
X(t) = g(‖∇c(X(t), t)‖2) · ∇c(X(t), t) + ε · Ẇ (t),

X(0) = x0.

• The model developed by E. Orsingher and N. E. Ratanov [101], i.e. two-dimensional
telegraph process in an inhomogeneous plane.
Consider the four continuous functions cij = cij(x), x = (x1, x2) ∈ R2, i, j = 1, 2, and
define a planar motion X = Xx(t), t > 0, by means of the following equations:{

dXx
1 (t) = c11(Xx

1 , X
x
2 )dU1(t) + c12(Xx

1 , X
x
2 )dU2(t),

dXx
1 (t) = c21(Xx

1 , X
x
2 )dU1(t) + c22(Xx

1 , X
x
2 )dU2(t)

Here we denote by U1 and U2 the components of the standard telegraph process U in
the plane, i.e.

U(t) = ξ

∫ t

0

(−1)N(s)ds,

with L(ξ) = 1
2
(δ{+1} + δ{−1}) and N(t) a Poisson process.
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5.2 PDMP - Infinite Number of Directions
In the present section we adapt the general setup in [119] and generalize the model of the
previous section to allow the bacterium to chose between an infinite number of directions:
more precisely we will assume that the duration of a twiddle is negligible and therefore that
it is possible to talk about the direction of the bacterium at a given instant. Let us consider
that the direction of the bacterium is a Poisson-type process on the sphere S2, whose intensity
λ depends on a number of additional parameters, i.e.
• the concentration of the chemical substance at the position of the bacterium;

• the concentration of the chemical substance at the position and time where the bac-
terium was located at the beginning of the run;

We supposed that
c : R3 × [0,∞)→ R+

is a given function, whose regularity is assumed to be enough to do all the analytical manip-
ulation, that characterizes the chemical level of the attractant at the point (x, t) 7→ c(x, t).
We assume that there is a function

λ : R× R→ R+

(ξ, γ) 7→ λ(ξ, λ) := λ(ξ − λ),

which is the intensity of the Poisson process. More precisely we assume that the conditional
probability that a twiddle has not occurred between s and t given that at time s the bacterium
was at x, oriented in the direction θ, with a recorded ligand concentration given by γ is given
by the expression:

exp
{
−
∫ t

s

λ
(
c(x+ (α− s)θ), α)− γ

)
dα
}
.

At a twiddle the càdlàg part of the process jumps in the following way:
• it is assumed that θ moves to a new point on S2 in such a way that the probability that

the new direction is in a subset Θ of S2 given that the old direction was θ is µθ(Θ),
where µθ(·) is a probability measure on S2/{θ};

• the process (γt)t∈R moves from γt− to γt := c(x, t)

γt =

∫
R+

z · δc(x(t),t)(dz),

where we make use of the following weak limit:

γt := w − lim
ε→0

∫
R
z · 1√

2πε
e

(z−c(x,t))2
2ε .

These assumption give rise to a temporally inhomogeneous Lèvy-type diffusion on R3 × S2.
The backward equation associated with this diffusion is

∂

∂t
u(t, x, θ, γ) + θ · ∇xu(t, x, θ, γ) + λ

(
c(x, t)− γ

)
Kc(x,t),θ,γ

[
u(t, x, θ, γ)

]
= 0,

Kc(x,t),θ,γ

[
u(t, x, θ, γ)

]
=

∫
S2×R+

[u(t, x, η, z)− u(t, x, θ, γ)]dµθ(dη)⊗ δc(x,s)(dz)
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The Model, its Construction and Basic Properties

What we want is a temporally inhomogeneous Markov process (x(t), θ(x), γ(t)) on R3×S2×
R+ with the property that

x(t)− x(s) = (t− s) · θ(s)

γ(t) = γ(s),

if θ(·) is constant during [s, t). Further we require that the conditional probability of θ(·)
being constant during [s, t) given up to time s is

exp
{
−
∫ t

s

λ
(
c(x+ (α− s)θ), α)− γ

)
dα
}
.

Finally, the conditional distribution of the first place to which (θ(·), γ(·)) jumps after time s
given the past up to time s is to be µθ(s)(·)⊗ δc(x(s),s)(·).
The idea is now to try to put all these things together and (try to) derive the Kolmogorov’s
equations. Let us consider the function

u(t, x, θ, γ) = Es
x,θ,γ

[
f(x(T ), θ(T ), γ(T ))

]
,

where Es
x,θ,γ[·] = E[· ‖(x(s); θ(s); γ(s)) = (x, θ, γ)]. We can follow [119], an write

Es,x,θ[f(x(T ), θ(T ))] = Es,x,θ[f(x(T ), θ(T )) : τ > T ] + Es,x,θ[f(x(T ), θ(T )) : τ ≤ T ],

where τ is the first jump time θ after time s. We can exploit the Markov property to obtain

u(s, x, θ, γ) = f(x+ (T − s)θ, θ, γ)e−
∫ T
s λ(c(x+(α−s)θ,α)−γ)dα

+

∫ T

s

[
λ(c(x+ (α− s)θ, α)− γ)e−

∫ α
s λ(c(x+(β−s)θ,β)−γ)dβ

·Au(α, x+ (α− s)θ, θ, c(x+ (α− s)θ, α))
]
dα,

where
Au(t, x, θ, c(x, t)) =

∫
S2×R+

u(t, x, η, z)dµθ(dη)⊗ δc(x,s)(dz).

5.2.1 Limit Behavior

In this section we will rescale the process parabolically, i.e. x 7→ εx and t 7→ t
ε2

and study
the following limit in distribution:

lim
ε→0

εX(
t

ε2
).

We adapt the proofs and results in [111] that we have summarized in Subsection 4.4.3.
For the rescaled process holds the following approximation:

λ(c(X(t), t)− c(X(Tn), Tn)) ∼ λ(0)−ελ′(0)∇c(X(Tn), Tn)θ(Tn)

−ελ′(0)∂tc(X(Tn), Tn) + O(ε2).
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Then, for small ε the time between to jumps can be approximated as follows:

∆Tn+1 ∼ En+1
1

λ(0)

(
1 + ε

λ′(0)

λ(0)
∇c(X(Tn, Tn)θ(Tn+1) + λ′(0)∂tc(X(Tn), Tn)

)
+ O(ε2).

Comparing this process with a time inhomogeneous random walk, one obtains that the
limiting process is a diffusion with coefficients given by

σ := λ(0)E
[En+1θ ⊗ θ

λ(0)2

]
= E

[θ ⊗ θ
λ(0)

]
,

a1(x, t) := λ(0)E
[En+1θλ

′(0)∇c(x, t)⊗ θ
λ(0)2

]
= E

[λ′(0)∇c(x, t)θ(t)⊗ θ(t)
λ(0)

]
∼ λ′(0)∇c(x, t) · σ,

a2(x, t) := λ(0)E
[En+1λ

′(0)∂tc(X(t), t)

λ(0)2

]
= E

[λ′(0)∂tc(X(t), t)θ(t)

λ(0)

]
∼ λ′(0)∂tc(x, t) ∈ o(ε2),

hence, it satisfies the following SDE

dX(t) =
√
σdW + λ′(0)∇c(x, t) · σdt.

If we denote with u(t, x) the density of bacterial positions, then the function u is the solution
of the following PDE:

∂tu(x, t) =
σ

λ(0)
∇x

(
∇xu(x, t)− λ′(0)∇c(x, t) · u(x, t)

)
.
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Chapter 6

SIMULATIONS

In this chapter we discuss the results of the simulations that we perform with the help of
the software EColi_Simulator, a program we developed and which is described in detailed
in the next chapter.

6.1 Results of the Simulations

In order to estimate the density function p(t, x)dx, representing the probability to find a
bacterium at position x at time t, we use the kernel density estimation technique in its
simplified version, i.e. via binning in a histogram. The kernel density estimation technique
is the most widely used method when estimating complex density functions, owing to its
flexibility and the plethora of theoretical results establishing its consistency for various rates
of convergence.

The simulations agree with the theoretical results of the previous chapters, in particular
with Chapter 3, and are not particular surprising or reviling of some strange or unexpected
phenomenon. In this sense we are going to give a short summary of few significant sim-
ulations, underlying the difference of the models involved. This is also an example of the
output and sort of analysis done by the program EColi_Simulator. We are not going in the
direction of the stability analysis of the results with respect to the parameters, but we have
used parameters from the literature. This might be a further branch of research, which can
be easily performed with the help of EColi_Simulator.

We will briefly summarize here the main features and results of the simulations.

• SIMULATIONS AND ANALYSIS

– We perform the simulations of stochastic particles in a given environment:

∗ we chose to model the environment by a deterministic function c(t, x), which
describes the concentration of chemoattractant;
∗ each particle performs a run and tumble random walk: the duration of the

time spent in a given phase depends of the internal dynamics;
∗ the internal dynamics, as well as the rules that govern the transition of phase

(i.e. from run to tumble and vice versa) are specific of each model. We refer

89
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to the next chapter for the details; we briefly say that the internal variable is
the solution of a characteristic ODE (see for example equations (4.4.1) and
(3.5.4)), while the transition is performed when the generalized subordinator
crosses a specific threshold (see equation (3.2.1)).

– We estimate the density function p(t, x)dx via binning in a histogram, i.e. let us
divide the area of the experiment into a grid: we call the rectangle in position i
along the x-axis and j along the y-axis ∆xi,j. We denote with N the number of
particles in the simulation and with xk(t) the position of the particle k at time t.
We compute the histogram of the density function as follows

H(t, x) :=
∑
i,j

N∑
k=1

1{xk(t)∈∆xi,j} · 1{x∈∆xi,j};

We do not use a more sophisticated estimation since we perform no comparison
with a continuous model. In case such a comparison should be performed, we
should employ the kernel density estimation technique with more appropriate
kernel functions.

– We perform the analysis of the barycenter of the population, i.e.

B(t) :=
1

N

N∑
k=1

xk(t);

its speed in direction ~ej, i.e.

Vj(t) :=
1

N

N∑
k=1

〈xk(t+ δt)− xk(t), ~ej〉
δt

;

as well as the calculation of the mean square displacement

〈r2(τ)〉 = lim
N→∞

1

N
·
N∑
n=1

(xn(τ)− xn(0))2 ,

and the simple linear regression (least-squares approach). In the present case it is
appropriate to force the regression line to pass through the origin, i.e 〈r2(τ)〉 = β·t.

– We will display the results of the simulation of two models in different environ-
ments: these models are called CV_rExp_tExp and CV_rIG_tExp. The model of
the internal dynamics that we used in these simulation is the one described in
[22]. We report it here:

Q(t) =

kN∑
k=1

βkν
k+1mk(t)

mk(t) =

∫ t

−∞
e−ν(t−s)(t− s)kc(X(s), s)ds k = 0, . . . kN

d

dt
mk = −ν ·mk + fk,
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where fk = k · mk−1 for k ≥ 1 and f0 = c for k = 0. In order to calculate the
update of the internal dynamics we use a simple Euler’s method. We report the
(virtual) function that performs the calculation.

//***************************
void CV_rExp_tExp::agg_dyint(double dt, double t){

int n_iteration=5;
dt=dt/n_iteration;
for (int i=0; i<n_iteration; ++i) {

m[2]=m[2]+dt*(2*m[1]-nu_*m[2]);
m[1]=m[1]+dt*(m[0]-nu_*m[1]);
m[0]=m[0]+dt*(c-nu_*m[0]);
Q=pow(nu_,2)*beta_2*m[1]+pow(nu_,3)*beta_3*m[2];

}
}

The parameters that we used are listed below:

∗ t is the current time, which is not used in this model;
∗ dt is the time step, i.e. dt = 0.01 seconds;
∗ nu_ is the exponent of the cut-off function for the memory term:

nu_=4*(1+3*D_theta*tau_r)/(3*tau_r)=2.6̄,
where D_theta = 0.25 and tau_r = 0.8;
∗ beta_2=1;
∗ beta_3=-beta_2/2.

Q(t) is the memory term that influence the mean distribution of a run (mr(Q)) in
the following sense:

mr(Q) =
g(Q(t))

τr
,

where g(x) is a function such that for x ∼ 0, g(x) ∼ (1−x). For both models the
duration of tumble phase is exponentially distributed E(λ), with mean given by
the value 0.1 seconds. The two models are different in what follows

∗ CV_rExp_tExp: the duration of a run τ is given by the solution of the following
equation: ∫ τ

0

mr(Q(s))ds = E(1).

∗ CV_rIG_tExp: the duration of a run τ is given by the solution of the following
equation: ∫ τ

0

[
mr(Q(s))ds+ σdW (s)

]
= 1,

where σ is a constant and W (t) is a Wiener process.
Consider the SDE dΛr(t) = mr(Q(s))ds + σdW (s), then we have that the
process crosses a threshold b in the interval [t, t+dt) if the following condition
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is satisfied:

exp
{
− 2

(
b− Λ(t)

)
·
(
b− Λ(t+ dt)

)
dt · σ2

}
≥ U(0, 1), (6.1.1)

where U(0, 1) is a uniform random variable on the interval [0, 1).

– We summarize the statistics relative to the duration of runs and tumbles. We
divide the runs according to the sign of the temporal gradient, that is, if during
a run the ligand concentration measured by the bacterium increases, decreases,
remains constant, or it has a mixed behavior. We call this quantity 〈θ,∇c〉. We
give here the formal definition of this quantity. Let [τk−1, τk) be the duration of a
run and {∆kt}k a non-overlapping discretization of this interval. We define

∗ 〈θ,∇c〉 = 0, if for all ∆nt ∈ [τk−1, τk]

sign
{
c
(
t+ ∆t, x(t+ ∆t)

)
− c(t, x(t))

}
= 0;

∗ 〈θ,∇c〉 > 0, if for all ∆nt ∈ [τk−1, τk]

sign
{
c
(
t+ ∆t, x(t+ ∆t)

)
− c(t, x(t))

}
> 0;

∗ 〈θ,∇c〉 < 0, if for all ∆nt ∈ [τk−1, τk]

sign
{
c
(
t+ ∆t, x(t+ ∆)

)
− c(t, x(t))

}
< 0;

∗ 〈θ,∇c〉mix, if exists ∆nt,∆mt ∈ [τk−1, τk]∏
i=n,m

sign
{
c
(
t+ ∆it, x(t+ ∆it)

)
− c(t, x(t))

}
< 0.

• RESULTS:
The qualitative behavior of the density distribution of the population p(t, x) is the one
of a reaction diffusion equation:

∂

∂t
p(t, x) = ∆xx

(
(D + γc(t, x))p(t, x)

)
+∇ ·

(
χp(t, x)∇xc(t, x)

)
.

In case of an environment constant in space and time we can obtain the value of the
diffusive component, i.e. let c(t, x) = c∗

∂

∂t
p(t, x) = ∆xx

(
(D + γc∗)p(t, x)

)
.

We can infer the parameters thanks to the relation between the diffusion coefficient
and the simple linear regression for the mean square displacement, i.e.

〈r2(τ)〉 = 2d(D + γc∗) · t.
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If the environment grows enough, that is, if the component ∇ ·
(
χp(t, x)∇xc(t, x)

)
is

strong enough we are able to identify the contribution of this component thanks to the
relation that links a diffusion with drift to the mean square displacement:

〈r2(τ)〉 = α · t+ β · t2.

In the case of CV_rExp_tExp it is possible to identify the parameters thanks to the
explicit formula for the diffusion-scale limit of the density distribution. In the case
CV_rIG_tExp we were not able to find such a limiting equation, so that only conjectures
are possible.

The rest of this chapter is organized as follows:

i) Every subsection refers to a specific type of ligand concentration. We will give general
informations on all the simulations which we performed in this specific scenario.

ii) Every subsection is organized in different sub subsections:

a) every subsubsection is identified with the name of the model simulated. We
present some specific comment and/or results of a particular model.

b) in the last subsubsection, Comments, we compare the models with each other.

6.1.1 Constant Environment

We performed the following simulation: the population has 10 000 bacteria. The duration of
the experiment is 1200 seconds, using a time step of 0.01 seconds. The population initially
concentrates in the point (x0, y0) = (0, 0), i.e

P(Xn(0) ∈ dx) = δ(x0,y0)(dx).

At steady state:

• the mean time of a run is τ 0
r = 0.8sec.

• the mean time of a tumble is τ 0
t = 0.1sec.

The response type to the ligand concentration is given by φ(c) = c(t, x), while the diffusion
coefficient for the angle θ is Dθ = 0.25. The population does not interact with the ligand
concentration, which remains constant for the duration of the experiment at the level

c(t, x) = 1.

The bacteria are adapted to a level of ligand equal to 1: this is performed in the initialization
of the simulation, simulating the bacteria in an environment with level equal to 1, till they
reach a steady state. We notice that the simulation was carried out in an area much bigger
then the possible distance covered by a bacterium following a straight line. In this way we
are able to study the behavior of a population of bacteria which is not subject to confinement
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inside a bounded area. The simulations confirm the theoretical results, that is, the density
of the distribution of the population follows the heat equation:

∂

∂t
p(t, x) = Dd∆xxp(t, x).

