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Abstract 

Controlling growth, doping, crystallization, thickness of thin films of thin film transistor (TFT) 

channel materials is required in order to improve and control physical properties, primarily 

electronic conductivity and optical transparency. With the advent of flexible electronics and 

curved TFT-based display panels, low cost, solution-processed methods are important and 

provide scalable coating methods on a range of substrates. This work demonstrates the changes 

to the morphology, crystalline structure, optical reflectivity and electrical conductance of 

solution-processed ZnO thin films by the inclusion of an aluminium dopant during spin-

coating. The measurements also determine the compositional chemical state of the Al:ZnO 

structures compared to ZnO using X-ray photoelectron spectroscopy in conjunction with 

detailed X-ray diffraction and transmission electron microscopy examination of the film 

morphology.  

 

Introduction 

 

Zinc oxide (ZnO) and its doped counterparts such as Al:ZnO are extensively investigated as 

indium-free alternatives for oxide electronics including solar cells, light emitting diodes and 

also display technologies. For the latter application, thin film transistor (TFT) devices are the 

building-block structures.(1) High fidelity TFTs require conductive channel materials, with 

good field effect mobility for majority carriers and tunable optical transparency. Controlling 

growth, doping, crystallization, thickness of thin films of thin film transistor (TFT) channel 

materials is required in order to improve and control physical properties, primarily electronic 

conductivity and optical transparency. With the advent of flexible electronics and curved TFT-

based display panels, low cost, solution-processed methods are important and provide scalable 

coating methods on a range of substrates. 

Transparent conductive oxides (TCOs) have attracted much interest in the area of 

optoelectronics due to their ability to have controllable conductivity and carrier mobility, while 

maintaining high optical transparency.(2-7) Zinc oxide (ZnO) and its doped counterparts such 

as Al:ZnO (AZO) are researched for use in many key optoelectronic devices such as TFTs(8), 

photovoltaics(9), solar cells(10) and electrochromics(7). In particular, zinc oxide (ZnO) 

attracted the initial attention in this area due to its wide, direct band gap (Eg ~ 3.3 eV at 300 

K)(11) and a crystal lattice allows for interstitial doping.(12) 

Despite these benefits, ZnO does not meet the electrical performance of other doped 

metal oxides, such as Sn-doped In2O3 (ITO), owing to a lower majority carrier 



concentration.(13, 14) ITO is currently one of the most popular semiconducting material used 

in the area of optoelectronics particularly in flat-panel displays due to its wide band gap (>3 

eV).(15)  However, there is a drive to replace ITO with ZnO its doped forms such as In-doped 

ZnO (IZO), In-Ga-Zn-O (IGZO) and Al-doped ZnO.(1) For AZO, the composition serves as 

an indium-free alternative which lowers expense due to the higher relative abundance in the 

Earth’s crust (75 ppm for Zn opposed to 0.16 ppm for In).(13)  

Altering the carrier concentration of a metal oxide such as ZnO with the addition of an 

interstitial dopant will also affect the optical properties.(16) The refractive index of the 

material, dielectric constant and plasma frequency are all modulated by the charge carrier 

concentration while the band-gap can also be widened by the stresses produced in the crystal 

lattice from the inclusion of a dopant atom.(17-19) Optical reflectivity, which is subject to 

change with the addition of a dopant, is of key importance to materials researched in 

optoelectronics, particularly in transparent TFT devices and solar cells. (20, 21)  Controlling 

growth, doping, crystallization, thickness of thin films of these materials is required in order to 

improve and control physical properties, primarily electronic conductivity and optical 

transparency. With the advent of flexible electronics and curved TFT-based display panels, low 

cost, solution-processed methods are important and provide scalable coating methods on a 

range of substrates.  

In this work, multilayered or homogeneous quasi-superlattices of metal oxides with a 

single composition for TFTs are displayed as dispersive materials that behave as continuous 

thin films with thickness controlled by cumulative spin-coating. We show that crystalline, 

epitaxial-like thin films can be deposited from a liquid in open atmosphere via spin-coating 

and that the formation of a quasi-superlattice (QSL) structure through an iterative deposition 

method is possible. Analysis of these films in order to determine crystallinity and internal 

structure is determined through X-ray diffraction and transmission electron microscopy 

(TEM). Angle-resolved reflectance for a single-layer and multilayer samples grown on 

oxidized silicon substrates are acquired to define the growth conditions and processing to 

provide tuneable antireflection coatings of ZnO and AZO. 

 

Experimental 

 

ZnO thin films were prepared from a 0.75M solution of zinc acetate dihydrate 

[Zn(CH3COO)2.2H2O] dissolved in 2-methoxyethanol [CH3OCH2CH2OH]. A solution of 

monoethanolamine was added to this zinc acetate solution to act as a stabilising agent in a 

molar ratio of 1:1. In order to prepare Al:ZnO (AZO) films of ~5 mol% Al, an Al-solution was 

prepared by dissolving 0.1407 g of aluminium nitrate-nonahydrate [Al(NO3)3.9H2O] in 10 mL 

of 2-methoxyethanol. This solution was added to the 0.75 M zinc acetate solution and stirred 

for 2 hours at 60 oC.  

