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Abstract

The LIPGENE-SU.VI.MAX study, like many others, recorded high dimen-
sional continuous phenotypic data and categorical genotypic data. LIPGENE-
SU.VI.MAX focuses on the need to account for both phenotypic and genetic
factors when studying the metabolic syndrome (MetS), a complex disorder that
can lead to higher risk of type 2 diabetes and cardiovascular disease. Interest lies
in clustering the LIPGENE-SU.VI.MAX participants into homogeneous groups
or sub-phenotypes, by jointly considering their phenotypic and genotypic data,
and in determining which variables are discriminatory.

A novel latent variable model which elegantly accommodates high dimensional,
mixed data is developed to cluster LIPGENE-SU.VI.MAX participants using a
Bayesian finite mixture model. A computationally efficient variable selection al-
gorithm is incorporated, estimation is via a Gibbs sampling algorithm and an
approximate BIC-MCMC criterion is developed to select the optimal model.

Two clusters or sub-phenotypes (‘healthy’ and ‘at risk’) are uncovered. A small
subset of variables is deemed discriminatory which notably includes phenotypic
and genotypic variables, highlighting the need to jointly consider both factors.
Further, seven years after the LIPGENE-SU.VI.MAX data were collected, par-
ticipants underwent further analysis to diagnose presence or absence of the MetS.
The two uncovered sub-phenotypes strongly correspond to the seven year follow
up disease classification, highlighting the role of phenotypic and genotypic factors
in the MetS, and emphasising the potential utility of the clustering approach in
early screening. Additionally, the ability of the proposed approach to define the
uncertainty in sub-phenotype membership at the participant level is synonymous
with the concepts of precision medicine and nutrition.

Keywords
clustering, mixed data, phenotypic data, SNP data, metabolic syndrome.

1 Introduction
Many large cohort based studies collect high dimensional continuous phenotypic and
categorical genotypic data. The pan European LIPGENE-SU.VI.MAX (SUpplemen-
tation en VItamines et Minéraux AntioXydants) study (www.ucd.ie/lipgene) is one
such study which focuses on the need to account for both phenotypic and genetic factors
when studying the metabolic syndrome (MetS). The MetS is a complex disorder that
can lead to increased risk of developing type 2 diabetes and cardiovascular disease. The
MetS is the term used to describe a clustering of several risk factors for cardiovascu-
lar disease, namely obesity, abnormal blood lipids, insulin resistance and high blood
pressure. Obesity is on the rise globally and is considered to be a principle factor in
the development of insulin resistance and the metabolic syndrome. The World Health
Organisation estimates that the global prevalence of diabetes will almost double from
171 million people in 2000 to 300 million people by the year 2030. Given the strain this
will place on health and health systems all over the world there is a need to gain greater
understanding of the MetS, thereby reducing its adverse health effects. In particular,
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the influence of both phenotypic and genetic factors (and their interaction) on the MetS
has recently come to the fore, and is the focus of the LIPGENE-SU.VI.MAX project.
Valuable introductions and contributions to the LIPGENE-SU.VI.MAX project include
Phillips et al. (2009a) and Ferguson et al. (2010).

Under the LIPGENE-SU.VI.MAX study, high dimensional data of mixed type were
collected on a group of participants. Continuous phenotypic variables (e.g. anthropo-
metric and biochemical variables such as waist circumference and plasma fatty acid lev-
els) as well as categorical (binary and nominal) genotypic single nucleotide-polymorphism
(SNP) variables were recorded. Here, interest lies in clustering the participants into
homogeneous groups or sub-phenotypes, based on jointly modelling their phenotypic
and genotypic data, to uncover groups with similar phenotypic-genotypic profiles. In
the LIPGENE-SU.VI.MAX study, a large number of phenotypic and genotypic vari-
ables were recorded; determining which variables discriminate between the resulting
sub-phenotypes is therefore of interest. Moreover, given the ethos of the LIPGENE-
SU.VI.MAX study, whether the set of discriminatory variables includes both pheno-
typic and genotypic variables is of key interest. The developed methodology has wide
applicability beyond the LIPGENE-SU.VI.MAX study, in any setting seeking to un-
cover subgroups in a cohort on which high dimensional data of mixed type have been
recorded.

Joint modelling approaches for data of mixed type are gaining attention in a range of
statistical and applied areas (see Dunson & Herring (2005); Faes et al. (2008); Wagner &
Tüchler (2010); de Leon & Wu (2011); Chen et al. (2014), among others, for example).
In particular De Leon & Chough (2013) provides a comprehensive overview of recent
methodological and applied advances in the mixed data modelling area. Latent factor
models in particular have been successfully employed to jointly model mixed data;
Quinn (2004); Gruhl et al. (2013) and Murray et al. (2013) use factor analytic models
to analyse mixed data but not in a clustering context. In a similar vein to the approach
taken here, Huang et al. (2014) consider a joint analysis of SNP and gene expression data
in studies of complex diseases such as asthma, but again not in the clustering context.
The MetS has had recent exposure in the statistical and computational literature –
Matsunaga & Muramatsu (2005); Vattikuti et al. (2012) and Gostev et al. (2011) employ
computational approaches to learn about the disease, but mainly from a genetic point
of view.

Latent variable based clustering models have been successfully utilised to analyse
high dimensional data. For example, Ghahramani & Hinton (1997) propose a mixture of
factor analysers model with a cluster specific parsimonious covariance matrix. A suite of
similar models with varying levels of parsimony is developed in McNicholas & Murphy
(2008) and the mixture of factor analysers model is fitted in a Bayesian framework in
Fokoue & Titterington (2003). Mixtures of structural equation models are developed
in Yung (1997) and Zhu & Lee (2001). More recent developments in this area include
those in Baek & McLachlan (2008), Baek et al. (2010) and Viroli (2010), among others.
However, while these models can efficiently model high dimensional data, none of them
can cluster observed mixed data while also correctly handling each variable type.

Clustering data of mixed type is a challenging statistical problem. Early attempts
to address the problem include the use of mixture models and location mixture models
Everitt (1988); Everitt & Merette (1988); Muthén & Shedden (1999); Hunt & Jor-
gensen (1999, 2003) as well as non-model based approaches Huang (1997); Ahmad &
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Dey (2007); Vermunt & Magidson (2002) clusters mixed categorical data using a latent
class analysis approach. More recently Cai et al. (2011); Browne & McNicholas (2012);
Morlini (2011); Cagnone & Viroli (2012); Gollini & Murphy (2013) attempt to cluster
mixed categorical data using latent variable models and Biernacki & Jacques (2015) clus-
ter multivariate ordinal data using a stochastic binary search algorithm. However none
of these can analyse the specific combination of continuous and categorical variables
without transforming the original variables in some way, or can feasibly accommodate
high dimensional data. An alternative model-based approach to clustering mixed con-
tinuous and categorical data, clustMD, is introduced in McParland & Gormley (2016).
While this approach can explicitly model the inherent nature of continuous and categor-
ical variables directly, it is again computationally infeasible to use for high dimensional
data. In particular, clustMD cannot accommodate large numbers of nominal variables.
Copula models for clustering mixed data Marbac et al. (2014); Kosmidis & Karlis (2015)
while showing distinct promise, also have limitations in high dimensional settings.

The recent mixture of factor analysers for mixed data (MFA-MD) McParland et al.
(2014) is a hybrid of latent variable models for different data types and provides the ma-
chinery for clustering mixed categorical data. Here, the MFA-MD model is extended to
facilitate clustering of high dimensional, mixed continuous and categorical data. Specifi-
cally, the joint model is composed of a factor analysis model for continuous data, an item
response theory model for binary/ordinal data and a multinomial probit type model is
used for nominal data. The clustering machinery is provided by a finite mixture model.

