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Abstract 

Introduction: Higher urate concentrations have been associated with a lower risk of developing 

Parkinson’s disease (PD) and with slower rates of clinical decline in PD patients. Whether these 

associations reflect a neuroprotective effect of urate is unclear. Our objective was to assess whether 

genetic variants that modify circulating urate levels are also associated with altered PD risk. 

Methods: Participants were from three large ongoing cohort studies: the Nurses’ Health Study (NHS), 

the Health Professionals Follow-up Study (HPFS), and the Cancer Prevention Study II Nutrition Cohort 

(CPS-IIN). We examined associations between single nucleotide polymorphisms (SNPs) in SLC2A9 and 

other genes involved in urate transport and PD risk using conditional logistic regression among 1,451 

cases and 3,135 matched controls. We assessed associations between SNPs and plasma urate levels in a 

subset of 1,174 control participants with linear regression models. 

Results: We found the expected associations between SNPs in SLC2A9 and plasma urate levels among 

men and women; however, SNPs in other genes tended not to be associated with urate. Each SNP in 

SLC2A9 explained less than 7% of the variance in plasma urate. We did not find significant associations 

between the SNPs in SLC2A9 and PD risk among men or women.  

Conclusion: Our results do not support an association between genetic variants associated with 

circulating urate levels and risk of PD, but larger investigations are needed to determine whether the 

modest genetic effects on blood urate contribute to predict PD risk. 
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Urate is a powerful antioxidant that circulates at high concentrations in humans and is responsible for 

most of the antioxidant capacity in human plasma[1]. Because of the proposed role of oxidative stress in 

the pathology of Parkinson’s disease (PD), it has been suggested that high plasma urate levels could be 

protective against PD[2]. Support for this hypothesis has come from a variety of sources. Laboratory 

models of PD have demonstrated that urate attenuates MPP+ toxicity in dopaminergic neurons[3] and 

6-OHDA toxicity[4], and urate oxidase knock-out mice with increased concentrations of urate in the 

brain exhibit attenuated toxic effects of 6-OHDA on dopaminergic cells[5]. Several studies have reported 

that patients with PD have lower urate levels in serum[6, 7] and plasma[8] than individuals without PD. 

In addition, higher serum and cerebrospinal fluid concentrations of urate have been associated with 

slower rates of clinical decline in PD patients[9, 10]. Prospective studies have shown that people with 

lower urate levels have an increased risk of developing PD[11]. However, several of the above studies 

reported associations only among men[7, 9, 11]. 

Evidence of an association between urate and PD suggests that urate could be a suitable target for 

neuroprotective therapies, since plasma urate levels can be increased through pharmacologic or dietary 

interventions. However, despite consistent evidence supporting an association between urate and PD, it 

is difficult to establish causality due to the inherent limitations of observational studies, particularly 

confounding and reverse causation. One approach to address these concerns, known as Mendelian 

randomization, is to take advantage of genetic variants that affect urate levels to investigate causality. 

Since alleles are assigned randomly during meiosis, genotypes should be unrelated to confounding 

factors typical of epidemiologic studies. Several genetic loci have been associated with urate 

concentration in genome-wide association studies (GWAS), and one locus that has been consistently 

identified is solute carrier family 2, member 9 (SLC2A9)[12-18]. SLC2A9 encodes glucose transporter 9 

(GLUT9), which can reabsorb urate in renal tubules[19]. Polymorphisms in SLC2A9 have been associated 

with age at onset of PD[20] as well as PD risk when combined with polymorphisms from other genes 
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using a genetic score[21]. However, no association between 12 SLC2A9 polymorphisms and PD risk was 

found in a separate study[22].  

Therefore, we examined genetic variants that have previously been associated with altered urate levels 

in relation to PD risk among cases and controls selected from three large prospective cohort studies—

the Nurses’ Health Study (NHS), Health Professionals Follow-up Study (HPFS), and the Cancer Prevention 

Study II Nutrition Cohort (CPS-IIN). In addition, as detailed exposure histories have been collected from 

all members of these cohorts as well as measured plasma urate for a subset of participants, we have a 

unique ability to assess relationships among genetic variants, plasma urate, and lifestyle factors.  

