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Abstract

Abstract

Third generation wave-power devices are usually envisaged as being either a
single large device or an array of smaller devices. The benefit of an array,
compared to a single device, is that the individual components are relatively
inexpensive to repair and replace; however issues arise due to interaction
between the array members, which can lead to constructive or destructive
interference of the wave-field, thus increasing or decreasing the power that can
be absorbed. This thesis is concerned with the optimal formation and design of
these arrays of wave-power devices from a hydrodynamic perspective. Previous
literature has indicated that a deterministic optimisation of the array layout,
which directly maximises the array performance, results in high sensitivity of the
optimal performance to incoming wave parameters. This work considers a more
robust optimisation, where the mean performance of the array is maximised.

Determining the optimal array configuration is associated with numerical
optimisation. Previous studies have shown that a balance must be struck
between accurately modelling the devices of the array (including their
interactions) and the requirement of establishing a reliable optimisation process.
Thus, linear wave theory and the point absorber approximation are utilised
within this work. Several array geometries are investigated, including linear and
circular arrays, along with a general 2D optimisation without any imposed
symmetry. Both constrained and unconstrained WEC motions are considered.
Regular waves are assumed for the majority of this work, with a preliminary
extension to irregular waves also investigated for elementary linear arrays.

In general, it is shown that optimal unconstrained arrays tend to contain closely
spaced groups of WECs, while constrained arrays are more spread out. A
trade-off between peak performance and performance stability is identified for
general WEC arrays, while linear arrays also exhibit a trade-off between
stability to wavenumber variations and incident wave angle variations. Overall,
it is shown that linear arrays perform poorly for some orientations, regardless of
the array layout. Better constructive interaction can be achieved in beam seas
for unconstrained motions, while head seas allow for the best interaction when
WEC motions constraints are applied. As expected, better interaction can be
achieved for more general array layouts, without a prescribed geometry.
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Nomenclature

Nomenclature

αm Angular position of the mth device

αp Phillips constant of JONSWAP spectrum

β Incident wave angle

β0 Prescribed value of β

δjl Kronecker delta

ε Small error

η Free surface elevation

Γ Legendre Gamma function

γ Coefficient of kinematic viscosity

γp Peak enhancement factor of JONSWAP spectrum

λ Wavelength

A, alj Added mass matrix and ljth component

B, blj Radiation damping matrix and ljth component

C, clj
ω2 Hydrostatic force matrix and ljth component

J Matrix of Bessel functions {J}mn = J0(kdmn)

D Complex WEC displacement vector

Dopt Optimal complex WEC displacement vector

F, Fj Hydrodynamic force and jth component

f , fj Complex amplitude of the hydrodynamic force and jth component

Fe Excitation force

Fr,FFF r Generalised radiation force and complex amplitude

Fhs Hydrostatic force

M,Mj Hydrodynamic moment vector and jth component

n Unit normal vector out of the fluid

u Fluid velocity vector u = (u, v, w)
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Nomenclature

U, Uj Body velocity vector and jth component

V Total velocity of a point on a floating body

X, Xj Complex amplitude of excitation force and jth component

XFK Froude-Krylov force (Complex amplitude)

C,D Havelock coefficients

J Power per unit width of the incident wave for arbitrary water depths

Labs Absorption length

Lopt Maximum absorption length

O Order of symbol

P ,Pj Instantaneous power absorbed by the array and jth device

V ,S Integration volume and boundary surface

νn Arbitrary velocity of fluid volume

ω Angular wave frequency

ωp Peak angular wave frequency

Time average over one wave period

Iβ Mean of the averaged interaction factor q over β

I Mean of the averaged interaction factor q over kL

q Averaged interaction factor

Φ, φ Total wave potential and complex amplitude

φ0, φr, φd Complex amplitude of incident, radiated and diffracted wave
potentials

φs Complex amplitude of scattered wave potential φs = φ0 + φd

χχχ Total time-dependent body displacements

`̀̀ WEC phase factor vector

FFF Complex amplitude of generalised hydrodynamic force

NNN Generalised unit normal vector

UUU ,Uj Complex amplitude of body velocity and jth component
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Nomenclature

UUUopt Optimal WEC velocity vector

µµµ = (µ1, µ2, µ3) Complex amplitude of the hydrodynamic moment

ΩΩΩ = (Ω1,Ω2,Ω3) Rotational body velocity vector

ξξξ Complex amplitude of body displacement vector

ρ Fluid density

σp Peak width parameter of JONSWAP spectrum

Im[ ] Imaginary part of expression

Re[ ] Real part of expression

θj Relative angular position of jth WEC in a circular array θj = αj − αj+1

ε Perturbation parameter

κj Roots of ω2 + gκj tan (κjh) = 0

ϕj Complex amplitudes of the radiated velocity potentials due to device
oscillation in mode j with unit velocity amplitude

Ξ Phase function

ζ Complex amplitude of free surface elevation
∗ Complex conjugate
† Complex conjugate transpose
T Matrix transpose

A Wave amplitude

a WEC radius

c Phase velocity

cg Group velocity

d Uniform linear array spacing

dm Radial position of mth device

dmn Distance between the mth and nth devices

E Total wave energy

Eke Kinetic wave energy
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Nomenclature

Epot Potential wave energy

fj(θ) Far-field amplitude of the radiated wave-field from device j

g Acceleration due to gravity g = 9.81ms−2

h Fluid depth

I Mean of the interaction factor q over kL

i
√
−1

Iβ Mean of the interaction factor q over β

Igen Mean of the generalised interaction factor qgen over kL

Jm mth order Bessel function of the first kind

k Wavenumber

Km mth order Bessel function of the second kind

L Linear array total length

N Number of WECs in array

P Average power absorbed by array over one wave period

p Pressure

P∞ Total power contained in the incident wave spectrum

pa Atmospheric pressure

pd Hydrodynamic pressure pd = −ρ∂Φ
∂t

pg Gauge pressure pg = p− pa

PT Targeted power contained in the incident wave spectrum

Pw Power per unit width of the incident wave in deep water

Pabs Average Power absorbed (non-optimal) by array

Popt Maximum average power absorbed by array

Q Irregular wave objective function

q Interaction factor

qgen Generalised interaction factor

r Circular array radius
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Nomenclature

R, θ, z Cylindrical Coordinates

S(ω) Wave energy (frequency) spectrum

Sβ(β) Incident wave angle spectrum

sj Consecutive WEC spacing between jth and (j + 1)th WECs

SP (ω) Wave power spectrum

SBj Wetted surface of the jth body

t Time

x, y, z Cartesian Coordinates
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Chapter 1

Background & Literature review

The literature on the modelling of wave-power devices is vast: ranging from the
modelling of single devices, including investigations of their optimal shapes and
control, to the interaction of arrays of different geometries. Varying levels of
approximations are employed, each with their associated advantages,
disadvantages and accuracies. The review presented herein is not intended to be
an exhaustive summary of the total field but is instead a summary of
information most relevant to this Ph.D. topic. Gaps that exist in the literature
are highlighted and include those addressed in this thesis. A brief description of
the concept of wave energy is given first, in Section 1.1. The types of wave
energy converter (WEC) that have been invented, studied, developed and
successfully deployed are summarised. The relevant literature concerning single
WEC analysis and performance is summarised in Section 1.2, while WEC arrays
are discussed in Section 1.3. Physical (wave tank) testing is discussed in Section
1.4 and the associated difficulties salient to WEC arrays are described. Finally,
shortcomings identified by this literature review are outlined in Section 1.5 and
some of those shortcomings that are to be addressed within this thesis are
highlighted.

1.1 Introduction

1.1.1 Wave Energy Background: Why Wave Energy?

Energy and power generation have become a vital requirement of modern
society, with demand increasing every year. As fossil fuels are becoming less
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1. Background & Literature review 1.1 Introduction

abundant and more costly in the long term, alternative sources of energy will be
required. Furthermore, an energy source which has low environmental impact is
more desirable. For society to rely on renewable energy, a diversity of resources
are required for redundancy and to meet demand. Thus, a combination of wind,
solar, tidal and wave energy would be ideal, though this is dependent on the
resources available to a given location. Given Ireland’s position near the
Atlantic Ocean and the considerable wave resource available off the West coast,
wave power is potentially one of the most promising and lucrative areas of
renewable "green" energy.