The MFA-MD model is ideal for high dimensional data settings as its factor an-
alytic roots provide a parsimonious covariance structure. However large numbers of
variables, as are present in the LIPGENE-SU.VI.MAX data, hamper the substantive
interpretability of the resulting clusters and place a heavy computational burden on
model fitting. Existing approaches to variable selection in a clustering context include
reversible jump Markov chain Monte Carlo methods Tadesse et al. (2005), approximate
Bayes factors are used in Raftery & Dean (2006) and Maugis et al. (2009) to compare
nested sets of variables and Wang & Zhu (2008) use penalised model based clustering
in the context of microarray data. Such methods would be computationally expensive
given the latent variable aspect of the MFA-MD model, and given the large number
of variables in LIPGENE-SU.VI.MAX data. Therefore, here an efficient novel online
variable selection algorithm is incorporated when fitting the extended MFA-MD model,
improving substantive interpretability and computational costs. Inspired by Andrews
& McNicholas (2013), variable selection is based on a within cluster variance to over-
all variance criterion, efficiently leading to an interpretative clustering solution. Model
fitting is performed in the Bayesian paradigm and is achieved via a Gibbs sampling
algorithm.

As in any clustering setting, uncovering the number of underlying clusters is a key,
and often difficult, question. In the context of the extended MFA-MD model, the
dimension of the latent factor aspect of the model also requires selection. Typical
likelihood based model selection criteria such as the Bayesian Information Criterion
(BIC) Schwarz (1978); Kass & Raftery (1995) have been demonstrated to perform well
in many general clustering settings Fraley & Raftery (2002); Gormley & Murphy (2006),
and marginal likelihood evaluation Frühwirth-Schnatter (2004) or the use of over fitting
mixture models have gained warranted attention van Havre et al. (2015); Malsiner-Walli
et al. (2016) in the Bayesian literature. The likelihood function of the MFA-MD model
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is intractable however, rendering such approaches unusable. Therefore, here a novel
approximation of the likelihood function is incorporated with the BIC-MCMC criterion
Frühwirth-Schnatter (2011), to efficiently select the optimal model (i.e. the optimal
number of clusters and the optimal number of latent factors) in the context of the
extended MFA-MD model.

The extended MFA-MD model, with variable selection, is used to cluster the LIPGENE-
SU.VI.MAX participants within a Bayesian framework. A range of models with varying
numbers of clusters and latent factor dimensions are fitted. The BIC-MCMC criterion
suggests two clusters or sub-phenotypes of participants, and a set of just 25 of the
original 738 variables are deemed discriminatory. Examination of the cluster specific
parameters reveals a ‘healthy’ sub-phenotype and an ‘at risk’ sub-phenotype. Notably
the set of discriminatory variables contains both phenotypic and genotypic variables,
highlighting the need to jointly consider both data types. Some of the discriminatory
variables are intuitive and have been highlighted previously in the literature, but some
of the discriminating SNPs in particular are novel discoveries.

Seven years after the LIPGENE-SU.VI.MAX data analysed here were collected,
each of the participants underwent further analysis to diagnose the presence or absence
of the MetS, based on a criterion which considers continuous phenotypic data only.
The two clusters uncovered here from the initial LIPGENE-SU.VI.MAX data strongly
correspond to the seven year follow up disease classification, highlighting the role of
phenotypic and genetic factors in the MetS and, perhaps most importantly, the potential
utility of the clustering approach in early screening.

The model-based nature of the MFA-MD approach to clustering provides a global
view of the group structure in the set of LIPGENE-SU.VI.MAX participants. However,
it additionally provides detailed insight to sub-phenotype membership at the participant
level, through quantification of the probability of sub-phenotype membership for each
participant. This ability to define the uncertainty of cluster membership is an important
development for the application of the metabotyping concept in precision medicine and
nutrition O’Donovan et al. (2016).

The remainder of the paper is organised into the following sections. Section 2 pro-
vides background to the LIPGENE-SU.VI.MAX study, and specific details on the data
collected. Section 3 contains the three modelling contributions of the paper: (i) details
of the extended MFA-MD model for high dimensional, mixed continuous and categor-
ical data (ii) an outline of the variable selection and inference procedure and (iii) the
development of the approximate BIC-MCMC model selection tool. Simulation stud-
ies, diverted to the Supplementary Material for clarity, provide evidence to support
the modelling and selection approaches taken. Section 4 discusses the results of fitting
the extended MFA-MD model for high dimensional data to the LIPGENE-SU.VI.MAX
data, and considers model fit. The paper concludes in Section 5 with a discussion and
some future research directions.

2 The LIPGENE-SU.VI.MAX study
LIPGENE-SU.VI.MAX is a European Union Sixth Framework Integrated Programme
entitled ‘Diet, genomics and the metabolic syndrome: an integrated nutrition, agro-
food, social and economic analysis’ conducted by 25 research centres across Europe. The
primary focus of LIPGENE-SU.VI.MAX is the interaction of nutrients and genotype
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in the metabolic syndrome (MetS). The MetS is the term used to describe a clustering
of several risk factors for cardiovascular disease, namely obesity, abnormal blood lipids
(such as high blood cholesterol and raised triglyceride levels), insulin resistance and
high blood pressure (hypertension). One quarter of the world’s adult population have
the metabolic syndrome and increasing numbers of children and adolescents have it as
the worldwide obesity epidemic accelerates. Table 1 details the MetS diagnosis criterion
used here which relates to insulin resistance, dyslipidaemia, cholesterol, blood pressure
and abdominal obesity. Many closely related definitions of the MetS are also in use
Alberti et al. (2005, 2006); Huang (2009).

Table 1: A person with 3 or more of the abnormalities listed below is diagnosed as
having the MetS.

Fasting glucose ≥5.5 mmol l−1

concentration or treatment of previously diagnosed diabetes.
Serum TAG ≥ 1.5 mmol l−1

concentration or treatment of previously diagnosed lipidemia.
Serum HDL-c < 1.04 mmol l−1 (Men)
concentration < 1.29 mmol l−1 (Women)
Blood pressure Systolic BP ≥ 130 mm Hg, Diastolic BP ≥ 85 mm Hg

or treatment of previously diagnosed hypertension.
Waist > 94 cm (Men), > 80 cm (Women)
Circumference

Under LIPGENE-SU.VI.MAX, data from a prospective population-based study were
available Ferguson et al. (2010); Hercberg et al. (2004). Twenty-six continuous pheno-
typic measurements in addition to 801 categorical SNP variables were recorded for
each of 1754 participants. Examples of the continuous phenotypic measurements in-
clude fasting glucose concentration, waist circumference and plasma fatty acid levels.
An example of a categorical genotypic variable is the nominal SNP rs512535 of the
APOB gene which has three genotypes, AA, GG or AG in the data. The 801 genotypic
variables were selected using a candidate gene approach based on pathways adversely
affected in the metabolic syndrome, and their relevant genes, as previously described
in de Edelenyi et al. (2008); Phillips et al. (2006). Biological variables were based on
characteristics of the metabolic syndrome Alberti et al. (2005, 2006); Huang (2009) and
plasma fatty acid profiles were determined as biomarkers of habitual dietary intake as
previously described Phillips et al. (2009a).

Some data cleaning was conducted prior to analysis. Without loss of generality, the
nominal SNP variables were coded with the convention 0 = dominant homozygous, 1
= recessive homozygous and 2 = heterozygous. Any SNP variable with more than 100
missing values was removed, as were SNPs for which all 3 genotypes were not observed
in the data (most of which only had one observed genotype and therefore are non-
discriminatory in a clustering setting). A total of 990 participants were then removed
as they still had at least one missing value across the remaining SNPs.

Some of the remaining SNPs had a small number (< 10% of the number of partic-
ipants) of counts of the recessive homozygous genotype. In such cases, for reasons of
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computational efficiency and stability, the recessive homozygous and the heterozygous
categories were merged, thus resulting in some SNPs becoming binary variables. The
merged category can be thought of as a ‘compound genotype’. For example, the SNP
rs17777371 of the ADD1 gene became a binary SNP with genotypes GG and CG/CC
in the data. While losing some information, merging of at least one sparsely observed
genotype with another will not largely impact the findings in terms of uncovering clus-
ters, or highlighting variables which discriminate between clusters. A total of 371 SNPs
were collapsed to binary variables, leaving 341 nominal SNP variables. Finally the SNP
data were combined with the continuous phenotypic data and participants that had any
missing values for the continuous variables were removed. This left a final complete data
set of 505 participants and 738 variables (26 continuous variables, 371 binary SNPs and
341 nominal SNPs); this data set is analysed here. No genotypes were removed solely
as a result of missing data from other variables, and the continuous variables were stan-
dardised before any analysis was performed. The full list of 738 variables analysed here
is given in the Supplementary Material.