Methods 

Study population 

The NHS was established in 1976 when 121,700 female registered nurses aged 30-55 years completed a 

mailed questionnaire regarding their medical histories and baseline health-related exposures. The HPFS 

was established in 1986 when 51,529 male health professionals aged 40-75 years responded to a similar 

questionnaire. The CPS-IIN, a sub-cohort of the larger CPS-II, includes 184,190 individuals (86,404 men 

and 97,786 women) aged 50-74 in 1992 who completed a questionnaire regarding nutrition and other 

risk factors. For all cohorts, follow-up questionnaires have been sent every two years to update 

exposure data and disease diagnoses. Follow-up in all cohorts has been approximately 90% or higher. 

The study was approved by the Human Research Committees at the Harvard T. H. Chan School of Public 

Health and the Brigham and Women’s Hospital. 

Case ascertainment and control selection 

Procedures for case ascertainment have been described previously[11] . Briefly, cases were first 

identified through biennial self-report questionnaires. With consent of the participant, we asked the 
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treating neurologist to complete a questionnaire confirming or refuting the PD diagnosis and to send a 

copy of the medical records, which were reviewed by a neurologist specializing in movement disorders. 

Cases were confirmed if a diagnosis was considered definite or probable by the treating neurologist, or if 

the medical record included either a final diagnosis of PD made by a neurologist, or evidence of at least 

2 of the 3 cardinal signs (rest tremor, rigidity, bradykinesia) in the absence of features suggesting 

alternative diagnoses.  

For each case, we randomly selected controls who were alive and had not reported PD at the time of the 

cases’ diagnosis. We selected between 2-6 controls per case in the NHS and HPFS and one control per 

case in the CPS-IIN cohort. Controls were matched to the cases based on cohort, sex, birth year (+/-1 

year), race (white vs. other), fasting status (>8 hours vs. less/unknown), and year, month, and time of 

blood draw (in two-hour intervals). 

Plasma urate assessment 

Blood samples were collected from 32,826 members of NHS between 1989-1990, 18,000 members of 

HPFS between 1993-1995, and 40,000 members of CPS-IIN between 1998-2001. For NHS and HPFS, 

participants used collection kits provided to them by the studies and returned blood samples via 

overnight delivery to our lab. More than 95% of samples were delivered within 26 hours of being drawn. 

Upon arrival, blood samples were centrifuged and blood components were aliquoted into cryotubes and 

stored in the vapor phase of liquid nitrogen freezers at -130 degrees C or colder until being sent to the 

laboratory for analysis. For CPS-IIN, participants went to participating hospitals in their communities for 

blood draws. Hospital staff centrifuged the samples to separate blood components, then shipped 

samples overnight to a central repository where the samples were aliquoted and frozen in the vapor 

phase of liquid nitrogen freezers for long-term storage[23]. Samples from cases and controls were 

handled identically. Concentrations of plasma urate were measured using a colorimetric enzyme assay 
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(Hitachi 911; Roche Diagnostics, Indianapolis, Indiana). Coefficients of variation (CVs) were determined 

using blinded quality control samples included with the study samples. All reported CVs were <10%. 

Genotyping 

Participants who had not provided blood samples were invited to provide cheek cell samples. 

Participants were sent a package contained a small empty cup with a cap and a bottle of mouthwash, 

and were asked to swish the mouthwash in their mouths and then spit into the cup; samples were 

mailed back to our lab and processed within a week of receipt. Genotyping using either blood or cheek 

cells was conducted for 322 confirmed cases and 1337 controls in NHS, 310 confirmed cases and 979 

controls in HPFS, and 819 cases and 819 controls in CPS-IIN (the 819 cases in CPS-IIN included 307 

individuals whose medical records were incomplete or could not be obtained; these individuals were 

excluded in sensitivity analyses).  Genotyping was carried out through the Harvard Partners Center for 

Genetics and Genomics at the Harvard Partners Genotyping Facility using the OpenAssay SNP 

