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Zusammenfassung

In der vorliegenden Arbeit entwickeln wir die Multilevel-Iterationsschemata (MLI), ein nu-

merischer Ansatz für die nichtlineare modellprädiktive Regelung (NMPC) von Prozessen,

deren dynamische Modelle durch gewöhnliche Differentialgleichungen beschrieben werden.

Der Ansatz basiert auf dem direkten Mehrzielverfahren für die Diskretisierung der Opti-

malsteuerungsprobleme, die für jede Abtastzeit gelöst werden müssen. Die daraus entste-

henden parametrischen nichtlinearen Optimierungsprobleme werden näherungsweise ge-

löst, indem man in einer Vorbereitungsphase einen verallgemeinerten tangentialen Prä-

diktor aufstellt. Dieser besteht aus einem parametrischen quadratischen Programm (QP),

welches implizit ein stückweise affin-lineares Regelgesetz definiert. In einer Feedback-

Phase wird das Regelgesetz dann für die aktuelle Systemschätzung durch die Lösung des

quadratischen Programms ausgewertet.

Der in dieser Arbeit entwickelte Ansatz liefert eine signifikante Einsparung im Rechen-

aufwand durch eine hierarchische Aktualisierung der Matrix- und Vektordaten des verall-

gemeinerten tangentialen Prädiktors auf vier Ebenen beziehungsweise Levels. Auf dem

untersten Level werden keine Updates berechnet und nur die Regelung für den aktuellen

Systemzustand berechnet. Das zweite Level umfasst das Update der QP-Beschränkungen

und berechnet eine Approximation des QP-Gradienten, auf dem dritten Level wird statt

der Approximation der exakte QP-Gradient ausgerechnet und auf dem obersten Level

werden alle Vektor- und Matrixdaten des QPs neu ausgewertet. Feedback-Schemata sind

dann eine Abfolge von Levelentscheidungen für jede einzelne Abtastzeit und damit eine

sukzessive Aktualisierung des stückweise affin-linearen Lenkgesetzes, welches vom verall-

gemeinerten tangentialen Prädiktor implizit aufgestellt wird.

Wir präsentieren und diskutieren vier Strategien für die Datenkommunikation zwischen

den Leveln innerhalb eines Schemas und wir beschreiben, wie Schemata mit vorgegebenen

Levelentscheidungen in der Praxis zusammengestellt werden können. Wir zeigen lokale

Konvergenztheorie für die Level mit eigenen primal-dualen Variablen bei festem Systemzu-

stand und diskutieren die vorhandene Konvergenztheorie für den Fall eines geregelten

Prozesses. Weiterhin skizzieren wir eine Variante der Level, die zusätzliche rechnerische

Einsparungen ermöglicht.

Für die adaptive Wahl der Level zur Laufzeit entwickeln wir zwei kontraktionsbasierte

Kriterien, um zu entscheiden, ob die aktuell verwendeten Linearisierungen brauchbar

bleiben und verwenden diese Kriterien in einem Algorithmus zur Wahl des Levels für die

nächste Abtastzeit. Außerdem schlagen wir im Falle eines mitgeführten Zustandsschätzers

ein Kriterium vor, welches zusätzliche Entscheidungshilfe bei der Levelwahl für die nächste

Abtastzeit bietet. Aufbauend auf dem zweiten Level schlagen wir einen effizienten Algo-

rithmus für suboptimales NMPC vor.
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Für die vorgestellten algorithmischen Ansätze beschreiben wir Strukturausnutzung mit-

tels eines angepassten Kondensierungsalgorithmus, skizzieren die Online Active Set Strate-

gie als effizienten Ansatz, um die quadratischen Teilprobleme zu lösen und erweitern

diese Methode auf lineare Least-Squares-Probleme, und entwickeln iterative matrixfreie

Methoden für eines der kontraktionsbasierten Kriterien, welches den Spektralradius der

Iterationsmatrix schätzt.

Wir beschreiben drei Anwendungsbereiche, in denen MLI eine bedeutende Einsparung

an Rechenleistung im Vergleich zu aktuellen numerischen Methoden für NMPC bewirkt.

Sowohl für MLI-Schemata mit vorgegebener als auch adaptiver Levelwahl führen wir um-

fangreiche numerische Tests mittels anspruchsvollen nichtlinearen Testproblemen durch

und vergleichen die Leistungsfähigkeit von MLI mit dem aktuellen Stand der Technik für

NMPC. Die Schemata, die MLI mit adaptiver Levelwahl erzeugt, sind rechnerisch viel

billiger bei vergleichbarer Reglerperformanz, und per Konstruktion ist MLI mit adaptiver

Levelwahl in der Lage, Feedbacksteuerungen mit einer viel höheren Frequenz zu geben,

was für die betrachteten Testprobleme eine deutliche Verbesserung der Reglerperformanz

bewirkt.

Zur Durchführung der numerischen Experimente haben wir den vorgeschlagenen Ansatz

in einer auf MATLABR© basierenden Software namens MLI implementiert, welches ein

Softwarepaket zur effizienten automatischen Generierung von Ableitungen erster und

höherer Ordnung für die Lösung des dynamischen Modells sowie für Zielfunktion und

Beschränkungen nutzt, Strukturausnutzung durch Condensing durchführt und die para-

metrischen quadratischen Teilprobleme mittels eines Softwarepaketes mit einer effizienten

Implementierung der Online Active Set Strategie löst.
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Abstract

In this thesis we develop the Multi-Level Iteration schemes (MLI), a numerical method for

Nonlinear Model Predictive Control (NMPC) where the dynamical models are described

by ordinary differential equations. The method is based on Direct Multiple Shooting for

the discretization of the optimal control problems to be solved in each sample. The aris-

ing parametric nonlinear problems are solved approximately by setting up a generalized

tangential predictor in a preparation phase. This generalized tangential predictor is given

by a quadratic program (QP), which implicitly defines a piecewise affine linear feedback

law. The feedback law is then evaluated in a feedback phase by solving the QP for the

current state estimate as soon as it becomes known to the controller.

The method developed in this thesis yields significant computational savings by updat-

ing the matrix and vector data of the tangential predictor in a hierarchy of four levels.

The lowest level performs no updates and just calculates the feedback for a new initial

state estimate. The second level updates the QP constraint functions and approximates

the QP gradient. The third level updates the QP constraint functions and calculates

the exact QP gradient. The fourth level evaluates all matrix and vector data of the QP.

Feedback schemes are then assembled by choosing a level for each sample. This yields a

successive update of the piecewise affine linear feedback law that is implicitly defined by

the generalized tangential predictor.

We present and discuss four strategies for data communication between the levels in a

scheme and we describe how schemes with fixed level choices can be assembled in practice.

We give local convergence theory for each level type holding its own set of primal-dual

variables for fixed initial values, and discuss existing convergence theory for the case

of a closed-loop process. We outline a modification of the levels that yields additional

computational savings.

For the adaptive choice of the levels at runtime, we develop two contraction-based

criteria to decide whether the currently used linearization remains valid and use them

in an algorithm to decide which level to employ for the next sample. Furthermore, we

propose a criterion applicable to online estimation. The criterion provides additional

information for the level decision for the next sample. Focusing on the second lowest

level, we propose an efficient algorithm for suboptimal NMPC.

For the presented algorithmic approaches, we describe structure exploitation in the form

of tailored condensing, outline the Online Active Set Strategy as an efficient way to solve

the quadratic subproblems and extend the method to linear least-squares problems. We

develop iterative matrix-free methods for one contraction-based criterion, which estimates

the spectral radius of the iteration matrix.

We describe three application fields where MLI provides significant computational sav-
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ings compared to state-of-the-art numerical methods for NMPC. For both fixed and adap-

tive MLI schemes, we carry out extensive numerical testings for challenging nonlinear test

problems and compare the performance of MLI to a state-of-the-art numerical method for

NMPC. The schemes obtained by adaptive MLI are computationally much cheaper while

showing comparable performance. By construction, the adaptive MLI allows giving feed-

back with a much higher frequency, which significantly improves controller performance

for the considered test problems.

To perform the numerical experiments, we have implemented the proposed method

within a MATLABR© based software called MLI, which makes use of a software package for

the automatic derivative generation of first and higher order for the solution of the dynamic

model as well as objective and constraint functions, which performs structure exploitation

by condensing, and which efficiently solves the parametric quadratic subproblems by using

a software package that provides an implementation of the Online Active Set Strategy.
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Schlöder.

For helping me through the jungle of administration, I would like to thank Anastasia

Valter, Margret Rothfuss, and Dorothea Heukäufer, and Thomas Klöpfer for the valuable
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1 Introduction

Dynamic processes are abundant in science, engineering, and industry. To give only some

examples consider a car moving on the street, a chemical reaction, the metabolism of a

cell, a space probe flying to the outer planets, the workflow of a production line, or the

course and spread of a disease. In each case we deal with a system with a state that

changes with time, possibly subject to inputs and constraints.

To study and understand the process and its time-dependent behavior, we can observe

the system and take measurements. However, it is quite often the case that observing the

system is difficult, expensive, dangerous, or heavily time-consuming. Also, the question of

quantitative description and prediction, and analysis of the system behavior, e.g., under

perturbations arises.

A highly successful approach to deal with these questions with an ever growing im-

portance during the whole history of science and in particular since the appearance of

computers is the mathematical modeling of dynamic processes [165]. There are plenty

ways to model time-dependent systems, depending whether the modeled process is dis-

crete or continuous, and deterministic or probabilistic. In this thesis we will consider

dynamic process models formulated as ordinary differential equations.

The typical development cycle for a process model as considered in this thesis is the

following: as a starting point we have a dynamic model, in general derived from first princi-

ples, and usually depending on parameter values which may be known or unknown. In or-

der to make the dynamic model useful for simulation, we take measurements from the real

process and perform parameter estimation and thus model fitting, cf. [12, 13, 28, 33, 175].

There are techniques that allow to choose the experiments particularly efficiently with

regard to the estimation process. These techniques are known as (optimum) experimental

design, cf. [34, 110, 152, 83, 66]. In case we have several candidate models and seek out

the one which best describes the real process, a particular variant of optimum experimen-

tal design, namely model discrimination [35, 10, 8, 11, 96], allows to generate experiments

which best reveal the less suited or false models. The results of this approach of designing

and performing experiments and fitting the model to the data may well indicate that the

model is still not suitable to describe the real process satisfactorily, and then the whole

cycle has to be repeated, starting with improving the dynamic model. For further reading

about modeling and modeling languages see, e.g., [134, 63, 82, 139, 48, 100, 62, 26, 61, 164].

Following the successful modeling phase, the dynamic model can then be used to simu-

late the real process. This helps or even enables to study and understand the behavior of

expensive processes such as car crashes, processes with ultra-fast dynamics or dynamics

which evolve over years, such as protein foldings or space probe traveling, or dangerous

processes like exothermic chemical reactions. One can investigate the process behavior

1



1 Introduction

under various initial and boundary conditions and for various parameter values. One can

find critical points and study the process behavior under small perturbations. Modeling

and simulation of processes is also known under the collective term scientific computing

and its huge importance is reflected in its naming as the “third pillar of science” [46],

besides theory and experimentation.

However, the interest of scientists and engineers in process models does not end with the

ability to simulate the process behavior. In general, the behavior of processes is influenced

by quantities which can be manipulated purposefully to obtain a desired process behavior.

For example, consider using the steering wheel, the brake, and the gas pedal, and choosing

gears while driving a car, or controlling inflow of educts, reactor temperature, and product

outflow in a chemical reaction. These quantities can be fixed one-time choices done

in advance before the process starts, or time-dependent varying choices applied during

runtime. We call the representations of these quantities in the process model parameters

in the former and controls or control functions in the latter case. The mathematical

representation of states, controls, and parameters allows us to numerically quantify how

good a certain choice of controls and parameters is in regard to a specific desired process

goal by formulating a suitable functional, e.g., the end time of a process, the energy

consumed by a process, the product quality, distance to a specified point or trajectory,

and so on. We call this functional the objective function. Furthermore, we may want or

need to impose constraints on the states and controls of the process model for various

reasons, e.g., to avoid unphysical states or states that lie outside the area of validity of the

model, to model limited control resources, or to keep the states away from safety-critical

domains.

The three parts described above – dynamic model, objective function, and constraints –

then come together in the discipline of optimal control, where we seek control functions and

parameters in such a way that the objective function is minimized while the constraints

are satisfied. This optimization problem is particularly difficult since the optimization

variables, which are the states and controls, are functions and thus infinite-dimensional.

It should be noted that optimal control actually refers to two approaches: the first one as

described seeking optimal controls as functions over time, depending on the initially chosen

configuration of the optimal control problem (initial states, fixed parameters, process start

and end time) but independent of intermediate states during run time, and the second

one calculating controls or more precisely evaluating control policies for the actual current

state of the system, also known as (optimal) feedback control.

The big advantage of the second approach, in particular with regard to the applicability

of the computed controls to the real process, is the fact that the controller can react

to disturbances. In general, even the best models do not perfectly reproduce the state

evolution of the real process. Furthermore, there can be, e.g., disturbances due to changes

or errors in the process environment, imperfect control realizations, or if the process has

a stochastic component. In these cases, the application of classical or offline optimal

control would lead to suboptimal behavior or even fail to meet the constraints because

the computed optimal controls do not take the disturbances into account.
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The theory of optimal control has been intensely studied since the 1950s and can nowa-

days be considered mature, cf. textbooks [38, 169, 171, 130, 20, 21]. In particular, two

results have to be highlighted, Pontryagin’s maximum principle [144] as a necessary con-

dition for the solution of optimal control problems, and the Hamilton-Jacobi-Bellman

equation [15, 14] as a sufficient condition. The former is the fundamental theorem for the

computation of classical offline optimal controls, the latter is the fundamental theorem

for the optimal feedback control approach.

In this thesis we focus on the development and investigation of new efficient compu-

tational methods for calculating feedback control. The Hamilton-Jacobi-Bellman equa-

tion and its discrete counterpart, the Bellman equation, have given rise to elegant early

results like the linear-quadratic regulator and the principle of dynamic programming.

However, only for few special cases a closed solution is available, and numerical solu-

tion approaches, cf. [16], heavily suffer from the curse of dimensionality, thus using the

Hamilton-Jacobi-Bellman equation or dynamic programming for modern nonlinear, con-

strained, medium-to-large-scaled applications is essentially prohibitive. Other approaches

like the neighboring extremal control, which is essentially a linear-quadratic regulator

set up in a linearization of a reference solution obtained by offline optimal control, are

computationally tractable and still subject to research [99, 190, 189, 136, 84], but by

construction this approach is valid only in a neighborhood of a specific offline solution.

In this thesis, we focus on the state-of-the-art approach of (nonlinear) model predictive

control ((N)MPC), which is a hybrid approach to calculate feedback control by repeatedly

solving offline optimal control problems on a finite horizon for the current system state

and feeding back the first part of the computed controls to the process. Information

about the real process enter in model predictive control via the current state, which

may or may not be completely available from measurements. To make Model Predictive

Control a practically usable approach, it thus must be complemented by techniques to

obtain an estimate of the current state, i.e. online state estimation. We use in particular

the Moving Horizon Estimation approach, which is closely related to Model Predictive

Control. Model Predictive Control dates back to the 1980s [49, 44, 45] and theory can

nowadays be considered mature, cf. textbooks [91, 156]. Furthermore, linear model

predictive control has seen more and more applications in industry, cf. [153, 154, 155].

However, NMPC is still subject to intense study [79, 135, 138], in particular with regard

to efficient numerical schemes for feedback control computation.

The key to efficient numerics for Model Predictive Control is a combination of efficient

treatment of the arising optimal control problems and exploitation of the specific struc-

ture as a sequence of closely related parametric optimization problems. Early approaches

to numerical optimal control, the so-called indirect methods, applied Pontryagin’s maxi-

mum principle to obtain an expression in states and adjoints for the optimal control and

then solving the boundary value problem for states and adjoints which results from the

first-order necessary conditions for optimality. This approach is elegant and produces

high-accuracy solutions [31, 142, 39], however it has severe drawbacks in practice, since it

requires knowledge in advance of the switching structure of the solution [170], an explicit
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1 Introduction

expression in states and adjoints for the optimal control which has to be derived indi-

vidually for each problem and is often hard to obtain, and the resulting boundary value

problems are in general difficult to solve due to dynamic instability and lack of a-priori

information about the adjoint trajectories.

The modern quasi-standard approaches belong to the direct methods which discretize

the control and state space and thus transform the optimal control problem to possibly

large-scale, structured nonlinear programs (NLP). The approach pursued in this thesis is

the Direct Multiple Shooting method [32, 28], which introduces a partition of the time

horizon, discretizes the control space, e.g., by piecewise constant controls, solves the

dynamic system on each subinterval of the partition, and ensures continuity by adding

matching constraints. For the resulting nonlinear problem we then use sequential quadratic

programming (SQP) [183, 93, 94, 150, 151, 149] to generate the primal-dual iterates. The

main advantages of using Direct Multiple Shooting are the possibility to use state-of-the-

art integrators for adaptivity and derivative evaluation while keeping the problem size

fixed, and the possibility to exploit the block structure in the subproblems to reduce

the problem size to the size of single shooting problems while keeping the excellent local

convergence properties of Multiple Shooting problems. An alternative direct approach

is direct collocation [157, 23, 95, 40, 41, 25], which discretizes states and controls by

lower-order piecewise polynomials and solve the arising large-scale structured nonlinear

program with sequential quadratic programming or an interior point solver. Algorithmic

approaches and theory for the solution of nonlinear programs can be found in detail in

textbooks such as [87, 19, 140, 24].

Efficient numerics for NMPC do, however, comprise more than efficient methods for

offline optimal control. In this thesis, we follow an approach that is central to most mod-

ern numerical schemes for Model Predictive Control. The idea is to set up in advance a

tangential predictor in an approximation of the solution, e.g., the (approximated) solution

of the last subproblem or the predicted solution of the current problem, and make an up-

date by evaluating the tangential predictor as soon as the actual current state is available.

Key factor to this approach is that the expensive calculations to set up the tangential pre-

dictor can be done without knowing the current state and thus the computations can be

performed uncoupled to the sampling of the current state, and that the evaluation of the

tangential predictor is much cheaper and thus leads to minimal feedback delays. In partic-

ular, we base our work on the Real-Time Iteration approach [51, 55, 58, 54, 57, 115, 174]

which sets up the tangential predictor as a quadratic subproblem using the initial value

embedding and thus is able to handle even active set changes within the update, and

reduces the computational work to one SQP iteration per sample. A popular alternative

approach is, e.g., the advanced-step controller and derivatives [192, 191] which applies the

tangential predictor approach to the collocation/interior-point framework. For detailed

reviews on various numerical approaches for real-time optimization using tangential pre-

dictors, including the Real-Time Iterations and the advanced-step controller, see [56] and

more recently [188].

The goal of this thesis is to go beyond and further improve on the Real-Time Itera-
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tion scheme by developing, implementing, and testing the Multi-Level Iteration (MLI)

approach. Preliminary work and work published in the process of making this thesis

comprise [30, 185, 107, 85] for algorithmic descriptions and [186, 187, 106, 3, 129] for ap-

plications of the approach. At the core of the presented approach is a feedback controller

that is given by a generalized tangential predictor. This generalized tangential predictor

consists of a quadratic program (QP), which implicitly defines a piecewise affine linear

feedback law. The feedback law is evaluated by solving the QP for the current state

estimate. The key idea is that since the function and derivative evaluation is the most

expensive part per iteration, the data of the feedback controller, i.e., residual vectors,

gradient, and first and second order derivative matrices, are updated on four different

hierarchically ordered levels. The approach is also motivated by the observation that sys-

tem dynamics and system linearizations have quite different time scales of validity, with

an extreme example given by the linear oscillator with quickly changing trajectories and

constant derivatives. The levels work as follows: the lowest level performs no updates and

just calculates the piecewise affine linear feedback law for a new initial state estimate.

The second level updates the QP constraint functions and approximates the QP gradient.

The third level updates the QP constraint functions and calculates the exact QP gradient.

The fourth level evaluates all matrix and vector data of the QP. Feedback schemes are

then assembled by choosing a level for each sample. This yields a successive update of the

piecewise affine linear feedback law that is implicitly defined by the generalized tangential

predictor.

We present and discuss four strategies for data communication between the levels in a

scheme and we describe how schemes with fixed level choices can be assembled in practice.

We give local convergence theory for each level type holding its own set of primal-dual

variables for fixed initial values [184, 29, 60], and discuss existing convergence theory for

the case of a closed-loop process [58, 54, 57, 174]. We outline a modification of the levels

that yields additional computational savings [85]. For the adaptive choice of the levels

at runtime, we develop two contraction-based criteria to decide whether the currently

used linearization remains valid. The criteria build on work published in [147]. We use

them in an algorithm to decide which level to employ for the next sample. Furthermore,

we propose a criterion applicable to online estimation. The criterion provides additional

information for the level decision for the next sample. Focusing on the second lowest level,

we propose an efficient algorithm for suboptimal NMPC. For the presented algorithmic

approaches, we describe structure exploitation in the form of tailored condensing, outline

the Online Active Set Strategy as an efficient way to solve the quadratic subproblems

and extend the method to linear least-squares problems. We develop iterative matrix-free

methods for one contraction-based criterion, which estimates the spectral radius of the

iteration matrix.

We describe three application fields, namely NMPC on long horizons [106], robust

NMPC [117, 116], and dual NMPC [121, 120], where MLI provides significant computa-

tional savings compared to state-of-the-art numerical methods for NMPC. For both fixed

and adaptive MLI schemes, we carry out extensive numerical testings for challenging non-
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1 Introduction

linear test problems and compare the performance of MLI to a state-of-the-art numerical

method for NMPC. The schemes obtained by adaptive MLI are computationally much

cheaper while showing comparable performance. By construction, the adaptive MLI al-

lows giving feedback with a much higher frequency, which significantly improves controller

performance for the considered test problems. To perform the numerical experiments, we

have implemented the proposed method within a MATLABR© based software called MLI,

which makes use of a software package for the automatic derivative generation of first

and higher order for the solution of the dynamic model as well as objective and constraint

functions [4, 2], which performs structure exploitation by condensing, and which efficiently

solves the parametric quadratic subproblems by using a software package that provides

an implementation of the Online Active Set Strategy [74, 75, 148].

1.1 Contributions

In the following we give a listed summary of the contributions of this thesis.

• A comprehensive presentation of the numerical framework for the solution of opti-

mization problems constrained by differential equations by Direct Multiple Shoot-

ing, including a first-time investigation of details for Direct Multiple Shooting for

DAE-constrained problems concerning issues of uniqueness and smoothness of the

algebraic states.

• A detailed introduction to the idea of tangential predictors and initial value em-

bedding, including a short synopsis of the real-time iteration scheme for Nonlinear

Model Predictive Control and moving horizon estimation.

• Development and investigation of the Multi-Level Iteration schemes, an efficient ap-

proach for high-frequency computation of feedback with four computational models

for the data update in the implicit feedback update law.

• For one computational model development and investigation of two contraction-

based adaptive methods for the decision on matrix data update in the implicit

feedback update law.

• Using the contraction-based decision criteria for matrix data update, proposition

and discussion of an adaptive online real-time feasible level choice algorithm for the

Multi-Level Iteration schemes.

• Development of a criterion for potential model deficiency computed in online esti-

mation and discussion how this information can be used in the adaptive level choice

algorithm.

• Proposition of an adaptive algorithm for suboptimal NMPC making use of cheap

feasibility-improving iterations.
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1.2 Thesis overview

• Numerical efficient specialization of the online active set strategy for the solution of

parametric quadratic programs to parametric linear least-squares problems.

• A new numerical scheme for Dual NMPC with covariance propagation by differential

or difference equations.

• Implementation of the presented approach in the software package MLI and extensive

numerical testing and comparison of fixed and adaptive multi level iteration schemes

on several challenging test applications from chemical engineering, mechanical en-

gineering, and population dynamics.

1.2 Thesis overview

This thesis is structured in three parts: theoretical introduction, development of the new

method, and applications and numerical results.

In Chapter 1 we introduce and formalize the notion of optimization problems con-

strained by differential equations. We then review the Direct Multiple Shooting ap-

proach, which discretizes the infinite-dimensional optimization problem to obtain a finite-

dimensional nonlinear program. We give a brief overview on the theory of nonlinear pro-

gramming and the sequential quadratic programming approach for the numerical solution

of nonlinear programs. Finally, we discuss issues of structure exploitation and derivative

calculation which are characteristic for nonlinear programs arising from a Direct Multiple

Shooting discretization.

In Chapter 2 we motivate the necessity of feedback control and outline classical feedback

approaches which are widely used in modern industrial plants but have severe drawbacks

from a theoretical point of view. As state-of-the-art approach, we present Nonlinear Model

Predictive Control (NMPC) as a numerically tractable and theoretically founded way to

compute feedback which is (nearly) optimal. We briefly touch stability theory for NMPC.

As state-of-the-art approach for online state and parameter estimation we present Moving

Horizon Estimation (MHE), which is in a way the dual problem to NMPC. This concludes

the first part.

We begin the second part in Chapter 3 with a short introduction to a state-of-the-art

numerical method for NMPC which is the starting point for our new approach. First,

we present the ideas of tangential predictors and initial value embedding. From these

ideas we motivate and present the Real-Time Iteration scheme (RTI), which is an efficient

algorithmic approach to real-time optimization and estimation. We state numerical details

and stability results.

In Chapter 4 we present the Multi-Level Iteration schemes (MLI) as a new and efficient

numerical approach for NMPC. We give a short motivation, then describe the different

levels. We discuss how to assemble schemes with fixed level choice and how to exchange

data between the levels. We give local convergence theory for a special case and reference

existing work that applies to a subset of Multi-Level Iteration schemes for the general

case. We close the chapter with a note on mixed-level and fractional-level iterations.
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In Chapter 5 we deal with MLI with adaptive level choice. We start with preliminary

considerations, then we present two approaches for the estimation of the contraction rate,

and formulate and discuss an adaptive level choice algorithm which make use of these

estimates. For the case that an MHE estimator is used, we present a criterion that may

also be used in the decision algorithm for the adaptive level choice. Finally, we outline

a feedback approach which, while not fitting exactly in the MLI approach of this thesis,

makes use of the contraction rate estimates and is motivated by the stability results for

suboptimal NMPC.

In Chapter 6 we consider algorithmic details for several parts of the MLI iterations.

First, we consider efficient numerics for solving a sequence of parametric QPs. We then

give an extension of the presented Online Active Set Strategy for the solution of parametric

linear least-squares problems. Next, we consider a tailored condensing for mixed-level and

fractional-level MLI. Finally, we consider efficient iterative methods for the estimation of

the spectral radius of the MLI iteration matrix. This concludes the second part.

In Chapter 7 we consider several methodological fields of application for the MLI ap-

proach. First, we briefly discuss and point to numerical results for MLI for NMPC on

long horizons. Then, we outline an approach for the calculation of robust feedback, and

introduce a formulation for a dual NMPC problem to avoid the conservatism of the robust

worst-case approach.

In Chapter 8 we present the application of MLI with prescribed level choice to two

numerical test cases, the continuous stirred-tank reactor, and a single-track car model

with nonlinear tire model. In both cases, NMPC is used to reject a disturbance and track

a desired state. We compare the performance of MLI with the established approach of

RTI, investigate MLI for various data communication strategies, and show the advantage

of higher sampling rates for the considered test cases.

In Chapter 9 we apply MLI with adaptive level choice to two test cases: a chain of

masses connected by springs, which is to be brought to rest, and the single-track car

problem from Chapter 8. For the chain application, we discuss numerical results for both

the postiteration approach and the spectral radius estimation approach. For the single-

track car problem, we describe the control scenario and give numerical results for the

postiteration approach.

In Chapter 10 we present numerical results for using the MHE criterion described in

Chapter 5 as an additional tool for MLI with adaptive level choice by postiterations, and

for the application of MLI to solve the problems arising in the Dual NMPC approach. As

test case, we use in both cases the Lotka-Volterra model for the dynamics of a predator-

prey system. This concludes the third part and this thesis. In Chapter 11 we give

conclusions and an outlook to potential future research directions.
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2 Direct Multiple Shooting for optimization

problems constrained by differential

equations

In this chapter we introduce and formalize the notion of optimization problems constrained

by differential equations. We then review the Direct Multiple Shooting approach, which

discretizes the infinite-dimensional optimization problem to obtain a finite-dimensional

nonlinear program. We give a brief overview on the theory of nonlinear programming and

the sequential quadratic programming approach for the numerical solution of nonlinear

programs. Finally, we discuss issues of structure exploitation and derivative calculation

which are characteristic for nonlinear programs arising from a Direct Multiple Shooting

discretization.

2.1 Optimization problems constrained by differential equations

At a fairly abstract level we can consider an optimization problem as a combination of

three basic ingredients: first, a set from which to choose the decision or optimization vari-

ables of the optimization problem, second, an objective function that maps each choice of

the variables into an ordered set and thus allows to compare different choices of variables,

and third, a set of constraint functions which describe the subset of the variable set from

which we allow to choose, the so-called feasible set. It should be noted that the decision

variables can be from both finite-dimensional and infinite-dimensional spaces.

Optimization problems constrained by differential equations are characterized by the

property that the optimization variables can be split into independent variables, which

usually comprise time dependent functions u : T 7→ R
nu called control functions and

finite-dimensional values p ∈ R
np called parameters, and dependent variables, where the

dependency is described by a system of ordinary differential equations (ODE) over a time

interval (or time horizon) T = [ts, tf ]

ẋ(t) = f(t, x(t), u(t), p), (2.1)

with f(·) the model equations or (differential) right-hand side. As solution of the dif-

ferential equations, the dependent variables are functions over time and we call them

(differential) states x : T 7→ R
nx.

If the dependent variables are described by a combination of differential and algebraic
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

equations (DAE), e.g., by the semi-explicit DAE

ẋ(t) = f(t, x(t), z(t), u(t), p) (2.2a)

0 = g(t, x(t), z(t), u(t), p), (2.2b)

with g(·) the algebraic right-hand side, we distinguish between differential states x : T 7→

R
nx and algebraic states z : T 7→ R

nz . Theory concerning existence, uniqueness and

smoothness of the state variables depending on properties of the right-hand sides and

input variables can be found, e.g., in [81, 102] for ODEs and in [89, 119] for DAEs.

Differential equations of the form given in (2.1) are called first-order differential equa-

tions because the right-hand side describes the behavior of the first time derivative of

the solution x(t). Higher-order differential equations can be reformulated as first-order

differential equations as pointed out in the following remark and thus can also be treated

by the presented approach.

Remark 2.1 (Reformulation of higher-order differential equations). Dynamic process

models formulated as higher-order differential equations, i.e., using the common shorthand

notation of x(k)(t) , dkx
dtk

(t),

x(n)(t) = f(t, x(t), . . . , x(n−1)(t), u(t), p), t ∈ T = [ts, tf ], (2.3)

can be reformulated in the form of (2.1) by introducing the augmented state

y(t) ,




x1(t)
...

xn(t)


 ,




x(t)
...

x(n−1)(t)


 (2.4)

and the augmented right hand side

f̃(t, y(t), u(t), p) ,




x2(t)
...

xn(t)

f(t, x1(t), . . . , xn(t), u(t), p)



. (2.5)

As an example, consider the simple pendulum with friction ( ẍ(t) , d2x
dt2

(t))

ẍ(t) = −b ẋ(t)− k x(t), with constants b, k > 0. (2.6)

Then, with the augmented state y(t)

y(t) ,

(
x1(t)

x2(t)

)
,

(
x(t)

ẋ(t)

)

we obtain from (2.6) the first-order model

ẏ(t) =

(
ẋ1(t)

ẋ2(t)

)
=

(
x2(t)

−b x2(t)− k x1(t)

)
.

In the following we give example classes of optimization problems constrained by dif-

ferential equations and introduce the formal notation.
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2.1 Optimization problems constrained by differential equations

2.1.1 Optimal control problems

In the optimal control problem (OCP)

minimize
x(·),z(·),u(·),p,tf

∫ tf

ts

l(t, x(t), z(t), u(t), p) dt+m(x(tf), z(tf ), p, tf)

subject to ẋ(t) = f(t, x(t), z(t), u(t), p),

0 = g(t, x(t), z(t), u(t), p),

0 ≤ cpath(t, x(t), z(t), u(t), p),

0 = re(x(ts), z(ts), x(tf), z(tf)),

0 ≤ ri(x(ts), z(ts), x(tf), z(tf )),

(2.7)

the optimization variables are the differential and algebraic states x(t) and z(t), the control

profiles u(t), the parameter values p, and possibly the final time tf . The latter can be

regarded as an additional parameter, see also the brief discussion on transformations of

the problem formulation given below.

The objective function consists of up to two parts, one part that integrates a cost func-

tion l(·) depending on time, states, controls, and parameters over the whole optimization

horizon and another part that assigns a cost m(·) particularly in the end point tf , depend-

ing on the end states, the parameters, and the end time. The former part is referred to

as Lagrange term and is used to value accumulated time-variable costs, e.g., deviation of

the trajectory from a given set-point or overall fuel/energy/mass consumption, while the

latter part is called Mayer term and is used to value costs arising only in the end point,

e.g., end time or final position/velocity. The combination of the two types of objectives

is called a Bolza objective. However, these two different objective types exist rather for

convenience in the problem formulation since they can easily be transformed into each

other, see also the brief discussion on transformations of the problem formulation given

below.

The path constraint function cpath(·) describes a functional dependence of states, con-

trols, and parameters that has to satisfy the path constraint 0 ≤ cpath(·) for each time

point of the time interval T , which amounts to infinitely many constraints. The path

constraints can be as simple as fixed bounds on states and controls but also be more com-

plex and possibly nonlinear functions such as a safety function for an exothermic chemical

reaction.

The boundary conditions re(·) allow to fix some or all components of the states to given

values either at the start point ts or at the end point tf . If the states are completely fixed

only at ts, we say that the differential equations have to satisfy an initial value problem

(IVP).

The point constraints ri(·) allow to restrict the initial and end states to a certain feasible

region. This can be used, e.g., to restrict final positions or velocities to a certain range.

Furthermore, end time constraints play an important role in stability theory for optimizing

feedback control, see Chapter 3.

Note that for an efficient structure exploitation in the numerical framework that is
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

used in this work we have to demand that both the boundary conditions and the point

constraints are either decoupled or at most linearly coupled. This ensures partial sep-

arability of the discretized problem. In practice, most often the formulated boundary

conditions and point constraints already satisfy this demand, e.g., decoupled conditions

for (x(ts), z(ts)) and (x(tf), z(tf )), or linear coupling in periodicity constraints. For the

general case of nonlinear couplings there exist reformulations to transform the problem to

an equivalent problem with linearly coupled boundary conditions and point constraints.

In the following we always assume that the boundary conditions and point constraints are

at most linearly coupled.

2.1.2 Estimation problems

Another class are the parameter estimation problems (PEP)

minimize
x(·),z(·),p

M∑

j=0

∥∥∥∥
h(tj , x(tj), z(tj), p)− ηj

σj

∥∥∥∥
2

2

subject to ẋ(t) = f(t, x(t), z(t), ū(t), p),

0 = g(t, x(t), z(t), ū(t), p),

0 = re(x(ts), z(ts), x(tf), z(tf )),

(2.8)

where we have measurement data ηj that is subject to statistical measurement errors.

We try to reconstruct differential and algebraic states x(t) and z(t) and parameter values

p by minimizing the normalized squared deviation of the measurement data to a model

function h(·) of the measurement process. Doing this we assume that there exist “true”

parameters p⋆ and states x⋆, z⋆ so that h(tj , x
⋆(tj), z

⋆(tj), p
⋆)−ηj is distributed with mean

value zero and standard deviation σj. For this problem, the controls ū are assumed to be

known and are not subject to optimization. The given formulation performs maximum-

likelihood estimation and is an example of least-squares (LS) optimization. For background

on estimation theory and practice see. e.g., [12, 13, 175]. Some details specific for the

problems we consider will also be given in Chapter 3.

2.1.3 Problem reformulations

We consider several problem transformations which allow us to restrict our work to prob-

lems with significantly simplified structure compared with OCP (2.7) or PEP (2.8) without

loss of generality (w.l.o.g.). The presented transformations as well as further transforma-

tions can be found, e.g., in [86].

Transformation to fixed end time

To transform a problem with free end time tf to a problem with fixed end time we extend

the parameters p by an additional parameter pt , (tf − ts) and introduce a new time
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2.1 Optimization problems constrained by differential equations

variable τ and transformed states and controls by

t(τ) , ts + τpt, τ ∈ [0, 1],

x̄(τ) = x(t(τ)) , x(ts + τpt),

z̄(τ) = z(t(τ)) , z(ts + τpt),

ū(τ) = u(t(τ)) , u(ts + τpt).

Then we obtain

d

dτ
x̄(τ) = ẋ(t(τ)) ·

dt(τ)

dτ
= pt · f(t(τ), x(t(τ)), z(t(τ)), u(t(τ)), p),

, f̄(t(τ), x̄(τ), z̄(τ), ū(τ), p̄),

with p̄ , (p, pt). This allows us to assume w.l.o.g. that the time horizon T is fixed.

Transformation to autonomous problem

If the functions l(·),m(·), f(·), g(·), and h(·) in OCP (2.7) do not depend explicitly on t

we call the problem autonomous, otherwise non-autonomous. To eliminate the explicit

dependence on t, we introduce an additional differential state xt with

ẋt = 1, xt(ts) = ts. (2.9)

Then we can replace t by xt(t) and tf by xt(tf) everywhere in OCP (2.7). Of course we can

analogously transform PEP (2.8). Thus, w.l.o.g. we can restrict ourselves to autonomous

problems.

Transformation to pure Mayer objective

The Lagrange objective can be transformed into a Mayer objective by adding a differential

state xl with

ẋl = l(t, x(t), z(t), u(t), p), xl(ts) = 0. (2.10)

Then we obtain the new Mayer objective

m̄(x̄(tf), z(tf), p, tf) , m(x(tf), z(tf ), p, tf) + xl(tf)

with x̄(tf) , (x(tf), xl(tf)). Thus, w.l.o.g. we can restrict ourselves to problems with pure

Mayer objective.

Elimination of parameters

We can eliminate the parameters p from OCP (2.7) or PEP (2.8) by introducing new

differential states xp with

ẋp = 0, xp(ts) = p. (2.11)
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

Then we replace each occurrence of p by xp. Parameters that are to be determined by

optimization are thus transformed into free initial conditions. This transformation allows

us to restrict ourselves w.l.o.g. to problems without parameters.

Altogether, the presented transformations allow us to restrict our investigations w.l.o.g.

to the OCP problem formulation

minimize
x(·),z(·),u(·)

∫ ⊺

0
l(x(t), z(t), u(t)) dt+m(x(T ), z(T ))

subject to ẋ(t) = f(x(t), z(t), u(t)),

0 = g(x(t), z(t), u(t)),

0 ≤ cpath(x(t), z(t), u(t)),

0 = re(x(0), z(0), x(T ), z(T )),

0 ≤ ri(x(0), z(0), x(T ), z(T )),

(2.12)

with a fixed horizon length T . Occasionally, we keep the parameters p in the prob-

lem formulation, but we assume them to have known constant values and not enter the

optimization problem as degrees of freedom. We also frequently make use of the transfor-

mation to a pure Mayer objective formulation. For the estimation problem we keep the

parameters as degrees of freedom where suitable, and we also assume the problem to be

autonomous and formulated on a fixed horizon [0, T ].

Example 1 (Continuous stirred-tank reactor (CSTR)).

To illustrate the introduced terms and definitions let us consider the following example

of an optimal control problem for a chemical process, the so-called van der Vusse reaction.

The process model has been introduced by Klatt and Engell [64] and formulated as a

benchmark example for Nonlinear Model Predictive Control by Chen and coworkers [43,

42]. In this reaction, a substance A reacts to a substance B and two unwanted by-products

C and D in the following way

A
k1−→ B

k2−→ C

2A
k3−→ D.

The reaction takes place in a well-stirred reactor which allows to neglect spatial con-

centration and temperature variations. The reactor has a feed inflow which contains only

substance A at a concentration cA,0 and a temperature θ0. The feed flow rate V̇ can

be controlled. To keep the liquid tank volume constant, the outflow, which contains the

substances A, B, C, and D with concentrations cA, cB, cC, and cD, is kept at the same rate

as the inflow.

A major source of nonlinearity of the process comes from the reaction rates ki, which

depend on the reactor temperature θ by the Arrhenius law

ki(θ) = ki,0 exp

(
Ei

273.15 + θ

)
, i = 1, 2, 3.
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2.1 Optimization problems constrained by differential equations

Because the reaction is exothermic, cooling is a crucial issue. It is done by a cooling

jacket with controlled heat removal rate Q̇K. Thus, the reactor temperature is held down

indirectly by controlling the cooling jacket temperature θK. A schematic display of the

process is given in Figure 2.1.