As stated LIPGENE-SU.VI.MAX was a prospective study. Seven years after the
data analysed here were collected, new continuous phenotypic data were recorded on
the LIPGENE-SU.VI.MAX participants in order to diagnose the presence or absence of
the MetS, according to the criterion detailed in Table 1. The correspondence between
the clusters uncovered from the initial phenotypic and genotypic data and the seven
year follow-up disease diagnosis is examined in Section 4.

3 Modelling and inference
A model-based approach is taken to cluster the LIPGENE-SU.VI.MAX participants,
based on their initial mixed continuous, binary and nominal data. The mixture of
factor analysers model for mixed ordinal and nominal data, MFA-MD, is introduced
in McParland et al. (2014). Here the MFA-MD model is extended to also allow for
continuous data, a variable selection procedure is proposed which facilitates feasible
handling of high dimensional data, details of Bayesian inference are provided, and an
approximate BIC-MCMC criterion for model selection is developed.

3.1 Modelling the continuous phenotypic variables
A factor analysis model Spearman (1904) is used to model the multivariate continuous
phenotypic data. Specifically, the observed J continuous phenotypic measurements, zi,
on participant i are modelled as

zi = µ+ Λθi + ϵi

where µ is a mean vector, Λ is a loadings matrix and θi is a participant specific latent
trait. The error vector ϵi follows a zero mean multivariate Gaussian distribution with
diagonal covariance matrix Ψ. The dimension of the latent trait θi is Q where Q ≪ J .
The factor analysis model offers parsimony as the marginal covariance Σ = ΛΛT + Ψ
requires estimation of only J(Q+ 1) parameters.

7



3.2 Modelling the binary SNP variables
As described in Section 2 some SNPs are treated as binary variables and are modelled
using item response theory (IRT) models. Suppose that SNP rs17777371 is the jth
variable (for j = 1, . . . , J). IRT models assume that, for participant i, a latent Gaussian
variable zij corresponds to each observed binary response yij. A Gaussian link function
is assumed, though other link functions, such as the logit, are detailed in the IRT
literature Lord & Novick (1968); Fox (2010). If zij < 0 then the binary response will be
yij = 0 while if zij > 0 then yij = 1. Relating this to SNP rs17777371, say, if zij < 0
then the observed genotype for participant i will be GG while if zij > 0 then observed
genotype will be CG/CC.

In a standard IRT model, a factor analytic structure is then used to model the
underlying latent variable zij. It is assumed that the value of zij depends on a Q
dimensional, participant specific, latent trait θi (often termed the ability parameter)
and on some variable specific parameters. Specifically, the underlying latent variable zij
for respondent i and variable j is assumed to be distributed as

zij|θi ∼ N(µj + λTj θi, 1).

The parameters λj and µj are usually termed the item discrimination parameters and
the negative item difficulty parameter respectively. As in Albert & Chib (1993), a
probit link function is used so the conditional variance of zij is 1. Under this model,
the conditional probability that yij = 1 is

P (yij = 1|µj, λj, θi) = Φ
(
µj + λTj θi

)
where Φ denotes the standard Gaussian cumulative distribution function.

3.3 Modelling nominal SNP variables
Modeling nominal data is challenging, due to the fact that the set of possible responses
is not ordered. In the LIPGENE-SU.VI.MAX data, the possible responses for nominal
SNPs is a set of three genotypes. For example, the nominal SNP rs512535 of the APOB
gene has three levels or genotypes, AA, GG or AG, in the data. These response levels
are coded as 0, 1 and 2 respectively, but no order is implied.

As detailed in Section 3.2, the IRT model for binary SNP variables posits a one
dimensional latent variable for each observed binary SNP. In the factor analytic model
for nominal SNP variables, a two-dimensional latent vector is required for each observed
nominal SNP. That is, the latent vector for participant i corresponding to nominal SNP
j is denoted zij = (z1ij, z

2
ij)

T . The observed nominal response is then assumed to be a
manifestation of the values of the elements of zij relative to each other and to a cut-off
point, assumed to be 0. That is,

yij =


0 if max{z1ij, z2ij} < 0

1 if z1ij = max{z1ij, z2ij} and z1ij > 0

2 if z2ij = max{z1ij, z2ij} and z2ij > 0.

Similar to the IRT model, the latent vector zij is modelled via a factor analytic model.
The mean of the conditional distribution of zij depends on a respondent specific, Q-
dimensional, latent trait, θi, and item specific parameters i.e.

zij|θi ∼ MVN2(µj
+ Λjθi, I)
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where I denotes the identity matrix. The loadings matrix Λj is a 2×Q matrix, analogous
to the item discrimination parameter in the IRT model of Section 3.2; likewise, the mean
µ
j

is analogous to the item difficulty parameter in the IRT model.
It should be noted that binary data could also be regarded as nominal. The model

proposed here is equivalent to the model proposed in Section 3.2 when the number of
possible levels is two.

3.4 A factor analysis model for mixed mixed continuous and
categorical data

The factor analysis model for continuous phenotypic variables, the IRT model for binary
SNPs and the factor analysis model for nominal SNPs all have a common structure.
These models are combined to produce a unifying model for mixed continuous, binary
and nominal data.

For each participant i there are A = 26 observed continuous phenotypic variables,
B = 371 latent continuous variables corresponding to the binary SNP variables and
C = 341 latent continuous vectors corresponding to the nominal SNPs. These are
collected together in a single D dimensional vector zi where D = A+B + 2C. That is,
underlying participant i’s set of J = 738(= A+B+C) continuous, binary and nominal
variables lies

zi =
(
zi1, . . . , ziA, zi(A+1) . . . , zi(A+B), z

1
i(A+B+1), z

2
i(A+B+1) . . . , z

1
iJ , z

2
iJ

)
.

The first A entries of this vector are the observed continuous measurements. The re-
maining entries are latent data underlying the categorical responses. This vector is then
modelled using a factor analytic structure i.e.

zi|θi ∼ MVND(µ+ Λθi,Ψ).

The D × Q dimensional matrix Λ is termed the loadings matrix and µ is the mean
vector. The entries of the diagonal covariance matrix Ψ are 1 along the diagonal, with
the exception of the first A entries which correspond to the continuous variables.

This model provides a parsimonious factor analysis model for the high dimensional
latent vector zi which underlies the observed mixed data. Marginally the latent vector is
distributed as zi ∼ MVND(µ,ΛΛ

T +Ψ) resulting in a parsimonious covariance structure
for zi.

3.5 A mixture of factor analyzers model for mixed continuous
and categorical data

To facilitate clustering, the hybrid model defined in Section 3.4 is placed within a
mixture modeling framework resulting in the extended mixture of factor analyzers model
for mixed data (MFA-MD). In the MFA-MD model, clustering occurs at the latent
variable level. That is, under the MFA-MD model the distribution of the observed and
latent data zi is modeled as a mixture of G Gaussian densities i.e.

f(zi) =
G∑

g=1

πgMVND

(
µ
g
, ΛgΛ

T
g +Ψ

)
.
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The probability of belonging to cluster g is denoted by πg (
∑G

g=1 πg = 1, πg > 0 ∀ g).
The mean and loadings are cluster specific, while Ψ is equal across clusters for additional
parsimony. Constraining the loadings matrices to be equal across clusters, similar in
ethos to the mixture of common factor analysers Baek & McLachlan (2008); Baek et al.
(2010), would offer further parsimony but result in a subtly yet importantly different
model.

As is standard in a model-based approach to clustering McLachlan & Basford (1988);
Fraley & Raftery (1998); McLachlan & Peel (2000); Celeux et al. (2000); Fraley &
Raftery (2002), a latent indicator variable, ℓi = (ℓi1, . . . , ℓiG) is introduced for each
participant i. This binary vector indicates the cluster to which participant i belongs i.e.
lig = 1 if i belongs to cluster g; all other entries in the vector are 0.