Genotyping System (BioTrove, Woburn, Massachusetts, USA). Our primary gene of interest, SLC2A9, has 

been identified in several genome-wide association studies as the strongest genetic predictor of serum 

urate levels and gout[12-15, 24]. Although the causal variant has not been identified, we genotyped 

three SNPs due to their strong associations with urate in previous studies: rs6855911[12, 15, 18, 24], 

located within intron 7 with minor allele frequency (MAF) of 0.31 (G allele); rs7442295[12, 13, 15, 18], 

located within intron 6 with a MAF of 0.21 for G allele; and rs16890979[14, 17, 18], a missense mutation 

in exon 8 with a MAF of 0.22 for T allele (using HapMap data from Utah residents with ancestry from 

northern and western Europe, abbreviated CEU[25]). These three SNPs are in strong linkage 

disequilibrium (LD; pairwise r
2
 range from 0.68-0.76 from Haploview[26] with HapMap CEU data) and 

each minor allele of these SNPs has been associated with a 0.30-0.43 mg/dL decrease in serum urate in 

individuals of European descent[12, 14].  In addition to SLC2A9, we selected for analysis other genes of 
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interest due to their role in the transport of urate, including solute carrier family 22, member 12 

(SLC22A12/URAT1), ATP-binding cassette sub-family G member 2 (ABCG2), and solute carrier family 17, 

member 3 (SLC17A3/NPT4). 

Covariate assessment 

Data on covariates, including age, body mass index (BMI), smoking, and usual diet, including coffee and 

alcohol intake, were collected via self-report questionnaires every two years, as previously 

described[27].  

Statistical analyses 

Basic characteristics of the study population were assessed using means for continuous variables and 

percentages for discrete variables. Given previously reported sex differences for the association 

between urate and PD risk[11] and different ranges, we performed analyses separately in men and 

women. We used histograms and q-q plots to check for normality and then examined associations 

between individual SNPS and urate using linear regression under an additive genetic model for 

individuals with measured urate. We used R
2
 as a measure of the proportion of the variation in plasma 

urate explained by each SNP. Because only SNPs located within SLC2A9 demonstrated statistically 

significant associations with urate, we also created a genetic score by summing the number of SLC2A9 

alleles that have been associated with lowered urate in previous GWAS. Finally we explored possible 

modification of the association between the genetic score and urate by factors associated with altered 

urate levels, including BMI, alcohol, fructose, vitamin C in all three cohorts, and additionally dairy 

protein and the dietary urate index in the NHS and HPFS, by including cross-product terms between 

these variables (higher vs. lower, based on the median values) and the genetic score.[27, 28] We then 

conducted analyses of the genetic score and urate within levels of variables identified as effect modifiers 

through testing of the interaction terms.  
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We then assessed the association between each SNP and PD risk under an additive genetic model using 

conditional logistic regression. In a second model we additionally adjusted for smoking status, coffee 

intake, BMI, and alcohol consumption. Covariates were obtained from the questionnaire preceding 

blood draw. In addition to the individual SNPs, we also examined the association between the genetic 

score and PD using conditional logistic regression. We performed analyses first separately by study and 

gender, and then used a random meta-analysis approach to pool results and assess potential 

heterogeneity. Finally, we estimated the association between genetically determined plasma urate and 

PD risk using the two-stage regression described below. First we fit a linear regression model within the 

subset of controls with measured urate and SNPs, with plasma urate as the dependent variable and the 

three SLC2A9 SNPs as independent variables, and obtained fitted urate levels. Fitted urate levels for 

cases and controls without measured urate were obtained by substituting their genotypes into the first-

stage regression model. Then we used the fitted urate levels as a continuous independent variable in a 

conditional logistic regression model for PD. In sensitivity analyses, we repeated analyses after excluding 

cases without confirmation from medical records and those who were diagnosed with PD after age 80. 

