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Abstract 

We report the controlled self-seeded growth of highly crystalline Ge nanowires, in the absence of 

conventional metal seed catalysts, using a variety of oligosilylgermane precursors and mixtures of 

germane and silane compounds (Ge:Si ratios between 1:4 and 1:1).  The nanowires produced were 

encased in an amorphous shell of material derived from the precursors, which acted to isolate the Ge 

seed particles from which the nanowires were nucleated.  The mode diameter and size distribution of the 

nanowires were found to increase as the growth temperature and Ge content in the precursors increased.  

Specifically, a model was developed to describe the main stages of self-seeded Ge nanowire growth 

(nucleation, coalescence and Ostwald ripening) from the oligosilylgermane precursors and in 

conjunction with TEM analysis, a mechanism of growth was proposed. 

 

Introduction 

Germanium nanowires have attracted considerable interest as a channel material for field-effect 

transistors (FETs) due to their lower resistivity and high hole carrier mobility, compared to silicon 

nanowires.
1
  Recently, Ge nanowires have also been utilized for lithium battery anode materials, due to 

their higher rate of lithiation compared to silicon nanowires.
2
  Furthermore, studies have shown that 

coating Ge nanowires with amorphous materials increases the reversible charge capacity of batteries 

made with Ge nanowire electrodes.
3
  The synthesis of Ge whiskers, via a vapour-liquid-solid (VLS) 

growth mechanism, was first reported by Bootsma et al.
4
 in 1971 and the synthesis of Ge nanowires, 

using a solvothermal approach, was subsequently reported by Heath and co-workers in 1993.
5
  Many 

methods have since been developed for generating Ge nanowires, which can be found in a number of 

comprehensive review articles.
6
  The Ge nanowire synthesis method progressed in this study is the 

lesser- reported self-seeded (or seedless) supercritical fluid (SCF) phase approach.
7
  This self-seeded 

method does not rely on the growth of nanowires by a (noble) metal catalyst, but solely relies upon the 
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decomposition of metalorganic precursors to form a one dimensional (1D) structure.  Whilst excellent 

levels of aspect control and scalability of semiconductor nanowires have been demonstrated using metal 

seeds, these catalysts can often contaminate, or uncontrollably dope, the growing nanowires.
8
  For 

example, Korgel et al.
9
, reported that at a eutectic temperature of 363 °C Ge atoms dissolve in Au 

nanocrystals to form a liquid AuGe eutectic alloy.  This eutectic, while crucial to the growth of the 

nanowires via a supercritical-fluid-liquid-solid mechanism, can also provide a pathway for the diffusion 

of metal atoms from the seed into the semiconductor nanowire material.  Solid phase seeding 

mechanisms for growing Ge nanowires, such as reported those using Ni catalyst seeds, were at first 

thought to limit this diffusion, but recent electrical results indicate that inadvertent doping still occurs.
10

 

 

Here we report the growth Ge nanowires in the absence of conventional metal seeds using various 

mixtures of Ge and Si-containing precursors.  Analysis of the diameter distributions of the nanowires 

grown in each of these experiments revealed several trends in growth behaviour, which can be directly 

linked to the precursor used and the temperature employed.  We further propose that by analysing the 

statistical diameter distributions of the nanowires formed, in addition to extensive morphological 

characterisation by electron microscopy, the mechanism of nanowire growth can be inferred. 

The coarsening of nanoparticles into nanowires via the self-seeded approach described in this article can 

occur through two fundamentally different mechanisms: (i) nanoparticles can move over a substrate, or 

within a matrix, to take part in binary collisions accompanied by liquid-like coalescence of the particles 

and (ii) the growth of nanowires can occur by the inter-particle transport of single atoms from smaller 

nanoparticles to larger nanoparticles known as Ostwald ripening.
11

  Nanowire growth (length) and 

broadening (diameter) originates from the supersaturated phase, which is still present in the system after 

the nucleation stage and from concentration gradients around nanowires of different sizes.
12

  The three 

main stages of nanowire growth (nucleation, coalescence and Ostwald ripening) are not sharply distinct, 

but in fact overlap during the evolution from a supersaturated phase to a ripened nanowire in the 

condensed phase.
13

  We have combined a log-normal model for coalescence with a Gaussian model for 
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Ostwald ripening to create a equation that accounts for this overlap.  The nanowires reported in this 

article were made with a variety of metalorganic precursors which were deliberately tuned to alter the 

Ge:Si ratio; the ratios investigated were 1:4, 1:3, 1:2 and 1:1.  The Ge nanowires produced had a very 

uniform core diameter and were coated with a non-uniform shell consisting of Si, Ge, O and C.  This 

amorphous coating was a by-product of the precursor decomposition and plays an important role in the 

nanowire growth process. 