We are able to correctly identify the constant Dd and confirm with high precision the theo-
retical results. In the following we report the results for two specific simulations.

CV-rExp-tExp Model

We used the parameters reported above. We find that for exponentially distributed random
variables the standard deviation equals the mean. As predicted from the theory we have
a confirmation that the evolution of the density follows the heat equation. The population
spreads uniformly in all spatial directions (Figure 6.2) and the mean square displacement
grows linearly with time (see 6.1).

• The evolution of the barycenter

B(t) :=
1

N

N∑
k=1

xk(t)

follows a 2D diffusion center around the initial value (0, 0). A confirmation of this is
given by the plot of the trajectory of the barycenter and the one of its velocity. A
calculation of the mean of the velocity shows that its value is approximately 0.

• At the bottom of Figure 6.1 we displayed the mean square displacement and its simple
linear regression. We see that the two lines overlap exactly. We can exploit the relation
that connects the mean square displacement and the constant of the heat equation, i.e.

∂

∂t
p(t, x) = ∆xx

(
(D + γc∗)p(t, x)

)
, 〈r2(τ)〉 = 2dDd · t.

If we substitute the parameters, we have that γ = β1 + 2β2 = 0 and Dd = 1.2136 · 10−4

and so
〈r2(τ)〉 = 4.8545 · t · 10−4,

which is confirmed by the value of the coefficient of the linear regression, i.e.

〈r2(τ)〉 = 4.38 · 10−4 · t.

run/tumble E[τi] var[τi]
√

var[τi]
τr: 〈θ,∇c〉 = 0 0.809631 0.639319 0.799574
τt 0.107593 0.00999627 0.0999814

Table 6.1: CV-rExp-tExp constant environment: there are
13 183 128 runs and 13 181 992 tumbles: τr refers to the duration of
a run and τt stands for the duration of a tumble. We write 〈θ,∇c〉 to
indicate the sign of the measured gradient of c(x, t) during a run.
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Figure 6.1: CV-rExp-tExp Model - constant environment. Plot
of the barycenter of the population (top), x and y component of the
speed of the center of mass (middle), mean square displacement of
the population (bottom). We notice from the first plot, that the
barycenter does not migrate and the mean square displacement (m.s.d)
grows linearly with time: m.s.q. = D · t, with D = 4.38 · 10−4.

CV-rIG-tExp Model

The simulation of the CV-rIG-tExp model is done using the same common parameters as in
CV-rExp-tExp. We have only to specify which is the value of the diffusion coefficient for the
SDE which models the generalised subordinator, i.e. σ in the expression∫ τ

0

[
mr(Q(s))ds+ σdW (s)

]
= 1. (6.1.2)

In order to obtain a good approximation of the experimental values, we used σ = 1.6. As
we noticed in Section 3.3, for an inverse Gaussian distribution X ∼ IG(µ, λ) it holds:

E[X] = µ Var[X] =
µ3

λ
.

We can now solve the relation to find stationary λ∗ and σ∗: this will give a theoretical result
for the mean square of the duration of a run (Σ) close to the value reported in [12], i.e.



96 CHAPTER 6. SIMULATIONS

Model CV-rExp-tExp, constant ligand c(t,x,y)=1

Snapshot of the Evolution of the Density
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Figure 6.2: CV-rExp-tExp Model - constant environment: snap-
shots of the evolution of the density of the population at different time
point. The unit of measure is mm. We notice that the dynamic looks
similar to the classical diffusion, in accordance with the theory [22].

Σ = 1.18.
We perform the simulations and calculate the first two moments of the distribution of runs
and tumbles as explained in the introduction. The relations between the moments of the
random variable X with inverse Gaussian distribution IG(µ, λ) and its parameters are con-
firmed by Table 6.2. This gives us confidence on the method used in order to solve equation
(6.1.2), i.e. formula (6.1.1).
We carried out the same analysis as for the model CV-rExp-tExp and obtained the same
qualitative behaviors (see Figure 6.4 and 6.3), i.e. the evolution of the barycenter

B(t) :=
1

N

N∑
k=1

xk(t)

follows a 2D diffusion around the in the initial value (0, 0). At the bottom of Figure 6.3
we displayed the mean square displacement and its simple linear fit. We see that the two
lines overlap exactly. If we substitute the parameters in the equation (3.4.2), which gives
the diffusion coefficient Dd of the CV-rIG-tExp model in a constant environment, i.e.

∂

∂t
p(t, x) = Dd∆xxp(t, x).
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we have
4dDd = 0.000612792,

confirming the value of coefficient of the linear regression calculated from the output of the
simulation, i.e.

〈r2(τ)〉 = 0.000617 · t.

run/tumble E[τi] var[τi]
√

var[τi]
τr: 〈θ,∇c〉 = 0 0.809396 1.39094 1.17938
τt 0.107562 0.00999049 0.0999524

Table 6.2: CV-rIG-tExp constant environment: there are 13 182 424
runs and 13 181 282 tumbles. τr refers to the duration of a run and τr
stands for the duration of a tumble. We write 〈θ,∇c〉 to indicate the
sign of the measured gradient of c(x, t) during a run.

Comments:

We notice that the evolution of the two populations for both setups (CV-rExp-tExp and
CV-rIG-tExp) is qualitatively similar: both evolve following a diffusion equation (∂tu =
D∆xu). We underline that quantitatively we have a difference in the coefficients of the
diffusion equation (see Figure 6.1 and 6.3): in particular the value for the CV-rIG-tExp is
bigger than the one of the CV-rExp-tExp and this confirms the prediction in Section 3.4 of
Chapter 3.
In the CV-rIG-tExp model the duration of a run is more persistent in the sense that the
probability to have an extremely small swimming phase is very low: this leads to larger
diffusion coefficients. This is the main difference using an Inverse Gaussian distribution
instead of a exponential one for the duration of a run. We assume that in both cases we are
facing a classical random walk, and the reason of the disappearance of the persistence is due
to its small value. If we have a look at the theoretical derivation of the diffusion coefficient
for the CV-rIG-tExp model (see equation 3.4.2) we can clearly observe this phenomenon.
We underline also that the statistics of the CV-rIG-tExp model fits the data in [12] better.

6.1.2 Spatially exponential ligand profile

The population has 10 000 bacteria. The duration of the experiment is 1200 seconds, using
a time step of 0.01 seconds. The population is initially concentrated at the point (x0, y0) =
(2, 2). The parameters for the steady state are the same as in the the previous section. In
this simulation the ligand concentration is given as a space-dependent exponential function:

c(t, x) := C06 ∗ exp(x/C16) = 18.2 ∗ e10∗x.

We underline that the internal dynamics at the beginning of the simulation is the steady
state, i.e. the bacteria are kept at the prescribed concentration for sufficient time such that
runs and tumbles assumes their steady state distribution. We notice also that the boundaries
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Figure 6.3: CV-rIG-tExp Model - constant environment. Plot of
the barycenter of the population (top), x and y component of the
speed of the barycenter (middle), mean square displacement of the
position (bottom). The center of mass does not migrate and the mean
square displacement (m.s.d) grows linearly with time: m.s.q. = D · t,
with D = 0.000617.

of the domain where the bacteria swim are so distant from the initial position that it is not
possible for the bacteria to reach them during the time of a simulation.

In the present case the ligand concentration is not constant, we have therefore much freedom
in the choice of the form of how the memory kernel Q modulates the mean distribution of a
run, mr(Q). By following [128] we choose an arctangent-like function. Since the experiments
[12] show that the response in terms of the duration of a run to positive gradients is not equal
to the one for negative gradient we introduced some weights in order to take this feature
into account, i.e.

mr(Q) =
1− 2

π
· atan

[
π
2

(
1(−A1,A0) ·Q+ 1(Q≤−A1) · βQ+ 1(Q≥A0)αQ

)]
τr

.

We use the following parameters: A0 = 0.2, A1 = 0.2, α = 5, β = 0.7.
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Model CV-rIG-tExp, constant ligand c(t,x,y) = 1

Snapshot of the Evolution of the Density
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Figure 6.4: CV-rIG-tExp Model - constant environment: snapshot
of the evolution of the density of the population. We notice that the
dynamic looks similar to the classical diffusion, in accordance with the
theory - see Section 3.4 of Chapter 3.

We notice, finally, that if Q ∼ 0, then

mr(Q) ∼ 1−Q
τr

.

CV-rExp-tExp Model:

We used the same parameters as in the constant environment scenario. In Figure 6.7 we
display the function mr(Q), which controls the probability rate to start a new run. In Table
6.3 we report the statistics of the distribution of run and tumble lengths. With the help of
Table 6.3 and Figure 6.6 (where we display on a logarithmic scale the fraction of runs (resp.
tumble) bigger than a given value) we can notice that the particular choice of the function
mr(Q) has the effect to shorten the length of a run downwards the gradient. The duration
of a run upwards the gradient is significatly long (as compare to the steady state) and is the
reason of the migration of the center of mass of the population.
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run/tumble E[τi] var[τi]
√

var[τi]
all τr 1.5606 11.3085 3.36281
τr: 〈θ,∇c〉 > 0 2.00557 15.9237 3.99045
τr: 〈θ,∇c〉 < 0 0.554272 0.310107 0.556872
τr: 〈θ,∇c〉mix 4.06993 28.3447 5.32398
τt 0.107563 0.00999189 0.0999594

Table 6.3: CV-rExp-tExp spatially exponential ligand profile: there
are 7 201 052 runs: 3 091 203 runs up the gradient, 3 324 677 runs down
the gradient and 785 172 runs, during which the bacterium swam along
a trajectory with different signs of the gradient. There are 7 200 433
tumbles. τr means duration of a run and τr stands for the duration
of a tumble. We write 〈θ,∇c〉 to indicate the sign of the measured
gradient of c(x, t) during a run.

If we have a look at Figure 6.8 and 6.9 we can clearly see what happens:

• the barycenter strongly migrates towards higher ligand concentrations along the x com-
ponent. The y component stays around the initial position. We have a confirmation,
both from the snapshot in Figure 6.9 and the plot of the speed of the barycenter in
Figure 6.8.

• If we look at the theoretical result derived in [22] we have that the density of the
population p(t, x)dx solves

∂

∂t
p(t, x) + χ∇ ·

(
p(t, x)∇xc(t, x)

)
= ∆xx

(
(D + γφ(c(t, x)))p(t, x)

)
(6.1.3)

We underline that from the choice of the parameters we have γ = 0.

• Analysis of the mean square displacement: we will now discuss the behaviour of
the mean square displacement and the implication it has on the parameters of equation
(6.1.3). The general formula that connects a diffusion with drift and its mean square
displacement is given by

〈r2(τ)〉 = 2d ·D · t+ (V · t)2. (6.1.4)

– Long times: The mean square displacement does not grow linearly with time,
and the appropriate approximation is given by a parabola. This is a diffusion
with the presence of a drift term. If we approximate the data for the mean square
displacement we find that the curve y = 0.000046 · t2 + 0.000001 · t overlaps
the graph of 〈r2(τ)〉. The graph of the speed of the center of mass might lead
to conclude that χ∇xφ(eβx) is a constant, in particular the simulated value of
0.0065 is consistent with the parabolic approximation of the m.s.d. (0.0000375).
We underline that equation (6.1.3) is derived for value of the memory term Q close
to 0, but in the present simulation the recorded values for Q do not satisfy this
assumption (see Figure 6.5). For a steep profile of the ligand concentration like
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the one in the present simulation and long times (∼ 20 minutes), we have that the
diffusive coefficient is really small. We cannot, however, argue that the density
follows a simple transport equation, since a small diffusion is always present.

– Short times: If we have a closer look at the first 25 seconds of the simulation, we
have a clear understanding of what is going on. We refer to Figure 6.10 for the plot
of the trajectory of the barycenter, its speed and the mean square displacement
as well as its linear and quadratic least square approximation. In Figure 6.11 we
present 4 snapshots of the evolution of the density of the population. First of
all we notice that the barycenter migrates towards higher ligand concentrations
(right) at a speed that, after 10 seconds, reaches a steady state of circa 0.006mm

s
.

The linear regression of the mean square displacement gives a not satisfactory
approximation, while when we use the least-squares parabola y = at2 + bt, we
have an almost perfect overlapping of the curves. Because of the characteristic of
the models and the other measured quantity we can conclude that the equation
that the density of the population follows is an advection-diffusion equation with
constant parameters, i.e.

∂

∂t
p(t, x) + χ∇ · ∇x = D∆xxp(t, x).

We can clearly see the action of the diffusion and advection term in Figure 6.11.
With the help of the above relation (6.1.4) these parameters can be identified.
We have that

〈r2(τ)〉 = 0.000415 · t+ 0.000043 · t2.
Hence D = 0.000103 and χ = 0.0065. The value of χ agrees with the expected
value of the speed of the barycenter. The diffusion coefficient is similar to the
one in the constant environment, which is predicted by the the general formula
in [22].

– Nonlinear diffusion coefficient: The above discussion lead us to infer that in
the presence of steep ligand concentration of the type c(t, ~x) = βeαx1 , we have
that the density of the population follows an advection-diffusion equation with
nonlinear diffusion coefficient which goes to zero with time. We are in the presence
of a ligand concentration which is constant in space. Even if we use the generalised
equation developed in [21], i.e.

∂

∂t
p(t, x) + χ∇ ·

(
p(t, x)

∫ t

∞
eσ(t−s)K(t− s)∇xc(s, x)ds

)
= ∆xx

(
(1 +D0

∫ 0

−∞
K(t− s)c(s, x)ds)p(t, x)

)
,

we will not be able to explain the results of the simulation with this equation.

CV-rIG-tExp model:

For the model CV-rIG-tExp we cannot be as precise as in the CV-rExp-tExp model, since
we were not be able to derive a general equation for the diffusion-scale. We could only give
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Figure 6.5: CV-rExp-tExp Model - distribution of the memory
variable Q for the simulation in a spatially exponential ligand profile.
The histogram represents the distribution of all the measured Q, i.e.
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histogram is build from the values {Qk(ti)}nti=1,

nc
k=1, where nt is the

number of recoded time points for bacterium and nc is the number of
bacteria simulated.

heuristic and approximate results. We can however say that the simulation confirms our
conjectures in Chapter 3.

If we have a look at Figure 6.13 and 6.14, we can see that the qualitative behaviour is
the same as in the CV-rExp-tExp case:

• the barycenter strongly migrates towards higher ligand concentrations along the x com-
ponent. The y component stays around the initial position. We have a confirmation,
both from the snapshot in Figure 6.14 and the plot of the speed of the barycenter in
Figure 6.13.

• Analysis of the mean square displacement: We have a similar behavior as in the
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Figure 6.6: CV-rExp-tExp Model - distribution of the runs and tum-
ble plotted in logarithmic scale. We notice the big difference of the
distribution of runs upwards (red) and downwards (green) the gradi-
ents.

CV-rExp-tExp case, more precisely

– Long times: the mean square displacement does not grow linearly with time,
and the appropriate approximation is given by a parabola. This is a diffusion
with the presence of a drift term. If we approximate the data for the mean square
displacement for long times we find that the curve

y = 0.00003x2 + 0.00000002x

overlaps the graph of 〈r2(τ)〉. As in the CV-rExp-tExp model, we have a diffusive
coefficient that is really small.

– Short times: As in the CV-rExp-tExp, if we have a closer look at the first
25 seconds of the simulation, we have a clear understanding of what is going
on. We do not report the plots, since they are very similar to the ones of the
CV-rExp-tExp model. Only the parameters change. When we performed the



104 CHAPTER 6. SIMULATIONS

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

P
ro

b
a
b
ili

ty
 r

a
te

 t
o
 t
u
m

b
le

 g
(Q

)

memory variable

Response Function CV_rExp_tExp

g(Q)

(1-2/πatan(π/2 x))/0.8
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tExp model as a function of the memory term (Q), taken from [22]
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least-squares parabola y = at2 + bt, we have a almost perfect overlapping of the
curves with the following parameters:

〈r2(τ)〉 = 0.000327 · t+ 0.000038 · t2.

The density of the population follows is an advection-diffusion equation with
constant parameters, i.e.

∂

∂t
p(t, x) + χ∇ · ∇x = D∆xxp(t, x).

With the help of the above relation (6.1.4) these parameters can be identified.
We have that

〈r2(τ)〉 = 0.000327 · t+ 0.000038 · t2.
HenceD = 0.00008175 and χ = 0.0061. We can say that the conjecture in Chapter
3, i.e. that the density of the population p(t, x)dx solves an advection-diffusion
equation of the following type

∂

∂t
p(t, x) + χ∇ ·

(
p(t, x)∇xc(t, x)

)
= ∆xx

(
(D + γc(t, x))p(t, x)

)
is confirmed by these simulations. About the parameters of this equation, too
many possibilities are open and only a clean analytical derivation might lighten
them up.
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Figure 6.8: CV-rExp-tExp Model - Exponential grow in Space:
Plot of the barycenter of the population (top), speed of the x and
y component of the speed of the barycenter (middle), mean square
displacement of the population (bottom). The center of mass strongly
migrates towards the higher ligand concentration (right). The mean
square displacement does not grow linearly with time.