Results 

Baseline characteristics are presented in Table 1. A total of 1,451 cases and 3,135 controls were 

included. We examined associations between SNPs and urate in a subset of 1,174 controls with 

measured urate. As expected, urate levels were higher among men than women. In both men and 

women across all three cohorts, we found statistically significant associations between all three SLC2A9 

SNPs and urate (figure), with each explaining 3.93-5.79% of the overall variance in plasma urate among 

female controls and 1.45-6.43% among male controls.  RS6855911 exhibited the strongest associations 

with plasma urate among women--a one-allele increment was associated with a 0.47 mg/dL decrease in 

urate levels (95% CI -0.62, -0.33). Among men, rs7442295 was most strongly associated with plasma 
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urate, and a one-allele increment was associated with a 0.42 mg/dL decrease in urate levels (95% CI -

0.60, -0.23). Associations were similar in men and women. The genetic score consisting of all three 

SLC2A9 SNPs explained 5.22% of the variation in urate levels in women and 3.97% in men. SNPs from 

other genes were not associated with urate levels (Supplementary Table) and did not contribute to 

explaining more of the variation—for example, an alternative genetic score that included all measured 

SNPs explained 3.06% of the variation in urate levels in women and 2.34% in men.  

We then examined associations between each SNP and risk of PD. Only one SNP (rs1165202) within the 

SLC17A3 gene was significantly associated with PD (pooled RR 0.87, 95% CI 0.79-0.96). Results from 

minimally and fully adjusted models did not show significant associations with PD risk for other SNPs in 

men or women (Table 2); pooled, multivariable-adjusted relative risks ranged from 0.92-1.08. The 

genetic score including the three SNPs within SLC2A9 was not associated with PD risk: the pooled RR 

was 1.01 (95% CI: 0.97, 1.05). Results were similar after additional adjustment for diuretic and aspirin 

use (results not shown). Finally, we performed a two-stage regression to examine the association 

between genetically-predicted urate and PD risk. Consistent with the results above, we did not find 

significant associations for men (pooled RR for a 1mg/dL higher urate=1.00, 95% CI 0.69-1.45) or women 

(pooled RR for a 1mg/dL higher urate 1.09, 95% CI 0.76-1.57). Results did not change after excluding 

cases without confirmation from medical records or after excluding individuals whose PD was diagnosed 

after age 80. 

In exploratory analyses, we investigated the association between SNPs and urate stratified by body mass 

index and the dietary urate index and its components. We found an interaction between BMI and 

SLC2A9 variants (pooled p for interaction=0.0006), where the association between additional risk 

variants and lowered urate was stronger for men and women with BMI below the median. For those 

with BMI above the median level, each additional risk allele was associated with 0.12 mg/dL lowered 
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urate (95% CI -0.21, -0.03), while for those with BMI below the median each additional risk allele was 

associated with 0.17 mg/DL lowered urate (95% CI -0.22, -0.12). No other significant interactions were 

found (p>0.05 for all). However, SLC2A9 risk variants were not associated with PD risk after stratifying by 

BMI (RR for BMI below the median=1.02, 95% CI 0.95-1.10; RR for BMI above the median: 1.00, 95% CI 

0.92-1.09).  

Discussion 

Previous research has demonstrated an association between urate and lowered PD risk; however, 

whether this association reflects a neuroprotective effect of urate is difficult to confirm in observational 

studies because of the possibility of unmeasured confounding. Since polymorphisms should be 

minimally confounded by other factors, studying the association between genetic determinants of urate 

levels and PD risk could provide important insights into the relationship between urate and PD. In this 

analysis, we found the expected associations between variants in SLC2A9 and urate levels among both 

men and women in three cohorts; however, we did not find associations between these genetic variants 

and PD risk.  

One explanation of our results is that the relatively small proportion of the variation in urate levels 

explained by the SNPs in our participants mean that the association between urate and PD could not be 

detected using these variants. Since the effects of individual variants on phenotypes are often small, this 

is a common drawback to Mendelian randomization studies.[29] Since the SLC2A9 score only accounted 

for 5.22% of the variation in urate concentrations in women and 3.97% in men, genetic factors other 

than the common variants assessed in this analysis may contribute more to between-person differences 

in circulating urate levels. In a recent analysis in these cohorts, we found approximately a 40% reduced 

risk of PD among men in the highest quartile of plasma urate (6.3-9.0 mg/dL) compared to men in the 

lowest quartile (<4.9 mg/dL)[11]. Based on data from our cohorts, we estimated that the approximately 
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0.80mg/dL decrease in plasma urate associated with having two copies of the risk allele compared to 

having none for one of the SNPs in SLC2A9 would predict a 10.5% increase in PD risk, assuming a linear 

association.  Power of our study may thus have been insufficient to detect this relatively modest 

difference in genetically determined PD risk. 

