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Kurzfassung

Die Mechanisierung im Agrarsektor ist innerhalb der letzten hundert Jahre
stetig gewachsen. Innerhalb der letzten Jahrzehnte hielt die Informationstechnolo-
gie Einzug in diesen Sektor und Daten sind mittlerweile ein entscheidender Faktor
für die Prozessoptimierung. Zur Planung und Durchführung von Logistikprozessen
und Erntekampagnen sind digitale Straßenkarten und Feldgrenzen essentiell. Sie
sind Vorraussetzung, um bei fehlender Ortskenntnis der Fahrer und Planer die
großen Maschinen zum Feld zu führen und diese Prozesse zu verbessern. Mit der
Verfügbarkeit von Fahrzeugtelemetrie, den Bewegungsdaten einzelner Maschinen,
entstehen neue Möglichkeiten zur Generierung der benötigten Daten. Die Gewin-
nung geographischer Daten aus Bewegungsdaten ist einer der Schwerpunkte dieser
Arbeit. Zu Beginn werden Verfahren zur Bereinigung der Eingangsdaten untersucht
und weiter Vorprozessierungsschritte durchgeführt. Über Klassifikationsverfahren
werden die Bewegungsdaten zu verschiedenen Arbeitsmodi zugeordnet. Basierend
auf diesen Daten weren Algorithmen zur Generierung geographischer Features, wie
Feldgrenzen analysiert und verbessert. Um die Qualität der erzeugten Gemetrien
sicher zu stellen, wird die Jaccard-Distanz als Metrik eingeführt. Mit den klas-
sifizierten Straßen-Messpunkten werden mit verschiedenen Algorithmen ländliche
Straßen- und Wegenetze erzeugt und deren Resultate gegenübergestellt. In einem
dritten Schritt wird die Nutzbarkeit von Volunteered Geographic Information (VGI)
für die Nutzbarkeit zur Routenplanung für landwirtschaftliche Fahrzeuge betrachtet.
Da die Wegführung für landwirtschaftliche Maschinen nicht an der Feldgrenze en-
det, werden zudem Methoden zur Berechnung von feldinternen Graphen untersucht.
Die einzelnen Komponenten stellen somit die erforderlichen Daten und Dienste für
den Use-Case landwirtschaftliche Routenplanung innerhalb eines Frameworks bereit.
Der abschließend vorgestellte webbasierte Routingdienst demonstriert das Zusam-
menspiel aller Komponenten und ermöglicht eine lückenlose Routenplanung von Hof
zu Feld und innerhalb des Feldes.



Abstract

The mechanization of processes in agriculture is growing within the last hundred
years. Within the last decades, the information technology in this sector constantly
grew and data is one of the key factors for process optimization. For planning and
execution of logistic processes and harvest campaigns, road maps and field geome-
tries are essential to guide the large vehicles to their work places and to optimize
harvest chains. Through nowadays available telemetry data of these vehicles, a
new data source generates new opportunities. Mining geographic data from these
movement data, that can improve agricultural work processes is one of the main
objectives of this thesis. As a first step, data cleaning processes, and further prepro-
cessing steps are shown. With classification algorithms, the continuous movement
data will be separated into different work processes. Based on this data, algorithms
to generate geographic geographic features, such as field boundaries have been ana-
lyzed and improved. As quality metric to compare the results, the Jaccard-Distance
has been established. With the classified road representing measurements, the rural
road networks were created and the results of different algorithmic approaches have
been compared. The usability of volunteered geographic information to route the
heterogeneous set of agricultural vehicles is shown in a third step. Due to the fact,
that routes for e.g. harvesters are not ending at the field boundary, solutions for
infield route graph generation have been given. The presented components provide
the content and the services within a framework structure. The concluding proto-
type, a web based routing system demonstrates the interaction of all components
and provides a consecutive routing from farm to field and within the field.
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Chapter 1

Introduction

1.1 Introduction and Motivation

I grew up in the early 80ties on a small farm that produced several kind of crops, oil seeds
and grassland. An average mid European part-time farm with grassland and cropland.
The whole work focused on some weeks of the year, the harvest period. Peak workload
came during the harvest period, where everyone had to participate. From cutting the grass
over teddering, raking and baling the grass, to collecting and bringing the bales to the shed,
the process took several days. Especially the removal of the yield from field needed several
people. During these regular processes, almost all involved people were locals and had the
local knowledge how to get to the fields. In case the machine driver was not aware of this,
one involved person knew where tractor and bale trailer could pass onto the field. Most of
the helpers had local knowledge and finding the correct routes to the fields was no problem.
However, this was usually the most stressful period since most of the income depends on
the quality of the yield. Especially in the mid Europe weather conditions resulting in time
windows that are usually short and volatile. In recent years, the agricultural machines
became larger and fields rearranged to make work processes more efficient. The yield
time can be reduced and the dependency on weather conditions and harvesting windows
decreased. The machine size and the technological inventions increase investments. This
made large farms more profitable and lead to a structural change. For smaller farms, a
big, expensive harvester is not cost efficient. The number of contractors offering harvest
services increased and machinery rings (syndicates for machine sharing) offer bigger, more
expensive machinery to their community, to increase the capacity utilization. A set of
contractors now serve multiple clients and work on a large number of agricultural fields.
The bigger machinery increase the requirement for passable roads. In many cases, foreign
contractors do not have the needed up-to-date local knowledge required to adapt to the
continuously changing agricultural roads and fields (e.g. changed field boundaries, new
fields). A common way is to assists the machine driver and guide him to the fields. For
small logistic chains this is also a feasible way nowadays. Regarding complex harvesting
chains with several harvesters and transportation vehicles, the disposition of the campaign
is very complicated and often needs a computational solution to optimize it. Finding
the route to the field where the whole logistic chain can operate under time pressure in
an optimum manner is one of the key factors for success. Regarding large agribusiness
companies, this knowledge is essential to plan and manage field operations.

Digital data as essential input for computerization is one of the main accelerators
during the last decades. Process automation and optimization in commercial and public or
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private domains are dependent mainly on digital data and algorithms that extract valuable
knowledge from this data. Most of the data has a strong correlation to location, which is
pointed out in talks and publications (cf. Hahmann and Burghardt [2013]) including the
vision of a “Digital Earth”, a theory put forth by the former Vice President of the United
States Al Gore (cf. Gore [1998]) which is becoming reality and with that the relevance of
digital geographic data increases.

The domain of agriculture has faced many challenges within the last decades. This
sector has evolutionized mechanization and digitization in the last years. Due to the fact,
that global population has increased and will continuously increase within the next decades
(cf. figure 1.1), distribution and efficient food production and food security will be key
factors of global society. Technical improvements in agricultural machinery, increase of
efficiency in harvesting processes and logistics will be main factors managing upcoming
demands. Treating sustainable resources responsibly is imperative to manage a growing
world population and preserving the world for future generations.

Figure 1.1: Total population by major area
(source: United Nations, 2015, https://esa.un.org/unpd/wpp/Publications/Files/Wo
rld Population 2015 Wallchart.pdf, (accessed 2016/07/16))

Accurate and up-to-date geospatial data is needed to address the challenges. This data
will be the input for problem solving algorithms that have also being analyzed, extended or
developed. Even for global commercial data providers such as HERE1 or TOMTOM2 with
their high capacity of mappers, it is not possible to map the huge volume of tracks that
are (in most cases) only accessible for agricultural vehicles. Continuous changes in these
road networks and the need of further surface attributes make it impossible to collect data
in conventional ways (e.g. through data imports, collection by mapping cars and manual
mapping). Projects like OpenStreetMap3 established a new way of thinking about maps
and geographic data. Through this crowdsourcing approach, missing geographic data
or map errors can be detected by the community and not only by a limited group of
professional mappers.

This approach is more cost efficient for current and created spatial map updates, es-
pecially in cases where smaller updates are spatially widely distributed. The community

1https://company.here.com/here/, (accessed 2016/07/16)
2http://tomtom.com/, (accessed 2016/07/16)
3http://www.openstreetmap.org, (accessed 2016/07/16)

https://esa.un.org/unpd/wpp/Publications/Files/World_Population_2015_Wallchart.pdf
https://esa.un.org/unpd/wpp/Publications/Files/World_Population_2015_Wallchart.pdf
https://company.here.com/here/
http://tomtom.com/
http://www.openstreetmap.org
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mapping approach has been adopted by commercial mapping companies in their products
as a further data source (e.g. HERE MapCreator 4 or TOMTOM MapShare). However,
this cannot solve the problem of mapping agriculturally relevant roads and geo features.
Generating a digital earth needs much more data. An approach with only professional
mappers, which is only based on manual work (e.g. surveying and digitizing data) will
never be able to generate the digital earth and keep it up-to-date. Furthermore, the
unequal distribution of human mappers tends to result in more current map updates in
regions with larger population density (e.g. urban regions) while the larger and, for agri-
cultural production, more important area is in rural regions with far less population and
potential mappers. The current trend of people spending their life in urban areas and
the decreasing rural population is also increasing the disparity in mapper distribution.
Another reason for a lesser mapping activity is the (personal) value and the legal restric-
tions of the required geodata. Road data, such as geometries, surface type, incline and
measures (e.g. width, clear height) are parameters that are useful for many applications.
The mapping of this data has value for the mapper community itself, as these people are
generally not from the agricultural domain. Route planning for sport activities, walks or
emergency transports are obvious use cases that benefits from this data. In these cases,
a cross domain requirement exists and a larger community will be available as potential
data makers - a win-win situation. The more specific the geographic features, the less
people are motivated to map it. Field boundaries are very important geographic features
within the agricultural domain that only have a value for farmers, for contractors to plan
the needed logistics, and for the service engineers that drive to the field for machine re-
pairs. The government also has an interest in field boundaries to determine agricultural
subsidies and structure. Field boundaries usually represent the farmed field area and are
part of the operating record of each farm or agrarian company. The field boundary data
can therefore underlay legal restrictions. Nonetheless, the availability of accurate digital
field data will have a large impact on this domain and especially the single user in terms
of productivity.

From a logistics perspective, navigation to the field is only one part. In a typical
harvesting session (e.g. for a transfer meeting point within a harvesting process) the
destination for the transport vehicle is located in the field. The other part is the guidance of
the transport vehicle from the boundary to the meeting point in the safest and fastest way.
From data perspective this needs an infield routing solution which should be connected to
the surrounding road graph.

Smart phones and tablets are essential communication systems in the agricultural
domain. Planning, disposition and urgent repair calls are only some use cases where
these communication devices are indispensable. Through interfaces to machine bus, these
devices can also be set as user interfaces for machine data. Due to the fact, that all of
these smart devices are fully equipped with sensors (including a positioning sensor, such as
GPS), they can be a further data source for location data. However, the heterogeneity of
hardware and applications create huge efforts in terms of data pre-processing. In addition,
there is no homogeneous infrastructure for data storing and data access.

In recent years, farming machinery has become technically advanced. Harvesters and
tractors are equipped with a large number of sensors that measure machinery performance
and give information on working processes. Guidance systems have also quickly developed
from simple electronic guidance systems for parallel driving to modern automatic steering

4http://mapcreator.here.com/, (accessed 2016/07/16)

http://mapcreator.here.com/
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systems based on highly accurate positional data are now common tools in the agricultural
sector. Telemetry systems collect data and store it in data bases used for further analysis.
Figure 1.2 shows an example of a driver’s cab: The modern cabin of a CLAAS AXION
900 tractor has terminals for parallel driving and sensor information on the right.

Figure 1.2: Cabin of a CLAAS AXION 900 (source: CLAAS - http://www.claas-medi
adatabase.com)

With the information of the data producer (e.g. machine type) and the distinct in-
formation of each machine, this data is a promising source for extraction of geographic
features. The main shortcomings lie in the missing or not up-to-date field geometries and
gateways where machines can pass from the road network onto the fields, road geometry
refinement and the creation of a tagged routing graph for agricultural applications. As a
precondition, a data classification step is necessary. This step is needed to provide dis-
tinct data for the specialized algorithms and use-cases. The previously mentioned legal
problems and privacy issues are handled by the telemetry providers. They store the data
according to the agreement with their clients. The overlap between the group of data pro-
ducers and the group of data consumers is obviously large. Companies that collect data
by tracking their vehicles later will have the benefit to use the extracted data for their
farm management system or for routing their vehicles (fleet management) or the vehicles
of authorized contractors. Therefore, domain related data will be produced in large parts
from their future users. The overall challenge is the knowledge extraction from the col-
lected data and the algorithmic computation of the needed data from this raw telemetry
data.

Knowledge extraction from sensor data is one of the most recent challenges in the field
of data mining. Due to the fact, that the proprietary sensor data is not available to a
broad community (compared to GPS libraries, such as GPSies5 or GPS trajectories from
OpenStreetMap6) a data analysis for these use cases has not been achieved yet.

5http://www.gpsies.org, (accessed 2016/07/16)
6http://www.openstreetmap.org, (accessed 2016/07/16)

http://www.claas-mediadatabase.com
http://www.claas-mediadatabase.com
http://www.gpsies.org
http://www.openstreetmap.org
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The generation of data for routing purposes contains many different algorithms. To
solve the distinct problems, it needs a pre-classified data set which filters the telemetry
data at least for road and field data. This procedure is essential to make use of more
specific algorithms that extract geographic features from the classified data and is the
first step to investigate the problem of routing relevant data extraction from agricultural
telemetry data. With this preceding step, a requirement tree will be spanned that handles
the specific sub tasks. These tasks are handled separately and will finally be connected to
complete the processing chain.

1.2 State of the Art

This chapter provides an overview on the current situation of data, systems and services in
agriculture and similar domains that are related to this thesis. A methodological and al-
gorithmic state of the art including the relevant publications will be given in the particular
chapters.

Making a complex process computable, it needs deep knowledge about the process
itself. A further requirement is the availability of data that is needed to compute the
solutions. In the domain of agriculture, the machinery is equipped with a large number
of sensors to give machine drivers an overview on the performance of a single machine.
With the telemetry system it is possible to collect data from many machines in near
real time that enables a direct extraction of knowledge. In the recent years, agricultural
telemetry systems such as CLAAS Telematics7, John Deere JDLink8 and AGCommand9

enlarged their telemetry systems and has been build large collections of agricultural sensor
and movement data. In the beginning, machine optimizations were in the focus of the
manufacturers. Nowadays the spatiotemporal analysis of the data is coming into the focus.
The collecting and analysis of movement data is driven by market and latest research. This
is the case for many domains. In the domain of sports and leisure activities, companies like
STRAVA and Garmin provide data analysis of trajectories. Personal health applications
in smartphones collect movement and sensor data and give clients a feedback on their
health and activity status. To achieve these analysis, spatiotemporal pattern analysis and
classification methods are used. The objective and the main motivation is enhancement
of knowledge on user behaviour.

In the domain of agriculture, the classification of working processes is mainly done
manually (e.g. by setting the on-field/off-field mode using a switch on the vehicle). The
classes of interest are mainly: Is the machine in a working mode or not and how much time
is needed for the processing of single fields to calculate transparent billings for contractors
clients. The recognition of these classes are mainly done by spatial intersections with field
geometries (cf. Heizinger [2014]) or manual switching by machine driver (e.g. CLAAS
Telematics working mode). From a data analysis perspective, the auto classification of
the machinery movement data will be the first step to generate classified input data for
further algorithms. Based on this foregoing classification step, the geographic feature
extraction algorithms that consume the classified data are the next upcoming tasks.

The extraction of field geometries is done manually by farmers. By walking along
the field boundaries with a GPS or digitizing them from aerial imagery. Large-scale

7https://claas-telematics.com/, (accessed 2016/10/22)
8http://www.jdlink.com/, (accessed 2016/10/22)
9http://www.myagcommand.com/, (accessed 2016/10/22)

https://claas-telematics.com/
http://www.jdlink.com/
http://www.myagcommand.com/
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field geometry extractions are done by aerial imagery classification and polygonization
algorithms. To extract the field area that has been processed by the machine, the machine
trajectories will provide a new data source. To route vehicles from road network on the
fields, the knowledge of gateway points is essential.

The routing of vehicles within fields is a further task. To calculate the route for a
transport or service vehicle from the field gateway point at the boundary to the harvester
an infield route graph is needed. Comparable problems exist in the field of (autonomous)
robotics (cf. Choset et al. [2005]), indoor routing (cf. Zlatanova et al. [2013]) or routing
on squares (cf. Graser [2016]). Due to the fact, that these algorithms have not yet been
used for agricultural fields, the research gaps have to be identified. The domain related
requirements, such as field and machine related route graph orientation and the integration
of gateway points, that connect the road network with the infield route graph, have to be
integrated in the graph generation and routing algorithms.

The end to end routing of agricultural vehicles needs an attributed road network (in-
cluding attributes, such as surface type or travel speed, to calculate edge weights). Existing
commercial digital road networks do not meet these requirements. Data from HERE or
TOMTOM lack the not public track road network. Companies such as logiball10 try
to close this gap by using data from further sources (e.g. from companies that provide
forestry data such as NavLog11). This data is only available for Germany and it takes
a huge effort and manual work to keep the data up-to-date. A worldwide data set for
the usability in routing agricultural machinery is therefore needed. The only worldwide
available vector data set with relevant scale is OpenStreetMap. It is based on geographic
data which has been provided from volunteered mappers from all over the world. This
data set will be evaluated if it meets the requirements for agricultural routing purposes.

Then, closing the white spots on the map is the missing part of the whole workflow. The
research on methods for generating road networks from GPS trajectories has been started
in the automotive industries in the end of the 1990ties. With the growing popularity of
GPS receivers and the availability of tracking data, further methods have been developed
in the domains of hiking and fleets tracking (e.g. taxis or delivery services). The research
gap lies therefore in the analysis and refinement of methods that are able to extract a
road network from the agricultural movement data. This can then be used to enrich and
update existing road network data.

These components can be classified in:

• data preparation

• algorithms

• services

Most of the presented components will be integrated in a service oriented software archi-
tecture. Through this, it will be shown that a processing chain from data acquisition, via
data processing to applications can be established. This demonstrator gives an example
for an applicable real world scenario and shows the interaction between the individual
components:

• The data preparation step with the fetching and storing.

10https://www.logiball.de, (accessed 2016/10/22)
11http://www.navlog.de, (accessed 2016/10/22)

https://www.logiball.de
http://www.navlog.de
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• The route service and the field service, that are connected via service interfaces.

• The different algorithms for road and field geometry computation, that feed the
services and

• The routing demonstrator, that uses the data and provides the services as a prototype
for end users.

1.3 Research Questions

Summing up the following research questions will be treated in this thesis.

1.3.1 How can agricultural movement data be classified to have distinct

input data for field and road generation?

Agricultural movement data, as it is used in this thesis is produced from agricultural
vehicles. Compared to cars and trucks, these vehicles drive on the public road network,
but the usually greater part of their movement time, they drive on agricultural fields where
they work. Hence, methods have to be investigated to classify the movement data and
distinguish between different movement modes.

1.3.2 How can agricultural field boundaries be extracted from move-

ment trajectories?

Identify methods and their limitations for automatic generation of field boundaries and
field gateways to keep an up-to-date field record system and realize navigation from road
network to fields.

1.3.3 How can an infield routing graph be extracted from field geome-

tries?

Compared to the public road network, a complete route planning for agricultural vehicles
requires not only a route to, but also a route within their working area (agricultural fields).
Therefore, new methods for generating connected navigable paths within a field are needed
to enable an efficient routing e.g. within a harvesting campaign.

1.3.4 How can a road network be extracted from agricultural telemetry

data?

The extraction of a mainly rural road network is a further research question. Feasible
methods have to be identified and parametrized. Based on a data set which represents the
on road trajectories, methods for trajectory averaging and road network extraction have
to be found and adapt on the agricultural data. The parametrization and the restrictions
of each method have to be identified.

1.3.5 Can OpenStreetMap data as VGI be a source for vehicle specific

route planning in agriculture?

The extracted data from the telemetry data will not represent the whole road network.
Hence, a basic digital road data set is needed for routing without gaps. In the last years,
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OpenStreetMap became to a proper data set that shows in different services its feasibility
for routing. The usability for routing agricultural vehicles, the pros and cons will be
enlightened here.



Chapter 2

Used Datasets and TeleAgro+

Framework

2.1 Agricultural Telematics Data

2.1.1 Telematics in Agriculture

Observation and analysis of processes is the key to improve them. Sensors and displays
provide feedback to the user and thus an insight into the status of both the machine
and processes. Having the information onboard of the machine is one part but analysis
options are restricted to the single machine and to limited attention of the driver who is
sometimes flooded with information on machine, accessory equipment and communication
with e.g. further players of the logistic chain. An overview of the machinery as a whole
and performance comparisons between similar machines enable better machine setups.
Machine maintenance is easier and the availability of previous sensor values, readable
from service simplifies fast and effective repair which is tremendous valuable especially
while harvest period. With the integration of GPS, mainly initiated by parallel driving
and guidance systems the on-board sensor data is enriched with locational information. An
overview on agricultural telemetry systems is given in Andres [2009]. The extension of the
mobile network and the establishing of faster mobile network standards like LTS promoted
the distribution of telemetry systems. Besides several small companies that are providing
smaller telemetry solutions, the three big agricultural machinery manufacturers AGCO,
John Deere and CLAAS cover the main part of the telemetry market. The systems of the
three global acting agricultural manufacturers underlie continuous development within the
last years and the implementation of telemetry on vehicles is become default for superclass
tractors like the CLAAS Xerion. John Deere’s telemetry product JDLink comes from the
construction part of the company. Therefore the functionality lies mainly in observing the
machinery, primarily for product observation and maintenance. However a broader set
of functions is planned for future. The AGCommand system from AGCO has its roots
mainly on machine health and performance monitoring and in operation and efficiency
monitoring. The software allows geo-fencing and visualization of the fleet. The CLAAS
Telematics is one of the first telemetry systems for agriculture machinery and has its
origins in monitoring harvester machinery. Starting with the AgroScout system (a fleet
management software for agriculture), CLAAS set the focus more on performance analysis
of harvesters. With the update in 2014, the CLAAS Telematics system is now available
for tractors and machinery attachments such as balers. Including sensor data available
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from ISOBUS and proprietary BUS systems the CLAAS Telematics is one of the most
detailed systems available on the market. Figure 2.1 shows the desktop views of the three
telemetry systems (CLAAS Telematics, AGCommand and JDLink).

Figure 2.1: Agricultural Telematic Systems
CLAAS Telematics (source: https://www.claas.com),
AGCommand (source: http://www.agcotechnologies.com)
and JDLink (source: http://www.deere.com)

Besides these main actors surveying companies like Leica Geosystems (VirtualVista)
and TopCon (Tierra) offer systems for machine telemetry. Another agricultural machin-
ery company “Horsch” recently developed their own system [Baum and Rothmund, 2014]
which is mainly used for planning and controlling machinery. The disadvantage of these
systems is their boundedness to ISOBUS and the free offered data by agricultural ma-
chinery companies. This thesis primarily focuses on the CLAAS Telematics system which
provides mainly data from CLAAS agricultural vehicles. Due to the fact that methods in
this thesis are developed mainly using movement data, this processing can be adapted on
every other telemetry system by using their interfaces.

2.1.2 CLAAS Telematics

History

The data used in this thesis is extracted from the proprietary CLAAS Telematics system.
This agricultural telemetry system is the telemetry system of the CLAAS company and
started in the year 2005 [Andres, 2009] as a system for remote performance surveying of
agricultural vehicles. At the beginning it was implemented as special feature on high class
combine harvesters. Later CLAAS implemented the Telematics on forage harvesters and
some years ago the system is also available as add on for tractors such as the Xerion,
Axion and Arion models. With the implementation of the ISOBUS standard, the CLAAS
Telematics system is implemented as now also an additional feature on no-CLAAS tractors
and transportation vehicles and can log the available data on these machines (although
this data is less comprehensive than data available from CLAAS machines). The telem-
atics feature will be available as a standard implementation on high class machines and
as an extension for mid and small machinery in near future. An integration of further

https://www.claas.com
http://www.agcotechnologies.com)
http://www.deere.com
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CLAAS products (e.g. Scorpion) and the integration of implements (e.g. binders, manure
distributors, sprayer) is also planned.

Process and Architecture

The CLAAS Telematics system consists of a centralized database architecture which col-
lects data from machine clients. Each sensor, which is connected with the machine’s
CAN-BUS, sends its data to the BUS system where a further process takes the sensor
values and stores them in a fixed frequency (15 s) on the CEBIS-board computer (for new
harvesters and especially tractors this frequency will be higher). The sensor measurements
will be packaged together with a timestamp and a location (from GPS) and sent in flexible
intervals to a centralized data storage platform. The incoming data is stored in a database
where further processing steps will be managed. In figure 2.2 a general overview on the
general Telematics architecture and its components is given.

The CLAAS Telematics system consists of following main components [Andres, 2009]:

• Datalogger software

• Teleservice module (with integrated GSM modem and SIM card)

• communication server

• telematics database and webserver

• webinterface CLAAS-Telematics

Figure 2.2: Architecture CLAAS Telematics (source: https://www.claas.com)

Machines, Sensors and Data

In this work, a subset of the available machinery from the CLAAS Telematics system data
is used. The sample data set consists of Telematics data of eighteen machines for the last
five years (2010-2015). The set of sample machines consists of combine harvesters, forage
harvesters, CLAAS tractors and tractors from other manufacturers where the CLAAS
Telematics has been implemented. In table 2.1 and figure 2.4 the machines and their
provided data (respectively) are described in more detail.

https://www.claas.com
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The spatial extend of the data is limited on Central Europe, in particular on the
countries Germany, France, Czech Republic and England (cf. figure 2.3).

Figure 2.3: Overview on spatial distribution of the data set (machine types: forage har-
vester, combine harvester, tractor and tractors from other manufacturers, are grouped by
colors) (Datasource basemap: c©OpenStreetMap contributors)

Figure 2.4 gives an overview on the available measurement values for the analyzed ma-
chines from the CLAAS Telematics system. The sample set contains data from different
combine harvesters, forage harvesters, CLAAS tractors and tractors from other manu-
facturers. The figures also show the differences between machines regarding semantic
similar measurement values. While the Axion tractors have two speedometers (radar and
gearing), the other machines only have one speedometer (gearing). Therefore the derived
“Schlupf” (slip) parameter is only available for the newer Axion tractors. Some of the
Jaguar forage harvesters were built for a period with two engines. Hence the measure-
ments for “Kraftstoffverbrauch” (fuel consumption), “Motordrehzahl” (engine rpm) and
“Motorauslastung” (engine capacity utilization) are collected separately for each engine.
Two different namings “max. Anzahl Teilbreitenstufen” and “maximale Teilbreitenstufe-
nanzahl” (maximum section count) for the same value and (already revised for this table)
inconsistent type setting for parsing the values (additional space characters etc.) reveals
the necessity of a consistent dictionary for all values. The values for “Steuergerät XX Sta-
tus” are not further explained, because of their dependency of the accessory equipment
like sprayers, manure distributor etc. . It should also be considered that the measurement
values of the machines used in this thesis is a subset of values. Machine owners have a
bigger set of measurement values that also consists of harvest data, harvest good type and
further data, but such data is subject to privacy regulations and therefore would not be
part of this thesis.

As shown in figure 2.4 the available sensor data is different for each machine type.
Within the type classes there are also differences between models and individual machine
configurations. Hence the table presents a representative subset for machines available
in the CLAAS Telematics system. This subset highlights the requirement for grouping
the data at least by type which have equal sensor configurations installed and therefore
comparable data (e.g. Axion 900, Lexion 600 . . . ). Some values seem to be comparable
due to semantic equality of tags and different spellings of identifiers.
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Figure 2.4: Measurement Values for Machines
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2.2 OpenStreetMap

2.2.1 Project Description

OpenStreetMap (OSM) was invented by Steve Coast in 2004 with the idea to provide user
generated, free available cartographic data [Ramm and Topf, 2010]. The infrastructure
became ready in march 2006 to collect and map larger areas. It is an exemplary project
for volunteered geographic information (VGI). The idea at the beginning was to collect
GPS traces from users, show them within a web editor and let users digitize their tracks
and add semantic data. The provision of satellite imagery from LandSat and later the
more detailed yahoo maps imagery forced the digitizing of new geographic features and
closed bigger gaps in the digitized data. With the continuous provision of services based
on the freely available data (e.g. online maps, routing, geocoders), users were motivated
to generate new data and the availability of OpenStreetMap data increased very quickly.
The data structure is very simple as it consists only of nodes and ways (which are an
ordered list of nodes) and key value pairs for each type that consists of semantic data
[Ramm and Topf, 2010]. The scheme has not been changed apart from new additions like
relations that represent sets of associated ways or nodes (cf. figure 2.5). The data is stored
on a central server infrastructure and provided by web interfaces or file downloads from
OpenStreetMap servers or mirrors.
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Relation Way 
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0..n 
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0..n 0..n 
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Is part of > 

1 1 

Figure 2.5: OSM Data Model (source: adapted from Ramm and Topf [2010])

From 2006 on the number of users rapidly grew (figure 2.6) and with that so did the
quantity of digitized features (figure 2.7).