Wave energy development is in its infancy compared to some other forms of
renewable energy. It is an area that requires participation from several varied
fields, including oceanography, mathematics and engineering, to solve the many
problems associated with wave energy conversion. These problems include the
design and construction of a viable device, capable of wave energy extraction
and survival in a cost effective manner; the design of methods of either storing
this energy or efficiently feeding it into the grid; the assessment of the wave
energy resource available at particular sites; and the modelling and optimisation
of device design, deployment and operation.

A distinction must be made between the resources of wave energy, hydro-energy
and tidal energy. Hydro-energy is power extraction from a water flow, typically
a river or a dammed lake. Tidal energy is that extracted from the tidal flow of
the sea, usually near-shore or onshore, often in an estuary. Wave energy is
where power is extracted from the undulation in the water surface due to the
propagation of waves across the body of water. In this sense, the flow of water
does not typically result in wave-power extraction, though some wave energy
devices do utilise both water flow and wave undulation for power extraction.

Ireland’s total wave energy resource is estimated at 525TWh per year by the
Sustainable Energy Authority of Ireland (SEAI), although it is further
estimated that only 21TWh of this could be feasibly accessed1. In 2015,
Ireland’s electricity consumption was estimated at 29TWh2, so wave energy has
the potential to provide a significant proportion of this requirement. Although
electricity consumption has almost certainly increased since 2015, wave-power
still has the potential to provide a large fraction of the Irish electricity

1Accessible Wave Energy Resource Atlas: Ireland: 2005. www.marine.ie (accessed July
2017)

2Energy in Ireland 1990–2015, SEAI report, 2015. www.seai.ie/resources/publications/
(accessed June 2017)
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1. Background & Literature review 1.1 Introduction

requirements. Similar arguments in favour of wave energy can be applied to
many coastal countries and world-wide.

In 2009, the EU published its renewables directive (2009/28/EC), which sets
the target that 20% of all energy consumed by the EU must be provided by
renewable sources by the year 2020. This target was divided among member
states, with Ireland committing to a 2020 target of 16% renewable energy. To
attain this target, considerable investment has been made into renewable energy
research of all forms, though primarily into wind. Ireland is one of the best
positioned countries in the EU to harness wave energy, due to its direct access
to the Atlantic ocean and the accompanying wave resource.

All energy sources originate from the sun, primarily in a form of solar power.
The sun causes atmospheric pressure changes due to differential heating of the
Earth’s surface, creating weather systems, which give rise to wind. Wind action
is the primary mechanism of the waves on the oceans. Therefore, it can be
considered that solar power causes wind power, which in turn causes
wave-power, as described by Lewis (2014). The important consideration is that
as power is transferred down this path it becomes more concentrated, so that
wave energy contains the greatest energy per meter of these renewable energy
sources, typically O(10− 100 kW/m). This makes the harvesting of wave energy
an attractive, albeit challenging, prospect.

The majority of this wave resource is located in the deep ocean, where waves
are in a water depth greater than half the wavelength. Accessing this resource is
a intimidating task, due to the difficulty of operation and maintenance of
devices in the open ocean, far from shore. Survivability of the devices is also a
concern; a WEC must be capable of absorbing power efficiently during average
conditions while also being able to survive infrequent storm conditions. The
cost of constructing a WEC is partly associated with the survivability of the
device in peak storm conditions, while the income from a WEC is only from the
mean conditions when the device is absorbing power. In this sense, the
survivability of a WEC is a substantial barrier to achieving financial viability of
wave energy, though this is only one of the many considerations. For example,
cabling of the WECs to the shore also carries a considerable cost.

It has been accepted more recently that WECs need to be large in size or
deployed in arrays of many small devices for wave energy sites to provide
enough power to be economically viable. The latter requires consideration of
the performance of the array as a whole, which is a much more intricate
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problem than the performance of a single device. The interactions between
array members can increase or decrease the power absorbed. The problem of
array interactions is present in most forms of renewable energy; for example the
park effect of reduced resource available behind a wind or tidal turbine.
However, the interaction effect is much more complicated for WECs, as the
wave field is affected in all directions around a single device and not just behind
it, due to radiated and scattered waves.

1.1.2 Categories of WEC

The primary focus of wave energy research is the design of a device capable of
extracting power from the waves and either storing this power or feeding it into
the grid. Wind power has been studied extensively; the best method for
extracting energy from wind has converged within the literature to the wind
turbine. The design of wind turbines has also been optimised, though it is
acknowledged that there are many varying types of optimisation and
corresponding wind turbines. Conversely, there is a large variation in the design
of wave energy devices under consideration and these vary in power extraction
(interface) method, mooring, power take-off (PTO) and specific device designs.
Although some current prototypes show considerable promise, a standard WEC
has not yet been agreed.

Most of the WECs under development can be divided into two main categories:
floating or submerged. These devices can be fixed or freely floating and are
further categorised by the interface elements, i.e. how the devices interact with
the waves, and by the PTO. Some other devices are also built fixed into the
shoreline or a breakwater. The principal classes of devices are listed below
corresponding to the interface elements employed; the corresponding PTO is
also discussed. Examples and diagrams of some current devices are also
provided.

1.1.2.1 Overtopping Devices

An overtopping device is one which uses the elevation of wave motion to fill a
reservoir, from where the water is released to sea level through a low head
hydro-turbine PTO to generate electricity. In this way, these devices essentially
absorb the potential energy within the waves. Many such devices employ ramps
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Figure 1.1: Diagram of the operating principle of an overtopping device.
Source: www.wavedragon.net

which help to direct the water into the reservoir and thus can capture extra
water and hence extra energy. Therefore some of the kinetic energy of the waves
is also absorbed. This method of wave-power absorption is shown in figure 1.1.
Ramps make use of a phenomenon in waves called wave shoaling. As the waves
hit the ramp, they enter shallower water which causes an increase in wave
height, thus allowing more water to be captured in the reservoir. These are
atypical wave energy devices in the sense that they extract power from a water
flow rather than oscillations in the PTO. Overtopping devices are either fixed or
floating on the water surface.

A current example of such a floating device is the Wave Dragon3. This device is
built with directing arms, which direct the waves towards the ramp and into the
reservoir using wave reflection. This device has been tested from small- to
large-scale, including 1:50 scale tests at the Hydraulics and Maritime Research
Centre (HMRC) in University College Cork (UCC). It was involved in several
full scale test deployments, including a 7MW demonstrator device in Wales and
a 50MW farm near Portugal, though the prototype was scrapped in 2011. An
example of a fixed overtopping WEC is the Tapchan4 (short for "Tapered
Channel"), which is built onshore into the coastline and operates on the same
principles as described above. The Tapchan WEC has the advantage of being
entirely onshore, thus reducing the cost associated with operation and
maintenance.

3www.wavedragon.net (accessed June 2015)
4https://taperedchannelwaveenergy.weebly.com/ (accessed September 2017)
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Figure 1.2: Diagram of the operating principle of a floating OWC WEC

1.1.2.2 Oscillating Water Column (OWC)

An oscillating water column WEC contains an internal chamber, within which
is a volume of water beneath a volume of air. When waves are incident onto the
device, the wave motion causes the internal water surface to oscillate vertically,
which in turn compresses and decompresses the air above it. An opening in the
air chamber, which contains the PTO in the form of a self rectifying air turbine,
allows the air to escape and enter through this turbine, thus generating
electricity. A self-rectifying turbine is one that rotates in the same direction
regardless of the direction of air flow, so that energy is generated both when air
is escaping and being sucked back into the chamber. These WECs can be built
as fixed devices as part of a breakwater or into the coast; however, recent
research has concentrated on floating OWC devices. A basic diagram of the
operation of such a floating OWC WEC is shown in Figure 1.2. The
mathematical modelling of such WECs is relatively complicated due to the
combination of hydrodynamic and aerodynamic domains, as well as the
compressibility of the air which results in thermodynamic effects.