Figure 2.1: Schematic diagram of the CSTR (from [43])

The model equations for the concentrations cA and cB as well as the temperatures θ and

θK are given below. Note that the model does not contain the concentrations cC and cD
of the unwanted substances C and D. However, the influence of the respective reactions

on the concentrations cA and cB and the temperature θ is of course included in the model.

The parameter values in the model equations are given in Table 2.1.

ċA =
V̇

VR
(cA,0 − cA)− k1(θ)cA − k3(θ)c

2
A (2.13a)

ċB = −
V̇

VR
cB + k1(θ)cA − k2(θ)cB (2.13b)

θ̇ =
V̇

VR
(θ0 − θ)−

1

ρCp

(
k1(θ)H1cA + k2(θ)H2cB + k3(θ)H3c

2
A

)
(2.13c)

+
kwAR

ρCpVR
(θK − θ)

θ̇K =
1

mKCPK

(
Q̇K + kwAR (θ − θK)

)
(2.13d)

In relation to the notions introduced earlier in this section, the dependent variables in

this example are the differential states x = (cA, cB, θ, θK), and the independent variables

are the controls u =
(

V̇
VR
, Q̇K

)
. The differential equations (2.13) can then be summarized

as ẋ = f(x, u) as in OCP (2.12) and they describe the dependence of x from u.
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

Symbol Value Symbol Value

k1,0 1.287 · 1012 h−1 ρ 0.9342 kg
l

k2,0 1.287 · 1012 h−1 Cp 3.01 kJ
kgK

k3,0 9.043 · 109 h−1 kw 4032 kJ
hm2 K

E1 −9758.3 AR 0.215 m2

E2 −9758.3 VR 10 l

E3 −8560 mk 5 kg

H1 4.2 kJ
mol CPK 2.0 kJ

kg K

H2 −11.0 kJ
mol cA,0 5.1 mol

l

H3 −41.85 kJ
mol θ0 104.9 ◦C

Table 2.1: Constant CSTR parameter values

The distinction between constants and parameters is not always unambiguous and may

depend on the goal of the optimization. In the example, many of the parameters are of

physical nature and thus are true constants. However, the parameters AR, VR, and mk are

chosen by design of the reactor and thus could in principle be included in the optimization.

Optimization problems which consider such choices are referred to as design optimization.

In the example, however, we consider the reactor as given and thus the parameters AR, VR,

and mk as constant.

The other parameters that are no physical constants are the feed concentration and

temperature cA,0 and θ0. They are chosen by the experimenter and may also change

values intentionally or unintentionally during the process. In the example, we do not

include these parameters as optimization variables, but we consider scenarios where their

values change.

To obtain the differential states x uniquely from the controls u, we also need the bound-

ary conditions 0 = re(·). In the example, we consider initial conditions of the form

0 = x(0) − x0

with given current state x0.

The objective function reflects the overall goal of the optimization. In this example,

we desire to steer the process quickly to a steady state, i.e., a state xs corresponding to

controls us with

f(xs, us) = 0.

This means, if the process is in the state xs and we apply the controls us, then the process

will stay in xs forever. Obviously, there may be infinitely many steady states. We choose
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2.2 Numerical approaches for solving OCPs

the following

xs =




2.1402 mol
l

1.0903 mol
l

114.19 ◦C

112.91 ◦C


 , and us =

(
14.19 h−1

−1113.5 kJ
h

)
,

which optimizes the ratio of the steady state concentration of the product B to the feed

concentration of the educt A. A suitable objective function to steer the process to (xs, us)

is then given by the quadratic Lagrange term

l(x, u) = (x− xs)
⊺Q (x− xs) + (u− us)

⊺R (u− us)

with weighting matrices Q and R, chosen as

Q = diag

(
0.2

l2

mol2
, 1.0

l2

mol2
, 0.5 ◦C−2, 0.2 ◦C−2

)

and

R = diag

(
0.5 h2, 5.0 · 10−7 h2

kJ2

)
.

As a typical example for the path constraints 0 ≤ cpath(·) we require simple bounds on

the controls, i.e.,

0 ≤

(
u(t)− u

u− u(t)

)
, t ∈ [0, T ],

with

u =

(
3.0 h−1

−9000 kJ
h

)
and u =

(
35.0 h−1

0 kJ
h

)
.

This completes the description of the optimal control problem in the formulation of OCP

(2.12). We will come back to this problem in Chapter 9 to illustrate the algorithmic

approaches developed in this thesis.

2.2 Numerical approaches for solving OCPs

Numerical approaches to solve OCPs can be divided mainly into direct and indirect meth-

ods. Most direct methods follow the “first discretize, then optimize” approach, which

means that the infinite-dimensional problem is transformed to a finite-dimensional non-

linear program (NLP) by discretization and then the NLP is solved by iterative methods

such as sequential quadratic programming (SQP) or Newton’s method. The term “direct”

refers to the fact that in these methods the control variables are kept in the formulation as

decision variables. In contrast, the indirect methods use the optimality conditions of the

infinite-dimensional problem to eliminate the control variables in terms of state variables

and adjoint state variables and so come up with a boundary value problem which is then

solved numerically.

We will give details of the Direct Multiple Shooting method, see also [32, 143, 126, 127]

which is our method of choice for treating differentially constrained optimization problems

and mention briefly different other direct and indirect methods.
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

2.2.1 Direct Multiple Shooting

We start by partitioning the horizon [0, T ] into N subintervals [ti, ti+1], 0 ≤ i < N .

Control functions are discretized as

u(t) = ϕi(t, qi) for t ∈ [ti, ti+1], (2.14)

where ϕi(·) are functions with local support parametrized by the finite dimensional vector

qi. Typical examples for ϕi(·) are piecewise constant controls or piecewise linear controls.

We introduce additional variables sxi , s
z
i which serve as initial values for computing the

state trajectories independently on the subintervals [ti, ti+1]:

ẋi(t) = f(xi(t), zi(t), ϕi(t, qi)) (2.15a)

0 = g(xi(t), zi(t), ϕi(t, qi))− αi(t)g(s
x
i , s

z
i , ϕi(ti, qi)), (2.15b)

with xi(ti) = sxi and zi(ti) = szi . We use this relaxed formulation in (2.15b) to allow arbi-

trary initial values sxi , s
z
i , which do not have to be consistent with the algebraic equations.

A common choice for the scalar damping factor αi(t) is αi(t) = exp
(
−ᾱ t−ti

ti+1−ti

)
, ᾱ ≥ 0.

To ensure that we compute a feasible solution of the differential equation on the whole

interval [ts, tf ] we have to add matching conditions

0 = sxi+1 − xi(ti+1; s
x
i , s

z
i , qi), 0 ≤ i < N (2.16)

to the optimization problem, where xi(t; s
x
i , s

z
i , qi) is the solution of the IVP on [ti, ti+1],

depending on sxi , s
z
i , qi. Furthermore, we have to add consistency conditions

0 = g(sxi , s
z
i , ϕi(ti, qi)), 0 ≤ i ≤ N, (2.17)

with qN , qN−1, which guarantee that we solve the original differential equation in

the solution of the optimization problem. This approach of solving the boundary value

problem along with the optimization problem is referred to as simultaneous approach in

contrast to sequential approaches such as Direct Single Shooting, see below.

The path constraints are discretized in the time points ti, i.e., we require

0 ≤ cpath(sxi , s
z
i , ϕi(ti, qi)), i = 0, . . . , N (2.18)

to hold, again with qN , qN−1. This may allow for the violation of the path constraints

within the Multiple Shooting intervals but bounds on piecewise constant controls are

strictly enforced. Furthermore, techniques for ensuring feasibility for each t ∈ T are

available, cf. [125, 145, 146].

To sum up, from the Multiple Shooting discretization we obtain the NLP

minimize
sx,sz,q

∑N−1

i=0
L (sxi , s

z
i , qi) +m (sxN , s

z
N ) (2.19a)

subject to 0 = sxi+1 − xi(ti+1; s
x
i , s

z
i , qi), 0 ≤ i < N, (2.19b)

0 = g(sxi , s
z
i , ϕi(ti, qi)), 0 ≤ i ≤ N, (2.19c)

0 ≤ cpath(sxi , s
z
i , ϕi(ti, qi)), 0 ≤ i ≤ N, (2.19d)

0 = re(s
x
0 , s

z
0, s

x
N , s

z
N ), (2.19e)

0 ≤ ri(s
x
0 , s

z
0, s

x
N , s

z
N ). (2.19f)
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2.2 Numerical approaches for solving OCPs

with sx = (sx0 , . . . , s
x
N ), sz = (sz0, . . . , s

z
N ), and q = (q0, . . . , qN−1), qN , qN−1 and

L (sxi , s
z
i , qi) ,

∫ ti+1

ti

l(xi(t; s
x
i , s

z
i , qi), zi(t; s

x
i , s

z
i , qi), ϕi(t, qi)) dt.

Note that in NLP (2.19) the computationally most expensive parts are the objective

terms L (sxi , s
z
i , qi) and the matching condition terms xi(t; s

x
i , s

z
i , qi) since they involve the

solution of the dynamic equations.

2.2.2 A remark on DAE problems

Under the assumption of index-1 of DAE (2.2), i.e., invertibility of ∂g
∂z (·), an efficient Direct

Multiple Shooting approach for optimal control problems constrained by DAEs has been

developed by Leineweber [125, 126, 127] and coworkers. It is based on the elimination of

the algebraic states using the consistency conditions (2.17) and the efficient evaluation of

the derivatives of the reduced problem by directional sensitivity calculations.

Some points have to be considered for a correct interpretation of the results when solving

DAE-constrained problems by the Multiple Shooting approach. First, if the algebraic

equations depend explicitly on the controls, the arising consistency conditions introduce

a dependence of szN from the point value ϕN (tN , qN ) which is somewhat arbitrary due to

the arbitrary nature of the artificial control parameters qN . This is particularly critical

if the objective explicitly depends on szN . The practical remedy is the above described

convention of constraining qN to the value of qN−1 but note that in theory the value of

qN should not influence the solution of the optimization problem at all since it represents

control action beyond the interval T . However, if the algebraic equations are index-1

and depend affine-linearly on z, i.e., if g(x, z, u) = A(x, u)z + g̃(x, u), we can show the

following useful result.

Proposition 2.1. For the index-1 DAE affine-linear in z(t)

ẋ(t) = f(x(t), z(t), u(t)) (2.20a)

0 = A(x(t), u(t)) · z(t) + g(x(t), u(t)) (2.20b)

consider a Multiple Shooting discretization with grid {t0, . . . , tN} and a piecewise constant

control discretization (2.14) with ϕi(t, qi) , qi. Let

sx⋆ = (sx⋆0 , . . . , s
x⋆
N ) , sz⋆ =

(
sz⋆0 , . . . , s

z⋆
N−1

)
, q⋆ =

(
q⋆0, . . . , q

⋆
N−1

)

be a Multiple Shooting solution satisfying the matching conditions (2.16) and the consis-

tency conditions (2.17) for i = 0, . . . , N − 1.

Then, by choosing q⋆N , q⋆N−1 and sz⋆N such that the consistency conditions (2.17) are

also satisfied for i = N one obtains

z(tN ; sx⋆N−1, s
z⋆
N−1, q

⋆
N−1) = sz⋆N ,

i.e., the algebraic node value sz⋆N is the continuous continuation of the DAE solution on

the last interval [tN−1, tN ] for the initial values sx⋆N−1, s
z⋆
N−1, q

⋆
N−1.
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

Proof. As the algebraic solution of (2.20) z(t; sx⋆N−1, s
z⋆
N−1, q

⋆
N−1) satisfies for t = tN the

condition

0 = A(x(tN ; sx⋆N−1, s
z⋆
N−1, q

⋆
N−1), q

⋆
N−1) · z(tN ; sx⋆N−1, s

z⋆
N−1, q

⋆
N−1)

+ g(x(tN ; sx⋆N−1, s
z⋆
N−1, q

⋆
N−1), q

⋆
N−1).

Since sx⋆, sz⋆, q⋆ satisfy the matching conditions, we obtain

0 = A(sx⋆N , q
⋆
N−1) · z(tN ; sx⋆N−1, s

z⋆
N−1, q

⋆
N−1) + g(sx⋆N , q

⋆
N−1).

Furthermore, sx⋆N , s
z⋆
N , q

⋆
N satisfy the consistency condition by choice, hence

0 = A(sx⋆N , q
⋆
N ) · sz⋆N + g(sx⋆N , q

⋆
N ).

The choice q⋆N , q⋆N−1 together with the invertibility of A(sx⋆N , q
⋆
N−1) due to the index-1

assumption then completes the proof. �

In the general nonlinear case this is not necessarily true, see the discussion below.

However, many DAEs in real-world applications have affine-linear algebraic equations,

usually not even depending on the controls and thus leading to continuous algebraic

states.

Second, if the algebraic equations depend explicitly on the controls, the algebraic states

in the solution will in general not be smooth. Rather, the algebraic states inherit their

smoothness properties from the controls. This is due to the (local) description of the

algebraic states as function of the differential states and the controls by the implicit

function theorem. To illustrate this, consider the following example DAE describing the

motion of a point fixed on the unit circle

ẋ = uAx+ zx,

0 = x⊺x− 1,

with x ∈ R
2, u, z ∈ R, and A ∈ R

2×2 a given matrix. After an index reduction step

(differentiation of the algebraic equation w.r.t. t) we obtain

ẋ = uAx+ zx, (2.21a)

0 = u (x⊺Ax) + z (x⊺x) , (2.21b)

which is an index-1 DAE where the algebraic equation yields the relation

z = − u
x⊺Ax

x⊺x
.

Thus, the smoothness of z will be determined by the smoothness of u, which in turn

depends on the chosen discretization. So while we use the same notion of “states” for both

differential and algebraic states, we should be aware that they may exhibit quite different

smoothness behavior. This effect is depicted in Figure 2.2 for a time optimal control of

22
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(a) Intermediate iterate with piecewise constant

controls

(b) Intermediate iterate with continuous piecewise

linear controls

(c) Optimal solution for both control discretizations

Figure 2.2: Time optimal control of DAE (2.21). The intermediate iterates (upper row) are both

feasible but slightly suboptimal. For the piecewise control discretization (upper left) the algebraic

states jump where the control discretization jumps. For the continuous piecewise linear control dis-

cretization (upper right) no jumps appear in the algebraic variables. In the solution (lower row) the

controls are globally smooth and so are the algebraic and differential states. The iterates and the

solution were obtained with the Direct Multiple Shooting software MUSCOD-II [126, 127].

DAE (2.21), where the differential states have to be transferred from x(0) = (0,−1)⊺ to

x(T ) = (1, 0)⊺ subject to control bounds |u| ≤ 1.

Third, uniqueness of the algebraic states cannot be guaranteed even in the index-1

case, since the consistency conditions (2.17) may have more than one solution if they are

nonlinear. This means, that depending on the initialization of the values sxi , s
z
i , qi we may

end up with different but still consistent solutions to the DAE. Particularly, we cannot

expect that the DAE solution obtained by the Direct Multiple Shooting method coincides

with the solution of the forward problem if the same obtained controls are applied. This

is due to the fact that the algebraic states may possibly switch to another solution branch
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

at each Multiple Shooting node. To illustrate this, consider the DAE

ẋ = uz2, (2.22a)

0 = z2 − x, (2.22b)

with x, z, u ∈ R which is index-1 for z 6= 0. If we maximize x(T ) subject to |u| ≤ 1 and

x(0) = x0 > 0, the optimal control is clearly u⋆ ≡ 1. A forward simulation with u⋆ gives

x(t) = x0 exp(t) and either z(t) =
√
x(t) or z(t) = −

√
x(t) depending on the choice of the

consistent initial value of z for x0. The solution of a Direct Multiple Shooting algorithm

depends strongly on the initialization of the algebraic values szi , as depicted in Figure 2.3.

Figure 2.3: Optimal control of DAE (2.22) by Direct Multiple Shooting. The algebraic node values

szi were initialized with alternating sign. The solution was obtained with the Direct Multiple Shoot-

ing software MUSCOD-II [126, 127].

It should be stressed again, that the solutions obtained by Direct Multiple Shooting are

perfectly valid, but may appear counterintuitive at some occasions. The discussion above

aims at helping to interpret the results correctly in these cases.

The methodology developed in this thesis applies to optimization problems constrained

both by ODEs and DAEs with index-1. For the sake of clarity of exposition we will in

general not consider DAE constrained problems in the following. However, we will of

course mention details specific to DAE constrained optimization problems if necessary.

2.2.3 Other direct approaches

Direct Single Shooting

In Direct Single Shooting, also known as the sequential approach, no additional inter-

mediate starting values sxi , s
z
i with i = 1, . . . , N are introduced. Instead, the states are

eliminated from the problem by solving the differential equation over the whole horizon

[0, T ]. Thus, the degrees of freedom are only the control parametrization variables q and
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possibly the initial state (sx0 , s
z
0). The inequalities are required to hold on a chosen time

grid, on which the states are evaluated by integration.

Direct Single Shooting is a conceptually simple and appealing approach to solve OCPs,

however, it comes with several drawbacks. For example, it may be impossible to integrate

over the whole time horizon due to singularities, particularly for highly nonlinear or

unstable dynamical systems. Furthermore, even if integration over the whole interval is

possible, one usually has to provide good initial values to ensure convergence to a solution.

The Direct Single Shooting method is described in, e.g., [163].

Direct Collocation

In Direct Collocation, the state and control trajectories are discretized on a fine grid of

collocation points and represented by piecewise polynomial ansatzfunctions between the

grid points. The differential equations are then required to hold for the polynomials in the

grid points and thus yield the collocation conditions for the coefficients of the polynomials.

The constraints are required to hold in the collocation points.

This approach gives rise to high-dimensional, highly structured NLPs which can be

solved efficiently by both interior-point methods and sequential quadratic programming.

It is well suited for nonlinear and unstable problems. A drawback is the fact that grid

adaption for control of the approximation error may lead to changes in the problem

dimensions during the solution process. The Direct Collocation method is described, e.g.,

in the textbook [24]. A popular state-of-the-art interior point solver used regularly for

Direct Collocation is implemented in the software IPOPT, cf. [180].

2.2.4 Indirect approaches

Dynamic Programming and the Hamilton-Jacobi-Bellman equation

A central result in optimal control theory is Bellman’s principle of optimality of subarcs

which states that if one divides the control horizon in two subintervals, the optimal control

on the second subinterval is still optimal for the restriction of the OCP to the second

subinterval, provided that the initial states for the restriction are chosen by applying

the optimal control on the first subinterval to the original initial states. Using this, one

can derive a partial differential equation (PDE) for the value function which is closely

connected to the objective function. This PDE is called the Hamilton-Jacobi-Bellman

(HJB) equation and its solution yields not only the solution of the OCP but also the

whole extremal field over all initial values which allows feedback control. However, for

most problems the HJB equation is computationally intractable, so this approach is of

limited use for practical application.

Dynamic Programming is the discrete-time counterpart of the HJB equation for the

case of a discrete-time dynamical system. Bellman’s principle then allows to construct

the solution going backwards step by step. While still computationally highly expensive

for the general case, it is a much more practical approach to calculate feedback controls

25
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than the HJB equation. An excellent introduction to Dynamic Programming and the

HJB equation is provided by [18].

Maximum Principle

From the HJB equation which provides a sufficient condition for the optimal solution of

an OCP one can also derive necessary optimality conditions. Provided one has an optimal

control and a corresponding optimal state trajectory, the optimal control has to fulfill a

certain condition, point-wise minimizing a suitable help function called Hamiltonian. This

gives rise to a numerical approach for solving OCPs, namely, eliminating the control in

favor of the states and adjoint states via the minimization condition. This results in a

boundary value problem for the states and adjoint states, which can be solved numerically

to obtain candidate solutions for the OCP.

The advantage of this approach is that one obtains theoretical solutions of the optimal

control problem (the direct approaches optimize on a pre-chosen subspace of the controls

and thus are usually suboptimal) and thus numerical solutions can be computed with

very high accuracy. This is sometimes crucial, for example in long-term spaceflight plan-

ning. On the downside, the elimination of the control by optimizing the Hamiltonian

can be quite difficult. In particular, the presence of constraints may lead to a piecewise

description of the optimal control which in turn leads to a boundary value problem with

switching, which is a challenging problem class for itself. Since the switching structure has

to be known in advance, one often uses a direct method as a first step to determine the

switching structure and only then solves the boundary value problem from the maximum

principle approach. Furthermore, the boundary value problem itself is usually difficult to

solve due to nonlinearity and stability issues.

The Maximum Principle approach is well established and extensively described in, e.g.,

[38, 171, 18].

2.3 Basic theory of nonlinear programming

We can write the NLP (2.19) obtained by Direct Multiple Shooting generically as

minimize
w

b(w)

subject to c(w) = 0

d(w) ≥ 0

(2.24)

where the optimization variable w ∈ R
n comprises the states sx and sz, the control

parameters q, and the parameters p and b : Rn 7→ R, c = (c1, . . . , cl) : Rn 7→ R
l, and

d = (d1, . . . , dm) : Rn 7→ R
m are the objective function, the equality constraints and the

inequality constraints, respectively.

Before we consider more closely how to solve NLP (2.24) let us begin by defining what

a solution of an NLP is.
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2.3 Basic theory of nonlinear programming

Definition 2.1 (Feasibility and Optimality).

1. A point ŵ ∈ R
n is called feasible if c(ŵ) = 0 and d(ŵ) ≥ 0. We then say that the

constraints are satisfied at ŵ. Otherwise the point ŵ is called infeasible and we say

that the constraints are violated at ŵ.

2. The point w⋆ is a local minimizer (or local solution) of problem (2.24) if w⋆ is

feasible and if there exists a neighborhood N (w⋆) such that

b(w⋆) ≤ b(w) for all feasible w ∈ N (w⋆) (2.25)

If inequality (2.25) is strict for all feasible w ∈ N (w⋆), w 6= w⋆ we call w⋆ a strong

or strict local minimizer. Otherwise we call w⋆ a weak local minimizer. If there

exists a neighborhood of w⋆ so that w⋆ is the only local solution in that neighborhood

we call w⋆ an isolated local minimizer.

At each feasible point, a part of the inequalities may be satisfied as equalities. We

define:

Definition 2.2 (Active Constraints and Active Set).

1. The constraint dj(w) ≥ 0 is said to be active at ŵ if dj(ŵ) = 0. If dj(ŵ) > 0 then

the constraint is said to be inactive at ŵ.

2. For a feasible ŵ ∈ R
n the set A(ŵ) , {j|dj(ŵ) = 0} is called the active set at ŵ.

To decide if a point w⋆ is a local solution of problem (2.24) we have to compare its

objective function value f(w⋆) with the objective function values of feasible points in its

neighborhood, according to inequality (2.25). Due to in general nonlinear constraints fea-

sibility can often be retained only on nonlinear paths in R
n, called feasible arcs. A (contin-

uously differentiable) arc is a directed (continuously differentiable) curve α : [0, ǫ] 7→ R
n,

where ǫ > 0. To ensure the existence of such a feasible arc one has to impose additional

conditions, so called constraint qualifications. We state one of several possible definitions

(cf. [78]).

Definition 2.3 (Kuhn-Tucker Constraint Qualification).

The Kuhn-Tucker constraint qualification (KTCQ) with respect to the equality constraints

c(w) = 0 and the inequality constraints d(w) ≥ 0 holds at the feasible point ŵ if every

vector y ∈ R
n satisfying

∇ci(ŵ)
⊺ y = 0, i = 1, . . . , l,

∇dj(ŵ)
⊺ y ≥ 0, j ∈ A(ŵ),

is tangent to a continuously differentiable arc α emanating from ŵ and contained in the

feasible region.

27



2 Direct Multiple Shooting for optimization problems constrained by differential equations

There are feasible points where the KTCQ does not hold, Kuhn and Tucker give a

simple example in [118]. For a review on various constraint qualifications including the

KTCQ and their relations see, e.g., [108].

For linear constraints the KTQC always holds, which is an important observation since

in the later discussed SQP method for solving (2.24) we consider linearized constraints

in each iteration step. Unfortunately, for nonlinear constraints the KTCQ is almost

impossible to test in practice. A sufficient condition which can be computationally verified

is the following.

Definition 2.4 (Linear Independence Constraint Qualification).

The Linear Independence Constraint Qualification (LICQ) holds at ŵ, if ∇ci(ŵ), i =

1, . . . , l and ∇dj(ŵ), j ∈ A(ŵ) are linearly independent. If ŵ is also feasible we call

it a regular point.

For a constructive proof of sufficiency see [78]. Furthermore, the LICQ are the weakest

constraint qualification that ensures both the existence and uniqueness of Lagrange mul-

tipliers, see [179]. In the following, let ∇c(w⋆) ,
(
dc
dw (w

⋆)
)⊺

and ∇d(w⋆) ,
(
dd
dw (w

⋆)
)⊺
.

We now state first order necessary conditions for a local solution of problem (2.24).

Theorem 2.2 (Karush-Kuhn-Tucker Necessary Conditions).

Assume that the Kuhn-Tucker constraint qualification holds at w⋆ ∈ R
n. If w⋆ is a local

minimizer of (2.24) then there exist multipliers λ⋆ ∈ R
l and µ⋆ ∈ R

m so that (w⋆, λ⋆, µ⋆)

satisfy the following set of conditions

∇wb(w
⋆)−∇c(w⋆)λ⋆ −∇d(w⋆)µ⋆ = 0, (2.26a)

c(w⋆) = 0, (2.26b)

d(w⋆) ≥ 0, (2.26c)

µ⋆ ≥ 0, (2.26d)

µ⋆j dj(w
⋆) = 0, j = 1, . . . ,m. (2.26e)

The conditions given above are known as Karush-Kuhn-Tucker (KKT) conditions and a

tuple (w⋆, λ⋆, µ⋆) satisfying these conditions is called a KKT point or stationary point.

A proof of Theorem 2.2 can be found in any textbook on optimization, see for example

[78, 140]. Equation (2.26a) can also be rewritten as ∇wL(w
⋆, λ⋆, µ⋆) = 0 with

L(w, λ, µ) , b(w)− λ⊺ c(w)− µ⊺ d(w) (2.27)

= b(w)−
l∑

i=1

λi ci(w)−
m∑

j=1

µj dj(w)

being called the Lagrange function and λ ∈ R
l and µ ∈ R

m being called the Lagrange

multipliers.

Let us define the following disjunctive decomposition of the active set at a local mini-

mizer w⋆ with corresponding multipliers (λ⋆, µ⋆)

A+(w⋆) ,
{
j ∈ A(w⋆)|µ⋆j > 0

}
, (2.28)

A0(w⋆) ,
{
j ∈ A(w⋆)|µ⋆j = 0

}
. (2.29)
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2.3 Basic theory of nonlinear programming

In the case of A0(w⋆) = ∅, i.e. A(w⋆) = A+(w⋆), we say that the strict complementary

condition holds.

For a KKT point, we can in general not distinguish from first-order conditions alone

between a minimizer, a maximizer or a saddle point. To do so, we need to check second

order conditions which give information on the curvature and thus on the nature of the

stationary point. In contrast to the first-order case (with exception of some special cases)

there exist both necessary and sufficient second-order conditions for a minimizer. We will

restrict ourselves to a sufficient condition which provides strong results from the numerical

point of view, e.g., local applicability of numerical methods to the problem, uniqueness

of the multipliers and sensitivity information for the optimal objective value. Of course

we need to require more restrictive conditions to hold in order to obtain these results (cf.

[131]).

Definition 2.5 (Jacobian Uniqueness Condition).

A KKT point (w⋆, λ⋆, µ⋆) satisfies the Jacobian uniqueness condition if the following con-

ditions hold:

• w⋆ is a regular point,

• the strict complementary condition holds,

• for any vector y ∈ R
n satisfying

∇ci(w
⋆)⊺ y = 0, i = 1, . . . , l,

∇dj(w
⋆)⊺ y = 0, j ∈ A(w⋆),

it follows that

y⊺∇2
wL(w

⋆, λ⋆, µ⋆) y > 0.

With the help of these conditions we can now state a strong sufficient condition for

optimality (cf. [131, 78]).

Proposition 2.3 (Sufficiency and Uniqueness of Multipliers).

If a KKT point (w⋆, λ⋆, µ⋆) satisfies the Jacobian uniqueness condition then w⋆ is a strict

local minimizer of problem (2.24) and the Lagrange multipliers λ⋆ ∈ R
l and µ⋆ ∈ R

m

are uniquely determined. The Jacobian matrix J corresponding to the set of nonlinear

equations (2.26a), (2.26b), and (2.26e), which is given by

J =




∇2
wL(w, λ, µ) −∇c(w) −∇d(w)

dg
dw (w) 0 0

diag (µ1, . . . , µm) dd
dw (w) 0 diag (d1(w), . . . , dm(w))


 ,

is nonsingular at the point (w⋆, λ⋆, µ⋆).

The non-singularity of J at (w⋆, λ⋆, µ⋆) implies in particular that it is possible to apply

Newton’s method to solve the equations (2.26a), (2.26b), and (2.26e) given an initial

estimate close enough to the solution. Furthermore, if ∇2
wL is Lipschitz continuous near

(w⋆, λ⋆, µ⋆) then the convergence rate is quadratic, see, e.g., [140].
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

2.4 Sequential quadratic programming

After defining what a (local) solution of NLP (2.24) is and how it is characterized, we

now briefly outline how to numerically obtain such a solution. We solve NLP (2.24)

using an iterative framework, i.e., we start with an initial guess (w0, λ0, µ0) for the pri-

mal variables w and the dual variables (λ, µ) and then generate a sequence (wk, λk, µk)

that converges to a KKT point. The steps are calculated by building and minimizing a

quadratic model of the Lagrangian function subject to the locally linearized equality and

inequality constraints

min
∆w

1
2∆w

⊺∇2
wL(w

k, λk, µk)∆w +∇b(wk)⊺∆w (2.30a)

s.t. 0 =
dc

dw
(wk)∆w + c(wk), (2.30b)

0 ≤
dd

dw
(wk)∆w + d(wk), (2.30c)

which belongs to the problem class of quadratic programs (QP). After solving QP (2.30)

we then iterate

wk+1 = wk+αk∆w
k, λk+1 = (1−αk)λ

k+αkλ
k
QP, µk+1 = (1−αk)µ

k+αkµ
k
QP, (2.31)

where (∆wk, λkQP, µ
k
QP) is the primal-dual solution of the QP. The step length αk ∈ (0, 1]

is selected to ensure global convergence either by line search or trust region algorithms, see

for example [140]. In this thesis we will not deal with globalization issues but rather con-

sider the full-step case αk = 1. Note that we rather use∇b(wk) instead of ∇wL(w
k, λk, µk)

in the QP objective, as by this formulation the QP multipliers λkQP, µ
k
QP can be directly

used as the new NLP multipliers λk+1, µk+1 in the full-step case.

This whole approach is known as sequential quadratic programming (SQP). It is par-

ticularly effective for problems with nonlinear constraints. In practice, SQP often uses

a positive definite approximation Bk ≈ ∇2
wL(w

k, λk, µk) of the Hessian of the Lagrange

function because it is computationally less expensive and a positive definite QP Hessian

guarantees the existence of a unique global minimizer of the QP. Popular choices for Bk

comprise for example positive definite approximations with low-rank updates such as the

Broyden-Goldfarb-Fletcher-Shanno (BFGS) update, the BFGS update with limited mem-

ory (L-BFGS), or Gauss-Newton approximations, cf. [140]. It should be noted that also

the constraint Jacobians may be replaced by approximations. In this case, we call the

approach described above an inexact SQP method. We discuss inexact SQP methods in

detail in Chapter 5.

2.4.1 Local convergence theory

Given the active set A(wk) of QP (2.30) the step for the primal variables and the dual vari-

ables of the active constraints could in principle be obtained by solving the following linear

system which represents the KKT conditions of the corresponding equality-constrained
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2.4 Sequential quadratic programming

QP: 


∇2
wLk −∇ck −∇dk
dck
dw 0 0

ddact
k

dw 0 0







∆wk

λkQP

µact,kQP


 = −




∇wLk

ck

dactk


 , (2.32)

where subscript k denotes evaluation in (wk, λk, µk) and dact(w) , (di(w))i∈A(w). Of

course, the active set has to be determined during the QP solution process and in general,

A(wk) will change from iteration to iteration as long as wk is not close enough to a solution

w⋆ that satisfies the Jacobian uniqueness condition.

However, it is a key observation for the local convergence analysis of SQP methods

that close to a primal-dual solution (w⋆, λ⋆, µ⋆) of NLP (2.24) that satisfies the Jacobian

uniqueness condition, the active set of all QP subproblems (2.30) is the same and identical

to the active set of the NLP in w⋆. Thus, we can locally consider the SQP method as

an iteration with steps generated by equality-constrained QP subproblems. The following

theorem is due to [158].

Theorem 2.4 (Stability of the Active Set near to a Solution). Let w⋆ be a minimizer of

problem (2.24) and suppose that the Jacobian uniqueness condition holds at w⋆. Then if

(wk, λk, µk) is sufficiently close to (w⋆, λ⋆, µ⋆), there is a local solution of the subproblem

(2.30) the active set A(wk) of which is the same as the active set A(w⋆) of the nonlinear

program (2.24) at w⋆.

Furthermore, we can see that (2.32) is also a step of Newton’s method applied to the

system of nonlinear equations

F (z) ,




∇wL(z)

c(z)

dact(z)


 (2.33)

with the shorthand z , (w, λ, µ). This allows to analyze the local convergence of SQP

methods with the well-understood theory of local convergence of Newton’s method and

Newton-like methods. We present a variant of the Local Contraction Theorem (see [28])

in the formulation of [147].

Let the set of Newton pairs be defined according to

N ,
{
(z, z′) ∈ D ×D|z′ = z −M(z)F (z)

}

with D a neighborhood of z⋆ with constant active set according to Theorem 2.4 and let

‖ · ‖ denote a norm of RN . Furthermore, let J(z) , dF
dz (z) be the exact Jacobian of F (z)

and M(z) be an approximation of J−1(z). We need two conditions on J and M :

Definition 2.6 (Lipschitz condition: ω-condition). The Jacobian J together with the

approximation M satisfy the ω-condition in D if there exists ω < ∞ such that for all

t ∈ [0, 1], (z, z′) ∈ N

‖M(z′)(J(z + t(z′ − z))− J(z))(z − z′)‖ ≤ ωt‖z − z′‖2.
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

Definition 2.7 (Compatibility condition: κ-condition). The approximation M satisfies

the κ-condition in D if there exists κ < 1 such that for all (z, z′) ∈ N

‖M(z′)(I − J(z)M(z))F (z)‖ ≤ κ‖z − z′‖.

With the constants from the previous two definitions we define

ck , κ+ (ω/2)‖∆zk‖

and for c0 < 1 the closed ball

D0 , B(z0; ‖∆z0‖/(1− c0)).

The following theorem then characterizes the local convergence of a full step (i.e., αk =

1) Newton-type method in a neighborhood of the solution. For a proof see, e.g., [28, 147].

Theorem 2.5 (Local Contraction Theorem). Let J and M satisfy the ω-κ-conditions in

D and let z0 ∈ D. If c0 < 1 and D0 ⊂ D, then zk ∈ D0 and the sequence (zk) converges

to some z⋆ ∈ D0. The following estimate holds on the step sizes

‖∆zk+1‖ ≤ ck‖∆z
k‖ = κ‖∆zk‖+ (ω/2)‖∆zk‖2.

Furthermore, the a priori estimate

‖zk+j − z⋆‖ ≤
(ck)

j

1− ck
‖∆zk‖ ≤

(c0)
k+j

1− c0
‖∆z0‖

holds and the limit z⋆ satisfies

M(z⋆)F (z⋆) = 0.

If additionally M(z) is continuous and nonsingular in z⋆, then

F (z⋆) = 0.

Note that the Theorem does not require an exact Hessian ∇2
wL(w

k, λk, µk) in (2.32)

and even allows for approximations of the constraint Jacobians dc
dw (w) and ddact

dw (w), see

also Chapter 5.

2.5 Structured SQP for Direct Multiple Shooting

When solving an NLP obtained by a Direct Multiple Shooting discretization with SQP

there are two main non-standard characteristics: first, the introduction of the shooting

nodes leads to a special block-sparse structure in the QPs (2.30) which has to be exploited

in an efficient algorithm. Second, since the matching conditions involve the solutions of

differential equations, one has to think about calculating efficient and accurate derivatives

of these solutions for the SQP constraint linearizations.
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2.5 Structured SQP for Direct Multiple Shooting

2.5.1 Structure exploitation

We start by looking at the exploitation of the structure arising from the Multiple Shooting

discretization in the solution of the QP subproblems. Let us write down QP (2.30) in full

detail according to NLP (2.19).

minimize
∆s,∆q

N−1∑

i=0

[
1

2

(
∆si
∆qi

)⊺(
Bss

i Bsq
i

Bqs
i Bqq

i

)(
∆si
∆qi

)
+

(
bsi
bqi

)⊺(
∆si
∆qi

)]
(2.34a)

+
1

2
∆s⊺NB

ss∆sN + bs,TN ∆sN

subject to 0 = ∆si+1 −Gs
i∆si −Gq

i∆qi + ci, i = 0, . . . , N − 1, (2.34b)

0 ≤ Hs
i ∆si +Hq

i ∆qi + cpathi , i = 0, . . . , N − 1, (2.34c)

0 = Rs
e,0∆s0 +Rs

e,N∆sN + re, (2.34d)

0 ≤ Rs
i,0∆s0 +Rs

i,N∆sN + ri, (2.34e)

with approximations

Bss
i ≈

∂2L

∂si2
(w, λ, µ), i = 0, . . . , N,

(Bqs
i )

⊺
= Bsq

i ≈
∂2L

∂qi∂si
(w, λ, µ), i = 0, . . . , N − 1,

Bqq
i ≈

∂2L

∂qi2
(w, λ, µ), i = 0, . . . , N − 1

of the Hessian of the Lagrange function, Jacobians

G
s|q
i =

∂xi
∂si|qi

(ti+1; si, qi),

H
s|q
i =

∂cpath

∂si|qi
(si, φi(ti, qi)),

Rs
e,i =

∂re
∂si

(s0, sN ), i ∈ {0, N},

Rs
i,i =

∂ri
∂si

(s0, sN ), i ∈ {0, N}

of the ODE solutions, the path constraints, and the boundary equality and inequality

conditions, respectively. Furthermore,

b
s|q
i = ∇si|qiL(si, qi), i = 0, . . . , N − 1,

bsN = ∇sNm(sN ),

ci = si+1 − x(ti+1; si, qi), i = 0, . . . , N − 1,

cpathi = cpath(si, φi(ti, qi)), i = 0, . . . , N − 1,

re = re(s0, sN ),

ri = ri(s0, sN ),
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

are objective gradients, matching condition residuals, path constraint residuals, and bound-

ary equality and inequality condition residuals, respectively.

We can use the linearized matching constraints (2.34b) to eliminate the degrees of

freedom ∆s1, . . . ,∆sN from QP (2.34). This approach is called condensing and results in

a QP of the same size as the QPs arising from the Single Shooting approach. We obtain

the following relation between the eliminated variables and the variables that remain in

the QP




∆s1
∆s2
...

∆sN




=




Cs
1 Cq

1,0

Cs
2 Cq

2,0 Cq
2,1

...
. . .

Cs
N Cq

N,0 . . . Cq
N,N−1







∆s0
∆q0
...

∆qN−1




+




c′0
c′1
...

c′N−1



, (2.35)

where

Cs
1 = Gs

0, Cs
i = Gx

i−1C
s
i−1, i = 2, . . . , N,

Cq
j+1,j = Gq

j , Cq
i,j = Gx

i−1C
q
i−1,j, j = 0, . . . , N − 1, i = j + 2, . . . , N,

c′0 = −c0, c′i = Gx
i−1c

′
i−1 − ci, i = 1, . . . N − 1,

(2.36)

and for notational simplicity we further define Cs
0 , I, Cq

0,0 , 0, and c′−1 , 0. Inserting

(2.35) into QP (2.34) we obtain

minimize
∆s0,∆q

1

2




∆s0
∆q0
...

∆qN−1




⊺


B̃s0,s0 B̃s0,q
0 . . . B̃s0,q

N−1

B̃q,s0
0 B̃q,q

0,0 . . . B̃q,q
0,N−1

...
...

. . .
...

B̃q,s0
N−1 B̃q,q

N−1,0 . . . B̃q,q
N−1,N−1







∆s0
∆q0
...

∆qN−1




(2.37a)

+




b̃s0

b̃q0

...

b̃qN−1




⊺


∆s0
∆q0
...