– Nonlinear diffusion coefficient: The above discussion lead us to infer that in
the presence of a steep ligand concentration of the type c(t, ~x) = βeαx1 , we have
that the density of the population follows an advection-diffusion equation with
nonlinear diffusion coefficient, exactly as in the CV-rExp-tExp model.

• When we have a closer look at Table 6.4 and Figure 6.12 we notice that the distribution
of the length of runs has the following characteristic:

– the runs downwards the gradient are significantly shorter then the others.

– the distribution of runs upwards the gradient is not so high as in the CV-rExp-tExp
case. This is due to the nature of the general subordinator. This contributes to
a smaller drift in the advection-diffusion equation reported above as compare to
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Model CV-rExp-tExp

Snapshot of the Evolution of the Density
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Figure 6.9: CV-rExp-tExp Model - spatially exponential ligand pro-
file: snapshots of the evolution of the density of the population. We
notice that the population migrate strongly towards higher ligand con-
centrationd (right).

the CV-rExp-tExp model.

run/tumble E[τi] var[τi]
√

var[τi]
all τr 1.28113 27.1503 5.2106
τr: 〈θ,∇c〉 > 0 1.13139 13.7218 3.70429
τr: 〈θ,∇c〉 < 0 0.538537 0.372852 0.610616
τr: 〈θ,∇c〉mix 5.67682 201.675 14.2012
τt 0.107613 0.0100115 0.100057

Table 6.4: CV-rExp-tExp Exponential grow in Space: there are
8608649 runs: 3820377 up the gradient, 3984930 down the gradient
and 803342 having different signs of the gradients. There are 8607935
tumbles. τr refers to the duration of a run and τt stands for the
duration of a tumble. We write 〈θ,∇c〉 to indicate the sign of the
measured gradient of c(x, t) during a run.
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Figure 6.10: CV-rExp-tExp Model - Exponential grow in Space:
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square displacement of the population (bottom). The center of mass
strongly migrates towards the higher ligand concentration (right). The
mean square displacement does not grow linearly with time.

Comments:

In the case when the environment is very steep, we have a clear change in the collective
behavior of the population. The population dynamics follow an advection-diffusion equation
(see Chapter 3). The qualitative dynamics of the two models under examination are quite
similar: both are characterised by a translating barycenter (which moves towards higher
concentrations of ligand (right)) at an almost constant speed. The reason of this constant
speed might be found in the initial position of the population. It starts, in fact, at a point
where the gradient is quite steep. If we consider a reference axis which migrates along with
the barycenter, we notice that the relative dynamics of the population is that of a diffusion:
the diffusion coefficient, however, becomes smaller with time. We have the clear picture of
this, if we investigate the behaviour of the population on different durations.

• The speed of the barycenter in CV-rExp-tExp is higher then the one of CV-rIG-tExp
(∼ 0.06mm

s
against ∼ 0.05mm

s
). We notice that while in the CV-rExp-tExp model the

speed of the barycenter almost immediately reaches the steady state, in CV-rIG-tExp
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Model CV-rExp-tExp
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Figure 6.11: CV-rExp-tExp Model - spatially exponential ligand pro-
file: short times. Snapshots of the evolution of the density of the
population. We notice that the dynamic migrate strongly towards
higher concentration of ligand (right).

the time needed to reach its steady state is much longer (∼ 50 sec.). It is influenced
for persistency in the Inverse Gaussian model: starting from the same initial condition
a CV-rIG-tExp-bacterium running in a certain direction will keep swimming straight
for a longer period (on average) than the corresponding CV-rExp-tExp counterpart.

• from the analysis of the mean square displacement we can conjecture that the diffusion
coefficient can depend on the history of the ligand concentration in some functional
way, as suggested in [21]. For short times we obtain for the Inverse Gaussian model

〈r2(τ)IG〉 = 3.27 · 10−4 · t+ 3.8 · 10−5 · t2,

while for the exponential one

〈r2(τ)Exp〉 = 5.12 · 10−4 · t+ 3.9 · 10−5 · t2.

Suppose now that the two populations follow an advection-diffusion equation with
constant parameters, we can then conclude that the diffusivity of the CV-rExp-tExp
diffuses faster than for the CV-rIG-tExp model and also the chemosensitivity of the
CV-rExp-tExp population is slightly higher, i.e. the chemotactic drift is faster.
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Figure 6.12: CV-rIG-tExp Model - spatially exponential ligand
profile. Distribution of the runs and tumbles plotted on a logarithmic
scale. We notice the big difference of the distribution of runs upwards
(red) and downwards (green) the gradients. The distributions are
clearly different from the relative distribution in the CV-rExp-tExp
Model and the probability of really small runs is going towards zero.

6.1.3 Spatially homogeneous ligand profile growing exponentially
with time

The population has 10 000 bacteria. The duration of the experiment is 100 seconds, using
a time step of 0.01 seconds. The population is initially concentrated in the point (x0, y0) =
(0, 0) (δ(x0,y0)). The mean duration of a run is τ 0

r = 0.8sec and the mean time of a tumble is
τ 0
t = 0.1sec. The ligand is spatially homogeneous growing exponentially with time and its
dynamics is independent of the population of bacteria:

c(t, x) := C07 ∗ exp(C27 ∗ t) = 18.2 ∗ exp(0.2 ∗ t).



110 CHAPTER 6. SIMULATIONS

 1.975

 1.98

 1.985

 1.99

 1.995

 2

 2.005

 2  3  4  5  6  7  8  9

y
(m

m
)

x(mm)

Model CV_rIG_tExp

Trajectory of the Barycenter

barycenter

-0.001
 0

 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

 0  200  400  600  800  1000  1200

v

t(s)

Speed of the Barycenter

vx
vy

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  200  400  600  800  1000  1200

m
.s

.d

t(s)

Mean Square Displacement, Linear and Quadratic Regression

m.s.d.
f(x) = 0.027389t

f(x) = 0.000030t
2
+0.000000t

Figure 6.13: CV-rIG-tExp Model - spatially exponential ligand pro-
file. Plot of the barycenter of the population (top), x and y component
of the speed of the barycenter (middle), mean square displacement of
the population (bottom). The barycenter strongly migrates towards
the higher ligand concentration (right). The mean square displace-
ment grows non-linear with time. This is clear because it is not a
diffusion, but diffusion plus chemotactic drift, hence, there is a ballis-
tic component.

CV-rExp-tExp model:

As we can see from the example of a trajectory of one bacterium (Figure 6.15), the length of
the runs is very long (up to 20 seconds). We might be lead lo think that the density of the
population follows a super-diffusion, but this conjecture is not supported by the simulations.

Comments:

We notice that the bacterial distribution initially takes the form of a circular traveling wave.
With time this ring smoothes out and the bacteria are almost homogeneously distributed
behind the front (see Figure 6.16). We can explain it by saying that every bacterium, inde-
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Figure 6.14: CV-rIG-tExp Model - Spatially exponential ligand pro-
file: snapshots of the evolution of the density of the population. We
notice that the population migrate strongly towards higher ligand con-
centrations (right).

pendent of its direction feels that the concentration of the attractant is strongly increasing
along the current direction: since the initial distribution of the bacterial directions is uni-
form, it is clear that the ring shape front will be created. The ring shape dissolves because
the probability rate to perform a tumble is bounded away from zero, yielding, even in highly
favourable environments tumble events with non-zero probability. When we have a closer
look at Figure 6.17 we can find different possible equations that explain the results of the
simulation:

• on one side, if we do not want to move too far away from the limiting equation derived
in [22], might argue that what we have is still an advection-diffusion equation, where
the coefficients are time dependent in a way that the drift term goes to zero with time,
while the diffusion coefficient, initially small, grows with the time and smooths out the
density. We might invoke the generalized equation developed in [21], i.e.

∂

∂t
p(t, x) + χ∇ ·

(
p(t, x)

∫ t

∞
eσ(t−s)K(t− s)∇xc(s, x)ds

)
= D0∆xx

(
(1 +

∫ 0

−∞
K(t− s)c(s, x)ds)p(t, x)

)
,
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Figure 6.15: CV-rIG-tExp Model - spatially homogeneous ligand pro-
file growing exponentially with time. Top left: an example of the
trajectory of one of the 10 000 bacteria. Top right: distribution on a
logarithmic scale of the duration of runs. Bottom right: the length of
the runs We see that the bacterium performs very long runs, up to 20
seconds. Bottom left: evolution of the ligand concentration along the
trajectory.

which partially describes this phenomena. In this case we will have that c(t, x) = ζeµt

and K(t) := λe−λt
∑2

k=1

(
βkλ

ktk
)
. When we perform the integral, we find

∫ t

−∞
K(t− s)c(t, x)ds =

λ2eµt

(λ+ µ)3

(
λ(2β2 + β1) + β1λ

)
.

We have in fact a time-dependent diffusion equation. The explanation of the ring
might just be due to the initial condition. We have in fact a singular initial distribution
(p(0, x, y) = δ(0,0)(x, y), while the direction of the bacteria at the beginning is uniformly
distributed over the interval [0, 2π). We have also to take into account that the equation
presented in [21] is valid under two conditions, i.e. the quantity Q(t) :=

∫ t
−∞K(t −

s)c(t, x)ds should be small, and it is a macroscopic equation for the dynamics of the
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Figure 6.16: CV-rExp-tExp Model - spatially homogeneous ligand pro-
file growing exponentially with time: snapshots of the first 24 seconds
of the evolution of the density of the population. We notice that at
the beginning of the simulation we have a wave front that smooths
out at the end of the simulation.

bacterial density at scales larger than the length of a single run, so we cannot directly
use it for the beginning of the simulation.

• on the other hand we might consider the following heuristic generalization:
we might want to follow [45, 128] and see if a hyperbolic modification of the equation
is obtainable with the right rescaling, i.e.

H(t, c, p)
∂2

∂2t
p(t, x) +

∂

∂t
p(t, x) + χ∇ ·

(
p(t, x)

∫ t

∞
eσ(t−s)K(t− s)∇xc(s, x)ds

)
= D0∆xx

(
(1 +

∫ 0

−∞
K(t− s)c(s, x)ds)p(t, x)

)
,

for some coefficient H(t, c, p).
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Chapter 7

THE PROGRAM EcoliSimulator

In this chapter we describe the structure of the software EcoliSimulator that we developed
to perform, analyze and compare simulations of different models for the E. coli movement.

7.1 Introduction

The program EcoliSimulator is a command-line based simulator of different models for E.
coli, which produces graphical, numerical and statistical analysis of the simulations.
The program is completely written in C++ and uses gnuplot and/or Matlab as a graphical
toolbox.
The different models are implemented to give the maximal freedom to the user to modify
parameters and and to analyze the output.
It is designed to be usable in a step-by-step (the duration of the simulations are estimated)
or a pre-set mode and produces a .tex file where all the information about the simulations
and output is collected in a systematic, an hopefully, coherent and readable way. We save
along with the summary all data and all scripts generated and used to produce the pictures
and the analysis with gnuplot.

It is possible to choose between three different options:

• Simulation: to perform the simulation of the viable models;

• Statistical Analysis: to produce the statistical analysis of data given to the program;

• Simulation and Statistical Analysis: to perform first the simulation of the chosen
models and afterwords analysis them, without a priori knowing the model simulated.

7.1.1 Type of Simulations

The program simulates 2D bacterial motion, we can perform simulations of the motion of a
single bacterium, or of large populations. We can select between:

• Simulation of an independent population: this simulates a single bacterium or a
population of bacteria swimming in a solution of ligand concentration, which evolves

115
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according to a function (that the user chooses) without being influenced by the popu-
lation of bacteria.

• Simulation of a population interacting with the ligand: produces the simulation
of a single bacterium or a population of bacteria swimming in a solution of ligand
concentration. The evolution of the ligand concentration follows a diffusion function
with sinks and sources influenced by the bacteria population.

Remark 7.1.1. The program allows the simulation to be done in parallel. The default option
is to use half of the cores of the computer. The user can communicate to the program the
number of cores are to be used.
The program produces a log file (Ecoli.LogEcoli), where all the important information,
possible errors and timing of the simulation are saved (appending new tasks). The user
can use this file to analyze the performance of the program. In order to have an idea of
the increase of performance that the parallelization provides we report the time to needed
complete the simulation of the examples reported in the previous chapter. On a MacBook
Pro (end 2011), processor 2,2 GHz Intel Core i7 memory 8 GB DDR3 a 1333 MHz the single
thread program performed the task in circa 2 hours and 30 minutes, while the same task,
with the help of 3 extra cores was performed in 45 minutes, even faster if the output of the
video is save as multilayer .gif instead of the .png version.

Available Models

For the options Simulation of an independent population and Simulation of a population
interacting with the ligand it is possible to choose among 9 different models for the dynamics
of the bacteria.

a Celani Vergassola Memory Kernel [22];

b Molecular Level Implementation: Implementation of the signaling pathway in [21].

c Othmer et al. Model [45].

For every model it is possible to choose between three steady state run length distribu-
tion, i.e. exponential, inverse-gaussian or exponential-inverse gaussian. The user has the
possibility to select and modify a great variety of parameters (Figure 7.2 ).
We have not yet developed the GUI version of this program completely, but to give a better
understanding of its characteristics, we refer to the Main Window of the GUI version and
the dialog to change the parameters for the function lambda.

7.1.2 Ecoli Classes

The program structures the different models in classes that are hierarchically organized. The
base class is E_coli, which defines the common variables and implements (as virtual when
needed) the basic functions to produce the simulation of the movement of an E. coli (see
Figure 7.3).
The program is versatile and easy adaptable to include new models: it is only needed to
implement the interface of the E. coli concerning the internal dynamic and visualization (9
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Figure 7.1: Main windows of the GUI version of the program: it
summaries the main feature of the Software. [CV10]: model which uses
the memory kernel in [22], [CSV11]: simulates the internal dynamics
according to the model presented in [21], [EO06] uses the internal
cartoon dynamic developed in [102, 45, 128]

.

functions).
The names of the derived classes have the following feature:

name_rNameDistribution_tNameDistribution,

where name is the identification name, rNameDistribution means that the run distribution
follows, in the stationary case the distribution DistributionName. Similar for t which refers
to the distribution of the tumble, for example r_IG means the run distribution in the steady
state follows an Inverse Gaussian distribution.

• Exp: Exponential distribution

• IG: Inverse Gaussian distribution

• ExpIG: Compound exponential-inverse Gaussian distribution

CV_rExp_tExp Class

The first model is taken from [22], whose identification name is CV_rExp_tExp. The main
feature is the variable Q(t) which takes the memory of the bacterium into account to build
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Figure 7.2: Dialog GUI version to select and save the parameters for
the function lambda, which controls the probability rate of a tumble-
event.

the rate function of the jump process associated to the runs. The threshold for the runs
follows an exponentially distributed random variable, with mean equal to 1.

CV_rExpIG_tExp Class

This class extends the class CV_rExp_tExp (CV_rExpIG_tExp : public CV_rExp_tExp).
Its main feature is that the evolution of the rate function, which depends also on Q(t), is
not a deterministic process, but a diffusion process , i.e.

dΛ(t) = λ(Q(t))dt+ σ(Q(t))dW (t).

CV_rIG_tExp Class

This class is similar to CV_rExpIG-tExp with the only difference that here the barrier for
the runs is deterministic.

Molecular_rx_ty

This model is taken from [21], and implements themean field approximation for the molecular-
based model of the internal dynamics of the bacterium. For the detailed expressions we refer
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to Chapter 1, Equations (1.2.1). The generalisation to the inverse Gaussian and exponential-
inverse Gaussian is straightforward as explained for the previous model.

dΛ(t) = λ(m, a, c)dt

λ(t) =
h

1− h
· 1

τ t0

EO_rx_ty

This model is taken from [45]: the function for the internal dynamics are those reported in
4.4.1 in Chapter 4. As in the previous case the generalization to the inverse Gaussian and
exponential-inverse Gaussian is straightforward.

7.2 Ligand evolution

In case the program mode selected is Simulation of a population interacting with the ligand
the ligand concentration follows the equation:

∂

∂t
c(t, x, y) = Dc∆(x,y)c(t, x, y)−Kcc(t, x, y) +Kp

nc∑
i=1

δ(t,x,y)(p
i
b(t, x, y)) (7.2.1)

where pib is the position of the bacterium number i. We discretize this PDE on a uniform
mesh.
We first simulate the bacteria, one by one: the update of the position, direction is exactly as
in the case of a population that does not interact with the environment: the ligand concen-
tration recorded by the bacteria is calculated as a linear interpolation of the concentration of
the closest nodes of the mesh of the ligand. In case the bacteria produce some chemoattrac-
tant: at the end of a time-step (usually 0.01 seconds) the bacterium produces some ligand
according to the rate Kp. This is equally distributed on the closest mesh point for the ligand
concentration.