The OWC concept was first used to power self-sufficient navigation buoys by
Masuda in the late 1940s, which are still in place today. This was later studied
and optimised as a means of power extraction for onshore consumption. One of
the first OWC prototypes designed specifically for wave power extraction with a
view to general consumption was built in Islay, Scotland in 1980. In 2000, a
second OWC prototype built into the Islay coastline, named the LIMPET
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(Land Installed Marine Power Energy Transmitter) device. This device
successfully extracted power from the waves and fed this into the grid, though
the parent company WaveGen was closed down in 2013 and this device has
ceased operation. One of the largest prototype OWCs was the OSPREY which
was built in 1995 and intended to be sunk into place at a site off the Scottish
coast. However, it was destroyed by the waves shortly after being towed to the
desired site. Another example of a fixed OWC WEC is the Pico plant built in
the Azores in Portugal in 1999 which is still in operation today. One problem
with fixed OWCs is the relatively few locations they can be built and the high
cost of construction. Currently, it is only financially viable to build such a
device if a breakwater is already being constructed, primarily due to the high
cost of concrete construction.

More recently, there has been a renewed focus on floating OWC devices as one
possible means of wave energy extraction. These devices operate in a similar
manner to their fixed counterparts, with the advantage of cheaper construction
costs (less concrete) and the ability to be placed in more locations. In some
cases, they can be controlled to absorb more power than their fixed
counterparts. There are many prototypes of floating OWC WECs, one such
example is the Ocean Energy Buoy (OEBuoy)5. This device was tested at
model scale (1:50) in UCC at the HMRC and also at 1:4 scale in Cork Harbour.
This device is still in development with the current phase concentrating on the
testing of near commercial scale prototypes.

1.1.2.3 Floats, Flaps and Hinges

Another class of WEC is one that uses the motion of the waves to move some or
all of the device; this movement is then used by the PTO to generate power. As
suggested by the subsection title, this type of device can be split into three
categories, namely float, flap and hinge devices. These devices can be
free-floating or submerged.

Flap devices operate such that the wave action forces the movement of a flap,
which in turn generates electricity. One of the most well known WEC concepts
of this type is the Salter Duck, designed by Stephen Salter in the 1970s. This
device is a pear shaped floater, which is rotated by the action of the waves.
Power is taken off through this rotational motion and converted to electricity by

5oceanenergy.ie (accessed July 2016)
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Figure 1.3: Operation of a flap type device, e.g. Aquamarine Oyster

a generator. Construction and testing of the device was very costly and funding
for the study of the device was subsequently cut in the 1980s. Thus, no large
scale devices of this type have be produced on a commercial scale.

A well known commercial device in this category is the Aquamarine Oyster6.
This device uses the action of the waves to drive the flap, which in turn drives a
pump to drive water to an onshore power generation plant. One disadvantage of
this device is that it is almost completely underwater, making deployment,
repairs and maintenance difficult and expensive. However, one major advantage
of this WEC is that it operates in shallow water near shore, which reduces the
costs involved.

A hinge type device is one which uses the wave-induced motion of one part of
the device relative to another section of the device, to extract power via the
joint. This joint contains the PTO, which is usually a hydraulic pump generator.
The principle of operation of these class of devices is illustrated in Figure 1.4.

The most successful and advanced device of this type is the Pelamis device,
particularly the P2 prototype7. It should be noted that this device is considered
to be a second generation device, intended for near shore deployment. This

6http://www.aquamarinepower.com/ (accessed July 2015)
7www.pelamiswave.com/ (accessed June 2015
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Figure 1.4: Operation of a hinge type device, e.g. Pelamis

prototype was tested at a site in Orkney, Scotland and gave promising results.
The next step would be to test arrays of these devices; it was hoped that this
would be accomplished at the WestWave project site off the west coast of
Ireland in the coming years. However, Pelamis wave-power went into
administration in November 2014.

The class of device that is employed in this thesis is the float type device, which
is moved by the action of the waves and extracts power either using an internal
reference power generation system or via the mooring using a sea-bed mounted
linear electric (electromagnetic) generator. In principle, floats can operate and
withdraw energy in any of the six degrees of freedom, although most devices are
constrained to move in only one mode and extract power from this one mode.
Some devices can extract in multiple modes but usually at most two.
Complications arise with construction, modelling and testing of WECs that can
extract power in multiple modes. The majority of float WECs under
development are axisymmetric, as this simplifies their construction, modelling
and operation. This also allows a single WEC to perform analogously for all
incident wave directions, though it should be noted that this is not true for
arrays of such devices. Most float WECs operate in either heave, surge or both.
Only float type devices that operate in heave are considered herein, such as
shown in Figure 1.5.

One example of real devices of this type is the WaveBob8 WEC, which operates
in heave. This device underwent considerable scale tests, including 1:50 scale
tests at the HMRC in UCC and 1:4 scale tests in Galway Bay. However, due to
financial difficulties, WaveBob was closed down in 2013.

8https://en.wikipedia.org/wiki/Wavebob (accessed August 2017)

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

9 Justin P.L. McGuinness



1. Background & Literature review 1.1 Introduction

Figure 1.5: Diagram of a heaving point absorber WEC

1.1.2.4 Other Methods of Wave-Energy Extraction

There are a myriad of different types of WEC under development, each with
different types of PTO and a discussion of all designs is not attempted. Some of
the methods of wave energy extraction are atypical and so this section discusses
a selection of some of the more well known WECs that are not covered by the
preceding sections.

One such device is the Lancaster Flexible Bag WEC. This attenuating device
operates by allowing a variable width along its length. The wave motion acts
upon the device and forces a fluid contained inside the WEC (air or water)
through a turbine to generate electricity. There are many variations on this
concept, with different designs, internal content and forms of PTO.

The same broad concept is utilised by a similar device currently under
development by Checkmate SeaEnergy, named the Anaconda. This is a long
snake like device consisting of a water-filled rubber tube. It is faced into the
oncoming wave and the differential wave forces across the WEC causes localised
squeezing and enlarging effects, which drives the internal water from one end of
the device to the other. A combination of valves and turbines are then utilised
as the PTO from this water flow. This device has undergone physical testing at
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the 1:30 scale at the Danish Hydraulic Institute (DHI). The development of a
sub-scale sea trial prototype is currently underway.

1.2 Single WEC Analysis & Performance

This section presents the relevant literature on the modelling of single WECs
and their performance. The extension to arrays of devices is considered in
Section 1.3. An understanding of a single device performance is vital before an
attempt to understand array behaviour is made. A number of aspects of the
analysis of a single WEC are discussed, beginning with the hydrodynamic
parameters of the given device in Section 1.2.1. A discussion on the shape of a
WEC is given in Section 1.2.2.

1.2.1 Hydrodynamic Coefficients

Some of the earliest work on oscillating devices in a fluid, and their application
to energy extraction, is by Masuda in the late 1940s. The earliest work
concerning heaving point absorber spherical WECs is that of Havelock (1955).
This is the earliest work related to the present strand of wave-energy research,
as it considers the motion of the fluid due to heaving oscillations of a
semi-submerged sphere in deep water. A representation of the velocity potential
due to the small heaving motions of the sphere is obtained. This is comprised of
an infinite series of wave free potentials, a cylindrical radiating wave term and a
source term, where the coefficients of the series are given as solutions of an
infinite system of equations. This series representation, and the corresponding
system of equations for the coefficients, can be truncated so that a solution can
be attained numerically. The order of truncation chosen does not appear to
greatly affect the result. It is shown by Hulme (1982) that the series
representation of the velocity potential and the system of equations for the
coefficients are well behaved, so that increasing the order of the system
increases the accuracy of the solution very slowly.

There are two primary coefficients from the cylindrical wave term in this
description, denoted as C and D, which are the Havelock coefficients. The values
of C and D are dependent on the radius of the sphere non-dimensionalised with
respect to the wavelength. The added mass and damping of an oscillating sphere
can be determined using the Havelock coefficients. These are the components of
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the radiation force that are in phase with the body acceleration and velocity
respectively, which are important for power absorption and array analysis.