∆qN−1




subject to 0 ≤ H̃s
i∆s0 +

i∑

j=0

H̃q
i,j∆qj + c̃pathi , i = 0, . . . , N − 1 (2.37b)

0 = R̃s
e,0∆s0 +

N−1∑

j=0

R̃q
e,j∆qj + r̃e (2.37c)

0 ≤ R̃s
i,0∆s0 +

N−1∑

j=0

R̃q
i,j∆qj + r̃i, (2.37d)
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2.5 Structured SQP for Direct Multiple Shooting

with the condensed Hessian blocks

B̃s0,s0 ,
N∑

i=0

(Cs
i )

⊺Bss
i Cs

i ,

(
B̃q,s0

i

)⊺
= B̃s0,q

i , (Cs
i )

⊺Bsq
i +

N∑

j=i+1

(
Cs
j

)⊺
Bss

j Cq
j,i, i = 0, . . . , N − 1,

B̃q,q
i,i , Bqq

i +
N∑

j=i+1

(
Cq
j,i

)⊺
Bss

j Cq
j,i, i = 0, . . . , N − 1,

(
B̃q,q

j,i

)⊺
= B̃q,q

i,j ,
(
Cq
j,i

)⊺
Bsq

j +

N∑

k=j+1

(
Cq
k,i

)⊺
Bss

k Cq
k,j,

{
i = 0, . . . , N − 2,

j = i+ 1, . . . , N − 1,

the condensed gradients

b̃s0 , bs0 +

N∑

i=1

(Cs
i )

⊺ (Bss
i c

′
i−1 + bsi

)
,

b̃qi , bqi +Bqs
i c

′
i−1 +

N∑

j=i+1

(
Cq
j,i

)⊺ (
bsj +Bssc′j−1

)
, i = 0, . . . , N − 1,

the condensed path constraint matrices and residuals

H̃s
i , Hs

i C
s
i ,

H̃q
i,j , Hs

i C
q
i,j + δi,jH

q
i

c̃pathi , Hs
i c

′
i−1,

and the condensed boundary equality and inequality condition matrices and residuals

R̃s
e|i,0 , Rs

e|i,0 +Rs
e|i,NC

s
N ,

R̃q
e|i,j , Rs

e|i,NC
q
N,j,

r̃e|i , Rs
e|i,Nc

′
N−1 + re|i.

After solving QP (2.37) we can recover the variables (∆s1, . . . ,∆sN ) by recursively

using equations (2.34b). Furthermore, the multipliers for (2.34b) can then be obtained

by suitably resolving the Lagrange gradient of QP (2.34), for details see [124, 125].

The presented condensing approach involves products of the sensitivity matrices. De-

pending on the properties of the dynamic system this may lead to severe ill-conditioning

since the condition number of the matrix products is the product of the condition num-

bers of the individual matrices. An alternative computationally more expensive but stable

condensing approach based on QR decompositions is presented in [166]. Furthermore, if

the number of control variable exceeds the number of state variables, complementary con-

densing as presented in [104] is computationally more efficient. A condensing approach

that is quadratic in the number of Multiple Shooting intervals is presented in [7].
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

2.5.2 Derivative calculation

The principle of Internal Numerical Differentiation

Besides the special structure discussed above, one of the most distinct features of the

Multiple Shooting NLP (2.19) is the fact that part of the constraints, i.e., the matching

conditions, are evaluated by complex schemes for numerical integration of differential

equations. Thus, the evaluation of these constraints and in particular of their derivatives

is usually much more expensive than the evaluation of the other constraints and may well

be the dominant part of the overall computational effort per SQP iteration.

The conceptually simplest way to obtain derivatives (or sensitivities) of the IVP

ẋ(t) = f(t, x(t), q), x(t0) = x0, t ∈ [t0, t1] (2.38)

with respect to initial values x0 and control parameters q is applying finite differences to

the solutions for perturbed initial values and control parameters,

(Gx)i =
∂x

∂(x0)i
(t1;x0, q) ≈

x(t1;x0 + δiei, q)− x(t1;x0, q)

hi
, i = 1, . . . , nx,(2.39a)

(Gq)i =
∂x

∂qi
(t1;x0, q) ≈

x(t1;x0, q + δiei)− x(t1;x0, q)

hi
, i = 1, . . . , nq,(2.39b)

with ei the i-th unit vector of Rnx and R
nq , respectively. We refer to this approach as

external numerical differentiation (END).

However, this approach has several severe drawbacks. First, one can see from the ap-

proximation error of the differential quotients (2.39a) that one cannot expect a derivative

accuracy of more than half of the valid digits of the evaluation of the trajectories, cf.

[28]. Second, modern integrator schemes adaptively select parts of the scheme such as

step sizes, orders, matrix rebuilds and decompositions, and number of Newton-like iter-

ations to reduce the computational effort while meeting prescribed accuracy demands.

The conditional nature of these adaptive decisions leads to the fact that the output of the

integrator may depend non-smoothly on the inputs, i.e., initial states, controls, and param-

eter values. However, END implicitly differentiates these non-differentiable components.

Third, for the non-scalar case it may be difficult to choose both evaluation tolerance and

disturbance δ if there are components with different growth behavior, which also means

that the derivative computation may become unstable for low tolerances.

A better alternative is internal numerical differentiation (IND) which differentiates the

(adaptively generated) scheme while keeping the adaptive components fixed. This can be

done in several ways: first, one may calculate the nominal trajectory, reuse the nominal

integration scheme to evaluate trajectories for disturbed initial values and control param-

eters and then apply finite differences to approximate the sensitivities. This approach is

referred to as varied trajectories. Second, if analytical derivatives of the right-hand side

are available, e.g., by using tools for automatic differentiation (AD), one may calculate the

nominal trajectory and reuse the nominal integration scheme to evaluate the variational
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2.5 Structured SQP for Direct Multiple Shooting

differential equations of (2.38)

Ġx =
∂f

∂x
(t, x(t), q)Gx, Gx(t0) = I, t ∈ [t0, t1], (2.40a)

Ġq =
∂f

∂x
(t, x(t), q)Gq +

∂f

∂q
(t, x(t), q), Gq(t0) = 0, t ∈ [t0, t1], (2.40b)

along the nominal trajectory.

By using IND one obtains more accurate sensitivity approximations for the same nom-

inal integration tolerance compared to END, and the reuse of the nominal integration

scheme amounts to significant computational savings. Moreover, the sensitivities com-

puted by IND are consistent with the discretization, i.e., they are the derivatives of the

discretized solution of the differential equations (2.38). This is important in the opti-

mization context, where the constraint derivatives also enter in the right-hand side of the

optimization problem, see (2.32).

Example of IND for an adaptive discretization scheme

To illustrate the principle of IND, we consider explicit single step integration methods

which compute discrete approximations

ηk+1 = ηk + hkΦ(τk, ηk, q;hk), k = 0, . . . , n− 1, η0 = x0, (2.41)

to the solution x of IVP (2.38) in the time points t0 = τ0, . . . , τn = t1 with τk+1 = τk+hk.

The integration method is defined by the step function Φ(·). A well known family of single

step methods are the explicit Runge-Kutta (RK) schemes with step function

Φ(τ, η, q;h) ,
∑s

i=1
γiki, ki , f

(
τ + hαi, η + h

∑i−1

j=1
βijkj , q

)
, (2.42)

where s ≥ 1 is the number of stages and the coefficients α, γ ∈ R
s, β ∈ R

s×s are also

referred to as Butcher tableau.

While the step function defines the actual single step method, the step size hk can be

chosen quite arbitrarily (provided that τk + hk ≤ t1). There are two opposing considera-

tions: on the one hand a small step size leads to a small local error, on the other hand the

computational effort for the integration depends linearly on the number of steps taken.

Therefore, modern adaptive schemes try to estimate the local error and then choose steps

as large as possible while respecting a prescribed local error tolerance. Details for the RK

schemes can be found e.g. in [67, 65] and many other related works.

Following a nominal integration one can compute sensitivities complying with the prin-

ciple of IND by fixing the steps obtained by the adaptive error control and differentiating

the scheme, e.g.,

ηvk+1 = ηvk + hk
dΦ

dη
(τk, ηk, q;hk)η

v
k, k = 0, . . . , n − 1, ηv0 = v, (2.43)

for a computation of the forward directional sensitivity ηvn = dηn
dx0

v ≈ dx(t1)
dx0

v with direction

0 6= v ∈ R
nx . For the RK schemes one obtains the following step function for the forward
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2 Direct Multiple Shooting for optimization problems constrained by differential equations

directional sensitivity

dΦ

dη
(τ, η, q;h)ηv =

s∑

i=1

γi
dki
dη

ηv ,

dki
dη

ηv =
∂f

∂x
(τ + hαi, η + h

∑i−1

j=1
βijkj , q)

(
ηv + h

∑i−1

j=1
βij

dkj
dη

ηv
)
.

Because they share common information such as evaluation points of the right-hand side,

the forward sensitivity scheme (2.43) is best evaluated simultaneously with the forward

scheme (2.41). Clearly, both schemes are consistent: step sizes and evaluation points

coincide, and forward directions are propagated by dΦ
dη (τ, η, q;h)η

v just like state approxi-

mations by Φ. Hence the IND principle is satisfied. Analogously one obtains also forward

directional sensitivities dηn
dq v. For the computation of backward directional or adjoint

sensitivities by RK schemes see, e.g., [184]. For a comprehensive presentation of the

Backward Differentiation Formulas (BDF) for the integration of stiff systems and DAE

systems and the sensitivity generation of arbitrary order by Taylor polynomial arithmetic

for these problems see, e.g., [1, 2].
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3 Model Predictive Control and Moving

Horizon Estimation

In this chapter we motivate the necessity of feedback control and outline some classical

feedback approaches which are widely used in modern industrial processes but have severe

drawbacks from a theoretical point of view. As state-of-the-art approach, we present

Model Predictive Control (MPC) as a numerically tractable and theoretically founded

way to compute feedback which is (nearly) optimal. We will briefly touch stability theory

for MPC.

Since feedback control approaches in general need full state information, whereas quite

often there are only measurements of some states or some functional relations of the

states available, the need for state estimation arises, i.e., the reconstruction of the full state

information based on the available measurements. Also, if the process behavior depends on

parameter values which might accidentally change during runtime, a parameter estimation

step is necessary to obtain the new values. As state-of-the-art approach for online state

and parameter estimation we present Moving Horizon Estimation (MHE), which is in a

way the dual problem to MPC.

3.1 Feedback control

In the last chapter we have considered approaches for the solution of optimal control

problems. However, it is in general not advisable to apply the computed optimal control

u⋆(t) to the real process in a straightforward manner. The reason for this is that a real

process is in general subject to significant disturbances. These reasons can be manifold

such as unmodeled aspects of the process behavior, external disturbances from the process

environment, inexactly determined parameter values, or intrinsically random behavior of

the process. These disturbances may invalidate the computed optimal control because

it does not take into account the actual behavior of the process. The optimal control is

therefore also called open-loop optimal control, see also Figure 3.1.

To take the disturbances into account we have to incorporate knowledge on the behavior

of the system by feeding back the actual system state x to the controller. Then we can

compute new controls u⋆(x) which depend on the current state and which allow to react to

unpredicted system behavior. This approach is known as closed-loop or feedback control,

see also Figure 3.2.

It is quite a common case that only some states or functional dependencies of the states

of the process can be measured. Then the state vector x has to be estimated from the

measurement vector y. Since the measurements are in general subject to measurement
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Controller System✲ ✲

❄
disturbances

u⋆(t) x 6= x⋆

Figure 3.1: Open–loop optimal control ignores actual system behavior. The system output x is in

general not the predicted optimal outcome x⋆.

Controller System✲ ✲

❄
disturbances

u⋆(x)

x

x
✲ ✉

Figure 3.2: Closed–loop optimal control incorporates actual system behavior. The feedback control

u⋆ depends on the actual system state x.

errors, the estimator will give an estimate x̂ for the true state values x. With this esti-

mate, feedback control can be calculated, see also Figure 3.3. Controllers which also take

knowledge on the uncertainty of the estimate into account are called robust controllers.

3.2 Feedback control approaches

We start by presenting selected control approaches that nowadays still dominate appli-

cation in industry. The main goal of these early approaches is the stabilization of the

process or the regularization to a prescribed set-point.

The proportional-integral-derivative (PID) controller is applied to one-dimensional pro-

cess variables x(t) ∈ R
1. It aims to steer x(t) to a set point x̄(t) ∈ R

1 by setting the ma-

nipulated variable u(t) ∈ R
1 proportional to the error e(t) , x(t) − x̄(t) and its integral

and derivative, namely

u(t) = αe(t) + β

∫ t

0
e(τ) dτ + γ

d

dt
e(t).

The proportional term aims to deal with the present error, the integral term weights

summed up past errors and the derivative term takes future error into account. PID

control is still the most widely used feedback control approach in industry nowadays. For

a more detailed discussion of the role of the three parts and the tuning of PID controllers

see, e.g.,[9, 128, 177, 176].
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3.2 Feedback control approaches

Controller System

Estimator

✲ ✲

❄
disturbances

✻

measurement error

u⋆(x̂)

yx̂

y

✛

✲ ✉

❡

Figure 3.3: Feedback control with state estimation. The controller works with a state estimate x̂

obtained from measurements y.

The method of Spectrum Assignment can be considered as a generalization of the PID

control to systems with more than one state and control, so called multiple input multiple

output systems. For the continuous or discrete control system

ẋ(t) = Ax(t) +Bu(t), or xk+1 = Axk +Buk,

the method aims to find a matrix K so that the feedback u(t) = Kx(t) or uk = Kxk
stabilizes the feedback systems

ẋ(t) = (A+BK)u(t), or xk+1 = (A+BK)xk.

The Pole-Shifting Theorem states that one can obtain an arbitrary spectrum for A+BK

by suitably choosing a (unique) matrix K if the matrices A,B satisfy a certain non-

degeneracy condition. In particular, one can choose all the eigenvalues to lie in the left

half of the complex plane which leads to convergence to x = 0, i.e., asymptotic stability

of the dynamical system. For the discrete case, one can even choose the eigenvalues to

be zero, i.e. A+BK to be nilpotent, which results in bringing x exactly to zero after nx
steps. This is called deadbeat control. More details about Spectrum Assignment can be

found, e.g., in [169].

The PID and the Spectrum Assignment method allow a whole range of possible feedback

laws and do not consider any aspect of optimality for a particular feedback law chosen.

This is a major difference to the linear quadratic regulator (LQR) which considers the

following problem formulation

min
u(·)

∫ T

0
x(t)⊺Qx(t) + u(t)⊺Ru(t) dt s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

where T can be finite or infinite. There are several approaches to solve this problem

exactly, e.g., it is one of the rare problems for which the HJB equation can be solved

analytically. For solution approaches and problem modifications see standard textbooks
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3 Model Predictive Control and Moving Horizon Estimation

on optimal control, e.g., [38, 171, 18]. For finite time horizons T one obtains the feedback

law as

u(t) = K(t)x(t) , −R−1B⊺P (t)x(t),

where P (t) solves the continuous-time Riccati differential equation

Ṗ (t) = −A⊺P (t)− P (t)A+ P (t)BR−1B⊺P (t) +Q, P (T ) = 0.

For infinite time horizons T one obtains the feedback law as

u(t) = K x(t) , −R−1B⊺P x(t),

where P solves the algebraic Riccati equation

0 = A⊺P − PA+ PBR−1B⊺P +Q.

The LQR approach can also be used approximately for feedback control of optimal

control problems with a general nonlinear objective and governed by nonlinear differential

equations. For an open-loop optimal control solution x⋆(t), u⋆(t) of the nonlinear problem,

one considers perturbed solutions x(t), u(t) with small perturbations ∆x(t) , x(t)−x⋆(t)

and ∆u(·) , u(t) − u⋆(t). Taking the second variation of the objective and the first

variation of the differential equation, one ends up with a linear-quadratic optimization

problem in ∆x(·),∆u(·), which then gives an LQR feedback law for ∆u(·) of the form

∆u(t) = K(t)∆x(t). This approach is called the neighboring optimal or neighboring

extremal control, cf. also [38, 171] for details. Numerical techniques for neighboring

optimal control have been developed, e.g., by [141, 111, 112].

The approaches presented so far have several severe drawbacks. For example, most of

them apply to linear systems only or require the feedback to keep the trajectory close

to a precomputed open-loop solution. Furthermore, none of the presented approaches

is able to incorporate inequality constraints which play an important role in real-world

problem formulations. To address these issues we employ the state-of-the-art feedback

control approach Model Predictive Control (MPC) which will be described in some detail

in the following.

3.3 The principle of Nonlinear Model Predictive Control

The basic idea of MPC is to generate feedback control by repeatedly solving open-loop

optimal control problems on a finite prediction horizon. The MPC approach is depicted

in Figure 3.4. The process time is sampled with sampling period δ. We denote the sample

index with k. At the sampling times tk0 the current real process state xk0 is obtained. Then

the optimal control u⋆(t;xk0) is determined by solving an optimal control problem on a

prediction horizon [tk0, t
k
0 + T ]. In this problem, the state prediction is coupled to the real

process behavior by setting the initial value of the predicted states to xk0 . Only the first

part u⋆(tk0 ;x
k
0) of the optimal controls is applied to the real process for the sampling time
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✛ past

✻

✛ control horizon ✲

current state xk
0
✈

u⋆(tk0 ;x
k
0)

predicted
state trajectory x⋆(t)

optimized controls u⋆(t; xk
0)

✛ ✲q

tk0

q

tk0+δ . . .

q

tk0+T

Figure 3.4: Principle of Model Predictive Control. At each sampling time tk0 an open–loop control

problem is solved with the current state xk0 as initial value and the first part u⋆(tk0 ;x
k
0) of the opti-

mal controls is fed back.

period δ, and at the next sampling time tk+1
0 , tk0 + δ a new optimal control problem is

solved on the horizon [tk+1
0 , tk+1

0 + T ], i.e. the time horizon is moved forward.

Specifically, the MPC feedback is calculated by solving for each sampling time the

following OCP, which is a special case of OCP (2.7)

minimize
x(·),u(·)

∫ tk0+T

tk0

l(x(t), u(t)) dt+m(x(T ))

subject to ẋ(t) = f(t, x(t), u(t)),

0 = x(tk0)− xk0 ,

0 ≤ cpath(x(t), u(t)),

0 ≤ r(x(tk0 + T )).

(3.1)

If the objective function is quadratic and both the dynamic equations and the inequality

constraints are affine-linear, we talk about Linear Model Predictive Control (LMPC). If

the dynamical system or the constraints are nonlinear, or the objective is nonlinear and

not quadratic, we talk about Nonlinear Model Predictive Control (NMPC).

The possibility of predicting the process behavior by a nonlinear model and pricing

controls and the corresponding state trajectories over a certain prediction horizon by a

suitably chosen objective function enables the controller to choose much better feedback

than, e.g., the PID controller, which takes into account only instantaneous information

and does not use information about the process dynamics, or the LQR controller which is

limited to linear models and quadratic objectives. Also, due to the flexible choice for the

objective function, MPC can be applied to a much wider range of problems such as time-
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optimal or economic feedback control. Furthermore, equality and inequality constraints

can be added to the problem formulation in a natural way which is not possible in the

approaches presented earlier.

Note that the MPC approach as described above is idealized in the sense that in prac-

tical applications it is impossible to obtain the real process state xk0 . Instead, we have

measurements of some or all components of the state or of some quantities that depend

on the state. These measurements are subject to measurement errors, thus we have to

obtain an estimate of the real process state xk0 . We discuss this topic in detail in Section

3.5.

3.4 Basic theory for Model Predictive Control

We consider basic stability theory for MPC and keep the presentation close to [156]. The

MPC stability theory is mostly concerned with feedback control of the following discrete-

time dynamical system

xk+1 = fmpc(xk, uk), (3.2)

where we assume that fmpc(0, 0) = 0, i.e., the origin is a steady state for the system if

zero controls are applied. Aim of the MPC theory is to show that the MPC feedback

umpc(x) is able to drive the states of the dynamical system to the origin, which means

that the origin is asymptotically stable with a region of attraction X for the closed-loop

system

xk+1 = f cl(xk) , fmpc(xk, u
mpc(xk)). (3.3)

Recall the following definitions for various kinds of stability and region of attraction:

Definition 3.1 (Stability). For the dynamical system xk+1 = f cl(xk) denote by φ(i;x)

the solution at time i starting from x. Then the origin is

• locally stable if, for each ǫ > 0, there exists a δ = δ(ǫ) > 0 such that ‖x‖ < δ implies

‖φ(i;x)‖ < ǫ for all i = 0, 1, . . ..

• unstable, if it is not locally stable.

• locally attractive if there exists η > 0 such that ‖x‖ < η implies ‖φ(i;x)‖ → 0 as

i→ ∞.

• globally attractive if ‖φ(i;x)‖ → 0 as i→ ∞ for all x ∈ R
nx.

• locally asymptotically stable if it is locally stable and locally attractive.

• globally asymptotically stable if it is locally stable and globally attractive.

A region of attraction for the asymptotically stable origin is any set of initial values x

such that ‖φ(i;x)‖ → 0 as i→ ∞.
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The problem formulation most often used in theoretical studies of the stability of MPC

reads as follows:

minimize
u

N−1∑

k=0

ℓ(xk, uk) + Vf (xN )

subject to xk+1 = fmpc(xk, uk), k = 0, . . . , N − 1

x0 = x,

cpath(xk, uk) ∈ Y, k = 0, . . . , N − 1,

xN ∈ Xf ,

(3.4)

with the optimization variables being the control sequence u = (u0, . . . , uN−1). For the

solution u⋆ of (3.4), the MPC feedback is then defined as umpc(x) , u⋆0. Problem (3.4)

looks very similar to Problem (2.19), which arises from the Direct Multiple Shooting

discretization of a continuous-time OCP, with the specific choice of a piecewise constant

control discretization. However, there is an important difference: in MPC theory, we do

not consider the states xk as degrees of freedom but eliminate them by using the difference

equation (3.2). We denote with φ(k;x, u) the solution of the difference equation at time

k starting from x and applying the control sequence u0, . . . , uk−1. With the definitions

VN (x, u) ,
N−1∑

k=0

ℓ(φ(k;x, u), uk) + Vf (φ(N ;x, u)) (3.5)

and

UN (x) ,
{
u|cpath(φ(k;x, u), uk) ∈ Y for k = 0, . . . , N − 1, φ(N ;x, u) ∈ Xf

}
(3.6)

we can write Problem (3.4) more compactly as

V 0
N (x) , minimize

u
{VN (x, u)|u ∈ UN (x)} . (3.7)

The function V 0
N (x) defined in (3.7) is called the value function and plays a major role in

MPC theory. With the definition of the following helpful class of functions we can then

write down a central result of stability theory for dynamical systems.

Definition 3.2 (K function). A function σ : R+ 7→ R+

• belongs to class K if it is continuous, zero at zero, and strictly increasing.

• belongs to class K∞ if it belongs to class K and is unbounded (σ(s) → ∞ as s→ ∞).

A function γ : R 7→ R+ belongs to class PD (is positive definite) if it is continuous and

positive everywhere except at the origin.

Theorem 3.1. The origin is asymptotically stable with a region of attraction X for the

system xk+1 = f cl(xk) if there exist:

• a function V : Rnx 7→ R+,
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• a positive invariant set X, i.e., x ∈ X ⇒ f cl(x) ∈ X,

• two K∞ functions α1(·) and α2(·) and a PD function α3(·) satisfying

V (x) ≥ α1(‖x‖) (3.8a)

V (x) ≤ α2(‖x‖) (3.8b)

V (f cl(x)) ≤ V (x)− α3(‖x‖) (3.8c)

for all x ∈ X.

A function V : Rnx 7→ R+ satisfying the conditions (3.8) is called a Lyapunov function.

In general, the difficulty of this elegant and powerful approach to stability theory is that

there is no generic way to construct Lyapunov functions for a given dynamical system. For

MPC however, the value function V 0
N (x) is a reasonable candidate, which is also motivated

by analogy to the stability theory for the infinite-horizon regulator. The MPC stability

theory establishes criteria for ℓ(·), Vf (·), and Xf under which the conditions (3.8) hold for

V 0
N (·) and the dynamical system xk+1 = f(xk, u

mpc(xk)). For a detailed derivation see

[156].

3.5 Online state and parameter estimation

As we have seen in the last section, the feedback calculation is linked to the real process

behavior via the current system state x, which is obtained by taking measurements η

from the process. Quite often, we can not measure the full system state x but only

some components xi or some functional dependence hest(x) of the states. To close the

control loop we therefore have to obtain an estimate of the full state from the available

measurements.

To estimate the state we will employ a model of both the system dynamics and the

measurement process and seek to find an estimate x̂ of the true states x that best explains

the measurement data η. In general, we will not be able to get the exact system state,

i.e., x̂ 6= x. This is due to the errors which enter the estimation process, namely errors

from the modeling of the real process and errors from the measurements.

We will start by considering the straight-forward deterministic approach of weighted

least-squares estimation taking into account all available measurements from all measure-

ment times and, if available, a-priori information on the initial state. It turns out that

this approach also has a statistical interpretation if the measurement error is assumed to

be a statistical quantity. While being theoretically desirable, the weighted least-squares

estimation approach becomes computationally intractable with an increasing amount of

measurement data available. Only for the case of linear system and measurement models,

the estimator can be evaluated exactly by recursion. The arising recursion equations are

known as the Kalman filter or linear Kalman filter (LKF) equations. Kalman filtering

allows a straightforward extension to nonlinear system and measurement models by local

linearization, yielding the extended Kalman filter (EKF). Due to its conceptual simplicity

the EKF is a popular and widespread state estimator in practical applications. However,
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if the linearization is not well suited to describe the nonlinear process then EKF yields

bad or even unphysical state estimates. Thus, we turn back to the least-squares esti-

mation approach to motivate and derive the Moving Horizon Estimation, which is our

preferred state-of-the-art approach for state estimation. Finally, we discuss the extension

to combined state and parameter estimation as well as the issue of properly choosing the

arrival cost term.

System dynamics model

We model the system states xk in the k-th sample by

xk = f est(xk−1, uk−1) + wk−1. (3.9a)

The propagation function f est describes the aspects of the process that are explicitly and

deterministically modeled. By introducing the additive process noise term wk−1 we can

account for deviations between the mathematical process model f est(·) and the actual

process state, e.g., model-process mismatches or random disturbances.

Measurement model

We model the measurements ηk in the k-th sample by

ηk = hest(xk) + νk, (3.9b)

i.e., the measurement consists of a functional dependence h of the system state xk and

a disturbance νk which models the measurement error. Quite typically, a subset of the

states is measured; in this case we have hest(xk) = Hestxk, where the rows of the matrix

Hest consist of unit vectors corresponding to the measured state components.

State estimation problem

The state estimation problem for sample k ≥ 0 now can be formulated as follows (cf.

[156]): given measurement data η0, . . . , ηk and possibly a-priori state information x̄0, find

an initial state x0 and sequences of process noise w0, . . . , wk−1 and measurement errors

ν0, . . . , νk such that the measurements ηj satisfy (3.9b) where the xj are generated by

(3.9a) starting from x0. The controls u0, . . . , uk−1 are assumed to be known. This is

reasonable since we use the measurement data up to ηk, which has been obtained from

the process using the controls u0, . . . , uk−1.

Since this problem is over-parametrized and thus admits infinitely many solutions, a

reasonable approach is to seek the unique solution which minimizes the sum of the squared

norms of the measurement errors and a quadratic term which allows to incorporate the

a-priori information. This well-known approach is called the least-squares estimation. It is

also known as full information estimation because the whole available measurement infor-

mation is used. Note that it is purely deterministic and makes no statistical assumption

on the error.
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minimize
x0,νk

‖x0 − x̄0‖
2
Q0

+
k−1∑

j=0

‖wj‖
2
Q +

k∑

j=0

‖νj‖
2
R

subject to xj+1 = f est(xj , uj) + wj , j = 0, . . . , k − 1,

νj = ηj − hest(xj), j = 0, . . . , k.

(3.10)

We use the notation ‖v‖2Q , v⊺Qv, where Q is a symmetric positive-definite matrix. In

the deterministic approach, the most suitable choice for the scaling matrices Q0, Q, and

R is not obvious. However, if the errors are suitably distributed statistical quantities

then Problem 3.10 also has a probabilistic interpretation for the right choice of scaling

matrices. To see this, we formulate the following assumptions.

Assumption 3.1 (Statistical distribution of error quantities).

• The initial state x0 is normally distributed with mean x̄0 and covariance matrix P .

• The state disturbances wj are normally distributed with zero mean and covariance

matrix W .

• The measurement errors νj are normally distributed with zero mean and covariance

matrix V .

• The initial state, state disturbances, and measurement errors are mutually statisti-

cally independent.

Under Assumption 3.1, the a-posteriori density function p(x0, . . . , xk|η0, . . . , ηk) of the

states x0, . . . , xk for observed measurements (η0, . . . , ηk) has been derived in [47], where

the notation p(x|y) denotes the conditional probability density of x given y as usual. We

obtain

p(x0, . . . , xk|η0, . . . , ηk) ∝

p(x0)

k∏

j=1

p(xj |xj−1)

k∏

j=0

p(ηj − hest(xj)) ∝

exp

(
−
1

2
‖x0 − x̄0‖

2
P−1

) k−1∏

j=0

exp

(
−
1

2
‖wj‖

2
W−1

) k∏

j=0

exp

(
−
1

2
‖νj‖

2
V −1

)
(3.11)

subject to (3.9a), (3.9b), where ∝ denotes a proportional relation between the left-hand

term and the right-hand term, i.e., the both terms differ only by a multiplication with a

constant.

The mode, i.e., the value of x = (x0, . . . , xk) where the a-posteriori probability den-

sity distribution attains its maximum, is called the maximum a-posteriori probability

(MAP) estimator. It is similar to the Maximum-Likelihood (ML) estimator and for a

non-informative prior, i.e., if all possible values of x are equally probable, the both esti-

mators are equivalent.

48



3.6 Kalman filters

By taking the logarithm in (3.11) one can easily see that the maximum modal value

can be computed by solving Problem 3.10 for the choice of weighting matrices Q0 = P−1,

Q =W−1, and R = V −1.

The least-squares estimation approach is theoretically desirable, and powerful algo-

rithms for the solution of the least-squares problems 3.10 are available. However, in the

online optimization context, the growing number of measurement data makes Problem

3.10 increasingly large and therefore ultimately prohibitively expensive to solve. There

is an important exception to this for estimations problems with linear dynamical model

and linear measurement model. In this case, the exact solution of Problem 3.10 can be

computed recursively from the solution of the smaller, previous problem. This approach

is called the Kalman filter and we give a short synopsis in the following section.

3.6 Kalman filters

For a linear dynamical model and a linear measurement model, the linear Kalman filter

equations (cf. [101, 171]) recursively compute for each sample mean and covariance of

the state probability distribution, taking into account both the propagation through the

dynamical system and the new measurement information.

This approach can be extended straightforwardly to nonlinear dynamical models and

measurement models by linearization of the state and measurement model, yielding the

extended Kalman filter. However, the resulting estimates are not solutions of Problem

3.10 in the nonlinear case and thus the state estimate is not a MAP estimator.

3.6.1 Linear Kalman filter

For the dynamical and measurement model

xk+1 = Axk +Buk + wk (3.12a)

yk = Cxk + vk (3.12b)

let W be the covariance matrix of the state noise wk and V be the covariance matrix of

the measurement noise vk. Starting with an initial guess x̂0|−1 = x0 for the state and

P̂0|−1 = P for the covariance, we iterate for k = 0, 1, 2, . . .

Lk = P̂k|k−1C
⊺(CP̂k|k−1C

⊺ + V )−1, (3.13a)

Pk|k = P̂k|k−1 − LkCP̂k|k−1, (3.13b)

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1), (3.13c)

which yields the state estimate x̂k|k and covariance estimate Pk|k for sample k. We then

prepare the next sample by propagating the state and covariance estimate through the

dynamical system by

x̂k+1|k = Ax̂k|k +Buk, (3.14a)

P̂k+1|k = APk|kA
⊺ +W. (3.14b)
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The initial state and covariance guess allows to include a-priori information about the

state. If no information is available, a non-informative prior can be chosen by setting,

e.g., x0 = 0 and P to a diagonal matrix with very large entries.

3.6.2 Extended Kalman filter

The algorithmic simplicity of the linear Kalman filter makes it highly appealing to ex-

tend the approach to nonlinear dynamical and measurement models. In the update step

where we incorporate the current measurement information we use a linearization of the

measurement model to compute the gain matrix Lk and the covariance estimate Pk|k and

the nonlinear model to compute the state estimate x̂k|k. Analogously, in the propagation

step we use the nonlinear model to propagate the state estimate and a linearization to

propagate the covariance estimate. The resulting equations closely resemble Equations

(3.13) and (3.14)(cf. [171]).

For the dynamical and measurement model

xk+1 = f est(xk, uk) + wk, (3.15a)

yk = hest(xk) + vk, (3.15b)

let againW be the covariance matrix of the state noise wk and V be the covariance matrix

of the measurement noise vk. Furthermore, let Ak = dfest

dx (x̂k|k, uk) and Ck = dhest

dx (x̂k|k−1).

Starting with an initial guess x̂0|−1 = x0 for the state and P̂0|−1 = P for the covariance,

we iterate for k = 0, 1, 2, . . .

Lk = P̂k|k−1C
⊺
k (CkP̂k|k−1C

⊺
k + V )−1 (3.16a)

Pk|k = P̂k|k−1 − LkCkP̂k|k−1 (3.16b)

x̂k|k = x̂k|k−1 + Lk(yk − hest(x̂k|k−1)) (3.16c)

which yields the state estimate x̂k|k and covariance estimate Pk|k for sample k and then

prepare the next sample by propagating the state and covariance estimate through the

dynamical system by

x̂k+1|k = f est(x̂k|k, uk) (3.17a)

P̂k+1|k = AkPk|kA
⊺
k +W (3.17b)

The EKF provides an algorithmically simple and computationally cheap approach for

state estimation. However, there are several important drawbacks, namely, the lineariza-

tions may be bad approximations of the real nonlinear model functions and constraints on

the state cannot be incorporated. For a study of the practical implementation problems

of the EKF see, e.g., [182]. The problem of bad linearizations can be partly addressed by

using the unscented Kalman filter (UKF) which makes use of function evaluations rather

than linearizations to propagate the covariances, see for example [98, 97] for details. How-

ever, the problem of incorporating constraints remains, and both EKF and UKF can even

produce unphysical state estimates, see [156].
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3.7 Moving Horizon Estimation

3.7 Moving Horizon Estimation

The approach described in the following produces estimates that approximate the esti-

mates generated by the full information estimator better. It also allows to easily incorpo-

rate constraints to avoid unphysical or otherwise undesired estimates. The basic idea is

to come back to Problem 3.10, but instead of taking into account all measurement infor-

mation we only consider the N most recent measurements. This keeps the computational

effort fixed and independent from the sampling time and gives rise to the name Moving

Horizon Estimation (MHE) (cf. [156]). Older measurement information that lies outside

of the estimation horizon is discarded or can be approximately incorporated by using a

suitably chosen initial cost term which is called arrival cost.

For sampling times T ≤ N the horizon is not yet filled completely and so we solve the

full least squares estimation problem with T measurements. Since we have an additional

measurement in each following sample, we call this approach for the MHE initialization

growing horizon initialization.

For sampling times T > N the MHE problem reads

minimize
xT−N ,w

‖xT−N − x̄T−N‖2QT−N
+

T−1∑

j=T−N

‖wj‖
2
Q +

T∑

j=T−N

‖ηj − hest(xj)‖
2
R

subject to xj+1 = f est(xj , uj) + wj, j = T −N, . . . , T − 1.

(3.18)

In Problem 3.18 the tuning parameters x̄T−N and QT−N are used to incorporate approx-

imately the information from the discarded earlier measurements. Dropping the arrival

cost term, i.e. setting QT−N = 0, can be interpreted statistically as having or using no

a-priori information of the value of xT−N , i.e. the a-priori estimate x̄T−N has an infinite

variance. In practice, discarding the a-priori information could be sensible in some cases,

e.g., if a change or disturbance in the system dynamics invalidates old measurement in-

formation. However, in general it is quite desirable to use the available information to

the best possible extent and thus a proper choice of x̄T−N and QT−N is important for the

performance of the estimator. We briefly discuss a suitable choice later in this section.

From a numerical point of view, Problem 3.18 is an equality-constrained nonlinear

least-squares problem which allows a straightforward extension to a general constrained

nonlinear least-squares problem by adding inequality constraints, in particular bounds on

the variables. This allows to avoid unphysical intermediate variables, and helps guiding

the algorithm by cutting off undesired parts of the search space during the iterative

solution process. However, it should be noted that active inequality constraints in the

solution may invalidate the statistical interpretation of the estimate as MAP estimator.

For the moving horizon estimator, stability results have been established. Stability

means, that for the class of bounded noise sequences that converge to zero the estimated

state will converge to the true state, depending on certain properties of the system. Even

for noninformative prior, i.e. QT−N = 0, stability can be guaranteed. However, a careful

choice of the arrival cost term improves the controller performance significantly (cf. [156]).

In the following, we give numerical details for the choice and update of the arrival cost
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term for the MHE implementation used in this work. More details and further reading can

be found in [59, 114, 115]. Going from sampling time T to T +1 the ideal prior weighting

for the new problem on [tT−N+1, tT+1] can be derived by dynamic programming arguments

and reads

F (xT−N+1) = min
xT−N

{∥∥∥xT−N − x̄T−N

∥∥∥
2

QT−N

+ ‖wT−N‖2Q + ‖ηT−N − hest(xT−N )‖2R

}

s. t. wT−N = xT−N+1 − f est(xT−N , uT−N ). (3.19)

Problem (3.19) is nonlinear and thus writing down a closed-form solution is in general

impossible. However, linearization of the nonlinear functions f est(·) and hest(·) in the best

available estimate x̂T−N of state xT−N at sampling time T yields the analytically solvable

approximation in the variables (xT−N , xT−N+1)

min
xT−N

∥∥∥∥∥∥∥∥

Q
1
2
T−N

(
xT−N − x̄T−N

)

R
1
2 (ηT−N − h̄−Hx xT−N )

Q
1
2

(
xT−N+1 − x̄−Xx xT−N

)

∥∥∥∥∥∥∥∥

2

2

,

∥∥∥∥∥∥∥
A

(
xT−N

xT−N+1

)
+



a1
a2
a3




∥∥∥∥∥∥∥

2

2

, (3.20)

where we use the shorthands

Hx =
dhest

dx
(x̂T−N )

Xx =
∂f est

∂x
(x̂T−N , uT−N )

h̄ = hest(x̂T−N )−Hx x̂T−N

x̄ = f est(x̂T−N , uT−N )−Xx x̂T−N .

QR decomposition of

A =




Q
1
2
T−N 0

−R
1
2Hx 0

−Q
1
2Xx Q

1
2


 QR

= Q̄




R̄1 R̄12

0 R̄2

0 0


 , and



r1
r2
r3


 , Q̄⊺



a1
a2
a3




yields the following problem equivalent to (3.20)

min
xT−N

∥∥∥∥∥∥∥



r1
r2
r3


+




R̄1 R̄12

0 R̄2

0 0



(
xT−N

xT−N+1

)∥∥∥∥∥∥∥

2

2

.

This problem has the analytical solution

F̃ (xT−N+1) = ‖r3‖
2
2 +

∥∥r2 + R̄2 xT−N+1

∥∥2
2

and so we obtain as new prior weighting

QT−N+1 = R̄⊺
2R̄2, x̄T−N+1 = −R̄−1

2 r2. (3.21)
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From (3.21) and (3.20) we can see that QT−N+1 = R̄⊺
2R̄2 � R̄⊺

12R̄12 + R̄⊺
2R̄2 = Q, and

thus for all vectors v the relation ‖v‖2QT−N+1
≤ ‖v‖2Q holds. Therefore, the accuracy of

the knowledge about the a-priori state information x̄T−N+1 is naturally bounded by the

covariance Q of the state noise. This means that the influence of accumulated information

from earlier samples cannot grow over time to dominate the whole estimation problem and

thus the estimator can quickly react to sudden changes and disturbances in the process

behavior.

Online estimation of parameters Quite often, it is necessary or desirable to estimate

not only the current state but also the value of parameters of the process which may

change during runtime, e.g., due to external disturbances or malfunctions. We account

for those parameters by including them explicitly in the dynamic model (3.9a), and in

the measurement (3.9b), i.e., xk = f est(xk−1, uk−1, p) + wk−1 and ηk = hest(xk, p) +

νk. The Kalman filter variants cannot directly handle parameter estimation, however a

transformation of parameters to states analogously to the transformation described in

(2.11) allows to estimate parameters along with states by Kalman filter variants. The

MHE can directly handle combined state and parameter estimation, which is numerically

more efficient than using the transformation of parameters to states. For details about

the combined state and parameter estimation with MHE see, e.g., [115].
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Part II

Efficient numerical methods

for Model Predictive Control
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4 Real-Time Iteration schemes for NMPC

and MHE

The state-of-the-art real-time optimization methods NMPC and MHE solve in theory

an optimal control problem in each sample to calculate optimal feedback controls and

state and parameter estimates, respectively. In Chapter 1, we discussed the Direct Mul-

tiple Shooting method as a reliable and efficient approach to solve these optimal control

problems.