 

Experimental 

The oligosilylgermane precursors 1,2-bis[tris(trimethylsilyl)germyl]tetramethyldisilane (Ge:Si 1:4), 

hexakis(trimethylsilyl)digermane (Ge:Si 1:3) and bis[tris(trimethylsilyl)germyl] dimethylgermane 

(Ge:Si 1:2) were synthesised following the procedures previously reported by Marschner et al.
14

  For a 

1:1 reaction mixture of Ge:Si, equal amounts of diphenylsilane (5 mM) and diphenylgermane (5 mM) 

were mixed together.  The self-seeded growth of Ge nanowires was performed in a supercritical toluene 

medium using a method previously reported.
7
  In a typical experiment, a 5 ml stainless steel reaction 

cell (HIP, USA) was loaded with 1 ml of anhydrous toluene and sealed inside a nitrogen filled 

glovebox.  The reaction cell was then transferred to a tube furnace where it was heated to the desired 

reaction temperature and allowed to equilibrate for a period of 2 h.  A Ge:Si precursor solution (10 

mM), with a Ge:Si ratio of 1:4, 1:3, 1:2 or 1:1, was prepared in anhydrous toluene (10 ml) in a N2 

glovebox and loaded into a 20 ml stainless steel precursor reservoir (HIP, USA).  This reservoir was 

then removed from the glovebox and connected to the reaction cell by 1/16” stainless steel tubing and 

valves.  A back pressure of 17.2 MPa was applied to the precursor reservoir; this solution was injected 

at the chosen synthesis temperature using a CO2 pump (ISCO systems).  The volume of the precursor 

solution injected into the cell was dependent on the pressure difference between the reaction cell and 

that of the precursor reservoir.  Typically, 2.5 ml of precursor solution was injected into the reaction 

cell, and the holding time adjusted according to the temperature employed for a high yield of Ge 

nanowires.
7
  The cell was opened at room temperature, and the initial solvent was collected and 
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combined with an acetone solution used to collect the nanowire material attached to the side walls of the 

reactor.  Energy dispersive X-ray (EDX) analysis was performed using an Oxford Instruments INCA 

system fitted to a TEM.  High resolution transmission electron microscopy (TEM) images were 

collected using a JEOL 2100 HRTEM instrument operating at an acceleration voltage of 200 kV.  In all 

cases, samples were prepared for analysis by sonicating the material in acetone before TEM sample 

preparation.  Statistical analysis and modeling of the measured core diameter distributions of the 

nanowires was performed using Origin Pro v.8.5.1. and over 100 measurements were used for every 

nanowire diameter distribution (supporting information figures S3, S4 and S5). 

 

Modelling Nanowire Growth 

Links between the shape of diameter distributions of nanoparticles, nanoclusters and micro particles and 

their methods of growth (coalescence or Ostwald ripening) were established as early as 1976.
11

  

Accordingly, a log-normal shape seen in the size distribution curve of nanoparticles implies that the 

primary mechanism for growth can be inferred as coalescence.  In this article, we extend this 

relationship from nanoparticles, nanoclusters and microparticles to nanowires.  Ostwald ripening is 

often modelled with a function based upon the works of Lifshitz, Slyozof and Wagner.
15

  Their 

combined methods have resulted in a model (LSW model) which is recognisable by its skewed 

distribution with a tail on the small diameter side of the diameter distributions.  The LSW model also 

predicts that no particle greater than 1.5 times that of the mean particle diameter (in our case mean 

nanowire diameter) can exist.  In reality, the particle size distributions are often skewed with a tail 

towards larger diameter sizes and particles greater than 1.5 times the average particle size often exist.  

