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We demonstrate the formation of 2D photonic crystals (opals) on gold 

coated silicon substrates by dip-coating at a high rate of 1 mm/min when the 

surfactant sodium dodecyl sulphate (SDS) is added to the solution above its 

critical micelle concentration. The dependence of substrate hydrophillicity is 

demonstrated to influence the formation of 3D templates on glass substrates 

using 700 nm diameter PMMA spheres. Other routes towards directing opal 

assembly are also discussed. Angle-resolved reflectance shows 2D and 3D 

light scattering characteristics from the fast-rate dip-coated monolayer 2D 

3D photonic crystals grown on hydrophillized glass respectively, with a 

high degree of surface ordering.  

 

Introduction 

 

Photonic crystals are aperiodic dielectric materials with a periodicity on the scale of the 

wavelength of light.(1) These can occur naturally in nature, for example, in certain butterfly 

wings, bird feathers and in opal stones.(2, 3) They influence the flow of light, forbidding the 

propagation of certain wavelengths depending on its porosity and refractive index, much like 

a semiconductor controls the flow of electrons. This light is then transmitted or reflected from 

the material at particular angles giving rise to the colors observed in opals. Synthetic opals 

are an ordered assembly of nanometer sized silica spheres and therefore can be artificially 

formed through the self-assembly of mono-dispersed colloidal particles, such as, silica 

spheres or polymer spheres of polystyrene (PS) or poly(methylmethacrylate) (PMMA). 

Photonic crystals (PhCs) have been heavily investigated over the last 50 years due to 

the wide-range of their optical characteristics and design potential and therefore, their 

possible application in numerous fields of science and engineering.  They have been adopted 

as reliable means for forming two-dimensional (2D) and three-dimensional(3D) ordered 

structures(4), useful as optical waveguides(5), switches(6), light-emitting diodes(7). They can 

also function as templates, particularly on non-planar substrates, for the formation of these 

and other functional materials,(8, 9) such as battery electrodes(10, 11). By assembling 

spheres (silica or polymer-based) in ordered 2 or 3 dimensional arrangements it is possible to 

mimic the iridescence of natural opals and so create a material in which you can control the 

photonic and optical properties. Assembly of these arrays of spheres is done through a variety 

of means(1), drop-casting of the sphere solution(12), dip coating(13, 14), spin 

coating(15),vertical deposition(16), electrophoretic deposition(17), Langmuir-Blodgett(18, 

19) or layer-by-layer assembly(20). 

The control that dip-coating in particular, allows towards evaporation rate and 

meniscus control makes it one of the more highly utilized techniques, due to its ability to 



form well-ordered multilayer deposits of spheres when used at a slow rate of withdrawal and 

its potential for application in an industrial setting(14).  Improvement in the coverage and 

long-range order of deposits can be achieved through the control and/or the addition of other 

variables such as temperature(21), management of the ionic strength of the solution via the 

use of charged colloids(22), or noise-induced stochastic resonance effects.(23) We briefly 

investigate the formation of 3D PhCs on glass substrates by dip-coating of 500 nm PS 

spheres with noise induced stochastic resonance.  We show the importance of hydrophillized 

surfaces for the initial absorption of the spheres onto the substrate and the level of long range 

order they exhibit.  

However, one of the more emerging fields of use for these opal templates is their use 

in the formation of metal dielectric interfaces, which have been seen to reduce coupled light 

leakage(24, 25), improve the quality factor for index-guided optical modes(26), and improve  

overall performance, for potential application in enhanced solar cells, light emitters and gas 

sensors(26, 27), respectively.  Therefore, an important step in defining the optical properties 

and application of these hybrid plasmonic-photonic crystals is the formation of opal templates 

on metallic surfaces, particularly those capable of holding surface plasmon polaritions 

(SPPs).  Under ambient conditions however coating of gold surfaces is difficult due to the 

effects carbonaceous contamination has on clean gold surfaces, turning them from naturally 

hydrophilic to hydrophobic on interaction with air(28). This induces disorder on most 

templates formed on gold substrates when assembled in air, however, we will show the 

formation of highly ordered 2D photonic crystal (PhC) monolayers on gold substrates by dip-

coating when a surfactant, sodium dodecyl sulphate, is first added to the solution of spheres. 

In addition, we discuss the formation of multi-layer 2D PhC templates, with a similar 

scattering ability to the monolayer template, at a slower rate of withdrawal when the sphere 

and surfactant concentration are reduced. We use light scattering and scanning electron 

microscopy (SEM) to determine the order in the samples.  Reflectance from a true 3D opal is 

related to its film thickness via Bragg attenuation length and therefore, we refer to the 

photonic crystals with thickness of a few monolayers as principally 2D structures due to the 

absence of 3D-related optical characteristics.  The Bragg attenuation length for our PHCs 

assembled from 700 nm diameter PMMA spheres is of the order of 6.5 to 7 um or 

approximately 12 monolayers of spheres(29). 