All thin films samples were deposited onto silicon wafers covered with 85 nm of thermally 

grown SiO2, cleaved to 2 cm × 2 cm in size. Prior to deposition, substrates were cleaned via 

sonication in acetone, IPA and DI water and then received a 30 min UV-ozone treatment using 

a Novascan UV ozone system. Films were deposited from liquid precursors using a SCS G3 

desktop spin coater. Substrates were coated and spun at 3,000 rpm for 30 s, including a 5 s 

ramp time. Following this, samples were dried for 5 min between 250 - 270 oC in an open-air 

convection oven. This deposition process can be repeated as many times as desired to create 

the quasi-superlattice (QSL) structure before samples undergo a final annealing treatment at 

300 oC for 1 hr.   



Transmission electron microscopy (TEM) was conducted on cross-sectioned lamellae of 

ZnO and AZO thin films. TEM analysis was conducted using a JEOL JEM-2100 TEM 

operating at 200 kV. Lamella from samples were prepared for TEM analysis by cross-

sectioning using an FEI Helios Nanolab Dual Beam Focused-ion Beam (FIB) System. X-ray 

diffraction (XRD) was used to characterise the crystallographic structure of the single and 

multi-layer ZnO and AZO films after spin coating deposition using a Philips X’Pert PW3719 

diffractometer using Cu Kα radiation (40 kV and 35 mA) scanned between 10 - 80° (2θ). 

Angle-resolved optical characterisation was conducted using an in-house constructed cage-

mounted optical reflectance/transmission spectroscopy setup. Samples were illuminated with 

a white tungsten halogen lamp (output spectral range from 360 - 2,400 nm) collimated to a 

beam diameter of ~ 1 - 2 mm using optical fiber. The reflected light was collected using 

focusing optics into an Oceanoptics USB2000+ spectrometer (400 – 1,000 nm range) which 

has an optical resolution of 1.5 nm. The reflected light was also collected in the same manner 

using an Oceanoptics NIRQuest 512-2.5 to obtain the NIR reflectance spectra (1,000 – 2,500 

nm range) which has an optical resolution of 6.3 nm. Reference spectra were acquired using an 

Au mirror (ThorLabs gold mirror PF10-03-M01) at each angle of incidence investigated. To 

examine the anti-reflection properties of ZnO and AZO thin films at various wavelengths and 

angles of incidence, spectroscopic measurements were taken at four angles of incidence, 𝜃𝑖 = 

30°, 60°, 45°and 75°.  

Results and discussion 

 

ZnO and AZO thin films, prepared on Si/SiO2 substrates, were examined via TEM on FIB-

thinned lamella. This was conducted to determine the internal structure resulting from the 

iterative process of spin-coating with a drying step before final annealing. TEM images of 20 

layer ZnO and AZO QSLs are shown in Figure 1. The thickness of these films is very uniform 

throughout and the number of deposited layers can be seen from the cross-section of the layered 

internal structure. Due to the method of deposition, the films do form a multilayered QSL 

structure, in place of a continuous bulk of crystalline ZnO or AZO. Inset in Figure 2(b) shows 

the clear bilayer structure of each of the deposited layers. The bulk of the deposited material 

forms a more porous mid-layer while a dense capping layer forms as a result of the short drying 

step between each deposition (5 min at 260 oC). Films are subsequently crystallized by a 300 
oC annealing for one hour.  

 

 
Figure 1. TEM cross-sectional images of (a) 20 layer ZnO and (b) 20 layer AZO thin films. 



QSLs produced from liquid spin coating on amorphous substrates produce highly 

crystalline thin films in most cases. Figure 2 displays the X-ray diffraction patterns for 1 and 

20 layer ZnO and AZO thin films. The ZnO samples display very high crystal quality, with a 

clear change in growth orientation with the increased number of depositions. The single layer 

ZnO sample shows a reflection in the [101̅0] m-plane only with no other [hkil] reflections 

present. Similarly, the 20 layer QSL of ZnO shows the same m-plane growth but also a 

dominant reflection in the [0002] direction, which corresponds to the c-plane. As a result of 

the formation of dense capping layers with iterative depositions, the crystal growth orientation 

changes from the m-plane to the c-plane. For the AZO QSL, a minor reflection in the [0002] 

direction can be seen, indicating crystal growth in the c-plane direction, similar to the ZnO 

QSL. The single layer AZO film however appears amorphous, a possible result of the Al 

addition to the ZnO lattice causing a necessary increase in the heat energy required to crystallise 

the film. Further work is required to investigate the heat energy requirements for the fabrication 

of single-layer AZO thin films. 

  

 

Figure 2. X-ray diffraction patterns for 1 and 20 layer ZnO and AZO thin films. 