The immediate and naive approach is to simply apply in each sample some optimal

control solver in a black box approach to the arising optimal control problems. However,

while this approach is used, e.g., quite frequently in chemical engineering where process

dynamics are comparably slow, it is in general computationally wasteful and puts limits

on the size of models that can be used in such a framework. If the dynamics are fast-

changing, e.g., as in many mechanical processes, solving the optimal control problem

can be prohibitive even on modern computers and hardware. The feedback controls

obtained in that way will in general be outdated or even infeasible and a quick reaction

to disturbances is not possible.

To obtain efficient algorithms for real-time optimization, we have to make use of the fact

that the consecutive optimal control problems are closely related and thus information

gained from the preceding problem can be used advantageously in the computations for

the current problem. In particular, we will present the ideas of tangential predictors (TP)

and initial value embedding (IVE). These ideas motivate the Real-Time Iteration scheme

(RTI), which is an efficient algorithmic approach to real-time optimization and estimation.

We will state numerical details and well-known stability results.

Note that in this chapter, f and g denote different mathematical objects than in the

previous chapters.

4.1 Tangential predictors and initial value embedding

We start by explaining the idea of tangential predictors in a more general framework

and then see how the concept is applied in the NMPC context. Consider a function

f : R
n 7→ R

m of a variable x ∈ R
n and let x∗ be some fixed variable value. If f is

sufficiently smooth, Taylor’s theorem states that

f(x) = f(x∗) + f ′(x∗)(x− x∗) +O(‖x− x∗‖2),

see any textbook on analysis, e.g., [159, 80]. That means, we obtain a good, first-order

accurate approximation of f(x) for a whole range of x close to x∗ by using the tangential
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4 Real-Time Iteration schemes for NMPC and MHE

predictor t(x) = f(x∗) + f ′(x∗)(x − x∗). Now think of f as a function which is highly

expensive to evaluate and consider the task that you have to quickly provide good approx-

imations of f(x) as soon as values x are given. Since f(x∗) and f ′(x∗) can be computed

in advance, evaluating the tangential predictor t(x) solves the task highly efficiently, by

applying simply a matrix-vector multiply-add, see Figure 4.1(a).

✲

✻

x

y

f(x)

x∗

y∗

= f(x∗)

✪
✪
✪
✪
✪
✪✪

✪
✪

✪
✪✪

r

x̄

r
y∗ + f ′(x∗)(x̄ − x∗)

≈ f(x̄)

(a) TP for explicit function

✲

✻

x

y

g(x, y(x)) = 0

r

x∗

y∗

= y(x∗)

�
�
�
�
��

�
�

�
�

x̄

ry∗ + dy
dx

(x∗)(x̄ − x∗)

≈ y(x̄)

(b) TP for implicit function

Figure 4.1: Principle of tangential predictors (TP)

Next consider a function g : Rn×m 7→ R
m and the equality constraint g(x, y) = 0. The

implicit function theorem states, that for values (x∗, y∗) satisfying g(x∗, y∗) = 0 and under

some technical assumptions this constraint defines a function y : Rn 7→ R
m, which then

satisfies g(x, y(x)) = 0 in a neighborhood of (x∗, y∗) and y(x∗) = y∗, see also [159, 80].

Again, consider the case that obtaining y from g is a computationally highly expensive

task and that we quickly need good approximations of y(x) for given values x. Like in the

explicit case, these approximations can be obtained by evaluating the tangential predictor

t(x) = y(x∗) + dy
dx(x

∗)(x− x∗). What makes this case more difficult is that the derivative
dy
dx(x

∗) of the implicit function y is needed, which is also provided by the implicit function

theorem as

dy

dx
(x∗) = −

∂g

∂y
(x∗, y∗)−1 ∂g

∂x
(x∗, y∗),

where we assume that ∂g
∂y (x

∗, y∗) is invertible. Again, we can compute the expensive parts

y(x∗) and dy
dx(x

∗) in advance and thus obtain the approximations of y(x) quickly and

efficiently by a matrix-vector multiply-add, see Figure 4.1(b).

Let us now move to how the concept of tangential predictors can be used for efficient

numerics for NMPC. The application of the Direct Multiple Shooting method to the
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NMPC optimal control problem as stated in (3.1) yields in each sample the NLP

minimize
s,q

∑N−1

i=0
L (si, qi) +m (sN ) (4.1a)

subject to 0 = s0 − x0, (4.1b)

0 = si+1 − xi(ti+1; si, qi), 0 ≤ i < N, (4.1c)

0 ≤ cpath(si, qi), 0 ≤ i ≤ N − 1, (4.1d)

0 ≤ r(sN ), (4.1e)

with si the Multiple Shooting state variables and qi the Multiple Shooting control vari-

ables. We can see that these NLPs differ from sample to sample only by the value of

the parameter x0 in the constraint (4.1b). NLP (4.1) is thus an example for parametric

programming, and we can write it more generically as

minimize
w

b(w) (4.2a)

subject to 0 = c(w, x0), (4.2b)

0 ≤ d(w), (4.2c)

where we have combined the state and control variables in w. Consider for a moment

that there are no inequalities d(w). Then, the first-order KKT conditions, which define

the critical points of NLP (4.2), are

g(w, λ, x0) ,

(
∇b(w)−∇c(w, x0)λ

c(w, x0)

)
= 0, (4.3)

with multipliers λ of the equality constraints c. Thus, the optimality conditions g im-

plicitly define the functions (and primal-dual solution candidates) w(x0) and λ(x0), and

we can apply the tangential predictor for implicitly defined functions as discussed above.

That means, with a solution w∗, λ∗ for an initial value x∗0 we can obtain computationally

inexpensive approximations of primal-dual pairs w(x0), λ(x0) for new initial values x0 in

a neighborhood of x∗0.

If inequality constraints d(w) are present, the optimality conditions are no longer a

set of equations only. However, in [51] it is shown that we can still compute tangential

predictors, which are now not given by the solution of a linear equation but by the solution

of a QP. The situation is depicted in Figure 4.2. Close to x∗0, where small changes of x0 do

not lead to a change in the active set of the solution, the tangential predictor works like

discussed above in the implicit case. However, even if the new initial value x0 leads to a

change in the active set of the solution, the QP still provides a good tangential predictor

because the QP takes active set changes into account by incorporating the linearized

inequality constraints.
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✲

✻

x

w(x)

r
AS change NLP(x)

r

x∗

y(x∗)

❡
❡
❡
❡
❡
❡
❡

❡
❡

❡
❡

❡❡

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

r

AS change QP(x; x∗)

❄

r

x̄1

ȳ1 ≈ y(x̄1)

r

x̄2

ȳ2 ≈ y(x̄2)

g1(x, y(x)) = 0

g2(x, y(x)) = 0

Figure 4.2: Generalized tangential predictor (TP) with active set (AS) change. The TP is given by

the parametric quadratic program QP(x;x∗) set up in x∗ with parameter x. It approximately detects

AS changes in the optimal solution of the parametric nonlinear program NLP(x) with parameter x.

Moreover, if problem (4.2) is augmented to

minimize
t,w

b(w) (4.4a)

subject to 0 = t− x0, (4.4b)

0 = c(w, t), (4.4c)

0 ≤ d(w), (4.4d)

and t∗, w∗, λ∗, µ∗ is a primal-dual solution of the KKT conditions for the initial value x̄0,

the QP which gives us the tangential predictor for a new initial value x0 has the specific

form

minimize
∆t,∆w

1

2

(
∆w

∆t

)⊺

H(w∗, t∗, λ∗, µ∗)

(
∆w

∆t

)
+∇wb(w

∗)⊺∆w (4.5a)

subject to 0 = ∆t+ (t∗ − x0), (4.5b)

0 =
∂c

∂t
(w∗, t∗)∆t+

∂c

∂w
(w∗, t∗)∆w + c(w∗, t∗), (4.5c)

0 ≤
dd

dw
(w∗)∆w + d(w∗), (4.5d)

where H is the Hessian of the Lagrange function with respect to w and t. The tangen-

tial predictor is now simply calculated by updating the solution w∗, t∗, λ∗, µ∗ with the

computed step in the primal and dual variables. It should be noted that the tangential

predictor becomes approximate if QP (4.5) is not initialized in the solution w∗, t∗, λ∗, µ∗,

i.e., if we use an approximation of H or the constraint Jacobians or if the gradient or

constraint residuals are not evaluated exactly.

The augmentation of problem (4.2) by the constraint 0 = t − x0 is called the initial

value embedding (IVE) and the working principle is that introducing the parameter as an

60



4.2 Real-Time Iteration scheme for Model Predictive Control

additional NLP variable by this trivial equation adds derivative information with respect

to the parameter to the QP. It should be noted that the NLPs (4.1) from a Direct Multiple

Shooting discretization of the NMPC feedback generating control problems always exhibit

this structure naturally due to the initial value constraint (4.1b) and so no additional

variable t has to be introduced, i.e., QP (4.5) is replaced by

minimize
∆w

1

2
∆w⊺H(w∗, λ∗, µ∗)∆w +∇wb(w

∗)⊺∆w (4.6a)

subject to 0 = ∆s0 + (s∗0 − x0), (4.6b)

0 =
dc

dw
(w∗)∆w + c(w∗), (4.6c)

0 ≤
dd

dw
(w∗)∆w + d(w∗). (4.6d)

For further reading and an excellent survey on the topic of tangential predictors in NMPC

the reader is referred to [56].

4.2 Real-Time Iteration scheme for Model Predictive Control

In NMPC we have to address two important issues for the feedback calculation: First to

enable short sampling intervals and, second, to reduce the delay between obtaining the

system state x0 and feedback of the calculated control response u(x0) to the system. A

high feedback frequency allows to handle time-critical processes, improves performance

in the presence of uncertainties and disturbances, and enables the process to operate

closer to its bounds and constraints. Classical NMPC, which waits for x0 and then solves

NLP (4.1), e.g., by a structured SQP method, struggles to address both issues. Because

there is no general bound on the number of iterations needed to obtain a solution, we

have to choose sampling intervals according to worst-case guesses of the solution runtime.

Furthermore, while the solver is running, we have to apply outdated controls to the process

which may lead to performance losses or even constraint violations.

In order to improve performance, recall the results discussed in the last section. Solving

QP (4.6) amounts to taking the first iteration of a full-step exact-Hessian SQP method

initialized in the old solution w∗, λ∗, µ∗ for the new initial value x0. Furthermore, due to

the fact that x0 enters only linearly, and only in the linearized IVE constraint (4.6b), all

derivatives and almost all constraint evaluations that are needed to set up QP (4.6) can

be computed without knowledge of the actual value of x0. These observations motivate

the following real-time optimization approach, which we refer to as NMPC-RTI :

• Per sample time, perform only one SQP iteration, initialized in the current iterate

wk, λk, µk, which is the best available guess for w∗, λ∗, µ∗. This exploits the ideas of

tangential predictors and initial value embedding to obtain good feedback control

updates as explained above while allowing to choose small sampling times and thus

a high frequency of feedback control updates. Note that due to its linearity, the

IVE constraint will be satisfied after the first iteration, as well as any bounds on

the variables.
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4 Real-Time Iteration schemes for NMPC and MHE

• Split the computations into three phases, namely

1. Preparation phase: Set up and presolve QP (4.6) as far as possible without

knowledge of the current initial value x0, i.e., evaluate the HessianH(wk, λk, µk)

or an approximation Bk, the constraint Jacobians
dc
dw (wk) and

dd
dw (wk), the gra-

dient ∇wb(wk), and the constraint residuals c(wk) and d(wk). Note that this

step includes solving the dynamic equations as well as calculating sensitivity

information, which makes it computationally particularly demanding. Because

all QP matrices are available, we can also eliminate the variables ∆s1, . . . ,∆sN
by condensing and even perform an initial matrix decomposition for the con-

densed QP.

2. Feedback phase: As x0 becomes available, evaluate the IVE constraint (4.6b)

and solve the condensed QP to obtain the solution step in the primal variables

∆s0,∆q and the new multipliers. Immediately return the control feedback

q0,k+1 = q0,k + ∆q0,k to the process. Thus, the feedback delay is reduced

to the solution time of the QP. The affine-linear dependence of this QP on

x0 can particularly be exploited by parametric quadratic programming, see

[75, 148, 73] and the discussion in Chapter 7.

3. Transition phase: Recover the eliminated step variables ∆s1, . . . ,∆sN and ap-

ply the step to obtain the new set of NLP variables (wk+1, λk+1, µk+1). If

enough time is available, further iterations could be performed to improve

(wk+1, λk+1, µk+1) towards (w∗, λ∗, µ∗), otherwise continue with the prepara-

tion phase for the next sample.

This approach is called the Real-Time Iteration scheme (RTI) and it has been presented

and investigated in [51, 55] and many subsequent works. Stability has been shown for

the RTI in various settings in [58, 54, 57, 174]. The key reason for the efficiency of the

Real-Time Iterations is the decoupling of the computations and the sampling, which is

possible due to the IVE, and thus the efficient use of computational time which would be

wasted by waiting for the new x0 in the black-box optimization approach.

The algorithm presented here is referred to as the warm start approach in [51], i.e., we

use the unmodified wk, λk, µk as initializer for the RTI. This adds another interpretation of

the RTI as a continuously running SQP method, where only the parameter x0 is changed

during runtime. Alternatively, the initializer could be chosen by shifting the previous

solution and appending suitable primal and dual variables at the end. For a discussion

of shifted vs. non-shifted initialization see, e.g., [53, 51, 56]. In summary, shifting is

only necessary in periodic tracking applications and for non-autonomous systems and

non-autonomous cost functions.

4.3 Real-Time Iteration scheme for Moving Horizon Estimation

As discussed in Chapter 3, quite often we do not have the new current state x0 readily

available but have to obtain an estimate x̂0 from measurement data. We presented MHE as
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4.3 Real-Time Iteration scheme for Moving Horizon Estimation

an state-of-the-art approach to online state and parameter estimation. The NLP arising

from a Direct Multiple Shooting discretization of the estimation problem for sampling

time T reads

minimize
s,ω,p

∥∥∥∥∥
s0 − x̄T−N

p− p̄T−N

∥∥∥∥∥

2

QT−N

+
N−1∑

j=0

‖ωj‖
2
Q +

N∑

j=0

‖ηT−N+j − h(sj , p)‖
2
R (4.7a)

subject to ωj = sj+1 − xj(tj+1; sj, qT−N+j, p), j = 0, . . . , N − 1, (4.7b)

sj,min ≤ sj ≤ sj,max, j = 0, . . . , N, (4.7c)

ωj,min ≤ ωj ≤ ωj,max, j = 0, . . . , N − 1, (4.7d)

pmin ≤ p ≤ pmax, (4.7e)

where the variables are the states s0, . . . , sN , the state noise ω0, . . . , ωN−1 and the param-

eters p. The online data, which is updated in each sample, are the a priori information

x̄T−N , p̄T−N and QT−N for the arrival cost term, the controls qT−N , . . . , qT−1 and the

measurements ηT−N , . . . , ηT . In principle, the weighting matrices R for the measure-

ments could vary as well, e.g., to model skipped measurements, and then would also be

part of the online data.

With variables w = (s,w, p) and online data summarized as D we can write NLP (4.7)

generically as

min
w

‖r(w;D)‖22 s.t. c(w;D) = 0, d(w) ≥ 0. (4.8)

This problem is a constrained nonlinear least-squares problem and thus our preferred

numerical solution approach is the generalized Gauss-Newton method which works iter-

atively and uses in each iteration a linearization of all problem functions in the current

iterate wk. It generates variable increments ∆wk by solving

min
∆w

∥∥∥∥r(wk;D) +
dr

dw
(wk;D)∆w

∥∥∥∥
2

2

(4.9a)

s. t. c(wk;D) +
dc

dw
(wk;D)∆w = 0, (4.9b)

d(wk;D) +
dd

dw
(wk;D)∆w ≥ 0. (4.9c)

and setting wk+1 = wk + ∆wk. As before, the structure introduced by the Multiple

Shooting discretization can be exploited by condensing to reduce the size of the problem

before solving. Problem 4.9 is in principle a QP and can thus be solved by standard QP

solvers. However, to address possible ill-conditioning, algorithms that avoid the explicit

calculation of the QP Hessian ( dr
dw )

⊺ dr
dw are preferable.

A close-up look at the online data shows that the data connected with the arrival cost

term, the controls, and the measurements ηT−N , . . . , ηT−1 are all known before sample

time T , and only the most recent measurement ηT is not yet available. This is in close

similarity to the current state x0 in NMPC and thus suggests to use RTI also for MHE. It

should be noted that in the MHE case the first iteration will not be a tangential predictor

of the solution, regardless whether an exact Hessian is used or not. This is due to two
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4 Real-Time Iteration schemes for NMPC and MHE

aspects: first, we do not have an embedding equation for the measurement ηT , so no

sensitivity information with respect to ηT is available in Problem 4.9, and second, the

problems change at least slightly from sample to sample due to the update of the arrival

cost term.

However, we can see from (4.7) that the most recent measurement ηT only enters linearly

in r(w;D) and thus in the objective gradient of Problem 4.9. This means that, as in the

case of NMPC, we can compute all derivative matrices, constraint residuals, and almost

the complete gradient without the knowledge of ηT . Thus, we can apply the approach of

RTI and divide up the calculations into preparation phase, feedback phase, and transition

phase. We refer to the following algorithm as MHE-RTI.

1. Preparation phase: Set up and presolve the linear least-squares problem (4.9) as

far as possible without knowledge of the measurement ηT , i.e., evaluate the ma-

trices dr
dw (wk;D), dc

dw (wk;D), and dd
dw (wk;D), the constraint residuals c(wk;D) and

d(wk;D), and as far as possible the least-squares residual r(wk;D). Because all

matrices are available, we can also eliminate the variables ∆s1, . . . ,∆sN by con-

densing and even perform an initial matrix decomposition for the condensed linear

least-squares problem.

2. Feedback phase: As ηT becomes available, complete the evaluation of r(wk;D)

and solve the condensed linear least-squares problem to obtain the solution step

in the variables ∆s0,∆ω,∆p. Recover the step variables ∆s1, . . . ,∆sN . Immedi-

ately return the state estimate sN,k+1 = sN,k + ∆sN,k and the parameter estimate

pk+1 = pk +∆pk to the NMPC-RTI controller.

3. Transition phase: Apply the step to obtain the new wk+1. Update the arrival cost

term as explained in Chapter 3. Perform a shift of the variables s and ω by discarding

s0 and ω0 and choosing new values sN and ωN−1, e.g., sN , x(tN ; sN−1, qN−1, p)

and ωN−1 , 0.

For an implementation of the combined and parallel cycle of NMPC-RTI and MHE-RTI

we have to consider the following synchronization requirements:

• The feedback phase of NMPC-RTI requires a completed feedback phase of MHE-RTI

because only then the estimate x̂0 is available.

• The transition phase and the following preparation phase of MHE-RTI requires a

completed feedback phase of NMPC-RTI because only then the new control qN−1

is available.

For more details on the MHE-RTI and its successful application to problems from process

engineering see, e.g., [59, 113, 114, 115].
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In this chapter we present the Multi-Level Iteration schemes (MLI) as a new and efficient

numerical approach for NMPC. We give a short motivation, then describe the different

levels. We discuss how to assemble schemes with fixed level choice and how to exchange

data between the levels. We give local convergence theory for a special case and reference

previous work for the general case which applies to a subset of iteration schemes. We

close the chapter with a note on mixed-level and fractional-level iterations.

5.1 Multi-Level Iteration approach

In the previous chapter, we presented the RTI scheme as an efficient numerical approach

to both NMPC and MHE. The key features are the separation of the calculations into

preparation phase, feedback phase, and transition phase and that only one nonlinear

iteration is performed per sample. The computationally dominant tasks for each iteration

are the function and derivative evaluation, condensing, and the QP solution. The former

two are part of the preparation phase, the latter is part of the feedback phase.

The ratio of computational effort between these three tasks depends of course on several

factors such as system size and nonlinearity, horizon length, number of shooting intervals,

and number of constraints. However, as a rule of thumb, for typical applications from

process engineering, function and derivative evaluation will most often take by far the

bulk of computational effort per sample, followed by condensing and QP solution.

The Multi-Level Iteration schemes (MLI) presented in this work aim to reduce the

computational effort spent for function and derivative evaluation and thus allow higher

sampling rates. This is done by generating feedback by up to four different controller

levels, i.e., feedback-generating QPs that update their respective data with decreasing

complexity, ranging from full Real-Time Iterations to no updates at all. MLI schemes

are then combined from the four different levels with a policy how data is communicated

between the levels.

The motivation for the MLI is the observation that quite often the timescales of the

process dynamics and their linearizations are different, i.e., while the process dynamics

may change quickly, the linearizations may be valid for a much longer timeframe. As an

illustrating example consider the linear harmonic oscillator, see (2.6). Depending on the

frequency the trajectory of the oscillator may change rapidly with time. However, the

linearization is constant and thus remains valid without change for all times. Based on

these considerations, MLI tries to avoid computing unnecessary linearizations which are

the computationally most expensive task per iteration.

65



5 Multi-Level Iteration schemes

MLI was first proposed in [30]. Applications of MLI to mechanical and chemical pro-

cesses were reported in [186, 187, 185, 3, 129]. The Euler steps and the explicit feedback

law have been first published in [107]. The application of MLI to NMPC with long hori-

zons has been investigated in [106]. The mixed-level and fractional-level MLI schemes

have been first published in [85]. The following presentation of these topics leans on and

cites in parts from the above mentioned publications.

5.2 Description of the MLI levels

In principle, all four levels follow the idea of RTI with a separation of the computations

into preparation phase, feedback phase, and transition phase, and performing a single

iteration per sample for feedback calculation. In the feedback phase of sample k, the

currently active level solves a QP

minimize
∆w

1

2
∆w⊺Bk∆w + b⊺k∆w (5.1a)

subject to 0 = ∆s0 + (s0 − xk0), (5.1b)

0 = Ck∆w + ck, (5.1c)

0 ≤ Dk∆w + dk, (5.1d)

however, the levels update their data Bk, Ck,Dk, bk, ck, dk differently. As a consequence,

they have different computational workload in the preparation phase. In the following,

we describe the four levels in order of decreasing computational complexity.

5.2.1 Full linearization iterations (level-D)

Level-D iterations are essentially Real-Time Iterations, i.e., full SQP iterations, cf. Section

4.2. Level-D holds its own set of primal and dual variables (wD
k , λ

D
k , µ

D
k ) and in each

iteration, the constraints ck = c(wD
k ), dk = d(wD

k ), the objective gradient bk = ∇b(wD
k ),

and the constraint Jacobians Ck = dc
dw (w

D
k ),Dk = dd

dw (w
D
k ) are evaluated and a new

Hessian (approximation) Bk = B(wD
k , λ

D
k , µ

D
k ) is calculated. For the special case of a

least-squares objective, i.e., b(w) = 1
2‖r(w)‖

2
2, the Gauss-Newton approximation Bk =

J(wD
k )

⊺J(wD
k ) with J(w) =

dr
dw (w) is a favorable and recommended choice. After solving

QP (5.1), the control feedback qD0,k+∆qD0,k is given to the process and the primal and dual

variables are updated by

wD
k+1 = wD

k +∆wD
k , λDk+1 = λQP

k , µDk+1 = µQP
k , (5.2)

where ∆wD
k , λ

QP
k , µQP

k is the primal-dual QP solution.

The computationally most expensive tasks in each level-D iteration are the evaluation

of the full constraint Jacobians, in particular the linearization of the system dynamics,

and the calculation of the Hessian (approximation). Because all matrices and vectors are

updated, a full condensing step is required. If a parametric QP solver is used, an initial

matrix decomposition for the condensed QP has to be performed.
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5.2.2 Optimality iterations (level-C)

In level-C iterations, the evaluation of the constraint Jacobians, which comprise the com-

putationally expensive system dynamics linearization, is avoided. Level-C holds its own

variables (wC
k , λ

C
k , µ

C
k ) and approximations Bk, Ck,Dk of the Hessian and the constraint

Jacobians. For the special case of a least-squares objective, level-C may hold an approx-

imation Jk of the Jacobian of the objective residual r instead of Bk and use Bk = J⊺
kJk

as Hessian approximation. In each iteration the constraints ck = c(wD
k ), dk = d(wD

k ) are

evaluated. Instead of the standard gradient, the modified gradient

bk = ∇b(wC
k ) +

(
C⊺
k −

dc

dw
(wC

k )
⊺

)
λCk +

(
D⊺

k −
dd

dw
(wC

k )
⊺

)
µCk

= ∇L(wC
k , λ

C
k , µ

C
k ) + C⊺

kλ
C
k +D⊺

kµ
C
k (5.3)

is computed. Note that although the exact Jacobians enter the modified gradient, they

do so only by a matrix-vector product which can be efficiently computed by adjoint IND

and the reverse mode of automatic differentiation, cf. [90].

After solving QP (5.1), the control feedback qC0,k+∆qC0,k is given to the process and the

primal and dual variables are updated by

wC
k+1 = wC

k +∆wC
k , λCk+1 = λQP

k , µCk+1 = µQP
k , (5.4)

where ∆wC
k , λ

QP
k , µQP

k is the primal-dual QP solution.

In this work, we consider the case that the approximations Bk or Jk, Ck, and Dk

are fixed matrices, often provided by a level-D iteration. In this case, the dominant

computational cost is often the evaluation of the Lagrange gradient ∇L(wC
k , λ

C
k , µ

C
k ). It

can be obtained at no more than five times the combined cost of the objective function

and constraint evaluation, which is in general dominated by the solution of the dynamical

system, cf. [90].

It should be noted that the bound on the evaluation cost given above refers to an

evaluation of the objective and constraints for a given fixed evaluation scheme. However,

the integrator has to determine this scheme first by applying the adaptive choices for

error control. This can be computationally so expensive that the evaluation of the scheme

afterwards is significantly cheaper and thus the gradient evaluation cost may be only

a small multiple of or even cheaper than the constraint evaluation cost including the

adaptive choices.

Condensing has to be applied only to the updated vector data, which reduces the

complexity to O(N), with N the number of Multiple Shooting nodes. If a parametric

QP solver is used, the final matrix decomposition of the preceding QP can be reused for

initialization.

5.2.3 Feasibility iterations (level-B)

In level-B iterations, the exact evaluation of any new derivative information is avoided.

Level-B holds its own variables (wB
k , λ

B
k , µ

B
k ) and approximations Bk, Ck,Dk of the Hessian
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and the constraint Jacobians. Furthermore, level-B holds a fixed reference gradient b̄

and a fixed set of reference variables w̄, which are in general provided by level-D or

level-C iterations. For the special case of a least-squares objective, level-B may hold an

approximation Jk of the Jacobian of the objective residual r instead of Bk and use Bk =

J⊺
kJk as Hessian approximation. In each iteration the constraints ck = c(wD

k ), dk = d(wD
k )

are evaluated. An approximation of the gradient is computed by

bk = b̄+Bk

(
wB
k − w̄

)
(5.5)

for the case of an economic objective function, and by

bk = J⊺
k r(w

B
k ) (5.6)

for the case of a least-squares objective function with Gauss-Newton Hessian approxima-

tion Bk = J⊺
kJk.

After solving QP (5.1), the control feedback qB0,k+∆qB0,k is given to the process and the

primal and dual variables are updated by

wB
k+1 = wB

k +∆wB
k , λBk+1 = λQP

k , µBk+1 = µQP
k , (5.7)

where ∆wB
k , λ

QP
k , µQP

k is the primal-dual QP solution.

In this thesis, we consider the case that the approximations Bk or Jk, Ck, and Dk are

fixed matrices, mostly provided by a level-D or level-C iteration. In this case, the dominant

computational cost is the evaluation of the constraints, in particular the solution of the

dynamical system. Condensing has to be applied only to the updated vector data, which

reduces the complexity to O(N), with N the number of Multiple Shooting nodes.

As discussed later in this chapter, in general level-B iterations drive their primal-dual

iterates towards a feasible but suboptimal point and thus cannot provide optimal feed-

back. In a tracking NMPC application this may lead, e.g., to a failure in tracking a

desired setpoint if only level-B iterations are applied to the process, see the numerical

investigations in Chapter 9.

5.2.4 Feedback iterations (level-A)

In level-A iterations, no QP data is updated at all, which also means that no condensing

is necessary. If a parametric QP solver is used, the final matrix decomposition of the

preceding QP can be reused for initialization. Level-A holds no own variables and thus,

in contrast to the other levels, does no internal iterations. Level-A iterations aim solely

at giving feedback as quickly as possible.

Level-A keeps fixed approximations Bk or Jk, Ck, and Dk of the Hessian and constraint

Jacobians, and fixed approximations bk, ck, dk of the objective gradient and the constraint

residuals. Furthermore, level-A keeps a fixed set of reference variables w̄ for feedback

calculation. After solving QP (5.1), the control feedback q̄0+∆qA0,k is given to the process,

where ∆wA
k is the primal QP solution.

Level-A is essentially a linear model predictive controller (LMPC) that works on local

linearizations provided by higher levels.
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Explicit feedback law

Level-A iterations can even be used to generate a local feedback law which maps differences

∆x0 = xnew0 − x0 to feedback updates and thus can be used as an explicit continuous

feedback law between two following QP solutions.

To see this, consider the Karush-Kuhn-Tucker (KKT) system of the QP (5.1) after a

successful solution



B −C̃⊺
k −D⊺

k,A

C̃k

Dk,A




︸ ︷︷ ︸
:=K




∆wk

∆λk
∆µk,A


 = −



bk
c̃k
dA


 , (5.8)

where A is the optimal active set, c̃k combines the IVE constraint (5.1b) and the equality

constraints (5.1c), and C̃k is the corresponding combined Jacobian approximation. Let

I∆q0 be the part of an identity matrix with suitable dimensions that extracts ∆q0 from

∆w. The part of the inverse of K which gives ∆q0 when applied to the right hand side is

then obtained by solving

K⊺X = I∆q0 . (5.9)

Since a decomposition of K is available from the QP solver, this amounts to only nu
backsolves. Assuming that A keeps constant for small changes in x0, an update for ∆q0
can be determined by building

X⊺




0(
∆x0
0

)

0


 , (5.10)

for which only a small part of the matrix X is actually needed. Furthermore, we can write




0(
∆x0
0

)

0


 = I∆x0∆x0, (5.11)

where I∆x0 is the part of an identity matrix with suitable dimensions that maps ∆x0 to

the position of the IVE constraint within a vector of the size of the right-hand side that

is otherwise zero. It follows that we obtain an update for ∆q0 by building

(I∆q0)
⊺K−1

I∆x0∆x0. (5.12)

Thus, if nu >> nx0 , it is computationally more efficient to solve

KX = I∆x0 (5.13)

instead of (5.9) and build

(I∆q0)
⊺X∆x0 (5.14)

to obtain an update for ∆q0.
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Euler steps

In some cases the limiting factor for feedback generation is the sampling rate of the

system states x0, e.g., if the current states are obtained from a measurement procedure

with limited throughput.

If it is still desired to update the feedback control with a higher frequency, a possible

remedy is to use the model to predict the next xk+1
0 by an Euler step

xk+1
0 = xk0 + (tk+1 − tk) f(tk, x

k
0 , q0,k) (5.15)

for tk+1 close to tk and use xk+1
0 to obtain a new feedback q0,k+1. In addition, as the

explicit Euler scheme generates a linear affine homotopy path for xk+1
0 (t) starting in tk,

it can be readily combined with the parametric QP strategy of section 7.1. This allows

system state predictions to enter the QP solution even before the solution process has

been completed.

5.3 Assembling MLI schemes

In the following, we describe how Multi-Level Iteration schemes may be assembled from

the four levels presented above. Here, we will consider only schemes that are prescribed in

advance before applying the scheme to the process. The adaptive choice of levels online is

considered in the following chapter. We will discuss the choice of levels and the exchange

of data between different levels.

5.3.1 Prescribed MLI schemes

We will discuss the assembly of Multi-Level Iteration schemes with prescribed level order

for schemes that make use of all four levels presented. For a practically useful scheme it is

reasonable to take the different computational times per level iteration into account. Let

∆A,∆B,∆C, and ∆D be upper bounds on the expected worst-case computational times for

level-A, level-B, level-C, and level-D iterations, respectively. These upper bounds may be

obtained from numerical experiments. As sampling interval we choose a suitable δ ≥ ∆A

and define

nB =

⌈
∆B

∆A

⌉
, nC =

⌈
∆C

∆B

⌉
, nD =

⌈
∆D

∆C

⌉
. (5.16)

Then, a natural choice for a Multi-Level Iteration scheme with prescribed level order is

1. basically apply level-A to generate feedback in each sample, except,

2. each nB sample, perform a level-B iteration,

3. each (nB · nC) sample, perform a level-C iteration,

4. each (nB · nC · nD) sample, perform a level-D iteration.
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5.3 Assembling MLI schemes

Alternatively, we can define

n̄B =

⌈
∆B

∆A

⌉
, n̄C =

⌈
∆C

∆A

⌉
, n̄D =

⌈
∆D

∆A

⌉
, (5.17)

and choose the level order as

1. basically perform level-A to generate feedback in each sample, except,

2. each n̄B sample, perform a level-B iteration,

3. each n̄C sample, perform a level-C iteration,

4. each n̄D sample, perform a level-D iteration.

In both cases, if a sample belongs to two or more levels according to the selection method,

the highest applicable level is chosen.

Both level choices practically guarantee that between each two iterations of the same

level enough time is available to finish the corresponding preparation phase in time before

having to compute the feedback. As a compact notation for such a scheme we write

A1BnBC(nB·nC)D(nB·nC·nD) in the first case, and A1Bn̄BC n̄CDn̄D in the second case, e.g.,

A1B3C6D30 for nB = 3, nC = 2, and nD = 5. A visualization of an incremental assembly

of the MLI scheme A1B2C4D8 beginning with a pure level-A scheme is given as example

in Figure 5.1.

Of course, schemes can be assembled analogously using only a subset of the four levels,

e.g., a combination of level-A and level-D for a scheme with fast feedback and occasional

updates of the linearizations, or a pure level-C scheme as a fully nonlinear alternative to

the standard RTI scheme. Using the notation introduced above, well known limit cases

of the MLI schemes are the A1 scheme, which is standard LMPC, and the D1 scheme,

which is the standard RTI scheme.

Example applications of such MLI schemes can be found, e.g., for mixed A and D level

schemes for the disturbance rejection in a car crash scenario in [3], for pure C level schemes

for the control of a chain of spring connected masses in [186, 187], and for a mixed B and

D level scheme for the control of a chemical batch reactor in [129].

5.3.2 Data transfer between levels

The data communicated between the different levels can be divided into two parts: First,

the matrix and vector data in the QP which generates the actual feedback given to the

process and, second, the level-specific primal-dual variables, which determine the point in

the space of the optimization variables where functions and derivatives are evaluated.

Regarding the matrix and vector data for the feedback-generating QP, we focus on the

update algorithm (Algorithm 1).
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A A A A A A A A A A A A A A A A . . . A1

A A A A A A A AB B B B B B B B . . . A1B2

A A A A A A A AB B B BC C C C . . . A1B2C4

A A A A A A A AB B B BC CD D . . . A1B2C4D8

Figure 5.1: Incremental construction of the example MLI scheme A1B2C4D8. From top to bottom:

Pure level-A scheme, A1B2 scheme, A1B2C4 scheme, and A1B2C4D8 scheme. Note that higher

levels take precedence in the case of a multi-occupancy of level slots.

Input: current level

switch current level do

case level-D do
In QP (5.1), set

bk = ∇b(wD
k ),

ck = c(wD
k ),

dk = d(wD
k ),

Ck = dc
dw (w

D
k ),

Dk = dd
dw (w

D
k ),

Bk = B(wD
k , λ

D
k , µ

D
k ).

Pass Ck and Dk to level-C for computation of modified gradient.

Pass Bk (or Jk), bk, and w
D
k to level-B for computation of approximated

gradient.

Set q̄0 = qD0,k as new reference in level-A.

case level-C do
In QP (5.1), set

bk = ∇L(wC
k , λ

C
k , µ

C
k ) + C⊺

kλ
C
k +D⊺

kµ
C
k ,

ck = c(wC
k ),

dk = d(wC
k ).

Pass bk and wC
k to level-B for computation of approximated gradient.

Set q̄0 = qC0,k as new reference in level-A.

case level-B do
In QP (5.1), set

bk = b̄+Bk

(
wB
k − w̄

)
or bk = J⊺

k r(w
B
k ),

ck = c(wB
k ),

dk = d(wB
k ).

Set q̄0 = qB0,k as new reference in level-A.

Algorithm 1: Data communication for feedback-generating QP

Algorithm 1 amounts to passing all available QP data from higher levels to lower levels.
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5.3 Assembling MLI schemes

However, other approaches are possible and interesting, such as using level-D iterations

only to update the matrix data Bk, Ck, and Dk, and then using the most recent level-C

or level-B right-hand-side data bk, ck, and dk to calculate feedback. This can be done

quite efficiently, because the matrix data enters only in the form of quickly computable

matrix-vector products in the gradient approximations bk of level C and level-B, so most

parts of the computations can be done in parallel.

Since the levels B, C, and D each have their own sets of primal and possibly dual

variables the question arises if and how they should exchange information in the case of

level switching. There are four basic ways how such a communication can be organized.

Input: current level

switch current level do

case level-D do

Set (wC , λC , µC) = (wD, λD, µD)

Set (wB , λB , µB) = (wD, λD, µD)

case level-C do

Set (wB , λB , µB) = (wC , λC , µC)

case level-B do

No variable transfer

Algorithm 2: Top-down data communication

In the top-down communication described in Algorithm 2, the internal primal-dual

variables of lower levels are overwritten whenever a higher level iteration occurs. The

interpretation is that the iteration scheme with the highest level is considered the main

iteration scheme and lower level schemes are mainly used to give intermediate feedback

until the next main iteration.

An advantage is that the highest level, which is either level-D or level-C, is a fully

nonlinear feedback controller with the whole theoretical background of RTI and can be

considered as a fallback controller which can reset a possibly suboptimal iteration be-

havior of level-B provided the higher level iterations occur sufficiently often. A potential

drawback is that higher level iterations, in particular level-D iterations, take longer com-

putational times and thus are set up at somewhat outdated iterates compared to the

iterates of the lower levels. The iteration step then has to improve the iterate as well as

compensate for the time delay, which becomes more difficult the less frequently the higher

level iterations occur. It may thus be that the new iterate of the higher level is a less

suitable solution approximation than more recently updated iterates of the lower levels.

Usually this manifests in undesirable oscillations in the feedback control.

To avoid this, the top-down communication should preferably be used only if higher

level iterations occur frequently, or the iterates of the higher level may be modified by a

prediction taking the computational delay into account.
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Input: current level

switch current level do

case level-D do

No variable transfer

case level-C do

Set (wD, λD, µD) = (wC , λC , µC)

case level-B do

Set (wC , λC , µC) = (wB , λB , µB)

Set (wD, λD, µD) = (wB , λB , µB)

Algorithm 3: Bottom-up data communication

In the bottom-up communication described in Algorithm 3, the internal primal-dual

variables of higher levels are overwritten whenever a lower level iteration occurs. The

interpretation is that the iteration scheme with the lowest level (higher than level-A) is

considered the main iteration scheme and higher level schemes are mainly used to update

the feedback-generating QP and derivative information in the lower level schemes.

Advantages and drawbacks are similar but reversed compared to the top-down data

communication: because lower level iterations occur more frequently, their iterates con-

tain in general better predictions of the current and future system behavior. However,

the feedback generated by level-B iterations might steer the system in undesirably subop-

timal trajectories before the less frequent updates by higher levels improve the feedback

controller towards optimality. Thus, MLI schemes should schedule higher level iterations

sufficiently often if bottom-up data communication is used.

Input: current level

switch current level do

case level-D do

Set (wC , λC , µC) = (wD, λD, µD)

Set (wB , λB , µB) = (wD, λD, µD)

case level-C do

Set (wD, λD, µD) = (wC , λC , µC)

Set (wB , λB , µB) = (wC , λC , µC)

case level-B do

Set (wC , λC , µC) = (wB , λB , µB)

Set (wD, λD, µD) = (wB , λB , µB)

Algorithm 4: Maximum data communication

In the maximum data communication described in Algorithm 4, the internal primal-

dual variables of all levels are overwritten whenever an iteration (of level-B or higher)

occurs. The interpretation is that all levels iterate on the same set of common primal-

dual variables. This is the data communication approach we focus on for the adaptive

level choice in the next chapter.

A potential drawback, which also applies in the case of bottom-up data communication,

is the fact that level-B converges locally towards suboptimal points and thus produce dual
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variable guesses that may be unfavorable for the calculation of the modified gradient in

level-C or the Hessian (approximations) in level-D. A possible remedy is a preceding

step for higher level iterations to obtain better dual variable guesses using the first order

optimality conditions, which is subject to future investigation.