Based on the OpenStreetMap data a countless number of software and services have
been implemented. Map renderers such as OSM WMS [Goetz et al., 2012], OpenMap-
surfer (Rylow [2014]), Mapnik, domain related maps like “Reit- und Wanderkarte” (http:
//www.wanderreitkarte.de/) and 3D services such as W3DS [Schilling, 2012], etc. process

http://www.wanderreitkarte.de/
http://www.wanderreitkarte.de/
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Figure 2.6: OSM user statistics(source: http://wiki.openstreetmap.org/wiki/Stats)

Figure 2.7: OSM data base statistics
(source: http://wiki.openstreetmap.org/wiki/Stats)

http://wiki.openstreetmap.org/wiki/Stats)
http://wiki.openstreetmap.org/wiki/Stats)
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the data mainly for visual presentation. POI services like Nominatim (http://nominat
im.openstreetmap.org/), the OGC OpenLS directory service of GIScience Heidelberg or
Wheelmap.org (http://www.wheelmap.org/) provide POI data via web interfaces and al-
lows spatial requests on the POI database. Route services like OpenRouteService.org [Neis
and Zipf, 2008], OSRM [Luxen and Vetter, 2011] or the Graphhopper project demonstrate
operative routing systems using the free OpenStreetMap data. Regarding the quality of
this VGI source, several works showed with comparisons to other data sets [Zielstra and
Zipf, 2010, Haklay, 2010, Ludwig et al., 2011], through intrinsic analysis of the data [Bar-
ron and Neis, 2013] or further investigations [Arsanjani et al., 2013, Mooney et al., 2010,
Graser et al., 2013, Ciep luch et al., 2011] the usefulness of the data set. Further investi-
gations have been made by Canavosio-Zuzelski et al. [2013], Girres and Touya [2010]. In
Haklay [2010] the positional accuracy of OSM road data has been measured using buffer
methods and sample data was at average less than 9 m or better.

As OpenStreetMap is mainly based on crowdsourced, human generated content, me-
chanical edits through bots and automatic processing chains have to be handled carefully
and well communicated with the OpenStreetMap community. For these kind of edits
there exists a code of conduct which sets up rules for automatic data processing [Open-
StreetMap, 2015]. Due to this conduct, the data generated in this work will not be directly
integrated in the OpenStreetMap data set. However, services which are installed within
the context of TeleAgro+ can provide the extracted data as layers for manual editing.
This allows the community to check the data before integrating the data manually into
the OpenStreetMap VGI data base.

Within chapter 6 further investigations on OpenStreetMap as base data for agricultural
route planning will done. There will given a detailed description on the data, related to
the application of routing agricultural vehicles.

2.3 TeleAgro+ Framework

This work is part of the research Project TeleAgro+ which was funded by the German
Ministry of Food and Agriculture (BMEL) from 2011 to 2014. The research project is
a collaborative project between the agricultural machinery company CLAAS E-Systems
(former CLAAS Agrosystems) and the GIScience group of Heidelberg University. The
project objectives are the extraction of knowledge from telemetry data of agricultural
machines, the integration of geodata in the end user products, and a user friendly interface
for data management and analysis of productive agricultural machinery. Furthermore a
prototypical route planning service for agricultural vehicles has been implemented in the
project.

2.3.1 Framework Overview

The TeleAgro+ framework consists of data storing and analysis functions. The archi-
tecture is shown in figure 2.8 and for the route service in detail in 6.6. The following
chapters explain the used algorithms from data pre-processing 3 that is the basis for the
later processing, the extraction of field geometries in chapter 5, the extraction of road ge-
ometries in 4 and the routing for the agricultural vehicles including algorithms for infield
route computation in chapter 6 which brings al the components into a seamless workflow.
The architecture builds mainly on services. Therefore extracted data is provided to users
through web services and prototypical user interfaces and applications. This modular

http://nominatim.openstreetmap.org/
http://nominatim.openstreetmap.org/
http://www.wheelmap.org/
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structure with standardized interfaces allows a flexible framework with high potential for
reusability and a partial integration of services in other systems.

2.3.2 Processes and Services

The components of the architecture showed in figure 2.8 will be described in the following
subchapters.

Telematics Data Updater

The Telematics Data Updater is an essential service of the TeleAgro+ framework. It
organizes the initial creation of the database structure and the initial data import. Using
the REST interface provided by CLAAS Telematics the data is pulled via this interface
and loaded into the local PostGIS instances. The DataRetriever also allows the updating
of an existing data set by comparing the latest stored data with the latest available data
from the Telematics system. This service also implements the latter in chapter 3 described
filtering procedures and is responsible to get clean data into the data base.

Extended Measurement Processor

The Extended Measurement Processor is the calculation tool for extended measurements.
This processor uses the spatial functions of the database and enriches the existing raw data
with further attributes such as spatio-temporal neighborhood, speed and acceleration, . . . .

Field Boundary Generator

The Field Boundary Generator is responsible for extracting fields from pre classified mea-
surement data. It computes geometries for fields and stores them in the spatial database
with additional attributes (e.g. harvest year and machine). The polygons are also simpli-
fied by algorithms produced by Ramer [1972], Douglas and Peucker [2011] to prune the
data. With this simplification the JSON data for delivering the field features via the REST
interface is small enough to realize a usable client-server communication. Furthermore the
later used algorithms for infield route graph computation which are based on the field
geometry and its shape points are running with improved speed and without noteworthy
loss of detail. The Field Boundary generator also computes the field connection points
that are used to connect the field geometry with the road network.

2.3.3 Trajectory Processor

The Trajectory Processor classifies the measurements using machine learning methods on
training data. With the classified measurements it computes trajectories and correspond-
ing line strings and stores them in the spatial data base.

RoadProcessor

The Road Processor implements several methods for road computation. In this processor,
the algorithms for data import and track averaging are located. The data output is
commonly made by files or the data base.
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Graph Generator

The Graph Generator imports OSM data and builds a graph structure from the data. In
this step the edge weights were also encoded and stored within files and the routing data
base.

RouteService

The MARS Route Service is the (M)ulit (A)ttribute (R)oute (S)ervice that calculates
routes on the generated routing graph using a set of multiple attributes and restrictions.
The service interface is based on the OGC OpenLS specification [Mabrouk et al., 2005]
which has been extended to enable the multiple attribute functionality.

VehicleService

The Vehicle Service provides the vehicle data of multiple vehicle configurations via a
REST interface. The data sent as in a standardized JSON format through the web service
interface. This service also returns average speed data for different highway types and
attribute configurations for individual vehicles.

FieldService

The Field Service provides the output of the FieldBoundaryGenerator via a standardized
REST interface. The fields are sent in (Geo)JSON format to the client. This service also
sends the field connection points which are needed to connect the fields to the road network.
It also enables spatial and attribute related requests (e.g. fields within a bounding box,
fields of a specified harvest year).
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Table 2.1: Analyzed machine types from CLAAS Telematics
(source of imagery: https://claas-telematics.com/)
forage harvester CLAAS JAGUAR

The forage harvester Jaguar has been built since 1973. The 950
and 970 models which contribute data for this work have been
built from 2007. The 950 has a 16 cyl. 372 kW machine and can
be equipped with 3.0 or 3.5m pick-up or for corn harvest with
a 7.5 or 6 m corn picker-husker. Other equipment from foreign
manufacturers is also possible. The Jaguar machines have been
constructed for a period of time with two engines with the aim to
save fuel on road and add the power of a second engine for foraging
on field. This has been canceled due to machinery problems and
higher effort in maintenance. The forage harvesters are primary
used for chopping grassland, whole crop silage and corn chopping.

combine harvester CLAAS LEXION
The CLAAS Lexion has been built from mid 1990. The analyzed
machines in this thesis are from the 600 series which have a work-
ing width up to 12.0 m, an engine power of 390 kW and a grain
tank of 12 to storing weight. Also the Lexion 770 from the up-
per class that has been built from 2010 on with similar measures.
Both types can be equipped with TerraTrac technology for more
efficient driving. The Lexions harvest primary grain like wheat or
rye, but also reps and corn.

tractor CLAAS AXION
The Axion tractors are quite new in the CLAAS machinery pro-
gramme. With the takeover of the tractor division of Renault,
CLAAS started to build their own tractors. The data subset in
this thesis is produced by mainly testing machines of the 900 se-
ries which have been built from 2011 onwards. The machines have
engines with 235 - 302 kW and represents the upper tractor class
beside the CLAAS Xerion which was developed as a functional
large tank. The tractors are used for almost all field work like
soil cultivation (tillage, ploughing), seeding, fertilizing, and spray-
ing. Further they are used as transport vehicles in biomass logistic
chain to transport the harvest e.g. from field to a bio gas plant or
the grains to agricultural traders (mainly for short distances less
than 30 km).

other manufacturers External brands

Additional data from external brands are in the classes “Traktor II
Universal” and “Traktor III Universal”. These machines have only
a semi integrated CLAAS Telematics on board which means, that
the set of available sensor data is very sparse and their description
is less detailed (e.g. “Steuergeraet XX Status”). The used data
set includes Fendt 936 Vario (the flagship of AGCO-Fendt), 722
and 718, a John Deere 6190 R and two CASE tractors, a CASE
Puma and a CASE caterpillar.

https://claas-telematics.com/


Chapter 3

Data Preprocessing

This chapter explains, evaluates and extends algorithms for pre-processing the agricultural
telemetry measurements. While the first paragraphs describe the required data cleaning
steps to eliminate corrupt and obvious wrong data, the further sub-chapters describe meth-
ods for matching the measurements with existing map data, the calculation and derivation
of (movement-) attributes, and the classification methods to group the measurements into
different classes. These classes are the basic input data for the road and field boundary
extraction processes in the later chapters.

3.1 Data cleaning

As the used data is from a productive telemetry system, it relies on continual development.
Hardware (sensors and terminals) as well as software and its interfaces are subject to
continual updates. Data is sometimes deficient and erroneous, but some errors are only
noticeable after further data processing. In this section the main errors which hamper the
following data analysis will be shown and methods for correction and elimination of faulty
data will be given. Some of the error types are already described in Lauer et al. [2014]. The
following part will give a broader view on the errors and their correction or elimination.
It has to be said that this error handling is done in a generic way to get a basic data set
for the subsequent processing steps. Within the later, more specialized processing stages
further individualized and method dependent data cleaning and separation processes are
needed. This individual processing will be explained in the specialized sections.

General errors can be classified as positional errors, range errors, duplicate errors,
logical errors and type errors. Positional errors originated from wrong GPS measurements.
They can be also range or logical errors. Hence GPS measurements are affected by several
sources of errors that have an influence on the geometrical accuracy. The positional errors
can only be estimated by taking the statistical measurements (e.g. DOP - dilution of
precision) usually provided by the hardware sensor and the standardized interface into
account. These errors are usually hard to detect and the DOP values (from GPS sensor)
are not provided by the CLAAS Telematics interface. Due to the fact that GPS usually
has a positional error which is less than 10 m, and the conditions for position measurement
with GPS on agricultural vehicles in open areas are very good, the positional errors would
not be handled directly. This positional error can also be a benefit for some algorithms
which make use of the distributed values and resulting trajectory crossings.

The other part of positional errors are mainly originating from hardware and software
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interfaces. Examples are zero coordinate N0.0, E0.0, switched lat/lon values or numbers
out of range (latitudes /∈ [−90, 90] and longitudes /∈ [−180, 180]). These errors can be
produced by GPS hardware or during the transfergence and importing of the data into
the CLAAS Telematics database. A bug in the outgoing interface is also possible as the
database and the interface software sometimes reorganize the data before sending. A
further logical check has been implemented to eliminate obvious wrong values (e.g. with
unrealistic speeds or alternating positions in figure 3.1).

Figure 3.1: Error - Alternating positions (Datasource basemap (orthophoto):
Bayerische Vermessungsverwaltung – www.geodaten.bayern.de)

The last type of errors are naming and typing errors. The constantly growing and
evolving CLAAS Telematics system brings some inconsistency. Attribute naming and
typing were not standardized and as a result semantically similar attributes where named
differently. Different typing (upper/lower case) is also a problem for further processing and
has to be handled by less sensitive string handling. The usage of non common characters
(e.g. German umlaut) in combination with wrong string encoding will also affect the
further processing steps. The strings therefore were filtered and encoded in UTF-8 before
importing into the TeleAgro+ database. Also preceding or trailing space characters were
eliminated. As far as possible semantically equal and comparable attributes were named
equal while importing to make them comparable within the analysis steps.

The main error types are listed in 3.1. After the detection and cleaning steps, the main

www.geodaten.bayern.de
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Table 3.1: Error classification - Telemetry data
Error Type Description Example

positional wrong positions measurement within the forest next to
the road or within a river

logical hopping of successive
positions

unrealistic speeds (e.g. harvester drives
with 150 km/h, cf. 3.1)

duplicate duplicate
measurements

identical measurements due to duplicate
data fetching

range data is not within a
defined range

latitudes /∈ [−90, 90] and longitudes /∈
[−180, 180]

type wrong encoding or
description

“ue” instead of “ü”

errors are fixed and the data set is prepared for following analysis.

3.2 Map Matching

To connect the measurements with existing map data a matching process is needed. There
exists many approaches to match GPS data to an existing road network. Quddus et al.
[2007] classifies matching algorithms into geometric, topological, probabilistic and more
advanced algorithms that use more refined concepts like Kalman filters or particle filters
amongst others. The Hidden Markov Model (HMM) approach of Newson and Krumm
[2009] is one of the more recent and most promising approaches. Problems with the HMM
approach lie in the scalability (computation time will unduly increase with dense point
intervals and high detailed map data) and its sensitivity to the data. The project envi-
roCar (Bröring et al. [2015]) uses a simple “points-to-line”-snapping approach to match
the vehicle data on the OSM roads. This approach is not feasible because of the possible
alternating matches and therefore wrong matching results. The alternating matches can
be caused by bad GPS signals and wrong positions. The approach that is used in this the-
sis is realized by point to line matching (with a given threshold) and the looking forward
and backward to neighbor measurements. A sudden road change from measurement to its
successor and back is quite unrealistic and the fact that vehicles usually not change a road
without physical connection the measurement series is analyzed on runs and the matching
underlies a smoothing like method to calculate the correct road match. The algorithm
represents therefore the tree classes of geometrical (intersection with road buffer), topo-
logical (which values have predecessor and successor values) and probabilistic (which road
segment has most hits). This algorithm fits the requirements for the following processing
and the visual analysis confirmed a reasonable matching.

3.2.1 Method

The position for each single measurement is given by GPS. Their positional accuracy is
therefore determined by the onboard GPS sensor. For matching the vehicle positions to
existing map data, map matching algorithms are needed. Using a naive geometric buffering
gives first results on matched measurements. Through its simplicity, this approach is not
able to handle wrong matches with e.g. parallel ways and also causes problems with
crossroads and produces multiple matches.
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As shown in figure 3.2 (left) using the simple map matching algorithm by using a
buffer on each road geometry, all the points P1. . . P5 are matched with road 1, but P3
is also intersected with the buffer geometry on road 2. Due to this additional overlap,
P3 has two matches. To handle these wrong map matches, especially the hopping from
one road on its neighbor and the multiple matches, a more precise algorithm is needed.
The algorithm has to consider the movement of the vehicles and the fact that changes
of highways from measurement to measurement are not common. Therefore long runs
of matched measurements are more probable than short runs with many alternations.
The points P1. . . P5 are now matched to Road 1 because of the longer chain where P3 is
part of figure 3.2 (right). The result is a more precise road geometry matching for each
measurement.

Figure 3.2: Mapmatching process

3.2.2 Map Matching Results

The map matching for all measurements was computed using the previously described
algorithm. The input map data is from OpenStreetMap. A mirrored original database is
used for an up-to-date OpenStreetMap data base server instance. The workflow for this
service is described in Goetz et al. [2012]. The map matching is done once after updating
the CLAAS Telematics data. The OpenStreetMap Data is therefore from the same actu-
ality as the latest telemetry data. Figure 3.3 gives an overview of matched OSM-highway
classes. 2.9 mil measurements are matched to the street network of OpenStreetMap. The
main part (98.6%) of all matched measurements is matched on the classes secondary, track,
residential, unclassified, tertiary, service and primary. To avoid misunderstandings, the
OpenStreetMap-tag “unclassified” stands for connecting roads between villages.
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Figure 3.3: Mapmatching statistics

The wrong matches of the extended buffer method could be decreased and the method
is able to produce tangible results for the later processing steps. However mainly two kinds
of errors generally occur which could not eliminated. Examples are shown in following
maps. One reason for a wrong classification is the wrong geometric matching. This is the
case, if two streets are parallel and very close to each other (e.g. a track or a path beside
a primary road) as can be seen in figure 3.4. The algorithm is not able to differentiate
between the two parallel roads (highway=path or highway=primary). If the only criteria is
the nearest road, the measurements will be alternating their match due to GPS inaccuracy.
This is one of the main challenges of map matching. The chosen approach, a window based
matching solves this problem sufficiently.

The other error is a wrong tagged highway-type in map data (figure 3.5). The figure
shows a matched way with the attribute highway=path which is described in the Wiki
as “highway=path is a generic path, either multi-use or unspecified usage, open to all
non-motorized vehicles.”1. This is an error that is independent from the matching and
can only be solved by revising the map data.

Semantic correction is also a possible solution to get better results, as some highway
types cannot be driven on by the vehicles. This is mainly the case for single trails or stairs.
Due to the very low error level and its only nominal influence on further processing, this
correction is not made in this work. A positive side effect of this method is the chance to
reveal errors in the OpenStreetMap data.

1http://wiki.openstreetmap.org/wiki/DE:Tag:highway=path, (accessed 2016/10/22)

http://wiki.openstreetmap.org/wiki/DE:Tag:highway=path
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Figure 3.4: Matched path vs. primary

Figure 3.5: Matched path

3.3 Average Speeds for Road Types

A further pre-processing step is the calculation of average speeds for every combination of
used highway-, surface-, smoothness- and track-types. These statistics are used for later
route calculation and time estimation. The matched measurements and the calculated
GPS-speeds of each measurement are averaged for each combination of driven roads. The
results are then stored in a vehicle table. This table will be the data source for the
VehicleService which provides the vehicle data for the vehicle specific routing. The average
speeds were calculated for every existing matching combination of OpenStreetMap tags
(highway, tracktype, surface and smoothness). Missing combinations were filled by the
VehicleService with default speeds of the machines. Figure 3.6 shows the average speeds
of each machine on each matched highway type.
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Figure 3.6: Average speeds per Highwaytype

The figure shows the typical speeds of the agricultural vehicles which are depending on
the road types. On broad roads the machine driver usually accelerates to the maximum
speed and holds that as long as possible. This was the impression of several field campaigns
and also represents own experience during several years of practical farming. The average
speed on these road types are in the region of the machines maximum speed. Road types
like service or track are usually smaller roads with only one lane and sometimes not paved
surfaces where higher speeds with large machines are not possible. The short distance
between crossings and the small curvatures need often accelerations and decrease the
maximum and the average speeds.

3.4 Extended Attribute Calculation

Analyzing movements requires attributes that describe the movement and the spatiotem-
poral neighborhood of individual measurements. Hence, extended measurement attributes
are computed to extend the feature space.

Table 3.2 shows the calculated attributes for each measurement. The attributes dis-
tance, speed and acceleration are typical values for movement description. The azimuth
is the angle that is spanned by the connection of two successional measurements and
the north direction. As the coordinates are polar coordinates, atan2 has to be used to
differentiate between the different quadrants. The curvature describes the angle that
two successional measurements with their azimuth angles will form. The spatiotemporal
neighborhood of a measurement is the sum of neighbor values within a given time τ and
a maximum euclidean distance δ. The thresholds of τ and δ were restricted to plausible
values that also depend on the use-case. For τ the values 0.25h, 0.5h, 1.0h, 2.0h and for δ
the distances of 50m, 100m and 200m were chosen and the numbers of neighbor elements
were computed for each combination of τ and δ. These values are no typical movement
parameters, but they give a number for the vicinity of a sample.

3.5 Measurement Classification

The telemetry data represents the complete spatiotemporal movement of the agricultural
vehicles. Further processing needs a differentiation of trajectory segments depending on
the analysis objectives. Due to the primary objectives (extraction of field boundaries
and road data set), the raw data has to be classified to at least the classes field and
road. Simple approaches are using spatial intersection and map matching but this is only



28 Chapter 3. Data Preprocessing

Table 3.2: Formula for extended attribute calculation

parameter formula unit

distance d(Sn, Sn−1) = |Sn.p− Sn−1.p| [m]

time t(Sn, Sn+1]) = Sn.t− Sn−1.t [s]

speed speed(Sn) = d(Sn,Sn−1)
t(Sn,Sn−1)

[m/s]

acceleration acc(Sn) = speed(Sn+1)−speed(Sn)
time(Sn,Sn+1)

[m/s2]

azimuth azimuth(Sn) = atan2(ySn+1 − ySn
, xSn+1 − xSn

) [◦]

curvature curvature(Sn) = |azimuth(Sn−1) − azimuth(Sn)| [◦]

spatiotemporal

neighborhood
stn(Sn) = Si ∈ SO|d(Si, SA) < δ ∧ |t(Si, SA)| < τ [#elements]

with Sn−1 as chronological predecessor and

Sn+1 as chronological successor of Sn

SO as the set of all samples for an object O

δ as distance threshold

τ as temporal threshold

feasible when feature data of fields and roads are given (chicken-and-egg problem). To
fulfill the aim, a process to classify the movement data has to be established. Preliminary
work of measurement classification is mainly done in movement analysis where different
transportation modes have to be distinguished.

Dodge et al. [2009] present a heuristic method for trajectory segmentation. Within
three steps (data preparation, global descriptors computation, and local feature extraction)
they demonstrated how to classify trajectories by transportation modes (motorcycle, car,
bicycle, pedestrian) using unlabeled movement trajectories. Further approaches classifying
movement modes were performed by Bolbol et al. [2012] who classified GPS trajectories
in transportation modes of car, walking, cycle, underground, train and bus using a SVM
classifier and attributes like average speed, acceleration, distance and time. Their data set
was collected by 81 participants during a two weeks data collection phase. Biljecki et al.
[2013] classified GPS using fuzzy concepts from expert systems to distinguish between 10
transportation modes. They ran their algorithm on a 17-million point data set collected
in the Netherlands and Europe and get an accuracy of 91.6 percent determined with the
comparison of the classified results with manual classified reference data.

In the context of agricultural vehicles Jensen and Bochtis [2013] presented an approach
for recognition of operation modes of combines and transport units. Their aim is the
generation of methods for automatic recognition of operating modes of all machinery types
involved in grain harvest, based on raw GNSS trajectories. Their approach is mainly based
on geometric algorithms that recognize if the machine is harvesting or not by moving on
non harvested parts on a field. Unloading operations were detected by a very low or zero
speed difference between the unloading machine and the transport unit and a maximum
distance threshold of both vehicles. Further preliminary work is done by Grisso et al.
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[2002] who used DGPS and a yield monitor to derive statistics for five example fields
aiming the analysis of field efficiency determination. Their work is therefore focused on
infield operations while the main focus in our work lies in the general classification of
trajectories including the road and on farm parts. Hence the extracted field trajectories
of our work can deliver an input data set for this work.

On some of the probed machines there are installed switches for working and not work-
ing mode. Further data is given by a proprietary algorithm that distinguish the working
mode for every machine. Figure 3.7 shows the stored working mode classification from the
original CLAAS Telematics data. Several roads are classified in “Working Mode = on”
and also a greater amount of measurement points within the field area are set as “Work-
ing Mode = off”. Through visual analysis from expert perspective, these measurements
are wrong classified. While the “Working Mode = on” on a road is obviously wrong,
the decision if the “Working Mode = off” within a field boundary is correct can only be
made by detailed analysis of the driven trajectory. Transit- or transportation maneuvers
can also take place on field areas. However, this data contains too many wrong classified
measurements for later processing steps as none of these methods is reliable due to either
human mistakes or algorithmic failures.

Working Mode - Jaguar 950 - 120080011

Working Mode OFF

Working Mode ON

500 0 500 1000 m

Figure 3.7: Working Mode for Jaguar 950 forage harvester

For a more general overview figure 3.8 shows the processing chain with focus on field
and road computation that follow the preprocessing steps from this chapter and make use
of its generated data.
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Classification

Fielddata

Telematics 

Data
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Road 

Geometries

Particle based
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Fréchet Distance

(Ahmed&Wenk)

Graphreduction

(Morris et al.)

Road

Attributes

Figure 3.8: Workflow - Dataprocessing workflow with algorithms for road and field com-
putation

3.5.1 Reference Data

Generating correct reference data is crucial for good classification results. Hence a pre-
liminary step for digitizing of reference data is needed. This work is done manually, which
means additional and time consuming work. Another option would be to generate this
reference data by data collection on the machine e.g. as a tagging app for the driver. As
the second option is desirable but not available for the CLAAS Telematics data, a prac-
tical solution for digitizing the ground truth is needed. The manual classification is done
visually using a base map (e.g. satellite photos or maps). The work is done by experienced
mappers who are aware of driving maneuvers and agricultural processes on road and on
field. This guarantees a qualitatively good reference data set.
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Figure 3.9: Ground truth distribution for all classes

Figure 3.9 shows the numbers of digitized ground truth measurements for each class,
separated by machines. Due to the unequal distribution of ground truth data, some re-
marks are needed to explain the ground truth data. The off-road class is underrepresented
for nearly all machines. Tagging of off-road samples is very difficult and hardly possible
in very dense point and trajectory clouds. Therefore a filtering step before tagging the
measurements is needed to extract these measurements properly. In this work, this work
intensive step is omitted because this problem would not affect the further processing as
the focus lies mainly on the road-field distinction. In the manual digitizing process the
different working modes and therefore differing movement types are considered as far as
possible. A generally good reference data set is the result. It has also to be considered
that a further integration of machines would also bring additional work on the mapping
of reference data for them. Thus, the efforts for generating this data should be as low as
possible but also as high as needed to produce a representative data set for each machine.

3.5.2 Classification Algorithm - KNN

To distinguish between road and field data, a supervised classification algorithm is used.
Lauer et al. [2014] showed a KNN based approach to classify road, field and off-road
measurements for a single machine within a defined area. The KNN classification is a
parameter free method for probability density estimation [Altman, 1992]. Based on this
estimator the algorithm determines the class for a chosen sample considering the k-nearest
neighbors. In this first approach, the classification is limited to the three classes of infield,
road and off-road (which represents movement mainly between fields on “not road like
structures” or open space). The training set digitized for this approach is a spatially and
temporally limited data subset where all measurement points are manually classified in
the three classes.
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3.5.3 Classification Algorithm - Random Forest

The Random Forest classification algorithm was firstly named by Breiman [2001]. In
this publication he developed an approach for a statistical motivated decision tree model.
Using the complete reference data, the random forest algorithm takes a random, fixed
size subset of the data and builds one of k decision trees. This is done k-times which
builds a random forest of decision trees. The complete reference data is finally used to
build the forest. To calculate the classification error, the complete reference data will be
classified by the random forest classifier. Although this method is common practice, it has
also be considered that there is a bias due to using partly the same data for training and
evaluation. On the whole there is nevertheless a clear tendency given by the evaluation.
Regarding the classifier’s configuration, a reliable number of trees (the k) has to be found.
In this thesis, the convergence of class prediction error is used to derive a value for a proper
number of trees.

In the context of this thesis, two implementations of the random forest algorithm have
been focused on. For the analysis the R randomForest implementation is used. As R
brings a lot of various plotting functionality and implemented statistical analysis, this is
a suitable way for the analysis, even if this breaks the workflow of the independent Java
framework. The second implementation is the java library Java-ML [Abeel et al., 2009]
which also provides an implementation of the Breiman [2001] RandomForest algorithm.
This is fully integrated in the workflow, but has less functionality to generate statistical
plots.