Figure 3 shows the reflectance spectra for 1 and 20 layer ZnO and AZO in the UV-vis-

NIR range (400 nm – 2500 nm).  The single layer thin films for both materials display a low 

average reflectance across the UV-vis-NIR range, which corresponds to a high transparency, 

similar to IZO. This is shown to increase with the number of iterative depositions. For 

multilayer QSLs the reflectance increases at certain wavelengths to >40%. Reflectance data 

shows that the 20 layer QSL films behave optically as coherent thin films. The reflectance 

spectra for the 20 layer QSL films show that the material is dispersive at longer wavelengths, 

with peaks at lower energy wavelengths exhibiting lower reflectance intensities. The 

broadband reflectance spectra for ZnO and AZO are similar as expected for single and 

multilayered systems. The addition of a dopant to the ZnO lattice can alter defect absorption 

and induce lattice stresses. As a result, spectra are blue-shifted by ~40 nm for AZO compared 

to ZnO. 

We have previously shown14 that determination of the optical thickness of these ZnO 

and AZO films is possible from the broadband reflectance spectra using an adapted method 

from thin film optical interference, and that thinner films have a better agreement with 

predicted optical thickness measured via TEM.  



At energies below the bandgap in semiconducting metal oxides, Urbach states, defect 

absorption, processes involving multiphonon interactions and scattering can all increase 

reflectivity. Urbach and defect absorption is likely in our films, since the sub-band 

photoluminescence shows several emission features, and TEM data in Fig. 1 confirms granular 

features in part of the periodic structure in films that exhibit a high degree of crystalline 

orientation as a layer. 

 

 

Figure 3. UV-vis-NIR reflectance spectra of single- and multi-layer ZnO and AZO thin films 

acquired at angle of incidence, θi = 45°. 

 

The effect on varying the angle of incidence on the resulting reflectance spectra is 

shown in Fig. 4. Similar to Fig. 3 which displays the spectra collected at θi = 45°, the spectra 

exhibit characteristic wavelength dependent interference from half-wave and quarter-wave 

optical thickness (QWOT) variation.  As can be seen from Fig. 4, we observed an increase in 

the average reflectance for all films (1 and 20 layer, ZnO and AZO) at an incident angle of 75°. 

Characterizing angles where the anti-reflections are optimal is crucial for materials integrated 

in optoelectronic devices and solar cells. As with the spectra taken at θi = 45° from Fig. 3, the 

AZO reflectance spectra are blue-shifted in relation to the ZnO spectra by ~ 40 nm. The spectra 

display characteristic interference based on incident light wavelength between ZnO and AZO, 

however for the ZnO QSL measured at θi = 75° we observe a unique response based on 

interference that exhibits behavior different to that measured at 60° and 30°. As thicker films 

of ~20 layers approach a thickness value roughly equal to the wavelength of the incident light, 

the effects of destructive and constructive interference are expected to be more pronounced on 

the resulting reflectance spectra. 

 



 

Figure 4. Angle dependent reflectance spectra of ZnO and AZO thin films acquired at various 

angles of incidence, θi = (a) 30°, (b) 60° and (c) 75°. 

 

The wavelength at which the minimum percentage reflectance for single layer ZnO was 

found to be at λ = 657 nm. The reflectance of the ZnO 20 layer QSL was then examined at this 

wavelength to characterize the evolution of the films reflectance as a function of number of 

depositions and QSL film thickness. This process was repeated for all of the measured angles 

of incidence (θi = 30°, 45°, 60° and 75°). The same analysis was applied to the AZO samples 

where the minima for 1 layer AZO was found to be 599 nm. The resultant polar plots are shown 

in Fig. 5. For the QSLs of both materials, we note a definite increase in the reflectance at higher 

angles compared to single layer films, with values for ZnO and AZO both reaching >40% total 

reflectance at 75°. The single layer AZO films show a much less reflective behaviour than the 

pure ZnO counterparts when examine at multiple angles, showing consistently <20% 

reflectance when measured at the selected minima. This shows a reliable anti-reflection use for 

very thin AZO films for light ~ 600 nm. Figure 5 highlights that both sets of films maintain a 

consistently low (<30%) reflectance when examined at 45° or lower angles. At higher angles, 

QSL films appear to be ~3 times more reflective. 

 

Figure 5. Reflectance measurements of 1 and 20 layer ZnO and AZO thin films at wavelengths 

corresponding to reflectance minima from single layer ZnO and AZO respectively. 

 



Conclusions 

 

The growth of crystalline thin films in an epitaxial-like quasi-superlattice is demonstrated. 

Films with periodic structures which are clearly visible via microscopy are deposited from a 

solution-based process on amorphous substrates. Highly crystalline and ordered ZnO films 

display a change in crystalline texture from the m-plane for 1 layer films to predominantly c-

axis orientation upon further deposition of material. With the addition of an Al dopant, films 

show a more amorphous texture, with a 20 layer QSL still displaying c-plane growth 

preference, indicating that a higher processing temperature may be required for production of 

highly crystalline AZO. Films studied using broadband reflectance spectroscopy show 

dispersive behavior at longer wavelengths with periodic minima and maxima shown based on 

wavelength dependent interference effects. We have shown the behaviour of single layer 

samples and multilayer QSLs under a variety of different angles of incidence to characterise 

the anti-reflection properties of ZnO with and without an Al dopant. AZO single layer films 

anti-reflective compared to ZnO, particularly at low angles, yet QSLs for both materials show 

a substantial increase in reflectance at high angles of incidence. 
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