Under the MFA-MD model for mixed continuous and categorical data, the aug-
mented likelihood function for the N = 505 participants is

N∏
i=1

G∏
g=1

{
πg

[
A∏

j=1

N(zij|λ̃
T

gj θ̃i, ψjj)

]

×

[
B∏

j=A+1

1∏
k=0

NT (zij|λ̃
T

gj θ̃i, 1)
I{yij=k}

]

×

[
J∏

j=A+B+1

2∏
k=1

2∏
s=0

NT (zkij|λ̃
kT

gj θ̃i, 1)
I(yij=s)

]}ℓig

(1)

where θ̃i = (1, θi1, . . . , θiq)
T and Λ̃g is the matrix resulting from the combination of

µ
g

and Λg so that the first column of Λ̃g is µ
g
. In the binary part of the model, the

Gaussian is truncated between −∞ and 0 if yij = 0, and between 0 and ∞ otherwise.
In the nominal part of the model, The Gaussian is also truncated, depending on the
observed yij i.e.

• If yij = 0 then max{z1ij, z2ij} < 0.

• If yij = 1 then z1ij = max{z1ij, z2ij} and z1ij > 0, z2ij is restricted so that z2ij < z1ij.

• If yij = 2 then z2ij = max{z1ij, z2ij} and z2ij > 0, z1ij is restricted so that z1ij < z2ij.

The MFA-MD model proposed here is related to the mixture of factor analyzers
model Ghahramani & Hinton (1997); McLachlan & Peel (2000) which is appropriate
when the observed data are all continuous in nature. A Bayesian treatment of such a
model is detailed in Fokoue & Titterington (2003); McNicholas & Murphy (2008) detail
a suite of parsimonious mixture of factor analyzer models.

3.6 Variable selection
The LIPGENE-SU.VI.MAX data contain a large number of variables, particularly cat-
egorical variables. A variable selection algorithm that removes variables which have no
clustering information would ease the computational burden of the model fitting pro-
cess and also provide substantive interpretation advantages by only retaining variables
which discriminate between clusters.
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A simple but effective online variable selection procedure is incorporated here. For
an informative or discriminatory variable, the within cluster variance will be lower
than the overall variance for that variable in the data. Variables for which the within
cluster and overall variances are similar do not discriminate between clusters and are
not interesting in a clustering context. Specifically, for each variable j, a variance ratio
V Rj is computed where

V Rj =
G∑

g=1

ng∑
i=1
∀i∈g

(zij − z̄gj)
2/

N∑
i=1

(zij − z̄j)
2. (2)

The variance ratio is computed in an online manner in that at an iteration of the model
fitting algorithm ng denotes the number of participants currently classified as members
of cluster g. In turn, the empirical cluster mean for cluster g and variable j is denoted
by z̄gj, while the overall mean for variable j is denoted by z̄j.

Small values for V Rj indicate that variable j discriminates between clusters while
larger values indicate that variable j takes similar values across all clusters and therefore
contains no clustering information. A user specified threshold ε is set such that if
V Rj > ε, variable j is dropped from the model and otherwise it is retained. Selection
of ε is application specific and its choice within the LIPGENE-SU.VI.MAX analysis is
discussed in Section 4. The choice of ϵ can be thought of as the choice of how many
variables the model will highlight as discriminatory; ϵ doesn’t have an ‘optimal’ value
as is typical of many tuning parameters. Decreasing ϵ is equivalent to indicating that a
more aggressive variable selection is desirable. This variable selection method is shown
to perform well in simulation studies, provided in the Supplementary Material.

3.7 Bayesian inference
The Bayesian paradigm is a natural framework for the estimation of latent variable
models. Fitting the proposed MFA-MD model in a Bayesian framework requires speci-
fication of prior distributions for all parameters. Conjugate prior distributions are em-
ployed here. Specifically, λ̃gd ∼ MVN(Q+1)(µλ

,Σλ), π ∼ Dir(α) and ψjj ∼ G−1(β1, β2).
For participant i, it is assumed the latent trait θi follows a standard multivariate
Gaussian distribution while the latent indicator variable ℓi follows a Multinomial(1, π)
distribution. Further, conditional on membership of cluster g, the latent variable
zi|lig = 1 ∼ MVND(µg

,ΛgΛ
T
g + Ψ). Combining these latent variable distributions

and prior distributions with the augmented likelihood function specified in (1) results
in the joint posterior distribution, from which samples of the model parameters and
latent variables are drawn using a Gibbs sampling MCMC scheme.

Full conditional distributions for the latent variables and model parameters are de-
tailed below; derivations and definitions of the distributional parameters are given in
the Supplementary Material.

• Allocation vectors: ℓi| . . . ∼ Multinomial(1, p).

• Mixing proportions: π| . . . ∼ Dirichlet(δπ).

• Latent traits: θi| . . . ∼ MVNQ

(
µ
θ
,Σθ

)
.
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• Item parameters: λ̃gd| . . . ∼ MVN(q+1)

(
ζ
λ
,Ωλ

)
.

• Error variance parameters: ψjj ∼ G−1(b1j, b2j).

The full conditional distribution for the latent data z follows a truncated Gaussian
distribution. The point of truncation depends on the form of the corresponding variable,
the observed response, and the previously sampled values of z in the MCMC chain. The
distributions are truncated to satisfy the conditions detailed in Section 3.5. The latent
variable zij is therefore updated as detailed below. Note that zij is not sampled for
j = 1, . . . , A as in the case of the continuous variables yij = zij.

• If variable j is binary and yij = 0 then zij| . . . ∼ NT
(
λ̃
T

gj θ̃i, 1
)

where the distri-
bution is truncated on the interval (−∞, 0). The truncation interval is (0,∞) if
yij = 1.

• If item j is nominal then zkij| . . . ∼ NT
(
λ̃
kT

gj θ̃i, 1
)

where λ̃
k

gj is the row of Λ̃g

corresponding to zkij and the truncation intervals are defined as follows:

– if yij = 0 then zkij ∈ (−∞, 0) for k = 1, 2.
– if yij = k for k = 1, 2 then:

1. zkij ∈ (τ,∞) where τ = max

(
0,max

l ̸=k
{zlij}

)
.

2. for l ̸= k then zlij ∈
(
−∞, zkij

)
.

Note that in the case of yij = k ̸= 0, the value zlij in the evaluation of τ in step 1 is the
previously sampled value in the MCMC chain. The value of zkij in step 2 is the value
sampled in step 1.

The variable selection method presented in Section 3.6 is incorporated into the out-
lined Gibbs sampler, and thus the proposed MFA-MD model is fitted in three stages:

1. Burn in phase: In the first phase of the model fitting procedure all variables are
included and the Gibbs sampling algorithm is run until convergence.

2. Variable selection phase: After the burn in phase the algorithm moves into the
variable selection phase. Given the current clustering, the variance ratio V Rj is
computed for each variable j. All variables for which V Rj is greater than ε are
dropped from the model. The algorithm is allowed to burn in again before another
variable selection step is performed, with a user specified frequency. The variable
selection phase ends when no variables are removed from the model at a number
of successive variable selection steps.

3. Posterior sampling phase: During this phase the Gibbs sampling algorithm pro-
ceeds, given the discriminating variables.

Given its factor analytic roots, the MFA-MD model is not identifiable. Here, the
loadings matrices are unconstrained and a Procrustean rotation is employed to solve the
problem of their rotational invariance, following ideas in Hoff et al. (2002), Handcock
et al. (2007) and as detailed in McParland et al. (2014). Further, the well known
clustering label switching problem is addressed using a loss function approach as in
Stephens (2000a).
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3.8 Model selection via an approximate BIC-MCMC criterion
As with any clustering problem, the number G of clusters is unknown. Moreover, in the
case of the MFA-MD model, the dimension of the latent trait Q is also unknown. Under
a model based approach to clustering, such as that taken here, the use of principled,
statistical model selection tools to choose both G and Q are available.

Formal likelihood based criteria such as the Bayesian Information Criterion (BIC)
Schwarz (1978); Kass & Raftery (1995) have been demonstrated to perform well in many
general clustering settings (e.g. Fraley & Raftery (2002); Gormley & Murphy (2006)),
and also in clustering settings involving latent factor models (e.g. McNicholas & Murphy
(2008)) and variable selection (e.g. Raftery & Dean (2006); Houseman et al. (2008)).
There is also a rich Bayesian literature regarding model evidence; model selection tools
based on the marginal likelihood Friel & Wyse (2012); Frühwirth-Schnatter (2006);
McParland & Gormley (2013) are a natural approach to general model selection within
the Bayesian paradigm, with reversible jump MCMC methods Richardson & Green
(1997) and Markov birth-death methods Stephens (2000b) popular in the context of
clustering. More recently, overfitting approaches to model selection within clustering
using Bayesian finite mixtures have gained warranted attention van Havre et al. (2015);
Malsiner-Walli et al. (2016). In the context of choosing Q in latent factor models, Lopes
& West (2004) provide a comprehensive overview of Bayesian model assessment.