Another possible explanation of our results is that plasma urate does not have a causal effect on PD. 

While possible, these findings should be weighed against the evidence from a variety of sources 

supporting the hypothesis that urate is neuroprotective. Higher urate levels have been associated with 

decreased risk of PD in prospective studies[11] and with slower rates of clinical decline in PD patients[9, 

10]. Dietary determinants of urate have also been associated with altered PD risk[27]. Of note, a recent 

analysis using the same SLC2A9 variants found a hazard ratio for disease progression of 1.27 for a 

0.5mg/dL genetically conferred decrease in serum urate[30], which may suggest that urate is a stronger 

predictor of PD progression than risk. Further, it is possible that genetic determinants of plasma urate 

differ from genetic determinants of CNS urate. While cerebrospinal fluid, brain, or neuronal urate may 

be neuroprotective, as plasma urate does not directly determine urate levels in the immediate 

environment of the degenerating neurons, it may be unrelated or only weakly related to PD risk. This 

explanation could be supported by our finding of a significant association between rs1165202 and PD 

risk. While the T allele at this locus was associated with lowered serum urate and with gout in white 

participants[14] and was not associated with plasma urate in our study, it has been associated with 

significantly higher cerebrospinal fluid urate levels.[31] 

The strengths of our study include the availability of genetic data as well as plasma urate measurements 

and data on diet and lifestyle factors, as well as the relatively large sample size.  A previous study 

examining associations between variants in SLC2A9 and risk of PD also found no association, yet had 

roughly half the number of cases compared to our study[22]; taken together, the agreement between 
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these studies lends more confidence to the results. One weakness is that the participants are almost 

exclusively of European descent, limiting the generalizability of our findings. However, restricting our 

analysis to individuals of European descent also minimizes the potential for confounding by population 

stratification. In addition, for SLC2A9 in particular, associations with urate levels have been found in 

many different populations[12-18].  

In conclusion, our results do not support an association between genetic variants associated with 

circulating urate levels and risk of PD, but larger investigations are needed to determine whether the 

modest genetic effects on blood urate contribute to predict PD risk. 
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Figure caption 

Figure 1. Plasma urate level by number of SLC2A9 minor alleles in PD cases and controls 
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Table 1 Age-adjusted characteristics of the study population 

 Women Men 

 Controls (n=1631) Cases (n=616) Controls (n=1504) Cases (n=835) 

Age, years* 61.2(7.0) 63.9(7.7) 68.0(7.4) 69.0(6.7) 

UA 4.8(1.1) 4.7(1.2) 5.6(1.1) 5.5(1.0) 

Body mass index, kg/m 25.8(4.1) 25.5(3.9) 26.1(3.3) 26.2(3.4) 

Current smoker, % 8.2 3.1 4.9 1.8 

Past smoker, % 38.9 34.9 51.6 49.5 

Caucasian, % 98.8 98.5 99.5 95.8 

Alcohol, g/day 4.8(8.0) 4.1(7.6) 8.7(13.2) 7.4(10.1) 

Coffee, servings/day  1.6(1.5) 1.7(1.6) 1.8(1.7) 1.9(1.7) 

Fructose intake, gm 21.0(10.4) 20.3(10.4) 22.6(12.6) 22.1(10.3) 

Vitamin C intake, mg 271.8(281.1) 217.3(229.9) 215.8(256.4) 170.2(163.7) 

High blood pressure, % 29.3 30.8 28.9 33.4 

Use of diuretics, % 16.5 15.1 7.3 10.7 

Values are means(SD) or percentages and are standardized to the age distribution of the study population.