The radiation and scattering of water waves by a heaving submerged sphere is
also considered by Linton (1991). The corresponding sway problem is also
considered but this is not relevant to the present work. Havelock’s approach was
extended by Linton (1991) to finite depth. The potential was expressed as a
multipole expansion with unknown coefficients. This gives an infinite system of
equations, which can be solved numerically following truncation. It was found
that truncation from an infinite system to an N × N system, with N = 4 was
sufficient to provide results accurate to three significant figures. Expressions for
the added mass and damping, including dependence on the depth, were
obtained and studied for variations in sphere radius and water depth. The
immersion depth to radius ratio was kept fixed such that the WEC was fully
submerged. It was found that the nearer the sphere was to the sea bed the
greater the added mass for the heave radiation problem. It was noted that the
added mass results obtained by Linton (1991) can be viewed as deviations of
the infinite depth case. The scattering problem for the submerged sphere was
also solved by Linton (1991) via multipole expansion. The effect of reducing
water depth was to decrease the vertical force and to increase the horizontal
force. A far-field approximation to the scattering problem is also presented and
compared to the exact solution, with good agreement found for large enough
distances away from the device.

1.2.2 Shape of WEC

Following Section 1.1.2, there are many types of WEC and within each broad
class of device there will be variation in design. Therefore, the shape of the
device can vary from developer to developer. This poses the question: what is
the best shape of WEC? The hydrodynamic effect of the shape of the device is
certainly significant but there are other factors which may affect the shape of a
good device, such as design and construction difficulties, financial constraints,
stability of the performance of the device, lifetime and survivability of the
device.

An early study into WEC performance due to its shape and design is by
Thomas & Gallachóir (1993). A single Bristol Cylinder WEC is considered and
a numerical optimisation is performed over the design parameters of the device,
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namely the device radius, submergence and specific gravity. The aim was to
match the efficiency curve of the device to a given wave spectrum. This was
achieved and the optimised device attained a power absorption level of 85.2% of
the available resource, with the device performing well across the entire
frequency spectrum considered. However, the optimal design parameters
resulted in a large radius, which increases the construction costs, and a low
submergence, which increases the exposure to large waves thus affecting
survivability. It was noted that the specific gravity did not have a large
influence on the WEC performance, which may be important as lighter devices
would result in larger mooring forces. The results are highly dependent on the
spectrum considered and also the targeted portion of this spectrum. This
optimisation method is not restricted to the Bristol Cylinder and can be applied
to other WECs; further details are given by Thomas (2008).

Another preliminary study into WEC performance due to hydrodynamic effects
of the shape of a device is that of Alves, Traylor, & Sarmento (2007). In this
work, a buoy which absorbs power in heave with its PTO attached to the sea
bed is considered. An attempt to optimise the shape with respect to the power
absorbed is made using a boundary element method (BEM) numerical code.
The buoy is initially considered to be a vertical circular cylinder, which is then
transformed into two components: an upper component called the "surface
buoy", which crosses the free surface; and a submerged component, called the
"submerged mass", placed deeper in the fluid.

The aim of Alves et al. was to design a surface buoy with high hydrodynamic
damping (and thus high power absorption) and a submerged body with correct
mass to tune the system resonance to a desired frequency, while avoiding
damping of the surface buoy by placing it at a sufficient depth. Several shapes
are considered for both upper and lower buoys, including cylindrical, conical
and spherical. It was found that a large increase in the mean power can be
achieved by significantly reducing the cylinder volume and submerging the
remaining volume. This has the effect of increasing the hydrodynamic damping
and added mass, which thus increases the power absorbed. It is recognized by
Alves et al. that having a large submerged volume at a significant depth will
create engineering difficulties and financial costs.

It should be noted that the design of the WEC was quite specialised and the
optimisation considered was only partial, as only five different shapes for the
submerged mass were considered. Thus this can be considered as more of a case
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comparison rather than a full optimisation. Furthermore, some of these shapes
considered may result in significant viscous effects in a real fluid, which would
negatively affect performance.

A more detailed investigation into the optimal shape of the interface element of
a WEC is contained in McCabe, Aggidis, & Widden (2009), McCabe, Aggidis,
& Widden (2010) and McCabe (2013). The first two papers describe the
optimisation of a surge and pitch wave energy device, while the third considers
just a surging device. In all three cases, the optimisation is performed via a
genetic algorithm (GA); this is a metahuristic optimisation procedure, where
the search space of possible solutions is investigated in a random manner in an
attempt to find a close to optimal solution. A parametric description of the
WEC geometry is employed, based upon bi-cubic B-spline surfaces generated
from several vertices, whose coordinates are the variables of the GA
optimisation. A detailed description and application of GAs can be found in
Mitchell (1998).

Two types of WEC symmetry are enforced in McCabe et al. (2009) and McCabe
et al. (2010) to reduce the variable space of the problem. The most general of
these is a unisymmetric WEC, with symmetry about a horizontal axis, while a
stricter case also considered symmetry about both a horizontal axis and a
vertical axis. A simple objective function was first devised, which was
proportional to the power absorbed by the WEC (P ) and inversely proportional
to the amplitude of the wave (A), the surge velocity amplitude (U) and the
submerged volume of the device (V), so that the objective function was of the
form P

AUV . In this way, small power absorption, large velocities/amplitudes
(which violate linear theory and present engineering difficulties) and large
device volumes (which increase production costs) are all penalized. The WECs
considered were investigated in a regular wave regime.

Using the GA strategy, over half a million shapes were investigated by McCabe
et al. (2009, 2010), with only eleven performing better than the benchmark
cuboid shape. This suggests that the search space is largely populated with
poorly performing solutions. The best shape discovered was unisymmetric, with
a bulbous body and wings that slope backwards from the bottom up. It was
recognized that this is merely a preliminary optimisation and that the shapes
discovered need to be analysed with regard to a more detailed hydrodynamic
critique identifying the actual power absorbed, thus assessing the validity of the
cost function employed. For example, the benchmark cuboid shape and any
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optimal shape with sharp edges would perform poorly in viscous flows, which is
not accounted for.

A more specific device is considered by McCabe (2013), which is unisymmetric
and operates in surge only. The WEC is optimised using three different cost
functions within the GA, which are distinguished by the severity of penalty
placed on displaced volume. The optimum shapes obtained were compared to
benchmark "box" shapes of the same volume.

For the first cost function, which imposed no penalty on device size, it was
found that the best shapes returned were largely hemispherical and relatively
large (approximately 3100 m3 to 3500 m3). In most cases, these shapes
performed poorer than the benchmark box shape of same volume. For the cost
function which imposed the greatest penalty on device volume, devices which
exhibited pronounced asymmetry in direction of wave propagation, with pointed
prows and sterns, were obtained. These devices were considerably smaller than
those obtained for the first cost function, with volumes between 250 m3 and 350
m3. They also performed considerably better than the benchmark shapes. The
results obtained for the second cost function represented an intermediate case
between the other two. Overall, McCabe (2013) found that the different cost
functions have a far greater impact on the optimum shape obtained than either
displacement or power constraint. It was also discovered that the optimum
device shapes performed increasingly better than the benchmark box shapes as
the volume decreases.

One of the major weaknesses of this shape optimisation is that the model does
not account for viscosity, yet some of the optimal shapes obtained involve sharp
edges or points. It has not been established that these shapes would perform
well in real viscous fluids, where vortex shedding and other viscous effects would
play a significant role. Furthermore, even in the inviscid regime, it may be that
the optimal shapes only perform well for a very specific set of wave conditions
and may be sensitive to changes in wave parameters.

An example of the optimisation of a heaving WEC is the work of Goggins &
Finnegan (2014). This work considers the optimisation of the shape of a
heaving WEC, in terms of average annual power absorption, for a given wave
energy spectrum. The shape is optimised by considering five shapes, namely a
truncated vertical cylinder, a half immersed sphere, a truncated cylinder with a
hemispherical bottom, and two other shapes comprised of a truncated cylinder
with different shapes attached to the base. The optimisation of device shape is
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then performed by maximising the significant velocity of the device with respect
to the device shape and the device radius. This objective function is related to
the response amplitude operator (RAO) of the device. Thus it matches the
device motions with the incident wave spectrum, while avoiding slamming by
limiting the maximum value of the RAO. One weakness of this objective
function is that it does not directly optimise the power absorbed of the device,
but rather a quantity upon which the power absorbed is dependent. A further
calculation is then needed to assess the power absorbed relative to the PTO
damping coefficient.

It was found that the best shape overall was a cylinder with hemispherical base,
with a draft to radius ratio of 2.5 and with a radius of between 8m to 10m. This
device shape is also used in the numerical and physical tank tests of Stratigaki
(2014). Another good reason for this choice of shape, compared to say a
truncated cylinder, is that the hemispherical base has the effect of reducing
vortex shedding and other viscous effects at the corners of the cylinder. It
would also be a closer approximation to the shape of real devices, as opposed to
a sphere or cylinder which are modelling idealities. However, analytical
hydrodynamic modelling of a cylinder with hemispherical base is relatively
complex.