The simulation of the evolution of the ligand is performed using an Alternate Direction
Implicit method (ADI) [105] with Neumann’s boundary conditions. The method is as follows:
Let U = (qi,j)i=1...nx,j=1...ny be the matrix of the mesh for the rectangular domain and Q the
matrix of the source and sinks. Let Lnxx be the Laplacian-matrix in the x direction, i.e.
a nx × nx matrix (similar for y), then using the Thompson’s Algorithm for the resulting
tridiagonal system we solve the PDE in two steps:

Lnxx ⊗ U = (U ⊗ Lnyy )T +
dt ·Q

2

Lnyy ⊗ UT = (UT ⊗ Lnxx )T +
dt ·QT

2

where with ⊗ we indicate the matrix product, and with QT the transpose of Q.
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Remark 7.2.1. Although the ADI method is very powerful and fast, the simulation of this
scenario is very demanding: the main problem is due to the difficulties to parallelize the
simulations. We think that a better implementation of a population interacting with the
ligand should use Finite Element Methods: the PDE is quite simple. We are currently
developing this with the help of DUNE, the Distributed and Unified Numerics Environment is
a modular toolbox for solving partial differential equations (PDEs) with grid-based methods
[41, 14].

7.3 Statistical Analysis
The program allows the user to fit the data to the models called CV_x_y. We have to pass
to the program the following data:

tj cτr cτ t τ r τ t

where tj is the time of the beginning of the j-th run, cτr is the concentration recorded
at the time of the end of the run j, cτ t is the concentration recorded at the beginning of the
tumble j and τ r are (resp. τ t) the duration of the j-th run (resp. tumble).

Format 1:

Once the program identifies which kind of data are to be analyzed it proceeds to find the
best model fitting the data, extrapolating from the data the memory kernel Q(t) presented
in [22]. The algorithm is as follows:

step 0 Construct a vector of classes Q_tau_stat whose dimension depends on the maximum
value of the index Q and the discretization of the interval [minQ : dQ : maxQ] with
step size dQ.

step 1 Read all entries from the file.

step 2 Calculate the Q-index from [22] and all the corresponding statistics.

step 3 Plot the calculated data.

step 4 Calculate the empirical rate-function using a piecewise linear model in Q.

step 5 Calculate the weighted-mean square approximation (one for positive Q, and one for
negative values of Q).

step 6 Produce a Kolmogorov-Smirnov test using the idea in [18] for the goodness of fit of
point processes.

step 7 Iterate the steps [0] - [6] adapting the discretization of the variable Q and the maximum
and minimum value that it can assume.

At the end of the iteration the discretization which produces the best Kolmogorov-Smirnov
test is used to build a discrete response function (lambda) and, if the model allows it, the
diffusion coefficient of the diffusion driving the generalized subordinator. These functions
are then used to perform a new simulation of the bacteria and to compare the statistics of
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the estimated model and the data recorded from the experiment or a previous simulation to
validate the statistical analysis.
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Chapter 8

CONCLUSIONS AND OUTLOOK

8.1 Final Remarks

Starting from the study of bacterial movement and chemotaxis we have developed a new
stochastic mathematical model that applies to general hybrid systems. We identified this
model as a generalization of Stochastic Hybrid Systems [19, 63] where we allow functional
dependency in the coefficients of the leading equations [91]. Because of this feature we call
this model hereditary stochastic hybrid system [23, 26]. It can be shortly described as an
interleaving between a finite or countable family of diffusion processes and jump processes,
where a particular process (called generalized subordinator) forces the system to change its
state. We analyzed the basic analytical and probabilistic properties and gave sufficient con-
ditions for the well-posedness, continuity of the generalized subordinator with respect to the
initial conditions and Markovian properties. We studied then the problem of the distribution
of the duration of time that the system spends in a determined state, say τq. We connect
the distribution of this random variable τq with the solution of a functional Kolmogorov
equation with boundary conditions, by using representation formulae of Feynman-Kac type
[130]. We applied this general framework to the study of E. coli movement, which performs
a run and tumble random walk to search for nutrients. We studied in detailed the case of
an environment constant in space and time, analyzed hydrodynamic limits with parabolic
rescaling and generalized the results in [122], by inserting a diffusion term that controls the
evolution of the direction of the bacterium during a run. By using the framework in [7, 6] we
wrote the Fokker-Planck-Kolmogorov equation for the hereditary stochastic hybrid system
for E. coli, where the dynamics of the processes happening inside the cell are taken from
[22, 21]: we used the feature that the tumble time is exponentially distributed to allow more
general resets then in [7]. We identified many models in the existing literature as a special
case of our model (see Figure 4.1).
We developed an additional model for E. coli, where the bacterium compares the current
level of the ligand concentration with the one measured at the beginning of a run: we stud-
ied the limit of the parabolic rescaled process adapting the proofs in [110, 111]. We finally
developed a software to simulate and compares different models of E. coli movement.
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8.1.1 Gain and Loss

As we have said, the HSHS model is quite general and might be applied with success to other
fields other then the study of E. coli movement: for example the Feynmann-Kac formulae
developed in Chapter 2 and the calculation of the first exit time probability for SFDE (
see Subsection 2.4.7) might present an application in finance.

The price of options in the continuous time (B, S)-market has been a subject of extended
research in recent years. Let us consider a slight modification of the model proposed in [26].
The idealized Black-Scholes (B, S)-market often consists of an account (B(t))t∈[0,T ] and the
stock (S(t))t∈[0,T ]. The equations for the evolution of the prices of these two financial prod-
ucts are given by the following system of SFDE’s: Let us suppose that the solution process
B(φ) satisfies the following equality

B(t) = φ(0)e
∫ t
0 r(s)ds

where (φ(t))t∈[−r,0] is the initial condition. Let T > 0 be the expiration time for the European
options considered in this example. Assume that the stock price (S(t))t∈[−r,T ] satisfies the
following nonlinear stochastic functional differential equation:

dS(t)

S(t)
= f(St)dt+ g(St)dW (t), t ∈ [0, T ]

with initial price function ψ. Using classical arguments for Trading Strategy and Equivalent
Martingale Measure, the pricing formula V : [0, T ] × C[−r, 0] → R satisfies the following
expression:

V (t, ψ) = Etψ
[
e−

∫ T
t r(s)dsλ(ST )

]
Theorem 8.1.1. Assume that V (t, ψ) ∈ C1,2

Lip([0, T ] × C) ∪ D(S) and that the market is
self-financial, then V (t, ψ) satisfies the following equation:

r(t)V (t, ψ) =
∂

∂t
V (t, ψ) + S(V )(t, ψ) +DV (t, ψ)(r(t)ψ(0)10)

+D2V (t, ψ)(ψ(0)g(ψ)10, ψ(0)g(ψ)10) (t, ψ) ∈ [0, T )×C

V (T, ψ) =λ(ψ) ψ ∈ C

The reverse holds in the sense of a viscosity solution.

If we, instead, confine ourself to the investigation of the E. coli movement, the analysis
of the benefits and disadvantages that the use of the HSHS model brings need some more
words. When we have a look at the existing literature about E. coli models, we immediately
notice that the hypothesis that in the steady state the distribution of the duration of a run
is exponentially distributed. In our model we include this possibility as a special case, and
allow for more general distributions. What we have to pay back for this generalization is
the loss of the analytical tractability (at least for us), if not in special cases: this leads us
to the question of the necessity and rationality of such a complicated model for the problem
under investigation. As is always suitable for models of the reality, the answer is cannot be
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a simple yes or no.
As we explained in Chapter 3 Subsection 3.3 the HSHS model specialized for the inverse
Gaussian distribution is able to fit the experimental data [12] better than an exponential
distribution. Subsection 3.4 gives a clear insight what happens to the distribution of the
population when we performed the limit of the parabolically rescaled equation for large time:
we have that the variance of the run distribution plays a role in the value of the diffusion
coefficient in the heat equation that governs this limit distribution. The magnitude of the
difference of the coefficients for the two models is not so big, and we might conclude that
for large time the exponential distribution is able to capture most of the features of the E.
coli, with the advantage to be able to derive analytically formulae and relations also for the
case where the environment is not constant. We are pushed to investigate further the theory
behind the HSHS model as well as the generalized jump processes. This new model might
stimulate new experiments in oder to establish the shape of the distribution of the duration
of runs.

If we look at the microscopic level, we might want to see what is the relationship between the
different models, in the sense how the inverse Gaussian, the Compound-Exponential-Inverse
Gaussian (see Subsection 2.4.1) or the exponential distribution reflects what happens in-
side the bacterium.
If we have a sequence of Bernullian experiments, the if we properly rescale it, we obtain an
exponential distribution. Similarly a properly rescaled random walk leads to a Brownian
motion, and the hitting time of this Brownian motion with a barrier leads to an inverse
Gaussian distribution. We have the Compound-Exponential-Inverse Gaussian distribution
when the barrier is not a deterministic threshold but exponentially distributed.
Let us focus for simplicity on the case when the ligand concentration is constant during an
experiment and the bacteria start from a steady state. Let us consider that the bacterium,
at each time step, with some probability rate decides to switch from run to tumble (or vice
versa): this is a Bernoulli process. If we rescale properly the involved parameters we obtain
the exponential distribution.
If we now think that the bacterium does not take a decision to run or tumble at every time
step, but only if a certain process (depending on the kinase, CheY-P concentration etc.)
crosses a threshold. We might want to impose the oscillation of this process with normal
noise around a mean value: as in the case of the Bernoulli process, rescaling the parameters
leads us to the HSHS model.

8.1.2 Further Work

We would like, shortly, explain how the results, models and assumptions in the present thesis
might be extended.
We start by looking at the microscopic level: if we focus on the exponential setting, the
simplified model of the chemotactic pathway might not be enough. Interesting might be to
follow [21] for a more detailed description of what happens inside the cell [86] and derive
more accurate equations. The same might be applied to the corresponding HSHS model
with fading memory.
If we look at any of the models, we might want to add stochasticity inside the parameters:
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something similar can be found in [87]. Let us consider one of the parameters of the model,
for example λ. We can consider that λ is itself a random variable, i.e.

ω ∈ Ω 7→ λ(ω, ·).

In this case every bacterium (independently of the time) has it characteristic parameter.
Another possibility is to subordinate the parameter to a random process, i.e. let W (t) a
random process, then we consider the composition

λ(W (t), ·).

Both these approaches lead to more realistic models. Clearly not all bacteria behave the
same, but behave similarly to each other and the introduction of a family of parameters
governed by some randomness achieves the description of this situation.
These are somehow general considerations, which apply to the HSHS as well as many articles
about E. coli movement and velocity-jump process or hybrid system in general.
generalised velocity-jump process [122] suffer from the limitation that the distribution of the
different phases is stationary: this make it possible to export this theory (in the general
setting) only to the stationary environment. The analysis of such non-stationary processes
is very interesting, but also very challenging.

8.2 Moderately Interacting Stochastic Many Particle Sys-
tems

In the remaining part of this chapter, we will heuristically present a new mathematical model
that combines functional calculus and moderately interacting stochastic many particle sys-
tems. In oder to formulate the problem we to use the formalism of functional derivatives
developed by Dupire, Cont und Fournie. A mathematical rigorous derivation of the model
is under investigation.

In this section we present a heuristic analysis of a generalization of the model present in
[115], i.e. using the theory developed by Oelschläger of moderately interacting diffusion
processes [97, 98]. E. coli are unable to sense any spatial gradient and so the SDE [115] on
page 186 for the bacteria must be changed and the dynamics are influenced by the window
process of the recorded level of chemical substance.

8.2.1 Notation

The notation used is adapted to the one in [115].

Let N be the number of particles in the system. In the following, the subscript E marks
terms related to the E. coli and c marks terms related to the chemical substance.
Let

S(N, t) = SE(N, t) + Sc(N, t)
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denote the set of all particles in the N -particle system. Let

Xk
N(t) ∈ Rd,

be the position of the bacteria (resp. chemical substance) k at time t. We have that d = 2, 3
when k ∈ SE(N, t) (resp. Zk

N(t) ∈ Rd, with d = 2, 3 when k ∈ Sc(N, t)). For k ∈ SE(t, N)
the average concentration level at time t, i.e. ζkN(t) and the direction of the bacteria k at
time t, i.e. θkN(t). Let us introduce the measure valued empirical processes

t 7→ µNE (t) =
1

N

∑
k∈SE(N,t)

εXk
N (t)εζkN (t)εθkN (t), t 7→ µNc (t) =

1

N

∑
k∈Sc(N,t)

εZkN (t).

The dynamics are influenced by the configuration of the other particles via a smoothed
version of the empirical process

µ̂Nr (t, x) = (µNr ∗WN ∗ ŴN)(x) r = E, c,

where W and Ŵ (similarly VNr, hNr and sNr) are like in [115].

8.2.2 Dynamics of the Many Particle System

For each particle in the many-particle system, the motion through space is described by a
(path-dependent) stochastic differential equation where the function g is continuous.

dXk
N(t) = χN(µ̂Nc (t,Xk

N(t)), ζkN(t))θkN(t) + σdW k(t)

ζkN(t) =
∫ t
t−r µ̂

N
c (t,Xk

N(s))g(s− t)ds
dθkN(t) =

θkN (t)′θkN (t)

θkN (t)′θkN (t)
dt+

(
I− θkN (t)′θkN (t)

θkN (t)′θkN (t)

)
dW k

θ

dZk
N(t) = ηdW k(t)

Each bacterium is characterized by the position X, which follows an Itô process with
diffusion coefficient σ and drift given by the quantity a(t):

a(t) := χN(µ̂Nc (t,Xk
N(t)), ζkN(t))θkN(t).

We notice that the direction is given by the vector θ, which follows a Brownian motion on
the sphere ([118], page 5 (344)), while its speed in modulus is a function of the memory
term ζ and the measured environment. The term ζ, as anticipated, is the memory term: it
is a weighted average (with weigh g(t)) over the interval [t− r, t] of the ligand concentration
along the trajectory.
The process Z describes the position of the particles that form the ligand: they follow a
Brownian motion without any drift.

Remark 8.2.1. Discontinuities for µNc (t) as explained in [115] (from page 186 till the end of
the section on page 187) are allowed. In fact the bacteria, with a certain rate, produce or
consume ligand.
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8.2.3 Heuristic Analysis of the Model

In order to deal with systems of interacting stochastic many particle systems, one uses
Itô’s formula to project the measure-valued empirical process onto the space of continuous
functions. In the present framework, however, we cannot apply the usual Itô’s formula,
because of the presence of the path dependent process ζkN(t). In order to deal with these
features we use the Functional Stochastic Calculus developed by Dupire [42, 30, 31, 32].

A Brief Primer on Functional Itô Calculus

In this part we will present a short review for the functional Itô calculus introduced in [112].
The goal is to familiarize the reader with the notation, main definitions and theorems needed
for the results that follow. The space of cádlág paths in [0, t] will be denoted by Λt. For a
fixed time horizon T > 0, we define the space of paths as

Λ =
⋃

t∈[0,T ]

Λt.

We will denote elements of Λ by upper case letters and often the final time of their domain
will be subscripted, e.g. Y ∈ Λt ⊂ Λ will be denoted by Yt. The value of Yt at a specific
time will be denoted by lower case letters: ys = Yt(s), for any s ≤ t. Moreover, if a path Yt
is fixed, the path Ys, for s ≤ t, will denote the restriction of the path Yt to the interval [0, s].
The following important path deformations are always defined in Λ.

Definition 8.2.2. For Yt ∈ Λ and t ≤ s ≤ T the flat extension of Yt up to time s ≥ t is
defined as

Yt,s−t(u) =

{
yu 0 ≤ u ≤ t

yt t ≤ u ≤ s
.

For h ∈ R and Yt ∈ Λ, the bumped path of Yt is defined as

Y h
t (u) =

{
yu 0 ≤ u ≤ t

yt + h u = t
.

We define now a metric on Λ.

Definition 8.2.3. For any Yt, Zs in Λ, where it is assumed without loss of generality that
s ≥ t, we define the following metric in Λ:

dΛ(Zs, Yt) := ‖Yt,t−s − Zs‖∞ + |t− s|.

Remark 8.2.4. One could show that (Λ, dΛ) is a complete metric space.

Additionally, a functional is any function f : Λ → R. Continuity with respect to dλ
is defined as the usual definition of continuity in a metric space and is denominated Λ-
continuity.
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Definition 8.2.5. For a functional f and a path Yt with t < T , the time functional derivative
of f at Yt is defined as

Dtf(Yt) = lim
δt→0+

f(Yt,δt)− f(Yt)

δt
,

whenever this limit exists.
The space functional derivative of f at Yt is defined as

∇D
x f(Yt) = lim

h→0

f(Y h
t )− f(Yt)

h
,

whenever this limit exists. We define

∆D
xxf(Yt) := ∇D

x

(
∇D
x f(Yt)

)
.

We state now the functional Itô formula.

Theorem 8.2.6 (Functional Itô Formula). Let X be a continuous semimartingale and f ∈
C 1,2. Then for any t ∈ [0, T ],

f(Xt) = f(X0) +

∫ t

0

Dtf(Xs)ds+

∫ t

0

∇D
x f(Xs)dXs +

1

2

∫ t

0

∆D
xxf(Xs)d〈Xs〉.