Input: current level

switch current level do

case level-D do

No variable transfer

case level-C do

No variable transfer

case level-B do

No variable transfer

Algorithm 5: Minimum data communication

In the minimum data communication described in Algorithm 5, no iterates are commu-

nicated across the different levels, i.e., every level iterates independently on its own set

of primal-dual variables and only the feedback generating QP is updated by the different

levels. The interpretation is that a standard RTI scheme based on level-D or level-C iter-

ations with a longer sampling is applied to the process, and additionally the lower levels

provide independently feedback with higher frequency in between two iterations of the

higher levels. An advantage is that provided that the feedback of the lower levels does

not drive the process to undesirably suboptimal trajectories, the higher level feedback

will provide the theoretical and practical benefits of the well-established RTI scheme. Of

course this is only true if the RTI with a sampling of the higher level iterations in itself is

suitable for feedback control of the process.

It is also possible to combine some of the four presented data communications, e.g.,

to use maximum data communication for level-D and level-C, effectively iterating on a

common set of primal-dual variables, and top-down or bottom-up data communication

with respect to level-B. We do not study these variants in this thesis.

5.4 Convergence analysis

We give local convergence theory for pure level-B, level-C, and level-D iterations for the

case xk0 = x0, i.e., that the iterations are always applied to the same problem. It can

be regarded as local convergence analysis for inexact SQP methods where the steps are

determined by level-B, level-C, and level-D iterations, respectively. This point of view

motivates the alternative naming convention of level-C iterations as optimality iterations

and of level-B iterations as feasibility iterations. We give the proof for level-C iterations,

which has been carried out for the first time in L. Wirsching, An SQP algorithm with

inexact derivatives for a Direct Multiple Shooting method for optimal control problems

[184], and later in [60]. We then discuss the validity of the proof for level-B and level-D

iterations, which was established in [29].

Stability analysis for the Multi-Level Iteration schemes is much more challenging since
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5 Multi-Level Iteration schemes

the combined controller-system interaction has to be considered. We will briefly discuss

the work that has been published on this topic.

The proof of local convergence for the level-C iterations for the case xk0 = x0 consists

of two steps. First we establish stability of the QP active set near a solution of the NLP.

This allows to regard the SQP iterations locally as a Newton-like method applied to the

first order KKT conditions. Then local convergence theory for Newton-like methods yield

the result.

5.4.1 Stability of the QP Active Set near an NLP Solution

We now deal with the question of the stability of the active set of the QP (2.30) near a

solution of the NLP (2.24). The following theorem extends Theorem 2.4 and ensures this

important property under rather mild conditions.

Theorem 5.1 (Stability of QP active set near NLP solution).

Let (w∗, λ∗, µ∗) be a KKT-point of problem (2.24), ‖ · ‖ the Euclidean vector norm and

‖ · ‖F the Frobenius matrix norm. Assume that w∗ is a regular point and the strict com-

plementary condition holds at (w∗, λ∗, µ∗).

Then for any constants α1, α2 > 0 there exists a neighborhood N of (w∗, λ∗, µ∗) and

a constant γ > 0 such that for all (w, λ, µ) ∈ N the following statement holds: For any

three matrices B ∈ R
n×n, C ∈ R

l×n, D ∈ R
m×n with B positive semi-definite and ‖C‖F,

‖D‖F ≤ α1 and such that the matrix

J(B,C,D) :=




B −C⊺ −D̃⊺

C 0 0

D̃ 0 0


 (5.18)

with D̃ := (Dj)j∈A(w∗), where Dj denotes the j-th row of D, is invertible and satisfies

‖J(B,C,D)−1‖F ≤ α2, the QP

QP(w, λ, µ,B,C,D) : min
∆w

1

2
∆w⊺B∆w + b(w, λ, µ)⊺∆w (5.19a)

s. t. c(w) + C∆w = 0 (5.19b)

d(w) +D∆w ≥ 0 (5.19c)

with the modified gradient b(w, λ, µ) = ∇w L(w, λ, µ) +C⊺ λ+D⊺ µ has a unique solution

(∆w, λQP, µQP) that satisfies

‖(∆w, λQP, µQP)− (0, λ∗, µ∗)‖ ≤ γ‖(w∗, λ∗, µ∗)− (w, λ, µ)‖. (5.20)

This QP solution has the same active set A as the NLP solution w∗.

Proof. We start by noting that every solution ∆w and multipliers λQP, µQP of QP (5.19)
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have to satisfy the KKT conditions for the QP

B∆w +∇w L(w, λ, µ) + C⊺ (λ− λQP) +D⊺ (µ− µQP) = 0 (5.21a)

c(w) + C∆w = 0 (5.21b)

d(w) +D∆w ≥ 0 (5.21c)

µQP ≥ 0 (5.21d)

∀ j = 1, . . . ,m : µQP
j (d(w) +D∆w)j = 0. (5.21e)

For (w, λ, µ) = (w∗, λ∗, µ∗) we obtain a KKT point of the QP by setting (∆w, λQP, µQP) =

(0, λ∗, µ∗). We now show that this KKT point satisfies the Jacobian uniqueness condition.

The active set and the validity of the strict complementary condition are inherited from

the NLP solution. The LICQ then holds if the columns of the matrix

C̃⊺ :=
(
C⊺ D̃⊺

)

are linearly independen, which follows from the invertibility of the matrix J(B,C,D).

From this follows also that the matrix B is positive definite on the null space of the

matrix C̃. We see this by taking a z ∈ R
n, z 6= 0 with C̃ z = 0 and assuming that

z⊺B z = 0. Since B is positive semidefinite it can be written as B = B1/2B1/2. We

obtain that z must be in the null space of B1/2 and therefore in the null space of B.

Then for z̃ := (z⊺, 0⊺)⊺ ∈ R
n+l+m we have J(B,C,D) z̃ = 0 which contradicts to the

invertibility assumption on J(B,C,D). Thus it must be z⊺B z 6= 0. Since B is positive

semidefinite, we have z⊺B z > 0.

By validity of the Jacobian uniqueness condition we conclude that the KKT point is a

strict local minimizer of the QP and from the convexity of the QP it then follows that

the KKT point is the unique global minimizer of the QP.

Let us now consider the case of the QP being formulated at a point (w, λ, µ). From the

invertibility of J(B,C,D) it follows that the solution of the linear system

J(B,C,D)




s

u

v


 =




−b(w, λ, µ)

−c(w)

−d̃(w)




︸ ︷︷ ︸
=: ζ(w,λ,µ)

(5.22)

with d̃(w) := (dj(w))j∈A(w∗) is unique. Furthermore we have




s− 0

u− λ∗

v − µ̃∗


 = J(B,C,D)−1




b(w∗, λ∗, µ∗)− b(w, λ, µ)

c(w∗)− c(w)

d̃(w∗)− d̃(w)




with µ̃∗ := (µ∗j )j∈A(w∗). Since b(w), c(w) and d(w) are assumed to be twice continuously

differentiable in w, we can see that ∇wL(w, λ, µ) is once continuously differentiable in

(w, λ, µ) and therefore is locally Lipschitz-continuous in (w, λ, µ) with some Lipschitz
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constant β1. We obtain

‖b(w∗, λ∗, µ∗)− b(w, λ, µ)‖ ≤ ‖∇wL(w
∗, λ∗, µ∗)−∇wL(w, λ, µ)‖

+ ‖C⊺(λ∗ − λ)‖+ ‖D⊺(µ∗ − µ)‖

≤ β1 ‖(w
∗, λ∗, µ∗)− (w, λ, µ)‖

+ α1 ‖λ
∗ − λ‖+ α1 ‖µ

∗ − µ‖

≤ (β1 + 2α1) ‖(w
∗, λ∗, µ∗)− (w, λ, µ)‖

where we have used that ‖C‖F = ‖C⊺‖F. Let furthermore β2 and β3 be the Lipschitz

constants of c(w) and d(w), respectively. Thus we obtain the estimate

∥∥∥∥∥∥∥




s− 0

u− λ∗

v − µ̃∗




∥∥∥∥∥∥∥
≤ α2(β1 + β2 + β3 + 2α1)

∥∥∥∥∥∥∥




w∗ − w

λ∗ − λ

µ∗ − µ




∥∥∥∥∥∥∥
. (5.23)

With the solution (s, u, v) of system (5.22) let us now recall the KKT conditions (5.21)

for the QP:

• We first set ∆w := s. Condition (5.21b) then holds by (5.22).

• Let us define ď(w) := (dj(w))j /∈A(w∗) and Ď := (Dj)j /∈A(w∗). With the estimate

(5.23) we have

∥∥ď(w) + Ď∆w − ď(w∗)
∥∥ ≤

∥∥ď(w)− ď(w∗)
∥∥+

∥∥Ď∆w
∥∥

≤ β3 ‖w
∗ − w‖+ α1 ‖∆w‖

≤ (β3 + α1θ) ‖(w
∗, λ∗, µ∗)− (w, λ, µ)‖

with θ := α2(β1 + β2 + β3 + 2α1). We set c := minj /∈A(w∗){dj(w
∗)} > 0 and

choose 0 < c1 < c. By choosing a suitable neighborhood N 1 = N 1
w × N 1

λ × N 1
µ of

(w∗, λ∗, µ∗) we can guarantee (β3+α1θ) ‖(w
∗, λ∗, µ∗)− (w, λ, µ)‖ ≤ c1 and therefore∥∥ď(w) + Ď∆w − ď(w∗)

∥∥ ≤ c1 for all (w, λ, µ) ∈ N 1. It follows that

(d(w) +D∆w)j = dj(w
∗) + [(d(w) +D∆w)j − dj(w

∗)]

≥ c− c1 > 0

for all j /∈ A(w∗), i.e. ď(w)+ Ď∆w > 0. Furthermore, we have d̃(w)+ D̃∆w = 0 by

(5.22). Together, for (w, λ, µ) ∈ N 1 we obtain that condition (5.21c) holds, with the

same inequalities being active as in the solution of the QP formulated in (w∗, λ∗, µ∗).

• Without loss of generality let us assume that A(w∗) = 1, . . . , m̃ with m̃ = |A(w∗)|.

We then set µQP := (v⊺, 0⊺)⊺. Since µ̃∗ > 0 we can again find by inequalities

(5.23) a neighborhood N 2 = N 2
w × N 2

λ × N 2
µ of (w∗, λ∗, µ∗) such that v > 0 for

all (w, λ, µ) ∈ N 2. We therefore obtain for all (w, λ, µ) ∈ N := N 1 ∩ N 2 that

both condition (5.21d) and condition (5.21e) hold, with the strict complementary

condition satisfied.
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• Finally, with λQP := u, the Lagrange gradient (5.21a) of the QP vanishes, as can

also be seen by (5.22).

Thus, we obtain that for all (w, λ, µ) ∈ N we have a KKT point of QP (5.19) at

(∆w, λQP, µQP) = (s, u, v, 0) satisfying the Jacobian uniqueness condition and with the

active set A(w∗). The same reasoning as above then tells us that this KKT point is

the unique global solution of QP (5.19). Estimate (5.20) follows from (5.23), suitably

augmented with zeros. �

Remark 5.1. Since all vector norms in a finite-dimensional normed vector space are

equivalent, one can also choose every other vector norm (and a corresponding compatible

matrix norm) in the proof of Theorem 5.1. The choice of the Frobenius norm is convenient

to be able to use the same bound for both a matrix and its transposed matrix.

Remark 5.2. Theorem 5.1 requires a positive semi-definite QP Hessian matrix B. This

is always satisfied if we use SQP with BFGS Hessian approximations or SQP with Gauss-

Newton Hessian approximations. However, for SQP with exact Hessians this condition is

in general violated and Theorem 5.1 cannot be applied.

Now we have established that QP (5.19) behaves in a neighborhood of its unique global

minimizer like an equality-constrained QP. This allows to apply techniques for proving

local convergence of inexact Newton methods for equality-constrained NLPs.

5.4.2 Local convergence

We now deal with the question of local convergence of the level-C iterations. An as-

tounding aspect of Theorem 5.1 is the fact that the Jacobian approximations can be

chosen rather arbitrarily, given that they satisfy the conditions required by the theorem.

Particularly, no relation between the exact Jacobians and the approximations has to be

assumed. However, we have to expect that such a relation is necessary to establish local

convergence.

We make use of the following lemma which is a variant of standard results that have

similarly been formulated, e.g. in [28, 50] and Theorem 2.5.

Lemma 5.2 (Local Convergence for Inexact Newton Methods).

Assume Φ : D 7→ R
ny , D ⊂ R

ny open, is continuously differentiable and consider the

sequence

yk+1 = yk +∆yk, ∆yk = −J−1
k Φ(yk),

starting with some y0 ∈ D. Let us make the following assumptions:

(i) The sequence of invertible matrices Jk is uniformly bounded and has uniformly

bounded inverses.

(ii) There exists a κ < 1 such that for all k ∈ N it can be guaranteed that
∥∥∥∥J

−1
k+1

(
Jk −

∂Φ

∂y
(yk + t∆yk)

)
∆yk

∥∥∥∥ ≤ κ ‖∆yk‖ , ∀ t ∈ [0, 1].
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(iii) The set

B

(
y0,

‖∆y0‖

1− κ

)
:=

{
y ∈ R

ny

∣∣∣∣‖y − y0‖ ≤
‖∆y0‖

1− κ

}

is contained in D.

Then the sequence (yk)k∈N remains in D and converges towards a point y∗ ∈ B
(
y0,

‖∆y0‖
1−κ

)

satisfying Φ(y∗) = 0. Moreover, if

lim
k→∞

∥∥∥J−1
k+1

(
Jk −

∂Φ
∂y (y∗)

)
∆yk

∥∥∥
‖∆yk‖

= 0,

the convergence rate is q-superlinear.

With this lemma we can prove the local convergence of level-C iterations.

Theorem 5.3 (Local Convergence of level-C iterations).

Let (w∗, λ∗, µ∗) be a KKT-point of Problem (2.24), ‖ · ‖ be an arbitrary but fixed vector

norm and let

Φ(y) , Φ(w, λ, µ) ,



∇wL(w, λ, µ)

c(w)

d̃(w)


 (5.24)

be the function consisting of the Lagrange gradient, the equality constraints, and the in-

equality constraints that are active in w∗. Assume that the following conditions hold:

(i) w∗ is a regular point and the strict complementary condition holds at (w∗, λ∗, µ∗).

(ii) Let (Bk), (Ck) and (Dk) be uniformly bounded sequences of matrices such that Bk is

positive semidefinite for all k ∈ N and the sequence (J−1
k ) with Jk := J(Bk, Ck,Dk)

defined as in Theorem 5.1 is uniformly bounded.

(iii) There is a sequence yk := (wk, λk, µk) generated according to

yk+1 = yk +∆yk, with ∆yk := (∆wk, λ̃k − λk, µ̃k − µk)

where ∆wk is the solution of the quadratic program

min
∆w

1

2
∆w⊺Bk ∆w + b(wk, λk, µk)

⊺∆w (5.25a)

s. t. c(wk) + Ck∆w = 0, (5.25b)

d(wk) +Dk∆w ≥ 0 (5.25c)

and λ̃k, µ̃k are the multipliers of the equality and inequality constraints in the QP

solution, respectively.

(iv) There exists a κ < 1 such that for all k ∈ N it can be guaranteed that

∥∥∥∥J
−1
k+1

(
Jk −

∂Φ

∂y
(yk + t∆yk)

)
∆yk

∥∥∥∥ ≤ κ ‖∆yk‖ , ∀ t ∈ [0, 1].
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Then there exists a neighborhood N̄ of (w∗, λ∗, µ∗) such that for all initial guesses

(w0, λ0, µ0) ∈ N̄ the sequence (wk, λk, µk) converges q-linearly towards (w∗, λ∗, µ∗) with

rate κ, and the solution of each QP (5.25) has the same active set as w∗.

Proof. Since the sequences (Dk) and (J−1
k ) are assumed to be uniformly bounded, we can

find α1, α2 > 0 such that ‖Dk‖F ≤ α1 and ‖J−1
k ‖F ≤ α2 for all k ∈ N.

Therefore we can apply Theorem 5.1 which yields the existence of a neighborhood N

of (w∗, λ∗, µ∗) so that for all (wk, λk, µk) ∈ N and for all k ∈ N the QP

min
∆w

1

2
∆w⊺Bk ∆w + b(wk, λk, µk)

⊺∆w (5.26a)

s. t. c(wk) + Ck∆w = 0, (5.26b)

d(wk) +Dk∆w ≥ 0, (5.26c)

has a unique global solution and the same active set A(w∗) as the NLP solution (w.l.o.g.

we assume that A(w∗) = 1, . . . , m̃ with m̃ = |A(w∗)|). By the equivalence between

SQP and Newton’s method we can then calculate this solution not only by (5.22) but

equivalently by solving

J(Bk, Ck,Dk)




sk
uk
vk


 =




−∇wL(wk, λk, µk)

−c(wk)

−d̃(wk)




︸ ︷︷ ︸
,−Φ(yk), yk,(wk,λk,µk)

. (5.27)

The sequence generated by choosing a y0 , (w0, λ0, µ̃0, 0) ∈ N and iterating yk+1 =

yk +∆yk with ∆yk = (sk, uk, vk, 0) is then well defined as long as we can guarantee that

the iterates remain in N . To show this as well as the convergence of the sequence to

(w∗, λ∗, µ∗) we apply Lemma 5.2. In order to apply the lemma, the assumptions of the

lemma have to be satisfied.

Because the sequences (Bk), (Ck) and (Dk) are uniformly bounded one can easily see

that the sequence (Jk) is uniformly bounded, too. It remains to determine the neighbor-

hood N̄ such that B
(
y0,

‖∆y0‖
1−κ

)
⊂ N for all y0 ∈ N̄ . Because N is a neighborhood of

y∗ = (w∗, λ∗, µ∗), there is an ǫ > 0 such that B(y∗, ǫ) ⊂ N . Since Φ(y∗) = 0 the first step

∆y0 = −J−1
0 Φ(y0) can be made arbitrarily small if the distance ‖y∗−y0‖ is small enough,

due to the differentiability of Φ and the boundedness of J−1
0 . For the given ǫ > 0 we can

therefore find a δ > 0 such that ‖y∗ − y0‖ +
‖∆y0‖
1−κ ≤ ǫ whenever ‖y∗ − y0‖ ≤ δ. Hence,

for all y0 ∈ N̄ := B(y∗, δ) we can guarantee that B(y0,
‖∆y0‖
1−κ ) ⊂ B(y∗, ǫ) ⊂ N . Now the

convergence of the sequence (wk, λk, µk) towards (w
∗, λ∗, µ∗) follows from Lemma 5.2. �

This finishes the proof for the local convergence of level-C iterations if applied to the

same problem in each iteration, i.e., for the case xk0 = x0. The application of level-D

iterations to the same problem in each iteration amounts to standard SQP, and local

convergence theory can be found in standard textbooks, cf. [140]. However, local conver-

gence can also be obtained by Theorems 5.1 and 5.3, since level-D iterations are recovered
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5 Multi-Level Iteration schemes

from level-C iterations by choosing the exact constraint Jacobians as constraint Jacobian

approximations Ck and Dk. Note that for this choice the modified gradient bk simply

amounts to the objective gradient ∇b(w), as in standard SQP theory.

Concerning the local iteration of level-B iterations to the same problem in each iteration,

it has been shown in [29] that if the iteration converges to a limit w∗, and (λ∗, µ∗) are the

multipliers of the level-B QP in w∗, then (w∗, λ∗, µ∗) is a KKT point of the problem

minimize
w

1

2
(w − w̄)⊺B (w − w̄) +

(
b̄+ e

)⊺
w (5.28a)

subject to 0 = c(w), (5.28b)

0 ≤ d(w), (5.28c)

with e ,
(
dc
dw (w

∗)− C
)⊺
λ∗+

(
dd
dw (w

∗)−D
)⊺
µ∗ and B,C,D, w̄, b̄ are the Hessian approx-

imation, the equality and inequality constraint Jacobian approximations, the reference

trajectory, and the reference gradient, respectively, see the description of level-B in Sec-

tion 5.2. In the case of level-B iterations for a least-squares objective function, if the

iteration converges to a limit w∗, and (λ∗, µ∗) are the multipliers of the level-B QP in w∗,

then (w∗, λ∗, µ∗) is a KKT point of the problem

minimize
w

1

2
‖r(w)‖22 + ẽ⊺w (5.29a)

subject to 0 = c(w), (5.29b)

0 ≤ d(w), (5.29c)

with e ,
(
dc
dw (w

∗)− C
)⊺
λ∗+

(
dd
dw (w

∗)−D
)⊺
µ∗−

(
dr
dw (w

∗)− J
)⊺
r(w∗) and J,C,D are the

least-squares Jacobian approximation and the equality and inequality constraint Jacobian

approximations.

With these results, one can prove stability of the active set in a neighborhood of the

KKT points analogously to and under the conditions of Theorem 5.1. With Φ defined as

Φ(y) , Φ(w, λ, µ) ,



b̄+B (w − w̄)− C⊺λ− D̃⊺µ

c(w)

d̃(w)


 (5.30)

in the case of an economical objective and

Φ(y) , Φ(w, λ, µ) ,



J⊺r(w)− C⊺λ− D̃⊺µ

c(w)

d̃(w)


 (5.31)

in the case of a least-squares objective, one can prove local convergence of the level-B

iterations analogously to Theorem 5.3. It should be noted, that the limit points of level-B

iterations are feasible with respect to the original problem (2.24), however, in general they

do not satisfy the necessary KKT conditions of (2.24) and thus are suboptimal.

Convergence results for the general case with varying initial states xk0 are technically

more difficult because the combined system-controller dynamic has to be taken into ac-

count. Existing work addresses the RTI scheme and presents stability proofs for various
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problem formulations: RTI with shifting and a zero end point constraint in [58], RTI with

shrinking horizon for batch processes in [54], RTI with receding horizon without shifting

in [57], and RTI with inequality constraints in [174]. However, the proofs are formulated

in terms of inexact Newton methods similar to Theorems 5.1 and 5.3 and do not require

exact constraint Jacobians. Thus, the proofs are also valid for MLI schemes with pure

level-C iterations and with mixed level-C and level-D iterations for the maximum data

communication, cf. Algorithm 4. MLI schemes using level-B iterations are not covered

by the existing theory because the inexact Newton schemes are required to converge to

solutions of the NLPs (2.24).

5.5 Mixed-level and fractional-level iterations

The approach presented in this section has first been published in J.V. Frasch, L. Wirsching,

S. Sager, and H.G. Bock, Mixed-level iteration schemes for nonlinear model predictive con-

trol [85]. The text at hand follows closely the presentation in the cited work.

The idea of hierarchically updating the data in the feedback-generating QPs in the

various MLI levels can be carried further by not only choosing different update levels

for the full horizon at different sampling times but also by choosing different update

levels over the prediction horizon within one sample. This approach is motivated by

the observation that in each sample the approximation of an open-loop solution of OCP

(3.1) is calculated over the whole NMPC horizon. It therefore can be expected that this

solution approximation becomes more and more outdated as the process evolves, since

disturbances or measurement errors add up and require a recalculation at later sampling

times. Hence, when performing an MLI iteration for a single instance of OCP (3.1), it is

more important to model the process well in earlier parts of the prediction horizon than

in later parts. Therefore, two modifications to the MLI approach are proposed:

Fractional-level iterations apply one of the update levels described in Chapter 5

only to the first Nfrac < N Multiple Shooting intervals. For example, a fractional-D (or

D′) iteration only evaluates new constraint residuals and Jacobians, objective gradients,

and Hessian approximations on the first Nfrac Multiple Shooting intervals and reuses the

old data for the other intervals.

Mixed-level iterations apply one of the update levels D or C as described in Chapter

5 to the first Nfrac multiple shooting intervals and another update level lower in the

hierarchy for the other intervals. For example, a D/B iteration evaluates new constraint

residuals and Jacobians, objective gradients, and Hessian approximations on the first

Nfrac Multiple Shooting intervals and evaluates new constraint residuals and gradient

approximations on the other intervals.

The most obvious benefit of using fractional-level or mixed-level iterations are the sav-

ings in computational effort for function and derivative evaluation. However, further

savings arise in D/· and D’ iterations by using a tailored condensing for the QP solution,

see Chapter 7. For further details and a numerical test case the reader is referred to [85].
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6 Adaptive level choice for MLI

In the preceding chapter, we presented the various MLI levels and discussed how to

assemble MLI schemes with fixed level choices. In this chapter, we deal with the naturally

arising question how to choose the levels adaptively. The goal of an adaptive level choice

is to be computationally as efficient as possible, i.e., use lower levels as often as possible,

while ensuring the quality of the feedback generating scheme by applying higher levels if

needed.

We start with preliminary considerations, then we present two approaches for the esti-

mation of the contraction rate, and formulate and discuss an adaptive level choice algo-

rithm which makes use of these estimations. For the case of an MHE estimator we present

a criterion that may also be used in the decision algorithm for the adaptive level choice.

Finally, we outline a feedback approach, which, while not fitting exactly in the MLI

approach of this thesis, makes use of the contraction rate estimates and is motivated by

the stability results for suboptimal NMPC given in [168, 156].

6.1 Adaptive level selection: preliminary considerations

The adaptive level selection for the MLI schemes aims at two objectives which, in gen-

eral, contradict each other, namely numerical efficiency and scheme quality. Here, scheme

quality is determined by the difference of an MLI iteration to a single exact SQP iteration

initialized from the current set of primal-dual variables. MLI scheme quality is in general

improved by using higher level iterations. In particular, level-D iterations are the best

possible choice with respect to scheme quality. However, level-D iterations are also the

computationally most expensive choice, in general exceeding the computational cost for

level-C and level B iterations by far. Between level-C and level-B, the assumption that

function evaluation is the dominant part of the computational effort per iteration, together

with a well-known result from automatic differentiation which bounds the cost of a gradi-

ent computation to at most five times the cost for the respective function evaluation [90],

yields that level-C iterations are expected to be at most five times more computationally

expensive than level-B iterations.

Thus, an adaptive level selection algorithm which makes use of all levels has to address

two main questions: first, when to schedule a level-D iteration, and second, how to choose

between level-B and level C iterations. In this work, we propose to address the first ques-

tion by looking at the contraction of the currently used level iteration. This is motivated

by the stability results for the RTI scheme from [54] and related work, where it was pointed

out that contraction of the current feedback scheme is essential for the contraction of the

combined controller-state system, as well as the results for a fixed current state x0 given
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6 Adaptive level choice for MLI

in the last chapter, where contraction implies convergence to a local solution, which is

optimal in the case of level-C iterations and feasible in the case of level-B iterations.

Using the contraction rate also as a sole criterion for the second question is not suitable,

as even in the case of good contraction, the fact that level-B iterations are converging to

suboptimal points may lead to suboptimal feedback. We propose to use the QP right-hand

side of the iterations, i.e., the norm of the constraint vector and of the Lagrange gradient

or its level-B equivalent. The main idea is to force level-C iterations if the right-hand side

in level-B iterations becomes too small, thus improving the right-hand side and guiding

the feedback towards optimality.

6.2 Contraction rate estimates by postiterations

The first approach to estimate the contraction rate δ of the current feedback scheme is by

postiterations, i.e., by making additional iterations after the feedback phase while keeping

x0 fixed. If the active set remains the same, making additional iterations amounts to the

application of a simplified Newton to the level-B or level-C right hand side, respectively.

Thus, motivated by the a priori estimate in Theorem 2.5 (Local Contraction Theorem)

the contraction rate can be estimated as described in Algorithm 6. In practice, the

postiterations will usually contract even if the correct active set is not determined by the

first iteration as long as the constraints are approximated well enough in the QP [29].

Input: x0, step (∆w,∆λ,∆µ), current estimate (w, λ, µ), current active set A

switch current level do

case level-B do

evaluate constraint vectors ck, dk
calculate gradient approximation bk as in (5.5) or (5.6)

solve QP (5.1) to obtain step (∆w+,∆λ+,∆µ+) and active set A+

case level-C do

evaluate constraint vectors ck, dk
calculate modified gradient bk as in (5.3)

solve QP (5.1) to obtain step (∆w+,∆λ+,∆µ+) and active set A+

if A
+ = A then

estimate δ̂ = ‖(∆w+,∆λ+,∆µ+)‖
‖(∆w,∆λ,∆µ)‖

iterate (w+, λ+, µ+) = (w, λ, µ) + (∆w+,∆λ+,∆µ+)

Algorithm 6: Estimation of δ by postiterations.

If the estimate δ̂ satisfies δ̂ ≤ ∆ < 1, with a prescribed contraction bound ∆, then

the contraction of the scheme is assumed to be satisfactory. As a side benefit, in this

case we can use the improved primal-dual guess (w+, λ+, µ+) in the preparation phase for

the next sampling period. Even more, the constraints and the gradient (approximation),

which have been updated during the postiteration process, can be used in an improved

controller if the subsequent MLI iteration is a level-A iteration. If the estimate δ̂ is too
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large or even exceeds 1 then the linearization information is considered outdated and we

have to schedule a level-D iteration for the next sampling period.

In the case of changing active sets we may repeat the postiteration process until we

obtain subsequent iterations with the same active set. Provided that the NMPC subprob-

lems are well initialized by the solution of the previous subproblems, which is the basic

assumption for the validity of the Real-Time Iteration idea, cf. Chapter 4, we can assume

that not too many iterations are necessary to obtain an estimate δ̂. An interesting and

computationally less expensive but more heuristic alternative is to just assume that the

active set keeps constant and continue the iteration with the matrix M which is given

implicitly by the current factorization of the KKT matrix of the QP, i.e., to backsolve the

QP matrix factorization belonging to the current active set with the new right-hand-side

to obtain the step (∆w+,∆λ+,∆µ+).

Algorithm 6 may calculate meaningless δ̂ estimates if the size of the step (∆w,∆λ,∆µ)

is in the scale of the prescribed function evaluation accuracy, i.e., if the current estimate

(w, λ, µ) is already close to the numerical solution. In this case we cannot see the the-

oretically predicted linear decrease in the norm of the step increments. However, being

already in or close to the solution is a situation which is highly desirable in the first place

and which makes contraction estimation unnecessary. In the adaptive level choice algo-

rithm, this case will be considered by tracking feasibility and (approximated) optimality

in addition to contractivity.

Since the estimate δ̂ by Algorithm 6 is actually an underestimate of the real contraction

rate δ, it could be possible that a small δ̂ doeas not necessarily imply a small δ. This is

hard to detect since by definition of δ̂ the increments then still behave as if the iteration

scheme is contracting. In that case it is to be expected that later iterations eventually

detect possibly insufficient contraction behavior. Furthermore, the estimate δ̂ depends

on the norm chosen to measure the increment size. It can happen that for an overall

contractive matrix iteration the first iterates do not get smaller if measured in the wrong

norm, see [147].

A more robust indicator of asymptotic contraction behavior than δ̂ is given by the

spectral radius of a matrix. We will present a contraction rate estimator based on the

spectral radius in the following section.

6.3 Contraction rate estimates by spectral radius

After solving QP (5.1) in a level-B or level-C iteration we obtain an active set A so that

we can rewrite the QP as purely equality-constrained QP

minimize
∆w

1

2
∆w⊺Bk∆w + b⊺k∆w (6.1a)

subject to 0 = C̃k∆w + c̃k, (6.1b)

0 = D̃k∆w + d̃k, (6.1c)

where the constraints (6.1b) combine the IVE constraint (5.1b) and the equality con-

straints (5.1c), and the constraints (6.1c) are the subset of active inequality constraints
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(5.1d) selected by the active set A. The QPs differ for level-B and level-C in the choice

of bk, which is either one of the gradient approximations (5.5) and (5.6) or the modified

gradient (5.3). We can transform (6.1) to a linear system by writing down the KKT

conditions 

Bk −C̃⊺

k −D̃⊺
k

C̃k

D̃k






∆w

λQP

µQP
A


 =



−bk
−c̃k
−d̃k


 . (6.2)

Adding the term C̃⊺
kλk+ D̃

⊺
kµA,k to the first block equation in (6.2), yields a linear system

which determines the step in both primal and dual variables



Bk −C̃⊺

k −D̃⊺
k

C̃k

D̃k







∆w

∆λk
∆µA,k


 =



−bk + C̃⊺

kλk + D̃⊺
kµA,k

−c̃k
−d̃k


 . (6.3)

Using these reformulations, we can consider the QP solution as one step of an inexact

Newton method with

xk+1 = xk −MF (xk), (6.4)

where xk = (wk, λk, µA,k), and

M ,



Bk −C̃⊺

k −D̃⊺
k

C̃k

D̃k




−1

(6.5)

approximates the inverse of the KKT matrix

KA ,



∇2L(wk, λk, µA,k) −J⊺

c,k −J⊺
d,k

Jc,k
Jd,k


 , (6.6)

where Jc,k is the Jacobian of the combined IVE and equality constraints and Jd,k is the

Jacobian of the active inequality constraints selected by the active set A. The right hand

side f(xk) in (6.4) comprises the gradient (approximation) with the step correction, the

combined equality constraints and the active inequality constraints. For level B, F (xk) is

given by

FB(xk) =



bk − C̃⊺

kλk − D̃⊺
kµA,k

c̃k
d̃k


 , (6.7)

with bk either given by (5.5) or (5.6). For level-C, F (xk) is given by

FC(xk) =



∇wL(wk, λk, µA,k)

c̃k
d̃k


 . (6.8)
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The Jacobian of the right-hand-sides (6.7) and (6.8) are

JB(xk) =



Bk −C̃⊺

k −D̃⊺
k

Jc,k 0 0

Jd,k 0 0


 (6.9)

and

JC(xk) =



∇2L(wk, λk, µA,k) −J⊺

c,k −J⊺
d,k

Jc,k 0 0

Jd,k 0 0


 , (6.10)

respectively.

For the adaptive level choice algorithm, the question is to determine whether the matrix

M in (6.4) is suitable for further use or if M should be updated by a level-D iteration. In

contrast to the approach in the last section, which, under the assumption of a constant

active set, amounts to continuing the iteration (6.4) and estimating the contraction by

comparing the magnitude of the iteration steps, we will investigate directly properties of

the matrix M . To this end, we consider the matrix (with F one of FB, FC)

V = I−M
dF

dx
(xk+1) (6.11)

which should be small in some sense if M is a good approximation of dF
dx

−1
(xk+1). In

particular, we propose to estimate the spectral radius σ (V ) and check for σ (V ) ≤ κ0 < 1.

In this case, the following well-known theorem, see, e.g., Saad [160, Theorem 4.1], holds,

see also [147].

Theorem 6.1. Let

κ , σ (V ) . (6.12)

If σ (V ) < 1 then M and dF
dx (xk) are invertible and the iteration

χj+1 = χj −M

(
dF

dx
(xk+1)χj + F (xk+1)

)
= V χj −MF (xk+1) (6.13)

converges for every F (xk+1), χ0 to the solution of

dF

dx
(xk+1)χ = F (xk+1). (6.14)

The asymptotic R-linear convergence factor is κ.

Theorem 6.1 states that in principle the matrix M is suitable to recover the exact

Newton step for the right-hand-side F (x) through the linear iteration (6.13), provided

that the condition (6.12) is satisfied. We consider this to be a good and promising criterion

for the usefulness of M as an approximation of dF
dx

−1
(xk+1).

For the level-C, iteration (6.13) would actually provide the corresponding level-D iter-

ation step with exact Hessian, which is the optimal step choice within our algorithmic

framework from a contraction-based point of view. For level-B, iteration (6.13) would
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provide the level-D step for the modified problem (5.28) or (5.29), which is simply an

implication from the suboptimality of the level-B iterations.

However, we are not interested in performing too many steps of iteration (6.13), since

this would be computationally too expensive. Our main focus is in deciding whether

σ (V ) ≤ κ0 < 1 holds true or not. This also means that we need to determine only a

rather coarse approximation of σ (V ) up to, e.g., two digits.

Although convergence of the linear iteration is guaranteed as long as κ < 1 holds,

smaller values of κ are preferable since then M is a better approximation of dF
dx

−1
(xk+1)

and the asymptotic linear convergence factor is smaller, i.e., fewer iterations are necessary

to obtain a specified accuracy. We impose a maximum threshold value κ0 which is a tuning

parameter for the adaptive level choice algorithm and which indicates the upper bound

for acceptable contraction.

For reasons of computational effort we want to avoid building either M or dF
dx (xk+1)

explicitly but rather use iterative methods for the estimation of the largest eigenvalue

which only demand matrix-vector products with the investigated matrix. We consider

efficient numerical methods for the spectral radius estimation in Chapter 7.

To sum up the comparison between the postiteration approach and the spectral radius

approach: the former checks if continuing the nonlinear iteration with constant matrices

leads to contraction, the latter checks if the next step can be bend towards the Newton

direction by a linear iteration using the current QP inverse M . In principle, one could

also consider the matrix V = I −MJB|C(xk) of the current step, however, we have to

calculate F (xk+1) for the adaptive level choice algorithm anyway, and thus looking at the

next step for a decision about the upcoming level choice seems more logical.

6.4 Adaptive level choice algorithm

The methods described above in this chapter aim to quantify the quality of a current

feedback generating scheme using either level-B or level-C purely from a contractivity

point of view. Ideally, we would like to calculate feedback using only these levels due

to their favorable computational complexity. Level-D iterations are considered as an

instrument to improve contraction properties only if necessary. Since level-D iterations

are the best we can do regarding contractivity improvement, we do not need to estimate

the contraction rate for level-D iterations.

However, an adaptive level choice algorithm which is solely based on contraction esti-

mates for the levels B and C, selecting in each sample the level with the smallest con-

traction estimate, is likely to produce suboptimal feedback which steers the system to

undesired operating points. The reason for this is that the level-B iterations may have

excellent contraction properties, and thus being chosen in each sample, yet still converge

to suboptimal points which result in suboptimal feedback.

Thus, an effective adaptive level choice algorithm has to take into account additional

information. We propose to use the norm of the QP right-hand side FB(xk+1) in level-B

iterations. This is motivated by the interpretation of MLI as continuously iterating inexact
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6.4 Adaptive level choice algorithm

SQP method with changing parameters. If the level-B iteration shows good contraction

and the controller steers the system to some fixed operating point we can expect the norm

of the right-hand-side to shrink, indicating convergence to a critical point of the modified

problem (5.28) or (5.29). As discussed above, this may well be a suboptimal operating

point, however, it is the best point currently achievable by level-B iterations. To improve

the controller performance, we therefore switch to level-C iterations if the norm of the QP

right-hand side gets smaller than some prescribed value, even if the level-B contraction

estimates are good. This allows to improve the performance of the controller towards

optimality.

While making level-C iterations we do not mind a small right-hand side norm since

this indicates optimality of the controller. We propose, however, to check the norm of the

Lagrange gradient ∇wL(xk+1) and continue with a level-D iteration if the norm is larger

than a prescribed value. This avoids using level-C iterations for iterates that are too far

away from a critical point.

For both level-B and level-C iterations, we continue with level-D iterations if the esti-

mated contraction κ exceeds prescribed contraction bounds κB or κC, respectively. For

reasons of computational efficiency, after each level-D iteration we schedule a lower level

iteration, preferably a level-B iteration. The described adaptive level selection is summed

up in Algorithm 7. A vizualization of the adaptive level selection as finite state machine

is given in Figure 6.1.
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Figure 6.1: Adaptive level choice as finite state machine. Visualization of Algorithm 7.

Of course, Algorithm 7 can also be used with the postiteration estimation approach,

using thresholds δB, δC for the nonlinear contraction estimate instead of κB, κC for the

linear contraction estimate.
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6 Adaptive level choice for MLI

Input : κB, κC contraction bounds for level-B and C,

γB right-hand-side bound for level-B,

λC Lagrange gradient bound for level-C,

l old level

Output: Level choice l+ for next iteration

Calculate feedback with the current level selection and obtain xk+1.

switch l do

case B do

Estimate spectral radius κ for level-B.

Evaluate right-hand-side norm γ =
∥∥FB(xk+1)

∥∥.
if κ ≤ κB then

if γ ≤ γB then

Set l+ = C.

else

Set l+ = B.

else

Set l+ = D.

case C do

Estimate spectral radius κ for level-C.

Evaluate Lagrange gradient norm λ = ‖∇wL(xk+1)‖.

if λ ≥ λC then

Set l+ = D.

else

if κ ≤ κC then

Set l+ = C.

else

Set l+ = D.

case D do

Set l+ = B.

Algorithm 7: Decision algorithm for the adaptive level choice.
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6.5 χ2 criterion for MHE

6.5 χ
2 criterion for MHE

Another reason to choose level-D iterations is the case of changes in the model, e.g., jumps

in parameters or states. These jumps can be detected by using online state and parameter

estimation such as the MHE, see also Chapter 3. The state and parameter values given

to the controller will gradually change to the new values with the corresponding data

moving through the estimation horizon. However, we propose to additionally use the

following idea to determine whether such a jump event probably has occurred so that the

controller can take appropriate action, e.g., by recalculating system linearizations with

level-D iterations.