The importance measures for the classification attributes were generated with the R
randomForest package. The mean decrease accuracy is calculated from the OOB (out-of-
bag data) as follows: “For each tree, the prediction error on the out-of-bag portion of the
data is recorded (error rate for classification, MSE for regression). Then the same is done
after permuting each predictor variable. The difference between the two are then averaged
over all trees, and normalized by the standard deviation of the differences. If the standard
deviation of the differences is equal to 0 for a variable, the division is not done (but the
average is almost always equal to 0 in that case).” [Liaw and Wiener, 2002].

The data is classified in three independent runs:

1. Using the whole reference data of all machines

2. Using the reference data separately for each machine type

3. Using the reference data separately for each machine

With this splitting, the differences of classifications (whether they are present and how)
needs to be investigated and if a whole reference data set for all machines would be feasible
to classify the data of all agricultural machine types (combine harvester types, forage
harvester types and tractor types). To compare the three classifications, the indicators
for attribute importance and error convergence are produced by the out-of-box error are
used.

Classify all machines together

The first attempt is the classification of the whole reference data in one step for all ma-
chines.
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(a) Attribute importance (b) Error convergence

Figure 3.10: randomForest results - all machines

The variable importance for the whole data set in figure 3.10(a) shows the highest
ranked attributes “acceleration”, “neighbours 50m 120min” and “neighbours200m 120min”
as the most influential attributes. The “time diff” value (which usually has a constant
value and changes only at longer stops when the machines are turned off) has a very low
influence on the classification. Also “neighbours 100m 60min”, “neighbours 100m 30min”
and the “azimuth diff” have a low influence on the classification. Apart from the off-road
class error which is constantly approaching 100% the other classes converge on an accept-
able accuracy of less then 20% . The number of trees that are needed before no big raise
of accuracy is expected lies around 100 trees and decreases rapidly from 1 to 50 trees.
The class accuracy of the road class (with a value of less than 2%) is very good and gives
therefore good results for later processing steps (see figure 3.10(b)).

Classify separately for each machine type

In the second attempt, the data is separated by machine type. The machine type is defined
in this context as a specific model and type of a manufacturer (e.g. CLAAS AXION 900).
It is expected that errors are machine dependent and a separation into machine types will
give a more specific insight on possible relevant attributes.
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(a) Attribute importance (b) Error convergence

Figure 3.11: randomForest results - Axion 900

(a) Attribute importance (b) Error convergence

Figure 3.12: randomForest results - Jaguar 950

(a) Attribute importance (b) Error convergence

Figure 3.13: randomForest results - Jaguar 970
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(a) Attribute importance (b) Error convergence

Figure 3.14: randomForest results - Lexion 600

(a) Attribute importance (b) Error convergence

Figure 3.15: randomForest results - Lexion 770

(a) Attribute importance (b) Error convergence

Figure 3.16: randomForest results - Traktor II Universal
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(a) Attribute importance (b) Error convergence

Figure 3.17: randomForest results - Traktor II Universal

Reference data for the off-road class only exist for the “AXION 900” and the “LEXION
600” machines and the classification errors are high, independent from the number of used
trees. This shows a not well separated class which was also expected regarding the low
number of reference measures and the (also for experts) not easily separable classes. The
“farm” class is only available for the machine types “JAGUAR 950”, “JAGUAR 970” and
“LEXION 600”. Its error decreases rapidly and converges to less than 2%. Disregarding
the “LEXION 600” class which has very high errors for headland, the classification errors
are less than 20% and for most classes also less than 5%. As shown in the attribute
importance figures, the most important attribute for classification is the “acceleration”
value which is within the top ranked three attributes, usually as first ranked. “gps speed”
and spatiotemporal neighbourhood are also important attributes for classification. Less
important are “time diff” and several spatiotemporal measurements depending on the
machine type.

Classify separately for each individual machine

The last and most specific attempt is the usage of separate data for each individual ma-
chine. As manual data classification for test- and training-data is very time consuming,
this is the most work intensive approach. The advantage of this approach is the availability
of a machine specific reference data set.
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(a) Attribute importance (b) Error convergence

Figure 3.18: randomForest results - 119796403 - Traktor II Universal

(a) Attribute importance (b) Error convergence

Figure 3.19: randomForest results - 119796404 - Traktor II Universal

(a) Attribute importance (b) Error convergence

Figure 3.20: randomForest results - 119796405 - Traktor II Universal
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(a) Attribute importance (b) Error convergence

Figure 3.21: randomForest results - 119802463 - Lexion 600

(a) Attribute importance (b) Error convergence

Figure 3.22: randomForest results - 119802464 - Lexion 600

(a) Attribute importance (b) Error convergence

Figure 3.23: randomForest results - 119802465 - Lexion 600
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(a) Attribute importance (b) Error convergence

Figure 3.24: randomForest results - 119834787 - Traktor II Universal

(a) Attribute importance (b) Error convergence

Figure 3.25: randomForest results - 119834788 - Traktor II Universal

(a) Attribute importance (b) Error convergence

Figure 3.26: randomForest results - 119931748 - Traktor III Universal
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(a) Attribute importance (b) Error convergence

Figure 3.27: randomForest results - 119992348 - Jaguar 950

(a) Attribute importance (b) Error convergence

Figure 3.28: randomForest results - 120018706 - Jaguar 950

(a) Attribute importance (b) Error convergence

Figure 3.29: randomForest results - 120044864 - Lexion 770
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(a) Attribute importance (b) Error convergence

Figure 3.30: randomForest results - 120104352 - Jaguar 970

(a) Attribute importance (b) Error convergence

Figure 3.31: randomForest results - 120171079 - Axion 900

(a) Attribute importance (b) Error convergence

Figure 3.32: randomForest results - 120171080 - Axion 900
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(a) Attribute importance (b) Error convergence

Figure 3.33: randomForest results - 120171081 - Axion 900

The individual classification shows the variable importance and classification accuracy
machine specific. Aside from the two “JAGUAR 950” machines and one of the “AXION
900” the “time diff” attribute is not an essential attribute for classification. For most of
the machines, the “acceleration” attribute is one of the most important measures. Outliers
are the “AXION 900” tractors and one of the “LEXION 600” harvesters where this value
is ranked in the last positions in importance ranking.

Comparison of the Classifications

The three presented approaches for processing show that a differentiation of individual
machines could improve the results. As the collection of individual reference data is
very work intense this step should only be done for testing and validation purposes. For
most machines, the classification results are proper or have a sufficient quality for later
processing steps. Differences between the three approaches exist and show that the more
individual the reference data, the better the classification. The variable importance shows
only small jumps in all three approaches which seems to be no real breaks. Hence there
are no attributes that are really unimportant for the classification step in general. The
variable importance is machine and machine type dependent. Therefore attributes that
are unimportant for one machine can be important for the classification of another.

The influence of the reference data must not be concealed. This step is one of the
most influential tasks in this process. Getting a well representative reference data set is
surely a very influential if not the most influential part of the classification. With the
Random Forest approach, a statistic based and popular method for data classification is
used which is transparent for users and later analyses. The results of the classification are
visibly better than those from the KNN approach [Lauer et al., 2014], although these two
approaches are not easy to compare since the KNN approach has a smaller set of target
classes and is only based on data from one machine.

To get more reliable reference data, a tagging step should be implemented on the
machine while driving. This can be realized as a tagging application for some trips where
drivers can indicate which work steps they are doing. This effort is only needed to test the
classifier and correct it if the classification results are too defective to get good processing
results. With this step, the machine learning approach should improve the results and
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avoids the classification step done by experts using a GIS software.

3.5.4 Post Classification

The objective of the classification algorithm is the generation of trajectory segments with
continuous modes. Due to the classification of individual measurements, suddenly changed
labels within longer series of equal working mode are not realistic and should be considered
as outliers. Especially the beginning of trajectories is tracked by this wrong classifications
as values for speed etc. are not computable due to missing predecessors. Therefore, a post
processing filter technique is needed to filter these outliers and bring them to a suitable
value. In the classification of raster data sets this technique is denoted by sieve [Exelis
VIS, 2015].

Listing 3.1: Filtering separate classified machine data by 3-window filter to eliminate
outliers

SELECT m . m_id ,
CASE

WHEN Lead ( mea . mea_predict_r_rf_200_sep_machines )
OVER (

ORDER BY m . ma_id , m . date ) =
Lag ( mea . mea_predict_r_rf_200_sep_machines )

OVER (
ORDER BY m . ma_id , m . date )

AND Lag ( mea . mea_predict_r_rf_200_sep_machines )
OVER (

ORDER BY m . ma_id , m . date ) <>
mea . mea_predict_r_rf_200_sep_machines THEN

Lag ( mea . mea_predict_r_rf_200_sep_machines )
OVER (

ORDER BY m . ma_id , m . date )
ELSE mea . mea_predict_r_rf_200_sep_machines

END

INTO mea_predict_r_rf_200_sep_machines_filtered

FROM measurements_ext_attr mea ,
measurements m

WHERE m . m_id = mea . measurementtype_m_id
AND mea . generic_attributes IS NOT NULL

Listing 3.1 shows the SQL-statement for filtering the classified measurements. A win-
dow size of three measurements is used for data filtering and correcting the current value
with the surrounding two values if the successor and predecessor are equal and the current
value is not equal to one of them. This eliminates outliers that otherwise have a negative
effect on following trajectory segmentation (e.g. unrealistic interruptions).
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Figure 3.34: Classified measurements before and after sieve filtering

The filtering prevents a fragmentation resulting from outliers and brings the advantage
of continuously connected track segments (filtering eliminates single outliers) and data
problems that will be produced by trying to generate line strings from single points in the
following step.

3.5.5 Track Segmentation

The measurements are classified by using the previously explained classification algorithm.
In a following step, the measurements are then grouped by machine and ordered by times-
tamp. This order generates a list with succeeding measurements of each machine. From
this list, a set of tracks is generated by splitting the succeeding measurements on positions
where a predefined time threshold is exceeded. This list is then separated in Tracks which
represents a continuous trajectory without big time gaps (the split criteria is a gap of more
than 31 s which means, that for a tracking frequency of 1/15 Hz a new track will be started
when two chronological following measurements are missing). This processing is done by
the TrackExtractor. The next processing step is done by the TrackSegmenter where each
Track is split in equal classified runs of measurements. Each measurement in this list is
then checked in order and from each run of equally labeled measurements a new track seg-
ment is generated. The architecture of the track generation and track segmentation allows
the segmentation of tracks in multiple ways. Hence a Track -object consists of at least a
complete list of measurements representing the whole track (the original, not classified)
and (if classified) of TrackSegments of one or more classifications. Figure 3.35 shows two
sample Tracks and the corresponding classified TrackSegments.

3.6 Estimating Main Working Direction

The main working direction of an agricultural field is the average direction of the field,
usually the azimuth angle of its longer side. This parameter is mainly used for the GIS
analysis of tillage (farmers in the European Union are legally obligated to organize their
field work in an erosion debilitating way). This commitment was made in context of the
Common Agricultural Policy (CAP) of the European Union in terms of the Cross Com-
pliance direction [Council of European Union, 2009] and conversed into national laws.
Also, for generating infield route graphs, this parameter is beneficial for computation of
practically feasible and realistic in-field directions (cf. 6.1.4). In Bochtis et al. [2010] the
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Figure 3.35: Sample tracks and their track segments

main working direction is also an important parameter to compute a harvesting strategy
for machines on agricultural fields. In this section an algorithm for calculating the main
working direction on the driven trajectories on field is presented. This differs from the
method of computing the main working direction from a given field boundary. The advan-
tage is that with the trajectory data we have the knowledge of the driving processes on
the field and can therefore compute a main working direction that represents the direction
that is physically driven. Especially for operations that rely on existing machine tracks,
this strategy is a benefit compared to methods that do not consider driven trajectories.

3.6.1 Statistical Calculation of the Main Working Direction

The main working direction is estimated with three methods:

1. Average

avg(x) = 1
n

∑n
i=1 xi

2. Median

median(x) =

{

xn+1
2

n odd

1
2(xn

2
+ xn

2
+1) n even

3. Histogram peak - Modus

maxHist() = max(mi)

with n =
∑k

i=1mi (n=#observations, k=#bins, mi=#measurements in i-th bin)
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with k = max(x)−min(x)
h

and h=width(bin)

(a) Rectangular Boundary

(b) Complicated Boundary

Figure 3.36: Main Working Direction (red arrow) for rectangular fields and for fields with
a more complex boundary

For each method, the measurement points that are used to calculate the field boundary
are used as input data. The azimuth data is then normalized to [0;180] to get one value
for the direction (instead of forward and backward run). The average is calculated for the
set of azimuth values of the measurements. In a second method the median is calculated
for this set of measurements also using the compressed range [0;180]. The third method, a
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further approach using the histogram for azimuth values is implemented. The histogram
is computed defining a resolution of 1◦ in a range [0◦−180◦]. Using a window function, the
global maximum is calculated. For efficient working processes, the fields are commonly
oriented in a way, that allows long, parallel lanes. The global maximum is therefore a
more reliable estimation for the main working direction as the result is mainly influenced
by these multiple long parallel trajectories within the field (figure 3.36(a)). This approach
will also return a plausible value for complex field geometries with exceptional headland
zones (figure 3.36(b), at least for one part of the field. Due to the fact that these fields are
not the standard and usually farmers tried to organize the fields in rectangular boundaries
this approach fits on the requirements for following processes and gives a reasonable value
for a main working direction. However, to calculate more reliable values for these more
complex fields, their geometries have to be split into sub-fields and the modus has to be
calculated for each sub-field. As these fields are only exceptional cases, the focus lies on
usual field boundaries where this approach fits well. A further advantage of this approach
is the filtering of the primary peak disregarding smaller peaks or accumulations of values
in a broad section that can have large influences on the median and average values. For
the main working direction only one value is needed and this has to be the one with the
most counts.

3.7 Discussion

The methods that are used in this chapter surely have impacts on further processing steps.
A discussion on these possible impacts is therefore essential. The presented map matching
approach is feasible and fits the requirements on matching the used telemetry data. To
avoid wrong classifications (e.g. parallel track to arterial road) a more sophisticated ap-
proach like a Hidden Markov Model based map matching and the integration of semantics
could produce better matching results and thus improve the further processing. How-
ever this would increase the complexity and the computation time. The applied approach
therefore is an agreement on complexity and computational effort.

The extended attribute calculation uses different formulae to calculate the movement
attributes. These methods are highly influenced by the quality of the GPS signal and the
resulting positional accuracy. Also the timestamps and rounding errors have an influence
on the computation of the extended attributes. Computing the spatiotemporal neighbor-
hood is very time consuming and this method should be improved by using more efficient
index structures to get faster results for big data sets. However, the presented methods
are usable and working with the test data set in a productive manner.

Calculating the bearing change could be improved using denser measurements. Es-
pecially for curvature calculations in headland areas the time increments of 15 s are not
feasible for curvature detection. Integrating denser measurements will cause an adaption
of the window size to recognize turning sequences in headland area.

The classification of measurements is an inevitable pre-processing step required for
further data processing. The results of the different classifications show small improve-
ments separating the data by machine type or doing the classification for each machine
individually. The individual processing increases the costs due to the requirement of col-
lecting individual training data. The calculation of different spatiotemporal attributes are
important but it is assumed that the number and granularity of these factors depends on
the region and the structure of road network and the size and geometry of the agricultural
fields. The learning approaches obtain good results that fulfill the requirements for further
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processing. It is also shown that the calculation of attributes is based only on movement
data and its derived values. The proprietary measurement values that are quite hetero-
geneous (machine types, sensors, manufacturers), erroneous naming and not standardized
sensor measurements constrained the usage of this data.

During the research on measurement classification and attribute calculation several
beneficial side results have been generated. Especially the estimation of a main working
direction will be an important attribute that can be estimated from vehicle trajectories
and will improve the later calculation of infield routing graphs. The handling of complex
field structures containing inner field structures with appropriate, different main working
directions could achieve further improvements. Due to the fact, that these complicated
field structures are exceptional cases, the handling of these cases have to be investigated
in a separate work.



Chapter 4

Generation of Road Network using

agricultural Telemetry Data -

Geometric refinement

The first step to generate road data is the generation of an initial geometry and the con-
struction of a graph structure which enables the data for routing. Especially for rural
areas where digital road data is not permanently maintained and countries with many
white spots on their digital map, the initial automatic generation of geometries is an im-
portant step to a more complete digital road network. In areas where this data already
exist, a refinement can be useful, since road structure and data is continuously changing.
This chapter provides an overview on the state of the art of road network generation and
refinement algorithms and their usability for extracting a rural road network from move-
ment data of agricultural vehicles. A subset of different methods will then be parametrized
and the different characteristics of the algorithms using the agricultural telemetry data
will be shown. Road geometries and network topology will then be the basis for further
attribute refinement (e.g. road surface, road type, number of lanes, street names, . . . ).
This work is not part of this thesis but it should be pointed out that further investigations
have been made in Lauer et al. [2013, 2011].

4.1 State of the Art

At the beginning, this task has been strictly in the hand of land surveyors, usually govern-
mental institutions that are mainly responsible for official maps and thereby road data.
The majority of early approaches based on detecting linestring features in remote sensing
images. Fischler et al. [1981] were one of the first that developed an approach for delineat-
ing roads and ”line-like” features in low-resolution aerial imagery using raster algorithms.
Recent research approaches like Predoehl et al. [2013] used a statistical model to infer
recreational trails from aerial images. Further approaches that used orthophotos were
Fortier et al. [2014] and Hu et al. [2007]. The main problem with these approaches lies in
the unavailability of local information. Especially roads in forest areas are covered with
canopies what makes it impossible to detect them in aerial imagery.

With the availability of accurate position data from GPS, researchers started using
GPS measurements and trajectories to generate and update maps. Rogers et al. [1999]
from the former Daimler Chrysler Research and Technology Center presented one of the
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early approaches that mined trajectories of DGPS equipped cars to augment road models.
In their work, they collected 44 position traces along a 15 km section on a Californian
Interstate Highway. The frequency of collected positions was 2 Hz, which means a very
high spatial density for common car velocities. This work also reveals the accuracy of
the used NavTech, Inc. road data set by comparing the road center lines and a resulting
average position error of about 7 m. Their averaging method calculates nearest points on
driven trajectory for each point in origin road feature (which base points are set every
10 m, partly interpolated to get a more dense structure). The resulting new map point p
is the average of the origin map point m and the trajectory point n weighted by mσ and
nσ.

Morris [2002] combined aerial imagery with GPS data to derive roads from aerial
imagery and correct the data using GPS tracks. Another work of Morris et al. [2004]
is focused on recreational trails for hiking and cycling in off-road terrain, where off-road
means small paths and single trails that are preferably used by hikers and bikers. They
collect data coming from common GPS loggers that exports GPX format and build a graph
by intersecting the tracks to a plain graph. To prune the numbers of trails for one path
they processed the graph with three graph reduction algorithms: Parallel reduction, serial
reduction and face reduction. Their reduction heuristic is organized as a loop with a face
reduction surrounded by a combination of one parallel and one serial reduction process.
This loop will determine if no more reduction process is possible. The result is a plain
graph representing all used paths. As reductions are parametrized by distance thresholds,
optimized thresholds for input data are essentially for a successful processing and a reliable
result. The algorithms that have been used in Morris et al. [2004] are implemented in the
proprietary Topofusion software.

Edelkamp and Schrödl [2003] originally described a k-means based approach for navi-
gable road map generation from GPS traces. Schroedl et al. [2004] presented a workflow
for map refinement based on GPS traces. They gave a list of possible applications for im-
proved and more detailed digital maps like adaptive cruise control, lane departure warning,
lane-level navigation and dynamic lane closure warning. Most of these applications are
available nowadays in transport vehicles, luxury class and medium-class vehicles by using
real time environment detection by vehicle sensors, lesser high accurate digital map as
these maps are not available in the required quality. The main contributions of their ar-
ticle consists of three parts: (1) a spatial clustering algorithm that infers the connectivity
structure of a map from scratch to avoid the requirement of an initial input map, (2) a lane
clustering algorithm to handle lane splits and merges and (3) an algorithm to inferring
detailed intersection models of roads. They split the so called traces (trajectory generated
by motion of a single vehicle) into subsection that correspond to road segments (graph
edges as a connection from node to node). Further, they consider the intersections not as
points (as it is common for most commercial maps), but as a structured region for a more
proper modelling (e.g. to represent turn restrictions). As data Schroedl et al. [2004] used
collected DGPS traces which are optionally aggregated with wheel speeds, accelerometers
etc. using a Kalman filter [Kalman, 1960] as described in Harvey [1990] for smoothing.
After preprocessing the measurements (smoothing and filtering noise) they partitioned the
traces into segments by matching them to a base map. Using spline fitting, a reference
line as approximation for all measured points of this segment and as reference line for
lanes is calculated. The splines are defined by a variable number of control points which
is determined by the second derivative of the spline at constant intervals. The average of
these values is defined as the curvature error. The aim is to find a good trade-off between



4.1. State of the Art 51

best fit and good curvature that represents a typical road geometry. The number of lanes
is identified by the perpendicular offsets of sample points from the calculated centerline.
In the last step, the intersection geometry and the lane transitions between adjacent seg-
ment boundaries are refined. For this, they calculate attraction forces of each endpoint in
the intersection region which is defined by the concept of snake [Kass et al., 1988]. This
approach is a refinement of the Edelkamp and Schrödl [2003] publication with the addi-
tional focus on refinement the finding and placement of road intersections and modelling
individual lanes and the transitions between them. Furthermore, they used a spine-fitting
technique to compute the geometry of the final turn-lane for an intersection. Brüntrup
et al. [2005] provide a generic approach for map generation, which is especially handling
unknown terrains. They filtered and partitioned the GPS traces input data. Afterwards,
they applied a graph based clustering algorithm and updated the graph incrementally. By
following the newly added track they determine at each node if it belongs to an existing
edge (using a distance within search for each vertex). If the new trace and the existing one
are similar (matching the configured thresholds), the new track is matched. If the current
vertex of the new trajectory does not fulfill the matching criteria, the new track is split
and connected to the graph on the latest matching vertex. Additionally, the graph edges
are added with travel time information. To allow parallel processing, the input data is
divided into tiles. After processing the graph is stored within a database and extractions
of the database is the basis for a routing software. Their experiment consists of 107 traces
which represents a set of 3,075 km recorded roads within a time of 40 hrs.

Roth [2008] developed a two step algorithm: In the first step track parts that represents
the same paths are identified, the second step fuses identifiable parts to a single path
considering the Gaussian distribution of the GPS measurements. He used a data set
of 200,000 measurements in South-East Germany (region of Nuremberg) that represents
approximately 6,000 km driving distance.

Cao and Krumm [2009] used a particle physics approach that describes attraction forces
of each track point to its neighbours and spring forces to its origin position. Afterwards,
they created a graph structure. For this, they selected points for linear pairing and build
a topology which is feasible for routing purposes. As their figures visually demonstrate,
the algorithms work well with the example data set of 20 million GPS points from campus
shuttles and the results are quite promising.

A completely different approach is followed by Zhang et al. [2010]. With a skeleton
operator they computed a road network using land parcel geometries. Their algorithm
is divided into three parts: shape composition, skeleton approximation and topology de-
composition. This is, compared to the other ones, an indirect approach where the road
network is derived assuming its characteristic geometric structure. Compared to the anal-
ysis of GPS traces, this approach lacks missing real movement data. It also needs a regular
updated cadastral data set which can be expensive and is usually not available at every
place. Their test area is the city of Barcelona which represents a city with a typical old
European town core. The newer parts are organized in rectangular block systems. Their
straight skeleton algorithm method fits well for the rectangular road network of the newer
parts. The errors are mainly located at the fine granular curvy structured part of the old
town. As they have not given any information about their used ground truth data set or
the source data, this approach is not comparable with the others. However, it outlines a
different method to get road networks from geographical data sets.

Chazal et al. [2011] presented a trajectory smoothing approach using average window
filtering of GPS tracks. Their focus lies on smoothing the GPS trajectories and their results
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are comparable with the clarification step of Cao and Krumm [2009] or the principal curve
of Hastie and Stuetzle [1989]. However, the generation of a topological road network is
not part of their publication. Since the noisiness of GPS data is a problem of most of the
graph generation algorithms, they give one more possible method to get a more clear data
set. Compared to the approach of Cao and Krumm [2009], their more simple approach
works for left-hand and right-hand drive systems but therefore they are not able to detect
opposite lanes of a road. A positive side effect is, that their generated road center line will
be more clear in case of simple (not lane related) map data generation.

Ahmed and Wenk [2012] present an approach based on partial matching of trajectories
to the graph. They used minimum link path for complexity reduction of the reconstructed
graph. As one of few they also give quality guarantees and show experiments based on
synthetic and real data. The matching task in this work is solved by a new variant of
partial Fréchet distance.

With the CrowdAtlas project, Wang et al. [2013] built up a whole framework which
updates existing map data. They identified the lack of manual created digital road maps
and combined latest established algorithms to the CrowdAtlas framework. The client part
records GPS traces of users. These traces are collected by a server software which starts
the map updating process. The collected GPS traces are matched by using the improved
offline Viterbi map matching of Wei et al. [2012]. After a sufficient number of matched
traces the map inference algorithm automaticaly updates the map. This is the recent and
most complete framework that is integrating map generation in a appliable software. This
work is basically comparable with the workflow that is implemented within this thesis.

A more recent approach in the domain of pedestrian routing is the publication of
Kasemsuppakorn and Karimi [2013]. They took self tracked pedestrian GPS trajectories
and GPS data from OpenStreetMap. With a three step processing (preprocessing, signifi-
cant point filtering, pedestrian network construction), a navigable network for pedestrians
was constructed.

Their work is distinct different from other approaches as they detect road intersections
by spatial analysis of conflict points and determines the circle boundary as well as the traffic
rules within the intersection region. They generate a simplified routable road network
based on road intersections and one- or two-way streets without the need to refer to
existing road networks. They used methods from Cao and Krumm [2009] and integrated
them into a workflow. The aims of this work are partly the same like Wang et al. [2013] but
this work does not show a complete framework hence it is more focused on the algorithm
development to distinguish different parts of a road (intersection vs. road segment).

Table 4.1: Algorithms categories (source: Ahmed et al. [2014])

Algorithm
Point Incremental Intersection

Clustering Track Insertion Linking

Ahmed and Wenk [2012] X

Biagioni and Eriksson [2012] X

Cao and Krumm [2009] X

Davies et al. [2006] X

Edelkamp and Schrödl [2003] X

Ge et al. [2011] X

Karagiorgou and Pfoser [2012] X

Some of these approaches are classified and evaluated in the works of Ahmed et al.
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[2014] and Biagioni and Eriksson [2012]. Biagioni and Eriksson [2012] implemented a
subset of algorithms, described their characteristics and identified remaining challenges.
They classified the algorithms by a set of criteria. Ahmed et al. [2014] took further
approaches in their review and identified three algorithm categories: Point clustering,
incremental track insertion and intersection linking cf. table 4.1. In this work, the table of
Biagioni and Eriksson [2012] is extended with further and recently published approaches
to give an updated state-of-the-art for road generation from geographic data (especially
from track logs).

None of the existing approaches use data from agricultural vehicles. Most of the
approaches are using data from cars or transport vehicles on public road network. Some
of them use pedestrian data or bicycle trajectories. Therefore, the road network data
is limited to the roads that are driven by the investigated moving objects. Hence, road
data in rural areas is very sparse, especially on non public roads that are used mainly by
agricultural vehicles and updating processes are very expensive. These specific data have
to be investigated and methods have to be improved to close this gap.

4.2 Road generation Algorithms in Detail

Many of the algorithms in table 4.2 base on density computations that are realized through
rasterizing the data. For higher resolutions, this technique allows only small coverages.
Due to the fact, that most of the example data used in these publications have a small
bounding box, the application of the algorithms is possible. Enlarging the regions raises
the memory consumption tremendously and the algorithms therefore do not scale. The
agricultural telemetry data is mainly collected in rural areas. The bounding box of the
regions is quite huge and the data density is more heterogeneous. This fact will not allow
or extremely limit the application of raster based algorithms on the data. Parallelization
approaches could be a solution to solve the requirement of large hardware resources. A
spatial parallelization needs the handling of spatial boundaries to guarantee topological
correctness. Vector oriented approaches are more flexible and scale with the area size.

In this chapter, the chosen algorithms which are used for road geometry calculation
are described in detail. The Algorithms have four different views on trajectories: Cluster
based (k-means), trace merge based, graph based and distance based (Fréchet distance).