Such approaches naturally require evaluation of the joint likelihood of the observed
continuous and categorical data Y which for the MFA-MD model is intractable as it
requires integrating a multidimensional truncated Gaussian distribution, where trun-
cation limits differ and are dependent across the dimensions. These approaches also
require the variables in the data to be the same when comparing models. Thus, in order
to select the optimal MFA-MD model an approximation of the observed data likelihood
is constructed which involves both variables retained and removed during the variable
selection steps.

Recall that for participant i their observed data consists of A continuous phenotypic
variables, B binary SNP variables and C nominal SNP variables collected in y

i
=

(yi1, . . . , yiJ) where J = A + B + C. Denoting the Ä continuous, B̈ binary and C̈
nominal variables with clustering information collectively as ÿ

i
and the Ȧ continuous,

Ḃ binary and Ċ nominal variables with no clustering information collectively by ẏ
i
, the

contribution to the likelihood function for participant i is approximated as

L̃i = f(ÿ
i
)f(ẏ

i
)

=

 G∑
g=1

πg

MVNÄ(µg,ΛgΛ
T
g +Ψ)

B̈+C̈∏
j=1

P (ÿij|i ∈ g)




×

MVNȦ(µ,ΛΛ
T +Ψ)

Ḃ+Ċ∏
j=1

P (ẏij)

 . (3)

That is, independence is first assumed between the set of discriminating and the set
of non-clustering variables. Further, for the discriminating variables, conditional inde-
pendence between the set of Ä continuous and the set of B̈ + C̈ categorical variables is
assumed, and within the set of B̈+ C̈ categorical variables. Additionally, independence
between the set of continuous and the set of categorical variables without clustering
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information is also assumed, and within the set of non-clustering categorical variables.
The multivariate Gaussian densities for the continuous variables in (3) are straight

forward to evaluate; a single Bayesian factor analysis model is fitted to the Ȧ removed
variables. For the categorical variables in (3), simple empirical probabilities are calcu-
lated from the observed data. For the B̈+ C̈ categorical discriminating variables, these
probabilities are the observed response probabilities, within each cluster. For the Ḃ+ Ċ
non-clustering categorical variables, the probabilities are the observed response proba-
bilities among the N participants. Thus a tractable approximation to the intractable
likelihood is available, and can be used to compare models with varying values of G and
Q, and with varying sets of discriminating variables.

This approximated observed likelihood function is incorporated in the BIC-MCMC
Frühwirth-Schnatter (2011) criterion to perform model selection with the MFA-MD
model. Analogous to the traditional BIC, the BIC-MCMC is derived from the largest
observed log likelihood value generated across the MCMC draws, penalised for lack
of parsimony. In the context of the MFA-MD model the approximate BIC-MCMC is
defined as:

BIC-MCMC = 2× log L̃ − ν × log(N)

where L̃ =
∏N

i=1 L̃i denotes the largest observed approximate likelihood value across the
MCMC draws and ν denotes the number of parameters in (3). Thus for G = 1, . . . , Gmax

and Q = 1, . . . , Qmax, the approximate observed likelihood function L̃ is evaluated
at each MCMC iteration, and the largest value used to compute the associated BIC-
MCMC. The model with largest BIC-MCMC is chosen as the optimal model. The
BIC-MCMC has been shown to perform well in the context of mixture models generally
Frühwirth-Schnatter (2011); its performance in combination with the likelihood approx-
imation within the MFA-MD context is also shown to perform well in the simulation
studies provided in the Supplementary Material.

4 Results
In order to cluster the set of LIPGENE-SU.VI.MAX participants, a number of MFA-
MD models with G = 1, . . . , Gmax = 4 and Q = 1, . . . , Qmax = 10 were fitted to the
initial mixed phenotypic and genotypic data. The maximum value considered for G
was motivated by expert opinion on the expected structure of the set of participants;
the maximum value of Q considered was motivated by the observed performance of
the G = 1 model (see Figure 1), and by run time considerations. The Jeffreys prior,
Dirichlet(0.5, . . . , 0.5), was specified for the mixing proportions π. An inverse gamma
prior, with shape and scale parameters of 7, was specified for the A diagonal elements
of Ψ corresponding to continuous variables. The mode of this relatively uninformative
prior is just less than 1. A zero mean multivariate Gaussian prior was specified for λ̃gd
with Σλ = 5I, which again is relatively uninformative. Prior sensitivity was assessed by
trialling different values of the hyperparameters. The results were relatively insensitive
to changes in the hyperparameters for π and λ̃gd but somewhat sensitive to the hyper
parameters for ψjj. Sensitivity to these inverse gamma hyperparameter values is a
known problem for Bayesian inference of models of this type Gelman (2006).

For each of the forty models fitted, the burn in phase was run for 20,000 iterations
and in the variable selection phase the variance ratio criterion was computed every 1000
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iterations. This period between variable selection steps allowed the MCMC algorithm
to ‘burn in’ again after variables have been removed. In the LIPGENE-SU.VI.MAX
setting, the variable selection threshold ε was fixed at 0.95 for continuous phenotypic
variables and at 0.99 for categorical SNP variables. These thresholds are very conserva-
tive so that only the most uninformative variables were removed. The thresholds could
be lowered to facilitate a more aggressive variable selection procedure. The model fitting
algorithm remained in the variable selection phase until no variables were removed from
the model for four successive variable selection steps. When this occurred the algorithm
moved into the posterior sampling phase which was then run for 100,000 iterations,
thinned every 100th iteration. Convergence of the Markov chains was assessed using
trace and auto-correlation plots. Computation times for these models are variable as
the speed will depend on how many variables are removed and on both the dimension of
the latent trait and the number of clusters fitted to the data. The G = 1, Q = 1 model
took approximately 11 hours while the G = 4, Q = 10 model took approximately 25
hours. It should be noted that no variable selection can be applied if only one cluster
is fitted to the data. The optimal model described below took less than 5 hours to fit
as only a small number of variables were deemed discriminatory. These timings were
measured by fitting the model using one processor of a quad core (2.83GHz) desktop
PC with 4GB of RAM.

The optimal MFA-MD model was selected using the approximate BIC-MCMC cri-
terion developed in Section 3.8. Figure 1 illustrates the approximate BIC-MCMC for
each of the forty models fitted; the optimal model is indicated to have G = 2 clusters
and Q = 8 latent factors. During fitting of the optimal G = 2, Q = 8 MFA-MD model, a
large number of variables is dropped at the beginning of the variable selection phase but
as the phase proceeds the model converges on a relatively small number of discrimina-
tory variables. A plot showing the evolution of the number of variables retained during
the variable selection phase is given in the Supplementary Material. Only 25 of the
original 738 variables are retained under the G = 2, Q = 8 model. Of those retained,
12 are continuous phenotypic variables, 2 are binary SNP variables and 11 are nominal
SNP variables. Notably, in the nearest competing model G = 2, Q = 9, a total of 22
variables were retained, 16 of which were the same as those retained in the optimal
G = 2, Q = 8 model; this pattern was observed in general within models with the same
number of groups.

Alternative variable selection criteria to (2) are possible: the set of 40 models were
also fitted using a weighted version of V Rj where each squared difference in the numera-
tor in (2) is multiplied by the posterior probability that observation i belongs to cluster
g and a ‘fuzzy’ clustering version of the cluster specific means z̄gj is also used. This
fuzzy version of V Rj allows observations that are not assigned to a cluster with a high
degree of certainty to contribute to the within cluster variances of multiple clusters. In
the case of the LIPGENE-SU.VI.MAX study, it was found that this fuzzy version of
V Rj had no effect on the optimal models: the same variables were chosen and the same
clustering solutions were found, thus giving the same interpretation.