Let us apply these derivatives to our process: We set

Kj,l(u) := WN(u)ŴN

(
u− [Zj

N(s) +Xk
N(s)]1[t−r,r](s)− [Zj

N(t) +Xk
N(t)]1[t,t+h](s)

)
du.

Hence

Dtζ
k
N (t) = lim

h→0

1

h

{∫ t+h

t+h−r

∑
j∈Sc(N,t)

∫
Rd

Hj,k(u)g(s− t− h)ds− ζkN (t)
}

= lim
h→0

1

h

{∫ t+h

t

∑
j∈Sc(N,t)

∫
Rd
WN (u)ŴN (u− ZjN (s)−Xk

N (s)1[t,t+h](s))dug(s− t− h)ds
}

− lim
h→0

1

h

{∫ t+h−r

t−r

∑
j∈Sc(N,t)

∫
Rd
WN (u)ŴN (u− ZjN (s)−Xk

N (s)1[t,t+h](s))dug(s− t)ds
}

= µ̂Nc (t,Xk
N (t))g(0)−

∫ t

t−r

(
µ̂Nc (s,Xk

N (s))
) d
ds
g(s− t)ds− µ̂Nc (t− r,Xk

N (t− r))g(−r)

where g(·) is continuous in [−r, 0] in the convergence of the first integral.

1

h

∣∣∣ ∫ t+h

t

h(ζ(t))g(s− t+ h)ds− h(ζ(t))g(0)
∣∣∣ =

=
1

h

∣∣∣ ∫ t+h

t

[
W (ζ(t))g(s− t+ h)ds−W (ζ(t))g(0)

]
ds
∣∣∣ ≤

≤ |W (ζ(t))| · sup
s∈[t,t+h]

|g(t− s)− g(0)| → 0.
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From this relation, we can rewrite the system under investigation in the differential form as

dXk
N(t) = χN(µ̂Nc (t,Xk

N(t)), ζkN(t))θkN(t) + σdW k(t)

dζkN(t) = µ̂Nc (t,Xk
N(t))g(0)−

∫ t
t−r

(
µ̂Nc (s,Xk

N(s))
)
d
ds
g(s− t)ds− µ̂Nc (t− r,Xk

N(t− r))g(−r)

dθkN(t) =
θkN (t)′θkN (t)

θkN (t)′θkN (t)
dt+

(
I− θkN (t)′θkN (t)

θkN (t)′θkN (t)

)
dW k

θ

dZk
N(t) = ηdW k(t)

Since F ∈ C 1(R), we can use the chain rule, and conclude that

DtF
(
ζkN(t)

)
=
dF

dx

(
ζkN(t)

)
·Dtζ

k
N(t)

More precisely, this equality follows by an application of the mean-value theorem

1

h

[
F (ζkN(t;h))− F (ζkN(t))

]
=

∫ 1

0

dF

dx

(
ζkN(t;u)

)1

h
[ζkN(t;h)− ζkN(t)]du

with ζkN(t;u) = (1− u)ζkN(t) + uζkN(t;h), 0 < u < 1.

As in the case [32] page 9, formula (23), ∇xζ
k
N(t) = 0 and ∇2

xζ
k
N(t) = 0:

∇xζkN (t) = lim
h→0

1

h

{∫ t

t−r

∑
j∈Sc(N,t)

∫
Rd
WN (u)ŴN

(
u− ZjN (s)−Xk

N (s) + h1{t}(s)
)
dug(s− t)ds− ζkN (t)

}
= lim

h→0

1

h

{∫ t

t−r
dsg(s− t)

∑
j∈Sc(N,t)

∫
Rd
duWN (u)·

·
[
ŴN

(
u− ZjN (s)−Xk

N (s) + h1{t}(s)
)
− ŴN

(
u− ZjN (s)−Xk

N (s)
)]}

≡ 0

[ŴN (u − ZjN (s) − Xk
N (s) + h1{t}(s)

)
− ŴN

(
u − ZjN (s) − Xk

N (s))] is identically zero since the
Lebesgue measure of the singleton {t} is zero.
Let A(t) be defined as

A(t) := 〈µNE (t), f(t, ·X , ·ζ , ·θ)〉
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According to [32] Theorem 4.1 on page 10 we have

A(t) =
1

N

∑
k∈SE(t,N)

f(t,Xk
N(t), ζkN(t), θkN(t))

= 〈µNE (0), f(0, ·X , ·ζ , ·θ)〉+

∫ t

0

〈µNE (s),
∂

∂s
f(s, ·X , ·ζ , ·θ)〉ds

+

∫ t

0

〈µNE (s), χN(µ̂Nc (t, ·X), ·ζ) ·θ ∇xf(s, ·X , ·ζ , ·θ)〉ds

+

∫ t

0

〈µNE (s),
1

2
σ2∆xf(s, ·X , ·ζ , ·θ)〉ds

+

∫ t

0

〈µNE (s), aθ(·θ)∇θf(s, ·X , ·ζ , ·θ) + σθ(·θ)∆θf(s, ·X , ·ζ , ·θ)〉ds

+

∫ t

0

〈µNE (s),∇ζf(t, ·X , ·ζ , ·θ) · µ̂Nc (s, ·x)g(0)〉ds

−N
∫ t

0

〈µNE (s− r), µ̂Nc (s− r, ·x)g(−r)〉〈µNE (s), δji∇ζf(t, ·X , ·ζ , ·θ)〉ds

−N
∫ t

0

〈µNE (s),∇ζf(t, ·X , ·ζ , ·θ)〉δji ·
∫ s

s−r
〈µNE (u), µ̂Nc (u, ·) d

ds
g(u− s)〉duds

+MN(t).

The equation for 〈µNc (t), f(t, ·Z)〉 is the same as (3) in [115].

Heuristically: assuming that the quadratic variation of the martingale MN
r (t) tends to

0 for N →∞ - and that the processes are asymptotically independent1 - one obtains, at least
formally

〈µNE (t), f(t, ·X , ·ζ , ·θ)〉 → 〈µ∞E (t), f(t, ·X , ·ζ , ·θ)〉
〈µNc (t), f(t, ·X , ·ζ , ·θ)〉 → 〈µ∞c (t), f(t, ·X)〉

where it is assumed that the density exists at least for µ∞c (t) = c(t, x)dx

〈µ∞E (t), f(t, ·X , ·ζ , ·θ)〉 =

∫
Rd

∫
Rd

∫
Sd−1

µ∞E (0)f(0, x, ζ, θ)dxdζdθ

+

∫ t

0

ds
{∫

Rd

∫
Rd

∫
Sd−1

µ∞E (s)(dx, dζ, dθ)
∂

∂s
f(s, x, ζ, θ)

1to be understood as, at least formally and abusing of notation, Nδijp(xk)→ p(x1, ·, pN ): there might be
a problem in this consideration trying to make it rigorous
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+

∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s)(dx, dζ, dθ)χ∞(c(t, x), ζ)θ∇xf(s, x, ζ, θ)

+

∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s)(dx, dζ, dθ)
1

2
σ2∆xf(s, x, ζ, θ)

+

∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s)(dx, dζ, dθ)aθ(θ)∇θf(s, x, ζ, θ)

+

∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s)(dx, dζ, dθ)σθ(θ)∆θf(s, x, ζ, θ)

+

∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s)(dx, dζ, dθ)∇ζf(t, x, ζ, θ) · c(s, x)g(0)

−
∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s− r)(dx, dζ, dθ)c(s− r, x)g(−r)·

·
∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s)(dx′, dζ ′, dθ′)∇ζf(t, x′, ζ ′, θ′)

−
∫
Rd

∫
Rd

∫
Sd−1

µ∞E (s− r)(dx, dζ, dθ)∇ζf(s, x, ζ, θ)·

·
∫ s

s−r

∫
Rd

∫
Rd

∫
Sd−1

µ∞E (u)(dx′, dζ ′, dθ′)c(u, x′)
d

ds
g(u− s)du

}
.

Integration by parts gives the weak version: in the case in which L(X(t),ζ(t),θ(t)) admits a
density, i.e.

Φ(t, x, ζ, θ)dxdζdθ = L(X(t),ζ(t),θ(t))

we can write the following system of equations:

∂

∂t
Φ(t, x, ζ, θ) =∇x

(σ2

2
∇xΦ(t, x, ζ, θ)− Φ(t, x, ζ, θ)χ∞(c(t, x), ζ) · θ

)
+∇θ

(
∇θ[σθ(θ)Φ(t, x, ζ, θ)]− aθ(θ)Φ(t, x, ζ, θ)

)
− c(t, x)g(0)∇ζΦ(t, x, ζ, θ)

+ c(s− r, x)g(−r)∇ζΦ(t, x, ζ, θ)

∫
Rd

∫
Rd

∫
Sd−1

Φ(t− r, x′, ζ ′, θ′)dx′dζ ′dθ

+∇ζ

(∫
Rd

∫
Rd

∫
Sd−1

[
Φ(t, x, ζ, θ)

∫ s

s−r
Φ(u, x′, ζ ′, θ′)c(u, x′)

d

dt
g(u− s)du

]
dx′dζ ′dθ′

)
and

∂

∂t
c(t, x) =

η2

2
∆xc(t, x) + β

(
c(t, x),Φ(t, x, ζ, θ)

)
Φ(t, x, ζ, θ)

− c(t, x)γ
(
c(t, x),Φ(t, x, ζ, θ)

)
Remark 8.2.7. Concentrating on the structure of the equation for Φ(t, x, ζ, θ) one can see
that

• first line with an improper language "The equation in the variable x is the same as
the chemotaxis equation, where the direction θ is given by an additional variable;
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• second line the additional variable θ, being a Brownian motion evolves like a diffusion
on the sphere;

• third → fifth lines involve how the past influences the present state in a non-linear
way not to easy too identify clearly.

Remark 8.2.8. If the idea of a Brownian motion as leading direction of the SFDE for Xk
N(t)

might be considered to be too irregular and unrealistic, then - given the structure of the
equations and the independence of the process - one can substitute it with a Poisson process
on the sphere with a specific jump measure dξ(η) and rate λ, in the limiting weak version
equation one has to substitute

∇θ

(
∇θ[σθ(θ)Φ(t, x, ζ, θ)]− aθ(θ)Φ(t, x, ζ, θ)

)
7→ λ ·

∫
Sd−1

[Φ(t, x, ζ, η)− Φ(t, x, ζ, θ)]dξ(η),

or maybe more generally, with

λ(x, ζ) ·
∫
Sd−1

[Φ(t, x, ζ, η)− Φ(t, x, ζ, θ)]dξ(η).
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Appendix A

PROBABILISTIC “ZIBALDONE”

A.1 Notations and Definitions

Let (Ω,F,Ft,P) be a complete filtered probability space where Ft is a filtration of sub-σ-
algebras of F that satisfies the following usual conditions:

(i) Ft is complete, i.e. Ft0 contains all P-null sets

(ii) Ft is nondecreasing, i.e. if t1 ≤ t2, then Ft1 ⊆ Ft2 ,

(iii) Ft is right-continuous, i.e.
Ft = Ft+ :=

⋂
s>t

Fs,

for all times t.

For a generic Banach (or Hilbert) space (B, ‖·‖B), whose Borel σ-algebra we indicate
with B(B), and a sub-σ-algebra G of F, let L2(Ω, B;G) be the collection of all B-valued
random variables X : (Ω,G,P)→ (B,B(B)) that are G-measurable and satisfy

‖X‖2
L2(Ω,B) := E[‖X‖2

B] :=

∫
Ω

‖X(ω‖2
B dP(ω) <∞,

where B(B) is the Borel σ-algebra induced by ‖·‖B.
If F = G, we simply write L2(Ω, B) for L2(Ω, B;F).
For 0 < T ≤ ∞, let C ([0, T ];L2(Ω, B)) be the space of all square integrable continuous

B-valued processes X(·) := {X(s) : s ∈ [0, T ]}.

A.2 Stochastic Functional Differential Equations

In many applications, one assumes that the system under consideration is governed by a
principle of Markovianity; that is, the future state of the system is independent of the past
states and is determined solely by the present. However, under closer investigation, it be-
comes apparent that this principle is often only a first approximation to the true situation
and that a more realistic model would include some of the past states of the system. Simple
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motivating examples include the noisy feedback loop, the logistic time-lag model with Gaus-
sian noise, and the classical heat-bath model of R. Kubo [75], modeling the motion of a large
molecule in a viscous fluid. Stochastic functional differential equations give a mathematical
formulation for such systems [66, 77, 34, 91, 85]. For a complete review we refer to [67].

Figure A.1: Noisy Feedback Loop

Example A.2.1 ([91]). Consider the above noisy feedback loop. In the box N , the input
y(t) and the output x(t) at time t > 0 are related through the stochastic integral:

x(t) = x(0) +

∫ t

0

y(s)dW (s)

whereW (s) is a Brownian motion and a(s) and b(s) are measurable functions. Unit D delays
the signal x(t) by r units of time, where r is a positive number. A proportion σ of the signal
is transmitted through the link D and the rest (1− σ) is used for other purposes; therefore
y(t) = σx(t− r). By substituting in the above equation, it gives the Itô integral equation:

x(t) = x(0) +

∫ t

0

σx(s− r)dW (s).

In the non-delay case, r = 0, and it becomes a linear stochastic ODE with the closed-form
solution

x(t) = x(0)eσW (t)−σ2t/2.

Suppose the delay r is positive. To solve it in this case, we need an initial process η(t), with
t ∈ [−r, 0], i.e.

x(t) = η(t) a.s., t ∈ [−r, 0].

We solve it by successive Itô integrations over steps of length r, which gives

x(t) = θ(0) +

∫ t

0

θ(u− r)dW (s) t ∈ [0, r].
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By substituting the next r-interval we get:

x(t) = x(r) + σ

∫ t

r

[
θ(0) + σ

∫ (v−r)

0

θ(u− r)dW (u)
]
dW (v) t ∈ [r, 2r].

and so on. We remark that no closed form solution is known (even in the deterministic case).

A.2.1 Basic Setting and Assumptions

Let (Ω,F,Ft,P) be a complete filtered probability space that satisfies the following usual
conditions and let W (t) be an n-dimensional Wiener process. In this sections we will sum-
marize the basic theory of SFDE’s [91, 23]. Consider the following d-dimensional SFDE with
bounded memory r ∈ [0,∞):

dx(s) = f(s, xs)ds+ g(s, xs)dW (s), s ∈ [0, T ] (A.2.1)

with initial condition

(t, xt) = (t, ηt) ∈ [0, T ]× L2(Ω,C ;F(f));

xt is the segment process defined by

xt(s) := x(t+ s) s ∈ [−r, 0],

and the coefficients

f :[0, T ]× L2(Ω,C )→ Rd

g :[0, T ]× L2(Ω,C )→ Rd×n.

are continuous functions that are to be specified later.

Memory Maps:

a natural map associated with the SFDE (A.2.1) with bounded memory r ∈ [0,∞) is the
memory map:

: [0, T ]× C ([−r, T ],Rd)→ C

defined by
(t, φ) = φt, (t, φ) ∈ [0, T ]× C ([−r, T ],Rd).

We have the following

Lemma A.2.2. For each T ∈ (0,∞), the memory map is jointly continuous.

Corollary A.2.3. The stochastic memory map

∗ : [0, T ]× L2(Ω,C ([−r, T ],Rd))→ L2(Ω,C )

defined by (t, x(·)) 7→ xt is a continuous map.
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The Assumptions:

In (A.2.1), the functions f and g are continuous functions that satisfy the following Lipschitz
continuity and either the linear growth condition or the monotonicity one.
Assumption 1 (Lipschitz Continuity) There exists a constant KL > 0 such that, for all
(s, φ) and (t, ψ), elements in [0, T ]× L2(Ω,C )

E
[
|f(s, φ)− f(t, ψ)|+ |g(s, φ)− g(t, ψ)|

]
≤ KL

(
|t− s|+ ‖φ− ψ‖L2(Ω,C )

)
.

Assumption 2 There exists a constant KG > 0 such that

E
[
|f(s, φ)|+ |g(s, φ)|

]
≤ KG

(
1 + E[‖φ‖]

)
.

Assumption 3 For each compact subset C ⊂ C , there exists a number KC and some
rC ∈ (0, r) such that for all x, y ∈ C with x(s) = y(s) for all s ∈ [r, rC ]

2〈f(x)− f(y), x(0)− y(0)〉+ ‖g(x)− g(y)‖2 ≤ KC ‖x− y‖2 .

Theorem A.2.4. Suppose that Assumption 1 and Assumption 2 hold. Then the SFDE
(A.2.1) has a unique strong solution {x(s; t, ψt), s ∈ [t− r, T ]}.

Proof. See [91, 23].

In [127] the authors relax the conditions on the coefficients of a SFDE with bounded
memory driven by Brownian motion which guarantee existence and uniqueness of a maximal
local and global strong solution for each initial condition.

Theorem A.2.5. Assume that the coefficients f and g are time independent and satisfy
Assumption 3, then (A.2.1) admits a unique maximal strong solution (x, σ).

Proof. See [127].

A.2.2 Markovian Properties

Let x(·) be the strong solution of (A.2.1).