 

 

Experimental 
 

Glass substrates were prepared by two methods. In the first, a glass substrate was 

submerged for approximately 5 minutes in Piranha solution, prepared using hydrogen 

peroxide and sulfuric acid, in the ratio of 1:3. The second method involved cleaning by O2 

Plasma on PVA TePla PS210 Microwave Plasma System. Contact angle measurements were 

taken for both sample cleaning methods on a Kruss Easy Drop measurement system. After 

cleaning by these methods, both samples were settled vertically in a 2.5 wt% aqueous 

solution of PMMA spheres and withdrawn at a constant rate of ~1.5 mm/hr using a home-

made dipping apparatus while subjected to acoustic vibrations through a loudspeaker beneath 

the solution, this setup is described elsewhere(23, 30).  

An aqueous solution of 5 wt% mono-dispersed PMMA spheres, with a diameter of 

~700 nm, synthesized with altered concentrations according to the method outlined by 

Schroden,(31) was mixed with a concentration of 8 mg ml
-1 

surfactant sodium dodecyl 

sulphate (SDS), a concentration above the theoretical critical micelle concentration (CMC) 

for SDS of 2.3 mg ml
-1

 (8.0 × 10
-3

 mol dm
-3

).(32, 33) Silicon wafer, approximately 1 cm × 1 



cm, cleaned in argon plasma and coated with 10 nm titanium adhesion layer and 100-150 nm 

gold by ion beam sputtering using an Orion-5-UHV, was cleaned by sonication in acetone, 

ethanol, and rinsed with deionized water and settled vertically in the solution of spheres and 

withdrawn at a rate of 1 mm/min using a MTI Corporation PTL-MM01 Dip Coater apparatus.   

 

Scanning electron microscopy (SEM), performed on a Hitachi S-4800 field emission 

SEM, was used to characterize the opal templates and visualize the in-plane (top layer) 

ordering of the samples. Angle-resolved light scattering spectroscopy was conducted in a 

monochromator-mount configuration on a rotating stage with varying angle of incidence for 

photonic band gap investigations. Fixed incident angles of 60° or 45° were used for 2D 

scattering measurements.  A white Halogen bulb collimated to a beam diameter of ~ 1 mm 

was used to illuminate the sample and spectra of the planar diffracted light were collected 

with an interval of 5° and an angular resolution of 2° using a CCS200 Compact CCD 

spectrometer in the wavelength range 200 – 1000 nm. 

 

Results and discussion 

Figure 1a outlines the template formation on glass substrates for 700 nm PMMA spheres by 

noise-assisted dip coating. The acoustic vibrations stop the spheres from settling within 

solution increasing the thickness and adherence of the spheres to the substrates. Fig.1b and 1c 

outlines the deposition of the spheres by dip coating at a faster rate under the influence of the 

added surfactant. The formation of the micelles of SDS within solution improve the order 

observed in the monolayer film. In both deposition methods for the (111) plane is observed 

parallel to the substrate, this forms preferentially to other planes due to the spheres having the 

lowest energy (maximum packing) in this arrangement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Schematic diagram depicting noise assisted dip coating at ~1.5 mm/hr, and (b) 

dip-coating of the PMMA spheres at ~ 1 mm/min. (c) Schematic diagram indicating micelle 

formation of the SDS within solution and interaction with the PMMA sphere surface. 

 

 

The Piranha cleaned glass produced a substrate with a contact angle of approximately 

32.5° and the O2 plasma clean gave a contact angle of approximately 0°, indicating a more 

hydrophilic surface, these can be seen in the insets of Figs 2a and d. The sphere template that 

formed on the Piranha cleaned glass is shown in Figs 2a-c and that formed on the O2 plasma 

cleaned glass can be seen in Figs 2d-f. Both samples show fcc ordering in the sphere 



arrangement on either surface. The colloidal crystal opal formed on the piranha cleaned glass 

appears to contain larger scale, but fewer cracks than the O2 plasma cleaned sample which 

shows smaller, rounder domains. However, less variation in relative domain orientation is 

seen on Piranha cleaned substrates (Fig. 2b). Domains with different relative orientations 

bounded by lateral stacking faults could be seen in the sample formed on the O2 plasma 

cleaned substrate in Fig. 2e with a lower sphere concentration. The square packing of the 

spheres is indicative of a domain with (100) orientation at the surface, while the surrounding 

areas demonstrate the typical packing with (111) orientation. While Fig. 2b illustrates a 

number of single-sphere vacancies in the packing order, common in many artificial opals, the 

film appears more consistently fcc since vacancies do not disrupt the ordering by forming 

boundaries; rotational and disorder-induced boundaries and domain formation is more 

prevalent in opals formed on an O2 plasma cleaned glass. However, both samples have good 

local crystalline ordering indicated by the FFT of the internal domain structure shown in Figs 