Of particular note, in the context of the LIPGENE-SU.VI.MAX study, is that both
phenotypic and genotypic variables are deemed to be informative. The reduction from
738 to 25 variables aids the substantive interpretation of the model output signifi-
cantly and ensures model fitting efficiency. Examination of the cluster specific param-
eters under the optimal model provides insight to the clustering structure in the set
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of LIPGENE-SU.VI.MAX participants; posterior inferences from the optimal MFA-MD
model are discussed in what follows.
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Figure 1: The approximate BIC-MCMC for each of the MFA-MD models fitted to the
set of LIPGENE-SU.VI.MAX participants. The dashed grey line indicates the largest
approximate BIC-MCMC value achieved; the optimal model has two clusters and eight
latent dimensions.

4.1 Examining the cluster specific parameters for the set of
discriminatory variables

The reduced cardinality of the set of variables facilitates interpretation of the substantive
differences between the resulting clusters or ‘sub-phenotypes’.

The means of the retained continuous phenotypic variables for each cluster are illus-
trated in Figure 2. Examination of these posterior parameter estimates provides par-
ticular insight to the structure of the two clusters. Cluster 1 appears to be a ‘healthy’
sub-phenotype in that the phenotypic variable means are lower in general in cluster 1
than in cluster 2. It is well known that lower values of such phenotypic variables are
typically associated with better health. For example, the mean levels of triglycerides,
waist circumference, body mass index (BMI) and systolic and diastolic blood pressure
variables (SBP and DBP respectively) are notably lower in cluster 1 than cluster 2.
The exception is Apo A-1, the major structural protein of the high density lipoprotein
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Figure 2: Box plots of the MCMC samples of mean parameters in each cluster, for
the discriminating continuous phenotypic variables. All variables were standardised
prior to analysis. The original units for each variable are detailed in the Supplementary
Material.
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Table 2: Empirical posterior probabilities of each retained SNP genotype conditional
on cluster membership. Associated uncertainties are all less than 0.01.

(a) ADD1 (rs17777371)

GG CG/CC
Cluster 1 0.80 0.20
Cluster 2 0.91 0.09

(b) APOB (rs512535)

GG AA AG
Cluster 1 0.22 0.23 0.55
Cluster 2 0.30 0.23 0.47

(c) APOL1 (rs136147)

CC AA AC
Cluster 1 0.33 0.21 0.46
Cluster 2 0.21 0.32 0.48

(d) CETP (rs4784744)

GG AA AG
Cluster 1 0.52 0.10 0.38
Cluster 2 0.32 0.11 0.57

(e) FABP1 (rs2970901)

CC AA AC
Cluster 1 0.25 0.18 0.57
Cluster 2 0.37 0.17 0.46

(f) GYS1 (rs2270938)

TT AA AT
Cluster 1 0.34 0.21 0.45
Cluster 2 0.35 0.13 0.52

(g) INSIG1 (rs9770068)

CC TT TC
Cluster 1 0.32 0.13 0.55
Cluster 2 0.35 0.20 0.45

(h) LRP2 (rs2544377)

GG AA AG
Cluster 1 0.48 0.11 0.41
Cluster 2 0.44 0.08 0.48

(i) OLR1 (rs1050289)

GG AG/AA
Cluster 1 0.75 0.25
Cluster 2 0.83 0.17

(j) SLC25A14 (rs2235800)

TT AA AT
Cluster 1 0.38 0.35 0.26
Cluster 2 0.60 0.30 0.11

(k) SLC27A6 (rs185411)

GG AA AG
Cluster 1 0.46 0.07 0.47
Cluster 2 0.47 0.16 0.37

(l) SLC6A14 (rs2071877)

GG AA AG
Cluster 1 0.63 0.17 0.19
Cluster 2 0.70 0.23 0.08

(m) THYN1 (rs570113)

GG AA AG
Cluster 1 0.40 0.12 0.48
Cluster 2 0.48 0.09 0.43
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(HDL) particle, low levels of which are a recognised risk factor for cardiovascular disease
Wilson et al. (1998); Gordon et al. (1989). Apo A-1 levels are usually low when HDL
cholesterol levels are reduced, thus it is intuitive that higher Apo A-1 levels are reported
in the healthy cluster.

Table 2 details the empirical posterior probability of each genotype across the thir-
teen retained SNPs, conditional on cluster membership. Clear differences in the dis-
tributions between clusters are visible. For example, in both retained binary SNPs
rs17777371 of the ADD1 gene and rs1050289 of the OLR1 gene participants in both
clusters are most likely to take the dominant homozygous genotype. However, for both
SNPs, cluster 1 is more likely to take the compound recessive homozygous/heterozygous
genotype (the second level) than cluster 2. In terms of retained nominal SNPs, the prob-
ability distributions between clusters for the rs4784744 SNP of the CETP gene and the
rs2235800 SNP of the SLC25A14 gene also show some disparities, for example. For the
rs4784744 SNP of the CETP gene, participants in cluster 1 are more likely to have the
dominant homozygous genotype than those in cluster 2, with those in cluster 2 more
likely to have the heterozygous genotype. For the rs2235800 SNP of the SLC25A14
gene, 60% of participants assigned to cluster 2 have the dominant homozygous genotype
compared to 38% of those in cluster 1. The probability distribution is much more evenly
spread across the genotypes for participants in cluster 1 than for those in cluster 2.

The 13 SNP variables deemed to be discriminatory are also listed in Table 3, which
provides details on characteristics of the discriminating SNPs and the biological path-
ways to which they are associated. Most of the SNPs deemed to be discriminatory are
involved in lipid metabolism, glucose homeostasis or blood pressure regulation. Asso-
ciations between polymorphisms of a number of genes involved in fatty acid and lipid
metabolism, inflammation, appetite control and adiposity with risk of the MetS or its
features have previously been identified in the LIPGENE-SU.VI.MAX cohort Phillips
et al. (2012a,b, 2011, 2010a,b,c,d, 2009a,b,c); some of these SNPs are also highlighted
here, in addition to some novel discoveries.

Of particular interest in the current analysis is the APOB rs512535 SNP which has
previously been reported to have association with MetS risk Phillips et al. (2011). Apo
B is the main apolipoprotein associated with low density lipoprotein and the triglyceride
rich lipoproteins Chan (1992). Other findings of note are rs9770068 of the INSIG1 gene
which is involved in cholesterol metabolism Radhakrishnan et al. (2007) and rs4784744
of the CETP gene which is involved in mediating exchange of lipids between lipoproteins
and reverse cholesterol transport Kuivenhoven et al. (1998); rs2544377 of the LRP2
gene and the rs1050289 SNP of the OLR1 gene, both of which are involved in lipid
homeostasis Lillis et al. (2008); Sawamura et al. (1997); rs2970901 of the FABP1 gene
and rs185411 of the SLC27A6 gene both of which are involved in fatty acid metabolism
Pelsers et al. (2003); Auinger et al. (2012) and rs17777371 of the ADD1 gene which is
involved in blood pressure regulation Barlassina et al. (1997).

Examination of the posterior parameter estimates across all discriminating variables
suggests that cluster 1 could be termed a ‘healthy’ sub-phenotype and cluster 2 an ‘at
risk’ sub-phenotype. Further, some of the phenotypic and SNP variables deemed to be
discriminatory appear intuitive, while others are suggestive of potentially interesting
relationships for further research.
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Table 3: Characteristics of the set of 13 binary and nominal SNP variables deemed to be discriminatory.(Source: NCBI SNP data base
http://www.ncbi.nlm.nih.gov/SNP/)

Gene SNP SNP type Chromosome Associated biological
pathway

ADD1 rs17777371 Adducin 1 Flanking_3UTR Blood pressure
chromosome 4 regulation

APOB rs512535 Apolipoprotein B Intronic chromosome 2 Lipid metabolism
APOL1 rs136147 Apolipoprotein L1 Intronic chromosome 22 Lipid metabolism
CETP rs4784744 Cholesterol ester transfer protein Intronic chromosome 16 Lipid metabolism
FABP1 rs2970901 Fatty acid binding protein 1, Flanking_5UTR Lipid metabolism

liver chromosome 2
GYS1 rs2270938 Glycogen synthase 1 Intronic chromosome 19 Glucose homeostasis
INSIG1 rs9770068 Insulin Induced Gene 1 Intronic chromosome 7 Lipid metabolism,

innate immunity.
LRP2 rs2544377 LDL receptor related protein 2 Intronic chromosome 2 Lipid metabolism
OLR1 rs1050289 Oxidized low density 3UTR chromosome 12 Lipid metabolism

lipoprotein (lectin-like)
receptor 1

SLC25A14 rs2235800 Solute Carrier Family 25 Intronic x chromosome Oxidative
(Mitochondrial Carrier, Brain), phosphorylation
Member 14 or UCP5

SLC27A6 rs185411 Solute Carrier Family 27 Intronic chromosome 5 Lipid metabolism
(Fatty acid transported), member 6

SLC6A14 rs2071877 Solute carrier family 6 Intronic x chromosome Amino acid
(amino acid transporter), transporter
member 14

THYN1 rs570113 Thymocyte nuclear protein 1 Intronic chromosome 11 Amino acid
metabolism
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4.2 Correspondence between sub-phenotype membership and
the seven year follow-up MetS diagnosis

As stated, the data analysed here are an initial set of measurements under the LIPGENE-
SU.VI.MAX study. At a seven year follow-up, new continuous phenotypic data on each
of the 505 participants were recorded. Each participant was then diagnosed as having
the MetS or not based on the criterion in Table 1, which considers continuous phenotypic
data only. It is therefore of interest to compare the cluster or sub-phenotype member-
ship of each LIPGENE-SU.VI.MAX participant based on their initial phenotypic and
genotypic data to their subsequent MetS diagnosis, seven years later.