The reason this upper limit exists is because LSW theory assumes that the system is infinitely dilute, 

which implies the absence of interparticle interactions.
16

  Accounting for the stochastic process of 

interparticle interaction to and from particles, alters the LSW model and removes the artificial 

requirement that the particle size distribution, and all its derivatives, should go to zero above some finite 

value of particle size.
12

  To address these experimentally observed shortfalls with the LSW model, many 
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groups have used a basic Gaussian function to model Ostwald ripening behaviour and have reported 

much better fits to experimentally obtained particle size distributions.
12, 17

  A similar Gaussian function 

was incorporated into a model used by Conti et al.
18

 who combined both coalescence and Ostwald 

ripening in a single model.  Consequently, basic Gaussian and log normal functions were combined to 

account for the coalescence of Ge particles into nanowires in this study, as shown in equation 1.  

Formation of the combined log normal and Gaussian function in equation 1 is shown in supporting 

information figure S2, along with deconvoluted data highlighting the individual contribution of both 

functions. 
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where Ac is the area under a log-normal curve, yo is the baseline offset, xc is the peak center of the log-

normal contribution, σ is the standard deviation of the log-normal contribution, Ar is the area under a 

Gaussian curve, σ1 is the width of a Gaussian curve (= FWHM/ ln4) and xcg is the peak centre of a 

Gaussian curve. 

 

Results and Discussion 

Four different Ge:Si precursor solutions (Ge:Si 1:4, Ge:Si 1:3, Ge:Si 1:2 and Ge:Si 1:1), at four 

different reaction temperatures (573, 673, 723 and 773 K) were used to grow Ge nanowires via the SCF 

self-seeded approach.  The corresponding diameter distributions for each sample were fitted using the 

combined log-normal/Gaussian function shown in equation 1.  Table 1 below provides a summary of the 

log-normal peak center, xc, and the Gaussian peak center, xcg, fits, as determined by equation 1, for each 

of the Ge nanowire samples produced.  Independent of the precursor used, the log-normal peak centre 
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was seen to increase with increasing growth temperature.  The log-normal peak center also increased as 

the Ge:Si ratio changed from 1:3 to 1:1.  Both of these trends highlight the larger diameter nanowires 

achieved at high Ge concentrations and high growth temperatures, also illustrate the temperature 

dependence of a diffusion limited growth process. 

 

Table 1.  Table illustrating trends in log-normal peak centers, xc, (coalescence) and Gaussian peak 

centers, xcg, (Ostwald ripening) for synthesised Ge nanowires as a function of the Ge:Si precursor ratio 

and reaction temperature. 

 Ge:Si 

1:3 

Ge:Si 

1:2 

Ge:Si 

1:1 

773 K             xc 

                       xcg 

11.2 nm 

12.6 nm 

--- 

21.8 nm 

17.4 nm 

25.0 nm 

723 K             xc 

                       xcg  

7.6 nm 

--- 

16.3 nm 

22.9 nm 

21.4 nm 

--- 

673 K             xc 

                       xcg     

7.2 nm 

--- 

11.3 nm 

17.4 nm 

13.3 nm 

--- 

573 K             xc 

                       xcg                   

6.2 nm 

--- 

10.6 nm 

16.0 nm 

14.4 nm 

--- 

 

Figure 1 shows the measured diameter distributions of self-seeded Ge nanowires formed using the Ge:Si 

1:3 precursor as a function of temperature.  A log-normal function fitted the diameter distribution of the 

nanowires grown at 573 K very well (R
2 

> 0.9), with a primary peak centered at a diameter of 6 nm.  

Using the same precursor, experiments at 673 and 723 K yielded distributions with slightly larger 

primary peaks (7 and 8 nm respectively) but still displayed a similar log-normal compliance.  The small 

shoulder fitted on the large diameter side of the nanowire distribution (grown at 773 K) in figure 1 may 

be attributed to the onset of Ostwald ripening behaviour.  This diameter distribution, fitted with a log-
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normal function on its own, yielded an R
2
 value of 0.85.  Using the combined log-normal/Gaussian 

function in equation 1 to account for the Ostwald ripening, an R
2
 of 0.95 was achieved. 