4.2.1 Edelkamp and Schroedl - cluster based

Edelkamp and Schroedl presented an early approach for map refinement and initial map
generation based on clustering trajectories. They made use of the Bentley-Ottmann algo-
rithm [Bentley and Ottmann, 1979], a sweep-line algorithm, to calculate the intersection
points of the GPS trajectories. The result of the algorithm is a planar graph. The origi-
nal algorithm, which is used in computational geometry for calculating undirected graphs
has been extended to produce a directed graph structure. The edge direction has been
determined by using the timestamps of the GPS trajectory points. For the following map
generation process, they proposed two alternatives:

1. The refinement of an existing map, which limits the approach to a refinement of
existing road structure and depends on the accuracy of the used base map.

2. The initial creation of a map, which allows to detect new roads. This approach limits
the road creation to the geometry and the direction while the usage of an existing
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Table 4.2: Algorithms categories (source: adapted from Biagioni and Eriksson [2012])

Paper Class Data Ground Truth Evaluation Method Features

Edelkamp and Schrödl [2003] k-means 250 synthetically
perturbed traces

Generated from
GPS traces

Lane error vs. amount of
data

Lane finding

Schroedl et al. [2004] k-means 250 synthetically
perturbed traces

Generated from
GPS traces

Lane error vs. amount of
data

Intersection geometry

Morris et al. [2004] Graph reduction GPS hiking traces Airial Images Eyeball vs. ground truth Implemented in
commercial Software
(TopoFusion)

Brüntrup et al. [2005] Graph Clustering 107 traces (3075 km, 40 h)
in Germany

Conventional
map

Eyeball vs. ground truth Parallel processing

Davies et al. [2006] KDE 1 million GPS points UK ordnance
survey

Eyeball vs. ground truth na

Worrall and Nebot [2007] k-means Traces from mining
vehicles

None Compact vs. raw Compact representation

Guo et al. [2007] k-means Synthetic GPS traces None Relative error vs. amount
of data

na

Chen and Cheng [2008] KDE Traces from automobiles Google Earth Eyeball vs. ground truth na

Roth [2008] Probabilistic
Track Fusion

200,000 GPS points,
6,000 km, Nuremberg

None Eyeball Integrating GPS precision

Niehöfer et al. [2009] Trace merge 7 traces Google Maps Eyeball vs. ground truth,
relative error vs. amount
of data

Edge classification

Cao and Krumm [2009] Trace merge 20 million GPS points
from campus shuttles

Bing Maps Eyeball vs. ground truth,
route query vs. Bing
Maps

GPS trace clarification

Shi et al. [2009] KDE Massive amounts of GPS
traces

Google Earth Eyeball vs. ground truth na

Jang et al. [2010] k-means GPS traces Naver maps Eyeball vs. ground truth na

Zhang et al. [2010] Skeleton Land parcel data of
Barcelona

Not specified Spatial Decomposition
Algorithm

na

Agamennoni et al. [2011] k-means 5 days or 15 open mine
vehicle GPS traces

None Eyeball vs. Davies et al.
and Schroedl et al.

Principal road path

Chazal et al. [2011] Moving average Synthetic data, Moscow
data from
OpenStreetMap, 7145
taxicab traces from a
major city

CloudMade maps Fréchet distance and
Eyeball vs. ground truth

na

Ahmed and Wenk [2012] Fréchet Distance Taxi cab data, Berlin None Eyeball and integrated
thresholds

Integrated quality analysis

Wang et al. [2013] Principal curve Beijing taxi data,
4,351,977 samples, 10 s
interval

Google Earth,
OpenStreetMap,
Beidu Map
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map can enrich the derived road segments with further attributes, such as road type
and speed limit.

The implemented approach used for telemetry data is based on the second alternative,
in terms of comparability with the other approaches and the lack of road data in rural
areas. With a preceding filtering step, outliers (e.g. unrealistic positional jumps through
GPS problems) are deleted and traces are resampled to equalize ingoing data (high and
low sampled trajectories). The next step is the road segment clustering which consists of
three parts.

1. The cluster seed location identifies sample points of different traces that belong to
the same road. Whenever a new trajectory should be added to the set of trajectories,
two values for the already clustered trajectories (the averages) and the incoming new
trajectory segments will be calculated: The minimum distance to the next trajectory
and the heading. If the new trajectory is within the given thresholds, the trajectory
will be added to the set and a new mean value for heading position of the cluster
center will be calculated. This iterative process is similar to the k -means algorithm
of Macqueen [1967]. Whenever a new trajectory is added, the cluster center will
change its position and it is checked if the points in the set are still inside the given
thresholds. If they are outside the threshold, they will be deleted from the set.
This process continues until no more points can be added. The initial cluster seeds
are generated repeatedly until each trace point has at least one seed within a given
distance threshold. To not miss any intersection, this threshold is suggested to be
e.g. 50 m. With a simple greedy strategy each trace will be followed and new cluster
seeds will be placed at regular intervals if needed (cf. figure 4.1).

Figure 4.1: Example of traces with cluster seeds (source: Edelkamp and Schrödl [2003])

2. The following segment merging step merges the cluster centers that belong to the
same street. The cluster centers will belong to the same road if cluster centers C1

and C2 fulfill following assumptions: 1) C1 precedes C2 (which implicates that all
traces that belong to C1 will pass C2) and 2) all traces belonging to C2 originate
from C1. If and only if these two criteria are complied, the clusters are merged to a
segment. The beginning C1 and and cluster Cn are named as the boundary clusters
of the segment (see figure 4.2).

3. In the last step, the segment intersection identification, road intersections are iden-
tified by a snake method (borrowed by image processing). The snake model is a
contour model which fits a set of (noisy) sample points. Edelkamp and Schroedl
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Figure 4.2: Merged cluster segments (thick black lines) (source: Edelkamp and Schrödl
[2003])

uses a simple star shape approach to fit the intersection. An example is given in
figure 4.3 where the dotted lines represent the intersection.

Figure 4.3: Traces, segments, and intersection contour model (dotted) (source: Edelkamp
and Schrödl [2003])

The previous steps identified similar trajectories representing a road and show the
calculation of intersections. In a last step, Edelkamp and Schroedel refine the individual
segments using a spline based approach to generate a proper road centerline. For more
details on their used spline fitting, it will be referred to their publication where they
describe the derivation of spline parameters and give error assumptions for their different
models. Since the agricultural telemetry data is mainly collected in rural areas where roads
consists of usually equal less than two lanes (one for each direction), the lane derivation
will be excluded in this work.

4.2.2 Cao and Krumm - trace merging

The approach of Cao and Krumm [2009] mainly consists of two parts. The first part is
the clarification step for the usually noisy GPS points. The second part is the building of
the graph.

Clarification

The first step is the clarification step. Since GPS measurements have a positional error and
the resulting trajectories therefore represent the “real”, driven trajectory with a variance,
it needs a processing step that clarifies the measurements. Cao and Krumm [2009] use
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the model of particles where they calculate two kind of forces between the measurement
points. One is the attraction force: Measurements of neighbor trajectories attract the
current handled measurement point. The opposite is the spring force: Each measurement
has the endeavor to rest on its current position. The spring force pulls the measurement
back in direction of this position. Figure 4.4 shows the two forces and how they are
calculated. The new position is then calculated as a translation where these forces are
balanced. This is done for all measurement points of all trajectories. Since the new
positions generates new attraction forces (due to the changed neighborhood), this process
is done for multiple iterations.

Figure 4.4: Forces on measurement points (source: Cao and Krumm [2009])

Graph Generation

The previously clarified point set is the base for the graph generation. Their graph gen-
eration algorithm works incrementally (track by track). For each new track in the list,
all belonging nodes are ordered by time stamp. In the next step, a decision will be made
for each node whether it has to be added to the existing graph or not. The node will be
merged to the graph if it exceed a difference threshold (Figure 4.5).

Figure 4.5: Graph generation algorithm (source: Cao and Krumm [2009]) - (a) The input,
in terms of 3 trips. (b) The graph G after processing trip 1. (c) The graph G after
processing trip 2. (d) The graph G after processing trip 3
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This algorithm depends on the sorting of the ingoing track list. Changes within the
resulting graph will be marginally, if the preceding clarification step returns a clear set of
close line strings and the shape points of each line string are within a small distance to
the neighbor trajectory. The first requirement can be fulfilled with a good clarification
processing. The second condition depends on the input data. In case of the used telemetry
data, the shape points are distributed randomly. Therefore, the first chosen trajectory
has a large influence on curve representation. If the crest is not represented by a shape
point, the curve will be generalized and the curve radius will be flattened. To reduce
this, a possible pre-processing step could be interpolation of the sparse sampled ingoing
trajectory shape points to increase the spatial density. This will increase the geometric
road fitting with the payment of longer computation time. In the presented analysis, the
original algorithm without this possible extension is shown.

4.2.3 Morris et al. - Graph Reduction

Morris et al. [2004] used a graph based geometric approach. The theory builds on the
fact that due to GPS inaccuracy and different driving maneuvers the recorded trajectories
of a street will intersect each other. The method makes use of this fact to generate a
graph structure. To generate this topology, this first intersection step is realized by a
sweep line approach which identifies the intersection nodes for all trajectories. In the
following step, the meshes have to be identified and a planar graph is generated from the
intersected trajectories. Figure 4.6 shows the processing steps from GPS trajectories via
graph generation through intersecting trajectories to the final reduced graph.

(a) Trajectories (b) Graph with nodes

(c) Final graph

Figure 4.6: Graph reduction - from trajectories to final graph (Datasource basemap:
c©OpenStreetMap contributors)

After this first computation, a set of graph reduction algorithms is used to shrink the
faces which should finally result in a single edge for one street. Morris et al. provide three
kinds of reduction algorithms that are explained in detail in the following sub sections.
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Parallel reduction

Parallel reduction requires two parallel edges that are connected with the same nodes at
their ends (figure 4.7). The parallelism is measured by calculating the Hausdorff distance
[Alt and Guibas, 1999] of the two edges. Only if the calculated Hausdorff distance is lower
than a given threshold (in their publication the threshold is chosen between 20 and 60 m,
depending on the data quality), the two edges will be reduced to one. It is evident that
a smaller threshold (less than GPS accuracy) will not reduce segments that are obviously
representing the same street. A threshold which is larger than the minimum distance
between two parallel streets will unintentionally result in merging two roads into one. The
threshold is therefore depending on the road structure and on the positional accuracy of
the measured trajectory points. If two parallel edges are identified, the reduction process
starts.

Given:
Edge A with start node astart and end node aend
Edge B with start node bstart and end nodebend

Condition: A and B are parallel if the two conditions are fulfilled

1) (astart = bstart) ∧ (aend = bend) ∨ (astart = bend) ∧ (aend = bstart)

2) H(A,B) < rThresh with H(A,B) = maxh(A,B), h(B,A)

h(A,B) = max
a∈A

{

min
b∈B

{d(a, b)}

}

In: LineString A, LineString B d(ai, bi) := orthographic projection of ai on (bi, bi+1)

Reduction step:
The polyline for the single edge used to replace the parallel edges is determined as follows:
Let the two parallel polylines being reduced be polylines A and B. Assume polyline A
contains more points than polyline B (if this is not the case, reverse them) and let m be
the number of points in A. The closest point in polyline B to each point in A is found.
This produces m pairs of points, where points in B can appear more than once, while
points in A appear only once. The geometric average of each of these pairs is computed
and assembled into the resulting polyline. This polyline represents the average of A and
B and has as much information as possible (since there are more points in A). Since A
and B always share exactly two points in common, the average polyline will also share
these same two points. Figure 4.7 gives an example of a parallel reduction. The resulting
averaged polyline will then connect the two common nodes.

b

b
b

b

b
b

b
b

b

b

bpolyline A

polyline B

Figure 4.7: Parallel reduction (changed after source: Morris et al. [2004])
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Face reduction

The face reduction is a more general case of parallel reduction. In a first step, the two
most far-out points with a degree of four (two ingoing and two outgoing edges) of the face
will divide it in two parts. These parallel parts get reduced using the parallel reduction
algorithm. Previously connected edges will be connected to the resulting edges by linking
the shifted vertices to the averaged line with the outgoing edges. Figure 4.8 shows the
identified crossings, shape points (black) and nodes a (left) and b (right) which are the far
most points of the face.

b b
b

b
b

b

b b
b

b

b

b

b

b bb
a b

Figure 4.8: Face reduction (changed after source: Morris et al. [2004])

Serial reduction

Serial reduction deletes vertices in between nodes that are connected only with two edges.
The method concatenates the edges and integrates the connecting vertex in the geometry
as a shape point (figure 4.9). The algorithm re-establishes the condition of vertices only
at trail intersection. Therefore, this algorithm will prune the graph and the result would
be better structured road data.

b b

b

b

b

b b

nodes changed to shape points by ”serial reduction”

b b

b

b

b

b b

b b

Figure 4.9: Serial reduction - converting nodes to shape points

The workflow

Morris et al. [2004] used above three types of graph reduction algorithms to reduce the
starting graph to a feasible road network data set. They pointed out, that the order, in
that the three types of algorithms are used has no effect on the workflow performance.



4.2. Road generation Algorithms in Detail 61

Further the order can have a theoretically influence on the result. Hence the synthetic
examples where this would be the case, do not exist in real data set, the order will not
have an appreciable effect on the result.

4.2.4 Ahmed and Wenk - Network generation using Fréchet distance

The incremental approach of Ahmed and Wenk [2012] uses partial matching of new tra-
jectories to an existing graph. Starting without a graph takes the first trajectories as
initial state and grows a street network from these. This partial matching is done by a
new variant of partial Fréchet distance [Buchin et al., 2009].

Ahmed and Wenk modelled the road network as an embedded, undirected graph.
With an initial base they define a precision parameter ε > 0 which gives a error bound
for the positional error of each trajectory. The trajectories are modelled as piecewise
linear curves (which is a common way for modelling trajectories). The similarity of two
curves is measured by the Fréchet distance [Alt and Godau, 1995]. For two planar curves
f, g : [0, 1] → R

2, the Fréchet distance δf is defined as:

δF (f, g) = inf
α,β:[0,1]→[0,1]

max
t∈[0,1]

‖f(α(t) − g(β(t))‖ (4.1)

where α, β range over continuous and non-decreasing reparametrizations, and ‖ · ‖
denotes the Euclidean norm. The well-separability of streets is defined by Chen et al.
[2010]:
Definition:
A point p on G is α-good if B(p, αε) ∩ G is a 1 − ball that intersects the boundary of
B(p, αε) in two points. A point p is α-bad if it is not α-good. A curve β is α-good if all
points on β are α-good.

To identify clusters of similar sub-curves, the concept of free space and free space
surface is used. The matched parts of the newly added trajectory will get rejected. The
parts of the added trajectory that do not match the existing graph will be added. This
step could effort the placement of new shape points and the splitting of existing edges. It
is also the only part of the algorithm that changes the existing graph geometry which is
derived from the trajectory geometries. Figure 4.10 shows the trajectory merging process
for one increment.

The setting of ε, which is mainly depending on GPS data and road network structure,
is the only variable in this algorithm. Therefore a good ε is one that is small enough to
keep on the existing roads and large enough to avoid connected road fragments.

Compared to other algorithms, this approach is not moving the existing shape points.
The algorithm also is not calculating average positions from the trajectories. From the
first trajectory as origin, the algorithm has to make a decision for each of the following
trajectories that is added to the graph what shape points will extend the graph and which
already exist in the graph. This is one of the main differences comparing the output of the
applied algorithms. Another limiting factor is the resulting graph which consist only edges
with two geometric points. The cleaning algorithm, mentioned in Ahmed et al. [2014], is
not implemented because it has no influence on the resulting geometry and will only have
effect on the graph complexity. This is also the reason why Ahmed et al. [2014] excluded
this last step from their processing workflow.
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Figure 4.10: Graph merging - integration of a new trajectory (sketches modified from
presentation of Ahmed and Wenk [2012])

4.3 Application on Agricultural Telemetry Data

To run the presented algorithms on agricultural telemetry data, several data processing
steps have to be performed. Based on the general preprocessing steps presented in chapter
3, the data has to be brought into the right format to feed the presented algorithms. The
algorithm of Morris et al. [2004] consumes the trajectory data which has to be exported in
GPX format. The other algorithms consumes trips from ASCII-files where each trip has
to be stored in a separate file. The Ahmed and Wenk [2012] algorithm additionally needs
a metric, projected coordinate system to calculate the correct distances and intersections.
Therefore the existing geographic lat/lon coordinates have to be transformed into a pro-
jected Cartesian coordinate system. The parametrization is set by the default parameters,
if provided, or by visual checks on the results. The following subchapters will give more
details on parametrization of each applied algorithm. Besides the requirements set by the
telemetry data and its domain and region specific characteristic will be discussed.

4.3.1 Edelkamp and Schroedl

The algorithm of Edelkamp and Schroedl [Schroedl et al., 2004] needs a set of parameters
which are given by default in their publication.

1. The cluster seed interval (for the initial setting of cluster seeds)

2. The bearing difference limit

3. The intra-cluster distance limit

For the agricultural telemetry data the parameters are chosen from the given empirical
determined intervals from Edelkamp and Schroedl as follows:

1. The cluster seed interval is set to 50 m

2. The bearing difference limit is set to 45◦

3. The intra cluster distance limit is set to 20 m
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4.3.2 Morris et al.

The graph reduction algorithms are parametrized in two ways:

1. rThresh - The threshold value for application of reduction for two parallel edges.
This threshold is the limit for to the Hausdorff distance H(A,B) between edges A
and B.

2. cThresh - Defines the length of a spur to be a salient trail.

The sequence of the algorithm application (parallel reduction, face reduction and serial
reduction) has no greater impact on the result set as described in Morris et al. [2004].

For the agricultural telemetry data, these parameters are set for two runs:

1. rThresh = 110, cThresh = 60

2. rThresh = 150, cThresh = 100

These values are chosen higher than typical values given in Morris et al. [2004]. This
is mainly due to the larger segments of the trajectories (shape points have a temporal
distance of 15 s). The large values for the rThresh will guarantee a melting of nearby
trajectories and the cThresh-value mainly eliminates the not desired appendices.

4.3.3 Ahmed and Wenk

As one of the most recent presented approaches, the algorithm of Ahmend and Wenk
[Ahmed and Wenk, 2012] needs further investigation on parametrization. Although the
parametrization algorithm is only set by one parameter, the ε threshold which defines the
threshold for matching. This parameter depends mainly on two attributes (as already
described in 4.2.4): 1) the quality of the GPS points and 2) the structure of the road
network.

To define a proper ε-value, several test runs with different values for ε were performed.
Results are shown in figure 4.11. Especially in regions where roads are crossing (e.g. Y-
junctions, T-junctions), the influence of a good ε is obvious. While small ε values results
in skeletonized structures due to multiple connections to neighbor road segments, higher
ε values generalize the road network. The latter fact results in pruned junctions where
the central junction node is shifted and in a melting of parallel roads. Melting is typical
for agricultural roads and parallel higher classified public roads that are usually have only
a small distance to each other. In regions where the predominant field structure is small
(where field edges are smaller than the ε threshold) the algorithm will also merge the
enclosing roads.

As a proper value for the given telemetry data, an ε-value of 70, has been visually
identified using the following restrictions:

• the higher ε, the wider the crossing areas

• the smaller ε, the worse the network connectivity

• the smaller ε, the more fragmented and skeletonized the resulting road network
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Figure 4.11: Parametrization of Ahmed and Wenk - Road Construction (a) and b) are the
upper figures, c) and d) the lower ones)

4.3.4 Cao and Krumm

The method of Cao and Krumm, as formerly described, consists of two parts. In a first
step, positions get aligned by a clarification step. This step is parametrized by the attrac-
tion force σ and the spring force constant that gives a value for the force which holds the
point on its old position. The values are set by default as:

• spring force constant D = 0.005

• σattractionforce = 5.0

The algorithm of Cao and Krumm has no termination criteria. A logical termination
criteria is the iteration when spring force and attraction force will be in balance and the
points will not be translated for a longer distance as the set threshold.

It has been observed that the clarification step has limitations in curve structures.
Especially for narrow curves (e.g. hairpin curves), the points tend to merge the curve. For
longer curves, the clarification step tends to straighten the curve. In typical US American
cities with rectangular road networks (e.g. presented samples from Microsoft cars),these
problems will not appear.

The second step performs the graph generation. Although the GPS points are placed in
better positions through the clarification step, the resulting road depends strongly on the
basic trajectory. This is the main disadvantage of the graph generation. Cao and Krumm
made use of the trajectories and how they were driven. On junctions, the outgoing roads
will be connected on the base trajectory. The main issue is the long distance between
the trajectory shape points which cut curves and shorten linkages (cf. figure 4.12). A
previous densification of shape points could improve the curve fitting. To not increase the
computation effort, densification should be made after clarification.
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Figure 4.12: Problems with curve structures and graph generation through low point
density

4.3.5 Comparing methods

Comparing road generation algorithms, different approaches exist. Biagioni and Eriksson
[2012] and Ahmed et al. [2014] compared some of the presented algorithms. Biagioni and
Eriksson [2012] introduced a quantitative, statistical methods for map comparison. In a
first step they put holes in fixed intervals from a starting point on the graph of the reference
map. In the second step, they put marbles also in fixed intervals on the extracted road
network. In the final step, the algorithm then computes the matching between holes and
marbles and an accuracy assessment is the result.

spurious =
spurious marbles

spurious marbles + matched marbles

missing =
empty holes

empty holes + matched holes

With these values they calculated the F-score:

F = 2 ·
precision · recall

precision + recall
= 2 ·

(1 − spurious)(1 −missing)

(1 − spurious) + (1 −missing)

This method works well for their used data set where most of the road are existing in
both sets (generated data and reference map). For the agricultural telemetry data, the
coverage is more heterogeneous. Therefore a visual comparison a useful approach to get
an overview on the quality of the produced graphs.

Visual comparison

Figure 4.13 shows a rectangular road network within a rural area. The raw trajectories in
the upper left picture show a clear road network. The upper horizontal road has a small
curve where set of linestrings are not completely on the road. The crossings, especially
the T-crossing in the upper right, also show the influence of the larger recording interval
and due to this the shortened graph edges. The horizontal road in the lower part of the
trajectory plot is cut before it reaches the T-crossing. This topological problem can be
the cause of classification result or a dead end road which is blocked.
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Figure 4.13: Comparison of Map Generation Algorithms in Baden-Wuerttemberg (exam-
ple: rectangular road network): trajectories, Morris et al. [2004], Ahmed et al. [2014],
Edelkamp and Schrödl [2003] and Cao and Krumm [2009]

The algorithm of Morris et al. (green and red trajectories in the upper middle figure)
gives a good representation of the road network. Both configurations give similar results.
The algorithm clearly computes the crossings and, compared to the aerial imagery, the
graph fits very well to the underlying orthophoto. The cut trajectory segment in the lower
part of the plot has not been snapped to north-south road which represents the situation
in the first image. The curve structure in the upper left corner is well computed and the
outliers have been averaged.

The method of Ahmed and Wenk also returns a clear road network. The curve structure
in the upper left is well formed and the connections of the edges are proper in general.
This algorithm snapped the lower horizontal road to the north-south road which is not
represented in the first picture with the trajectory segments. The extraction of crossings
has shortcuts. This is mainly the cause for the extraction of t-crossings. Due to the fact
that this algorithm is not averaging the trajectories, the shortcuts directly result from the
raw trajectories.

The methods of Edelkamp and Schroedl and from Cao and Krumm are not usable
to extract a clean road network. The Edelkamp and Schroedl method generates a large
family of linestrings for one road. The crossings are also represented through a large set
of linestrings and turns are resulting in parallel edges (cf. the right part of the image).
This algorithm also does not snap the road in the lower part to the north-south road.
Furthermore, the dead end has been shortened through the algorithm.

The Cao and Krumm computation results in a more clear road network. The curve
structure in the upper left corner is better represented than in the Edelkamp approach
which shows the influence of the clarification step. The algorithm is the only one that
produces obvious gaps within the road network. The dead end trajectory in the lower part
is completely cut off. The west-east roads in the right part of the figure have a larger gap
or the road is missed completely. Some of the T-crossings are well computed while others



4.3. Application on Agricultural Telemetry Data 67

have more connections (upper right crossing) or the crossing is placed on the wrong point
(upper left crossing) where the roads divide like open scissors.
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Figure 4.14: Comparison of Map Generation Algorithms in Baden-Wuerttemberg (exam-
ple: crossing roads): trajectories, Morris et al. [2004], Ahmed et al. [2014], Edelkamp and
Schrödl [2003] and Cao and Krumm [2009]

The second set of figures shows an example for a Y-crossing. The data set is located
in a village area where road structure is more curvy and the positions are influenced by
signal reflections on the surrounded buildings. The trajectory segment plot in the upper
left shows a heavy traffic road from west to north east and two connected smaller roads
with less trajectories.

The result of the Morris et al. algorithm represents the Y-crossing well since it fits
nearly on the orthophoto. The large set of trajectories and the therefore multiple averaging
steps result in a more troubled, sawtooth like structure of the middle road segments. The
connections of the belonging smaller roads are well integrated.

The algorithm of Ahmed and Wenk calculates a smooths set of edges. The heavy
traffic road is fitting well at the beginning but from the Y-crossing to the north-west part,
the resulting edges shorten the curve and are placed some meters next to the road in the
aerial image. The T-crossing is therefore moved too far to the north. Beside that, the
crossing is correct and the edges are connected in the right way. The Y-crossing has been
cut through the parametrization of the algorithm. The set threshold connects the smaller
road in an early state to the heavy traffic road. The original Y-crossing is therefore cut
and the Y -geometry is not well computed.

The Edelkamp and Schroedl approach also shows in this part of the map that the
algorithm produces too many resulting edges. While the smaller road coming from the
south-west part is computed visually correct, the other roads are represented through too
many edges and the topology is not correct represented.

The algorithm of Cao and Krumm shows better results in this case. Although the
previously identified issues are also present in this plot (missing roads and shortened
curves), the algorithm computes a clean set of edges. The integrated lane computation



68
Chapter 4. Generation of Road Network using agricultural Telemetry Data

- Geometric refinement

leads to two resulting edges for the heavy traffic road which are not well separated and
crossing each other. The Y-crossing is well extracted and is after the Morris et al. result
the best extraction of this part.

4.3.6 Algorithmic evaluation

The early Edelkamp and Schroedl approach produces the worst results and the extracted
road network is not applicable for rendering. However, a proper route calculation can be
made due to the fact, that the resulting edges are connected and therefore a topology is
given.

The algorithm of Cao and Krumm does not have a break condition in the original
implementation. This has been applied by adding a further condition to the clarification
step, which terminates the clarification if a measurement point is not changing its position
beyond a given threshold. The Cao and Krumm approach is also the most time consuming
algorithm as the clarification step runs several times on the data and each measurement
has to check its nearest neighbors.

The approach of Ahmed and Wenk is well scalable. The runtime is independent from
the spatial extend of the data. As shown in the previous chapter, the algorithm has
problems at road crossings and parallel roads. A break condition is not given. Therefore,
finding algorithmic a good threshold has to be solved to compute good results for different
regions and input data. Ahmed and Wenk provided a first approach for this in their recent
publication [Ahmed et al., 2015].

Morris et al. implemented their approach for calculating hiking trails. In this use case,
the detection of lanes and driving directions is not needed in general. If this information is
needed, further steps should be integrated (e.g. separate calculation for trajectories with
different direction). The generation of dead end roads is sometimes not desired, but the
result of longer, not intersecting end parts of trajectories. With the original algorithm,
these unreal dead end roads can only be removed by setting the threshold for dead end
roads, which can also causes a deletion of probably needed dead ends.

4.4 Summary and future directions

The previous chapters gave an overview on selected approaches for road computation from
movement trajectories. A subset of methods has been run with the agricultural telemetry
data and adjustments for their parameters have been made. The results have then been
visually analyzed and the method and data specific problems have been explained.

The performance of the used methods was fast enough to handle at least meaningful
subsets of the telemetry data. The implementation of Ahmend and Wenk was the most
scalable approach. This was also reasoned by the implementation language and the used
software design. While the Ahmend and Wenk algorithm has been implemented in Java,
the other algorithms are coded in Python (with an in-memory processing) or within a
proprietary software package which sometimes causes memory issues. An algorithmic op-
timization would be helpful and would strongly improve the usability of the algorithms.
Due to the fact that these free available implementations are only used as prototypes for
research, this has to be solved when transferring the algorithms in a productive environ-
ment. Regarding the standard test data that is used for most of the algorithms in their
origin publications, the algorithms have only been tested with fleet data from cars or pub-
lic transport in an urban environment. Additionally, the typical American rectangular
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urban road networks have a strong influence on the results. With the input of agricultural
movement data within a rural German region, the results of the algorithms show potential
for improvements and limits of the individual methods.