The cluster or sub-phenotype membership for each participant is obtained by first
computing the conditional probability that participant i belongs to each cluster based
on the MCMC samples, and a ‘hard’ clustering is then obtained by assigning each par-
ticipant to the cluster for which they have largest membership probability. Table 4
details the cross tabulation of the initial sub-phenotypes and the follow-up MetS diag-
nosis. It can be seen that traits of the MetS are apparent in the initial data, as the
cross-tabulation shows good agreement, with a Rand index of 0.73 (and an adjusted
Rand index of 0.46). Notably, Figure 1 suggests there are five closely competing models
to the optimal G = 2, Q = 8 model i.e. the G = 2, Q = 5, 6, 7, 9, 10 models. Comparing
the resulting clusterings from these models to the follow-up MetS diagnosis results in
Rand indices ranging from 0.71 to 0.74 and in adjusted Rand indices ranging from 0.42
to 0.48, suggesting that the models deemed optimal by the BIC-MCMC criterion all
indeed have similar performance and perform well.

Table 4: Cross tabulation of sub-phenotype membership (based on fitting the MFA-
MD model to the initial phenotypic and genotypic data) and MetS diagnosis (based on
the diagnosis criterion in Table 1 on seven year follow up phenotypic data only). The
Rand index is 0.73 (adjusted Rand index = 0.46).

Follow up data
Healthy MetS

Initial data Cluster 1 (‘Healthy’) 220 42
Cluster 2 (‘At risk’) 39 204

Of further interest is whether the level of correspondence between the sub-phenotypes
and the follow-up MetS diagnosis is stronger than that observed between the MetS diag-
noses from both time points based on the phenotypic data only. One of the abnormalities
required for diagnosis involves HDL cholesterol – HDL cholesterol data are not available
in the initial measurements however. Therefore the current diagnosis criterion in Ta-
ble 1 cannot be applied to the initial data. Hence, participants are diagnosed as MetS
cases if they satisfy two or more of the remaining four diagnostic conditions relating to
waist circumference, blood pressure, TAG and glucose concentration. Table 5 details
the cross tabulation of the ‘initial diagnosis’ compared to the ‘follow-up diagnosis’ based
on the phenotypic data only. Notably, the follow up diagnosis does not change here
if it is based on 2 of the 4 available variables rather than on the criterion outlined in
Table 1. Table 5 also suggests that the traits of the MetS are apparent in the initial
data, as the MetS diagnoses from the two time points agree well, with a Rand index of
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0.69 (adjusted Rand index of 0.38). However, the level of agreement is lower in Table
5 than that observed in Table 4, highlighting the importance of utilising both pheno-
typic and genotypic factors, and the potential utility of the clustering approach in early
screening.

Table 5: Cross tabulation of MetS diagnoses from initial and follow up data. The
Rand index is 0.69 (adjusted Rand index is 0.38)

Follow up data
Healthy MetS

Initial data Healthy 194 31
MetS 65 215

Further, to explore the influence of modelling each data type in its innate form, a
k-means clustering algorithm with k = 2 was applied to all the 738 variables, treating
all the SNP variable codes as continuous values. Comparing the resulting clustering to
the follow up MetS diagnosis gave a Rand index of 0.60 (adjusted Rand index = 0.21).
Applying k-means clustering (again with k = 2) to the set of 25 variables selected
as discriminatory under the optimal G = 2, Q = 8 model gave a Rand index of 0.68
(adjusted Rand index = 0.37) when compared to the follow-up MetS diagnosis. As
noted the MFA-MD model achieved a Rand index of 0.73 (adjusted Rand index = 0.46)
highlighting the benefit of modelling the variables in their innate form.

Finally, the MFA-MD model outlined above was fitted to only the continuous phe-
notypic variables from the initial LIPGENE-SU.VI.MAX data. The optimal model,
according to the approximate BIC-MCMC, was the G = 2, Q = 7 model, which gave a
Rand index of 0.50 (adjusted Rand of 0.005) with the follow-up MetS diagnosis. This
model under-performs when compared to analysing the phenotypic and genetic data
jointly, again highlighting the importance of considering phenotypic and genotypic fac-
tors simultaneously with regard to early screening for the MetS.

4.3 Quantifying uncertainty in sub-phenotype membership at
the participant level

One of the main advantages of a model-based approach to clustering is the inherent as-
sessment of the uncertainty about cluster membership Bensmail et al. (1997); Gormley
& Murphy (2006). In the LIPGENE-SU.VI.MAX context, the model-based approach al-
lows quantification of the probability of sub-phenotype membership for each participant.
As stated, the cluster membership for each participant is obtained by first computing the
conditional probability that participant i belongs to each cluster based on the MCMC
samples, and a ‘hard’ clustering is then obtained by assigning each participant to the
cluster for which they have largest membership probability. The uncertainty with which
participant i is assigned to its cluster may then be estimated by

Ui = min
g=1,...,G

{1−P(cluster g | participant i)}.

If participant i is strongly associated with cluster g then Ui will be close to zero.
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Figure 3 illustrates the clustering uncertainties under the optimal MFA-MD model.
Figure 3a illustrates the clustering uncertainty for each LIPGENE-SU.VI.MAX partici-
pant. The maximum uncertainty observed is 0.496, associated with participant number
445. This participant is clustered with the ‘healthy’ sub-phenotype, but there is high
uncertainty associated with this clustering. Examination of this participant’s data pro-
vides insight to this high clustering uncertainty – participant 445 has much higher SBP
and DBP, and much lower Apo A-1 levels than the mean levels in the ‘healthy’ sub-
phenotype. Further, participant 445 differs from the modal genotypes observed in the
‘healthy’ sub-phenotype for SNPs APOB (rs512535), FABP1 (rs2970901) and INSIG1
(rs9770068). Thus while this participant is clustered with the ‘healthy’ sub-phenotype
they have large probability of being ‘at risk’.

Thus, the model-based nature of the MFA-MD approach to clustering provides a
global view of the group structure in the LIPGENE-SU.VI.MAX participants, but also
provides detailed insight to sub-phenotype membership at the participant level; the abil-
ity to define the uncertainty in cluster membership is an important development for the
application of the metabotyping concept in precision medicine and nutrition O’Donovan
et al. (2016). Overall, the vast majority of LIPGENE-SU.VI.MAX participants have
very small clustering uncertainty, as illustrated by Figure 3b.
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Figure 3: (a) The participant specific clustering uncertainties and (b) the histogram of
the clustering uncertainties across all participants, under the optimal MFA-MD model.

4.4 Assessing model fit
In order to assess how well the selected MFA-MD model fits the LIPGENE-SU.VI.MAX
data, Bayesian residuals and Bayesian latent residuals are utilised Johnson & Albert
(1999); Fox (2010).

For continuous phenotypic variables the Bayesian residual for participant i on vari-
able j is

ϵij =
(
zij − λ̃

T

gj θ̃i

)
/ψjj.
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The continuous phenotypic data are observed so this residual may be calculated explic-
itly by subtracting λ̃

T

gj θ̃i at each MCMC iteration from zij and dividing this quantity
by ψjj from that iteration. For a well fitting model, this residual follows a standard
Gaussian distribution.