Theorem A.2.6. Assume that the functions f and g satisfy Assumption 1 and Assump-
tion 2. Then the C -valued process {xs, s ∈ [0, T ]} of (A.2.1) describes a C -valued Markov
process with probability transition function

p : [0, T ]× C × [0, T ]×B(C )→ [0, 1],

where p(t, xt, s, B), for s ∈ [t, T ] and B ∈ B(C ), is given by

p(t, xt, s, B) := P
(
xs ∈ B

∥∥∥xt) := Pt,xt
(
xs ∈ B

)
.

This function has the following properties:
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(a) For any s ≥ t, B ∈ B(C ), the function (t, xt) 7→ p(t, xt, s, B) is B([0, T ]) × B(C )-
measurable.

(b) For any t ≤ s ≤ u, B ∈ B(C )

P
(
xu ∈ B

∥∥∥F(s)
)

= Ps,xs
(
xs ∈ B

)
= p(s, xs, u, B)

Under Assumption 1 and Assumption 2 we can also show that the C -valued strong
solution of (A.2.1) satisfies the following strong Markov property too [77, 23].

Theorem A.2.7. Under Assumption 1 and Assumption 2 the C -valued process {xs, s ∈
[0, T ]} of (A.2.1) satisfies the following strong Markov property: for all Ft-stopping times τ
such that t ≤ τ ≤ u

P
(
xu ∈ B

∥∥∥F(τ)
)

= P
(
xu ∈ B

∥∥∥xτ) = Ps,xτ
(
xs ∈ B

)
A.3 Stochastic Calculus for Systems with Memory

A.3.1 Weak Infinitesimal Generator for SFDE

We start with a theorem about the properties of the infinitesimal generator of a semigroup.

Theorem A.3.1 ([43]). Given the weak infinitesimal generator Aw : D ⊂ Cb → Cb of a one
parameter semigroup (Pt)t≥0

Aw(φ) := w − lim
t→0+

Pt(φ)− φ
t

,

then

• D(Aw) ⊂ C0
b is weakly dense in Cb and P (t)(D(A)) ⊂ D(A)

• If φ ∈ D, the following weak derivative exists

d

dt
Pt(φ) = w − lim

h→0

Pt+h(φ)− Pt(φ)

h
, t > 0

and the following holds

d

dt
Pt(φ) = Aw(Pt(φ)) = Pt(Aw(φ)),

Pt(φ)− φ =

∫ t

0

Pu(Aw(φ))du, ∀t > 0.

In order to deal with the infinitesimal generator of a SFDE it is necessary to augment
the state space C by adjoining a canonical d-dimensional direction [91].
Let L(C) and B(C) be the space of bounded linear functionals Φ : C → R and bounded
bilinear functionals Φ̃ : C × C → R, of the space C, respectively. They are equipped with
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the operator norms which will be, respectively, denoted by ‖·‖L and ‖·‖B. With 1[a,b](t) :=
1[−r,0]∩[a,b](t)

Fn := {v1{0} : v ∈ Rn}.

We form the direct sum

C ⊕ Fn := {φ+ v1{0}|φ ∈ C, v ∈ Rn},

and equip it with the norm ‖·‖ defined by∥∥φ+ v1{0}
∥∥ := sup

t∈[−r,0]

φ(t) + |v| φ ∈ C, v ∈ Rn.

Note that for each sufficiently smooth function Φ : C → R, its first order Frèchet derivative
DΦ(φ) ∈ L(C) has a unique and continuous linear extension DΦ(φ) ∈ L(C⊕Fn). Similarly,
its second order Fréchet derivative D2Φ(φ) ∈ B(C) has a unique and continuous linear
extension D2Φ(φ) ∈ B(C ⊕Fn). For a Borel measurable function Φ : C → R, we also define
the Shift Operator

Γt(Φ)(φ) := Φ(φ̃t)

where, for each φ ∈ C and t ≥ 0, φ̃ : [−r,∞)→ Rn is defined by

φ̃(t) :=

{
φ(0) t > 0

φ(t) t ∈ [−r, 0].

We define the operator

S(Φ)(φ) := lim
t→0

1

t

[
Γt(Φ)(φ)− Φ(φ)

]
whose domain D(S) is the set of functions for which the limit exists.

It is possible to state the following Theorem due to Mohammed [91]:

Theorem A.3.2. Suppose that Φ ∈ C ([0, T ] × C ) satisfies the smoothness condition Φ ∈
C 1,2
Lip([0, T ]×C ) with Φ ∈ D(S). Let {Xs, s ∈ [t, T ]} be the C-valued Markov solution defined

above subject to the initial condition (t, φt) ∈ [0, T ]× C. Then

ÃwΦ(t, φ) = lim
ε→0

E[Φ(t+ ε,Xt+ε)]− Φ(t, φt)

ε

=
∂

∂t
Φ(t, φt) + S(Φ)(t, φt) +DΦ(t, φt(H(t, φt)1{0})

+
1

2

m∑
j=1

D2Φ(t, φt(G(t, φt)(ej)1{0}, G(t, φt)(ej)1{0}),

where ej, j = 1 . . . n is the j−th vector of the standard basis in Rm.

The following proposition links the concept of infinitesimal generators and Markov pro-
cesses to the one of Martingales.
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Proposition A.3.3 ([47] Chapter 4 - Proposition 1.7). Let X be an E-valued Markov process
with transition function P (t, x,Γ) and let {T (t)}t∈R and Â the corresponding semigroup and
full generator, i.e. Â := {(f, g) ∈ L×L : T (t)f − f =

∫ t
0
T (s)gds, t ≥ 0}. If (f, g) ∈ Â then

M(t) ≡ f(X(t))−
∫ t

0

g(X(s))ds

is a FXt -martingale.

A.3.2 Martingale problem

Without loss of generality for formulating the martingale problem, we can consider the
autonomous SFDE:

dx(s) = f(xs)ds+ g(xs)dW (s), s ∈ [0, T ] (A.3.1)

with the initial condition η ∈ L2(Ω,C ;F(0)), at time t = 0. Let us assume thatAssumption
1 holds.
Let us consider an operator Γ : D(Γ)→ Cb([0, T ],C ) and let µ be a probability measure on
(C ,B(C )). We list the conditions that might be applicable to the operator Γ:

C1. There exists Φ ∈ Cb([0, T ],C ) such that, for Ψ ∈ D(Γ) and φ ∈ C

|ΓΨ(φ)| ≤ KΨΦ(φ)

where KΨ is a constant depending on Ψ.

C2. There exists a countable subset Ψk ⊂ D(Γ) such that

{(Ψ,Φ−1γΨ)|Ψ ∈ D(Γ)} ⊂ {(Ψk,Φ−1γΨk)|k ≥ 1}

where the closure {. . .} is in the bounded point-wise (bp) convergence topology.

C3. D(Γ) is an algebra that separates points in C and contains the constant functions.

We define a solution to the martingale problem as follows [23].

Definition A.3.4. A C -valued process X(·) := {X(s), s ∈ [0, T ]} defined on some complete
filtered probability space (Ω,Ft,P) is said to be a solution to the martingale problem for
(Γ, µ) if:

(i) P ◦X−1(0) = µ

(ii)
∫ s

0
E[Φ(X(s))]dt <∞ for all s ∈ [0, T ]

(iii) for all Ψ ∈ D(Γ),

MΨ(s) := Ψ(X(s))−Ψ(X(0))−
∫ t

0

Γ(X(t))dt

is an F-martingale.
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Definition A.3.5. The martingale is said to be well posed in the class of C -valued processes
C if X(i)(·), i = 1, 2, are two solutions to the martingale problem for (Γ, µ), then X1(·) and
X2(·) have the same probability laws.

The following results state that the uniqueness of the solution of a martingale problem
for an operator Γ, sufficiently regular, always implies the Markovian property.

Lemma A.3.6. Suppose that the operator Γ satisfies the Conditions C1 and C2. Fur-
thermore, assume that the martingale problem for (Γ, εψ) is well posed in the class of right
continuous with left limits processes for every ψ ∈ C . Then the solution X(·) to the mar-
tingale problem is a F-Markov process. Furthermore, if A is the infinitesimal generator of
X(·), then D(Γ) ⊂ D(A) and Γ and A coincide on D(Γ).

Below we establish the C -valued segment process {xs, s ∈ [0, T ]} as the unique solution
to the martingale problem.

Theorem A.3.7. Suppose ψ ∈ L2(Ω,C ) and the operator Aq defined in Theorem A.3.2.
Then the martingale problem for (Aq, ψ) is well posed when restricted to the class of quasi-
tame functions.

A.3.3 Malliavin Calculus

Malliavin calculus was conceived in the years 1970’s and in the years 1980’s and 1990’s a
huge amount of work has been done in this field. It is interpreted as functional analysis on
the Wiener space and several monographs on this subject are available nowadays ( see e.g
Nualart [95], Øksendal and Di Nunno [40]). The main application of Malliavin calculus was
to give sufficient conditions in order that the law of a random variable has a smooth density
with respect to Lebegue’s measure and to give bounds for this density and its derivatives.
In his initial papers Malliavin used the absolute continuity criterion in order to prove that
under Hörmander’s condition the law of a diffusion process has a smooth density and in
this way he gave a probabilistic proof of Hörmander’s theorem. Afterwards people used
this calculus in various situations related with stochastic PDE’s. These last years Malliavin
calculus found new applications in probabilistic numerical methods, essentially in the field of
mathematical finance. These applications are quite different from the previous ones, because
the integration by parts formula in Malliavin calculus is employed in order to produce some
explicit weights which come on in nonlinear algorithms. [5]

We denote by D the Malliavin differentiation operator. Let F be a random variable which
belongs to the domain of D and T = [0, T ]. Its derivative DF is a stochastic process {DtF :
t ∈ T}. The derivative DF may be considered as a random variable taking values in the
Hilbert space H = L2(T,Rn). More generally the N -th derivative of F , DNF := Dj1

s1
· · ·DjN

sN

is an H⊗̂2N random variable. For any positive integer N and real number p > 1 we denote
by DN,p the Banach space of all random variables having all the i-th derivatives belonging
to Lp(Ω, H⊗̂2N) with the norm defined by

‖F‖N,p = ‖F‖+
∥∥∥∥∥DNF

∥∥
(2)

∥∥∥
p
,
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where ‖·‖(2) is the Hilbert-Schmidt norm in H⊗̂2N

∥∥DNF
∥∥2

(2)
=

n∑
j1,·jN=1

∫
TN

E[(DNF )j1,...,jNs1,...,sN
]2ds1 . . . dsN .

We denote by δ the divergence operator, and by δ(u) the Skorohod stochastic integral of
the process u; δ is the adjoint operator of D. We denote by L1,2 the class of all processes
u ∈ L2(T × Ω) such that u(t) ∈ D1,2 for almost all t and there exists a measurable version
of the two parameter process Dsu(t) satisfying E

∫
T

∫
T

(Dsu(t))2dsdt <∞. L1,2 is a Hilbert
space with the norm

‖u‖2
1,2 = ‖u‖2

L2(T×Ω) + ‖Du‖2
L2(T 2×Ω) .

Note that L1,2 is isomorphic to L2(Ω,D1,2). For every p > 1 and any positive integer k we
denote by Lk,p the space L2(Ω,Dk,p).

A.3.4 Anticipating Calculus and Itô Formula for SFDE

The Itô formula derived by Mohammed and Yan for solutions of SFDE is proved via an-
ticipating calculus methods. To understand the need for anticipating calculus in such an
intrinsically adapted setting, it is instructive to look at the following simple one-dimensional
SFDE, where g is a regular function:

dX(t) = g(X(t− 1), X(t))dW (t), t ≤ 0

X(t) = W (t), t ∈ [−1, 0].

Formally, for t ∈ (0, 1]

dg(X(t− 1), X(t)) =dg(W (t− 1), X(t))

=
∂g

∂x
(W (t− 1), X(t))dW (t− 1)

+
∂g

∂y
(W (t− 1), X(t))g(X(t− 1), X(t))dW (t)

+ second order terms

Note that, although the coefficient g(X(t− 1), X(t)) is Ft -measurable, the first term

∂g

∂x
(W (t− 1), X(t))dW (t− 1),

on the right-hand side of the last equality is an anticipating differential.
Now let us define the segment operator O : H ⊕ V → H⊗̂2V

Oφ(t, s) := φ(t+ s), t ∈ [−r, 0], s ∈ [0, T ] φ ∈ H ⊕ V.

Let Otφ = φt and O∗ : H⊗̂2V → H⊕V be its adjoint. Denote by PH (resp PV ) the projection
from H ⊕ V on H (resp. V ), and define O∗H = PH ◦ O∗.
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Definition A.3.8. Suppose W = (W (t))t∈[0,T ] is a m-dimensional standard Brownian mo-
tion. Denote by δ the divergence operator and Dom(δ) its domain, for a two parameter
process X ∈ (O∗H)−1(Dom(δ)); the Skorohod segment integral of X with respect to the
Brownian segment (Wt)t∈[0,T ] is defined as∫ T

0

〈Xt,Wt〉 = δ(O∗HX).

Consider the SFDE:

X(t) = η̃0(t) +

∫ t∨0

0

v(s)ds+

∫ t∨0

0

u(s)dW (s), t ≥ −r

with coefficients u : T × Ω → L(Rn,Rm) and v : T × Ω → Rm that may not be adapted to
the Brownian filtration (Ft)t≥0.

Theorem A.3.9 (Itô formula for SFDE [130] Theorem 8.6). Let f = f(t, η, x) ∈ C 1
b (T ×

V ×Rm) with second bounded derivative, u ∈ L1,2 and v ∈ L1,2 then the following Itô formula
holds:

f(t,Xt, X(t))− f(0, X0, X(0)) =

∫ t

0

∂f

∂s
(s,Xs, X(s))ds+

∫ t

0

〈∂f
∂η

(s,Xs, X(s), dXs〉V

+

∫ t

0

∂f

∂x
(s,Xs, S(s))dX(s) +

∫ t

0

∂2f

∂η2
(s,Xs, X(s))(Θs)ds

+

∫ t

0

∂2f

∂η∂x
(s,Xs, X(s))[(uΛ)sX(s)]ds

+

∫ t

0

∂2

∂x∂η
(s,Xs, X(s))[u(s)DsXs]ds

+
1

2

d∑
i=1

∫ t

0

∂2f

∂x2
(s,Xs, X(s))[(∇i

+X)(s)⊗ ui̇(s)]ds,

(A.3.2)

where
Θs(α, β) =

1

2
((uΛ)sXs(α, β) + (uΛ)sXs(β, α)),

(uΛ)sXs(α, β) = I{0≤s+α∧β}u(s+ α)Ds+αX(s+ β),

(∇i
+X)(s) = lim

ε→0
(Di

tX(t+ ε) +Di
tX(t− ε)),

(uΛ)sX(s)(α) := u(s+ α)Ds+αX(s)I{s+α≥0}.

A.4 Piecewise Deterministic Markov Processes

A.4.1 General introduction

The piecewise deterministic Markov processes (denoted PDMPs) were first introduced in the
literature by Davis [36]. Already at this time, the theory of diffusions had such powerful tools
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as the theory of Itô calculus and stochastic differential equations at its disposal. Davis’s goal
was to endow the PDMP with rather general tools. The main reason for that was to provide
a general framework, since up to then only very particular cases had been dealt with, which
turned out not to be easily generalizable.

PDMPs form a family of càdlàg Markov processes involving a deterministic motion punc-
tuated by random jumps. The motion of the PDMP {X(t)}t≥0 depends on three local char-
acteristics, namely the jump rate λ, the flow φ and the transition measure Q according to
which the location of the process at the jump time is chosen. The process starts from x
and follows the flow φ(x, t) until the first jump time T1 which occurs either spontaneously
in a Poisson-like fashion with rate λ(φ(x, t)) or when the flow φ(x, t) hits the boundary of
the state-space. In both cases, the location of the process at the jump time T1, denoted by
Z1 = X(T1), is selected by the transition measure Q(φ(x, T1), ·) and the motion restarts from
this new point as before. This fully describes a piecewise continuous trajectory for {X(t)}
with jump times {Tk} and post jump locations {Zk}, and which evolves according to the
flow φ between two jumps.

A.4.2 Definition and some properties of PDMPs

Let M be an open subset of Rn, ∂M its boundary, M its closure and B(M) the set of real-
valued, bounded, measurable functions defined on M . A PDMP is determined by its local
characteristics (φ, λ,Q) where:

• The flow φ : Rn ×R→ Rn is a one-parameter group of homeomorphisms: φ is contin-
uous, φ(·, t) is an homeomorphism for each t ∈ R, satisfying the semigroup property:
φ(·, t+ s) = φ(φ(·, s), t).
For each x inM , we introduce the hitting time of the boundary that forces a transition
in the discrete component

t?(x) := inf{t > 0 : φ(x, t) ∈ ∂M}, (A.4.1)

with the convention inf ∅ =∞.

• The jump rate λ : M → R+ is assumed to be a measurable function satisfying:
for all x ∈M , there exists ε > 0 such that∫ ε

0

λ(φ(x, s))ds <∞.