Improvements for future directions can be made manifold. Further postprocessing
steps (e.g. smoothening and generalization) can be fast methods to increase the quality of
the resulting road geometries (especially for the Morris et al. method, which sometimes
tends to generate rough geometries for dense data). Due to the fact that agricultural ve-
hicles are equipped with RTK (for precision farming and steering systems), the positional
accuracy for the trajectories will increase in the foreseeable future. The scalability of the
methods with the increasing amount of data will also be very important for the near future.
Approaches for storing the immense amount of trajectory data in new data structures and
distributed computing in combination with divide end conquer strategies will allow the
analysis of large trajectory data sets. Through further input data, e.g. attributes of the
local road network a better parametrization can be made. Approaches for measuring the
straight or curve structure of a road network (cf. “How straight or bendy are the roads?”
1) can help to parametrize the algorithms. Pervasiveness of telemetry systems and usage
of smartphones for documentation and billing will increase the available movement data.
In combination with further initiatives of standardization (e.g. ISOBUS) and growing
companies that combine different data sources for analysis (e.g. 365FarmNet 2), the avail-
able data and its accessibility will vastly increase. The detection of road attributes from
movement data such as curvature, number of lanes, crossings, parallelism, road types and
road surface in addition with the knowledge of the vehicle attributes (e.g. measures and
speeds) can also be useful information for parametrization of the road network extraction.

1http://www.technomancy.org/openstreetmap/bendy-roads/, (Accessed 2016/06/05)
2https://www.365farmnet.com/, (Accessed 2016/06/05)

http://www.technomancy.org/openstreetmap/bendy-roads/
https://www.365farmnet.com/


Chapter 5

Field Boundary Computation

5.1 Introduction and Motivation

The main part of farming takes place on fields. From soil working via seeding, fertilization
and plant protection to harvesting, all of these processes are located on fields. Documen-
tation of these processes and optimization will take a large part of time in agricultural
management. Field specific analytics of harvest mass and application maps need accurate
field boundaries. Resource planning (e.g. fertilizer and seeds) and contractor billing need
exact knowledge of field area and its geometry to plan routes, predict time and provide
transparent bills. One of the exemplary use-cases in this thesis is the farm to field routing.
For this, knowledge of field geometries and gateways to reach the field ground from public
road network is highly relevant. Examples for applications are the exact planning and
guidance of logistic chains, service vehicles and harvesting machinery. The availability
of digitized field geometries depends on the use case. Due to the fact that field survey-
ing and geodata are governmental issues, digital parcel data is almost only available at
governmental surveying offices. Most of the governments e.g members of the European
Union have made their geodata accessible through Inspire [Eu, 2007]. But it is also ob-
vious that the surveyed parcel data is not equal to farmed field area. Not farmed areas
such as wetlands, banks, trees and hedges and further artificial structures such as power
poles or wind generators are not excluded from this area. Another governmental data
source (limited to the states of the European Union) is data from IACS (Integrated Ad-
ministration and Control System) [Council of European Union, 2009]. IACS (in German
InVeKoS - Integriertes Verwaltungs- und Kontrollsystem) is a system for documentation
of agricultural processes to control direct payment support schemes and is also used to
fulfill the requirements under the cross-compliance agreement. Farmers are requested to
digitize their field geometries and send them (with additional information) to the funding
administration (e.g. agriculture or environmental ministry) [Krause, 2006]. These field
boundaries are not constrained to represent the working boundaries (e.g. the harvested
area) of the field. Hence, the digitalization base is an up-to-date orthophoto and other
geodata such as neighbor fields and parcels. This system is only available in the European
Union. Summarized, there is no officially available data set that fulfills the requirements
of field boundaries for billings and routing objectives. Till now, billings are mainly related
to the official parcel size or on area counts of the agricultural machine, which is also not
calibrated, and the influence of overlaps (the area counter calculates the processed area
by multiply the working width with the driven distance by segments). Therefore, the pro-
duction of up-to-date field geometries that represents the harvested or processed area is
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necessary. Another important requirement for routing use case is the availability of transit
points, that allow a routing from road network into fields. At this time, these points do
not exist in any available data set.

In this chapter an approach for automatic generation of field boundaries using agri-
cultural machinery movement data is given. The focus lies on field boundaries for routing
from farm to field and infield. Hence, a further step towards finding the transition points
from road network into field is carried out. It will be shown that generated field boundaries
are also a feasible basis for field record systems, subsidies (e.g. InVeKoS), documentation
and strategy planning for future harvest campaigns. The derived field geometries are also
a base for precision farming tasks.

5.2 Field Boundary Computation

Computing the boundary of an area is part of many application domains. Therefore several
approaches and methods exist. These are mainly related to underlying and available data
and the requirements that processing results have to fulfill. In the next subsection an
overview on domain independent and domain related methodology will be given to specify
the state of the art and research gaps for field boundary computation.

5.2.1 State of the Art

Polygonization of point clouds is a common task in 2D and 3D computer graphics. Hence,
this is the main field of research where solutions for this problems are addressed. Due to
the fact, that field boundary extraction is mainly a geometric algorithm issue (creation of
planes from point clouds or trajectories), methods for computation of polygonal geometry
structures from point clouds are considered within this section.

An overview on computational methods is given by Berger et al. [2014] where they
focused on surface reconstruction from point clouds. They categorized existing algorithms
by methods, point cloud artifacts, input requirements, shape class and the reconstruction
output. In their work, they deal with point clouds acquired through 3D scanners. These
approaches handle one more dimension and the problems have one more dimension in
complexity compared to the 2D field boundary generation. However, these methods are
reducible on two dimensions and need to be considered for field boundary creation in
2D. More general methods are α-shapes by Edelsbrunner et al. [1983] or convex hull
algorithms by Preparata and Hong [1977]. Computing a convex hull is a fast approach
to approximate polygonal structures (far better than bounding boxes) but it will give
only an outer boundary of the point cloud and ignore concave structures. This is only
feasible for rectangular or natural convex field polygons. More complex structures like
α-shapes have a higher computation complexity but they are also able to detect holes
and concave structures. Limits are mainly in handling of outliers that have a strong
impact on the resulting shape, especially at margins. Duckham et al. [2008] developed
the χ-shape approach that uses the Delaunay-triangulation of the input point data. They
reshape the boundary of the Delaunay triangulation and with a threshold parameter l,
they delete the longest triangle edge which represents the boundary of the convex hull.
The generated shape lies then within the convex hull and gives usually a more detailed
polygonal representation of the point set. However, this approach only handles simple
polygons and lacks in the detection of holes. Regarding the agricultural field boundaries,
a final step for approaches like the α-shape or the convex-hull algorithm has to be added.
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The resulting boundary has to be finally enlarged by the working width to get the real field
boundary. A very simple approach is the blow-shrink algorithm which is originated from
raster calculation. Bartelme [1989] explains this algorithm for raster data which originally
targets on the filtering or generalization of e.g. classification errors in raster data sets.

An efficient and accurate computation of field geometries for farmland will make the
digital boundaries available that are needed to improve processes for administration and
field processing. The currently used methods are not able to fulfill these criteria. In
this chapter, the state-of-the-art methods are implemented and parametrized. The α-
shape method and the blow-shrink method are used for a agricultural field-computation
for the first time. It will be shown, that these algorithms will improve the quality of
digital agricultural field boundaries. Furthermore, a parametrization approach for the
grid method will be given and the dependencies on the used data set will be explained.

5.2.2 Definition of Field Boundary

As the term field boundary is not clearly defined, commonly used definitions are given.
To clarify the term in context of this work it is also specified what field boundary stands
for in this thesis.

InVeKoS Classification Schema in Germany

The InVeKoS classification schema defines field boundaries for its usage in the context of
agricultural subsidies. A definition of the different boundary types is given in the Federal
Law Gazette of Germany of 2004 [Bundesgesetzblatt, 2004].

1. Feldblock
A contiguous agricultural area with permanent bounds that is farmed by one or
more farmers with one or more crops completely or partly disused.

2. Schlag
A contiguous agricultural area of one farmer with one crop completely or partly
disused.

3. Feldstück
A contiguous agricultural area of one farmer with one or more crops completely or
partly disused.

4. Flurstück
An area bounded by land register.

These definitions are mainly related to the InVeKoS context and fulfill its requirements.
While the first three definitions include also semantic attributes like owner and crop, the
fourth definition only takes the area into account which is bounded by the land register.
This means that the surveyed and officially correct boundaries for fields commonly differ
from the machined parts in case of not drivable areas, wetlands, scarps or even rearranged
parcels. In the context of this thesis, the practical usage of field boundaries in context of
agricultural routing is more relevant. Therefore, the term field boundary will be defined
for this context with more relevance on the application.
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Definition of field boundary in context of this thesis

The InVeKoS schema defines a field boundary in the context of agricultural subsidies which
does not fulfill the requirements of a field boundary representation for routing purposes.
Due to the fact, that there is not even a uniform definition of a field boundary within the
German borders, an own definition that fulfills the requirements of agricultural routing is
given.

Definition (Field Boundary). A field boundary is the contiguous agricultural area of one
or more owners with one crop that is completely farmed within one harvest year. The
geometrical representation of the field boundary is a polygon or polygon with holes, where
the holes represent not farmed regions. The gateways from road network on the agricultural
fields are named field connection points or field gateways. They represent possible gateways
for machines to drive from the road network on the agricultural area.

5.3 Field Reference Data

Generating accurate reference data for agricultural fields is a very time consuming task.
Although farmers usually have their fields as digitized field boundaries in context of In-
VeKoS or within their electronic field record system, there is no information about the
accuracy of the boundaries. Many farmers generate these these boundaries by digitizing
based on aerial imagery. Alternatively, they use handheld GPS devices with less accurate
sensors to survey the field boundaries. Therefore, a survey of reference fields to have very
accurate data for comparisons is needed.

The accurate survey of field reference data is done during a field survey. The fields are
measured using a Magellan ProMark3 DGPS with a rover and a reference station. The
adjustment was done in post processing mode. Using the stop & go method the rover
has been placed for 15 s on a fixed position and a shape point for the field boundary was
stored.

In figure 5.2 the four with DGPS surveyed field boundaries are shown. The fields are
chosen by their different structure and size. The field in the upper left has an irregular
convex structure and a power pole within. The one in the lower right is a small, more
rectangular field and both, in the lower left and upper right, have convex boundaries.
The field in the lower left is partly surrounded by higher trees which can influence the
positional accuracy of the on board GPS device. These highly accurate measured field
boundaries represent a typical set of different field boundaries.

Figures 5.1(b) and 5.1(a) show the differences between a digitized field boundary on
different aerial imagery, the raw GPS points and the corrected GPS points after the DGPS
post-processing step. They clarify the variation of the different boundaries and the reasons
for these inaccuracies. It is obvious that these variations will result in an inaccurate field
boundary and accordingly to negative effects on every calculation that is based on field
boundaries (e.g. billings). For our purposes the reference field boundary has to be as
accurate as possible. Therefore, a limited set of accurate surveyed geometries has been
prepared.
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(a) Google - aerial imagery (b) land survey Bavaria - aerial imagery

Figure 5.1: Google and land survey administration Bavaria aerial imagery, DGPS points
and field boundary

0 250 500 m

0 100 200 m

Reference Field Boundaries

Figure 5.2: Reference fields (Datasource basemap: c©OpenStreetMap contributors)
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5.4 Computation Methods

Several approaches to extract a polygon from point cloud were evaluated on the field
data set. In the following sub chapters, the different methods are explained in detail and
(dis)advantages of each will be carved out.

5.4.1 Alpha-Shapes

The firstly in Edelsbrunner et al. [1983] mentioned α-shape approach is used for many
applications from OCR [Packer et al., 2011] to building boundary extraction where Shen
et al. [2011] introduced “A new algorithm of building boundary extraction based on LIDAR
data”. The α-shape is a generalization of the concept of the convex hull which is an α-
shape with α = ∞. By setting α = 0 the result is the point set itself.

Calculating the α-shape

The α-shape has been created using the PostGIS/pgRouting α-shape function. The func-
tion is a wrapper function based on CGAL [The CGAL Project, 2013]. An early stable
version of pgrouting (where the α-shape function is integrated) does not allow to specify
the α-value. Instead of this, an optimizer for the α-value is integrated. To get a proper
α-value the α-shape needs to satisfy the following two properties:

1. the number of solid components is one (this parameter is set by pgRouting)

2. all data points are either on the boundary or in the interior of the regularized version
of the α-shape.

If no such value is found, the iterator points to the first element with α-value such
that the α-shape satisfies the second property (adapted from http://doc.cgal.org/lat
est/Alpha shapes 2/classCGAL 1 1Alpha shape 2.html ).

The used stable version of pgrouting (2.0) does not support α-shapes with holes. For
most of the field boundaries this restriction would have no impacts. Regarding the fields
with hedges or areas with high soil moisture inside (which restricts these areas for farming)
the applied algorithm would only extract the outer boundary. This effect also appears
when e.g. farm buildings are enclosed by a field (see figure 5.3).

The α-shape method calculates a boundary using the tracking points of a machine.
The tracking point represents a location that is usually a central position on the machine.
Hence a buffering step to enlarge the shape including the half working width of the machine
is needed. This step will be done after the α-shape algorithm using the resulting geometry.

Optimizations for the algorithm are the integration of the specific setting of the α-
value and the extension to handle multi-polygons. Extracting holes using this approach
is bounded by the scanning frequency of the telemetry system. The available 15 s data
limits the hole detection to bigger holes (such as moist parts that are not drivable or
larger areas of trees or hedges). Small areas like power poles or small cellphone towers are
not detectable by this approach and this scanning frequency. For this detection the point
cloud needs a minimum density.

The previously mentioned missing handling of polygons with holes and the missing
integration of the α-parameter is included in a newer version of pgRouting which is only
available in beta status during this thesis. Using the 2.1.0-beta version of pgRouting, the
α-value can be specified by the user and enables further analysis and optimization for field
boundary generation.

http://doc.cgal.org/latest/Alpha_shapes_2/classCGAL_1_1Alpha__shape__2.html
http://doc.cgal.org/latest/Alpha_shapes_2/classCGAL_1_1Alpha__shape__2.html
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Figure 5.3: Field Boundary - α-shape vs. Blow-Shrink

5.4.2 Raster approach

Kortenbruck and Griepentrog [2014] presented a raster based approach to generate field
boundaries from agricultural movement data. They transform the machine trajectory (in
their data the GPX-track of the agricultural vehicle) into an IO-matrix. The pixel size of
the matrix is variable and based on the working width of the machine or the attachment.
With considering the spatial neighborhood of a pixel they filtered data that is tracked on
road network (relevant field pixel needs a minimum number of neighbor pixels). Areas
that resulted from a defined threshold of pixels were also deleted (to eliminate crossroads
and gateways). They used a not further specified algorithm from image processing to
extract the boundaries of the leftover areas. To filter wrong extracted polygons within the
farm area (that mainly result from manoeuvring), all polygons within a specified threshold
around the farm were excluded.

Figure 5.4: Field boundary computation - raster based approach (source: Kortenbruck
and Griepentrog [2014])
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Figure 5.4 shows the resulting field boundary (blue) after the processing of the GPS
points (red). This figure also shows problems of the approach like separating of neighbor
fields and the rough boundary through polygonization of the raster cells.

Adaption on TeleAgro+ Data

The implementation of the raster approach on the TeleAgro+ data needs some data adap-
tion. In the original approach, parameters and thresholds are not specified precisely.
Also the measurement frequency is not mentioned. Therefore the implemented approach
is extended and a modified version of the primary presented approach of Kortenbruck
and Griepentrog [2014] has been implemented. More details on the parametrization are
given in the comparison sub-chapter where the parameters are set for raster computation
approach.

Reference boundary

Calculated boundary

0 250 500 m

Calculated field boundary - Raster based approach
(Raster width 10m, 15m, 20m and 25m)

Datasource basemap: MapSurfer.NET
© OpenStreetMap contributors

License: www.opendatacommons.org/licenses/odbl

Figure 5.5: Field boundary computation for TeleAgro+ data - raster based approach (map
data: c©OpenStreetMap contributors)

Figure 5.5 shows different values for raster width using the TeleAgro+ data of a forage
harvester. The red boundary is a precise measured reference field boundary.

5.4.3 Blow Shrink

Method and Parametrization

The blow-shrink algorithm makes use of the fact that fields are usually larger and broader
than road structures. Blowing geographic features and union with neighbour polygons will
grow them, a larger (as the first blow) shrinking process or negative buffer will decrease
all structures and eliminate small structures and growth structures will left. A final blow
step including an estimated working width will grow the borders to the final extend. This
process originates from raster processing where pixels grow by extending them to their
surrounding neighbor pixels and shrink by deleting the boundary pixels. Having vector
data sets like points, line strings and polygons, the blow-shrink algorithm can be realized
using a buffer approach, blow existing geometries by adding a buffer and shrinking them
using a negative buffer.
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Figure 5.6: Speed statistics for infield and headland

The approach and its results mainly depend on the input data set (points or line
strings) and the blow/shrink parameters. With the temporal interval of 15 s between
the measurements, the agricultural vehicle makes between 0 m and 167 m at maximum
speed. The analysis of the infield and headland measurements gives an average speed of
6.5 km/h which means a covered distance of 27 m. If the zero speed values are let out,
the average speed is 8.7 km/h which means a covered distance of 36 m. These numbers
give the reason for the different needed parameters in point blow-shrink and blow-shrink
of the trajectories. Furthermore they give a rule of thumb for the parameter estimation.
The histogram in figure 5.6 gives an overview on the distribution of speed values infield
and in headland area for all machines.

Figure 5.7 illustrates the differences between using a point or a line string data set as
input. Using a point data set, the buffer size should be larger, especially if the distance
between two successive points is higher than the chosen buffer value. This delimitates the
point based approach to be only feasible, if the input data is dense enough. The results
of the point based approach also produce unnaturally rough borders which can cause
problems and needs a post processing step to generalize or smooth the field boundary.
Using the trajectory line strings as set of connected measurement points, the boundaries
are more straight as they are derived from linear interpolated trajectory points. The
distances between two trajectory points are short enough to assume the movement as
straight or nearly straight from one point to its successor. Due to the fact that the
measurement frequency is determined by the data set (5-15 s machine dependent) this
variable is fixed for further processing. The remaining variables are the values for blowing
and shrinking. these values depend on the GPS accuracy (the positional accuracy), the
working width of the machine or the attachment and the overlapping between two lanes.
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measurements_field_3636

tracksegements_field_3636

blow_shrink_10m_field_3636

blow_shrink_25m_field_3636

blow_shrink_tracksegments_14m_field_3636

0 50 100 m

Blow-Shrink
measurement-points (10m)

Blow-Shrink Comparison

Measurement-Points vs. Tracksegments

Blow-Shrink
measurement-points (25m)

Datasource basemap (orthophoto):
Bayerische Vermessungsverwaltung – 
www.geodaten.bayern.deBlow-Shrink

track-segments (14m) http://creativecommons.org/licenses/by/3.0/de/

Figure 5.7: Field boundary Blow-Shrink - Comparison measurement based vs. trackseg-
ment based

The parametrization of the blow-shrink contains three variables (blow, shrink and final
blow) where the first two depend on each other. The starting blow-shrink step is used
to union the geometries and for deletion of small artifacts and filtering larger structures.
After the blow step, a spatial union of the created overlapping geometries is done. The fol-
lowing shrinking (negative buffer) with a minimal larger value than the preceding blowing
will erase the small polygons that are not belonging to a field. Hence the first blow-shrink
parameters are dependent and set to an equal or minimum different value (to compensate
numerical inaccuracies). As the trajectory is produced by the GPS which position is mea-
sured in the machine center, a last blow step with a value of 50% of the working width
will increase the polygon to the natural extend. The influencing factors for the estimation
of the three parameters are:

• GPS accuracy
• logging frequency
• driving speed
• working width
• working width overlap
• field structure (complex, lots of curves, large/small)
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Most of these factors can be formalized into equations for the different buffer types.

For the trajectory blow-shrink the blow-shrink parameter are then:

blow1 = GPSacc + 0.5 ·WorkingWidth−WorkingWidthoverlap

shrink1 = blow1 + ε

blow2 = 0.5 ·WorkingWidth

Due to the fact that the measurement points are connected through their temporal re-
lation, the chance to overlap parallel buffered lanes is higher than using only the individual
measurements. This leads to the fact that the influence of logging frequency and vehicle
speed increase if they cause a larger distance to preceding and successive measurement
than the distance to the parallel trajectory (working width overlap). For the point based
blow-shrink the gaps between the points in driving direction should be closed. With the
estimated average speed of 8.6km/h it needs a logging frequency of more than 12 Hz, bet-
ter 15 Hz or 20 Hz which means a measurement every 5, 4 or 3 seconds. At typical working
widths, the measurements will then be distributed in driving direction and orthogonal to
driving direction (parallel lines) equally. The blow-shrink parameter for the measurement
based blow-shrink are then:

blow1 = GPSacc +

{

0.5 ·WW −WWoverlap, if 0.5 ·WW −WWoverlap) > avg(distance(mn,mn+1)

avg(distance(mn,mn+1)), otherwise

with WW := WorkingWith and m = measurement

Computing the Working Width

An essential attribute for the later parametrization (especially for the (blow-shrink ap-
proach) is the working width of the vehicle. The working width is the width of the
machined area in driving direction which is in most cases similar to the width of the front
attachment or the implement. Only at finishing sequences where the machine is cutting
less than the working width is a threshold between e.g. the cutter width and the real cut
crop area which is commonly termed as part width. A different case is the situation when
the machine is not covering the complete ground. This is the case e.g. with a pick-up
implement that is mainly used for grassland harvesting. In this setup the work steps of
mowing will cover the whole area. The following rotary rakes will merge the harvest to
smaller lanes which are picked-up afterwards by the forage harvester. With aiming a good
parametrization of the blow shrink algorithm by estimating the working width using the
trajectories, the working width will be generalized as the average distance between parallel
trajectories on field. With this method, a field specific working width can be calculated
and statistics for individual machines/attachments and fields can be generated. The pre-
sented algorithm makes use of the fact, that usually the field area (apart from headland)
is only passed once by working step and the driven trajectories are parallel.
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Figure 5.8: Computing the working width for one field (1. estimate mean working di-
rection, 2. build orthogonal line string that is placed in field center and cut by outer
trajectories, 3. compute intersection points and divide line string length by #intersection
points)

Although the presented method needs pre-calculated field boundaries for identifying
the field related trajectories, the field boundaries have no direct influence on the working
width calculation. The working width is calculated solely on the trajectories and their
intersection with a cropped line string orthogonal to the main working direction of the
field. The steps are described in figure 5.8 in detail.

The estimated working width is then calculated as:

EstimatedWorkingWidth =

∑

length(orthogonalMultiLineString)

#I(TrackSegmentsfield, orthogonalMultiLineString)#D(orthogonalMultiLineString)

, with I=Intersections and D=Divisions

Figure 5.9(b) and 5.9(a) show the estimations of working width for a Jaguar 970 forage
harvester and a Lexion 770 combine harvester. While the Jaguar 970 has manual data
for the working width in its telemetry data, the Lexion 770 does not have manual tagged
measurements. The beanplot [Kampstra, 2008] of the Lexion 770 shows two distinct peaks
that denote two different front attachments. The Jaguar 970 has manually added “ground
truth” data. As formerly described, the lower manual set working width represents the
pick-up attachment, which has a virtual working width, that is much larger than the
attachment width. Due to the less accurate driving of the rotary tedder, the swather and
the multiple working processes, this estimation underlies a larger variance. The higher
manual classified working widths represents e.g. “Direct Disc” headers for whole plant
harvesting or “Orbis” header for maize harvesting. In these cases, the estimations give
plausible results.
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(a) Estimating machine working width
(Lexion 770)

(b) Estimating machine working width
(Jaguar 970)

Figure 5.9: Estimated working width for Jaguar 970 forage harvester and Lexion 770
combine harvester

5.4.4 Postprocessing - Optimization

OpenStreetMap Data for Boundary Refinement along Roads

Usually fields are partly enclosed by roads which are not part of the agricultural field.
Due to the different geometry operations and e.g. inaccuracies or a final buffering step,
the computed field boundary can overlap road structures which will not happen in reality.
Overlapping field boundaries can also cause a merging of two or more naturally divided
fields through geometric operations. Using a buffered road network and cut the buffered
road features from the processed field geometries will split them and let them approximate
more to their real extent. The data used for this step is already available from the map
matching process of section 3.2. Due to the GPS inaccuracy the buffer size for matching
has to be chosen wider than the real road to catch the measurements. For this step, the
buffer size has to be reduced to a normal road width to cut this area from the generated
polygons and split formerly overlapped and merged fields into separate fields. The reduc-
tion parameter depends on the former set matching buffer width and should be reduced
to a plausible value of five to seven meters which is a feasible value for most roads.

Sieve Filtering

The geometric processing generates several smaller artifacts. Especially cutting the road
network or smaller measurement agglomerations will produce not connected snippets (e.g.
islands) which cannot be seen as field boundaries. Therefore a sieve step is established
after cutting out the road structure as a final filtering step. As a rule of thump, a threshold
of 1, 000m2 can be used. Nowadays where crop fields and green land are mainly managed
by large size agricultural machinery this threshold is plausible and can be rather set higher
in future. For processing field structures (e.g. speciality crops), which data is not used in
this thesis this threshold value is feasible but can cause the lost of smaller fields.
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Geometry generalization

The resulting field boundary geometries usually consist of a number of shape points origi-
nated by the foregoing processing. The bulk of these shape points are an over specification
and include a large overhead for server-client transfer e.g. in the demo application. Fur-
thermore, a generalisation will improve the field structure eliminating small humps that
are not realistic for processed field areas and usually result of the processing algorithms.
Hence a generalization algorithm is applied on the results of the field boundary computa-
tion algorithm. A widely used algorithm is the generalization algorithm of Ramer [1972]
and Douglas and Peucker [1973]. The Douglas-Ramer-Peucker algorithm for polygons is
used to generalize the resulting polygon from the field boundary computation algorithm.
The simplified polygons are then stored additionally in the table and used for further
processing (e.g. field connection points and the field service).

5.4.5 Comparison of the presented approaches

To compute the correctness and accuracy of the individual methods their results are com-
pared to a reference data set. As a high accurate ground truth data set of four fields is
surveyed, these four fields will be used for the computation of a similarity value. As a first
step, the computed field boundaries were compared visually. This shows similarities and
differences between the individual approaches. For automatic processing, a more author-
itative approach has to be established. Therefore in the second subsection a measure for
the similarity of sets, the Jaccard index will be introduced.

Visual Comparison

The visual comparison of the computed field geometries gives an overview on the per-
formance of the different methods and parametrization for each of the reference fields.
For the smaller, nearly rectangular field in figure 5.10, the α-shape and the blow-shrink
algorithm both generate a small corner in the northern end while the eastern edge of the
reference field is not covered by the computed boundaries. This is mainly caused by the
classified measurement points where the first point of the classified trajectory lies outside
the reference boundary. The buffered α-shape fits better due to the added working width.
Especially for simple geometric structures like the first reference field, the generalized
blow-shrink approach fits better to the reference boundary. The visualization of the dif-
ferent parametrized grid (10 m, 15 m, 20 m and 25 m) clearly demonstrates the problems
with this approach. While the small grid sizes extremely underestimate the field polygon
(the individual grid cells have no intersection with each other and cannot be merged), the
larger grid sizes produce an unnatural zig-zag boundary. Only the 25 m grid approach
produces enough overlap and merges the grid cells to a simple polygon without holes.

Figure 5.11 shows a typical mid-size agricultural farmland with straight edges and
edges along a meandered watercourse bounded by hedges and a small forest. The α-shape
and blown α-shape perform well and represent the meander structure on the northern
edge. The blow-shrink overestimates the field boundary. This could be the result of
GPS-inaccuracies next to the hedge structure that can have negative influences on the
measured positions. The blow-shrink approach also tends to generalize which appears
mainly in closer curve structures. The simplified approach eliminates the meander and in
this case, produces worse results than the raw blow-shrink approach. The grid approach
performs similar to the first field. While smaller grid sizes are not able to merge the
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Figure 5.10: Field boundary computation for TeleAgro+ data - α-shape, blow-shrink and
grid based approach for reference field 01

grids, bigger sizes will produce a continuous polygon. The 25 m grid approach only has
one hole where no 25 m grid cell is intersected with a measurement point. The straight
edge in the western part is represented very well due to the fact that this edge is nearly
north-south oriented. The meander structure in the north cannot clearly be reproduced
since the meanders and grid size are not fitting. Consulting the Nyquist-Shannon sampling
theorem [Shannon, 1998], the cell size of the grid should be less than 0.5 of the meander
wave length to reproduce the meander structure. This fact collides with the minimum cell
size which is needed to merge the cells.