Unfortunately, the literature contains little research into the optimum shape of
a heaving wave energy device. This is perhaps because there is a general
acceptance within the literature as to the best shape of a heaving WEC, that
being symmetric about the vertical axis, and having a spherical waterplane
area. As a result, most heaving WEC research considered devices which are
either spherical or vertical circular cylindrical in shape, or a combination of the
two. The former is examined within the work of this thesis.

1.3 WEC Array Analysis & Performance

Having reviewed the relevant literature regarding a single WEC, the extension
to farms or arrays of devices can now be made. Modern wave-power devices are
usually envisaged as being either a single large device or an array of smaller
devices. The benefit of an array, in comparison to a single device, is that the
individual components are relatively inexpensive to repair and replace. The
hydrodynamics of an array of WECs is more complicated than that of a single
device, due to interactions between the devices, which can lead to constructive
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or destructive interference of the wave-field and thus increasing or decreasing
the power that can be absorbed.

The interaction between devices intended to extract other forms of renewable
energy is conceptually simpler than for wave energy. For example, tidal and
wind energy devices leave a decreased resource available in their wake which is
to be avoided, though turbulence and viscous effects also result in considerable
challenges for wind and tidal arrays. However, the wave-field caused by the
motion of wave energy devices is omnidirectional, not just in its lee. Therefore,
the modelling of this interaction and specifically the optimisation of the layout
of an array is much more challenging. A control and arrangement strategy
which makes use of the constructive effect and minimises the destructive effect
is desirable, thereby increasing the efficiency of an array and the power
generated to obtain maximum benefit. It should be noted that although the
destructive effect of the array can be minimised, it cannot be removed entirely.
Early studies of these types of control strategies attempted to maximise the
constructive effect. However, the importance of minimising the destructive
effect is recognised in more modern studies.

1.3.1 Investigation of Basic Interaction Effects: Small
Arrays of Less Than Four Devices

Before arrays of many devices are investigated, smaller arrays of only two or
three devices should be considered to gain an understanding of the basic
interaction between the devices. The simplest case of two devices will give a
clear picture of the effect that device 1 has on device 2, and visa-versa, without
the complications of interactions to and from other devices. This practice of
investigating the interaction between two devices is not common in the
literature on theoretical modelling of WECs, though it is often performed in
physical modelling tests, in wave tanks and flumes.

To assess the influence of interaction between array members, the array
performance is often compared the performance of an isolated WEC. The
interaction factor is introduced and defined as a measure of the ratio of the
performance of the array to the performance of the same number of isolated
devices. Thus, an interaction factor of unity indicates no net interaction, while
values above and below this correspond to constructive and destructive
interference respectively. This quantity is often employed within the literature
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as an objective function or as a means of assessing array performance.

The work of Folley & Whittaker (2009), which employs the point absorber
approximation, considers an array of two hemispherical devices of 10m diameter
in both attenuator (parallel to incident wave direction) and terminator
(perpendicular to incident wave direction) arrangements, before looking at
arrays of more devices. For optimal two-WEC arrays, it is shown that
mis-tuning of greater than 8% in terminator arrays and 3% in attenuator arrays
is sufficient to cause destructive interference in the array. This is important
since most tuning of WECs is expected to be real tuning, where the reactive
force applied is sub-optimal. It should be emphasised that these results are
obtained using the point absorber approximation and it was acknowledged that
the calculated motions of the WECs using WAMIT differ slightly to the point
absorber calculations. Thus the point absorber approximation may not have
sufficient accuracy in some situations, particularly for the attenuator array
mistuning result.

In the absence of reactive energy control, it is shown that the two-device array
interaction factors remain close to unity for a large variation in incident wave
period. It is also shown that the imposition of WEC motion amplitude
constraints will affect attenuator arrays more than terminator arrays, due to the
relatively large motion amplitudes attained by devices in the attenuator layouts.

A detailed investigation into the effect of distance on the interaction between
two devices was conducted by Babarit (2010). Arrays of two semi-submerged
cylindrical devices, with a diameter and draught of 10m, which operate in heave
with an idealised PTO are considered. The interaction between the devices is
assessed by a modified interaction factor, defined for one device in an array as
the difference between the power absorbed by that device and that absorbed by
an isolated device, divided by the maximum power absorbed by an isolated
device. This was used because it gives better assessment of the power absorbed,
in comparison to the standard definition of the interaction factor which only
assesses the interaction and hides the real amount of power absorbed. The effect
of separation on array performance was investigated for distance ranges up to
20km, for both regular and irregular waves.

For regular waves, it was found that the effect of the interaction decreased in
proportion to the square root of the distance between the devices. It was shown,
for arrays in regular waves, that interaction effects remain at approximately
5-15% even at distances of 2km. For the majority of cases, it was also shown
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that the angle of incidence does not greatly effect the performance for large
separation distances of over 1km.

For irregular waves, Babarit found that interaction effects had less of an impact
on array performance, although this effect was still significant. Over a yearly
average, it was seen that constructive and destructive effects tended to
compensate. The interaction effects for irregular waves were found to decrease
faster with separation when compared to regular waves and were reduced to less
than 10% for separations of more than 400m. Therefore, it was suggested that
it is reasonable to neglect interaction effects, within irregular analysis, for device
separations of greater than 500m. Strong interaction effects were present in all
cases investigated for separations under 100m and thus should be carefully
considered for these separation distances. For intermediate separations of
between 100m to 500m, no recommendation as to the neglection of interaction
effects can be made, as it depends strongly on the device type, array
configuration and incident angle.

The optimisation of small arrays of three and five devices is performed by
Fitzgerald (2006). An interesting result of this work is that the optimal
five-device arrays found often contain the same arrangement of one or more of
the optimised three-device arrays (or combinations of them). Fitzgerald goes on
to suggest that there may exist certain "base" optimal 3 device arrays from
which all optimum arrays would be constructed. The work of Fitzgerald (2006)
is discussed in more detail in Section 1.3.3.

1.3.2 Investigations of Arrays of Four or More Devices

The earliest work to consider the modelling of groups of devices intended to
absorb wave-power was by Budal (1977). Using linear wave theory, it was shown
that all incident power on a linear array can be absorbed if either:

1. the devices operate in two modes of oscillation, or

2. two linear parallel rows are used.

This holds in spite of considerable gaps that may exist between the devices.
Although these results were presented for a linear array (or linear rows), the
theory is also valid for a general array geometry. It should be noted that the
array is essentially modelled as an infinite array, where all WECs behave the
same and any edge effects are neglected. A measure of the effectiveness of
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placing devices in an array, compared to placing them in isolation, was also
introduced in this paper. This was the first use of the interaction factor (or
q-factor) and gives the ratio of the maximum power absorbed by the N -device
array to that absorbed by the N devices in isolation. A small body/point
absorber approximation was employed such that the devices were assumed to be
small compared to the distance separating them; this required that the far-field
waves generated by the devices were not affected by the presence of other
devices. Thus it assumed that the devices do not create a diffracted wave-field
and the interaction is described by the incident and radiated wave-fields only.

In deriving an expression for the q-factor, Budal made the assumption that all
devices in the array oscillated with the same amplitude and then maximised the
power absorbed. It is a very restrictive assumption which, in general, is not true
(c.f. equations (2.163) and (2.162)). This was shown by Evans (1979) who
presented a corrected version of the interaction factor without the assumption
of equal motion amplitudes. It was also shown that the amplitude of oscillation
of each WEC depended on the exciting force and damping coefficient of the
device, which in general are not equal for all array members. Evans also
considered devices possessing an elongated "thin ship" geometry, with the
intuitive idea that heaving motion of these devices would create a beaming of
waves along a line perpendicular to the incident wave.

The radiation of plane waves from an finite number of infinitely long rows, for
arbitrary angle of incidence, was considered by Falnes & Budal (1982). The
bodies in each row are assumed to be identical. Each of the bodies can oscillate
in all six modes of motion. It is shown that plane waves emit in certain
directions due to constructive interference between the devices and are
quantitatively related to the circular waves radiated from each individual body;
these plane waves emitted from the array are referred to as plane wave "rays". A
relation between the amplitude of the radiated plane wave and the far-field
coefficients of the individual bodies is derived. The maximum absorbed power
was shown to occur when the optimum phase of the oscillating velocity is
approximately equal to the phase of the excitation force.