The idea is to check the result of the state and parameter estimation by employing the

χ2-test. This test checks the hypothesis that the difference of the measurements and the

model response is N (0, σ2) distributed. We make use of the following theorem.

Theorem 6.2 (χ2-test). Let η1, . . . , ηn be independently N (µ, σ2)-distributed measure-

ments with unknown mean µ and unknown variance σ2. Define

T (η1, . . . , ηn) ,
n− 1

σ20

n∑

i=1

(ηi − η̄)2,

with η̄ = 1
n

∑n
i=1 ηi the sample mean and some σ0. The null hypothesis σ = σ0 is to be

rejected if T (η1, . . . , ηn) > χ2
n−1,1−α for some given confidence level α ∈ (0, 1), typically

α = 0.05 or α = 0.01.

The measurement residuals in the MHE problem (3.18) are assumed to have zero mean.

However, they can in principle have different variances, e.g., due to different measurement

methods. In order to be able to apply Theorem 6.2, the measurement residuals of the

MHE problem are normalized with their respective variances to obtain N (0, 1)-distributed

values for all measurement residuals. Then we can test the χ2-distribution of the sum

of squares of the normalized measurement residuals and, assuming that the state and

parameter estimates are close to the true values, conclude if the data in the estimation

process can be consistently explained by the estimates.

If the model is correct, i.e., if the true parameters and states have been estimated, and

the process data is explained by these estimates, then the least-squares residual will be

χ2-distributed with n− 1 degrees of freedom.

Failure of the test indicates significant changes in the process from which the measure-

ments are taken. This can be due to jumps in process parameters or state disturbances.

Then one part of the measurement data in the estimation horizon is based on the states

and parameters before the disturbance and the other part is based on the states and pa-

rameters after the disturbance, which prohibits the explanation of the overall data with

one set of state and parameter estimates. In this case, the estimates given by the estimator

should be taken with caution. Several reactions may be considered:

• In case of Multi-Level Iterations for the estimator, we should perform level-D iter-

ations for the estimator.
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6 Adaptive level choice for MLI

• In case of Multi-Level Iterations for the controller, we should perform level-D iter-

ations for the controller.

• A failed test may trigger robust or experimental design iterations to reduce the

impact of wrong state and parameter values or to improve the information gain for

estimating the new values.

• One can try to identify the measurements that have been taken after the distur-

bance, e.g., by using a t-test, re-initialize the MHE with a shorter horizon containing

only the measurements taken after the disturbance, and apply the growing horizon

initialization until the horizon is filled again completely.

6.6 Suboptimal NMPC with level-B iterations

The final idea presented in this chapter does not exactly fit into the MLI framework

because the division in preparation phase, feedback phase, and transition phase does not

exist. It rather works like an offline algorithm applied to NMPC. However, it makes use

of the computational efficiency of level-B iterations as well as their property to converge

to feasible points.

The idea is based on a classical result first published by Scokaert and co-workers [168],

and described in detail in [156], which states that for NMPC problems in the setting of

Chapter 3, stability essentially follows from finding in each sample feasible states and

controls which yield a decrease in the objective value compared to the previous sample.

Level-B iterations provide a computationally efficient way to obtain feasible points. The

algorithm works like follows:

1. If xk0 is available, perform level-B iterations until feasibility up to a prescribed ac-

curacy ǫ is achieved.

2. While iterating, monitor contraction with the postiteration approach described in

Section 6.2. If contraction is worse than a prescribed δ̄, perform intermediate level-D

iteration (or at least update Hessian approximation and constraint Jacobians).

3. Compare objective value Φ of current sample with objective value Φ− from previous

sample. If Φ < Φ−, return first control move to process, otherwise try level-C

iterations until Φ < Φ−.

An idea to turn the algorithm above into an online algorithm in the spirit of RTI and

MLI, the following variant may be considered:

1. In the preparation phase, perform level-B iterations until feasibility up to a pre-

scribed accuracy ǫ is achieved.

2. While iterating, monitor contraction with the postiteration approach described in

Section 6.2. If contraction is worse than a prescribed δ̄, perform intermediate level-D

iteration (or at least update Hessian approximation and constraint Jacobians).
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6.6 Suboptimal NMPC with level-B iterations

3. Compare objective value Φ of current sample with objective value Φ− from previous

sample. If Φ ≥ Φ−, try level-C iterations until Φ < Φ−.

(optional) If a feasible solution with lower objective value is obtained, make a single level-D

preparation to set up the best possible tangential predictor.

4. If xk0 is available, evaluate the tangential predictor, i.e., solve the QP, and immedi-

ately return the first control to the process.

One can interpret this algorithm as an extension to RTI, where the next sample iteration

is initialized in a point that is at least iterated to feasibility instead of simply using the

tangential predictor of the previous sample for initialization.

The algorithm assumes that the sampling interval is long enough to obtain the feasible

point with lower objective. Furthermore, one actually finds a feasible point of the NLP

for the preceding state xk−1
0 and compares objective values with a feasible point of the

NLP for the state xk−2
0 . The new solution for xk0 is then actually given only approximately

by the tangential predictor, which is why setting up a level-D tangential predictor seems

reasonable. Furthermore, this approach could be combined with the idea of the advanced

step controller, cf. [192], where we seek a feasible point of the NLP for a prediction x̂k0 of

the (not yet available) state xk0 , and then apply the tangential predictor in the feedback

phase to account for the difference between the prediction and the actual current state.
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7 Numerical methods for Multi-Level

Iteration schemes

In this chapter, we consider details for the numerical realization of several tasks that are

part of the algorithmic approach of MLI iterations as presented in the last chapters.

First, we consider efficient numerics for solving a sequence of parametric QPs, a task

which is central to the MLI approach. We then give an extension of the presented method

of online active set strategy (OASES) to the solution of parametric linear least-squares

problems, which also occur frequently in MLI, in particular if an MHE estimator is used

for online state and parameter estimation.

Next, we consider a tailored condensing for mixed- and fractional-level MLI. Aside from

function and derivative evaluation, matrix condensing is one of the computationally most

expensive parts per MLI iteration. Matrix condensing is needed, whenever the matrix

data in the QP is updated, i.e., during level-D iterations for standard MLI or during D’

or D/· iterations for fractional- or mixed-level MLI. In the latter case, only part of the

matrix data is updated and part of the matrix data remains constant, and this allows a

significant reduction of computational effort for condensing.

Finally, we consider efficient iterative methods for the estimation of the spectral radius

of the MLI iteration matrix V = I−MJ which is needed as part of the adaptive level choice

algorithm to decide whether the current matrices are good enough to obtain contraction of

the MLI scheme or whether a level-D iteration has to be scheduled to update the Hessian

approximation and the constraint linearizations.

7.1 Parametric quadratic programming

When applying MLI, we have to repeatedly solve the parametric QPs (5.1) for changing

values of xk0 . For the approach considered in this work, the QP matrices are fixed in

iterations with the levels C, B, and A. An efficient approach to solve such sequences of

parametric QPs is the Online Active Set Strategy (OASES). This approach builds on

the expectation that the active set does not change much from one QP to the next, but

is different from conventional warm starting techniques. It has first been published in

[74] and is described and extended extensively in the follow-up publications [75, 148].

The method is implemented in the software package qpOASES [73, 76]. OASES was first

applied to level-C MLI in L. Wirsching, H.J. Ferreau, H.G. Bock, and M. Diehl, An online

active set strategy for fast adjoint based nonlinear model predictive control [187], and the

following presentation follows widely the presentation in this work.
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7 Numerical methods for Multi-Level Iteration schemes

After condensing of QP (5.1), i.e., elimination of the state variable step ∆sk, we obtain

the condensed QP

QP(xk0) : min
∆qk

1
2∆q

⊺
kB̂k∆qk +

(
b̂k + Fkx

k
0

)⊺
∆qk (7.1a)

s. t. D̂k∆qk ≥ d̂k + Ekx
k
0, (7.1b)

with suitable matrices B̂k, D̂k, Fk, Ek and vectors b̂k, d̂k. Note that condensing of the

QP matrices only occurs in level-D iterations. In iterations of level A, B, and C, the

matrices B̂k, D̂k and therefore also the matrices Fk, Ek are constant and we denote them

in the following by B̂, D̂, F,E. We only have to build the condensed gradient vector

bk(x
k
0) , b̂k + Fxk0 and the condensed constraint vector dk(x

k
0) , d̂k +Exk0 .

For transition from the solved kth quadratic program QP(xk0) to the next one QP(xk+1
0 ),

the Online Active Set Strategy moves on a straight line in the parameter space, i.e., in

the set

P , {x0 ∈ R
nx0 | QP(x0) is feasible} . (7.2)

Using the definitions

∆x0 , xk+1
0 − xk0, (7.3a)

∆b , bk(x
k+1
0 )− bk(x

k
0) (7.3b)

=
(
b̂k+1 − b̂k

)
+ F∆x0,

∆d , dk(x
k+1
0 )− dk(x

k
0) (7.3c)

=
(
d̂k+1 − d̂k

)
+ E∆x0,

gradient and constraint vector are reparametrized as follows:

x̃0 : [0, 1] → R
nx , x̃0(τ) , xk0 + τ∆x0 , (7.4a)

b̃ : [0, 1] → R
n, b̃k(τ) , bk(x

k
0) + τ∆b , (7.4b)

d̃ : [0, 1] → R
m, d̃k(τ) , dk(x

k
0) + τ∆d . (7.4c)

We start from the known optimal solution x∗k and µ∗k (and a corresponding working set

A) of the kth QP(xk0) and want to solve QP(xk+1
0 ). The basic idea of the online active set

strategy is to move from xk0 towards xk+1
0 , and thus from (x∗k, µ

∗
k) towards (x∗k+1, µ

∗
k+1),

while keeping primal and dual feasibility (i.e. optimality) for all intermediate points. This

means that we are looking for homotopies (M , {1, . . . ,m})

x̃∗ : [0, 1] → R
n, x̃∗(0) = x∗k, x̃

∗(1) = x∗k+1, (7.5a)

µ̃∗ : [0, 1] → R
m, µ̃∗(0) = µ∗k, µ̃

∗(1) = µ∗k+1, (7.5b)

Ã : [0, 1] → 2M, Ã(0) = A, Ã(τ) ⊆ M, (7.5c)

Ĩ : [0, 1] → 2M, Ĩ(τ) , M \ Ã(τ), (7.5d)
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7.1 Parametric quadratic programming

that satisfy the well-known KKT conditions (see e.g. [36]) at every point τ ∈ [0, 1]:

(
B̂ D̂⊺

Ã(τ)

D̂
Ã(τ) 0

)(
x̃∗(τ)

−µ̃∗
Ã(τ)

(τ)

)
=

(
−b̃(τ)

d̃
Ã(τ)(τ)

)
, (7.6a)

µ̃∗
Ĩ(τ)

(τ) = 0 , (7.6b)

D̂
Ĩ(τ)x̃

∗(τ) ≥ d
Ĩ(τ)(τ) , (7.6c)

µ̃∗
Ã(τ)

(τ) ≥ 0 . (7.6d)

Since x̃∗(τ) and µ̃∗(τ) are piecewise affine linear functions (x̃∗(τ) is even continuous),

as already shown in [77], locally we must have a relation of the form

x̃∗(τ) , x∗k + τ∆x∗ , (7.7a)

µ̃∗A(τ) , (µ∗k)A + τ∆µ∗A , (7.7b)

which holds for sufficiently small τ ∈ [0, τmax], τmax ≥ 0.

We know that conditions (7.6) are met at τ = 0, as we start from an optimal solution.

Therefore equality (7.6a) is satisfied for all τ ∈ [0, τmax] if and only if
(
H D̂⊺

A

D̂A 0

)(
∆x∗

−∆µ∗
A

)
=

(
−∆b

∆dA

)
(7.8)

holds. Because linear independence of the rows of D̂A can easily be ensured [22], Eq. (7.8)

has a unique solution.

As long as we stay in one critical region, the QP solution depends affinely on x0, but

it might happen that we have to cross the boundaries of critical regions during our way

along the straight line. The active set stays constant as long as no previously inactive

constraint becomes active, i.e.

D̂⊺
i (x

∗
k + τ∆x∗) = di(x

k
0) + τ∆di

for some i ∈ I, and no previously active constraint becomes inactive, i.e.

(µ∗k)i + τ∆µi = 0

for some i ∈ A. Thus, we determine the maximum possible homotopy step length τmax as

follows:

τprimmax , min
i∈I

D̂
⊺

i
∆x∗<∆di

di(x
k
0)− D̂⊺

i x
∗
k

D̂⊺
i∆x

∗ −∆di
, (7.9a)

τdualmax , min
i∈A

∆µi<0

−
(µ∗k)i
∆µi

, (7.9b)

τmax , min
{
1, τprimmax , τ

dual
max

}
. (7.9c)

This choice of τmax ensures that conditions (7.6c), (7.6d) remain fulfilled. Moreover, if we

define ∆µ∗
I
, 0 then also equality (7.6b) holds for all τ ∈ [0, τmax].
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7 Numerical methods for Multi-Level Iteration schemes

If τmax equals one, a full step along the homotopy path can be taken and the solution

of the new quadratic program QP(xk+1
0 ) is found. Otherwise, a primal or dual blocking

constraint – which causes the restriction of τmax to below one – indicates a constraint

to be added or removed from the working set A. After updating the working set and

the KKT matrix in Eq. (7.8), a new step direction is calculated and the whole procedure

repeats until the solution of QP(xk+1
0 ) is found. This idea is illustrated in Fig. 7.1.

Two issues have to be addressed: First, adding a new row d+ to the constraint matrix

D̂A may lead to rank deficiencies, if d+ is linearly dependent on the rows of D̂A. This can

be checked by solving (
H D̂⊺

A

D̂A 0

)(
s

ξ

)
=

(
(d+)⊺

0

)
, (7.10)

and checking that s 6= 0. Otherwise, another primal blocking constraint has to be found

to be added to the active set, or the problem is infeasible.

Second, removing a constraint may expose a direction of zero curvature on the (larger)

null space of the new constraint matrix. This can be checked by solving

(
H D̂⊺

A

D̂A 0

)(
s

ξ

)
=

(
0

−I|A|,k

)
, (7.11)

where I|A|,k is the k-th column of the identity matrix of the size |A| × |A|. If ξ = 0 then

the Hessian H is singular on the null space of the new constraint matrix, and we have to

find another dual blocking constraint to be removed from the active set, or the problem

is unbounded. Note that in both issues we can reuse the matrix factorization used for

the step computation. For a more detailed description of the algorithm, including the

handling of ties and degeneracy, the reader is referred to [148].

It should be noted that the idea of OASES to follow the homotopy of a primal-dual

optimal solution of QP(xk0) to a primal-dual optimal solution of QP(xk+1
0 ) can also be

extended to the case of a new Hessian and a new constraint matrix, i.e., for level-D

iterations, by constructing a primal-dual optimal solution for a help problem QPnew(x
k
0)

with the new matrices and then following the homotopy to the primal-dual solution of

QPnew(x
k+1
0 ), cf. [72].

7.1.1 Extension of OASES to linear least-squares problems

Quite regularly, we have to solve a parametric linear least-squares (LLS) problem instead

of a parametric QP problem during the iterations, e.g., for quadratic tracking-type ob-

jectives for the controller or when using RTI- or MLI-based MHE for online state and

parameter estimation. Analogously to (7.1), after condensing we obtain the condensed

LLS problem

LLS(pk) : min
∆qk

∥∥∥Ĵk∆qk +
(
r̂k + F̃kp

k
)∥∥∥

2

2
(7.12a)

s. t. D̂k∆qk ≥ d̂k + Ẽkp
k, (7.12b)
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7.1 Parametric quadratic programming

Figure 7.1: Homotopy paths from one QP to the next across multiple critical regions.

x0

xnew0

again, with suitable matrices Ĵk, D̂k, F̃k, Ẽk and vectors r̂k, d̂k. The parameter pk is either

the current state xk0 for controller problems or the current measurement ηk for estimator

problems. As described above, we can assume that the LLS problem matrices are constant

between LLS(pk) and LLS(pk+1), and we will denote them again as Ĵ , D̂, F̃ , Ẽ. To see

that we can apply OASES also to problem (7.12), we start by noting that the problem

can be equivalently written as parametric QP (7.1) with

B̂ , 2Ĵ⊺Ĵ , (7.13a)

b̂k , 2Ĵ⊺r̂k, (7.13b)

F , 2Ĵ⊺F̃ . (7.13c)

It follows immediately that OASES can in principle be used to solve problem (7.12) by

using the reformulation as QP. However, we want to avoid building the Hessian (7.13a)

explicitly, because of possible ill-conditioning due to the well-known relation cond2(Ĵ
⊺Ĵ) =

cond2(Ĵ
⊺)2.

Using the definitions

∆p , pk+1 − pk, (7.14a)

∆r , (r̂k+1 − r̂k) + F̃∆p, (7.14b)

∆d ,
(
d̂k+1 − d̂k

)
+ Ẽ∆p, (7.14c)

we can do the re-parametrization of the LS residual and constraint vector analogously to

(7.4), and seek homotopies (7.5) that satisfy the KKT conditions (7.6). The key difference

to OASES for QPs is that we do not determine the steps ∆x∗,−∆µ∗
A
by using the KKT

conditions and solving (7.8), but rather by solving an equivalent LLS problem. Using the

definitions for ∆r,∆d from (7.14) and the definition of the Hessian (7.13a), we can derive
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7 Numerical methods for Multi-Level Iteration schemes

from (7.8) the following LS problem for the step calculation.

min
∆x∗

∥∥∥Ĵ∆x∗ +∆r
∥∥∥
2

2
(7.15a)

s. t. D̂A∆x
∗ = ∆dA (7.15b)

There are various approaches to solve problem (7.15), we will give an algorithm based

on QR decompositions, derived and presented in [37]. The following conditions for Ĵ , D̂A

have to hold:

D̂A has linear independent rows, and

[
Ĵ

D̂A

]
has linear independent columns. (7.16)

Then we obtain the steps ∆x∗,−∆µ∗
A
by

1. computing the QR factorizations
[
Ĵ

D̂A

]
=

[
Q1

Q2

]
R, Q⊺

2 = Q̃R̃,

2. computing u = R̃−⊺∆dA by forward substitution,

3. solving R̃w = −2Q̃⊺Q⊺
1∆r − 2u by back substitution,

4. solving R∆x∗ = −Q⊺
1∆r −

1
2Q

⊺
2w by back substitution,

5. computing −∆µ∗
A
= w + 2∆dA.

With the resulting steps ∆x∗,−∆µ∗
A
we can then determine the maximum possible ho-

motopy step length τmax as in (7.9), and continue the homotopy updating A and D̂A until

problem (7.12) is solved.

Within the presentation of the extension of OASES to LLS we have to address how to

perform the linear independence test (7.10) and the zero curvature test (7.11).

For the linear independence test, we have to check for the potential new constraint row

d+ whether there is a ξ 6= 0 with D̂⊺
A
ξ = (d+)⊺. With the matrix factorizations from the

step calculation we obtain

D̂⊺
A
ξ = (d+)⊺,

⇒ R⊺Q̃R̃ξ = (d+)⊺,

⇒ R̃ξ = Q̃⊺R−⊺(d+)⊺,

which yields that ξ 6= 0 if and only if Q̃⊺R−⊺(d+)⊺ 6= 0.

For the zero curvature test, we can see by comparison that solving (7.11) is equivalent

to solving the LLS

min
s

∥∥∥Ĵs+ 0
∥∥∥
2

2

s. t. D̂As = I|A|,k,

where again I|A|,k is the k-th column of the identity matrix of the size |A|×|A|, and checking

whether ∆µ∗
A
= 0. For both the linear independence test and the zero curvature test we

thus can reuse the matrix factorizations performed for the step computation.
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7.2 Condensing for mixed- and fractional-level MLI

In Chapter 5 we have outlined the idea of mixed- and fractional-level MLI, where higher

level updates are used in the leading Nfrac shooting intervals and lower level updates

are used in the remaining shooting intervals. In particular, when performing mixed-

or fractional-level iterations involving level-D updates, we evaluate new Jacobians and

Hessians or approximations of Hessians for the leading shooting intervals, and keep the

old ones in the remaining shooting intervals. Apart from the savings of computational

effort, this can be also exploited in the condensing algorithm to avoid building parts of

the condensed matrices and vectors that do not change because they do not involve the

new data. More details and numerical testing can be found in [85], and the presentation

follows widely the presentation in this work.

We start by noting that the condensing vector c′ does not have to be recalculated in a

fractional-D iteration for Nfrac = 1, which can be seen by the recursion given in (2.36).

For Nfrac > 1 or for mixed-level iterations involving lower levels B or C, however, c′ has

to be calculated completely with the described recursion.

Consider the condensing matrix in the relation (2.35), which connects the eliminated

variables and the variables that remain in the QP. With the definition Ξi2
i1
,
∏i2

i=i1
Gs

i ,

Gs
i2
· · ·Gs

i1
we can write this matrix as

Ã ,




Gs
0 Gq

0

Gs
1G

s
0 Gs

1G
q
0 Gq

1
...

...
...

. . .

ΞN−1
0 ΞN−1

1 Gq
0 ΞN−1

2 Gq
1 . . . Gq

N−1




(7.17)

From (7.17), we can see that during fractional-D and D/· iterations the last N −Nfrac

block columns of Ã do not change, i.e., we only have to recalculate the first Nfrac+1 block

columns. To efficiently build these first columns, we can recursively build and save the

constant blocks Ξi
Nfrac

, i = Nfrac+1, . . . , N − 1 during a full level-D update and then only

right-multiply the new matrices G
s|q
i , i = 0, . . . , Nfrac − 1 in the appropriate sequence in

every following fractional-D or D/· update.

To show the computational savings for the update of the condensed Hessian by a

fractional-D or D/· update, we write the condensed Hessian in (2.37) as

Bcond = Ã⊺B11Ã+B21Ã+ Ã⊺B12 +B22, (7.18)

following the notation in [125], and specify the parts of Bcond,

Ã⊺B11Ã =




B̂s0,s0 B̂s0,q
0 B̂s0,q

1 · · · B̂s0,q
N−1

∗ B̂q,q
0,0 B̂q,q

0,1 · · · B̂q,q
0,N−1

∗ ∗ B̂q,q
1,1 · · · B̂q,q

1,N−1
...

...
...

. . .
...

∗ ∗ ∗ · · · B̂q,q
N−1,N−1



, (7.19)
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where

B̂s0,s0 , Bss
0 + Ξ0

0
⊺
Bss

1 Ξ0
0 + Ξ1

0
⊺
B2

ss Ξ1
0 + . . .+ ΞN−1

0
⊺
BN

ss ΞN−1
0 , (7.20a)

B̂s0,q
l , Ξl

0
⊺
Bss

l+1 G
q
l + Ξl+1

0

⊺
Bss

l+2 Ξl+1
l+1 G

q
l + . . .+ ΞN−1

0
⊺
Bss

N ΞN−1
l+1 Gq

l , (7.20b)

l = 0, 1, . . . , N − 1, and

B̂q,q
k,l , Gq

k
⊺
Ξl
k+1

⊺
Bss

l+1 G
q
l + . . .+Gq

k
⊺
ΞN−1
k+1

⊺
Bss

N ΞN−1
l+1 Gq

l , (7.20c)

k = 0, 1, . . . , N − 1 and l = k, k + 1, . . . , N − 1. From (7.19) and (7.20c), we can see

that for k, l ≥ Nfrac all involved Hessian blocks Bss and constraint Jacobian blocks Gs|q

are constant, thus the lower right (N −Nfrac)× (N −Nfrac) blocks in (7.19) do not have

to be recomputed. Furthermore, for computation of (7.20c), the intermediate terms
(
Ξl
Nfrac

)⊺
Bss

l+1G
q
l + . . .+

(
ΞN−1
Nfrac

)⊺
Bss

N ΞN−1
l+1 Gq

l (7.21)

can be saved for l = Nfrac, . . . , N−1, thus only requiring left-multiplication with the matrix

Gq
k
⊺
(
Ξ
(Nfrac−1)
k+1

)⊺
during a fractional-D or D/· re-condensing. This works analogously

for (7.20b). For the second composed part Ã⊺B12 of Bcond we obtain

Ã⊺B12 =




0 0 Gs
0B

sq
1 Ξ1

0
⊺
Bsq

2 · · · ΞN−2
0

⊺
Bsq

N−1

0 Gq
0B

sq
1 Gq

0
⊺
Ξ1
1
⊺
Bsq

2 · · · Gq
0
⊺
ΞN−2
1

⊺
Bsq

N−1

0 Gq
1
⊺
Bsq

2 · · · Gq
1
⊺
ΞN−2
2

⊺
Bsq

N−1

0
. . .

...
. . . Gq

N−2
⊺
Bsq

N−1

0




(7.22)

From (7.22) we can see that in the last N −Nfrac block rows all involved Hessian blocks

Bsq and constraint Jacobian blocks Gs|q are constant, thus the last (N−Nfrac) block rows

do not have to be recomputed. Since the second addend B21Ã in (7.18) is the transpose

of (7.22), we can conclude that also the lower right (N − Nfrac) × (N − Nfrac) blocks of

the sum of the second and third addend in (7.22) are constant and thus do not have to

be recomputed. Finally, the same fact is trivially true for the fourth addend B22, thus

the lower right (N −Nfrac)× (N −Nfrac) blocks of the whole condensed Hessian Bcond are

constant.

The complexity of a full condensing step can easily be verified to be O(N3) submatrix-

submatrix multiplications, each of which is at most of runtime complexity O(n3), for

n = nx + nu. Reusing intermediate products as outlined above leads to a computational

complexity of O(N ·Nfrac +N3
frac) submatrix-submatrix multiplications. Hence, for small

Nfrac we can expect the computational effort for condensing in fractional-D or D/· updates

to be only a small part of the effort in full level D updates. It should still be noted that

in practice, due to almost triangular shape of Ã, the observed runtime complexity of a

full condensing step is rather quadratic in the horizon length (cf. [104]).
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7.3 Spectral radius estimation by iterative methods

In Chapter 6 we have discussed an adaptive level choice algorithm for MLI which uses an

estimate of the spectral radius of matrix (6.11) to decide if a level-D iteration is necessary

to improve contraction. We now discuss how such an estimate can be computed and how

to do this efficiently. In the following we use the notation of Chapter 6.

From (6.13) in Theorem 6.1 we can immediately see that

(χj+1 − χj) = V (χj − χj−1) (7.23)

This means, that the iteration (6.13) behaves like a Power iteration, cf. [181, 88]. We

can use it to estimate the largest absolute eigenvalue of V , which is by definition the

spectral radius of V . Efficient estimators for the spectral radius can be found described

and derived in detail in [147], and we briefly outline two of these estimators.

Rayleigh estimator If V ∈ R
N×N is diagonalizable, and its eigenvalues λi, i = 1, . . . , N

are ordered by

|λ1| > |λ2| ≥ . . . ≥ |λN |,

and (χ1 − χ0) has a component in the direction of the eigenvector corresponding to λ1,

then

κ̂j ,
(χj − χj−1)

⊺ (χj+1 − χj)

(χj − χj−1)
⊺ (χj − χj−1)

→ σ(V ), (j → ∞)

This estimator is computationally cheap and robust, but may converge slowly, if |λ2|
|λ1|

is

close to 1. Extensions and improvements of this method are, e.g., the Subspace Iteration

and the Arnoldi Iteration approach, which work on subspaces with dimension greater than

one and have faster convergence. However, they are also computationally significantly

more expensive.

Root estimator If σ(V ) > 0 and (χ1 − χ0) has a component in the dominant invariant

subspace corresponding to the eigenvalues of V with the largest modulus, then

κ̂j+1 ,
‖χj+1 − χj‖

(1/j)

‖χ1 − χ0‖(1/j)
, j ≥ 1,

yields an asymptotically correct estimate of σ(V ) for j → ∞.

For both estimators, we have to perform several steps of iteration (6.13). The compu-

tationally most expensive part of one such iteration is the calculation of the product

V χ =M

(
dF

dx
(xk+1)

)
χ.

Building the matrix V explicitly is computationally undesirable, since this would be much

more expensive than the actual MLI iteration due to the computation of a full Jacobian.

However, we can first compute the directional derivative
(
dF
dx (xk+1)

)
χ and then apply M

to the resulting vector to obtain the desired product much more efficiently.
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In order to calculate a matrix-vector product JB(xk+1)χ or JC(xk+1)χ, we partition

the direction χ = (χ1, χ2, χ3) and then obtain

JB(xk+1)χ =



Bkχ

1 − C̃⊺
kχ

2 − D̃⊺
kχ

3

Jc,k+1χ
1

Jd,k+1χ
1


 (7.24)

and

JC(xk+1)χ =



∇2

wL(xk+1)χ
1 − J⊺

c,k+1χ
2 − J⊺

d,k+1χ
3

Jc,k+1χ
1

Jd,k+1χ
1


 . (7.25)

Note that Bk+1 = Bk, C̃k+1 = C̃k, D̃k+1 = D̃k in (7.24), since in this case we test level-B

for suitability for the next MLI iteration, and thus the matrices are kept constant.

In both level-B and level-C, we have to compute FB|C(xk+1) anyway for the adap-

tive level choice algorithm. We can thus see that the computational effort for level-B is

mainly the forward sensitivity computation Jc,k+1χ
1, which costs only a small multiple

of the function evaluation c̃(wk+1). For level-C the dominant part is the computation of

the directional second derivative ∇2
wL(xk+1)χ

1 which costs only a small multiple of the

Lagrange gradient evaluation ∇wL(xk+1). This means that evaluation of JB(xk+1)χ or

JC(xk+1)χ is not significantly more expensive than evaluation of the respective right-hand

sides. In particular, when evaluating the right-hand-sides, during the solution of the dy-

namic model equations the quite expensive adaptive choices are determined and can be

reused for the computation of the directional derivatives.

To efficiently compute the full matrix-vector product V χ we then exploit the fact, that

M is given implicitly by the factorization of the QP matrices for the current active set.

Multiplication of M with the vector v = JB|C(xk+1)χ is actually just a backsolve of the

current factorized KKT matrix in the QP with v.

Note that if we start the iteration (6.13) with χ0 = 0, then we obtain χ1 = −MF (xk+1)

which is the inexact Newton increment in (6.4). This means, that in general the estimation

of the spectral radius is computationally more expensive than the contraction estimation

by postiterations. On the other hand, the spectral radius estimate is a more reliable

quantity to determine the quality of M as an approximation of J−1(xk+1) and thus its

suitability for reuse in upcoming MLI iterations.
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8 Methodological applications

In this chapter, we consider several methodological fields of application for the MLI ap-

proach. First, we briefly discuss and give some results for MLI for NMPC on long horizons.

Then, we outline an approach for the calculation of robust feedback, and introduce a for-

mulation for a Dual NMPC problem to avoid the conservatism of the robust worst-case

approach. Both the robust and the Dual NMPC problem are significantly larger and

computationally more expensive than their nominal counterpart, and thus are natural

candidates for the application of MLI.

8.1 NMPC on long horizons

An interesting field for application of the MLI approach is NMPC on long horizons. In

NMPC theory, in general instant feedback is assumed as soon as the new current state

is available. Moreover, ideally the optimal control problem is to be solved on an infinite

time horizon, or otherwise one has to approximate the infinite horizon by end constraints

and/or end weightings in the objective function, cf. [137, 156].

On the other hand, numerical NMPC schemes most often try to work on short control

horizons to reduce the computational effort and thus calculate feedback quickly to reduce

the feedback delay. In [92, 91] and related works it has been shown that by choosing a

long enough control horizon, stability can be achieved by numerical schemes without any

end point constraints or weightings.

Furthermore, for the approach of Multiple Shooting discretized NMPC with condensing

for problem size reduction considered in this work, NMPC on long horizons can be con-

sidered as a particular instance of the more general problem of NMPC with many control

variables. These problems may also occur from, e.g., the application of outer convexifica-

tion to optimal control and NMPC with mixed-integer variables, cf. [161, 162, 103]. Thus,

the efficient solution of NMPC problems on long horizons is an interesting and important

problem.

In C. Kirches, L. Wirsching, H.G. Bock, and J.P. Schlöder, Efficient direct multiple

shooting for nonlinear model predictive control on long horizons [106], MLI with level-C

iterations is tested and compared to RTI with a sparse QP solver and RTI with a tailored

block-structured QP solver (cf. [107]) on long horizons for several test problems. The

problem sizes vary from 18 variables and 10 constraints to 57,690 variables and 55,680

constraints, with control horizon lengths up to N = 640 Multiple Shooting intervals. The

study finds the MLI with level-C iterations combined with vector condensing “to perform

best by a wide margin for systems with larger state space dimensions”([106]).
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8.2 Robust Model Predictive Control

Robust control becomes essential whenever parameter values appearing in the problem

formulation are only known within a given set of uncertainty. In this case, optimizing only

for the nominal parameter values may lead to control profiles which perform poorly in the

case of different parameter realizations or even lead to violation of process constraints.

The approach used in this work for robustification of control problems applies the work

of Bock et al. [27, 52] for the min-max-robustification of nonlinear programs by Ben-Tal

and Nemirovskii [17]. The min-max-robustification aims to minimize the maximum of

the objective value over the uncertainty set, subject to feasibility of the maxima of the

constraints over the uncertainty set. Belonging to the class of semi-infinite optimization

these problems are computationally highly demanding. Thus, in [52] it is proposed to

linearize the objective and constraint functions around the nominal parameter values.

This gives rise to analytically solvable inner maximization problems and thus allows to

simplify the problem to a nonlinear program.

For robust NMPC, we apply the methods presented and proposed in this work to the

sequence of nonlinear programs obtained by the robustification approach described above,

i.e., we apply RTI or MLI to the robust nonlinear programs with changing initial state

in each iteration. The arising nonlinear programs are significantly larger and computa-

tionally more expensive than their nominal counterparts due to the fact that we have to

compute first-order sensitivity information already for the formulation of the problem and

thus higher-order sensitivity information to set up and solve the subproblems. Since MLI

aims particularly at reducing the cost of function and derivative evaluation, it lends itself

as efficient numerical approach for robust NMPC.

8.2.1 Robust nonlinear programming

Let us briefly describe the approach for a nonlinear program with equality constraints

which contain uncertain parameters p. We will use the notation and closely follow the

presentation of [52] and refer to this paper for further details. We will denote the objec-

tive function with f0, the inequality constraints with fi, i = 1, . . . , nf , and the equality

constraints with gj , j = 1, . . . , nx.

min
x∈Rnx ,u∈Rnu

f0(x, u) s.t.

{
fi(x, u) ≤ 0 for i = 1, . . . , nf ,

gj(x, u, p) = 0 for j = 1, . . . , nx.
(8.1)

Assume that the parameters p are contained in the ellipsoidal uncertainty set

P :=

{
p ∈ R

np

∣∣∣
∥∥∥∥Σ

− 1
2

p (p − p̄)

∥∥∥∥
2

≤ γ

}

centered around the nominal values p̄ and using the covariance matrix Σp as well as a

scalar confidence level parameter γ for determining the size of the ellipsoid.

By defining the worst-case functions

φi(u) := max
x∈Rnx ,p∈P

fi(x, u) s.t. g(x, u, p) = 0. (8.2)
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we can formulate the “robust counterpart” of the uncertain optimization problem as the

following worst-case problem.

(RC) min
u∈Rnu

φ0(u) s.t. φi(u) ≤ 0 for i = 1, . . . , nf . (8.3)

As already mentioned above, this is a semi-infinite optimization problem (in the sense that

(8.2) amounts to infinitely many constraints) and thus computationally demanding and

usually intractable for discretizations of large-scale optimal control problems. However, it

is possible to simplify the worst-case functions (8.2) by linearization around the nominal

parameter values to come up with much simpler functions φ̃i(u), which can be represented

as

φ̃i(u) = fi(x̄, u) + γ

∥∥∥∥∥Σ
1
2
p

(
∂g

∂p
(x̄, u, p̄)

)T(∂g
∂x

(x̄, u, p̄)

)−T(∂fi
∂x

(x̄, u)

)T
∥∥∥∥∥
2

. (8.4)

Here, x̄ are the discrete states satisfying the equality constraints for given control parame-

ters u and nominal parameter values p̄. Note that the approximated worst-case functions

φi(u) contain penalty terms which increase with both the desired confidence level pa-

rameter γ and the covariance Σp. Thus, we come up with the approximated nonlinear

problem

(ARC) min
u∈Rnu

φ̃0(u) s.t. φ̃i(u) ≤ 0 for i = 1, . . . , nf (8.5)

which can then be treated by NLP solvers.

8.2.2 Application to feedback control

To illustrate the application of the robustification to NMPC consider the following NMPC

optimal control problem with Mayer objective for the current state xk0

minimize
x,u

E(x(tend)) (8.6)

subject to 0 = x(t0)− xk0,

0 = ẋ(t)− f(t, x(t), u(t), p),

0 ≤ cpath(x(t), u(t)),

0 ≤ r(x(tend)).

Application of Direct Multiple Shooting as well as the linearized min-max robustifica-

tion described in Section 8.2.1 yields a nonlinear program where the equality constraints

represent the Multiple Shooting discretization of the dynamical equations containing un-

certain parameters. In this case, in (8.1) x denotes the discrete state trajectory, u are

the control parameters, and p are uncertain parameters (and possibly uncertain initial
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values). The robustified nonlinear program reads

minimize
s,q,D

E(sN ) + γ
√

∇E(sN )⊺DNΣD⊺
N∇E(sN ) (8.7)

subject to 0 = s0 − xk0,

0 = D0,

0 = xj(tj+1; tj , sj, qj)− sj+1, j = 0, . . . , N − 1,

0 = D(tj+1;Dj , sj, qj)−Dj+1, j = 0, . . . , N − 1,

0 ≤ cpath(sj , qj)− γ
√

(∇cpath(sj, qj))
⊺
DjΣD

⊺
j∇c

path(sj , qj), j = 0, . . . , N − 1,

0 ≤ r(sN)− γ
√

(∇r(sN ))⊺DNΣD⊺
N∇r(sN ),

where Σ is the covariance of the parameter uncertainty and D(tj+1;Dj , sj , qj) is the

solution of the variational differential equation Ḋ = fxD + fp,D(tj) = Dj , which gives

the sensitivity of the states with respect to the uncertain parameters. Since D has the

size nx × np, NLP (8.7) has (N + 1) · nx · np more equality constraints than its nominal

counterpart. This NLP can now be handled with the numerical NMPC methods presented

in this work. For the application of RTI to robust NMPC for fed-batch reactors see

[117, 116].

8.3 Dual Control and NMPC

Using the approach described in Section 8.2.2 we obtain a robust feedback control. How-

ever, the expression DjΣD
⊺
j only propagates the initial uncertainty of the parameters

through the system dynamics. The robust feedback which is computed in this way will

be conservative in the sense of ignoring any possible additional information gain on the

parameter values obtained within the prediction horizon. This may lead to computation

of controls that accept unnecessary performance degradation.

The idea of Dual Control, which originates in the work of Feldbaum [68, 69, 70, 71], is

to combine the optimal control of a process with uncertainties with the information gain

about the uncertainties, in particular the uncertainties which have the most influence

on the optimization goal. This means that we try to find controls which not only steer

the process well with respect to the optimization goal, but also lead to “information-

rich” measurement data from which the uncertainties with the most influence towards the

optimization goal can be reduced quickly. A popular analogy is the time-optimal steering

of a car on unknown slippery ground. One wants to drive fast, but in order to learn

about the driving behavior of the car on the ground, one would also do some breaking

and steering maneuvers which would be counterproductive with respect to the original

goal on a well-known ground.

Therefore, one idea to apply this approach to the NMPC problem (8.7) and improve on

the conservatism of the computed controls is to directly account for measurement informa-

tion obtained over the prediction horizon within the problem formulation. This means to

replace the expression DjΣD
⊺
j by some function C(s, u), which on the one hand accounts
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for measurement information, and on the other hand quantifies the information gain de-

pending on state and control parameter values. By doing so, we enable the controller to

choose control profiles which make best possible use of future measurements.

8.3.1 Propagation of covariance for linearized min-max robustification

A first approach to account for measurement information is to include the estimator

equations in the controller problem formulation of the covariance. For the continuous

extended Kalman filter equations, the new problem formulation is:

minimize
s,q,C

E(sN ) + γ
√

∇E(sN )⊺CN∇E(sN ) (8.8)

subject to 0 = x
(i)
0 − s0,

0 = C̄ − C0,

0 = xj(tj+1; tj , sj, qj)− sj+1, j = 0, . . . , N − 1,

0 = C(Cj, sj, qj)− Cj+1, j = 0, . . . , N − 1,

0 ≤ cpath(sj , qj)− γ
√

(∇cpath(sj , qj))
⊺
Cj∇cpath(sj , qj), j = 0, . . . , N − 1,

0 ≤ r(sN)− γ
√

(∇r(sN ))⊺ CN∇r(sN),

where C(Cj, sj , qj) is the solution of the initial value problem

Ċ = fxC + Cf⊺x − Ch⊺xR
−1hxC, C(tj) = Cj

and h is the measurement function.