2c and f.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SEM images of inverted opals prepared by noise-assisted dip-coating of 500 nm PS 

spheres onto glass substrates cleaned by (a-c) Piranha solution and (d-f) O2 plasma. Inset of 

(a) shows the contact angle measurement on Piranha cleaned glass and Inset of (d) shows 

contact angle measurement on O2 plasma cleaned glass. Inset of (c) FFT of SEM image 

shown in (c) and Inset of (f) FFT pattern of SEM image in (f). 

 

A photonic bandgap (PBG) was observed for opals grown on the hydrophilized 

surfaces prepared using both cleaning treatments, confirming 3D order in the assembly of the 

template. The angle resolved shift in the position of this PBG for different angles of incident 

light for the sample formed on the Piranha cleaned glass is shown in Fig. 3a and Fig.3b 

shows the angle resolved shift for the sample on the O2 plasma cleaned glass. The 

transmission minimum for the sample on the more hydrophilic surface is deeper than that on 



the piranha cleaned glass, in transmission spectra of opals the depth is a function of the 

disorder with the PBG minima becoming less pronounced with increasing disorder. This 

serves as an indication of improved order in the sample formed on the more hydrophilic 

surface.(34)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Angle resolved transmission from the template formed on (a) the Piranha cleaned 

glass and (b) the O2 plasma cleaned glass. 

 

 

Fitting of the dispersions for the transmission resonance wavelengths for different 

planes of the opal lattice for the sample on the more hydrophilic substrate were compared 

with the Bragg law prediction for a FCC lattice, using the equation 

           √           )  where dhkl is the inter-planer distance for the (hkl) planes, 

neff is the refractive index, and αhkl is the angle between the incident light and the normal 

vector to the (hkl) plane. A value of neff = 1.373 and D = 700 nm were used as fitting 

parameters for calculation of the Bragg fit.  This is shown in Fig. 4 whereby the dispersion for 

the (111) direction fits very well to the theoretical dispersion, but a slight variation is 

observed for the [11-1] direction, which suggests a variation in the inter-plane distance for 

this plane. 

 

Therefore, in order to improve deposition on glass substrates, the surfaces should be 

made as hydrophilic as possible to promote assembly. However, assembly on conductive 

substrates is more beneficial for many functional materials that rely on a defined template. 

We next investigated assembly of the spheres on gold coated silicon substrates, and for a 

method of increasing the rate of withdrawal so as to allow faster dip-coating of the templates. 

What we observed was at faster rates of withdrawal, far from the equilibrium condition, with 

non-functionalized spheres such as the PMMA used here, short- and long-range Van der 

Waals forces(35) dominate over the repulsive interactions of the particles and so there is not 

sufficient time to achieve the ordered crystallization that does occur using perturbative noise-

assisted assembly at much slower rates for these non-functionalized spheres on glass. At the 

faster rate, with no natural repulsion to assist with ordering, the crystallization inevitably 



leads to a disordered and patched coverage of opal deposits on the substrate, particularly for a 

metallic surface, which has become hydrophobic in air.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Dispersion of the transmission minima for the sample formed on the O2 plasma 

cleaned glass, compared against the theoretical Bragg law dispersions for a 3D photonic 

crystal with sphere size of 700 nm.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5 (a) SEM image of a 2D monolayer photonic crystal formed with 8 mg/ml SDS and 

5 wt% PMMA spheres by dip-coating at ~1 mm/min (b) Light scattering normal to the 

surface (i.e. angle of diffraction = 0°) for light incident at 60°, no peak is visible for a sample 

formed without SDS (c) Angle resolved scattering from the 2D PhC formed from 5 wt% 



PMMA spheres with  8 mg ml
-1

 SDS dip coated at a fast rate (~1 mm/min). Light was 

incident at 45°. 

Without SDS, a monolayer of an amorphous photonic glass is seen to form when 

withdrawal is of a rate of 1 mm/min for PMMA spheres of 700 nm on the gold surfaces. 

However, with the addition of the surfactant SDS to the solution of spheres a 2D colloidal 

crystal monolayer, shown in Fig. 5a, can form with order and quality commensurate with the 

top surface ordering of multi-layered (3D) deposits observed at the slower rate on glass. SDS 

dissociates in water to form charged monomers and at a concentration greater than the critical 

micelle concentration (CMC) of SDS, these monomers orientate their hydrophilic heads 

towards the polar solute and their hydrophobic tails group together to form micelles. These 

micelles are known to enhance certain aspects of a solution such as the solubility of 

hydrophobic materials, and alter other aspects such as viscosity and polarity.(36) Order is 

thought to be improved via a combination between depletion force kinetics on removal of the 

spheres from solution and repulsive electrostatic force induced beyond the Debye screening 

length in the electrical double layer by the SDS. Scattering in the visible range is observed for 

this ordered sample but not for the sample formed without SDS, shown in Fig. 5b. 