The maximisation of the absorbed power with no constraints was also
investigated and it was shown that, for four parallel rows of heaving point
absorbers, 100% power absorption is possible with the interspacing between
rows is larger than the wavelength. Cancellation of the radiated plane wave rays
is necessary to obtain 100% absorption, as the power emitted in these rays is
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lost to the far-field and not absorbed. It is also shown that if the interspacing
between the bodies in each row is greater than one wavelength that at least four
rows are required to absorb 100% of the incident power, and that greater
spacings between bodies require greater number of point absorbers in each
group to maintain 100% absorption.

This paper shows that 100% wave-power absorption is possible, in principle, for
arrays of heaving point absorbers and that this can be achieved despite large
gaps that may exist between the WECs. However, optimal unconstrained
motions are assumed which may not be physically implementable in practice.
Furthermore, the arrays considered are essentially infinite arrays where the
WECs all behave the same and any edge effects are ignored.

The above work by Falnes & Budal (1982) was extended by Falnes (1984),
where it was shown that all incident power may be absorbed by an infinite array
provided that the total number of oscillation modes in each group is greater
than or equal to the number of plane wave rays that would be radiated from the
array. The number of oscillating modes in a group is the number of devices in
the group multiplied by the number of modes in which they operate. It was also
explicitly shown that a condition for maximum power absorption is that the
intensity of all the radiated rays tend to zero. The number of oscillators in each
group must increase with the interspacing of these groups if 100% absorption is
to be maintained. It should be noted that this analysis was for unconstrained
oscillator amplitudes.

A study of the interaction of waves with submerged spheres was undertaken by
Wu (1995), where a multipole expansion was used to analyse wave diffraction
and radiation by an arbitrary group of spheres. Four cases are considered:

• a single sphere of radius a

• two such spheres separated centre-to-centre by 4a

• a square array of four such devices, of length 4a

• arrays with the spheres spaced uniformly on a circle of radius 4a, thus
creating a triangle for three spheres, a square for four, a pentagon for five
etc.

In each configuration, the spheres were completely submerged with a sphere
centre to surface distance of between 1.5a and 2a. Truncation of infinite sums
to finite sums within the multipole expansion was required to provide numerical

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

21 Justin P.L. McGuinness



1. Background & Literature review 1.3 WEC Array Analysis & Performance

results.

The added mass, damping coefficient, exciting force and drift force were
calculated for each array layout and for each mode of motion (surge, sway,
heave). Note that the drift force first appears at second order, at which point it
depends only on first order terms. These quantities are presented for one sphere
in each array only but are due to the entire configuration. The drift forces are
calculated with the spheres held stationary. A comparison of the results
obtained with those derived from far-field equations showed excellent
agreement, giving a verification of the results. An important finding was that
the effect of interaction on added mass and damping is greater than that on the
excitation force. The drift force was also seen to be influenced by interactions,
but the force itself was quite small. The total heave drift force on the array was
found to be approximately equal to the force on an isolated sphere multiplied by
the number of spheres; this suggested that there is little effect on the heave drift
force due to interaction.

A preliminary comparison of the point absorber approximation, the
wide-spacing (plane-wave) approximation and an exact interaction theory was
presented by McIver, Mavrakos, & Singh (1996), which was then extended by
Mavrakos & McIver (1997). These studies consider uniform and unequal linear
arrays of five truncated vertical circular cylinder WECs in a finite depth regime,
where the depth was taken to be eight times the cylinder radius. It was found
that, for most non-dimensional wave-numbers of interest (0.1 ≤ ka ≤ 0.8, where
a is a device radius), the point absorber approximation was in agreement with
the exact theory for the geometries considered. However for ka > 1, the point
absorber method proved to be less accurate; this is to be expected, since the
point absorber approximation essentially assumes a small body with ka� 1
and ka > 1 clearly violates this. It is perhaps surprising that the range of
validity of ka� 1 extends as high as ka = 0.8.

The plane wave method is a large spacing approximation and assumes that the
device spacing in regular waves is much greater than the wavelength. This
allows evanescent modes to be neglected and non-planar outgoing (radiated)
waves to be approximated as plane waves. The method is advantageous as it
may be used to calculate all relevant hydrodynamic quantities (such as exciting
forces and added mass) not just the power absorbed, as is the case with the
point absorber theory. The plane wave method produced values for the
excitation forces and added mass that were in excellent agreement with the
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exact theory. However calculation of the interaction factor using this method
led to difficulties for long wavelengths, since the required damping matrix
becomes singular in this range. This is expected: the plane wave method
assumes large non-dimensional spacing, while long wavelengths result in small
non-dimensional spacing, thus violating the assumption. Therefore, the plane
wave method performs best for short wavelengths.

Justino & Clement (2003) studied three types of arrays, each containing five
submerged spherical devices which can oscillate and absorb power via heave,
surge and/or sway modes. The three array configurations were terminator
(uniform linear array in beam seas), attenuator (uniform linear array in head
seas) and cross (four devices at the vertices of a square with one in the middle).
The influence of spacing upon performance was also investigated. The BEM
program AQUADYN was used to calculate the hydrodynamic coefficients for
the arrays and thus assess the power absorbed (relative to isolated devices) and
the interference effects. It was found that the power absorbed was highest for
the terminator array for separation-to-wavelength ratio of 0.8. However, large
device velocity amplitudes were obtained for the optimal cases, thus violating
the underlying linear wave theory and the numerical method.

A square array of four circular cylinders was investigated by Cruz et al. (2009)
for both regular and irregular waves. Devices that absorbed energy in surge or
heave were considered within a regular wave regime but only heaving devices
are considered in irregular waves. Linear wave theory was used and the
hydrodynamic coefficients and exciting forces found using the BEM software
WAMIT. The BEM results were compared with semi-analytical models to
ensure validity, with good correlation except at large wavelengths. An analysis
of a more complicated geometry and multi-body WECs is much more difficult
using semi-analytical methods, showing the advantage of BEM solutions. The
interaction factor for an array of surging and an array heaving WECs was
investigated and optimal parameter values were identified. Peaks along
intermediate incident wave angles were noted and attributed to near trapping,
as the array configuration is changed from square to diamond.

The performance of a single WEC in irregular waves was initially considered and
then extended to the study of an array. The isolated device was taken to have
sub-optimal damping settings, so that large motions were avoided and a realistic
estimate of performance was obtained. It was found that the heaving cylinder
was very sensitive to changes in peak frequency of the sea state, with a narrow
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range of noticeable response. Since the WEC is axisymmetric, the wave angle
variation had no effect on the single device but did affect array performance.
The interaction factor is calculated for irregular waves by comparing the power
absorbed by the array in the given sea state to the analogous power absorbed
by a single cylinder in the same sea state. It was found that the values of the
interaction factors of the array ranged from 0.92 to 0.98 for different sea states.
Finally, an assessment of the values of the damping coefficient on each WEC was
made and good performing values were identified. Although the configuration
investigated was relatively simple, the results obtained were substantial and
demonstrated the value of a well-planned preliminary investigation.

Garnaud & Mei (2009b) compared an array of smaller buoys to a single larger
device, with the array analysis including both radiation and scattering effects.
The device investigated is a heaving truncated vertical circular cylinder. It is
confirmed numerically that the maximum capture width9 for a single heaving
buoy of any size is 1

k
= λ

2π , where k is the wavenumber and λ is the wavelength,
agreeing with previous literature. This occurs at resonance, when the
wavelength is of the same order as device radius. However, a buoy with a radius
of the order of 100m-200m may not be feasible from an engineering or financial
perspective. The resonance bandwidth increases as device size decreases, which
suggests possible advantage of smaller buoys. However, it is not possible to have
both low resonant frequency and large bandwidth, without adding a
sophisticated control system to the PTO.