However, zij corresponding to a categorical SNP variable is not observed but sampled
during the MCMC scheme. A Bayesian latent residual for these variables may be defined
as

ϵij = zij − λ̃
T

gj θ̃i.

The sampled values of zij, λ̃gj and θ̃i are used to calculate this residual at each MCMC
iteration. If the model fits well such residuals should follow a standard Gaussian dis-
tribution. For the nominal SNP variables this residual will be multivariate since two
latent dimensions are required to model each nominal SNP.

The Bayesian residuals and latent residuals follow their theoretical distribution rea-
sonably well for the optimal G = 2, Q = 8 MFA-MD model. As an example, Figure 4
illustrates kernel density estimates of Bayesian latent residuals corresponding to the
ADD1 (rs17777371) SNP for 50 randomly selected participants. The densities are es-
timated based on the residuals calculated at each MCMC iteration. Curves that do
not follow a standard Gaussian distribution correspond to participants whose genotype
was unusual given the cluster to which they were assigned. Kernel density estimate
plots for other Bayesian residuals and Bayesian latent residuals are provided in the
Supplementary Material.
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Figure 4: Density estimates of the Bayesian latent residuals for the rs17777371 SNP
of the ADD1 gene for 50 randomly selected participants. The standard Gaussian density
curve is shown by the black dashed line.
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5 Discussion
The primary focus of the pan European LIPGENE-SU.VI.MAX project is to study
the interaction of nutrients and genotype in the metabolic syndrome. Data collected
under LIPGENE-SU.VI.MAX are high dimensional and of mixed type, and interest
lies in exploring the set of LIPGENE-SU.VI.MAX participants to uncover subgroups
with homogeneous phenotypic and genotypic profiles. Examining the link between the
resulting clusters and seven-year follow-up MetS diagnosis aids understanding of the
role of both phenotypic and genotypic factors in the MetS and provides the opportunity
to identify subjects at risk. A clustering method that takes account of different data
types and models each one appropriately is therefore necessary.

While factor analytic methods for data of mixed type and latent factor based clus-
tering methods have already been well developed, the proposed MFA-MD methodology
contributes a number of novel advances to the area:

• the MFA-MD model provides a single, unifying and elegant model for data which
notably includes any combination of continuous, binary or nominal response vari-
ables.

• the MFA-MD approach models nominal response variables in their innate form,
rather than requiring a dummy variable representation as is typically necessary
in other approaches to clustering nominal response variables.

• the variable selection approach permits high dimensional data to be feasibly and
efficiently handled, which is theoretically possible but practically challenging for
some latent factor models.

• the model based approach to clustering and the novel likelihood function approx-
imation facilitates the use of an objective model selection criterion to select the
optimal number of clusters and factors rather than relying on subjective heuristic
tools.

The MFA-MD approach proposed here jointly and elegantly models continuous phe-
notypic, binary SNP and nominal SNP data, while providing clustering facilities. The
suitability of the MFA-MD model for this task is due to its basis in and the relations
between a factor analysis model for continuous data, item response theory for binary
data and multinomial probit models for nominal data. Further, the parsimonious factor
analysis covariance structure is ideal for modelling such high dimensional data. Most
of the large number of LIPGENE-SU.VI.MAX data set variables have little to offer
in terms of clustering information; a simple and efficient variable selection algorithm
is intertwined with the MFA-MD fitting process, thereby highlighting variables that
contribute clustering information. This greatly simplifies the task of interpreting the
clusters substantively.

A key aspect of the proposed approach to variable selection is that variables are
removed from the model online, thus dramatically reducing the computational burden
of fitting the MFA-MD model to high-dimensional data. Several penalisation based
variable selection approaches have previously been proposed for latent factor clustering
models, for example in Pan & Shen (2007); Galimberti et al. (2009); Xie et al. (2010);
these only consider continuous data in a maximum likelihood framework however. The
fact that non-discriminating variables are removed from the MFA-MD model rather than
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shrinking their associated parameters to zero (meaning all variables are still included in
the modelling procedure) ensures the dramatic increase in computational efficiency of
the proposed approach.

As with any clustering problem, of key interest is inferring the number of clusters
present in the set of LIPGENE-SU.VI.MAX participants. Standard information criteria
approaches in a model based clustering setting involve the evaluation of the observed
likelihood function and are not feasible under the MFA-MD model – it employs la-
tent variables and evaluation of the observed likelihood function relies on intractable
multidimensional integrals. Here an approximation of the observed data likelihood is
constructed, and employed in the BIC-MCMC criterion to select both the number of
clusters and the dimension of the underlying latent factors in the MFA-MD model.
Simulation studies suggest the approximate model selection criterion exhibits desirable
performance, as does the variable selection approach taken.

When applied to the initial mixed phenotypic and genotypic LIPGENE-SU.VI.MAX
data, the MFA-MD model uncovers two clusters or ‘sub-phenotypes’ of participants;
exploration of the cluster specific parameters suggests one cluster is a ‘healthy’ sub-
phenotype and the other an ‘at risk’ sub-phenotype. Both phenotypic and genotypic
variables are identified as discriminatory; some are novel discoveries and are indica-
tive of further directions of research. Further, when comparing the resulting clusters
to the MetS diagnosis seven years later, the proposed approach out-performs both the
use of the standard MetS diagnosis criterion, and the result when clustering using the
continuous phenotypic data only, thus emphasising the importance of jointly consid-
ering both phenotypic and genotypic profiles when screening for MetS. The proposed
MFA-MD approach to clustering provides a global view of the group structure in the
set of LIPGENE-SU.VI.MAX participants, but also provides detailed insight to sub-
phenotype membership at the participant level, synonymous with the concepts of preci-
sion medicine and nutrition. The developed methodology has wide applicability beyond
the LIPGENE-SU.VI.MAX study, in any setting seeking to uncover subgroups in a
cohort on which high dimensional data of mixed type have been recorded.

There are many potential areas of future research for the MFA-MD methodology
proposed here. Covariate data such as ethnicity and gender are potentially important
when studying MetS, and are currently involved in some of the varying MetS diagnosis
criteria Alberti et al. (2005, 2006). Incorporating such covariate information in the MFA-
MD model could provide understanding of cause-effect relationships in the clustering
context. Such information could be incorporated into the MFA-MD model in a mixture
of experts framework Jacobs et al. (1991); Gormley & Murphy (2008).

Within the LIPGENE-SU.VI.MAX cohort a large number of participants were re-
moved from the original data set prior to analysis due to the presence of missing data.
To ensure generalisability of the proposed approach it would be advantageous to address
such missingness in a more elegant manner. The latent variable and Bayesian origins
of the developed model and methodology would allow missing data to be treated as
latent variables that can be naturally imputed as part of the MCMC inferential sam-
pling scheme. Such missing data would be required to be missing at random, which was
deemed not to be the case in the LIPGENE-SU.VI.MAX cohort.

The approximate model selection criterion developed demonstrated good perfor-
mance but can be computationally expensive to compute and other approaches have
potential merit. Non-parametric approaches to clustering such as the Dirichlet process
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(or infinite) mixture model Teh (2010) provide an alternative to the finite mixture ap-
proach taken here, and do not require a model selection tool to choose G. However,
in the case of MFA-MD the value of Q still requires inference; considering an infinite
factor model Bhattacharya & Dunson (2011) would again avoid the need for a model
selection criterion for Q, and allow the latent factor dimension to vary across clusters,
in a similar manner to that considered in Murphy et al. (2017). Such approaches may
provide computationally cheaper ways to find the optimal values of G and Q without
requiring an expensive grid search.

Considering more parsimonious versions of the model McNicholas & Murphy (2008)
would increase modelling flexibility, as would extending the model to include other data
types, such as count data, for example. Including such further complexity in the MFA-
MD methodology would serve to increase the computational cost of model fitting which,
even with the efficiency inducing variable selection procedure, is still somewhat onerous.
A variational Bayes approach to estimation of the MFA-MD model Ghahramani & Beal
(1999) may have potential in terms of feasibly implementing the model at increased scale
and complexity, and may also aid some of the intractable likelihood difficulties. Further,
exploring other latent variable representations, for nominal variables in particular, may
be fruitful in terms of achieving parsimony and computational efficiency.
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