This problem formulation adds (N +1) · (nx +np)
2 equality constraints to the nominal

problem formulation and is thus also well suited for the application of Multi-Level Iteration

schemes due to the computationally expensive dynamics. Note that the nonlinearity of

the robustification terms both for robust NMPC and the Dual NMPC formulation is a

strong argument for using exact Lagrange Hessians in level-D iterations.

8.3.2 Other approaches and further reading

More details on Dual Control for NMPC can be found, e.g., in [121, 120]. An interesting

alternative approach to address the gain of measurement information in order to reduce

conservatism in the robust feedback control is the scenario tree NMPC approach, see

[167, 133]. The main idea is to divide up the prediction horizon in stages and branch

on each stage after a common first stage for different realizations of the uncertainties.

This allows to compute different control moves for each branch and thus satisfy bounds

and minimize the objective more flexible than having to rely on a single control sequence

over the whole horizon. The resulting NLPs are large-scale but structured and can be

efficiently treated by structure-exploiting methods, see, e.g., [123, 122, 109].
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choice

In this chapter, we present the application of MLI with prescribed level choice to two

numerical test cases, the continuous stirred-tank reactor (CSTR), and a single-track car

model with nonlinear tire model (TESTDRIVE). In both cases, NMPC is used to reject

a disturbance and track a desired state. We compare the performance of MLI with the

established approach of RTI, investigate MLI for various data communication strategies,

and show the advantage of higher sampling rates for the considered test cases.

If not cited from another publication, all computations presented in the following were

performed on an IntelR© Xeon R© W3565@3.20GHz with 12 GB RAM. The software used is

MLI, a MATLABR© based implementation of the Multi-Level Iteration approach written

by the author of this work, which makes use of the parametric QP solver qpOASES [73],

and the integrator/evaluator package SolvIND [5, 6] which provides implementations of

BDF and Runge-Kutta methods with forward and backward sensitivity calculation of first

and higher order.

9.1 CSTR: MLI with prescribed level choice

As a numerical test case for the Multi-Level Iteration schemes we use the already intro-

duced continuous stirred-tank reactor (CSTR). For the description of the states, controls,

and parameters of the CSTR, as well as the dynamic model equations we refer to the

presentation in Chapter 2.

In general, the dynamics of the CSTR are comparably slow and the system size is small,

thus computational times are not an issue on modern day desktop computers and the use

of particularly efficient numerical schemes to generate feedback quickly is not critical.

Still, the system is significantly nonlinear and illustrates nicely rather typical workload

distribution with respect to the tasks that are part of a single Multi-Level Iteration, and

thus we use the test case as a proof-of-concept for the usability of the presented approach

of MLI.

9.1.1 Control scenario

For the numerical testing, we consider the following scenario. Units are left out for the

sake of briefness of the presentation. The CSTR reactor starts in the steady-state and
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controls

xs =




2.1402

1.0903

114.19

112.91


 , and us =

(
14.19

−1113.5

)
. (9.1)

At time t = 2, the feed temperature jumps from θ0 = 104.9 to θ0 = 109.0. The state

evolution resulting from this disturbance for constant controls us is depicted in Figure 9.1.

We can see a significant increase in the reactor temperature θ and thus an undesired

deviation of the product concentration cB from the target value xs,2.
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Figure 9.1: Evolution of CSTR states until t = 1000 after parameter jump under steady-state con-

trols.

The aim of the controller is to reject the disturbance by tracking the product concentra-

tion xs,2 and the reactor temperature xs,3 while staying close to the steady-state controls

us. To do this, we apply NMPC with the objective

min
x,u

∫ T

0
L(x, u)dt, (9.2)

with

L(x, u) =

(
x2 − xs,2
x3 − xs,3

)⊺

Q

(
x2 − xs,2
x3 − xs,3

)
+ (u− us)

⊺R (u− us) , (9.3)

with weighting matrices
(
100 0

0 50

)
, and

(
5 · 10−2 0

0 5 · 10−8

)
. (9.4)
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9.1 CSTR: MLI with prescribed level choice

As time horizon for Multiple Shooting, we use [0, T ] = [0, 100], divided into 10 Multiple

Shooting intervals. The scenario runs for 300 time units.

9.1.2 Failure of LMPC and RTI reference

In order to see that a nonlinear feedback technique such as NMPC is required, we set

up an LMPC controller by linearizing the constraints and evaluating the exact Lagrange

Hessian and the objective gradient in the steady-state, using the Lagrange multipliers

obtained by solving the steady-state optimal control problem. As sampling period we

choose δ = 0.1 time units.
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Figure 9.2: CSTR state (left, red) and control (right, blue) trajectories: LMPC fails to track the

product concentration and reactor temperature.

The resulting control and state trajectories are given in Figure 9.2. It is clear that the

controller is not able to track the reactor temperature and the product concentration.

The chosen control trajectory deviates significantly from the steady-state controls. This

is partly due to the fact that the linearization of the dynamical system, i.e., the linearized

matching conditions, do not contain any information of the parameter change. A possible

improvement would be to add the term Gp
i∆p to the ith matching condition, where Gp

i

is the sensitivity of the steady-state solution on the ith Multiple Shooting interval with

respect to the parameters, and ∆p is the difference of the current parameters to the

steady-state parameters, which could be obtained, e.g., by a concurrently running online

estimator.

As a reference solution for comparison of the MLI controller performances, we give the
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Figure 9.3: CSTR state (left, red) and control (right, blue) trajectories: RTI reference solution

tracks product concentration and reactor temperature.

RTI control and state trajectories for a sampling period of δ = 1 time units using exact

Hessians in Figure 9.3. RTI is able to reject the disturbance and track both the product

concentration and the reactor temperature. In Table 9.1 we give average computational

times per sample for the six main tasks which are part of one real-time iteration. These

tasks, with shorthands in parentheses, are function and derivative evaluation (EVAL),

assembling the Hessian (HESS), condensing (COND), solving the QP (QP), recovering

the step variables and multipliers eliminated by condensing (BLOWUP), and updating

the primal and dual variables (STEP).

The accumulated CPU times over the whole scenario runtime for the six tasks are given

in Figure 9.4. The figure shows clearly that the main part of the computational effort goes

into the preparation phase, which mostly consists of the function and derivative evaluation

and condensing. Since MLI aims particularly at reducing the computational effort for

these two tasks, it can be expected to decrease the computational effort considerably.

Furthermore, the figure shows a slight decrease of the computational effort for function and

derivative evaluation over runtime. This is due to the fact that with approaching the new

operating point, the error control algorithm within the integrator allows to choose longer

step sizes, thus reducing the computational cost of function and derivative evaluation.

Note that the tasks which do not depend on the evaluation point but only on the size of

the matrices and vectors involved, such as condensing and recovery of step variables and

multipliers, require a constant computational effort and thus gain on the function and

derivative evaluation towards the end of the scenario runtime.
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9.1 CSTR: MLI with prescribed level choice

Table 9.1: Average computational times of tasks in milliseconds per sample for RTI reference solu-

tion. It is clearly visible that the preparation phase is the computationally dominant phase and that

function and derivative evaluation contributes a major part. Note also the small amount of CPU

time spent in the feedback phase, making feedback effectively immediate.

RTI phase Task ∅ CPU time/sample [ms]

Preparation phase EVAL 15.91

HESS 0.38

COND 10.17∑
26.46

Feedback phase QP 0.31

Transition phase BLOWUP 0.80

STEP 0.06∑
0.86

Total
∑

27.63
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Figure 9.4: RTI for CSTR: accumulated CPU times for six tasks function and derivative evaluation

(EVAL), Hessian assembly (HESS), condensing (COND), QP solution (QP), recovery of step vari-

ables and multipliers (BLOWUP), and step computation (STEP). The figure shows the proportions

of the CPU time spent for the various tasks over time. Dominant parts are function and derivative

evaluation and condensing.
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9 Applications: MLI with prescribed level choice

9.1.3 Numerical results for pure level-C iterations

As a first example for an MLI scheme let us consider the pure level-C scheme. In the

controller initialization, the exact Hessian and constraint Jacobians are evaluated in the

original steady state. In each sample, then only the Lagrange gradient and the constraint

residuals are evaluated. In particular, no new Jacobians or Hessian approximations are

computed and thus no matrix condensing is necessary. As discussed in Chapter 5, the

pure level-C iteration scheme has the same theoretical properties as RTI, provided that

the Jacobian and Hessian approximations are in a defined way close enough to their exact

counterparts.

Note that we choose the same sampling rate δ = 1 here and for the MLI schemes used

later in Section 9.1 if not stated otherwise. This is in slight contradiction to the overall

philosophy of using MLI schemes to to be able to choose faster sampling periods to obtain

better controller performances. However, the point of the investigations at hand is to

show that MLI schemes generate suitable feedback control even for the same sampling

rate as the RTI scheme. We also give results for a smaller sampling rate to show how the

controller performance benefits from the faster feedback provided by the MLI schemes,

see Table 9.4.
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Figure 9.5: CSTR state (left, red) and control (right, blue) trajectories: pure level-C MLI tracks

product concentration and reactor temperature.

The resulting state and control trajectories for the pure level-C scheme are given in

Figure 9.5. Clearly, the controller is able to reject the disturbance and track the desired

states. There are only marginal differences in state and control trajectories compared
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9.1 CSTR: MLI with prescribed level choice

Table 9.2: Average computational times of tasks in milliseconds per sample for pure level-C MLI.

Note the significant decrease in the CPU time spent for function and derivative evaluation as well as

condensing.

MLI phase Task ∅ CPU time/sample [ms]

Preparation phase EVAL 4.59

HESS 0.0

COND 2.74∑
7.33

Feedback phase QP 0.28

Transition phase BLOWUP 0.93

STEP 0.10∑
1.03

Total
∑

8.64

to the RTI reference solution, most notably in the size of the controls closely after the

instant of time when the disturbance occurs.

The computational times for the six main tasks introduced above are given in Table 9.2.

As expected, we observe a significant reduction in the function and derivative evaluation,

which amounts for the test case at hand to a factor of almost 3.5, and in the condensing,

which amounts to a factor of a bit more than 3.7, both in comparison with the compu-

tational times for the RTI controller, cf. Table 9.1. There is also a reduction in the QP

solution times, which is due to the saving of the initial matrix decompositions, which are

necessary whenever new Jacobians or Hessian approximations are computed, as it is the

case in the RTI scheme. This effect seems small in this example, however, for larger QPs

it amounts to a significant part of the computations needed for the QP solution. Further-

more, the QP solution time constitutes the actual delay for giving feedback as soon as the

new current state is available, thus MLI allows not only faster sampling but also reduces

the actual feedback delay. The accumulated CPU times over the whole scenario runtime

for the six tasks are given in Figure 9.6. It is clear that the total time consumption as

well as the share of the preparation phase in the overall computations per sample have

decreased significantly.

9.1.4 Suboptimality of level-B iterations

Next we consider the pure level-B MLI scheme and investigate its suitability for the con-

trol scenario at hand. In the controller initialization, the exact Hessian and constraint

Jacobians are evaluated in the original steady state. In each sample, then only the gra-

dient approximation and the constraint residuals are evaluated. In particular, no new

derivative information is computed, which makes level-B iterations computationally even

less expensive than level-C iterations. Also, no matrix condensing is necessary. As dis-

cussed in Chapter 5, due to the use of a gradient approximation, the level-B iterations
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Figure 9.6: Pure level-C MLI for CSTR: accumulated CPU times for six tasks function and deriva-

tive evaluation (EVAL), Hessian assembly (HESS), condensing (COND), QP solution (QP), recovery

of variables and multipliers (BLOWUP), and step computation (STEP). Note the difference in the

y-axis range compared to Figure 9.4. The amount of CPU time reduction for EVAL and COND is

clearly visible. As expected, there is no reduction in the CPU time for the calculations that are inde-

pendent of the level choice.

converge in general to suboptimal points, and this can be observed for the test case.

The resulting state and control trajectories for the pure level-B scheme with exact

Hessian are given in Figure 9.7. For comparison, the dashed lines show the RTI reference

solution. While tracking the product concentration cB satisfactorily, the controller is

unable to track the reactor temperature. Also, the control profile of the first control

V̇ /VR shows an offset to the RTI control profile. It is thus clear that the controller drives

the process into a suboptimal operating point. The controller performance is still much

better than the LMPC controller performance, cf. Figure 9.2.

As an alternative to using the exact Hessian in the steady state as Hessian approxima-

tion for the level-B iterations, one can formulate the NMPC objective approximatively by

the following least-squares objective, which samples and sums up the original objective in

the Multiple Shooting nodes

min
s,q

N−1∑

i=0



∥∥∥∥∥

(
si,2 − xs,2
si,3 − xs,3

)∥∥∥∥∥

2

Q

+ ‖qi − us‖
2
R


+

∥∥∥∥∥

(
sN,2 − xs,2
sN,3 − xs,3

)∥∥∥∥∥

2

Q

, (9.5)

and then build the Gauss-Newton Hessian approximation in the steady state and use the
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9.1 CSTR: MLI with prescribed level choice
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Figure 9.7: CSTR state (left, red) and control (right, blue) trajectories: pure level-B MLI with

exact Hessian (solid line) steers process to suboptimal operating point; reference RTI solution as

dashed line.

Gauss-Newton gradient approximation during the MLI iterations. In this case, the Gauss-

Newton Hessian approximation is constant and thus the exact Gauss-Newton Hessian

approximation in each sample, therefore also the Gauss-Newton gradient approximation

is the exact objective gradient in each sample.

The resulting state and control trajectories for the pure level-B scheme with Gauss-

Newton Hessian approximation are given in Figure 9.8. For comparison, the dashed

lines show the RTI reference solution. The controller is able to track both the product

concentration and the reactor temperature. Still, the control profile of the first control

V̇ /VR shows an offset to the RTI control profile, which means that the controller still drives

the process into a slightly suboptimal operating point. However, the level-B controller

with the Gauss-Newton Hessian approximation is much better than the level-B controller

with exact Hessian and almost as good as the level-C controller.

The computational times for the six main tasks introduced above are given for both

the controller with the exact Hessian and the controller with the Gauss-Newton Hessian

approximation in Table 9.3. As expected, we observe a further reduction in the function

and derivative evaluation, which amounts for the test case at hand to a factor of roughly 2

compared to the computational times for the level-C controller, cf. Table 9.2. The reason

for the comparably small reduction of the cost compared to the theoretical factor of up

to 5 is the cost for the adaptive choices made for the constraint evaluation, see also the

discussion in Chapter 5.
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Figure 9.8: CSTR state (left, red) and control (right, blue) trajectories: pure level-B MLI with

Gauss-Newton Hessian approximation tracks product concentration and reactor temperature, but

slight offset in control V̇ /VR; reference RTI solution as dashed line.

The other tasks show similar computational times than their level-C counterparts. The

slight difference in the evaluation time between the level-B controllers with exact Hessian

and Gauss-Newton Hessian approximation comes from the more expensive evaluation of

the Gauss-Newton gradient approximation, which includes the evaluation of the least-

squares residual function.

We finish the investigation of MLI schemes using a single level by comparing the per-

formances of the presented controllers. To this end, we consider as performance index

the objective function, evaluated over the whole scenario runtime. The results are given

in Table 9.4. As discussed, the level-C controller achieves almost the same performance

as the RTI controller, the level-B controller with the Gauss-Newton Hessian approxima-

tion is about 3.6% worse than the RTI controller. Only the level-B controller with exact

Hessian shows significant suboptimal performance. In summary, it can be stated that

for the considered test case, the level C and level-B controllers provide a computation-

ally attractive and well-performing alternative to RTI. Furthermore, as a first indication

that giving faster feedback can be beneficial for the controller performance, we also give

the performance for a level-C controller for a sampling period of 0.1 time units, which

is well within real-time feasibility, cf. Table 9.2 (the physical time unit of the sampling

period δ that we have dropped for notational reasons are seconds). Compared to the RTI

controller, the level-C controller achieves a performance gain of roughly 3.5%.
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9.1 CSTR: MLI with prescribed level choice

Table 9.3: Average computational times of tasks in milliseconds per sample for pure level-B MLI

with exact Hessian (left) and Gauss-Newton Hessian approximation (right). The further reduction of

CPU time for function evaluation compared to level-C is clearly visible.

MLI phase Task ∅ CPU exHess ∅ CPU GNHess

Preparation phase EVAL 2.23 2.93

HESS 0.0 0.0

COND 2.50 2.72∑
4.74 5.65

Feedback phase QP 0.22 0.27

Transition phase BLOWUP 0.81 0.92

STEP 0.05 0.10∑
0.86 1.02

Total
∑

5.82 6.94

Table 9.4: Comparison of performance index Iperf =
∫ 300

0
L(x, u)dt for RTI, level-C MLI, and level-

B MLI with exact Hessian and Gauss-Newton Hessian approximation. Additionally, performance of

level-C MLI with sampling period of δ = 0.1 time units is given. A smaller value of Iperf means a

better controller performance. Level-C MLI is competitive with RTI even for the same sampling rate.

The suboptimality of level-B iterations is clearly visible, with GN level-B still losing only about 3.6%

of performance compared to GN RTI. The best performance is achieved by level-C with a sampling

rate of δ = 0.1, which shows the benefit of smaller sampling rates.

exact Hessian GN Hessian

RTI C B C RTI C B

Sampling δ 1.0 0.1 1.0

Iperf 74.9066 74.9477 166.9260 72.3007 74.8453 75.0560 77.5548

9.1.5 MLI schemes with more than one level

In the following, we investigate MLI schemes with more than one level. More specifically,

we investigate the combination of level-B iterations with level-D iterations as a represen-

tative for such MLI schemes. This seems like a reasonable choice, because the level-B

iterations are suboptimal, but computationally cheap and thus allow fast feedback, while

level-D iterations are computationally expensive, but provide the controller with updated

system linearizations, Hessian approximations, and gradient information. We investigate

the controller behavior and compare the scheme performances for the four data commu-

nication strategies presented in Chapter 5, and check if the interaction of level-B and

level-D iterations leads to an improvement of the suboptimal performance of the level-B

controller as observed above.

Specifically, we consider the B1D2 scheme as an example for an MLI scheme with fre-

quent level-D updates, and the B1D20 scheme as an example for an MLI scheme with less

frequent level-D updates. Since we have observed significant differences in the controller
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9 Applications: MLI with prescribed level choice

behavior in the test cases above, we again use level-B iterations either with exact Hessians

or with Gauss-Newton Hessian approximations, each provided by the respective level-D

iterations.

We give the performance index, defined as in the preceding subsection, for the four

data communication strategies described in Chapter 5, namely bottom-up, maximum,

minimum, and top-down communication in Table 9.5. The results for exact Hessians are

given in the left part, the results for Gauss-Newton Hessian approximations are given in

the right part.

Table 9.5: Comparison of performance index Iperf =
∫ 300

0
L(x, u)dt for B1D2 and B1D20 MLI

schemes using data communication strategies from Chapter 5, with exact Hessian and Gauss-Newton

Hessian approximation. In this example, the different data communication strategies result in almost

identical controller performances. For the MLI schemes with sparser level-D iterations, the Gauss-

Newton Hessian approximation yields significantly better controller performances, since it does not

rely on Lagrange multiplicator information provided by the suboptimal level-B iterations.

exact Hessian GN Hessian

Iperf B1D2 B1D20 B1D2 B1D20

Bottom-up com. 74.9848 82.8482 74.8454 76.7225

Maximum com. 74.9815 82.8482 74.8451 76.7225

Minimum com. 74.9557 82.8574 74.8459 76.7210

Top-down com. 74.8281 82.8573 74.8455 76.7212

From the performance indices in Table 9.5, we can conclude that the B1D2 schemes

for both exact Hessian and Gauss-Newton Hessian approximation achieve virtually the

same performance as the respective RTI schemes, at a significantly lower computational

cost. The B1D20 schemes perform, in line with expectations, slightly worse. However, for

both exact Hessian and Gauss-Newton Hessian approximation they are better than the

respective pure level-B scheme. In particular, the exact Hessian B1D20 is able to track

both the product concentration and the reactor temperature. The B1D20 scheme with

Gauss-Newton Hessian approximation achieves a better performance index compared to

the scheme with exact Hessian because it is able to track the reactor temperature with a

smaller deviation from the set point value.

For this test case, only small differences can be observed between the four data commu-

nication strategies. The state trajectories and feedback control profiles generated by the

schemes using the Gauss-Newton Hessian approximation are virtually identical. For the

schemes using the exact Hessian, mostly small changes in the feedback control trajectory

closely after the parameter jump event can be observed. As an instance for the B1D2 and

the B1D20 schemes with exact Hessian we give the state trajectories and the feedback

control profiles for the bottom-up communication in Figure 9.9 and Figure 9.10, respec-

tively. For the B1D2 and the B1D20 schemes with Gauss-Newton Hessian approximation,

state trajectories and feedback control profiles are given in Figure 9.11 and Figure 9.12,

respectively.

126



9.1 CSTR: MLI with prescribed level choice

0 50 100 150 200 250 300
2.13

2.14

2.15

2.16

2.17

c
A

0 50 100 150 200 250 300
1.08

1.085

1.09

1.095

c
B

 

 

B
1
D

2

B
1
D

20

0 50 100 150 200 250 300
114.15

114.2

114.25

114.3

114.35

θ

time
0 50 100 150 200 250 300

110.5

111

111.5

112

112.5

113

θ K

time

Figure 9.9: CSTR state trajectories: comparison of B1D2 and B1D20 MLI scheme with exact Hes-

sian and bottom-up data communication. The B1D2 scheme rejects the disturbance slightly faster

and with less deviations from the set point.

The benefit of the combination of level-B and level-D iterations in MLI can be observed

particularly well in the control profiles given in Figure 9.10 for the B1D20 scheme. In

the first part, the controller follows the control profiles generated by the pure level-B

scheme, cf. Figure 9.7. At time t = 20, the linearizations, the gradient, and the Hessian

approximation are updated. As a result, the controller jumps to a new feedback control

arc which then allows the following level-B iterations to track the reactor temperature

successfully.
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Figure 9.10: CSTR control trajectories: comparison of B1D2 and B1D20 MLI scheme with exact

Hessian and bottom-up data communication. The B1D2 scheme takes more control actions early on

and thus the disturbance is rejected faster.
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Figure 9.11: CSTR state trajectories: comparison of B1D2 and B1D20 MLI scheme with Gauss-

Newton Hessian approximation and bottom-up data communication.
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9.2 TESTDRIVE: Performance improvement by faster feedback
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Figure 9.12: CSTR control trajectories: comparison of B1D2 and B1D20 MLI scheme with Gauss-

Newton Hessian approximation and bottom-up data communication.

9.2 TESTDRIVE: Performance improvement by faster feedback

In this section, we consider as test case the application of feedback control to a moving car

that gets disturbed by a lateral impact. The goal of the feedback control is to recover speed

and direction of the car. The dynamics of the system are fast and thus quick feedback is

required to reject the disturbance. We provide the car model, specify the control scenario,

and compare numerical results of RTI with various schemes consisting of level-A and level-

D iterations. The results show that giving feedback faster is more important than using

exact derivative information in each sample. The section is mostly a citation from the

paper J. Albersmeyer, D. Beigel, C. Kirches, L. Wirsching, H.G. Bock, and J.P. Schlöder,

Fast nonlinear model predictive control with an application in automotive engineering [3],

with adaption of notation and some additional commentary.

9.2.1 Vehicle model

A nonlinear single-track car model featuring a Pacejka type tire model is used for the

vehicle dynamics. It is described by an ODE system in the states x = (cx, cy, v, δ, β, ψ,wz)

and the controls u = (wδ, FB, φ). The coordinates, angles, and forces are visualized in

Figure 9.13. For a detailed description of the model equations and the system parameters

we refer to [105] and the references therein. The model is nonlinear in the states as well

as in the control φ.
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9 Applications: MLI with prescribed level choice

Figure 9.13: Coordinates, forces, and angles of the single-track vehicle model. The figure is aligned

with the vehicle’s local coordinate system, while the dashed pair of vectors (x, y) depicts the global

coordinate system used for computations.

9.2.2 Control scenario

A vehicle of 1, 300 kg mass is driving on a straight lane at a speed of 30 m/s. After 2

seconds, an impulse of magnitude 2 · 104 N is acting on the rear axle perpendicular to the

driving direction for 0.1 seconds. Applying the optimal offline control for driving on the

straight lane, the impact is strong enough to make the car spin multiple times and force

it off the lane. The model thus is not open-loop stable for this scenario.

Aim of the controller is to keep the vehicle on the lane while retaining a speed of 30

m/s. The full system state information is available at a resolution of 0.05 seconds.

The NMPC formulation of the scenario contains a least-square objective to minimize the

deviation from the straight lane as well as the prescribed velocity. Further, the controls

wδ, FB, φ are regularized over the prediction horizon with weight vector (1.0, 10−12, 10−4),

which puts most weight on tracking the setpoint for the steering angle velocity wδ with

about equal weighting of the braking force and the pedal position two orders of magnitude

less than the steering angle velocity.

Two-sided simple bounds on all states and controls are formulated, while no nonlinear

constraints are present. The upper and lower bounds on the states are

x = (2000, 1000, 60, 30, 30, 30, 30, 100),

x = −2000,−1000, 0,−30,−30,−30,−30,−100),

and the upper and lower bounds on the controls are

u = (0.5, 15000, 1),

u = (−0.5, 0, 0).

9.2.3 Numerical results

The delay due to computation time spent in the feedback phase is properly taken into

account in the vehicle system simulation. The computations have been performed with

the optimal control software MUSCOD-II [126, 127]. All computation times are given for a
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9.2 TESTDRIVE: Performance improvement by faster feedback

single-core Intel Pentium 4 machine with 2.8 GHz and 3 GB RAM, running SuSE Linux

10.1.

9.2.4 Classical Real-Time Iterations

From Figure 9.14 we can see that a sampling rate of 0.1 s is insufficient. The vehicle

spins uncontrollably, the final deviation from the straight lane exceeds 5 meters, and the

velocity of 30 m/s is not maintained. Figure 9.15 shows the controller performance for a

sampling rate of 0.05 s. Obviously, the shorter sampling intervals allow the RTI scheme

to reject the disturbance.

9.2.5 Multi-Level Iteration Schemes

The MLI controller schemes A1D2, A1D4, and A1D6 with a sampling rate of 0.05 s were

applied to the control scenario. All controller schemes A1D2 to A1D6 are able to reject

the disturbance, while those which apply mode D more often are able to catch nonlinear

effects better and generate “cleaner” control profiles, although at higher computational

cost. The results depicted in Figure 9.16 show the vehicle behavior under control profiles

generated by an A1D4 Multi-Level Iteration scheme. Again, choosing the sampling rate

for MLI equal to the sampling rate for the RTI is not fully in line with the philosophy of

MLI to give feedback as quickly as possible. The point of the study at hand is to illustrate

that for this example, it is more important to generate feedback quickly enough than to

calculate new linearizations. In fact, for sufficiently fast feedback, the linearization can

be re-used over up to six sampling intervals.

9.2.6 Computation Times

In Table 9.6 computation times for the multi-level NMPC implementation within the

optimal control software package MUSCOD-II [126, 127] are shown. All controllers are

faster than the classical Real-Time Iterations, while the most performant controller is

A1D4.

Notably, when the nonlinear updates performed by mode D are applied scarcely to save

on computation time (A1D6 scheme), the mode A workload starts to increase again due

to more active set changes occurring during the dense QP solution.

Controller Mode A Mode D Total

Calls Avg. [s/call] Calls Avg. [s/call] [s]

RTI 200 – 200 0.019 3.76

A1D2 200 0.005 101 0.015 2.43

A1D4 200 0.005 51 0.015 1.77

A1D6 200 0.006 34 0.016 1.86

Table 9.6: Computation times for the results presented in Figures 9.15, and 9.16.
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(b) Differential state profile.

Figure 9.14: Unsatisfactory performance of the RTI controller scheme for a sampling time of 0.1

seconds. The controller is unable to reject the impact. From the right column it can be seen that

the vehicle leaves the straight lane (top), the velocity v drops below 25 m/s (center), while the vehi-

cle spins.
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(b) Differential state profile.

Figure 9.15: Performance of the RTI controller scheme for a sampling time of 0.05 seconds. Within

less than 5 seconds, the controller recovers from the impact suffered at t = 2 s. The left column

depicts the optimal controls (from top to bottom: steering angle velocity wδ, braking force FB, pedal

position φ). The right column shows a selection of resulting differential states (deviation from the

straight lane cy, velocity v, slip angle β).

133



9 Applications: MLI with prescribed level choice

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

Time [s]

S
te

e
ri
n

g
 a

n
g

le
 v

e
lo

c
it
y
 [

ra
d

/s
]

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

Time [s]

B
ra

k
in

g
 f

o
rc

e
 [

N
]

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Time [s]

P
e

d
a

l 
p

o
s
it
io

n
 [

−
]

(a) Control profile.

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

Time [s]

V
e
rt

ic
a
l 
p
o
s
it
io

n
 [
m

]

0 1 2 3 4 5 6 7 8 9 10
29.5

30

30.5

Time [s]

V
e
lo

c
it
y
 [
m

/s
]

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

Time [s]

S
lip

 a
n
g
le

 [
ra

d
]

(b) Differential state profile.

Figure 9.16: Performance of the A1D4 controller scheme for a sampling time of 0.05 seconds. Even

doing a mode D step only every 0.2 seconds is still sufficient. Note the impact of the nonlinear up-

dates of mode D on the control trajectories generated by the mode A controller. Every 4 control

interval (0.2 seconds time), a new piecewise constant approximation to a control arc starts.
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In this chapter, we investigate MLI with adaptive level choice by applying the algorithms

described in Chapter 6 to MLI for two test cases: a chain of masses connected by springs,

which is to be brought to rest, and the TESTDRIVE problem described in the previous

chapter. For the chain application, we give the model equations, describe the control sce-

nario, and discuss numerical results for both the postiteration approach and the spectral

radius estimation approach. For the TESTDRIVE model, we concentrate on the postit-

eration approach, which meets the performance requirements best due to the rather small

problem size and the fast dynamics involved.

10.1 CHAIN: Control of a chain of masses connected by springs

As a first test case for the adaptive level choice for MLI we consider NMPC for a chain

of masses connected by springs without friction. The model as well as the application of

MLI with pure level-C iterations have been described in [186, 184], with more extensive

analysis of the system dynamics in the latter work. We consider the control task of

bringing the chain to rest and compare the performance of various schemes with adaptive

level choice both by postiterations and spectral radius estimation with the performance

of the corresponding RTI scheme. The adaptive schemes show comparable performance

and are, in contrast to the RTI scheme, real-time feasible by construction. We give

the dynamic model of the chain, describe the control scenario, and present and discuss

numerical results for the adaptive level choice by postiterations and by spectral radius

estimation.

10.1.1 ODE model

Consider a system of N point masses, each having the mass m, that are connected by

springs to form a chain. Each spring has the spring constant D and the rest length L.

The mass at the one end of the chain is connected to a fixed point and the mass at the

other end of the chain is connected to a freely movable point, both via another spring

having the same spring constant and rest length. The whole chain of masses is situated

in a homogeneous gravitational field.

Let the state variables xi(t) = (x1i (t), x
2
i (t), x

3
i (t))

⊺ ∈ R
3 for i = 1, . . . , N , describe the

position of the center of the mass i at time t. Let x0 ∈ R
3 be the point in space where the

chain is fixed and xN+1 ∈ R
3 the point in space where the chain can be moved. Without

restriction of generality we choose x0 to be the zero vector.
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10 Applications with adaptive level choice

For the N balls, Newton’s axioms for classical mechanics (see e.g. [173]) yield

ẍi(t) =
1

m
(Fi,i+1(t)− Fi−1,i(t)) + g, i = 1, . . . , N (10.1)

with g ∈ R
3 being the gravitational acceleration and Fi,i+1(t) ∈ R

3 being the force acting

on the i-th mass due to the spring between ball i and ball i+1 at time t (see also Figure

10.1).

i-1

i

i+1

F i,i+
1

Fi−1,i

Figure 10.1: Spring forces between masses.

We assume that the radii of the balls are small enough to approximate the length of the

(possibly elongated or shortened) spring between ball i and ball i+1 by ‖xi+1(t)−xi(t)‖.

From Hooke’s law it then follows that the absolute value of Fi,i+1(t) is given by

‖Fi,i+1(t)‖ = |D(‖xi+1(t)− xi(t)‖ − L)|, (10.2)

and the force should point from xi(t) to xi+1(t) if (‖xi+1(t)−xi(t)‖−L) > 0, so we obtain

Fi,i+1(t) = D(‖xi+1(t)− xi(t)‖ − L)
xi+1(t)− xi(t)

‖xi+1(t)− xi(t)‖

= D

(
1−

L

‖xi+1(t)− xi(t)‖

)
(xi+1(t)− xi(t)), (10.3)

which is a nonlinear force.

We formulate the equations of motion for xN+1(t) also as differential equations by

setting

ẋN+1(t) = u(t), (10.4)

which means we prescribe the velocity of xN+1(t). The complete second-order model

is then reformulated as first-order model, cf. Remark 2.1. We introduce the variables

vi(t) = (v1i (t), v
2
i (t), v

3
i (t))

⊺ ∈ R
3 for i = 1, . . . , N and set

ẋi(t) = vi(t), i = 1, . . . , N, (10.5a)

v̇i(t) =
1

m
(Fi,i+1(t)− Fi−1,i(t)) + g, i = 1, . . . , N, (10.5b)

ẋN+1(t) = u(t). (10.5c)

In the following we drop units. However, all quantities and parameter values are formu-

lated in the standard SI system and should be understood to have the correct correspond-

ing unit.
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10.1 CHAIN: Control of a chain of masses connected by springs

Table 10.1: Parameter values for the chain model used in the test case.

Parameter Value

D 1.0

L 0.055

m 0.03

g (0, 0,−9.81)⊺

xend (5, 0, 0)⊺

10.1.2 Control scenario

We consider feedback control for a chain with N = 9 masses. In the initial state of

the chain, the chain is at rest. The masses are lined up equally spaced along the x-axis

between x = 0.5 and x = 4.5, and the point of the chain where the control is applied is

at x = 5.0, i.e., the initial states for the model (10.5) are xi = (i · 0.5, 0, 0)⊺, i = 1, . . . , 10

and vi = (0, 0, 0)⊺, i = 1, . . . , 9, see also Figure 10.2. The scenario runs for 30 time units.

Because no friction is involved, the system with no controls applied is energy conservative

and thus would keep oscillating forever.

The goal of the feedback control is to bring the chain to rest in its natural steady state

with the control point in a prescribed xend. To this end, we use the objective function

L(x, v, u) = α ‖xN+1(t)− xend(t)‖
2
2 + β

N∑

j=1

‖vj(t)‖
2
2 + γ ‖u(t)‖22, (10.6)

with the weighting factors α = 25, β = 1 and γ = 0.01 for the formulation of the

NMPC optimal control problem. The units of the weighting factors are chosen to obtain

a dimensionless objective function value. For the control scenario, we consider the controls

to be bounded by

‖u(t)‖∞ ≤ 1 ∀t ∈ [0, T ]. (10.7)

The parameter values used in the chain model and objective function are given in Ta-

ble 10.1.

As time horizon for Multiple Shooting, we use [0, T ] = [0, 4], divided into 20 Multiple

Shooting intervals. We use the Gauss-Newton approach and initialize the controller in the

steady state, which can be obtained by solving the right-hand-side of equations (10.5) for

u = 0 and the parameter values from Table 10.1, or by pseudo-timestepping. The steady

state of the chain is depicted in Figure 10.2.

10.1.3 Numerical results

We aim at a sampling period of δ = 0.04 to address the fast dynamics of the chain. RTI

with this sampling yields the feedback control profiles depicted in Figure 10.3 and the

state trajectories partly depicted in Figures 10.4 and 10.5. The overall quality of the RTI

scheme is good, with a performance index of Iperf = 550.3029, where the performance
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Figure 10.2: Initial state (left) and steady state (right) of the chain with N = 9 balls and parame-

ter values from Table 10.1.
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Figure 10.3: RTI solution: control profiles. The controls are the prescribed velocities at chain end

mass. The scenario dynamics take place solely in the x1-x3-plane.

index is defined as

Iperf =

∫ 30

0
L(x, v, u)dt. (10.8)

On first sight, the x1-velocities depicted in Figure 10.4 may seem unsatisfactorily large,

however, one has to take into account that the scale of the x1-velocities differs quite

significantly from the scale of the x3-velocities. The magnitude of the remaining residual

velocities is actually of equal order for both x1- and x3-velocities and for the controls u1
and u3, which are just the controlled velocities of the end point of the chain. The reason

for the remaining residual velocities is the fact that the Gauss-Newton approach samples

the objective function only in the Multiple Shooting nodes. Thus, small high-frequent
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10.1 CHAIN: Control of a chain of masses connected by springs

residual oscillations remain which cannot be eliminated with the resolution determined

by the Multiple Shooting discretization. The oscillations can be reduced by refining the

Multiple Shooting grid, however, the increase of the computational effort soon outweighs

the benefits.

While the control performance of the RTI scheme is good, the scheme fails to be real-

time feasible by a significant margin. With a peak of about 232 ms CPU time per sample

and an average of about 158 ms CPU time per sample, the RTI scheme takes four to

six times the sampling period CPU time per sample. We thus apply MLI to the control

scenario and aim to obtain an MLI scheme which is assembled adaptively, is real-time

feasible, and shows a comparable control performance.

For the adaptive level choice, we essentially employ Algorithm 7, with the small mod-

ification that we separately calculate the norms of the Lagrange gradient approximation

and the constraint vector in level-B, and check each for a prescribed lower bound. We

use both the postiteration approach and the spectral radius estimation approach for vari-

ous tuning parameters, and compare the resulting MLI schemes. As data communication

strategy, we employ the maximum data communication, cf. Section 5.3.2, i.e., the MLI

levels iterate on a common set of primal-dual variables.

To account for the different computational times required for each level, we specify for

the levels B, C, and D the numbers nB, nC, nD of sampling periods needed to perform

the respective calculations. Then, whenever an iteration of level (·) is scheduled, we

perform n(·) − 1 level-A iterations in advance. This is a sequential model for a parallel

computation of the level updates while continually giving feedback with the best available

level-A controller. In the following, we use for both the postiterations approach and the

spectral radius estimation approach the values nB = 1, nC = 2, nD = 10, which have been

obtained by numerical experiments with an added safety margin.
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Figure 10.4: RTI solution: positions of masses with odd index and of chain end mass. The RTI

controller brings the chain to rest.
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Figure 10.5: RTI solution: velocities of masses with odd index. Note the different scales of x1- and

x3-velocities. Small residual oscillations remain and cannot be removed completely.
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Adaptive level choice by postiterations

For the adaptive level choice by postiterations, we choose δB = δC = 0.5 as the upper

limits for acceptable contraction of the level-B and level-C iterations. We vary the lower

limits for the constraint vector norm γB,c and for the Lagrange gradient approximation

norm γB,l. For choosing these values, it is reasonable to orient oneself at the function

evaluation accuracy, which is in this case essentially the integrator accuracy chosen at

10−5. Thus, we vary γB,c and γB,l between 10−1 and 10−4. For these values, we choose

the upper limit for the acceptable Lagrange gradient norm in level-C as λC = 1, which is

a rather conservative value but is suitable to illustrate the influence of this parameter on

the scheme generation.
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Figure 10.6: Adaptive level choice by postiterations. Top: MLI scheme for γB,c = γB,l = 10−1. The

levels A to D are denoted by the numbers 1 to 4 on the y-axis. The first part of the scheme is dom-

inated by cycles of level-B/level-C/level-D sequences, the second part consists of level C iterations.

Note that each level-C iteration has a preceding level A iteration, which is not visible due to resolu-

tion limits. Bottom: Histogram of level iterations used in the scheme. The levels A to D are denoted

by the numbers 1 to 4 on the x-axis (0 denotes the initial iteration and is of type level D). The num-

ber of iterations of the respective level occurring in the scheme are given on the y-axis, summing up

to a total of 750 iterations/sampling times. The most frequently scheduled level is level C, the most

frequently occurring level is level A. Every level-C iteration has one, every level-D iteration except the

initial iteration has nine preceding level-A iterations.

The results for γB,c = γB,l = 10−1 are depicted in Figures 10.6, 10.7, and 10.8. In

Figure 10.6, the resulting MLI scheme and the number of iterations of each of the levels

occurring in the scheme are shown. The first part of the scheme, up to around sample

230, shows many level changes in the form of cycles of level-B/level-C/level-D sequences.
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10.1 CHAIN: Control of a chain of masses connected by springs
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Figure 10.7: Adaptive level choice by postiterations for γB,c = γB,l = 10−1. Contractivity estimates.