Arrays of many small buoys are then considered and modelled using the
perturbation method of multiple scales to reduce computational effort. The
number of buoys is not explicity included in the model, which considers the area
fraction covered by the buoys relative to the array area; the specific examples
investigated consider circular arrays of three buoys. Using this analysis, the
kinematic and dynamic boundary conditions on the buoy bottom are combined
to give an averaged boundary condition for the array. The averaged condition is
a weighted sum of the condition on the bottom of a buoy moving in harmonic
motion plus that on an unoccupied free surface, weighted by the fraction of
solid matter within the array. It is shown that gathering many point absorbers
close together in a compact array increases the number of degrees of freedom of
the system, which can be advantageous to power absorption. By comparing
arrays of this type to large buoys containing same volume, it was discovered

9The capture width is defined as ratio of mean power absorbed to the mean power per unit
crest wave width of the incident wave
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that greater energy was absorbed over a greater frequency band by the array.
This suggests that large numbers of arrays of smaller bodies (arrays of arrays)
may be advantageous, although further difficulties arise with the operation and
maintenance of the array, its construction and the control of the individual
WECs.

One major shortcoming of this method is the omission of any interaction effects
between the array members. This preliminary work makes the simplifying
assumption that the compact array behaves analogously to a large device with
the hydrodynamic forces and bottom boundary conditions weighted by the area
fraction of the array covered by the buoys. While this may give a good
approximation of the forces on the WECs, interaction effects would play a
significant role. In particular, shadowing would have a considerable effect in a
closely spaced array and would probably result in reduced performance of the
WECs at the back of the array. Furthermore, no consideration is given to the
individual control systems of each buoy, which may play a significant role in a
physical device. Other studies, many of which are related the a Manchester
Bobber type device, also suggest that a single large cylinder is equivalent to
many small ones, such as Garnaud & Mei (2009a). However, these are not
discussed in detail as arrays of WECs are the main concern of this thesis.

The concept of comparing the performance of a single large device to that of
more than one smaller devices was also considered by McGuinness (2013),
where arrays containing both large and small devices are proposed. This
followed the increase in constructive interaction that was achieved with arrays
of small devices bunched close together to achieve optimal performance; it was
then suggested that these bunches could be replaced by fewer larger devices.
Investigation of mixed arrays of this type, containing both large and small
devices arranged intelligently to harness constructive interference, is lacking. It
was, however, admitted by McGuinness (2013) that these mixed arrays are
merely tentative suggestions for further research based on preliminary work.
This work is discussed further in Section 1.3.3.

Larger arrays were considered by Borgarino, Babarit, & Ferrant (2012), where
triangular and square arrays of 9, 16 and 25 devices are examined. An irregular
wave regime with a JONSWAP spectrum was used. The BEM software
Aquaplus was used and the underlying numerical theory was outlined in Babarit
(2010). Although arrays of generic point absorbers were investigated, the effects
of diffracted waves were included in the analysis. The average yearly energy
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production was considered, and it was found that the interaction effects
(constructive and destructive) generally negated each other and device
positioning played little (but not insignificant) role in yearly power absorption.
This agreed with the results of Babarit (2010).

The performance of individual devices and rows of devices was also assessed by
Borgarino et al. (2012). It was found that rows further back in the array (3rd,
4th, etc.) performed poorer due to shielding effects of the front rows, whereas
the front rows were relatively unshielded and benefited from radiation effects of
the other rows. The first row benefited the most and outperformed the second
row by approximately 20%. A linear relationship between the two array spacing
variables was identified that determined if constructive interference resulted. It
was stated that heaving cylinders are less efficient than surging ones and thus
lead to less of a shielding effect. It was suggested that positive interactions are
more probable for arrays of heaving cylinders due to the axisymmetry.

The damping values of the devices were obtained and it was suggested that the
values which optimised the yearly output of isolated devices were desirable.
This is in contrast to much of the previous literature which optimised the
hydrodynamic performance (via resonance) of a single device at a very specific
frequency. The work suggests that wide-banded devices that are optimised to
yearly output should be used and that the yearly average power output varies
slowly with device separating distances. It is also suggested that if very efficient
devices are used (e.g. surging barges) then square arrays are to be avoided and
triangular arrays should be employed. It should also be noted that surge modes
are associated with greater viscous effects, which would adversely affect
performance. Conversely, if axisymmetric devices (e.g. heaving cylinders) are
utilised, then square arrays give good results due to constructive side-to-side
interactions. It should be emphasised that an appropriate spacing and control
strategy is required for this to be the case.

A literature review on the interaction effect within WEC arrays was given by
Babarit (2013), where tentative guidelines on WEC array design are also
proposed. It is suggested for large arrays of more than ten typical devices (10m
to 20m in diameter) that the number of rows should be limited as much as
possible, to avoid significant destructive interaction. This negative interaction
increases with the number of rows for larger arrays with a fixed layout. This
finding is confirmed by the work of Stratigaki (2014), who similarly recommends
limiting the number of rows in an array as much as possible. Babarit (2013)
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also suggests for small arrays of less that ten devices that regular or staggered
grids with device separations of 100m to 200m are ideal, as the park effect is
quite small for these arrays. Stratigaki (2014) recommended that the device
separation be as large as possible in small arrays to avoid destructive
interference. However, this may be counterproductive if the separation is so
wide that the site area becomes excessively large and each array member
essentially behaves as an isolated device.

Investigation into arrays was the main aim of the thesis of Stratigaki (2014).
This work was separated into three parts. The first was the design and
construction of a suitable scale experimental WEC model device, which would
be used to conduct experiments. The chosen WEC design was that of a vertical
semi-submerged circular cylinder with a hemispherical base.

The second part concerned the accurate modelling of both the intra-array
interactions and the extra-array effects of a WEC farm. A shortcoming with
most modelling methods is that they are successful in performing one of these
tasks but are inefficient or unable to perform the other simultaneously. For
example, BEM codes (e.g. WAMIT) give good results for the wave-field within
an array but become computationally prohibitive when the field behind the
array is also examined. Computational fluid dynamics (CFD) codes similarly
require high computation time and/or processing power when considering both
array interactions and the effects of the wave-field in the lee of the array. On
the other hand, wave propagation models are good at accessing the wave-field in
the lee of an array. However, these models approximate the WECs as wave
sources/sinks with coefficients determined empirically; this does not give an
accurate model of the WEC and its surrounding wave-field within the array. To
overcome this, a coupling of the two different modelling softwares was achieved
using a similar method previously used by Beels (2009). The BEM code
WAMIT was used to model the wave-field around the WECs. This data was
then used as input for a wave generating circle which surrounds the device in
the wave propagation model, MILDwave. In this manner, both the intra-array
interactions and extra-array effects are accurately modelled in a numerically
efficient manner.

The third and main aim was the conduction of array model experiments and the
creation of a WEC array database which includes information on the
performance of several types of array layouts. This work was also presented in a
joint paper by Stratigaki et al. (2014). Many different array geometries were
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investigated, including a single device, rows and columns of two, three & five
devices, square arrays of nine, sixteen and twenty-five devices (staggered and
rectilinear), with different device spacings. The power absorption, interaction
factors and the wave-field surrounding the arrays were measured and analysed.
In general, it was found that a wave height increase occurred in front of the first
devices meeting the waves, due to diffraction or reflection effects, while a wave
height decrease was observed behind the array due to shadowing. These results
varied in percentage and location for different wave conditions. Using these
results, the WEC array database was created. Finally, by analysing this
database, along with the available literature, general guidelines for the layout of
an array of WECs is presented. These guidelines are discussed in Section 1.3.3,
which concerns array optimisation.

1.3.3 Optimisation of Arrays

The concept of optimal array formulation was introduced by Thomas & Evans
(1981), who examined equally spaced linear arrays of five semi-immersed point
absorber spheres that operate in heave only. The non-dimensional separation
between the devices was altered and the effect on the interaction factor was
investigated for linear arrays in head, intermediate and beam seas. This can be
considered as a variation in the physical separations for a fixed wavelength or as
a variation in wavelength for fixed physical separations. It was shown that the
arrays generally performed better in beam seas, agreeing with the intuitive idea
that greater frontage to incoming waves allows greater absorption of power. It
was also shown that areas of both constructive and destructive interference exist
in the ranges of non-dimensional lengths considered and that a relatively small
change can result in a move from constructive to destructive interference.