 

  

 

 

 

 

 

 

 

 

Figure 1.  Diameter distributions of Ge nanowires grown from the Ge:Si 1:3 precursor at 573, 673, 723 

and 773 K.  A shift in the primary peak is observed as the growth temperature increased.  The 

distributions of nanowire diameters were determined from TEM measurements of over 100 nanowires 

for each data set and fitted using a combined log-normal-Gaussian profile as detailed in equation 1. 

 

Without exception, the mode seen in the diameter distributions of the Ge nanowires synthesised from 

the precursors increased with rising temperature and this is reflected in the log normal peak centers 

summarized in table 1.  The driving force for any type of nucleation is an overall reduction of the Gibbs 

energy.  A supersaturated solution will have an associated high chemical potential and the introduction 

of a solid phase through nucleation acts to lower this.
19

  In the case of the mixed Ge:Si precursors, the 

supersaturation is that of local Ge supersaturation within a Si-based matrix.  The first stage in the 

growth mechanism of these Ge nanowires is the nucleation of Ge nuclei within an amorphous SiOxCyHz 

matrix.  This matrix is the shell material that surrounds some of the wires formed.  Figure S1 is a 

combined TEM/EDX line scan image showing the amorphous nature and composition of this shell 

material.  Following decomposition of the precursor, Ge nuclei are formed by microphase demixing 

followed by homogeneous nucleation of Ge from the amorphous germanium-rich SiOxCyHz material.  
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The defects in this amorphous material can act as nucleation sites with low activation energy barriers to 

seed the nucleation of the Ge nanoparticles.  The defective regions would have high interfacial energies 

due to the dangling bonds present.  By nucleating at such sites, the Ge atoms are able to help minimize 

the total interfacial free energy of the system.
20

  The nuclei at this stage of growth are subject to a 

critical diameter depending on the precursor used and the growth temperature employed.  As per 

nucleation theory, a critical radius exists for the nucleation of a particle.  This critical radius is 

dependent on both concentration and temperature.
16

  Nuclei below this dimension are not stable and 

retreat back into solution.  Nuclei that satisfy this dimensional requirement are stable and are able to 

grow and then coalesce together within the SixOyCHz matrix to form Ge particles which in turn, 

coalesce or fuse to form an elongated structure.  Aggregation of these elongated structures will 

eventually form a nanowire. 

 

Figure 2 shows a sequence of TEM images taken at 1 min intervals of some Ge:Si (1:2) precursor that 

was not fully decomposed from a reaction  at 573 K.  A large number of Ge nuclei can be observed 

within the Si-based matrix.  Significantly, continued exposure of the Ge nanoclusters in the sample to 

the electron beam (200 kV) results in extra Ge nanoparticle nucleation, as shown in figures 2(a) and (b).  

Although the particular nucleation shown in figure 2 below is e-beam induced, it nonetheless offers an 

insight into the possible thermally induced nucleation that occurs from this same precursor material in 

the closed, pressurised reaction cell.  Broadening of the particle size can be seen to occur in the latter 

part of the sequence; one such example is highlighted throughout the sequence by the white circles in 

figures 2(a) to (h).  In figures 2(a) to (d), the two highlighted small particles can be seen to grow in size 

before coalescing together (figure 2(d)).  This process is then repeated again with the now larger particle 

in figures 2(e) to (f). 
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Figure 2.  TEM sequence showing the nucleation, diameter broadening and coalescence of Ge 

nanoparticles from a Ge:Si (1:2) precursor under an electron beam (200 kV).  The growth of one such 

particle is highlighted throughout the sequence by a white circle (scale bars = 20 nm). 