• Q is a Markov kernel on (M,B(M)) satisfying the following property:
for all x ∈M ,

Q(x,M − {x}) = 1.

From these characteristics, it can be shown [36] that there exists a filtered probability space
(Ω,F, {Ft}, {Px}) such that the motion of the process {X(t)} starting from a point x ∈ M
may be constructed as follows. Consider a random variable T1 such that

Px{T1 > t} =

{
e−Λ(x,t) for t < t?(x),
0 for t ≥ t?(x),
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where for x ∈M and t ∈ [0, t?(x)]

Λ(x, t) =

∫ t

0

λ(φ(x, s))ds.

If T1 is equal to infinity, then the process X follows the flow, i.e. t ∈ R+, X(t) = φ(x, t).
Otherwise select independently aM -valued random variable (labelled Z1) having distribution
Q(φ(x, T1), ·), namely Px(Z1 ∈ A) = Q(φ(x, T1), A) for any A ∈ B(M). The trajectory of
{X(t)} starting at x, for t ∈ [0, T1], is given by

X(t) =

{
φ(x, t) for t < T1,

Z1 for t = T1.

Starting from X(T1) = Z1, we now select the next inter-jump time T2 − T1 and post-jump
location X(T2) = Z2 in a similar way.

This construction properly defines a Markov process {X(t)} which satisfies the strong
Markov property with jump times {Tk}k∈N (where T0 = 0). A very natural Markov chain is
linked to {X(t)}, namely the chain (Θn)n∈N defined by Θn = (Zn, Sn) with Zn = X(Tn) and
Sn = Tn − Tn−1 for n ≥ 1 and S0 = 0. Clearly, the process (Θn)n∈N is a Markov chain.



Appendix B

NOTE ON THE PAPER CELANI &
VERGASSOLA 2010

In this chapter of the Appendix we explicitly perform the calculations in the fundamental
paper [22]. We report first the abstract of the paper: regular environmental conditions allow
for the evolution of specifically adapted responses, whereas complex environments usually lead
to conflicting requirements upon the organism’s response. A relevant instance of these issues
is bacterial chemotaxis, where the evolutionary and functional reasons for the experimentally
observed response to chemoattractants remain a riddle. Sensing and motility requirements
are in fact optimized by different responses, which strongly depend on the chemoattractant
environmental profiles. It is not clear then how those conflicting requirements quantitatively
combine and compromise in shaping the chemotaxis response. In [22] the authors show that
the experimental bacterial response corresponds to the maximin strategy that ensures the high-
est minimum uptake of chemoattractants for any profile of concentration. the authors show
that the maximin response is the unique one that always outcompetes motile but nonchemo-
tactic bacteria. [They] results are generally relevant to biological optimization principles and
provide a systematic possibility to get around the need to know precisely the statistics of en-
vironmental fluctuations.

In [22] the authors considered a quite complete model which can be considered a gener-
alization of the velocity-jump model [45]: bacteria are supposed to run at (fixed) velocity
u in the direction θ, and the transition rate from the running to the tumbling phase at
time t depends on the detection history experienced by the bacterium via the quantity
Q(t) =

∫ t
−∞K(t − s)c(X(s), s)ds. Here the convolution kernel is the one presented in the

first chapter;

• X(t) is the trajectory followed by the bacterium;

• c(x, t) is the chemoattractant concentration field;

• τr is the running time in the absence of chemoattractants.

They use homogenization methods to analyze the hydrodynamic limit of the distribution of
the population. They rescale x 7→ εx and t 7→ ε2t, and obtain the final form of the effective
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diffusion equation:

∂

∂t
n(x, t) +∇ ·

(
χ · n(x, t)∇c(x, t)

)
= D0∆

[(
1 + γc(x, t)

)
n(x, t)

]
where

γ :=
α

σ

∫ ∞
0

K(t)dt and χ := D0
α

σ

∫ ∞
0

e−σtK(t)dt

In what follows we explicitly perform the calculations, since they might be useful in a further
generalization of their model.

B.1 Projection of the Equation
The continuity equation and the one for the (average) flux 〈J〉 := u〈θJ〉 are given by the
equations [S4] and [S5]

∂

∂t
〈P 〉+∇ · 〈J〉 = 0, (S4)

∂

∂t
〈J〉+

u2

d
∇〈P 〉 = −D(d− 1)〈J〉 − 1− ωd−1

τr
g(Q)〈J〉, (S5)

while the lowest-order moments satisfy the equation [S6] and [S7]

∂

∂t
〈J〉+

u2

d
∇〈P 〉 = −D(d− 1)〈J〉 − 1− ωd−1

τr
g(Q)〈J〉; (S7)

∂

∂t
mk〈P 〉+∇ ·mk〈J〉 − δk0c〈P 〉+ kmk−1P − λmk〈P 〉 = 0. (S6)

B.1.1 Derivation of the Equation for the Average Flux

Let us consider [S3]:

∂

∂t
P (t, x, θ,m) =− u∇x

(
θ · P (t, x, θ,m)

)
−∇m

(
(kmj−1(t)− λmj(t))j∈N · P (t, x, θ,m)

)
+D∆θP (t, x, θ,m) +

1

τr
[1−Q(t)]

∫
S

[
P (t, x, η,m)− P (t, x, θ,m)

]
µθ(dη).

Multiplying this equation by uθ and integrating with respect to m and θ we obtain that

• The first term, using the fact that θ doesn’t depend on t∫
R

∫
S

[uθ
∂

∂t
P (t, x, θ,m)]dmdθ =

∂

∂t

∫
R

∫
S

[uθP (t, x, θ,m)]dmdθ =
∂

∂t
〈J〉.

• Using the identity ∆θθ = (1 − d)θ, and in the last equality integrating by parts, the
following holds:

D(1− d)〈J〉 = 〈D(1− d)J〉 = 〈D(1− d)θP 〉 = 〈D∆θθP 〉 = 〈Dθ∆θP 〉.
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• as in the derivation of the continuity equation, the mean of the term that accounts for
the change in the variable m is zero, so that

〈uθ∇m

(
(kmj−1(t)− λmj(t))j∈N · P (t, x, θ,m)

)
〉 = 0;

• the proof of the second term on the left hand side comes from the following consid-
erations1: from

∫
S
θiθjdθ = 1

d
Ωdδ

i
j, one deduces that (πi)i=1...d, where πi(θ) =

√
d

Ωd
θi,

is an orthonormal set2 for the space (S, 〈·, ·〉) with 〈f(θ), g(θ)〉 :=
∫
S
f(θ)g(θ)dθ; in

particular one obtains that

θ∇ · (θP ) =
( d∑
j=1

θiθj
∂

∂xj
P
)
i=1...d

,

and so from f(θ) :=
∑d

j=1 θj
∂
∂xj
P (t, x, θ,m) and g(θ) = θi it follows that∫

S

f(θ)g(θ)dθ =
1

d

∫
S

∂

∂xi
P (t, x, θ,m)dθ;

and so ∫
S

∫
R

[
uθu∇x

(
θ · P (t, x, θ,m)

)]
dθdm =

u2

d
∇〈P 〉;

• the last term on the right hand side comes from a similar consideration3 as above:
Using the expression µθ(η) = 1

Ωd
(1 + ωθ · η)dη, multiplying by uθ and integrating with

respect to θ one obtains for∫
S

uθ
g(Q)

τr

∫
S

[
P (t, x, η,m)− P (t, x, θ,m)

]
µθ(dη)dθ := K(t, x,m),

K(t, x,m) =
g(Q)

τr

{uω
Ωd

∫
S×S

θ(θ·η)P (t, x, η,m)dηdθ+
uω

Ωd

∫
S

θdθ︸ ︷︷ ︸
=0

∫
S

P (t, x, η,m)dη−〈J〉
}
,

for the first integral one has∫
S×S

θ(θ · η)P (t, x, η,m)dηdθ =
(∫

S×S
θi

d∑
j=1

θjηjP (t, x, η,m)dθdη
)
i=1...d

=
( d∑
j=1

∫
S

ηjP (t, x, η,m)
[ ∫

S

θiθjdθ
]
dη
)
i=1...d

=
(Ωd

d
δji

∫
S

ηjP (t, x, η,m)dη
)
i=1...d

= 〈J〉.
1This seems to be somehow similar to Spherical Harmonics
2to obtain a base it is necessary to consider all the spherical harmonics
3
∫
S
θiθjdθ = 1

dΩdδ
i
j



154 APPENDIX B. NOTE ON THE PAPER CELANI & VERGASSOLA 2010

B.1.2 Equation for the lowest-order moments

To obtain [S7], similarly as in the derivation of the flux one has to multiply equation [S3] by
mk and perform the integration with respect to dm and dθ.

If we simply interchange integral and temporal derivative we have the first term, i.e.
∂
∂t
〈J〉. In a similar fashion the second term is obtained. Here the interchange is done between

the spatial derivative and the integral. In the last term one uses integration by parts:

〈mk,MP 〉 = 〈M∗mk, P 〉,

where one use the adjoint of M, i.e.

M∗u(t, x, θ,m) = −
kM∑
k=0

(δk0c+ kmk−1 − λmk)
∂

∂mk

u(t, x, θ,m).

If we substitute u(t, x, θ,m) = mk, we obtain the equation [S7].
Exactly as in the derivation of [S5] one obtains [S6] by multiplying equation [S3] by

uθmk and performing integration with respect to m and θ. By using the integration by parts
formula for M stated above we have the result.

B.1.3 Hydrodynamic Limit

The effective diffusion equation obtained via a homogenization method reads as
∂

∂t
n(x, t) +∇ ·

(
χ · n(x, t)∇c(x, t)

)
= D0∆

[(
1 + γc(x, t)

)
n(x, t)

]
, (S14)

where the parameters are given by

α :=
1

τr

(
1− ω

d

)
, σ := D(d− 1) + α, D0 =

u2

dσ
, γ :=

α

σ
(2β2 + β1),

χ = D0
α

σ

[
2β2

λ3

(λ+ σ)3
+ β1

λ2

(λ+ σ)2

]
.

B.1.4 Homogenization Limit

Starting from the equation

∂ta+ Ma = 0, aT =
(
〈P 〉, 〈J〉;mk〈P 〉,mk〈J〉 : j = 0 . . . kM

)
,

with kM = 2, from the equation for the lowest-moment one obtains that

M =



0 ∇· 0 0 0 0 0 0
u2

d
∇· σ 0 0 0 −β1λ

2α 0 β2λ
3α

−c 0 λ ∇· 0 0 0 0

0 −c u2

d
∇· λ+ σ 0 0 0 0

0 0 −1 0 λ ∇· 0 0

0 0 0 −1 u2

d
∇· λ+ σ 0 0

0 0 0 0 −2 0 λ ∇·
0 0 0 0 0 −2 u2

d
∇· λ+ σ


.
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Now the rescaling is done with ∇ 7→ ε∇ and ∂t 7→ ε2∂t: developing a and M in powers of ε
one has the following equation:

∂t
∑
m≥0

a(m)ε2+m +
∑
m≥0

∑
n≥0

M (m)a(n)εm+n = 0,

where the superscript (m) denotes the coefficient of εm. Now, since there are no terms in M
of the form ∇m, with m ≥ 1, it follows that M (j) = 0 for j ≥ 2 and so

M (0) =



0 0 0 0 0 0 0 0
0 σ 0 0 0 −β1λ

2α 0 −β2λ
3α

−c 0 λ 0 0 0 0 0
0 −c 0 λ+ σ 0 0 0 0
0 0 −1 0 λ 0 0 0
0 0 0 −1 0 λ+ σ 0 0
0 0 0 0 −2 0 λ 0
0 0 0 0 0 −2 0 λ+ σ


,

M (1) =



0 ∇· 0 0 0 0 0 0
u2

d
∇· 0 0 0 0 0 0 0
0 0 0 ∇· 0 0 0 0

0 0 u2

d
∇· 0 0 0 0 0

0 0 0 0 0 ∇· 0 0

0 0 0 0 u2

d
∇· 0 0 0

0 0 0 0 0 0 0 ∇·
0 0 0 0 0 0 u2

d
∇· 0


.

Comparing terms of equal order in ε, one obtains

ε0 : M (0)a(0) = 0

ε1 : M (0)a(1) +M (1)a(0) = 0⇒M (0)a(1) = −M (1)a(0)

ε2 : ∂ta
(0) +M (0)a(2) +M (1)a(1) +M (2)︸︷︷︸

≡0

a(0) = 0⇒M (0)a(2) = −M (1)a(1) − ∂ta(0)

. . .

εm : ∂ta
(m−2) +

∑
i=0,1

∑
n:n+i=m

M (i)a(n) = 0.

To solve this sequence of equations, one uses the Fredholm alternative condition.
Let us search for the Kern((M (0))T ). From the form of (M (0))T , its first column is entirely
composed of zeros. The immediate consequence is that its kernel contains any vector ν with
its first component nonzero and all the others vanishing. Solving the system (M (0))Tν = 0
one is lead to the following set of conditions for the components of ν:

ν2k+1 = 0;
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σ 0 0 −c
0 1 0 λ+ σ

0 0 2 −β1cλ2α
σ

+ (λ+ σ)2

0 0 0
(
− 2β2c− β1c

)
− β1c

σ
λ

+ σ
λ3α

(λ+ σ)3



ν2

ν6

ν8

ν4

 =


0
0
0
0

 .

Now since |k!βkc| � 1 it follows that ν4 = 0 and then all νk = 0. So 〈(n, 0)〉 = Kern((M (0))T ).
By using the above structures of a(0)4 andM (0) in the second equation in ε1 , a straightforward
calculation gives the expression:

〈J (1)〉 = −D0∇n−D0γ∇(cn) + χn∇c.

Solving the system for ε0 : M (0)a(1) = −M (1)a(0),
one obtains that(

1− β1λ
2αc

σ(λ+ σ)2
− 2cβ2λ

3α

(λ+ σ)3σ

)
a2 = − β1λα

(λ+ σ)2

u2

dσ
∇(cn)− β1α

(λ+ σ)

u2

dσ
∇(cn)

− 2β2λ
2α

(λ+ σ)3

u2

dσ
∇(cn)− 2β2λα

(λ+ σ)2

u2

dσ
∇(cn)

− 2β2α

(λ+ σ)

u2

dσ
∇(cn)− u2

dσ
∇n,

since |βkk!c| � 1, one can develop the term (1 − β1λ2αc
σ(λ+σ)2 − 2cβ2λ3α

(λ+σ)3σ
)−1 in a Taylor Series

and we obtain:(
1− β1λ

2αc

σ(λ+ σ)2
− 2cβ2λ

3α

(λ+ σ)3σ

)−1

= 1 +
β1λ

2αc

σ(λ+ σ)2
+

2cβ2λ
3α

σ(λ+ σ)3
+ o(β1c+ 2β2c).

By solving for a2 one obtains that on the right hand side one can ignore all the terms of the
form (χ · c) · φc∇n since they are of order O

(
(β1c+ 2β2c)

2
)

a2 = − β1λα

(λ+ σ)2

u2

dσ
∇(cn)− β1α

(λ+ σ)

u2

dσ
∇(cn)− 2β2λ

2α

(λ+ σ)3

u2

dσ
∇(cn)− 2β2λα

(λ+ σ)2

u2

dσ
∇(cn)

− u2

dσ
∇n− u2

dσ

α

σ

( β1λ
2

(λ+ σ)2
+

2β2λ
3

(λ+ σ)3

)
c∇n+ o(β1c+ 2β2c).

Now we make use of the following identity:

−β1

( λ

(λ+ σ)2
+

1

(λ+ σ)

)
− β2

( λ2

(λ+ σ)3
+

λ

(λ+ σ)2
+

1

(λ+ σ)

)
− 1

σ

(
β1 λ

2

(λ+ σ)2 +
2 β2 λ

3

(λ+ σ)3

)
= −β1 + 2 β2

σ
.

The following relation holds:

a2 := 〈J (1)〉 = − u
2

dσ
∇n− u

2

dσ

α

σ
(2β2+β1)n∇c+ u2

dσ

α

σ

[
2β2

λ3

(λ+ σ)3
+β1

λ2

(λ+ σ)2

]
∇(nc)+o(β1c+2β2c),

4solution a(0) to the equation in ε0 has only odd components with the following ratios a(0) =
(n, 0, nc/λ, 0, nc/λ2, 0, 2nc/λ3)
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which coincides with
〈J (1)〉 = −D0∇n−D0γ∇(cn) + χn∇c.

By using the equation
∂ta

(0)
1 +M

(1)
12 a

(1)
2 = ∂ta

(0)
1 +∇ · a(1)

2 ,

one gets the final form [S14]

∂

∂t
n(x, t) +∇ ·

(
χ · n(x, t)∇c(x, t)

)
= D0∆

[(
1 + γc(x, t)

)
n(x, t)

]
. (S14)

B.1.5 Hydrodynamic limit for general K(t)

Exactly as in the case with kM = 2 we start from the equation

∂ta+ Ma = 0, aT =
(
〈P 〉, 〈J〉;mk〈P 〉,mk〈J〉 : j = 0 . . . kM

)
.