The computation of the third reference field boundary, figure 5.12, shows the problems
that can occur due to wrong classified measurement values. The values in the north-
western part of the field boundary are classified incorrect. The α-shape takes these mea-
surements into account and spans a large edge structure to the outlier. This can be
prevented calculating better α-values that exclude these points. As the other methods
also suffer from these wrong classified measurements, a better classification result from
the foregoing pre-processing step will improve all methods. However, the impact on the
α-shape is much bigger than on the other approaches. The blow-shrink method only gen-
erates a small distortion wedge along the wrong classified driven path. The intersection
with the road network clearly cuts the grid cells on two bounding edges which improves
the results of the grid based approaches tremendously. However the small grid sizes are
not able to reconstruct the field boundary.

The fourth field in figure 5.13 represents the most complicated boundary of the refer-
ence fields. The not rectangular shape has a small alcove in the mid north and a power
pole that is also mapped in the reference data. The small stand of the power pole is
not recognized by any of the applied methods. While the α-shape does not recognize the
alcove, the blow-shrink approach without simplification shows a small alcove in this place.
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Figure 5.11: Field boundary computation for TeleAgro+ data - α-shape, blow-shrink and
grid based approach for reference field 02

Figure 5.12: Field boundary computation for TeleAgro+ data - α-shape, blow-shrink and
grid based approach for reference field 03
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The clear extraction of the alcove is not possible with the blow shrink approach. This
results from the size of the buffers needed to merge themselves being as large as the alcove
width. The only approach that represents the alcove is the 15 m grid approach which is
caused by the sampling theorem. The 15 m grid size produces a continuous polygon and
the cropped edges by the buffered road network give well fitting boundaries, but the grid
size is not large enough to prevent the holes where no measurement intersects with a grid
cell.

Figure 5.13: Field boundary computation for TeleAgro+ data - α-shape, blow-shrink and
grid based approach for reference field 04

Jaccard Index

Due to the fact that a visual comparison of the applied approaches is not applicable in
software, an index including the requirements of good field boundaries has to be estab-
lished. A couple of indexes and similarity measures for geometries exist and each one has
advantages and disadvantages, depending on the application. Simple measures can be the
area, the outline or the number of shape points. Distance metrics, such as Hausdorff or
Fréchet distance, depend on the distribution of shape points and aim mainly the matching
of the outer polygon boundary.

The requirements for field boundary comparison are mainly the handling of different
boundary granularity and the focus on area and shape. Algorithms for shape fitting often
use translation, rotation and scale as variables. The computed geometries are equally
oriented and placed. The computed boundaries are based on the same measurements.
Therefore, the scale has only a small influence on the produced results. Only small vari-
ations caused by generalization and enlarging of the final geometry can have an influence
on the results. These requirements are fulfilled by the Jaccard index, firstly introduced by
Paul Jaccard [Jaccard, 1912]. He used this approach of the quotient of intersection and
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union of two sets to compare the similarity and diversity of sample sets of species:

(Number of species common to the two districts
Total number of species in the two districts ).

Since the used set operations are also basic GIS operations, this approach can easily
be adopted on the field boundary geometries. The advantage of the Jaccard index is the
fact that it includes the shape and the area of the polygons. The geometries can be seen
as sets and geometric functions can be interpreted as set operations. Means: the bigger
and uncomplex the field boundary (as it is in most cases for agricultural fields), the more
robust is the metric. Jaccard defines his index for the sets A,B 6= ∅ as:

J(A,B) =
|A ∩B|

|A ∪B|

The Jaccard index lies in the range of [0; 1] with 0 meaning completely disjoined geometries
and 1 meaning identical geometries. In our case a value of 1 is only possible, if the
computed geometry is 100% identical to the reference data which is usually a not reachable
due to different computation methods. However, this index gives a good value for the
similarity of the geometries. Table 5.1 shows the pros and cons for the application of the
Jaccard index to compare the estimated field boundaries with the reference data.

Table 5.1: Jaccard index - pros and cons
pro con

• simple measurement (only geometry
shape as input data)

• measurement for similarity of geo-
graphical objects

• includes position, shape and area

• represents the disparities of different
shapes

• fast and easy to compute

• no differentiation between error types
(less shape points, shape point preci-
sion, shape precision e.g. holes etc.)

• no distinction between over- and under-
estimation

• no tangible information for parameter
optimization of the field boundary com-
putation methods

Comparison using the Jaccard Index

The Jaccard index has been applied to the four reference field boundaries. In figure 5.14,
the index for all computation methods is visualized in a bar plot. The assumptions from
the visual comparison are mirrored in the measures of the Jaccard index. The 10 m grid
is not usable for this measurement density for any of the field geometries. Also the 15 m
grid gave too low values for the index in three cases. Field 3 is the outlier because of the
wrong classified measurements outside the field boundary where the α-shape algorithm
spans a large edge outside the reference field boundary. The blow-shrink approach is
the most stable approach for all four reference fields. However, the α-shape with the
additional buffer performs very well, if the measurements are classified properly and a
good estimation for the α-value exists.
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Figure 5.14: Comparison of the different approaches using the Jaccard Index

5.4.6 Conclusion

Table 5.2: Field boundary algorithms - pros and cons
pro con

Grid Method

• simple method

• good for rectangular, grid oriented
fields

• cutting the square edged polygon
using buffered narrow road
segments will improve the
boundaries

• produces not natural, square-edged
boundaries

• nearby fields are not easy to
distinguish

• quality depends on grid size and
measurement density

α-shape Method

• only one parameter and the final
buffer

• popular method for surface
estimation from point sets

• not robust to outliers

• needs good estimation of α-value

• works only on the point cloud (not
aware of the driven trajectory)

Blow-Shrink Method

• inherits trajectory → represents
close to the real driven trajectory

• easy approach with basic GIS
methods

• robust to extreme outliers

• needs parameter optimisation
(blow-shrink parameters)

• produces large amount of shape
points (need for simplification)

• needs trajectory data (not only the
point measurements)
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The previous analysis shows that a computation of field boundaries using agricultural
telemetry data gives suitable results. The results were analyzed visually and index based.
Table 5.2 summarizes the pros and cons for each approach and its requirements and
restrictions. The classification of measurement points has a large influence on the field
boundary computation. Especially the blow-shrink and the α-shape method are very
sensitive to wrong classified points that lie outside the real field boundary. The blow-shrink
approach can compensate this using the shrink where structures with a small width (less
than the shrink value) will be eliminated. This is e.g. the cause for single drives off the
field. The grid based approaches are very sensitive to the spatial density of the points. For
higher point densities (higher measurement frequency and close parallel lanes), the grid
approach with smaller grid size is assumed to give better results. However, the serrated
pattern at the boundary will still exist. In regions where the field is bounded by the road
geometry, this can be handled by refining the field boundary through cutting of a buffered
bounded road segment. In regions where the field is not bounded by a road, these serrated
patterns can be eliminated with generalization or smoothening algorithms. This processing
is needed to compute a realistic shape. All presented approaches need a pre-classified point
cloud. Some of the fields were machined with more than one machine within different time
windows. This makes the detection of coherent TrackSegments hardly possible and causes
wrong computed or fractional field boundaries. Complex field geometries with internal
structures (hedges, scarps, single trees, utility poles, groves, stony or moistness areas) that
cannot be machined can only be detected if the structures size is large enough compared
to the measurement point density.

Having a proper classified set of trajectories, the blow-shrink method will give feasible
results and provides realistic field boundaries. The approach is robust on extreme outliers.
With a simplification of the shape geometry, this method is able to extract ready-to-use
field geometries (e.g. for a field record system).

However, each approach has its advantages and disadvantages (cf. 5.2). Rule of thumb
measures were given for all of the presented approaches with feasible results. A further
parametrization e.g. through machine and process parameters such as the working process
and therefore in detail driving speed, logging frequency, working width and the driving
maneuvers could help to improve the results.

The results of the algorithms to compute field boundaries are very close to the high
precise measured reference data and therefore a possible and time saving approach to
actualize the farm internal field record system and e.g. field polygons that have to be
digitized in the context of the Integrated Administration and Control System (IACS). The
usability for the show case agricultural routing will be shown in chapter 6. The presented
approaches are integrated in the context of field boundary computation for agriculture.

Since the algorithms requires trajectories and movement data, further applications in
other domains are thinkable. Due to the popular and prevalent tracking of persons (e.g.
through GPS devices and smartphones) and vehicles, a large number of accessible tracking
data exists. Possible extensions would be the analysis of GPS traces of people that move
on squares, open areas, park areas or cars that drive on large parking areas. The detection
of these polygonal structures can be a next step to use the presented algorithms in a more
general context.
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5.5 Field Gateway Computation

Field boundaries for documentation and analysis are only one piece for a successful farm
to field routing. In topographical complex regions it is not possible to drive from road to
field at each part of the field boundary. Usually, the edges are preferred for the beginning
of field work, if they are accessible. In this part a computation method for calculating
field gateway points is introduced. This method is mainly based on learning from history:
previous used gateways can be used for similar machines. These points are comparable
with doors of a building which represent the access points for the indoor area.

5.5.1 Geometric calculation of Field Gateways

Due to the availability of the previously computed field geometries and the machine trajec-
tories, a first naive approach is the geometric intersection of trajectories and field polygons.
The intersection points are then potential gateways. This strategy tends to result in many
field gateway points e.g. if the machine driver performs u-turns out of field instead in the
headland area. This will be improved by taking only these trajectories into account which
do not exceed a maximum number of intersections with the field polygon. The parameter
(MAX INTERSECTIONS ) can be specified by the user and is set to 3 by default. Figure
5.15 illustrates the intersection points and the subsequent filtered field gateways. This will
give a feasible result set of field gateway points.

Figure 5.15: Field gateways filtering

As shown, the results are reasonable and ready to use. However, improvements could
be achieved with higher complexity and further analysis. Promising strategies that are
given by expert analysis of driving behaviour or visual analytics of the trajectories and
field boundaries could be:

• step through trajectory and accept only intersections with minimum number of pre-
and post-measurements on street/field
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• clustering gateway points by clustering algorithms (e.g. peak detection on lines
string or clustering algorithms like DBSCAN Ester et al. [1996])

• classification of field boundaries (drivable culvert, complete accessible edge, ditch,
embankments or slopes)

• using further data, e.g. road and land use data to classify gateways by adjacent
contextual information

5.6 Integration in the Processing Framework

The field geometries are calculated for all available machines and stored within the TeleA-
gro+ data store. The fields and their belonging field gateways are published by a field
service which is an essential part of the whole TeleAgro+ system. The service is imple-
mented as a RESTful web service that provides its data as JSON code for the TeleAgro+
web client. The API allows request by harvest year, fieldID, machine, owner and bounding
box. These requests are also integrated in the web interface on client side 5.16.

REST-requests for the field service:

• by ownerID
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field rec

ord list/owner/9002

• by fieldID
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field rec

ord/2928

• by bounding box (filtered by harvest year, owner)
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field rec

ords by bbox/10.228632843796685/49.64144035194935/10.234356677834624/49.6
4371565773744/owner/9001/2013

• get available harvest years for ownerID
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field har

vest years/owner/9001

The result is either a single field or a list of fields that fulfill the set restrictions.
The request for available harvest years is used for filtering the requested fields from user
interface to prevent traffic intense responses. The JSON code in listing 5.1 shows a response
from a single field request. The responding JSON code is used for displaying requested
fields and field gateways as shown in figure 5.16 and for building an XML-request for the
MARS-route service in chapter 6.

Listing 5.1: JSON response on field request from field service

1 {
2 "farmNo":0,

3 "fieldNo":0,

4 "gateways":[

5 {
6 "id":20395,

7 "point":{"type":"Point","coordinates":[10.229337931112767, 49.64207638785487]}
8 },
9 {

10 "id":20396,

11 "point":{"type":"Point","coordinates":[10.229375353974094, 49.64201664233769]}

http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_record_list/owner/9002
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_record_list/owner/9002
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_record/2928
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_record/2928
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_records_by_bbox/10.228632843796685/49.64144035194935/10.234356677834624/49.64371565773744/owner/9001/2013
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_records_by_bbox/10.228632843796685/49.64144035194935/10.234356677834624/49.64371565773744/owner/9001/2013
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_records_by_bbox/10.228632843796685/49.64144035194935/10.234356677834624/49.64371565773744/owner/9001/2013
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_harvest_years/owner/9001
http://<IP-address>:<port>/VehicleService/rest/fieldservice/field_harvest_years/owner/9001
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12 },
13 {
14 "id":20397,

15 "point":{"type":"Point","coordinates":[10.229330275626406, 49.642095074852556]}
16 }
17 ],

18 "generatedBy":"FieldBoundaryExtractor",

19 "harvestYear":2013,

20 "id":2928,

21 "passableAreas":[],

22 "simplifiedFieldBoundaries":{
23 "type":"Polygon",

24 "coordinates":[

25 [

26 [10.229211655885914, 49.64238462494925],

27 [10.232458705047277, 49.643034789655104],

28 [10.232869000886101, 49.642949384811324],

29 [10.23362408193011, 49.643141384766324],

30 [10.233777865745571, 49.642960258550126],

31 [10.23373641224658, 49.642734820598825],

32 [10.229363225262018, 49.64201464498365],

33 [10.229211655885914, 49.64238462494925]

34 ]

35 ]

36 },
37 "subFieldNo":0

38 }

Figure 5.16: Field request in the TeleAgro+ GUI

5.7 Results

In this chapter approaches for field boundary computation on agricultural telemetry data
are presented. A distinct overview on field boundary definition has been given beforehand.
Different methods for geometrical boundary generation have been analyzed and their as-
sets and drawbacks were discussed. Own approaches have been compared to published
methods from literature. The only known approach that handles this task in the domain
of agriculture is the published grid-approach, but neither parameters nor results for larger
data sets are given. With the telemetry data as input, an experimental parametrization for
this approach has been made to get good and reliable results. The cost intense generation
of reference data limits the comparison of the analyzed methods to only a small subset of
fields. However, a larger reference data set will give more insights into the characteristic of
the different methods and will lead to a better parametrization. The results have a good
fitness for use and can be integrated in the agricultural route planner that is the demon-
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strator software for the analyzed methods. Regarding the field gateways this analysis is
the first known that extracts field gateway points from real driven trajectories. Using this
extracted information can be a benefit and an important factor for further planning of
track networks and maintenance. This becomes important since the vehicles generating
these trajectories are usually heavy weight/big size vehicles that have an obvious impact
on the track network condition and road surface. With the working width estimator a new
algorithm for the estimation of real working width is presented. This algorithm is able to
calculate the working width which has an impact as parameter on different methods for
field boundary computation. Furthermore, the computed values can be compared with
the theoretic possible working width of the machine or the attachment. The estimated
value can be an indicator for the earning power of of RTK guidance systems or can be
used to compare individual machine drivers. It can also be used as input parameters to
improve field harvesting or field work strategies in general as presented in Bochtis et al.
[2010].



Chapter 6

Agricultural Routeplanning

6.1 Introduction and State of the Art

Routing is one of the most common applications using digital geographic data sets. The
engineering of shortest paths on graphs, like Dijkstra [1959] improved vehicle route plan-
ning and became a useful tool improving way finding and logistics. In the year 2000
the former president of the United States, Bill Clinton, decided to turn off the Selective
Availability of GPS [D’Roza and Bilchev, 2003], a degradation of the public GPS signals
which implies a variance of the position accuracy of about 100 m (instead of 10 to 15 m
without this noise signal). This far better positional accuracy enables real time navigation
and the development of car and truck technology received a tremendous boost [BMVI,
2004]. With this, navigation and route planning became common in cars and public road
network vehicles. Especially through increasing traffic, growing road networks, new ve-
hicle sensors and the extreme rising transportation sector [European Commission EC -
Directorate-General for Mobility and Transport, 2012], the requirements for navigation
and route planning became more specific. Regarding the primary sector, the previously
mentioned improvements had also a large influence on agricultural business processes. As
the GPS on agricultural vehicles is mainly used on fields (e.g. parallel driving, precision
farming), the installed hardware, the terminals and communication devices are nowadays
also used for routing and planning logistics chains. This usage extends the requirements
on data sources (maps), data structures and routing algorithms. Domain specific use cases
such as infield routing indicate new algorithms and data sets. This enables interruption
free routing for trucks from the road network on fields to e.g. a harvester. Through the
availability of vehicular telemetry data, the usage of real time measurements and driven
routes seems to reason. These subsidiary challenges are enlightened separately in the
following subchapters.

6.1.1 Routable Road Data

Route calculation requires a routing algorithm, a proper data structure and as important it
is fully dependent on the geospatial data input to achieve high quality results. Still, today
the quality of geospatial base data for routing lacks in completeness regarding geometric
road network and its attribution. Proper edge weights to determine realistic time of arrival
are not available due to missing data. Furthermore, road networks are not static and
underlie permanent changes such as the construction of new roads or the improvement or
degradation of road parts due to different road management. Especially the lower graded
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road network like pedestrian paths, bicycle trails and the very important for forestry as
well as for agricultural logistics tracks and forest ways are underlying a constant change.
Tracks in particular have a large influence on agricultural route planning because of their
origin as planned transport roads [Bont, 2012], Stöcker et al. [2004]. The commercial
mapping company Here shows in an online viewer that for Germany the changes in length
of the street network are greater than seven percent within one year [Navteq, 2012]. To
know where and when road network changes occur requires an up-to-date road network
data set, which is very cost intensive to maintain for large areas. Having limited resources,
generally areas with high frequency are prioritized for map updating compared to rarely
used small tracks. However, in particular these small roads are of major interest for local
routing in rural areas. And they are the last miles to get from the public road network
onto the fields where the biomass is growing.

Within the last years Volunteered Geographic Information (VGI) as a new data source
for geodata has become increasingly used as up-to-date source [Goodchild, 2007]. The
meaning of VGI is to collect geographic data from volunteers. Everybody can act as
a sensor and commit her or his impressions to big data collections. The benefit is like
Aristoteles (384 BC to 322 BC), the Greek philosopher, described: “The whole is more
than the sum of its parts”. In contrast to former common ways of mapping, precise maps
of a few experts, the crowdsource approach benefits from the mass of individuals. This new
way of earning geographic data is one of the most promising innovations of the last years.
Research activities by Roick et al. [2012], Neis et al. [2011], Neis and Zipf [2012], Zielstra
and Zipf [2010] in data quality analysis showed that the first doubts on the quality of
user generated content were not confirmed. With primarily practical show cases, Neis and
Zipf [2008], Müller et al. [2010] demonstrate that, especially within the VGI world, fitness
for use is the forceful argument for using geodata made by volunteers. The publication
of Heipke [2010] reviews the existing scientific work on crowdsourcing data and gives a
brief overview on widespread usage of crowdsourced data. The most prominent example
of crowdsourcing geoinformation is the OpenStreetMap (OSM) project with more than
2.2 Mio registered users (12/2015) [Openstreetmap, 2015]. Based on OSM data several
studies investigate how to prepare the OSM data structure as route graph for further
routing applications [Luxen and Vetter, 2011, Müller et al., 2010]. As one of the first
approaches Neis and Zipf [2008] demonstrated the fitness for use of crowdsourced map data
for routing. Especially the wheelchair routing in Müller et al. [2010] demonstrates how data
collected from volunteers can help to solve sophisticated routing problems. Compared to
usual car routing problems, routing wheelchairs needs more differentiated edge attributes
(like surface tags, incline and road curb heights) and weight functions for calculating
an accessible way for disabled people. Hartmann [2013] provides a service that provides
processed OSM data sets for Garmin GPS devices that also implemented several basic
routing functions for bicycles. In particular the quality of the crowd sourced data sets is
one of the most discussed topics and has already been assessed in several articles [Ciep luch
et al., 2011, Neis et al., 2011, Haklay, 2008, Kounadi, 2009]. Also the OSMatrix tool [Roick
et al., 2012] shows user actions and feature distribution that give an indication of quality.
They summarized that the distribution of data quality is not uniform. The quality and
the completeness of data correlate with the number of editors in a region. Especially in
rural areas where not that many mappers work actively on the map, the data actuality
and quality is behind the urban areas. Regarding fitness for routing, the quality of the
street network including the topological correctness is sufficient to derive a proper routing
graph and to calculate routes [Neis and Zipf, 2008]. They implemented a full functional
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online service for route calculation based on OpenStreetMap Data. This service is publicly
available and well established in the community. Press releases and many news group
articles show that the service is usable and returns plausible and feasible routes1.

Hence, first demonstrators for using VGI in routing applications exist. However, there
is still a gap between leisure use cases (e.g. hiking, biking) and professional or commer-
cial use cases like the transportation of biomass on rural road networks. Therefore, one
objective in this chapter is the analysis of fitness for use for routing agricultural vehicles
on crowdsourced road data.

For calculating routes on the public road network, which is nearly homogeneous for
vehicles (like cars) regarding edge weights with a very small range of attributes or restric-
tions, many operational algorithms and tools already exist [Eksioglu et al., 2009]. This
can be seen by the high number of route planning web sites as well as the established
add-ons of navigation systems in cars and also the common smart phone route planning
applications. Several research groups are working on improving exact route planning by
using time dependent routing. Haghani and Jung [2005] present a genetic algorithm to
give a nearly optimal solution for the NP-hard pick-up or delivery vehicle routing problem
with soft time windows for vehicles with different capacities. Calculating fuel-efficient
routes is the topic of Ganti et al. [2010] within the GreenGPS project. They developed
and implemented a model that predicts fuel consumption on calculated individual vehi-
cle type parameters and further input variables such as vehicle mass, elevation, frictional
forces and acceleration. With this model and empirical data from some heterogeneous
streetcars, they predict a “gallons per mile”-attribute that represents the edge weight for
routing. The objective is the calculation of the route with the highest fuel-saving. Most
of the work is focused on heterogeneous vehicles in sense of capacity (different capacities
for freight transportation). Especially in the operations research domain this problem
is very common and used for logistics optimizations [Chao, 2002]. However, calculating
exact routes for very heterogeneous vehicles is still a problem. The knowledge about the
road network as well as the information about the vehicles are needed and both should
be integrated into equations to get a numeric value as edge weight for shortest path com-
putation like done in Ganti et al. [2010]. Base data sets from companies like TomTom or
Here are only applicable for routing on public road network. Restrictions like maximum
weight or clear height partly exist but maintenance is expensive and technically extensive.
These restrictions are mainly mapped by using signposts. Attributes, such as real width
of the road or the drivable part do not exist for most of the road data. Hence it is not
recommendable to assess these variables by time consuming field surveys and automatized
ways are needed.

Another aspect is the field of real time routing. Calculating routes by regarding the
actual traffic situation and modifying the routes in time is relevant for urban areas. Ap-
proaches that consult traffic sensors or get traffic flow information by mobiles [Fawcett and
Robinson, 2000] are state of the art. Standardized interfaces for providing sensor data like
OGC SOS [Bröring et al., 2012] gave the opportunity for extensions of routing by using
e.g. traffic data [Mayer, 2009]. Companies like Google or Here implemented this kind
of traffic into their applications to provide time dependent routing. These applications
and the experience in time dependent routing made by customers confirm the demand
for integration of real data into routing and navigation applications. As the routing for
agricultural vehicles is less influenced by time dependent traffic situations (agricultural lo-

1cf. http://openrouteservice.org/contact.html#services, (accessed 2016/07/16)

http://openrouteservice.org/contact.html#services
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gistics usually happens not in typical urban areas with daily rush hours and traffic jams),
the research in this work will not handle the integration of public available traffic data.
The focus will be on the individual analysis of driving patterns and travel times on the
heterogeneous rural road network. This will have an impact on the predictions made for
planned routes (travel time and route geometry).

6.1.2 Computation and Data Handling Complexity

Route planning with complex edge weights requires a closer look at their data structure in
terms of computational handling and memory consumption. Compared to a common route
graph the multi attributed graph has to store a variety of attributes, also with different
data types such as distance, road type, surface attributes, maximum speeds, dimensions,
etc. [Graf et al., 2011, Luxen and Vetter, 2011, Lee et al., 2008]. Precomputed graphs
that are commonly used for fast routing engines such as contraction hierarchies [Geisberger
et al., 2008] are not feasible. Due to the large combination complexity of vehicle restrictions
and route attributes, a precomputation of all combinations is not possible. Hence, a data
model that considers a multitude of different attributes is needed.

6.1.3 Edge Weight Calculation

Beside the way of route planning for cars, specialized route planners have been developed
for other domains. Most prominently bike and pedestrian routing systems have to be men-
tioned (http://www.bbbike.de, (accessed 2016/07/16), [Fu and Hochmair, 2009]), as well
as routing applications for wheelchairs [Kasemsuppakorn and Karimi, 2009] , in forestry
[Stöcker et al., 2004] and in agriculture [Wörz et al., 2013]. All of them implemented basic
restrictions and routing functions, like shortest or fastest route or functions for general
vehicle classes (e.g. car, truck, bike and pedestrian) which is mainly due to missing in-
put data on multiple attributes describing the road networks with rich details beyond the
geometry. These approaches did not consider the variety of vehicles and their attributes
and calculated routes just for very generic vehicles. Precise driving time estimations were
done i.e. in the domain of logistics [Haghani and Jung, 2005] but hardly used as weights
for route planning especially within the domain of agricultural routing. A very close work
is the analysis of urban GPS traces by Brundell-freij and Ericsson [2005]. They used GPS
traces for calculating statistics for street types, driver attributes and further variables.
But the integration step into a routing service is missing there.

6.1.4 Infield Routing

Routing on (public) road network is only one part of agricultural routing. Collecting the
harvest good from a harvester or switching the trailer to target a gap less harvesting process
during forage harvesting are typical examples of scenarios where a precise route description
from the road to the field boundaries and within the field area is required. While road
networks are mainly represented as line strings, the agricultural fields are represented as
polygonal areas. Bringing these two types to a seamless graph structure, algorithms for
graph calculation and transit points are necessary. Similar problems are described in the
field of indoor routing or routing in free spaces for pedestrians [Goetz, 2012, Isert et al.,
2013]. Further domain specific approaches are described in Ali et al. [2009] where the
theoretical optimization of the harvesting process is in focus. In this work, they used
simple grid structures to generate the infield graph. Hameed et al. [2010] evaluated 15

http://www.bbbike.de
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different field shapes and generated a fieldwork pattern for each field. A split algorithm
that divides the field area and recursive that is feasible for real time usage to generate
a working path for the agricultural machine is presented in Oksanen and Visala [2007].
Zhou et al. [2014] show a further approach where they consider obstacles within the field
and optimize the working path by dividing the field into blocks. The generation of optimal
path is made by find the optimal block traversal sequence, formulated as TSP (Traveling
Salesman Problem) which is solved by the ACO (ant colony) algorithmic approach [Dorigo
and Gambardella, 1997].

Although these methods generate graph or graph like structures, their main focus lies
on optimizing the harvesting process for the harvesting machine. Also the seamless routing
from the road network into the field is not part of these more harvesting process focused
publications. Therefore, the adaptability of infield graph generating algorithms for the
agricultural use-case has to be investigated.

Methods for infield graph generation are described with advantages and disadvantages
for the agricultural routing use-case in the infield routing subsection 6.5. Additionally,
a new method is presented, which takes the requirements for agricultural routing into
account. To enable a seamless routing, a further method for calculating gateways will be
given.

To sum up, the related works for this article exhibits manifold research lacks with
respect to routing of agricultural vehicles in areas with low order road networks. First,
there is a lack of input data to build routing graphs accounting for multiple road attributes
to derive edge weights for different types of vehicles. A road data set that fulfills the
requirements for agricultural routing is needed. In particular this data set should be up-
to-date and thus requires a straightforward mechanism of (self) maintenance. Second,
a new data structure is needed to handle computation complexity of on-demand edge
weight computation from multiple attributes for single edges in order to derive vehicle
specific edge weights. A new data structure has to be developed. Third, this input
data set and data structure should integrate and make beneficial use of empirical data
from agricultural telemetry systems to attribute routing graph edges. Algorithms and
mechanisms for linking routing graph and telemetry data are needed. And at least, to
route the last mile on the agricultural field, methods to generate an appropriate infield
routing graph are presented and evaluated.

6.2 VGI data for Agricultural Route Planning - OSM

The OpenStreetMap project is described in general already in chapter 2. In this section a
more route planning specific analysis is given with a particular focus on relevant attributes
for agricultural routing and their occurrence in the OpenStreetMap VGI project.