 

The aggregation of partially formed nanowires is evidenced by a “pinch” in the nanowire diameters 

often imaged by TEM.  We postulate that these pinches occur at the sites where the partially formed 

nanowires fuse together.  These “pinched” sites offer further evidence that the growth mechanism of the 

nanowires involves the attachment of one elongated structure to another.  The theory of attachment-

oriented growth has been used to explain the seedless growth of PbS nanowires, also of a cubic crystal 

structure, by Yong et al.
21

  They attributed the growth of the PbS nanowires to the spontaneous 

alignment and fusion of PbS nanoparticles to form elongated structures and tentatively suggested that 

the alignment is a dipole-driven oriented aggregation of nanoparticles caused by exposed high energy 

surface facets of the PbS crystal.  However, the temporary dipoles in such structures are due to the 

charge balance that exists between metallic and non-metallic faces.  A more likely explanation for the 

attachment orientated growth of Ge nanostructures is that offered by Halder et al.
22

 in their study of gold 

nanowires.  They propose that a smoothing process, occurring between two faceted nanoparticles, 

provides a symmetry breaking mechanism that allows wire growth or elongation through the formation 

of a neck.  The neck, due to the concave nature, then creates a negative potential on the wire to which 
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atoms or clusters of atoms can diffuse from areas of higher potential, such as nearby flat or convex 

surfaces.  This flux of material from areas of higher chemical potential to areas of lower chemical 

potential is shown schematically in figure 3 below. 

 

 

Figure 3.  Schematic showing the diffusion of Ge atoms to concave sites of low chemical potential.  

 

This smoothing process is evidenced in both the gold nanowires synthesised by Halder et al. and the Ge 

nanowires synthesised in this work by the formation of coherent twin boundaries, highlighted in figure 

4(a).  The twin formation is also highlighted by the FFT of the nanowire inset in figure 4(a), which 

clearly shows the twin relationship.  This is where one set of {111} planes remain continuous while the 

other set of {111} planes are related by a mirror symmetry across the boundary.  The coherent twin 

boundary, being a very low-energy interface for Ge (ca. ~30 mJ m
-2

), gives rise to this possibility.
23

  

The pinch site is therefore eventually normalised with the rest of the nanowire diameter by Ge nuclei 

that continue to diffuse to the wire due to the negative radius of curvature associated with a concave 

notch.  Once this crystalline structure is formed, Ge nuclei continue to diffuse to the formed nanowire 

and small Ge particles can be seen to occupy the amorphous shell material that surrounds these wires 

(figure 4(c)).  The shell material on the nanowires is more evident at higher growth temperatures (723 
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and 773 K) and lower temperature growth (573 and 673 K) often exhibit wires with less shell material, 

and sometimes no shell material, as shown in figure 4(d).  As the growth temperature is increased, there 

is an increase in the rate of diffusion of Ge within the SixOyCHz matrix, leading to a broadening of the 

nanowire diameter through diffusion-limited Ostwald ripening.
24

  

 

 

Figure 4.  High resolution TEM images of (a) a “pinch” in a Ge nanowire with growth direction, high 

energy surface facets and twinning boundaries (TB) highlighted (insert: FFT displaying the twinning 

relationship), (b) Ge nanowires with amorphous shells, (c) Ge nanowire with amorphous shell 

containing Ge nanoparticles and (d) Ge nanowire without an amorphous shell.  Insert in 3(d) shows the 

highly crystalline nature of the nanowires and the FFT illustrates the <111> growth direction (scale bars 

=10 nm). 
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The constant trend of increasing wire diameter with a greater Ge:Si ratio may be understood by the 

increased relative amount of Ge compared to silicon in the system and the dynamics of the coalescence 

and ripening processes of Ge in the SixOyCHz matrix.  Although the Ge atomic concentration in the 

precursors increases upon moving from Ge:Si 1:4 towards 1:1, the increase in the mode diameters 

observed are primarily due to the increasing Ge:Si ratio and not the total atomic concentration of Ge.  

To prove this hypothesis, the Ge:Si 1:3 and 1:2 precursors were matched in their atomic concentration 

of Ge (0.034 M) and nanowires were grown from both precursors at 573 K.  The diameter distributions 

of both nanowire products were compared and the 1:2 precursor consistently yielded nanowires of larger 

mode diameter than nanowires obtained from the 1:3 precursor.  An increased Ge:Si ratio therefore 

leads to the growth of Ge nanowires with larger mode diameters.  Diffusion-limited growth of 

nanowires is directly related to the solute concentration in a system, which in this study is controlled by 

the Ge:Si ratio, where the Si forms the amorphous SixOyCHz medium through which the Ge must 

diffuse.  Fick’s first law of diffusion (equation 2), states that the flux of matter between areas of high 

and low concentration is directly proportional to the concentration gradient that exists between these 

two areas of Ge content. 