The monolayer of spheres formed is of a thickness far below the Bragg attenuation 

length and so no three-dimensional order is observed, evident by the lack of a PBG. The 

angular diffraction observed for this sample is shown in Fig. 5c, and this can be used as a 

measure of the 2D order within the template. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) SEM image of a 2D photonic crystal formed with 4 mg/ml SDS and 2.5 wt% 

PMMA spheres by dip-coating at ~1 mm/hr (b) (b) Angle resolved scattering from the 2D 

PhC formed from 2.5 wt% PMMA spheres with  4 mg ml
-1

 SDS dip coated at a slow rate ( ~1 

mm/hr). Light was incident at 45° (c) Scattering at an angle of 8.88° for light incident at 45° 



for samples formed at fast rate with 5 wt% spheres and 8 mg ml
-1

 SDS (red), and for a sample 

formed at the slower rate where the concentrations of spheres and SDS are halved (black). 

 

 

A slower rate of withdrawal from a solution of the same sphere and SDS 

concentrations produced no ordered opal monolayer but another disordered photonic glass of 

varying thickness. However, a reduction in sphere concentration by half with a parallel 

reduction in SDS concentration to 4 mg ml
-1

, i.e. maintaining the same ratio of spheres to 

SDS as the fast rate sample, but still above critical micelle concentration resulted in a better 

quality PhC structure, as shown in Fig. 6a. A similar angular shift of the scattering maxima 

seen in the 2D opal from the faster rate was observed in this sample as shown in Fig. 6b. A 

comparison of the scattering of the sample made at the faster rate and at the slower rate but 

with overall reduced concentration indicates that the slower rate still produces a 2D opal of 

higher quality than the faster rate but of several more layers than a single monolayer, evident 

by the sharper peak shown in Fig. 6c, confirmation of increased long-range order for this 

sample.  Where the scattering peak for the fast rate sample is located at a wavelength of D/λ 

= 1.13, that of the deposit formed with half the concentration of spheres and SDS at the 

slower rate is located at D/λ = 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  (a) The dispersion of the diffraction maxima for the 5 wt% PMMA sphere and 8 

mg ml
-1

 SDS sample withdrawn at a fast rate of withdrawal (~1 mm/min) (b) The dispersion 

relation for the scattering spectra  for  the 2.5 wt% PMMA spheres and 4 mg ml
-1

 SDS 

sample. 

 

 



The angular dispersion of the diffraction observed from the 2D sample formed with 

SDS at the faster rate, Fig. 7a, can be fitted to the planar grating equation,    [     )  
       )], as shown in Fig. 6c, where α is the angle of incidence, β is the angle of 

diffraction, d is the effective grating groove, which in this case corresponds to  
√ 

 
 ,  the half 

period of the trigonal lattice for the wave vector of incident light propagating along the ΓΚ 

direction in the Brillouin zone of a 2D hexagonal lattice. This is represented by the schematic 

in Fig. 7a, where D is the sphere diameter, and x is the deviation half-angle between incident 

and diffracted beams defined according to    )      )    . Plotting the angular shift of 

the diffraction maxima for the slower rate, reduced concentration sample against the 

theoretical dispersion for a 2D diffraction grating was also conducted as shown in Fig. 7b, 

confirming the formation of a 2D opal on gold by this slower rate method.  

 

 

Conclusions 

 

In summary, we prepared 3D photonic crystals on glass of two degrees of hydrophilicity by 

noise-assisted dip-coating and observed a greater level of long-range order in the film formed 

on the more hydrophilic substrate. Templates of 700 nm PMMA sphere were then prepared 

on gold coated silicon substrates by surfactant assisted faster rate dip-coating. The formation 

of micelles of SDS within solution lead to improved order across a monolayer of PMMA 

spheres, that behaved as a 2D diffraction grating. The addition of SDS also produced 2D 

photonic crystals of a greater degree of order and quality at the slower rate on gold substrates, 

when the concentration of spheres and SDS are both lower but a concentration of SDS above 

CMC is still maintained. Gold substrates are normally difficult to assemble on at even this 

slower rate due to the reaction of the substrate with air, and the hydrophobic surface this 

interaction creates. Therefore with further study surfactant addition to already formed 

spheres, could be a viable route for improving deposition on metallic surfaces via dip-

coating.  
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