6.2.1 OSM Road Types

This section describes the OpenStreetMap highway- and track-types which are relevant
for agricultural routing. The highway-types are classified in a large number of classes
where only the relevant ones are used for the routing implementation. The track-types
are categorized in five grades from grade1 with a paved or heavily compacted surface to
grade5 that represents e.g. a path on grassland without any paved or compacted surface.
The used highway- and track-types are listed in table 6.1.
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6.2.2 Relevant OSM Road Attributes

A further routing relevant element (especially for tracks) is the description of the surface.
In OpenStreetMap, this attribute is mainly described by two tags: surface, which describes
the type of surface and smoothness, which describes the quality or the roughness of a
road. The surface type consists of a large number of individual attributes where only the
frequently tagged and agricultural relevant are taken into account for the routing. The
smoothness tags are based on a quality scale that grade the road from impassable where
wheeled vehicles are not able to drive and excellent which offers optimal conditions for in-
liners or skateboards. As numerical attributes, measures like maximum width, maximum
weight, speed and height are stored within the edge weight. The used surface attributes
and the measure tags are listed in table 6.1.

Table 6.1: Used OpenStreetMap tags

Highway types Surface types Track types

motorway( link) unpaved grade1
trunk( link) compacted grade2

primary( link) gravel grade3
secondary( link) pavelstone grade4

tertiary cobblestone grade5

unclassified cobblestone:flattened Smoothness Types

road paving stones excellent
residential paving stones:30 good

living street paving stones:20 intermediate
service grass paver bad

track asphalt very bad
pedestrian concrete horribly

raceway metal very horrible
bus guideway wood impassable

path ice road Measures

cycleway ground axle load
footway earth maxwidth

bridleway mud maxweight
byway grass incline

steps sand maxspeed
dirt maxheight

paved lanes

6.3 Route Calculation with Multiple Attributes

Due to the heterogeneity of road data and its attributes on the one hand and the large
amount of different vehicle configurations on the other hand, it is obvious that this com-
bination will result in a complex route planning algorithm. The run time of the shortest
path algorithm depends on the complexity of the underlying road network and on the
number of comparisons that the algorithm has to compute within each step of checking
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an edge for its weight. Therefore two problems have to be solved:

1 Designing a memory efficient data structure for storing the large amount of graph
and attribute data and

2 Filtering and classifying relevant data for agricultural routing out of the Open-
StreetMap data.

6.3.1 Memory efficient Graph Structure

Storing a graph with a large set of attributes will increase the memory consumption
tremendously. Hence, a compressed storage of edge related attributes will decrease the
needed storage and cause a slim graph without loosing the needed information for multi-
ple attribute routing. The implementation of the route graph is realized in Java, but the
described optimizations will have the same or similar effects using other programming lan-
guages (as the used data types consume similar memory). The comparisons are explained
theoretically. For a practical impression, the graphs of exemplary regions are compared
with the two storing methods.

Table 6.2 shows the memory consumption of the different attributes. It shows the
substantial saving of memory using a preceding classification and storage as bit chains.

Table 6.2: Memory Consumption of compressed and uncompressed Graph

Attribute
Uncompressed Graph Compressed Graph

Data
type

#bit
(Java)

#bit Description

Length Double 64 16 Metrical precision 1 m

Road type String 448 (288) 6 27 classes (OSM highway types)

Max. height Double 64 8 Metrical precision 0.1 m

Max. width Double 64 8 Metrical precision 0.1 m

Track type String 448 (288) 4 6 classes (grade1-5, default)

Smoothness String 448 (288) 3 9 classes (incl. default class)

Surface String 448 (288) 6 23 classes (incl. default class)

Max. weight Double 64 6 Typical max. weight restrictions classified
from European road classification and Open-
StreetMap attributes

Axle load Double 64 6 18 classes (derived from merged European road
classifications)

Max. speed Double 64 5 Typical max. speeds classes derived from Euro-
pean streets in km/h

Incline Double 64 4 16 classes

# Lanes Int 32 3 Number of lanes

The memory usage of the Java String Objects is platform dependent. Häubl et al.
[2008] pointed out that the minimum size of a Java string object is 36 bytes. Coffey [2011]
provides an easy approach to calculate the individual approximately size of a Java string
object by using the formula:
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Minimum String memory usage [bytes] = 8 ∗ (int)

(

(((nochars) ∗ 2) + 45)

8

)

That means for the attributes Highway-, Track-, Smoothness- and Surface-types an
average minimum memory of 56 bytes (by formula of Coffey [2011]) is needed (cf. table
6.3).

Table 6.3: Add caption

Name Avg(Tag-
length)

Sum
[bytes]
Coffey [2011]

Min [bytes]

Häubl et al. [2008]

Highway 8.4 56 36

Track 5.666 56 36

Smoothness 7.888 56 36

Surface 8.217 56 36

Table 6.4 shows different graph implementations and their theoretical size. The graph
size itself cannot be reduced, since the number of edges is given through the different
roads and the nodes that represent the connection points. This topological structure only
consists of an e.g. adjacency list that represents the connections. The most promising part
regarding the reduction of graph size is the compression of the edge weight. Due to the fact,
that for multi-attribute routing the edge weight consists of a large number of attributes
and therefore of a large number of primitive data types that are very costly. An individual
routing for the heterogeneous vehicles would not allow a pre-computation of edge weights,
as the attributes would have a different influence for different vehicles. The only chance to
save memory without notable information reduction is the classification and compression of
the edge weights. The classification of the attributes (showed in table 6.2) and the storing
using a bit array will reduce the memory tremendously. Compared with the uncompressed
graph structure, the theoretical value 96 % or 95 % of memory (depending on the string
memory calculation) will be saved (cf. table 6.4). The conversion of the weights can
be done in a very fast way using look-up tables and simple calculations. Therefore the
computation time is comparable to the version with more specialized, memory intense
data types.

6.4 Cost Function with Empirical Edge Weights from Real

Data

In order to calculate edge weights, an optimizing target is obligatory. Naive approaches
are shortest and fastest route. The shortest route is simply calculated by using the geo-
metrical edge length as weight. To calculate the fastest route, a velocity model is essential
to calculate the time that a vehicle needs to travel the whole edge. Usually, this will be
realized as specific velocity model for different highway types and vehicle types. The large
number of attributes enables a complex optimization of a shortest path calculation by con-
sidering multiple factors. The attributes allow for example the preference of paved roads
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Table 6.4: Graph size for Test Regions (data source OpenStreetMap: Heidelberg, Baden-
Württemberg: 11-2013, Study site 02-2014)

Area # edges Memory
edge weight
[MByte]
(Coffey [2011])

Memory
edge weight
[MByte]
(Häubl et al.
[2008])

Memory
compressed
edge weight

[MByte]

Study site 508,000 137.589 98.831 4.542

Heidelberg 24,000 6.500 4.669 0.215

Baden-
Württemberg

2,370,000 641.899 461.082 21.189

or the degradation of roads with a rough surfaces or a low smoothness-type. These calcu-
lations and weight functions are mainly based on hypotheses which weight the influencing
attributes. Considering the available telemetry data, an empirical approach is presented
that is able to fulfill the requirements of more realistic routes. These approaches and the
workflow of the empirical edge weight calculation is described in detail in the following
sub chapters.

6.4.1 Calculation of Edge Weights

With the available telemetry data and with the map matched measurements in section 3.2,
a computation of edge and vehicle individual weights is possible. The average driven speeds
for every combination of highway-, track-, surface- and smoothness-type combination is
made for each individual vehicle and generalized for every vehicle type. The result is a
vehicle and vehicle type specific speed profile for every driven attribute combination.

Based on the matching, the average speeds for each vehicle and every road type com-
bination are calculated. By using the relevant OpenStreetMap classification of highway
types, track types, surface types and smoothness types we get a four dimensional matrix
for each vehicle with different average speeds for every combination.

The averaging is processed in two tiers. First, the average speeds for every individual
machine is calculated. That represents the regional influences and the driving style. With
this, an exact route prediction for each individual machine is possible. Second, for new
vehicles that are not measured by the telemetry system, the average speed of all vehicles
of the same type and configuration is calculated. Uncared-for the driver style and the
region where the machine is located. This allows an average prediction for this machine
type without having real measurements, only using the existing data of similar machines.
A sample data set is given in table 6.5.

Within the routing architecture the user is able to request the general speed for a
vehicle type as well as the individual speed for one specific vehicle and starts routing
with these attributes. The client fills the requested parameters pulled from the vehicle
service into the more detailed < ExtendedRoutePreference > attribute of the extended
OpenLS Standard [Mabrouk et al., 2005] and builds an extended route request for the
MARS ((M)ulti(A)ttribute(R)oute(S)ervice) routing engine.
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Table 6.5: Average speeds for Jaguar 950 forage harvester (table reduced – some sub class
values are omitted)

avg-speed [km/h] #measurements highwaytype tracktype surface smoothness

14.4446807 285 Cycleway
...

...
...

...
...

...
6.836541667 48 Path

...
...

...
...

...
...

38.05867119 2357 Primary
...

...
...

...
...

...
20.20037853 1733 Residential

...
...

...
...

...
...

19.014 1 Road
34.87330214 9383 Secondary
39.94418212 604 Secondary Asphalt
23.14911111 54 Secondary Asphalt Good

34.57616 25 Secondary Paved
30.79133333 3 Secondary Link
5.15016129 1054 Service

...
...

...
...

...
...

32.77981576 16457 Tertiary
...

...
...

...
...

...
8.690729663 4868 Track

...
...

...
...

...
...

9.191655172 1305 Track Grade 1
6.264727273 22 Track Grade 1 Asphalt
30.59836364 33 Track Grade 1 Concrete
8.157356046 2671 Track Grade 2
5.552853933 89 Track Grade 2 Concrete

5.848875 32 Track Grade 2 Earth
5.655593256 949 Track Grade 2 Gravel
6.540298851 87 Track Grade 2 Paved
9.266330709 381 Track Grade 2 Unpaved
5.443401373 3204 Track Grade 3

3.11 17 Track Grade 3 Grass
7.52084058 207 Track Grade 3 Gravel

6.033188406 69 Track Grade 3 Ground
15.68950617 324 Track Grade 3 Paved
5.012376087 920 Track Grade 4
4.430212766 47 Track Grade 4 Very Bad
9.393142857 14 Track Grade 4 Asphalt

32.11 2 Track Grade 4 Grass
4.494826087 138 Track Grade 4 Gravel
6.504833333 12 Track Grade 4 Ground
5.428928571 28 Track Grade 5
3.416163265 245 Track Grade 5 Grass
1.326888889 18 Track Grade 5 Ground
3.603530435 115 Trunk
22.86066667 6 Trunk Link
20.25423516 16261 Unclassified

...
...

...
...

...
...
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6.4.2 Vehicle Data Integration

The for each individual vehicle and for every aggregated vehicle group calculated speeds are
stored within a database table. This database is requested by a VehicleService that pro-
vides the speeds for each vehicle via REST-interface. The front end prototype is able to re-
quest the needed vehicle parameters and generates the request for the MARS-RouteService
including the < ExtendedRoutePreference > . The service can be requested using fol-
lowing request paths:

• by vehicleID (for a vehicle type and specific configuration)
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle
/{v id}

• by vehicleID and machineID (for a specific machine)
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle
/{v id}/{ma id}

• basic list of vehicles (including vehicle type and manufacturer)
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle
id list

• complete vehicle list (including complete vehicle information and average speeds)
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle
list

6.5 Infield Routing Graph generation

The graph generation for polygons is a typical problem for indoor route planning and
pedestrian routing in open space. Straight forward approaches are grid generation and
routing on polygon edges. Visibility graphs that calculate the direct connection of the
graph edges, triangulation and generalization methods are further approaches with usually
higher computation complexity but less edge complexity. The methods presented in this
sub section were integrated in the MARS routing system. Due to constantly changing
field conditions, the focus lies on the dynamic computation of the infield graph within
each service request. This allows the implementation of changing drivable areas for the
route graph generation which is needed during working processes such as harvesting or
seeding. The generated route graph will then be integrated in the road network graph and
enables seamless routing from the road network to the destination in the field.

6.5.1 Rectangular Grid Method

This approach is based on the indoor grid graph-based model of Li et al. [2010]. The
applied approach is simplified in the way that the step length parameter is set to a proper
value for agricultural vehicle navigation (e.g. 10 m). Further in this first approach only
rectangular connections were used. Therefore the grid creation is very simple and the cre-
ated edges were spatially intersected with the field geometry that only edges completely
within the field polygon were used for routing. The grid is computed independently from
the field orientation oriented in a rectangular way in north-south/east-west. Limitations of
this approach are the mentioned orientation, the for machinery usually not applicable 90◦

http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle/{v_id}
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle/{v_id}
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle/{v_id}/{ma_id}
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle/{v_id}/{ma_id}
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle_id_list
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle_id_list
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle_list
http://<IP-address>:<port>/VehicleService/rest/vehicleservice/vehicle_list


6.5. Infield Routing Graph generation 105

turns, the missing connections from field gateways to infield graph and most notably miss-
ing connections infield when the polygon structure does not allow a rectangular connected
set of edges (e.g. tube structures). The number of edges depends directly on polygon size
and extend. Therefore the calculation time using this approach and the following shortest
path calculation grow with the polygon area.

(a) Infield Graph (b) calculated route

Figure 6.1: Infield routing using a grid graph

6.5.2 Oriented Diamond Grid Method

This approach is an extended grid method from Li et al. [2010]. At first a grid with 45◦

connections (instead of 90◦ rectangular connections) is created. This represents a more
realistic and smooth turn for machines. The resulting grid consists then of diamonds.
Afterwards the grid will be rotated that the orientation of the parallel lines is in main
working direction. This is realized by a translation and rotation operation. To guarantee
that the rotated grid will cover the whole field geometry the initial grid is build using the
extended envelope of the field. In the final step, only these edges will be saved where both
nodes lie within the field polygon.

The steps for this rotation are as follows:

1. Translate the coordinate system to the rotation point (M1)
2. Rotate around the point of origin of the new coordinate system (M2)
3. Translate the coordinate back to the original system (M3)

This leads to the following equation (with (x1, y1) as rotation point):

M = M1 ∗M2 ∗M3 =





1 0 x1
0 1 y1
0 0 1



 ∗





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 ∗





1 0 −x1
0 1 −y1
0 0 1



 (6.1)

The 45◦ turns are more applicable and realistic to route then using only 90◦ turns.
The possible graph interruptions within tube structures are decreased but still remain.
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(a) Infield Graph (b) calculated route

Figure 6.2: Infield routing using a diamond graph

6.5.3 Delaunay Method

The Delaunay triangulation [Delaunay, 1934] is also an option for generating a topology
within a field boundary. Using this approach, it is possible to integrate the destination
point into the graph calculation which will improve the correct way finding. The resulting
grid is much smaller than the grid approaches but limitations regarding the tube effect
still remain. Further this method does not support orientations (like main working direc-
tion). Close edges with long straight boundaries will have an essential affect on generating
a routing graph. These tubes will cut off the graph and a route through the polygon
would not be possible. The triangulation method also does not include the main working
direction. Therefore a specific directional routing is not realizable with this approach.

(a) Infield Graph (b) calculated route

Figure 6.3: Infield routing using a Delaunay graph

6.5.4 Voronoi Method

The Voronoi diagram [Voronoi, 1908] is the dual graph of the Delaunay triangulation with
the same points. Like the Delaunay method, it does not concern the driven paths or the
main working direction of a field. Close edges with long straight boundaries will break the
Voronoi structure and lead to a less applicable graph structure with many turns instead of
a straight edge. Integrating the field boundary as further edges will improve the resulting
graph, but the tunnel effects from long nearly parallel edges will still be problematic for
feasible graph calculation.
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(a) Infield Graph (b) calculated route

Figure 6.4: Infield routing using a Voronoi graph

6.5.5 Line of Sight Method - Visibility Graph

The visibility graph is first mentioned in Lozano-Pérez and Wesley [1979]. They point
out that in the case of motion in the plane with arbitrary polygonal objects, the shortest
collision-free path connecting any two accessible points has the property that it is composed
of straight lines joining the origin to the destination via a possibly empty sequence of
vertices of obstacles. This approach is widely used in robotics [De Berg et al., 2008]. Also
the routing of pedestrians through building structures [Goetz, 2012] is an application for
the visibility graph. This means for the infield graph generation: Taking the n shape-
points of the boundary polygon, the field connection points and the destination point a
set of ray from each point to each other point as edge set is calculated and tested for
intersection with the field polygon. Every edge which is within the polygon will be part of
the infield routing graph. This method strongly depends on the number of shape points.
The complexity for its calculation is n2 . This method will give the shortest euclidean
path from the field connection point to the destination using the shape points as nodes.
Hence the destination point affects the graph calculation directly, this approach will not
be a solution for static cases (e.g. precomputation of infield graphs). Also for complex
geometries the costs for computing the graph and the shortest path increase rapidly.
Compared to building structures, field structures can be more complex due to size and
irregular boundaries and obstacles.

(a) Infield Graph (b) calculated route

Figure 6.5: Infield routing using a visibility graph
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6.5.6 Straight Skeleton Method

The straight skeleton algorithm is a computational geometry algorithm that has its origins
in generalization of polygons. It represents a polygon by its skeleton. The straight skeleton
can be seen similar to a medial axis of a polygon but with only straight segments instead
of parabolic curves. The first definition of a straight skeleton for simple polygons is given
by [Aichholzer et al., 1995]. Felkel and Obdrzalek [1998] show an algorithm for a straight
skeleton implementation that computes a straight skeleton for a polygon in O(nm+nlogn)
time. Although this algorithm is discussed later on, there exist basic implementations
that are feasible for computing an infield graph structure for field polygons. A common
problem of the straight skeleton computation for the infield route graph is the fact, that the
skeleton is derived by angles between polygon edges. Therefore, field connection points
on straight edges are not considered in the original algorithm. Also the consideration
of a main working direction will be only integrated indirectly as the straight skeleton
algorithm produces longer edges in direction of the longest line within the polygon. These
are approximately parallel to the longer polygon borders that are usually representing the
main working direction.

(a) Infield Graph (b) calculated route

Figure 6.6: Infield routing using a straight skeleton graph

6.5.7 Method Comparison

The presented approaches follow different strategies. To compare them, a tabular com-
parison is made 6.6, regarding different attributes.

The attributes that specify the different approaches are explained as follows:

• Scalability: Factors that will increase the computational effort like polygon size,
polygon complexity (complex boundary or simple polygon), number of edges and
shape points and the number and complexity of holes.

• Computation complexity: The computation complexity for graph calculation
with a given polygon and gateway points.

• Considering agricultural requirements:

– Considering connection points or field gateways

– Avoiding zig-zag routing

– Prefer routing on paths in main working direction
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– Targeting a destination point in field

• Method specific issues: Issues that are not handled by the above points

6.6 Integration into MARS Routing

The data for routing agricultural vehicles and the presented algorithms for infield route
graph calculation are integrated into the MARS routing service. This prototype service is
set up as a web service with an extended (but backward compatible) standardized OGC
OpenLS interface. An example for the extension of the limited OpenLS interfaces to enable
multiple attribute routing and a second extension that integrates fields as polygons with
gateway points for routing destination will be given in this sub section. The route service
architecture with its components and the integration in the overall context is showed in
figure 6.7 .

TeleAgro+ DB

Vehicle-DB

Field DB

OpenStreetMap-

DB

MARS DB

MARS Routservice Vehicle Service Field Service

Route Graph 

Generator

XML/PBF-file

Ext. OpenLS-Interface
REST-Interface

REST-Interface

Figure 6.7: Service Architecture: Route-Service, Field-Service and Vehicle-Service

6.6.1 OpenLS Extension for Routing heterogeneous Vehicles

The standardized OGC OpenLS interface [Mabrouk et al., 2005] exists since 2005 through
the collaboration of different involved parties. The interface is designed generic and, like
other interfaces for spatial data populated by the Open Geospatial Consortium (OGC).
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Table 6.6: Comparison of infield routing graph computation methods

method scalability computation complexity
considering agricultural

requirements

Rectangular Grid

• polygon size

• polygon structure O(n2) + overlapping − delete

• can be interrupted in small connecting
tube structures

Oriented
Diamond Graph

• polygon size

• polygon structure O(n2) + rotation + overlapping − delete

• routing in working direction

• shortcuts to neighbor paths in 45◦ angle

• less zig-zag-routing

Delaunay Graph
• polygon shape points

O(nlogn), (n = #points)

• concerns gateway points

• concerns destination point

• thin edge density in open space

Voronoi Graph

• polygon shape points

• large but equal dis-
tributed polygons in
open space

O(nlogn), (n = #points)

• concerns gateway points

• concerns destination point

Visibility Graph
• polygon shape points

O(n2)

• concerns gateway points

• concerns destination point (but also
needs it for proper calculation)

• only straight lines within open space

• can increase route length through de-
tours

• various edge density within the polygon

Straight Skeleton
Graph

• polygon shape points

• polygon structure O(n3logn)

• not concerning connection points (if
they are located on a straight boundary
line)

• not concerning destination point
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The common routing purposes are represented in the interface specification. The ser-
vice interfaces are initially implemented in XML. This interface does not consider mul-
tiple attributes and vehicle types. The specification only allows a single tag to set a
< RoutePreference >. This tag is settable e.g. with fastest, shortest, pedestrian, car.
However, this single tag is not able to fulfill the requirements of multiple attributed vehicle
information integration. Therefore, an extension without tackling the original interfaces
is needed. To maintain backward compatibility, the presented solution is the extension
of the service interface with a multiple attribute enabled RoutePreference. The proposal
is an extended specification with an < ExtendedRoutePreference > tag that consist all
information on the routable vehicle. This < ExtendedRoutePreference > consists of
the empirically computed speeds and the restrictions that limit the routing of the vehicle.
Listing 6.1 shows the < ExtendedRoutePreference > part of an example for a possible
multiple attribute routing.

Listing 6.1: Extended RoutePreferences for OpenLS Specification

<xls:RoutePreference >Fastest </xls:RoutePreference >

<xls:ExtendedRoutePreference >

<xls:width unit="m">2.60</ xls:width >

<xls:height unit="m">3.10</ xls:height >

<xls:weight unit="kg">6500</ xls:weight >

<xls:axleload unit="kg">3500</ xls:axleload >

<xls:maxspeed unit="km/h">40</xls:maxspeed >

<xls:oneway >false </xls:oneway >

<xls:onewayBike >false </xls:onewayBike >

<xls:highwayTypes >

<xls:highwayType >primary </xls:highwayType >

...

<xls:highwayType >track </xls:highwayType >

</xls:highwayTypes >

<xls:trackTypes >

<xls:trackType >grade1 </xls:trackType >

</xls:trackTypes >

<xls:surfaceTypes >

<xls:surfaceType >unpaved </xls:surfaceType >

</xls:surfaceTypes >

<xls:smoothnessTypes >

<xls:smoothnessType >excellent </xls:smoothnessType >

</xls:smoothnessTypes >

<xls:roadSpeeds >

<xls:roadSpeed >

<xls:highwayType >primary </xls:highwayType >

<xls:trackType >grade1 </xls:trackType >

<xls:defaultSpeed unit="km/h">40</xls:defaultSpeed >

</xls:roadSpeed >

<xls:roadSpeed >

<xls:highwayType >primary </xls:highwayType >

<xls:smoothnessType >good </xls:smoothnessType >

<xls:surfaceType >asphalt </xls:surfaceType >

<xls:avgSpeed unit="km/h">37.5</ xls:avgSpeed >

</xls:roadSpeed >

...

</xls:roadSpeeds >

</xls:ExtendedRoutePreference >
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6.6.2 Integration of Field Boundaries and Gateways

The integration of polygonal destinations is the second lack that is not supported by
the origin OpenLS specification. The proposal is the integration of an optional < xls :
FieldRoutingPreference > section. The integration of the field boundary in the service
interface allows the in-time calculation of the route using the most recent data (e.g. from
field service). This is also enabled by the architectural design of the framework where
single processes are implemented as services with specified interfaces. Therefore it is
possible to compute an infield route graph which concerns e.g. the last known or predicted
field boundaries. An example is the permanently changing drivable field area during the
harvesting of a field. The algorithmic computation of the infield routing graph for the
destination field is integrated into the MARS route service. The alternative approaches
for infield route graph generations are changeable by setup the service on server side. An
example of the extension for a route request with entry point(s) and a polygonal field
geometry is given in 6.2.

Listing 6.2: Field Routing Preferences for OpenLS Specification

<xls:FieldRoutingPreference >

<xls:EntryPoint >

<xls:Position >

<gml:Point srsName="EPSG :4326">

<gml:pos >12.427874285469484 48.51023139457032 </gml:pos>

</gml:Point >

</xls:Position >

</xls:EntryPoint >

<xls:PassableFieldArea >

<gml:Polygon srsName="EPSG :4326">

<gml:outerBoundaryIs >

<gml:LinearRing >

<gml:coordinates >

12.427836051186633 ,48.51024710697691

12.42829140517879 ,48.51156634048899

12.42909671557971 ,48.511451882459525

12.42880981357967 ,48.50984693860695

12.427836051186633 ,48.51024710697691

</gml:coordinates >

</gml:LinearRing >

</gml:outerBoundaryIs >

</gml:Polygon >

</xls:PassableFieldArea >

</xls:FieldRoutingPreference >

6.7 Comparison between driven and calculated routes

To evaluate the calculated routes a comparison tool has been developed that extracts a
subset of continuous trajectory segments from the telemetry data. Origin and destination
of these trajectories were used as input parameter for the route services (MARS and Open-
RouteService), that calculate the routes (geometry and travel time) for further analysis.
The trajectory segments were cut by two conditions:

1. ∀mi ∈ M∃mi+1|(t(mi) − t(mi+1) < 16s), with mi as single measurement of one
machine, t(mi) as time stamp of mi and M as a set of all available measurements
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2. The offered working mode parameter is switched from/to fieldwork. Afterwards the
resulting trajectories were filtered by length and spanning bounding box to exclude
short snippets and scattered measurements from machine halts.

After these steps the evaluation set consists of 160 real driven trajectories. The routes
were calculated with the MARS routing engine using the available vehicle parameters and
restrictions. For comparison, the routes from start to destination were also calculated by
the OpenRouteService [Neis and Zipf, 2008] with the preference “fastest” route which is
defined with a velocity profile for cars. As shown in figure 6.8 there is a strong correlation
between the driven route length and the calculated routes. The differences between the
driven trajectory and the calculated routes show that in nearly all cases, the calculated
routes by the MARS routing were shorter or the same length as the routes chosen by the
driver. The longer routes that are calculated by the OpenRouteService engine are mainly
because of the limited road data for cars. Due to the fact that the “fastest” route option
is only defined for cars, the used road network is limited to public accessible road network.
Figure 6.9 shows the predicted time, calculated by the two route services and the time
that the drivers needed to get from origin to destination. Differences are mainly based on
different routes. Especially in the case of the OpenRouteService the differences are caused
by the overestimated speed profiles for agricultural vehicles (the speed profile is set for
common cars per default).

Figure 6.8: Comparison between calculated routes (ORS, MARS) and real driven trajec-
tory - random order

Figure 6.9: Comparison between real driving time and the predicted time from the route
services (ORS and MARS) - random order

Figure 6.10(a) shows an example of a calculated route that is completely different
from the driven one. While the drivers choice was to take the main roads to reach the
destination, the routing algorithm suggested a route on tracks. Figure 6.10(b) gives an
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example of a wrong driven route by the driver. The dead end part in the western part and
the u-turn are indicators for a wrong direction. The calculated route takes a completely
different direction in the northern part and goes directly to the destination. An example
of three routes (driven, ORS, MARS) is shown by figure 6.11. The driver takes a route in
the south while the MARS router suggests a route that is more direct, from east to west.
The OpenRouteService calculates a route that prefers the higher level road types, that is
mainly caused by the implemented speed profiles.