 

cDJ ∆−=           (2) 

 

where J = flux (mol m
-2

 s
-1

) D is the diffusion coefficient (m
2
 s

-1
) and ∆c is the concentration gradient.  

The coefficient of proportionality in this flux-concentration relationship, known as the diffusion 

coefficient, D, is also temperature dependant and is a function of the mean free path and mean thermal 

speed.  As the mean thermal speed increases with temperature, the diffusivity of the nucleating clusters 

also increases with temperature.
25

  Consequently longer, broader wires are formed at higher 

temperatures and at higher Ge content. 
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The oligosilylgermane precursors decomposed to form matrices, composing of varying compositions of 

C, H, Si, Ge and O, from which the Ge nanowires nucleated.  As the Ge content in the Ge:Si (1:4) is 

comparatively small compared to Si, a reduced number of Ge nucleation events will occur compared to 

the other precursors investigated .  The low Ge content effectively lowers the quantity of Ge atoms that 

can diffuse to a certain nucleus within the amorphous matrix, and no nanowire growth was observed 

over a reaction time of 24 h at 673 K.  The observations from the Ge:Si (1:4) precursor suggests that a 

certain threshold concentration exists, below which insufficient nucleation occurs via diffusion.  The 

observed threshold concentration is overcome by altering the Ge:Si ratio from 1:4 to 1:3, resulting in 

sufficient Ge nucleation events to generate small diameter (6 nm) Ge nanowires.  As the Ge:Si ratio is 

increased further to 1:2 and 1:1, the mode diameter of the nanowires synthesised increase from 6 to 11 

nm respectively, as is highlighted in figure 5 below.  A comparison of experiments performed at 573 K 

show the peak centers (or mode diameters) at 6, 11 and 14 nm for the Ge:Si 1:3, Ge:Si 1:2 and Ge:Si 1:1 

precursors respectively.  Ostwald ripening becomes dominant when the Ge:Si ratio shifts from 1:3 

towards 1:1.  This increase in Ostwald ripening behaviour is reflected in the diameter distributions 

which are fitted with a Gaussian-like profile.  At a Ge:Si ratio of 1:1, all of the Ge nanowires formed 

undergo so much broadening that no evidence remains of the coalescence that preceded this Ostwald 

ripening and so the log-normal contribution of the fitting function is effectively reduced to zero. 
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Figure 5.  Fitting function of Ge nanowires formed at 573 K using the Ge:Si 1:3, Ge:Si 1:2 and Ge:Si 

1:1 precursors respectively, highlighting the mode diameter shift of the nanowires generated.  The 

distributions were determined from TEM measurements of over 100 nanowires for each sample and 

fitted using the combined log-normal-Gaussian function given in equation 1. 

 

As previously discussed, Ge nanowires synthesised at a low temperature, e.g. 573 K and from 

precursors with a low Ge content, e.g. Ge:Si (1:3) tended to show a log-normal type diameter 

distribution indicative of coalescence.  Experiments at a higher temperatures, e.g. 773 K, and from 

precursors with a high Ge content, e.g. Ge:Si (1:1), displayed a more Gaussian nanowire diameter 

distribution, indicative of Ostwald ripening.  Many experiments, however, showed nanowire diameter 

distributions that displayed evidence of both coalescence and Ostwald ripening and were modeled 

sometimes using an equal contribution from both the log normal and Gaussian terms, such as the Ge:Si 

ratio of 1:2 at 723 K. 

 

Conclusions 

Ge nanowires have been successfully grown without the introduction of a foreign seed particle from 

various mixed Ge/Si precursors.  A model has been proposed which accounts for nanoparticle 

coalescence at the beginning stage of nanowire growth and Ostwald ripening in the latter stages of 
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growth.  Analysis of the nanowire diameter distributions revealed several trends which can be directly 

related to the Ge:Si ratio of the precursor employed and the growth temperature.  We have shown that 

the information yielded from analysis of diameter distributions can aid towards the understanding of 

growth mechanisms in nanowire growth experiments. This study also highlights the possibility of 

achieving Ge nanowire diameter control through the engineering of various Ge precursor molecules. 
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