For most samples, the contractivity estimates are well below the acceptable threshold of δB/C = 0.5.
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Figure 10.8: Adaptive level choice by postiterations for γB,c = γB,l = 10−1. Constraint and gra-

dient vector norms. In the first part, constraint norms in level-B iterations and Lagrange gradient

norms in level-C iterations trigger level changes.

The second part consists of level-C iterations. In the discussion, we mainly refer to the
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10 Applications with adaptive level choice

iteration types scheduled by the adaptive level choice. It should be kept in mind that each

level-C iteration is preceded by one, each level-D iteration by nine level-A iterations. Thus,

level-A iterations are the most often occurring iteration type in the resulting scheme, while

level-C iterations are the most often scheduled iteration type, as can be seen in the level

histogram, which renders the overall computational effort for this scheme significantly

lower than for the corresponding RTI scheme.

From Figure 10.7 we can see that, with the exception of the very first samples, the con-

traction estimates are well below the acceptance threshold of δB/C = 0.5, which means that

only the first level-B/level-C/level-D sequence is scheduled because of lack of contractiv-

ity. The reason for the other level-B/level-C/level-D sequences are shown in Figure 10.8,

which shows the norms of the approximated Lagrange gradient and the constraints for

level-B iterations and the norms of the Lagrange gradient and the constraints for level-C

iterations. The level-C iterations are scheduled because the norm of the constraint vec-

tor is below the threshold γB,c = 10−1, and in the following the level-D iterations are

scheduled because the norm of the Lagrange gradient is above λC = 1. Since the level-D

iterations continue with a level-B iteration next, the cycle is then completed. In the sec-

ond part of the scheme, the norm of the Lagrange gradient is below the threshold λC in

the level-C iterations, and, since the contraction estimate is also below the threshold δC,

no further level changes have to be scheduled.
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Figure 10.9: Adaptive level choice by postiterations. Top: MLI scheme for γB,c = γB,l = 10−2.

Bottom: Histogram of level iterations used in the scheme. The first part of the scheme is dominated

by level-B iterations, the second part is dominated by level-C iterations, with two level-C/level-D-

combinations preceding the parts.

The results for γB,c = γB,l = 10−2 are depicted in Figures 10.9, 10.10, and 10.11. From

144



10.1 CHAIN: Control of a chain of masses connected by springs
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Figure 10.10: Adaptive level choice by postiterations for γB,c = γB,l = 10−2. Contractivity es-

timates. For most samples, the contractivity estimates are well below the acceptable threshold of

δB/C = 0.5.
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Figure 10.11: Adaptive level choice by postiterations for γB,c = γB,l = 10−2. Constraint and gradi-

ent vector norms. Level-B constraint vector norms decrease until the threshold 10−2 is transgressed.
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10 Applications with adaptive level choice

Figure 10.9 we can see that the first part of the scheme consists of level-B iterations,

the second part consists of level-C iterations, and both parts are preceded by a single

level-C/level-D-combination. Overall, the most often scheduled iteration type are level-B

iterations, and the overall computational effort for this scheme is again significantly less

than for the corresponding RTI scheme.

From Figure 10.10, which depicts the estimated contraction for level-B and level-C iter-

ations, we can see that the first of the level-C/level-D-combinations is scheduled because

in the beginning the contraction condition is violated for the level-B iterations and then

also for the subsequent scheduled level-C iteration. The new linearizations provided by

the level D iteration then yield contraction estimates well below the threshold of δB = 0.5,

thus level-B iterations are performed until the norm of the constraint vector is smaller

than the threshold 10−2, which happens around sample 350, cf. Figure 10.11. The second

level-C/level-D-combination is then scheduled because the norm of the Lagrange gradient

in the following level-C iteration is above the threshold of λC = 1. The following level-B

iteration again schedules level-C next due to the constraint norm condition, and for the

rest of the scheme, the level-C iterations satisfy both the conditions for contractivity and

Lagrange gradient norm.
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Figure 10.12: Adaptive level choice by postiterations. Top: MLI scheme for γB,c = γB,l = 10−3.

Bottom: Histogram of level iterations used in the scheme. This scheme is mostly a level-B scheme

and is also obtained for smaller values of γB,c and γB,l.

The results for γB,c = γB,l = 10−3 are depicted in Figures 10.12, 10.13, and 10.14.

From Figure 10.12 we can see that the scheme is essentially a level-B scheme preceded

by a single level-C/level-D-combination. From Figure 10.13, we can see that the level-

C/level-D-combination is scheduled because in the beginning the contraction condition
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10.1 CHAIN: Control of a chain of masses connected by springs
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Figure 10.13: Adaptive level choice by postiterations for γB,c = γB,l = 10−3. Contractivity es-

timates. For most samples, the contractivity estimates are well below the acceptable threshold of

δB/C = 0.5.
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Figure 10.14: Adaptive level choice by postiterations for γB,c = γB,l = 10−3. Constraint and

gradient vector norms. The feasibility threshold of 10−3 is not transgressed at any sample.

is violated for the level-B iterations and then also for the subsequent scheduled level-C
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10 Applications with adaptive level choice

iteration. The new linearizations provided by the level D iteration then yield contraction

estimates well below the threshold of δB = 0.5, thus level-B iterations are performed

in the following. The threshold γB,c = 10−3 is at no time transgressed, as depicted in

Figure 10.14, thus no further level change has to be scheduled. The exact same scheme,

contractivity estimates, and constraint and gradient vector norms are also obtained for

the choice γB,c = γB,l = 10−4.
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Figure 10.15: Adaptive level choice by postiterations for γB,c = γB,l = 10−2. Feedback control

profiles.

The feedback control profiles generated by the adaptive schemes are almost identical

and only small changes to the RTI feedback control profile in Figure 10.3 are visible. As an

example, we show the control profiles of the adaptive MLI scheme for γB,c = γB,l = 10−2

in Figure 10.15. The performance indices (10.8) for the discussed MLI schemes with

adaptive level choice by postiterations are given in Table 10.2. For comparison, the per-

formance indices of the RTI scheme and the fixed MLI schemes A1C2 and A1D10 are also

given (note that the A1C2 scheme even fails to bring the chain to rest). The MLI schemes

with adaptive level choice by postiterations all succeed to bring the chain to rest, have

performance indices comparable to the RTI scheme, and are computationally significantly

less expensive than the RTI scheme. Even more, the adaptive schemes are, by construc-

tion, real-time feasible in the sense that in a practical realization using parallelization,

the updated matrix and vector data, i.e., the computations performed in level-B, level-C,

and level-D iterations, could be provided in real-time to the controller running level-A

iterations. By the choice of the tuning parameters γB,c, γB,l, and λC, the user can balance

between preferring cheap level-B iterations or more frequent updates of the derivative

information.
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10.1 CHAIN: Control of a chain of masses connected by springs

Adaptive level choice by spectral radius estimation

For the adaptive level choice by spectral radius estimation, we choose σB = σC = 0.25

as the upper limits for an acceptable spectral radius estimate of the level-B and level-C

iterations. The spectral radius estimation is realized via the MATLABR© function eigs

[172] with a convergence tolerance of tol = 10−3. For this proof-of-concept test case, we

have calculated the estimates of the spectral radius for both level-B and level-C iteration

in each level-B or level-C iteration. The integrator accuracy is again chosen at 10−5. We

vary the lower limits for the constraint vector norm γB,c and for the Lagrange gradient

approximation norm γB,l between 10−1 and 10−4. For these values, we choose the upper

limit for the acceptable Lagrange gradient norm in level-C as λC = 1.

The results for γB,c = γB,l = 10−1 are depicted in Figures 10.16 to 10.18, for γB,c =

γB,l = 10−2 in Figures 10.19 to 10.21, and for γB,c = γB,l = 10−3 in Figures 10.22 to 10.24.

The results for γB,c = γB,l = 10−4 are again identical to the results for γB,c = γB,l = 10−3.

Since the resulting schemes and the explanations are very similar to their respective

counterparts for the adaptive level choice with postiterations, we do not repeat the full

discussion but concentrate on the differences.

For γB,c = γB,l = 10−1, the main differences between the schemes from postiterations

and spectral radius estimation are that in the beginning it takes for the latter a few more

iterations until the estimates are consistently below the threshold of σB/C = 0.25, and

that an additional level-D iteration is scheduled in the part dominated by the level-C

iterations, which is due to the Lagrange gradient norm growing larger than the threshold

of λC = 1. Overall, slightly less level-B iterations and slightly more level-C iterations

are performed with the spectral radius estimation approach, with the number of level-D

iterations remaining the same as for the postiterations approach.

For γB,c = γB,l = 10−2, the schemes by postiterations and spectral radius estimation

differ most, while still being structurally quite similar. For the spectral radius estimation

approach, two instead of one level-D iterations are scheduled in the beginning of the

scheme, and none in the later part. Both level-D iterations are scheduled due to the

Lagrange gradient norm being larger than the threshold of λC = 1. Also, a few more

iterations are needed until the estimates are consistently below the threshold of σB/C =

0.25. Furthermore, the part of the scheme consisting of level-B iterations is shorter,

and the part consisting of level-C iterations is longer, because the feasibility threshold

γB,c = 10−2 is transgressed earlier, namely around sample 300. Overall, more level-C

(and thus more level-A iterations) iterations and less level-B iterations are performed

than for the postiterations approach.

For γB,c = γB,l = 10−2, the main difference between the schemes from postiterations

and spectral radius estimation is, that for the latter two instead of one level-D iterations

are scheduled in the beginning of the scheme. This is again due to the Lagrange gradient

norm being larger than the threshold of λC = 1 and the spectral radius estimates being

larger than the threshold of σB/C = 0.25 for the first samples. For the rest of the scheme,

level-B iterations are scheduled as for the postiteration approach. Overall, due to the

additional level-D iteration, the scheme for spectral radius estimation is computationally
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10 Applications with adaptive level choice
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Figure 10.16: Adaptive level choice by spectral radius estimation. Top: MLI scheme for γB,c =

γB,l = 10−1. The levels A to D are denoted by the numbers 1 to 4 on the y-axis. The first part

of the scheme is dominated by cycles of level-B/level-C/level-D sequences, the second part consists

of level C iterations. Note that each level-C iteration has a preceding level A iteration, which is not

visible due to resolution limits. Bottom: Histogram of level iterations used in the scheme. The lev-

els A to D are denoted by the numbers 1 to 4 on the x-axis (0 denotes the initial iteration and is of

type level D). The number of iterations of the respective level occurring in the scheme are given on

the y-axis, summing up to a total of 750 iterations/sampling times. The most frequently adaptively

scheduled level is level C, the most frequently occurring level is level A. Every level-C iteration has

one, every level-D iteration except the initial iteration has nine preceding level-A iterations.

slightly more expensive than the corresponding scheme for the postiteration approach.

An interesting observation from Figures 10.17, 10.20, and 10.23 is the fact, that the

spectral radius estimates for level-C are consistently larger than the spectral radius esti-

mates for level-B. A possible explanation could be that the inverse of the iteration matrix

M is closer to the exact Jacobian of the level-B iterations than to the exact Jacobian of

the level-C iterations in the sense that

M−1 − JB(xk) =




0 0 0

C̃k − Jc,k 0 0

D̃k − Jd,k 0 0


 , and

M−1 − JC(xk) =



Bk −∇2

wL(xk) −(C̃k − Jc,k)
⊺ −(D̃k − Jd,k)

⊺

C̃k − Jc,k 0 0

D̃k − Jd,k 0 0


 ,

with the notation and definitions from Chapter 6. However, this explanation is pending

future investigations and clarification.
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10.1 CHAIN: Control of a chain of masses connected by springs
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Figure 10.17: Adaptive level choice by spectral radius estimation for γB,c = γB,l = 10−1. Contrac-

tivity estimates. For most samples, the contractivity estimates are well below the acceptable thresh-

old of σB/C = 0.25. Note that the estimates for level-C are consistently larger than the estimates for

level-B.

The feedback control profiles generated by the adaptive schemes are again almost identi-

cal and only small changes to the RTI feedback control profile in Figure 10.3 are visible. As

an example, we show the control profiles of the adaptive MLI scheme for γB,c = γB,l = 10−2

in Figure 10.25. The performance indices (10.8) for the discussed MLI schemes with adap-

tive level choice by spectral radius estimation are given in Table 10.2. For comparison, the

performance indices of the RTI scheme and the fixed MLI schemes A1C2 and A1D10 are

also given. The MLI schemes with adaptive level choice by spectral radius estimation all

succeed to bring the chain to rest, have performance indices almost identical to the RTI

scheme and slightly better than for the postiteration approach, and are computationally

significantly less expensive than the RTI scheme. By the choice of the tuning parame-

ters γB,c, γB,l, and λC, the user can balance between preferring cheap level-B iterations

or more frequent updates of the derivative information. For the test case at hand, a

slight preference towards level-C iterations at the expense of level-B iterations, as well as

more frequent level-D iterations in the beginning can be observed for the spectral radius

estimation approach compared to the schemes generated by the postiterations approach.
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Figure 10.18: Adaptive level choice by spectral radius estimation for γB,c = γB,l = 10−1. Con-

straint and gradient vector norms. In the first part, constraint norms in level-B iterations and La-

grange gradient norms in level-C iterations trigger level changes.

Table 10.2: Performance indices Iperf =
∫ 30

0
L(x, v, u)dt for adaptive level choice by postiterations

and spectral radius estimation. Performance indices for RTI, fixed MLI scheme A1C2, and fixed MLI

scheme A1D10 are given for comparison.

Scheme γB,c γB,l λC Iperf
RTI n/a n/a n/a 550.3029

A1C2 n/a n/a n/a 580.0345

A1D10 n/a n/a n/a 551.3768

Postiterations 1 10−1 10−1 1 550.6639

Postiterations 2 10−2 10−2 10 551.4191

Postiterations 3 10−3 10−3 10 551.4168

Postiterations 4 10−4 10−4 10 551.4168

Spectral radius est. 1 10−1 10−1 10 550.3925

Spectral radius est. 2 10−2 10−2 10 550.3755

Spectral radius est. 3 10−3 10−3 10 550.3772

Spectral radius est. 4 10−4 10−4 10 550.3772

152



10.1 CHAIN: Control of a chain of masses connected by springs
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Figure 10.19: Adaptive level choice by spectral radius estimation. Top: MLI scheme for γB,c =

γB,l = 10−2. Bottom: Histogram of level iterations used in the scheme. The first part of the scheme

is dominated by level-B iterations, the second part is dominated by level-C iterations, with two level-

C/level-D-combinations preceding the first part.
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Figure 10.20: Adaptive level choice by spectral radius estimation for γB,c = γB,l = 10−2. Contrac-

tivity estimates. For most samples, the contractivity estimates are well below the acceptable thresh-

old of σB/C = 0.25.
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Figure 10.21: Adaptive level choice by spectral radius estimation for γB,c = γB,l = 10−2. Con-

straint and gradient vector norms. Level-B constraint vector norms decrease until the threshold 10−2

is transgressed.
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Figure 10.22: Adaptive level choice by spectral radius estimation. Top: MLI scheme for γB,c =

γB,l = 10−3. Bottom: Histogram of level iterations used in the scheme. This scheme is mostly a

level-B scheme and is also obtained for smaller values of γB,c and γB,l.
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Figure 10.23: Adaptive level choice by spectral radius estimation for γB,c = γB,l = 10−3. Contrac-

tivity estimates. For most samples, the contractivity estimates are well below the acceptable thresh-

old of σB/C = 0.25.
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Figure 10.24: Adaptive level choice by spectral radius estimation for γB,c = γB,l = 10−3. Con-

straint and gradient vector norms. The feasibility threshold of 10−3 is not transgressed at any sam-

ple.
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Figure 10.25: Adaptive level choice by spectral radius estimation for γB,c = γB,l = 10−2. Feedback

control profiles.
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10.2 TESTDRIVE revisited: Adaptive level choice MLI

10.2 TESTDRIVE revisited: Adaptive level choice MLI

We have considered the TESTDRIVE scenario in the last chapter as a test case for

MLI with fixed level choices. The results indicated that the process benefits from faster

feedback. In this section, we apply MLI with adaptive level choice by postiterations to

the test case. We give the control scenario and controller setup, and present and discuss

the numerical results. The MLI schemes with adaptive level choice are able to reject

the disturbance, and due to their ability to generate feedback faster than RTI they show

clearly superior performance compared to the latter.

10.2.1 Control scenario

For the adaptive level choice test case, we use the dynamic model described in Sec-

tion 9.2.1. The mass of the car is 1, 239 kg, and initially it is driving on a straight lane

at a speed of 30 m/s. After 0.5 seconds, an impulse of magnitude 2.5 · 104 N is acting on

the rear axle perpendicular to the driving direction for 0.05 seconds.

Aim of the controller is to keep the vehicle on the lane while retaining a speed of 30

m/s. The full system state information is available at a resolution of 0.01 seconds. The

scenario runtime is 8 seconds.

The NMPC formulation of the scenario contains a least-square objective L(x, u) to

minimize the deviation from the straight lane as well as the prescribed velocity. Further,

the controls wδ, FB, φ are regularized over the prediction horizon. The objective L(x, u)

reads

L(x, u) = c2y + (v − 30)2 + w2
δ + 10−12F 2

B + 10−4φ2. (10.9)

Two-sided simple bounds on all states and controls are formulated, while no nonlinear

constraints are present. As before, we leave out units in the following, however, all

quantities and parameter values are formulated in the standard SI system and should be

understood to have the correct corresponding unit.

10.2.2 Numerical results

For all numerical schemes, we use a prediction horizon of length 5, divided into 20 shooting

intervals. The integrator tolerance is chosen as 10−5. We use a Gauss-Newton approach,

and the controller variables are initialized in the offline solution for the undisturbed moving

car. All computations were performed with the software package MLI.

As in the previous chapter, we present the solution of the RTI scheme for a sampling

period of δ = 0.05. The RTI scheme is able to reject the disturbance and bringthe car

back to the desired speed and driving direction. However, the scheme is not real-time

feasible, since the CPU time per sample exceeds the sampling period of 0.05 seconds. The

RTI solution (control profiles and most interesting states) is given in Figure 10.26.

We apply MLI with adaptive level choice by postiterations to the test case, because

the postiterations approach is numerically less expensive and thus more suitable than

the spectral radius estimation approach for small to medium size problems with fast
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Figure 10.26: RTI solution for sampling δ = 0.05. State and control profiles. The RTI controller is

able to reject the disturbance, but the controller is not real-time feasible.

dynamics. We again use the modification of Algorithm 7 as described above, and employ

maximum data communication. The upper limits for acceptable contraction of the level-B

and level-C iterations are again set to δB = δC = 0.5. .

For the sampling rate we choose δ = 0.01, exploiting the fact that we can reduce the

sampling time significantly by selecting suitable values for nB, nC, nD. Here, numerical

experiments suggest nB = 2, nC = 4, and nD = 8. We vary γB,c and γB,l from 10−2 to

10−4 and choose λC = 10.

All three adaptive MLI schemes are able to reject the disturbance and bring back the

car to the desired speed and driving direction. We give the schemes for γB,c = γB,l = 10−1

in Figure 10.27 and for γB,c = γB,l = 10−3 in Figure 10.28. In the first part, up to

about sample 480, the schemes are quite similar, in the second part level-C iterations are

dominantly scheduled in the former, level-B iterations are dominantly scheduled in the

latter scheme. In absolute numbers, level-A iterations are by far the most often occurring

iterations, which shows that computationally, this scheme is, even considering the higher

feedback frequency, much cheaper than the RTI scheme.

We show the contraction estimates and the constraint and (approximated) Lagrange

vector norms for γB,c = γB,l = 10−1 in Figures 10.29 and 10.30, and for γB,c = γB,l = 10−3

in Figures 10.31 and 10.32. The level-C and level-D iterations scheduled in both schemes

in the first part are mostly due to insufficient contraction of the preceding level-B and

level-C iterations. From around sample 600 on, the schemes show sufficient contraction,

and in the following the scheme for γB,c = γB,l = 10−1 schedules level-C iterations, since
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Figure 10.27: Adaptive level choice by postiterations. Top: MLI scheme for γB,c = γB,l = 10−1.

Bottom: Histogram of level iterations used in the scheme.
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Figure 10.28: Adaptive level choice by postiterations. Top: MLI scheme for γB,c = γB,l = 10−3.

Bottom: Histogram of level iterations used in the scheme.

the constraint vector norm is smaller than γB,c, while the scheme for γB,c = γB,l = 10−3

first schedules level-B iterations, and level-C iterations after the constraint vector norm

becomes smaller than 10−3. In summary, both schemes schedule level-D iterations in
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the critical part of the dynamics, and computationally cheaper iterations as soon as they

become feasible.
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Figure 10.29: Adaptive level choice by postiterations for γB,c = γB,l = 10−1. Contractivity esti-

mates.
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Figure 10.30: Adaptive level choice by postiterations for γB,c = γB,l = 10−1. Constraint and

gradient vector norms.

160



10.2 TESTDRIVE revisited: Adaptive level choice MLI

0 100 200 300 400 500 600 700 800
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

sample

s
p
e
c
tr

a
l 
ra

d
iu

s
 e

s
ti
m

a
te

 

 
δ

B
 estimate

δ
C
 estimate

acceptance limit

Figure 10.31: Adaptive level choice by postiterations for γB,c = γB,l = 10−3. Contractivity esti-

mates.
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Figure 10.32: Adaptive level choice by postiterations for γB,c = γB,l = 10−3. Constraint and

gradient vector norms.

In Figures 10.33 and 10.34 we give the control profiles and the most important state

trajectories for the discussed schemes. Apart from small changes in the structure and

magnitude of the breaking force FB and the pedal position φ, the control profiles and
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10 Applications with adaptive level choice

state trajectories are quite similar. Compared to the RTI solution in Figure 10.26 the

state trajectories generated by the MLI schemes show smaller deviations from the target

values than those generated by RTI. This can also be seen from the performance indices

Iperf =
∫ 8
0 L(x, u)dt for RTI and the MLI schemes given in Table 10.3, which shows clearly

the benefit of giving feedback faster for the test case at hand.
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Figure 10.33: MLI solution by postiterations for γB,c = γB,l = 10−1 and for sampling δ = 0.01.

State and control profiles.

Table 10.3: Performance indices Iperf =
∫ 8

0
L(x, u)dt for adaptive level choice by postiterations and

for sampling δ = 0.01. Performance index for RTI is given for comparison. The faster sampling of

the adaptive MLI schemes yield a considerably improved controller performance.

Scheme γB,c γB,l λC Iperf
RTI (δ = 0.05) n/a n/a n/a 9.2057

Postiterations 1 10−2 10−2 10 3.5544

Postiterations 2 10−3 10−3 10 3.5305

Postiterations 3 10−4 10−4 10 3.5306
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Figure 10.34: MLI solution by postiterations for γB,c = γB,l = 10−3 and for sampling δ = 0.01.

State and control profiles.
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11 Applications: MLI with χ
2-test and MLI

for Dual NMPC

In this chapter, we give some numerical results for using the χ2-test as described in

Chapter 6 as additional tool for MLI with adaptive level choice by postiterations, and for

the application of MLI to solve the problems arising in the Dual NMPC approach outlined

in Chapter 8. As test case, we use in both cases a Lotka-Volterra model for the dynamics

of a predator-prey system [132, 178].

11.1 LOTKA: MLI with χ
2-test

We state the Lotka-Volterra dynamic model, describe the control scenario and discuss

numerical results. It turns out that using the χ2-criterion can improve the schemes and

controller performance of MLI schemes with adaptive level choice in the case of a combined

estimator-controller system.

11.1.1 ODE model

For the test case we consider the following Lotka-Volterra model for the dynamics of a

predator-prey system

ẋ(t) = k1 x(t)− k2 x(t) y(t), (11.1a)

ẏ(t) = −k3 y(t) + k4 x(t) y(t)− u(t) y(t), (11.1b)

with parameter values k1 = k2 = k3 = k4 = 1.0. In this model, the state x describes

the size of the prey population, and the state y describes the size of the predator pop-

ulation. We have augmented the classical Lotka-Volterra model [132, 178] by a control

dependent term which models removal of predators at a controlled time-dependent rate

u proportional to the current population size, i.e., u is essentially a hunting quota.

11.1.2 Control scenario

For a given reference control us, we can calculate steady-state values xs and ys. Goal

of the optimal control is to retain the steady-state values for the both populations by

choosing a suitable control u(t). To this end, we define the objective function

L(x, u) = (x(t)− xs)
2 + (y(t)− ys)

2 + 0.1 (u(t)− us)
2 . (11.2)

In the test case, we choose us = 0.1, yielding with the parameter values given above the

steady-state values xs = 1.1 and ys = 1.0.
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11 Applications: MLI with χ2-test and MLI for Dual NMPC

The real-time scenario runs for 100 time units and consists of a jump of k1 to the value

1.3 at time t = 10. The sampling period is 1 time units. Only x can be measured, with a

measurement covariance of 10−5 following the definitions in Chapter 3, i.e., the values of

x, y, and k1 have to be obtained by online estimation.

11.1.3 Numerical results

For the online estimation, we use MHE as described in Chapter 3, with an estimation

horizon of length 4, divided into 4 shooting intervals. The estimator uses the growing

horizon initialization, starting from the values xs, ys and k1 = 1.0. The initial covariance

of states and parameter are chosen as 10−4 · I3, and the tuning matrix QT−N+1 for the

arrival cost term is chosen as 10−6 · I3.

For the controller, we choose a prediction horizon of length 10, divided into 10 shooting

intervals. We use an exact Hessian approach, and choose for the adaptive level choice by

postiterations the parameters δB/C = 0.5 for the acceptable contraction, γB,c = γB,l =

10−3 and λC = 10. Although the sampling is not time-critical, we choose for comparison

two configurations for the numbers (nB, nC, nD), namely (1, 1, 1) and (1, 2, 4).

We compare MLI with adaptive level choice by postiterations for the configurations

described above, once without using the χ2-criterion, and once using the χ2-criterion by

forcing a level-D iteration whenever the test fails.
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Figure 11.1: RTI reference solution. The controller tries to keep the states close to the steady-state

values. Since x is fitted quite well, the estimator lacks information for a fast identification of k1.

In Figure 11.1, the solution of the RTI scheme is given. While x is estimated quite well,

the estimator-controller system only slowly approaches the true values of y and k1. This is

due to the fact that the controller tries to keep the states close to the steady-state values,
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11.1 LOTKA: MLI with χ2-test

while the good match of the steady-state value of x also provides insufficient information

for a quicker identification of k1.
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(a) Scheme for (nB, nC, nD) = (1, 1, 1)
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(b) Scheme for (nB, nC, nD) = (1, 2, 4)

Figure 11.2: Schemes for MLI with adaptive choice by postiterations without χ2-criterion. Both

schemes are essentially pure level-C schemes.
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Figure 11.3: MLI solution for (nB, nC, nD) = (1, 2, 4) without χ2-criterion. The estimator-controller

system needs more than half the samples to approach RTI trajectories.

In Figure 11.2, the MLI schemes generated by postiterations without using the χ2-

criterion are shown. Both schemes are (essentially) pure level-C schemes, which means

that contraction and optimality was satisfactorily in each sample. While the scheme for

(nB, nC, nD) = (1, 1, 1) shows similar performance than the RTI scheme, the performance

for (nB, nC, nD) = (1, 2, 4) is rather poor, as can be also seen from the state trajectories,

the control profile, and the estimated parameter depicted in Figure 11.3. For more than
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half of the samples, the state trajectories and estimates show an erratic and oscillating

behavior caused by the feedback control profiles. This hints at insufficiently accurate

linearization approximations due to the parameter jump, and it is the aim of the χ2-

criterion to fix this behavior.
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(a) Scheme for (nB, nC, nD) = (1, 1, 1)
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(b) Scheme for (nB, nC, nD) = (1, 2, 4)

Figure 11.4: Schemes for MLI with adaptive choice by postiterations with χ2-criterion. All level-

D iterations are triggered by χ2-criterion. Still both schemes are computationally significantly less

expensive than full RTI.
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Figure 11.5: MLI solution for (nB, nC, nD) = (1, 2, 4) with χ2-criterion. The estimator-controller

system performs almost as well as RTI.

In Figure 11.4, the MLI schemes generated by postiterations with using the χ2-criterion

are shown. All level-D iterations were triggered by the χ2-criterion. Changes from level-

B to level-C iterations were scheduled due to transgression of the thresholds γB,c and

168



11.2 LOTKA: MLI for Dual NMPC

γB,l, contractivity was sufficient for all samples. Although the χ2-criterion trigger many

level-D iterations, the resulting schemes, in particular for (nB, nC, nD) = (1, 2, 4), are

computationally significantly cheaper than a full RTI scheme. For comparison to Fig-

ure 11.3, we show the state trajectories, the control profile, and the estimated parameter

for (nB, nC, nD) = (1, 2, 4) with using the χ2-criterion in Figure 11.5. The scheme shows

similarly good performance as the RTI scheme. The performance indices of the dis-

cussed schemes are also given in Table 11.1, which shows that both schemes using the

χ2-criterion are better than their counterparts, with a drastic improvement of the scheme

for (nB, nC, nD) = (1, 2, 4). This underlines the usefulness of the χ2-criterion as a support-

ing tool for MLI with adaptive level choice in the case of a combined estimator-controller

system.

Table 11.1: Performance indices Iperf =
∫ 100

0
L(x, u)dt for adaptive level choice by postiterations.

Performance index for RTI is given for comparison.

Scheme with χ2-crit. nB nc nD Iperf
RTI n/a n/a n/a n/a 8.6490

Postit. 1 no 1 1 1 8.8126

Postit. 2 no 1 2 4 11.3388

Postit. 3 yes 1 1 1 8.6931

Postit. 4 yes 1 2 4 9.0643

11.2 LOTKA: MLI for Dual NMPC

In this section, we consider the application of MLI with adaptive level choice for the

problems arising from Dual NMPC as described in Chapter 8. We give the extended

ODE model which includes covariance data to assess the contribution of the controls to

the information gain specific for the computation of the objective function. We describe

the control scenario and present and discuss numerical results. The focus here is on the

computational issues rather than the interpretation of the results in the Dual NMPC

context.

11.2.1 Extended ODE model

As outlined in Chapter 8, we can quantify and incorporate the influence of the controls to

the information gain by suitably augmenting the dynamic system. We start by including

the objective function into the dynamical system

ẋ(t) = k1 x(t)− k2 x(t) y(t), (11.3a)

ẏ(t) = −k3 y(t) + k4 x(t) y(t)− u(t) y(t), (11.3b)

ṁ(t) = q1 (x(t)− xs)
2 + r1 (u(t)− us)

2 , (11.3c)
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11 Applications: MLI with χ2-test and MLI for Dual NMPC

with q1 = 1.0 and r1 = 10−2, where we consider here a quadratic objective function only

in x and u, in contrast to the example considered in the last section. In this scenario, all

parameters ki, i = 1, . . . , 4 are fixed to the value 1.0. With the shorthand z , (x, y,m) for

the states, and denoting the right-hand-side of (11.3) as f(z), we can set up the dynamical

equations for the covariance matrix as

Ċ(t) =
df

dz
(t)C(t) + C(t)

df

dz
(t)⊺ − C(t)

dh

dz
(t)⊺R−1 dh

dz
(t)C(t). (11.3d)

Since C is symmetric, we only have to propagate the elements on and above the main

diagonal.

11.2.2 Control scenario

We choose again us = 0.1, yielding with the parameter values given above the steady-state

values xs = 1.1 and ys = 1.0. As mentioned above, the control goal for this test case is to

track the prey population, while regularizing the control. The real-time scenario runs for

100 time units, and the sampling period is 1 time unit.

Following (8.8), the Dual NMPC objective function is

E(z(T ), C(T )) = m(T ) + γ
√

(∇zm(T ))⊺C(T )∇zm(T )

= m(T ) + γ
√
C3,3(T ) (11.4)

The disturbance in this scenario is an immigration of prey at each sampling time be-

tween 10 and 19 (including) into the area of consideration, at an absolute value of 0.3 per

sample.

Only x can be measured, with a measurement covariance of R = 10−5 following the

definitions in Chapter 3, i.e., the values of x and y have to be obtained by online estimation.

That means the measurement function is h(z) = x, which yields dh
dz = (1, 0, 0) in (11.3d).

11.2.3 Numerical results

For the online estimation, we use MHE as described in Chapter 3, with an estimation

horizon of length 4, divided into 4 shooting intervals. The estimator uses the growing

horizon initialization, starting from the values xs and ys. The initial covariance of states

and parameter are chosen as 10−4 · I2, and the tuning matrix QT−N+1 for the arrival cost

term is chosen as 10−6 · I2.

For the controller, we choose a prediction horizon of length 10, divided into 10 shooting

intervals. We use an exact Hessian approach, and choose for the adaptive level choice by

postiterations the parameters δB/C = 0.5 for the acceptable contraction, γB,c = γB,l =

10−3 and λC = 10. Although the sampling is not time-critical, we choose for comparison

again two configurations for the numbers (nB, nC, nD), namely (1, 1, 1) and (1, 2, 4).

In Figure 11.6 we give the RTI solution. The controller manages the changes caused by

the immigration of the prey well and recovers the desired steady-state.
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Figure 11.6: RTI reference solution. State trajectories and feedback control profiles.
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(a) Scheme for (nB, nC, nD) = (1, 1, 1)
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Figure 11.7: Schemes for MLI with adaptive choice by postiterations. Level-D iterations are trig-

gered by insufficient contraction. Transitions from level-B to level-C are due to transgression of

thresholds γB,c and γB,l. Overall, both schemes consist dominantly of level-C iterations.

The application of MLI with a fixed scheme consisting of level-C iterations fails due to

the controller iterates deteriorating to a point where function and derivative evaluation

cannot be performed anymore. The application of MLI with adaptive level choice by

postiterations, however, generates well performing schemes which consist dominantly of

level-C iterations, cf. Figure 11.7. The few level-D iterations are triggered by the detection

of insufficient contraction according to the given thresholds δB/C = 0.5. The short part

of level-B iterations in the scheme for (nB, nC, nD) = (1, 1, 1) is ended by the constraint

norm and approximated Lagrange vector norm falling below the thresholds γB,c and γB,l.
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Figure 11.8: MLI solution for (nB, nC, nD) = (1, 2, 4). The estimator-controller system performs

almost as well as RTI.

The performances of the MLI schemes with adaptive level choice and the average CPU

time per sample are also given in Table 11.2, with the numbers for the RTI scheme given

for comparison. While the performance loss of the MLI schemes is less than 1%, the

MLI scheme for (nB, nC, nD) = (1, 1, 1) is in average computationally less expensive by a

factor of about five, for (nB, nC, nD) = (1, 2, 4) even by a factor of 10. This shows that

the application of MLI with adaptive level choice is a promising approach to reduce the

computational burden of the problems arising in Dual NMPC.

Table 11.2: Performance indices Iperf = m(100) for adaptive level choice by postiterations. Perfor-

mance index for RTI is given for comparison.

Scheme nB nc nD Iperf ∅ CPU/sample

RTI n/a n/a n/a 0.2688 146.0 ms

Postit. 1 1 1 1 0.2712 29.7 ms

Postit. 2 1 2 4 0.2724 14.6 ms
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12 Conclusions and future work

In this thesis, we developed Multi-Level Iteration schemes, an algorithmic approach for

fast and efficient numerics for Nonlinear Model Predictive Control. The Multi-Level Itera-

tion schemes are based on parametric optimization and generalized tangential predictors,

and have been developed and tested in a Direct Multiple Shooting framework for the

discretization of optimal control problems. Four levels form a hierarchy for updating the

vector and matrix data in the feedback controller which requires the evaluation of the

model functions and their derivatives. Multi-Level Iteration schemes then schedule the

various update levels in a fixed or adaptive fashion to successively generate feedback laws

in the form of generalized tangential predictors. These feedback laws are then evaluated

efficiently to obtain feedback for the process.

In this thesis, we described the four levels, discussed the data communication between

the levels within a feedback scheme, presented convergence theory for the levels with fixed

initial state, and developed an algorithm for the efficient adaptive assembly of the Multi-

Level Iteration schemes during runtime. We discussed details for an efficient numerical

implementation. We successfully applied Multi-Level Iteration schemes with fixed level

choice and with adaptive level choice to various nonlinear test cases and compared the

results to the state-of-the-art approach of Real-Time Iterations.

In the course of the research done for this thesis, many interesting questions pointing

to further research emerged. We will briefly comment on the most pressing topics.

Further investigation of level-A As discussed, level-A iterations are highly suited to pro-

vide quick feedback and even give rise to a local feedback law. In this work, they

are used to provide the feedback while the higher levels compute the controller data

updates. The methods for level selection developed in this thesis can, however, not

be applied to level-A iterations since they work on the primal-dual iterates owned by

the higher levels, and level-A iterations do not use such iterates. Still, it would be

highly interesting to have a criterion which indicates if the current level-A controller

is at least locally suitable as a feedback controller for the nonlinear process. Essen-

tially, one would like to answer the question of the quality of the linearized model

and constraints as approximation of their nonlinear counterparts. This is a question

which would be, e.g., also important in the field of LMPC switching between several

linearized models. Furthermore, the criterion would have to be evaluated in a time

comparable to the time used by the level-A iteration itself, or at least clearly within

one sampling period.

Convergence theory for level-B It is not strictly necessary for a good practical perfor-

mance of a numerical feedback scheme to have convergence or stability theory, e.g.,
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for the rejection of a disturbance in regulatory NMPC. However, it is desirable, re-

assuring, and an interesting research topic in itself. As discussed in this thesis, the

convergence theory of RTI applies for schemes consisting of level-C and/or level-D

iterations and suitable data communication schemes. There is so far no stability

or convergence theory for the general case of schemes that also make use of level-B

iterations. However, it seems that in the case of schemes consisting of level-B and

higher level iterations, theory similar to the theory for RTI is likely to hold, pro-

vided the level-B iterations do not drive the primal-dual iterates out of the region

of local convergence. Even in the case of pure level-B iterations, it seems possible to

formulate and prove a similar theory considering the well known result that stability

essentially requires only feasibility and a sufficient decrease of the objective function

in each sample.

Parallelization and distributed computing The multi-level iterations approach is highly

suited for parallelization in several ways. The computations for each level can and

should be performed in parallel, with a thread for the computation of the feed-

back control and additional threads for the computation of the data update in the

higher levels. In the numerical results for the adaptive level choice in this thesis,

this parallelization is simulated, but this is obviously only a surrogate for a real

parallel implementation, which would have to properly and efficiently distribute the

computations and ensure real-time communication to bring the computed data in

due time to the feedback controller. Furthermore, the calculations within each level

are particularly suited for parallelization, since the Multiple Shooting discretization

introduces a natural decoupling in the function and derivative evaluation. Beside

load balancing, there is the interesting question of the possibility to intertwine the

different levels of parallelization in the sense of the mixed and fractional level itera-

tions described in this thesis, i.e., to update the controller asynchronous with parts

of the data computed in parallel.

Embedded control In embedded control, optimization algorithms have to be adapted

to or developed for resource-constrained platforms such as micro-controllers. The

Multi-Level Iteration approach opens the possibility to efficiently implement nonlin-

ear feedback control even for computing platforms that are significantly less powerful

than a desktop computer. Therefore, tailoring the Multi-Level Iteration approach

to specific hardware, implementing it in a suitably fast and resource-efficient way,

and testing it in real-world applications is a highly interesting task. Probably, this

research direction would also have overlappings with the research on parallelization.

Application to challenging non-standard numerical problems In this thesis, we have de-

monstrated numerically that the Multi-Level Iteration approach is in principle useful

and efficient in the numerical treatment of the nonstandard and possibly large-scale

problems arising from Dual NMPC. It would be interesting to perform an extensive

testing of the Multi-Level Iterations to the problems arising from various approaches

in Robust and Dual NMPC, also with regard to the statistical interpretation of the
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results, and investigate and possibly quantify the effect of using approximations in

particular of the derivatives, which often have interpretations as statistical quanti-

ties such as covariance matrices, on the quality of the feedback control under un-

certainties and the online estimation. Furthermore, it would be interesting to test

and apply the Multi-Level Iterations for the feedback control of processes with dis-

crete decisions, in particular in combination with the outer convexification approach,

which yields continuous problems with significantly larger numbers of constraints

and decision variables compared to the original mixed-integer problems.
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interior point strategy for optimization of differential algebraic systems. Computers

& Chemical Engineering, 24(1):39–51, 2000.

[42] H. Chen. Stability and Robustness Considerations in Nonlinear Model Predictive

Control. Fortschritt-Berichte VDI Reihe 8 Nr. 674. VDI Verlag, Düsseldorf, 1997.
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F. Allgöwer, editors, Nonlinear Model Predictive Control, volume 384 of Springer

Lecture Notes in Control and Information Sciences, pages 391–417. Springer-Verlag,

Berlin, Heidelberg, New York, 2009.
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[112] P. Krämer-Eis and H.G. Bock. Numerical treatment of state and control constraints

in the computation of feedback laws for nonlinear control problems. In P. Deufl-

hard and B. Engquist, editors, Large Scale Scientific Computing, pages 287–306.
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