 * Value is not age adjusted 
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Table 2. Associations between urate transporter-related SNPs and risk of Parkinson’s disease  

  Women Men Pooled 

N cases, controls  616, 1631 835, 1504  

 EA/NEA
1
 RR (95% CI)

2
 RR (95% CI), fully adjusted

3
 RR (95% CI) RR (95% CI), fully adjusted

3
 RR (95% CI), fully adjusted

3
 

SLC2A9       

   rs16890979 (C,T) 0.97 (0.82, 1.14) 1.00 (0.85, 1.19) 1.03 (0.90, 1.19) 1.04 (0.89, 1.20) 1.02 (0.91, 1.14) 

   rs7442295 (A,G) 0.99 (0.83, 1.17) 1.01 (0.85, 1.21) 0.99 (0.85, 1.14) 0.98 (0.85, 1.14) 1.00 (0.89, 1.12) 

   rs6855911 (A,G) 0.97 (0.83, 1.14) 1.00 (0.84, 1.18) 1.04 (0.91, 1.19) 1.04 (0.91, 1.20) 1.02 (0.92, 1.14) 

   SNP score4  0.99 (0.93, 1.05) 1.00 (0.94, 1.06) 1.01 (0.96, 1.06) 1.01 (0.96, 1.06) 1.01 (0.97, 1.05) 

URAT1       

   rs11231825 (T,C) 1.04 (0.90, 1.21) 1.07 (0.91, 1.24) 1.05 (0.72, 1.54) 1.07 (0.76, 1.51) 1.06 (0.91, 1.25) 

   rs11602903 (A,T) 0.98 (0.85, 1.14) 1.00 (0.86, 1.18) 1.08 (0.79, 1.46) 1.09 (0.83, 1.44) 1.05 (0.92, 1.20) 

   rs3825016 (C,T) 1.01 (0.87, 1.17) 1.03 (0.88, 1.20) 1.06 (0.77, 1.46) 1.08 (0.81, 1.45) 1.06 (0.92, 1.21) 

   rs3825018 (A,G) 0.96 (0.82, 1.12) 0.94 (0.78, 1.13) 0.95 (0.73, 1.25) 0.94 (0.73, 1.20) 0.94 (0.83, 1.07) 

   rs475688 (C,T) 0.97 (0.80, 1.18) 0.94 (0.75, 1.18) 0.93 (0.72, 1.21) 0.92 (0.74, 1.14) 0.92 (0.81, 1.05) 

   rs476037 (A,G) 1.01 (0.76, 1.34) 1.05 (0.76, 1.45) 1.09 (0.70, 1.69) 1.09 (0.73, 1.64) 1.08 (0.87, 1.33) 

   rs7932775 (C,T) 1.08 (0.91, 1.29) 1.06 (0.82, 1.36) 1.02 (0.87, 1.20) 1.02 (0.86, 1.21) 1.05 (0.93, 1.18) 

   rs893006 (A,C) 0.98 (0.84, 1.14) 0.96 (0.82, 1.13) 0.94 (0.75, 1.19) 0.93 (0.77, 1.13) 0.94 (0.85, 1.05) 

ABCG2       

   rs2231142 (G,T) 0.81 (0.64, 1.02) 0.76 (0.60, 0.97) 1.23 (0.98, 1.56) 1.21 (0.96, 1.53) 0.97 (0.73, 1.28)  

SLC17A3       

   rs1165205 (A,T) 0.90 (0.76, 1.06) 0.86 (0.67, 1.12) 0.87 (0.76, 0.99) 0.86 (0.75, 0.98) 0.87 (0.79, 0.96) 
1
Effect allele/noneffect allele 

2Results from conditional logistic regression model 
3
Results

 
from conditional logistic regression model with additional adjustment for BMI (<25, 25 to <30, ≥30), alcohol intake in grams per day (none, <5, 5 to <10, 

10 to <15, ≥15 for women and none, <10, 10 to <20, 20 to <30, and ≥30 for men), coffee intake in servings per day (none, <1, 1, 2, ≥3), and smoking status 

(never, past, current) 
4
Sum of SLC2A9 effect alleles (0-6)  
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Genetic variants related to urate and risk of Parkinson’s disease—Highlights 

 

SNPs in SLC2A9 were associated with plasma urate levels in both men and women. 

SNPs in other genes involved in urate transport were not associated with plasma urate in our cohorts. 

SLC2A9 SNPs were not associated with risk of Parkinson’s disease. 

 

 

 