(a) Infield Graph (b) calculated route

Figure 6.10: Different routes (left) and lost way v.s. correct calculation (right)
(map data: c©OpenStreetMap contributors)

Figure 6.11: Driven route v.s. OpenRouteService v.s. MARS
(map data: c©OpenStreetMap contributors)

6.8 Conclusions

This chapter presented solutions for each of the four research gaps. A data source for
routing agricultural vehicles with its manifold attributes has been analyzed if it fulfills
the requirements for this kind of route planning. The very flexible set of attributes and
the “power of the crowd” that enlarges the free available OpenStreetMap data set over
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the last years demonstrate the large potential of this data. However the quality assurance
is at this time only made by the mappers themselves. There exist algorithms and tools
within the set of editing tools that reduce editing errors during the mapping session and
support the mappers which reduce the number of unmeant errors. However the error
source through different opinions and democratic mapping will still be part of volunteered
human generated data. There is no explicit quality guarantee for the free data set. The
upcoming popularity of the data set and by this, the growing use within commercial
applications2 will presumably bridge the gaps of concerns. The vast set of attributes is
not available in any other data set and the opportunity to easily update and maintain the
data by customers is only in the beginning within more bounded products of established
commercial mapping companies3. The various sets of attributes and the integration of
general describing attributes for geographic data (e.g. surface and measurement-tags)
make the data usable for a large set of applications and generate a domain comprehensive
benefit. Agricultural mappers edit geographic data that is also needed by emergency,
disaster response units, land use planning and tourists. Automatic quality assurance
processes and continuous data quality analysis together with a close communication with
the crowd and the close cooperation of application, data and the crowd will be the keys
for a successful story in the future.

As second part, the challenges for the integration of a heterogeneous data set to route
heterogeneous vehicles are analyzed. Through the opportunity to integrate the multiple
attributes for an adapted in time route calculation, the presented approach is generic and
provides a solution for a wide field of applications not only restricted to the demonstrated
use case of agricultural routing. The provided approach classifies the data to a restricted
but representative set of attributes that is not limiting the practical use cases. That is
realised amongst others with the considering of existing classifications (e.g. for weight
limits). The technical representation of the edge weights as a bit array decreases the
needed memory for the graph structure. Further improvements, based on this approach,
could be made by integrating compression methods that will further decrease the needed
memory with the commitment of computation time.

The analysis of the available telemetry data enables an individual vehicle- and a more
general vehicle type specific routing. The connection of the movement data through map
matching with the road data and the calculation of average speeds for each road class
(including attributes) and vehicle gives the input for the implemented route service. The
usage of real movement data for route predictions is coming more into the focus of traffic
planning companies. This is mainly caused by the availability of movement data (e.g.
through smart phone applications) and the availability of on-board sensor in cars and
trucks. In the specific use case of agricultural routing, the shown approach is limited to
the available data. With the underrepresentation of several road classes, the influence
of outliers is too large and average speeds are not representative for the vehicle and the
road type. However the prediction of the routes including the empirical edge weight can
improve the predicted routes and thereby increase the efficiency of a harvesting campaign
or a logistic chain. Further improvements can be made by analyzing the spatial correlations
and include further attributes into the analysis process. Candidates are the integration
of incline, the vehicle motorization and the load weight. Furthermore, the structure of
the road network (curviness, crossings and connectivity) can be influential factors for the
average speed calculation.

2e.g. https://www.mapbox.com/, (accessed 2016/07/16)
3e.g. http://mapcreator.here.com/, (accessed 2016/07/16)

https://www.mapbox.com/
http://mapcreator.here.com/
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In the fourth part, different approaches for infield route graph generation are analyzed
on their applicability for calculation of infield routes. Some of the approaches are used
for routing pedestrians in open space which is a similar problem but without the addi-
tional restrictions given by the routing of agricultural vehicles on fields. Therefore most
approaches are able to calculate a feasible route from the road to a point within the field.
Especially the simple grid based approach lacks a realistic guidance. The more complex
approaches generate connected edges which are not drivable by farm vehicles. To integrate
the requirement of routing in the field working direction, it needs the improvement that
is only fulfilled by the new approach of the oriented diamond grid, which is introduced
for the first time. Through the availability of the telemetry data and the previous clas-
sification step, the mean working direction has been calculated and can be integrated in
the grid computation process. Through this, a route graph strongly dependent on the real
world can be generated. With this, the harvest transporting vehicles are able to make use
of the machine track directions and avoid to cross these tracks which usually causes less
comfortable driving, higher soil compaction and higher risk of bog down. The connections
between the parallel edges in working direction are made by 45◦ edges which guarantee
a more smooth driving from edge to edge. The concept of oriented graph structure can
also be used for other approaches if these are able to integrate a parameter for orientation
in their edge calculation. The transferability of the presented approach to other domains
strongly depends on the requirements. All of these approaches can generate a connected
set of edges (e.g. for pedestrian routing). Use cases where additional requirements are
needed, in case of structured surface, inclines or slopes can be served by an oriented graph
where edges are aligned with the orientation of the surface structure or related to the
slope. Through the introduction of field gateway points, a seamless routing from road to
field can be realized for all of the presented infield graph algorithms. A future improve-
ment of the field gateway points will be a vehicle dependent classification of the points.
For further improvements the classification of field boundaries as line string geometries to
enable a point independent crossing of the field boundary depending on the target point
within the field.

The presented approaches are integrated in the MARS route service which is imple-
mented as a demonstrator route service. The OpenLS interfaces of the route service are
extended to integrate the additional functionality. The service oriented architecture with
open service interfaces is easily expansible. Through the modularization, single services
are exchangeable and allow specific improvements of the whole framework. The realiza-
tion of applications like forestry-, pedestrian-, wheelchair-, emergency- or bicycle routing
is in most cases straight forward and the framework offers the functionality also for these
domains.



Chapter 7

Conclusions

7.1 Summary

This work represents a workflow for processing agricultural telemetry data (cf. figure 2.8
and figure 3.8)). It starts with methods for preprocessing real world data in chapter 3,
proceeds with new methods and algorithms for geographic data extraction of road- (chap-
ter 4) and field geometries (chapter 5) and ends-up with the routing use-case in chapter 6.
Within these parts a set of existing, extended and fundamentally new methods and algo-
rithms for each research question have been analyzed. The conclusion of each chapter will
be set in the broader context and connected with the research questions from section 1.3.

Each chapter provide methods and algorithms as input for services. The services are
then integrated as part of the whole data processing chain within the service oriented
architecture. The data preprocessing step is following principles of foregoing and ongoing
research in the domain of movement analysis and data mining. The analysis of real
object movement data from a commercial product comes along with challenges in terms of
system evolution, data heterogeneity and data defects. These challenges that come with
real world data have to be considered in the processing steps. Especially due to the fact
that the output data of the used algorithms can be very sensitive on corrupt data. Many
of the errors are only visible during the work with this data, which makes it even more
complicated. Some of them are also not known beforehand and will be seen earliest during
the processing or by checking the results.

In chapter 3 the data preprocessing is described. Several steps that handle the data
errors and outliers are explained. The exclusion of obviously inaccurate measures, origi-
nated from GPS hops or the internal data storage process, the null values in the raw data
originating from GPS hardware (e.g. when GPS hardware has a delay in positioning)
is the main needed step for a clean data set. The subsequent data classification step to
distinguish between different work states is then able to generate the needed data sets
for the road- and field extraction algorithms in chapters 4 and 5. The first approaches to
classify data have been done in Lauer et al. [2014] using a knn-classifier. The presented
approach in chapter 3 extends the classes (e.g. with a headland class) and uses another
classification approach (Random Forest). Using measures such as spatio-temporal density,
speed and acceleration (difference) the presented classifier is able to detect infield and road
data. The infield data can be further classified into headland and infield working. The
classification accuracy is represented within the figures in subsection 3.5.3. Another ad-
vantage of the presented Random Forest approach is the integrated calculation of variable
importance that shows the impact of each single variable on the classification. Three tiered
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data classification demonstrates the impact of the machine type and the single machines
on the classification process. It has been shown in chapter 3, that general classification is
possible, but a finer treatment will improve the classification results. To handle each ma-
chine separately, it has to be guaranteed that a representative set of training data for each
single machine is available. Additionally, a solution for the extraction of a mean working
direction has been presented. While average and median method are affected by the field
geometry and the headland processing, the histogram method reduced this influence and
gives proper results which are used for infield routing graph generation. With these steps,
this chapter answered the first question on classification of agricultural movement data
and with the presented methods, the data preparation ensures the input data for the later
chapters.

Chapter 5 makes use of the infield data. As methods for field boundary computation,
following algorithms are developed, extended, parametrized and analyzed: α-shapes, a
raster method and the blow-shrink algorithm. These methods were confirmed in a first
step by visual analysis. A Jaccard-Index based quality assessment then enables the compu-
tational verification of the methods. The developed algorithm for working width detection
gives proper results for the reference machines. However, a quality measure can only be
made for this subset of machines due to the missing or not appropriate parameter set-
tings by the machine driver for the other machines within the telemetry data subset (e.g.
the working width is not necessarily equals to the attachment width). Nevertheless, it is
expected that other machines will produce similar results. The working width parameter
can then refine the blow shrink parametrization. The provided method enables the com-
putation of up-to-date field geometries based on agricultural telemetry data and therefore
answers the research question on the extraction of field geometries for field boundaries.
Furthermore it gives the content for the field service component and the input data for
infield routing algorithms.

Subsection 6.1.4 in chapter 6 presents different approaches for routing graph generation
within polygonal geometries. Deriving the field access points from telemetry data using the
intersection points of trajectories and field polygons gives a set of truly drivable gateways.
In case of multiple gateways for a field boundary, gateway points that are spatially close
to each other will be aggregated to a single gateway point. Besides common approaches
for routing graphs within polygons, an extended grid approach, the rotated diamond grid
approach is presented. This new approach uses the mean working direction, which has been
calculated by the algorithm from section 3.6 to rotate the grid. Additionally, 45◦ outgoing
edges from the main lines connect these. This newly oriented diamond grid approach
computes a routing graph that involves the requirements for agricultural routing. Using
this algorithm, vehicles are guided mainly on working direction that prevents machine
driver from inconvenient line crossings. Compared to other approaches which precompute
graphs for open spaces, the just-in-time calculation of the infield route graph for the
target field during each route request keeps the in memory data low. Due to the fact, that
the conditions for drivable sections of a field underly a constant change (e.g. during the
harvest) and a crossing of other fields than the destination field is not typical, the in time
calculation and integration of the up-to-date infield graph fulfills the requirements for the
agricultural domain. These findings and the resulting algorithms are the answers for the
research question on infield graph generation.

Computing road geometry information to close the gap of an existing base data set
gives a solution for the research question on road geometry generation. Chapter 4 eval-
uates algorithms for road network generation from GPS trajectories. For each presented
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algorithm the influence of the parametrization for the agricultural telemetry input data has
been given. Each of the presented approaches is able to provide a road network. The best
results in case of the agricultural telemetry data could be achieved by using the Fréchet
distance based approach. This algorithm is able to scale the presented use case. The
threshold for the telemetry data is the only variable that has to be set. The estimation of
this threshold is done by visual check. With the hereby derived threshold, the algorithm
is able to provide a feasible road network geometry. This geometry is then used as a new
data layer for visual comparison and data integration. The presented approaches show
the possibilities but also the limits of an automatic extraction of a road network geometry
using the agricultural telemetry data set.

The closing research question is treated in chapter 6. At the beginning, a description
of the OpenStreetMap data structure and road attributes is given. The extraction of
a routing ready road data set for agricultural vehicles has been given. Furthermore, a
route service for agricultural vehicles based on OSM has been implemented as a demo
case. The attribute diversity of OpenStreetMap as a geographic data set, generated by
volunteers, provides verifiably feasible data set for routing the agricultural vehicles. With
the aggregated velocities for each driven road attribute combination, extracted from the
telemetry data, the route service shows route estimations close to reality.

7.2 Discussion of the Methodology

The thesis consists of a set of methods within a couple of different research areas. Within
each chapter different methods to solve the initially defined research questions are ana-
lyzed. Although it has been given a state of the art of the different research areas and an
overview of existing solutions, a subset of methods had to be selected for further investiga-
tion. Ancillary methods that have not been analyzed in this thesis are also worthy of study
and can hold potential for further improvements. In this subsection, a summary of these
not prioritized methods will be given with potential ways of improvement. Due to the fact,
that this work has been realized during a longer period of time, there were upcoming new
methods that could not be considered, but have potential for further improvements. Fur-
thermore, the continuous development of the telemetry services, the data, the agricultural
machinery and processes modify the requirements and raise new possibilities.

In section 3.2 a straight forward approach for map matching has been presented. For
the given use case, the method provides quite reasonable results. The implementation of
more sophisticated methods could improve the matching and increase the reliability (e.g.
prevent wrong matching on access roads or parallel roads). Variants of Hidden-Markov-
Model map matching done by Newson and Krumm [2009] and the additional integration
of semantic information, such as road and vehicle attributes can improve map matching
and subsequent analyzes. A post processing step to increase the positional accuracy of
GPS positions could also help. However, this usually needs the raw GPS data including
additional measures, such as number of used satellites and dilution of precision parameters
(HDOP, VDOP). Because the number of agricultural vehicles with RTK steering systems
is increasing, the positional accuracy of telemetry measurements for new integrated RTK
enabled vehicles will improve in the future.

Regarding classification algorithms, mainly two methods have been used with the
agricultural telemetry data. The results of the knn-algorithm are presented in Lauer et al.
[2014]. The Random Forest algorithm is described in section 3. These methods and their
results are transparent and the influences of the input parameters can be investigated
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through integrated measures such as variable importance. Classification using Neural
Networks with a larger set of attributes could potentially increase classification accuracy.
An individual test and training set for each machine with the integration of further,
machine specific attributes could be beneficial in case of classification. On the other hand,
it needs an expensive effort to collect this training data. Additionally this separation can
restrict a possible portability.

The methods to compute the field geometries from chapter 5 return proper results.
However, the presented approaches make only use of the telemetry data set. Improvements
are likely if a combination of further machine trajectories of different work processes (e.g.
seeding, fertilizing) within one harvesting year on one field would be considered. With
this, also the overlapping polygons, that are results from discontiguous working or multiple
machinery on one field, can be aggregated. Further clump and sieve techniques can smooth
the data, which eliminate outliers on the one hand. On the other hand, detection of small
geometry holes that represent obstacles such as trees, power pylons, large rocks or wet and
muddy places is more complicated. Concave hull functions with later infield refinement
such as cutting holes could be another promising approach that has not been investigated in
this section. The geometry extraction of the holes is likely the most complex part and needs
a deep investigation. In this case, the accuracy assessment should be improved through a
larger number of various reference fields to increase the robustness of the algorithms.

The extraction or refinement of a road data set using movement data of vehicles in
chapter 4 has been improved within recent years. There exist several approaches to handle
this question. Most of the algorithms are related to the input data and are therefore highly
data sensitive. To process other kind of movement data, they need to be set up properly.
Due to the fact that many of them are not publicly available or need a large investigation
on the data preparation, the focus lies on a subset of algorithms, that are well described.
Further algorithms such as the principal curve approach used in Wang et al. [2013] could
improve results. However these methods need further investigation on the algorithmic
and interface implementation to integrate them into the workflow. The set of raster based
approaches have been limited to smaller data sets and due to the fact that they are
using mainly higher point densities and smaller spatial extension, most of them are not
applicable for the agricultural telemetry data in wide rural areas to extract usable results.

Most commercial application related developments have been made in the research
field of route planning (cf. chapter 6). Route planning is not a new topic. Since (publicly)
available road data exists, there has been a lot of work done by companies that provide
market ready solutions for their customers. The algorithms that are used for the route
planning demonstrator are mainly standard shortest path algorithms. The data has been
optimized at the graph generation level, but there is still potential for optimization in the
shortest path algorithm. During the thesis, the most promising approach developed is
the Graphhopper project that provides a configurable open source component for route
planning with OpenStreetMap data. The developments within the context of the MARS
routing had also an impact on the OpenRouteSevice that provides a large number of
vehicle configurations such as heavy vehicles or agricultural vehicles. At the time of the
realization of the MARS prototype, the OpenLS interface has been one promising approach
to provide an open and well documented interface. Although this interface has benefits
in terms of structure and documentation, it has several limits that result in the provided
extension. Furthermore, the XML implementation of such an interface is not up-to-date
anymore and from the technologically point of view, a JSON implementation would be
far more up-to-date. However, a simplified interface will not have a big influence on the
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service and the algorithms itself but it will simplify the ability to connect further services.

The workflow is embedded in a component based software. The algorithmic results are
integrated in the corresponding services which are accessible via standardized web service
interfaces. From end user perspective, this allows a comprehensive view on the process
from data acquisition, data cleaning and preparation, algorithmic data and knowledge
extraction to end user services that use this data. From the developer perspective, each
component is replaceable. This increases the flexibility and the independent replaceability
of each component. The usage of standardized web service interfaces and the semantically
structured components allows the integration of further algorithms to improve each com-
ponent of the whole workflow separately. Each component also works as a stand alone
process, if the needed input data is provided in the corresponding format.

7.3 Constraints of the presented Approach and resulting

further Research Questions

The workflow and its single components show a reliable first approach on the analysis of
agricultural telemetry data for the improvement of routing relevant geographic data. The
data set used is larger than the example data sets that are used in most of the related
research approaches. The presented approach demonstrates, that a relational database
can handle this amount of data well. However, one should keep in mind that the used
data is only a subset of the whole telemetry database and the size of movement data is
growing rapidly. Intelligent storage of movement data from several thousand machines
with a growing number of sensors and higher sampled measures will be an inevitable
requirement for the near future. Storing this data and making it searchable is therefore
a key requirement to get the required attributes used by a machine learning approach.
Divide and conquer, parallelized algorithms and intelligent indexing are current strategies
to manage this. Recent development on “Big Data” frameworks, such as Apache Spark1,
promises to manage these challenges in near future.

Since only movement parameters are used for classification, the presented algorithms
are generic, in that they can easily be used for other telemetry systems, if their output can
be provided in the correct structure for the used interface. A further matter is privacy.
For many of the algorithms, the data needs to be stored in a central place. In case of
privacy, the accessibility has therefore to be regulated and it has to be discussed which
parts of the data can be accessible for whom. To ensure privacy, the data can be made
only accessible for its provider. Using data of a set of providers can improve the overall
results of the data mining algorithms. Especially the completeness of road networks that
are used by many agricultural companies could then be improved. Such conditions should
be clarified with the contractors and farmers who provide the data. If the system can be
opened to other domains, it would be beneficial for each single domain. The more user
and data providers will give data into the processes, the higher the likelihood to improve
the resulting output data. For regions with sparse data, the integration of movement data
from other domains could close the gap in case of road network generation. Privacy should
therefore be discussed beforehand.

Methods and reference data to validate the generated data set could be extended. In
case of field boundary generation, validation is done by visual comparison and algorith-
mically using the Jaccard distance. To realize this comparison, a set of ground truth

1http://spark.apache.org, (accessed 2017/01/07)

http://spark.apache.org
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field boundaries is needed. For future work, the reference data for the validation should
be extended to have a larger variance and heterogeneity of field boundaries. As another
approach, the integration of aerial imagery and the usage of land surface classification to
extract the field boundaries from digital imagery and compare them with results from the
extraction algorithms of the telemetry data should be discussed. Regarding the road net-
work generation, a set of validation approaches could be established. On the one hand, a
crowdsourced validation approach will be helpful. Recent methods such as MapSwipe2 can
be very helpful to identify new roads from aerial or satellite imagery. The local knowledge
of the farmers can be collected by OpenStreetMap, where they are able to edit the spatial
features. However, this will only be sufficient for technically oriented farmers. Hence,
more usable and autonomous approaches should be developed. Utilities that are quite
easy to use and do not need high level of initial training. Visual interpretation of imagery
and fast feedback generation should be the main objectives. The data integration can be
made in an easy way using the provided APIs. The usage of multiple data sources will be
the key to build a good data set. The blending of knowledge from multiple sources will
help to validate the data and improve its completeness.

The generation of the infield route graphs is based on the preexisting field geometry.
Another approach, that is not further explained in this work could be the analysis of driven
infield routes. From these driven geometries, an infield graph representing the most driven
routes can be extracted. This can be done by using the methods of the route geometry
generation from chapter 4. The implemented route service shows the interaction of each
single component and provides an overview on the resulting data. The routing algorithm
fit the requirements for agricultural routing and is able to handle multiple constraints.
However, scalability has to be tested. For a practical usage on the field, a navigation
system would benefit farmers more. This is out of scope for this work. To bring the
functionality into the market, this step will be one of the most important objectives.
With this, further research questions, such as visual presentation, real time data analysis
and real time data manipulation will emerge. The revision of the presented methods to
satisfy this requirement will also be a future research question.

Another gap that has not been filled in this thesis is the enrichment of attributes
for the generated road geometries. The extraction of the road geometry is the first part
that is needed for routing. The connection of roads is needed for building the topology
that represents the graph. The last part is then the enrichment of the geometries with
attributes. This will then be part of the edge weight that is used by most of the routing
algorithms to compute the fastest, shortest, most economic or scenic route. The extraction
of these attributes is a broad field of research. Some of the attributes can be extracted
directly from the static machine data, such as minimum width, minimum clear height
and minimum loading capacity. Road type and road surface, which are useful attributes
for routing, have to be extracted with other methods. Lauer et al. [2011, 2013] used
smartphone sensors to learn road surface attributes. In John et al. [2016], they extracted
slope and elevation of roads from GPS trajectories. At this time, the used data sets
of the agricultural telemetry system did not provide the temporal data density and the
accelerometer data to extract road surface attributes. However, the set of sensors and the
data on the machines is still growing. Furthermore, nearly all drivers have a smartphone
and a tablet PC on board. These devices can also be used to collect the needed data and
enriching the extendable workflow.

2http://www.mapswipe.org, (accessed 2016/07/31)

http://www.mapswipe.org
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The data that has been used is located in mid Europe. Therefore, an extension to
the whole world will be another next step. From data perspective, this step is more than
obvious. The telemetry system that is used here has clients from all over the world and
consists therefore of machinery data from every continent. The different cultures can cause
diverse movement patterns. Especially rice fields or irrigated farmland will show other,
completely different driving patterns, than the typical European field structure. The size
of machinery differs accordingly to the size of the fields and the field structure. These
constraints have to be considered when extending the workflow to new regions.

7.4 Transferability on other Domains

This work is focused on the domain of agriculture. The input data from an agricultural
telemetry system, the data classification, the created field boundaries and road networks
for agricultural vehicles and the routing is mainly related to the challenges within the
agricultural domain. However, the extracted data and most of the algorithms can also
be used by other domains. The generated road network can be used by a very broad
user group. A detailed digital road network with low level roads, such as tracks can be
interesting for bicyclists or hikers. Furthermore the domain of forestry can also profit from
a more detailed road network. Emergency and disaster response scenarios are further use
cases that can be improved by enriched data. Also for winter services, such as snow
clearing, a proper digital road network is very useful. A precise road geometry is essential
for the snow clearing, when the snow is quite high and the road boundary is not visible.

The computed field boundaries can be used to verify land use data, in case there is no
conflict with the farmers privacy (field boundaries are part of the operational data of a farm
business). The organization of work processes and the process land consolidation can be
improved with new and more accurate field geometries. The new sight on field boundaries
and the real driven field gateways can be used for planning and organization of the rural
road network. With the knowledge about frequently used roads, their roadways can be
improved. Especially with the growing agricultural heavy goods traffic and the large sized
vehicles a selective upgrading of the rural road network is needed [Ebke et al., 2012].

The presented methods for infield route graph generation can be used for further
applications in the field of indoor routing or routing within open spaces, such as market
places or public squares. Due to the fact that these domains have other preferences on
the routes, the graph generation method that fits to the use-case has to be chosen. The
analysis of available GPS trajectories of pedestrians with the presented methods can be
be helpful to generate the route graphs and the geographic features.

The extraction of spatiotemporal attributes can improve the classification of movement
trajectories from other domains. In case of pedestrian data, the detection of squares such
as market places or open space in front of a building could be realized by the classification
of the single measurements. Extracting the geometries of these places is more complicated
due to the fact, that the pedestrian movement is rather arbitrarily and shows other patterns
than the more structured infield trajectories of agricultural vehicles.

7.5 Outlook

With the pervasiveness of agricultural telemetry systems, the requirement for connecting
services of different manufacturers will increase. The linking of agricultural machinery
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is ongoing and projects such as marion3 show the future of agricultural machinery and
information technology. Activities to provide telemetry data via standardized service
infrastructure will further homogenize data structures and processes. Furthermore, com-
panies such as 365farmnet4 clearly show that the future way of farming will be more
cooperative. Linked (open) data and the design of easy accessible interfaces will be the
key forces to pave the way to cooperativeness. Driven by this up-to-date technology, the
collaboration of machinery companies with other involved industries and farmers will be
strengthened. This will set further requirements on handling big data. Data mining and
knowledge extraction will gain further importance and the impact on productivity of new
an powerful methods will increase.

Due to the fact that parts of the extracted geodata are also beneficial for other domains,
the possible collaboration is not limited to the agricultural domain. Data collaborations
with sports tracking companies, whose users are also using agricultural relevant roads (e.g.
cycling or running) can be established to dense the data with their GPS trajectories. With
a larger amount of data providers, also low traffic roads could be detected. The method-
ology for geographic feature extraction is also applicable in other use cases, as already
mentioned. Especially the integration of a set of knowledge sources and the connection of
services from movement data, web crawled and crowdsourced data as well as static and
dynamic sensor data promise broad changes and improvements for location based services
and processes.

The technical hurdles will be tackled, as latest developments in “Big Data”-research
show. Social, ethical and therefore privacy and legal challenges have to be discussed and
solutions should be found as soon as possible, or latest when the technology reached the
broad society. With this, an overall improvement can be achieved through technology and
social awareness of positive and less positive consequences of location based technology
and geographic data.

3http://www.projekt-marion.de, (accessed 2016/07/31)
4https://www.365farmnet.com/, (accessed 2016/07/31)

http://www.projekt-marion.de
https://www.365farmnet.com/
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POLYGONAL CURVES. International Journal of Computational Geometry & Appli-
cations, 05(01n02):75–91, mar 1995. ISSN 0218-1959. doi: 10.1142/S0218195995000064.
URL http://www.worldscientific.com/doi/abs/10.1142/S0218195995000064.

http://dl.acm.org/citation.cfm?id=1577069.1577103
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5567159
http://dl.acm.org/citation.cfm?id=2404160.2404167
http://dl.acm.org/citation.cfm?id=2404160.2404167
http://link.springer.com/10.1007/s10707-014-0222-6
http://link.springer.com/10.1007/s10707-014-0222-6
http://dl.acm.org/citation.cfm?doid=2820783.2820810
http://link.springer.com/chapter/10.1007/978-3-642-80350-5{_}65
http://link.springer.com/chapter/10.1007/978-3-642-80350-5{_}65
http://dx.doi.org/10.1080/03052150802406540 https://hal.archives-ouvertes.fr/hal-00545360
http://dx.doi.org/10.1080/03052150802406540 https://hal.archives-ouvertes.fr/hal-00545360
http://www.worldscientific.com/doi/abs/10.1142/S0218195995000064


132 Bibliography

H. Alt and L. Guibas. Discrete Geometric Shapes: Matching, Interpolation, and
Approximation. Handbook of computational geometry, pages 1–34, 1999. doi:
DOI:10.1016/B978-044482537-7/50004-8. URL http://books.google.com/books?hl=
en{&}lr={&}id=uZdAqAWB3BcC{&}oi=fnd{&}pg=PA121{&}dq=Discrete+Geometric+

Shapes:+Matching,+Interpolation,+and+Approximation{&}ots=lEx{ }DDwLMF{&}s

ig=xPC67HoYTYvLgSKz-t-E7XBJUbg.

N. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The
American Statistician, 46(3):175–185, 1992. ISSN 0003-1305. doi: 10.1080/00031305.1
992.10475879.

S. Andres. Implementierung und Kosten-Nutzen-Analyse automatischer Datenerfas-
sungssysteme in russischen Agrarholdings. PhD thesis, 2009.

J. J. Arsanjani, C. Barron, M. Bakillah, and M. Helbich. Assessing the Quality of Open-
StreetMap Contributors together with their Contributions. In Proceedings of the AGILE,
2013. ISBN 978-3-319-00615-4.

C. Barron and P. Neis. iOSMAnalyzer - ein Werkzeug für intrinsische OSM
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Citizen Science Platform for Analyzing and Mapping Crowd-Sourced Car Sensor Data.
Transactions in GIS, 19(3):362–376, jun 2015. ISSN 13611682. doi: 10.1111/tgis.12155.
URL http://doi.wiley.com/10.1111/tgis.12155.

K. Brundell-freij and E. Ericsson. Influence of street characteristics, driver category and
car performance on urban driving patterns. Technology, 10:213–229, 2005. doi: 10.101
6/j.trd.2005.01.001.

R. Brüntrup, S. Edelkamp, S. Jabbar, and B. Scholz. Incremental map generation with
GPS traces. In Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., pages
413–418. IEEE, 2005. ISBN 0-7803-9215-9. doi: 10.1109/ITSC.2005.1520084. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1520084.

K. Buchin, M. Buchin, and Y. Wang. Exact algorithms for partial curve matching via the
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