From the equation for the lowest moments we obtain that

M =



0 ∇· 0 0 0 0 0 0 0 0
u2

d
∇· σ 0 0 0 −β1λ

2α 0 β2λ
3α 0 −β3λ

4α
−c 0 λ ∇· 0 0 0 0 0 0

0 −c u2

d
∇· λ+ σ 0 0 0 0 0 0

0 0 −1 0 λ ∇· 0 0 0 0

0 0 0 −1 u2

d
∇· λ+ σ 0 0 0 0

0 0 0 0 −2 0 λ ∇· 0 0

0 0 0 0 0 −2 u2

d
∇· λ+ σ 0 0

0 0 0 0 0 0 −3 0 λ ∇·
0 0 0 0 0 0 0 −3 u2

d
∇· λ+ σ


with the matrix having the following form: for i = 2k + 3, 2k + 4; k > 3

• for j = 2k + 1, . . . , 2k + 4

Mi,j =

(
−k 0 λ ∇·
0 −k u2

d
∇· λ+ σ

)
;

• for j ≥ 1
M2,4+2j = −βjλj+1α;

• otherwise Mi,j = 0.

Following exactly the same procedure as before we solve the same system for this matrix,
expanding M and a in powers of ε. We have thatM (k) = 0 for k > 1. M (1) contains only the
differential operator, while M (0) is built with the only real parameters of M . The Fredholm
alternative leads to the equation(

∂ta
(0) +M (1)a(1) = 0

)
1

:= ∂ta
(0)
1 +∇ · a(1)

2 = 0.
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By solving the equation for ε0, we have that a(0) has the following form:
for k = −1, . . . , kM :

a
(0)
2k+3 =

k!

λk+1
nc,

where we used the convention k! := 1, k ≤ 1. By solving the system for a(1), i.e. M (0)a(1) =
−M (1)a(0) with the above structure of M (i) and a(0) we have:

• the odd and even components of the vector a(1) are independent, i.e. to solve with
respect to a(1)

2 one has only a relation with a(1)
2k . The general relation for a(1)

2 is given
by:

a2 =− u2

dσ
∇n+

u2

dσ

α

σ

( kM∑
j=1

j!βjλ
j+1

(λ+ σ)j+1

)
∇(nc)

−
kM∑
j=1

u2

dσ
αj!βj

( j∑
i=1

λi−1

(λ+ σ)i

)
∇c · n

− u2

dσ

α

σ

( kM∑
j=1

j!βjλ
j+1

(λ+ σ)j+1

)
n∇c+ o(

kM∑
j=1

kM !βjc),

where we have to remember that

[
1− α

σ

( kM∑
j=1

j!βjλ
j+1

(λ+ σ)j+1

)
c
]
a2 = − u

2

dσ
∇n−

kM∑
j=1

u2

dσ
αj!βj

( j∑
i=1

λi−1

(λ+ σ)i

)
∇c · n.

• from the relations: ∫ ∞
0

K(t)dt =

kM∑
j=1

Γ(j + 1) · βj =

kM∑
j=1

j!βj,

kM∑
j=1

j!βjλ
j+1

(λ+ σ)j+1
=

∫ ∞
0

e−σtK(t)dt,

−
kM∑
j=1

αj!βj

( j∑
i=1

λi−1

(λ+ σ)i

)
−
( kM∑
j=1

j!βjλ
j+1

(λ+ σ)j+1

)
=
α

σ

( kM∑
j=1

j!βj

)
=
α

σ

∫ ∞
0

K(t)dt,

follows the general relation for [S14] with

γ :=
α

σ

∫ ∞
0

K(t)dt and χ := D0
α

σ

∫ ∞
0

e−σtK(t)dt.

To prove this one can use mathematical induction.
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B.2 Effective Diffusion Equation and Bacterial Uptake

Based on the fact that the leading equation has a term which is o(
∑kM

j=1 kM !βjc) and from
[S14] with n = n0 + η, with (∂tn0 −D0∆n0 = 0) and η = O(βc)n0 , substituting directly

∂

∂t
n0(x, t)−D0∆n0(x, t)︸ ︷︷ ︸

≡0

=−
( ∂
∂t
−D0∆

)
η(x, t)+

−∇ ·
(
χ · η(x, t)∇c(x, t)

)
︸ ︷︷ ︸

o(βc)

−∇ ·
(
χ · n(x, t)∇c(x, t)

)

+D0∆
(
γc(x, t)n0(x, t)

)
︸ ︷︷ ︸

o(βc)

+D0∆
(
γc(x, t)η0(x, t)

)
+ o(βc).

B.2.1 Bacterial Uptake of Chemoattractants

The trick to solve the integral in S ′(t) is the following: one can rewrite it in the following
form:

S ′(t) =

∫ t

0

ds

∫ s

0

du

∫
Rd

(
c(x, u) · [G ∗ ∇(G∇c)](x, u)

)
dx.

using the property of the convolution that [G∗∇(G∇c)](x, u) = ∇[G∗(G∇c)] and integrating
by parts (once for S and twice for S ′) one has:

a[c](t) =

∫
Rd
dx

∫ t

0

ds

∫ s

0

∇c(x, s) · [G ∗ (G · ∇c)](x, u) (S19.a)

=

∫
R2d

dxdy

∫ t

0

ds

∫ s

0

∇c(x, s) · ∇c(y, u)G(y, u)G(x− y, s− u),

b[c](t) =

∫
Rd
dx

∫ t

0

ds

∫ s

0

∆c(x, s) · [G ∗ (G · c)](x, u) (S19.b)

=

∫
R2d

dxdy

∫ t

0

ds

∫ s

0

∆c(x, s) · c(y, u)G(y, u)G(x− y, s− u).

B.2.2 General Maxmin Analysis

From equation [S17] with the new variables

z =
|x|2

4D0t
, η(z, t) = G(z(x, t), t) · φ(z(x, t), t), G(z, t) =

e−z

(4πD0t)d/2
,

follows equation [S28] with the following rules and functional relations:

∇xf(z, t) = ∂zf · ∇xz(x, t);

∆xf(z, t) = ∂2
zzf(z, t) · |∇xz(x, t)|2 + ∂zf(z, t) ·∆xz(x, t);
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∂tf(z, t) = ∂zf(z, t)∂tz(x, t) + ∂tf(z, t);

∇xz(x, t) =
2x

4D0t
=

√
z

t
⇒ |∇xz(x, t)|2 =

z

t
;

∆xz(x, t) =
2d

4D0t
, ∂tz(x, t) = − x2

4D0t2
= −z

t
;

∂zG(z, t) = −G, ∂2
zzG(z, t) = G,

and so one can rewrite the l.h.s. of [S17] as(
∂tG−D0∆G

)
︸ ︷︷ ︸

=0

+G ·
(
− z

t
∂zφ+ ∂tφ

)
+ 2D0G ·

z

D0t
∂zφ−D0G

( z

D0t
∂2
zzφ+

2d

4D0t
∂zφ
)
.

By simplifying we obtain

G(z, t)

t

{
t∂t −

[
z∂2

zz +
(d

2
− z
)
∂z

]}
φ(z, t).

For the r.h.s:

χG·
[
− z

D0t
∂zc+

( z

D0t
∂2
zzc+

d

2D0t
∂zc
)]

+γD0G·
[ z

D0t
∂2
zzc+

2d

4D0t
∂zc+

z

D0t
c− 2d

4D0t
c−2

z

D0t
, ∂zc

]
which leads to

G(z, t)

t

[
− χ

D0

(
z∂2

zz +
(d

2
− z
)
∂z + γ

(
z∂2

zz − 2z∂z +
d

2
∂z −

d

2
+ z
)]
c(z, t),

and then [S28].{
t∂t−

[
z∂2

zz+
(d

2
−z
)
∂z

]}
φ(z, t) =

[
− χ

D0

(
z∂2

zz+
(d

2
−z
)
∂z+γ

(
z∂2

zz−2z∂z+
d

2
∂z−

d

2
+z
)]
c(z, t).

(S28)
In oder to solve this equation the Mellin transform is introduced: As long as tsφ(t, z) → 0
as t→∞ one has the following relation∫ ∞

0

ts∂tφ(t, z)dt = tsφ(t, z)
∣∣∣t=∞
t=0
− s

∫ ∞
0

ts−1φ(t, z)dt = −sφ̂(s, z),

∫ ∞
0

ts−1αzn∂mz...zφ(t, z)dt = αzn∂mz...zφ̂(s, z).

In particular in the previous equation one has that for {Mφ} (s) = φ̂(z, s) and {Mc} (s) =
ĉ(z, s), multiplying both sides by ts−1 and integrating with respect to dt one obtains{
−s−

[
z∂2

zz+
(d

2
−z
)
∂z

]}
φ̂(z, s) =

[
− χ

D0

(
z∂2

zz+
(d

2
−z
)
∂z+γ

(
z∂2

zz−2z∂z+
d

2
∂z−

d

2
+z
)]
ĉ(z, s).

(S29)
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It is suggested to use the expansion in Laguerre polynomials5:
For the l.h.s. with φ̂(z, s) :=

∑
k∈N φ̂k(s)L

d/2−1
k (z) follows{

− s−
[
z∂2

zz +
(d

2
− z
)
∂z

]}
φ̂(s) =

∑
k∈N

φ̂k(s)
(
− s−

[
z∂2

zz +
(d

2
− z
)
∂z

])
︸ ︷︷ ︸

=−kLd/2−1
k (z)

L
d/2−1
k (z)

=
∑
k∈N

(−s+ k)φ̂k(s)L
d/2−1
k (z)..

the same applies with ĉ(z, s) :=
∑

k∈N ĉk(s)L
d/2−1
k (z) to the first term on the r.h.s. which

gives ∑
k∈N

k · χ
D0

ĉk(s)L
d/2−1
k (z).

Using now (8.971.3)6 for the second term:(
z∂2

zz − 2z∂z +
d

2
∂z −

d

2
+ z
)
ĉ(s) =

∑
k∈N

ĉk(s)
[ (
z∂2

zz − (
d

2
− z
)
∂z

)
L
d/2−1
k (z)︸ ︷︷ ︸

=−k·Ld/2−1
k (z)

+

−
(
z∂z +

d

2
− z
)
L
d/2−1
k (z)

]
= −

∑
k∈N

ĉk(s)
(
z∂z + (k +

d

2
− 1 + 1− z)

)
L
d/2−1
k (z)

= −
∑
k∈N

ĉk(s)(k + 1)L
d/2−1
k+1 (z) = −

∑
k∈N

ĉk−1(s)kL
d/2−1
k (z).

By setting the coefficients of the same Laguerre polynomials to equal each other, follows that

φ̂k(s) =
k

k − s

( χ

D0

ĉk(s)− γĉk−1(s)
)
.

One reads In addition to the poles possibly inherited from the field c, poles are present at
s = 1, 2, . . . because of the existence of homogeneous solutions φhom = t−kLk(z): in fact the
equation is linear in φ and so the poles are those for the homogenous solution and those for
the special integrals; using the differential equation defining Lαk (t) and t∂tt−k = −kt−k{
t∂t−

[
z∂2

zz+
(d

2
−z
)
∂z

]}
t−kL

d/2−1
k (z) =

{
−kt−k−t−k

[
z∂2

zz+
(d

2
−z
)
∂z

]}
L

(d/2−1)
k (z) = 0.

It is said that: The constant term k = 0 in the series expansion for φ is ruled out because
the right-hand side of [S17] contains only space derivative terms. The integral of the right-
hand side over the whole volume is therefore equal to zero. Because the diffusion operator

5For arbitrary real polynomial solutions of the differential equation

xL(α)′′
n (x) + (α+ 1− x)L(α)′

n (x) + nL(α)
n (x) = 0

are called generalized Laguerre polynomials.
6xL

(α)′
n (x) + (n+ α+ 1− x)L

(α)
n (x) = (n+ 1)L

(α)
n+1(x) and not formula (8.971.2)
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conserves the normalization, we conclude that the integral of η in space vanishes at any time
t and that the term k = 0 in the expansion of φ is absent. Ld/2−1

0 (z) := 1 and then

sφ̂0(z, s) = 0⇒ φ0 = 0

The calculation of the uptake is done as follows: By using the spherical coordinate for
the d-sphere and the hypothesis on the functions c and η

S ′ =

∫ ∞
0

dt

∫
Rd
dx
(
c(x, t)η(x, t)

)
=

∫ ∞
0

dt

∫
R+

drrd−1
(
c
( r2

4D0t
, t
)
η
( r2

4D0t
, t
))∫

[0,2π)×[0,π)d−2

H(φj)dφd−1 ⊗d−2
j=1 dφj

The last integral is the surface of the d-sphere
∫

[0,2π)×[0,π)d−2 H(φj)dφd−1 ⊗d−2
j=1 dφj = 2πd/2

Γ(d/2)
.

By changing the variable r2

4D0t
= z one gets that rd−1dr = 1

2
(4D0t)

d/2zd/2−1, using the explicit
form of G(z) and expanding c and φ in Laguerre polynomials one has

S ′ =
πd/2

Γ(d/2)

∫ ∞
0

dt

∫
R

(
(4D0t)

d/2c(z, t)φ(z, t)G(z, t)
)
zd/2−1dz

=
1

Γ(d/2)

∫ ∞
0

dt

∫
R

(
c(z, t)φ(z, t)e−z

)
zd/2−1dz

=
1

Γ(d/2)

∫ ∞
0

dt

∫
R

( ∞∑
k=1

ck(z, t)L
d/2−1
k (z)

∞∑
n=1

φn(z, t)Ld/2−1(z)e−z
)
zd/2−1dz

=
Γ(k + d/2)

Γ(k + 1)Γ(d/2)

∫ ∞
0

( ∞∑
k=1

ck(t)φk(t)
)
dt

where the equation [G.R. 8.980]7 about the orthonormality of Lαk has been used in the last
equality. To compute the last integral we notice that:∫ ∞

0

( ∞∑
k=1

ck(t)φk(t)
)
dt =

∞∑
k=1

∫ ∞
0

( 1

2πi

∫ ν+i∞

ν−i∞
ck(z, t)φ̂k(z, s)t

−sds
)
dt

=
∞∑
k=1

1

2πi

∫ ν+i∞

ν−i∞
φ̂k(z, s)

(∫ ∞
0

ck(z, t)t
−sdt

)
ds

=
∞∑
k=1

1

2πi

∫ ν+i∞

ν−i∞

(
φ̂k(z, s)ĉk(z, 1− s)

)
ds

since ĉk(1− s) =
∫∞

0
ck(t)t

−sdt.
In conclusion we obtain [S31]:

S ′ =
Γ(k + d/2)

Γ(k + 1)Γ(d/2)

1

2πi

∫ ν+i∞

ν−i∞

∞∑
k=1

(
φ̂k(z, s)ĉk(z, 1− s)

)
ds (S31)

7
∫∞

0
xαe−xL

(α)
n (x)L

(α)
m (x)dx = Γ(n+α+1)

Γ(n+1) δn,m
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The relation for ν = 1
2
, ĉk(s) = ck(1− s)? follows from:

ĉk

(1

2
+ iν

)
=

∫ ∞
0

ck(t)t
iν− 1

2 , ĉk

(
1− (

1

2
+ iν)

)
=

∫ ∞
0

ck(t)t
−iν− 1

2

and so one is the complex conjugate of the other. Integrating parallel to the imaginary axis
one has the following: since s = 1

2
+ iν ⇒ ds = idν

1

2πi

∫ ν+i∞

ν−i∞
c(s)ds =

1

2π

∫ ∞
−∞

c
(1

2
+ iν

)
dν

One has to notice now that the following holds:∫ ∞
−∞

1

k − 1
2
− iν

ck(ν)c?k(ν)dν =

∫ ∞
−∞

k − 1
2

+ iν(
k − 1

2

)2

− ν2

ck(ν)ck(−ν)dν

=

∫ ∞
−∞
<
( 1

k − 1
2
− iν

)
ck(ν)c?k(ν)dν

By using the relation [S30], the expression [S32] in the text follows. To evaluate the eigen-
values of the matrix defined in [S33] one has the following:

Let D := (λi)i be a diagonal matrix with λi 6= λj and let H be a Hermitian tridiagonal
perturbation with null diagonal, then one has that if µi are the eigenvalues of D +H then

|λ1 − µ1| ≤
H11 ·H?

11

mini,j{|λi − λj|}

In the present case we have that λ1 = 0, hence

|µ1| ≤
H11 ·H?

11

mini,j{|λi − λj|}
≤ ζ

where ζ :=
γ2µ?1(ν)·µ1(ν)

4

S11
= D0γ2

4χ

µ?1(ν)·µ1(ν)

<(µ1(ν))
and µ1(ν) = Γ(1+d/2)

Γ(d/2)
1/2−iν
1/4−ν2 = d

2
1/2−iν
1/4−ν2

µ?1(ν) · µ1(ν)

<(µ1(ν))
=
d

2

1/2− iν
1/4− ν2

1/2 + iν

1/4− ν2

1/4− iν
1/2

= d

and it follows then that for small γ, for the smallest eigenvalues one has µ1 ' −dD0γ2

4χ
.
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