The device displacement amplitudes were also presented and considered for the
optimal motion case. It was found that these amplitudes were of the order of
two to three times the incident wave amplitude for head seas, with beam sea
device amplitudes being considerably larger. In general, larger values of the
interaction factor are accompanied by correspondingly large WEC amplitudes.
Since the large device amplitudes are a violation of the underlying linear wave
theory employed (and would also present significant engineering challenges for
real devices), the imposition of amplitude constraints on the device motions was
considered. Imposing a constraint of three times the wave amplitude reduced
the maximum of the peaks of the power absorption, but still allowed areas of
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constructive interference, while areas of poor performance were relatively
unaffected. However, a constraint of two times the wave amplitude was severely
restrictive and reduced the power absorbed considerably.

Two parallel rows of five devices were also considered and compared to the
single row array. It was found that the double row array performed marginally
better than the single row array, though the interaction factor contained more
variability in the double row case. Arrays of thin ship devices were also
considered, which suffered even more greatly from the imposition of amplitude
constraints. Finally, it was found that array interaction was affected more by
device separation than device shape, with the latter affecting the actual power
absorbed.

It was shown by McIver (1993, 1994) that linear arrays are sensitive to changes
in the incident wave direction, more so for devices that operate in heave
compared to surge. This was the first investigation of unequally spaced linear
arrays; only equal spacing had been previously considered. For a specific case of
unequal spacing, it was shown that the array performed better than uniform
spacing for certain non-dimensional array lengths. Similar to Thomas & Evans
(1981), device amplitude constraints were also shown to have a severe effect on
the peak power absorption. Finally, due to the high sensitivity of peaks in
power absorption to the non-dimensional spacing, the incident wave direction
and the imposition of constraints, it was suggested that the best strategy might
be to seek to reduce the destructive effects, rather than to increase the array
power absorption using the constructive effects.

McIver, Mavrakos, & Singh (1996) attempted to find the best strategy for
choosing a WEC array geometry. This was done by considering variations in the
inter-WEC separations of a non-uniform symmetric linear array of five point
absorbers. In the conclusions of that work, it was proposed that the best
strategy is might be to choose an arrangement which minimises net interaction
effects. This is primarily due to the high sensitivity of arrays to small changes
in the wave-field and constraints. Devices which absorbed power by oscillating
in two translational modes of motion were also considered and the point
absorber approximation was extended to model devices of this type. Clearly
these devices absorb more power but the practical and engineering challenges of
designing a device capable of absorbing in two modes are significant. It may be
that a simple device which operates in only one mode is better in terms of
reducing the difficulty and the cost of modelling, production, operation and/or
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maintenance of WECs and arrays.

Irregular seas and sea spectra are applied using the point absorber
approximation in the same paper, although the method used is not very realistic
as it assumes optimum device performance for each frequency in the spectrum.
For both plane and irregular seas, it was found that the array performance is
largely independent of the device spacing for low wave frequencies. For plane
waves with a wavelength of the order of the WEC spacing, it was shown that
equal spacing performs best, while for wavelengths less than the device spacing,
unequal spacing is more beneficial. This shows that the incident wave
parameters have an effect on the optimal array layout. In irregular seas, shifting
the spectrum peak to higher frequencies produces interaction factors that are
more oscillatory but there is less evidence that a particular spacing is more
advantageous, contrary to the plane wave results.

An approach to optimising the layout of an array of heaving semi-submerged
spherical WECs was devised by Fitzgerald (2006) and a summary of the results
are presented in the paper by Fitzgerald & Thomas (2007). The small
body/point absorber approximation was used and the interaction factor
optimised numerically for general 2D arrays of three and five devices, with the
positions of the devices being the optimisation variables. Prior to this study,
most arrays considered were 1D (linear), or constrained to some prescribed
geometry.

An important condition was derived by Fitzgerald (2006) which states that the
mean of the interaction factor with respect to the angle of incidence is unity for
general configurations (see Section 2.4.6, equation (2.164)). This was identified
by Fitzgerald from the optimal configurations and then formally derived using
the point absorber approximation for general arrays. It was shown by Child
(2011) that this does not strictly hold when non-optimal motions are enforced
and the scattered wave-field is accounted for but that the mean tends to be
slightly less than unity. This still implies that configurations that attempt to
utilise constructive interference to gain large interaction factors must be offset
by areas of destructive interference for other angles of incidence. Thus, a large
constructive peak in the interaction factor must be accompanied by regions of
destructive interference.

In the optimised array study of Fitzgerald (2006), it was usually found that a
large narrow central peak in the interaction factor occurred at the target wave
angle and this implies that these arrays are not suited to sea-states where the
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incident direction has large variability. It was suggested that the wave climate at
the array location should be studied prior to optimisation; if a large variability
in the incident wave angle is present, then it is best to arrange the array so that
it performs reasonably well over a large range, rather than achieving very good
performance for small range with poor performance elsewhere.

As in the earlier studies, Fitzgerald (2006) found that optimal array
performance was accompanied by unacceptably large WEC displacement
amplitudes. Constraints on the amplitudes were investigated and the
constrained results of Thomas & Evans (1981) were confirmed in a more general
arena. An interesting observation by Fitzgerald (2006) is that optimal 5 device
arrays often contain the same arrangement of one or more of the optimised 3
device arrays (or combinations of them). Fitzgerald suggested that there may
exist certain "base" optimal 3 device arrays from which all optimum arrays
would be constructed.

The condition proved by Fitzgerald (2006), involving the incident wave
direction (equation (2.164)), is a special case of a general result derived
subsequently by Wolgamot, Taylor, & Eatock Taylor (2012). It was shown that,
for general devices of any size and shape, the average of the maximum power
absorbed by an N -device array is related to the power per unit width of
incident wave front and the wavenumber (see equation (2.168)). The earlier
result of Fitzgerald (2006) is obtained if heaving axisymmetric devices are
assumed. Another consequence of Wolgamot et al. (2012) is that, for a single
non-axisymmetric device, the directional averaged maximum power the device
can absorb is the same as for an axisymmetric device. This is to be expected
since if the device is shaped so that it absorbs well in one particular direction,
then it must perform poorer in other directions. This suggests that careful
preparation on the proposed site of a wave energy array should be preformed
before considering the size and shape of both the individual devices and the
array. Wolgamot et al. (2012) also verified the relation derived to a reasonable
accuracy via numerical simulations of four types of arrays comprised of three
types of WECs. These calculations were performed using the BEM program
DIFFRACT and included the diffracted wave field. The results of Child (2011)
and Wolgamot et al. (2012) together suggest that this condition does not hold
for non-optimal motions (i.e. non-optimal power absorption).

In addition to the work discussed in Section 1.3.1, Folley & Whittaker (2009)
also performed an investigation into the performance of an optimal five-device
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array identified by Fitzgerald & Thomas (2007). The performance of this
optimal array was analysed for variation in incident wave period and incident
wave angle. It was shown that the array achieved considerable constructive
interaction at the optimum values but this was surrounded by regions of
destructive interference to a significant extent. This further suggested that an
ideal strategy may be to seek to minimize destructive interference effects rather
than achieve high constructive interference, as first suggested by McIver (1994).

The radiation pattern of this optimal array was also investigated. Using the
Haskind relations, it is known that an array’s ability to absorb power from a
certain direction is directly related to its ability to radiate wave in that
direction, as shown in Falnes (2002). It is also known that high interaction
factors are only achieved by highly directional array radiation patterns, with a
large sharp peak in array performance with respect to the target incident wave
angle. This results in large sensitivity of the arrays to changes in wave
conditions. This is illustrated by the highly directional pattern of the optimal
array of Fitzgerald & Thomas (2007).

The performance of the same optimal array and a two-WEC array in a given
annual wave climate was also assessed by Folley & Whittaker (2009). It was
found that the performance of the arrays considered in spectral wave climates is
not as high as predicted using the regular wave theory. In general, the
configuration of the array appeared to have a much smaller effect on
performance in the irregular wave case but net constructive/destructive
interference was still possible. The optimal interaction factor for a two-WEC
array was analysed with respect to the relative WEC positions in the same wave
climate. This suggested that the optimal position of the second WEC is at a
very close proximity to the first (less than or equal to 25m) with an orientation
approximately parallel to the peak direction of the incident spectrum. Similar
results were found for an analogous three-WEC array, with preliminary searches
for alternative configurations of more than three WECs resulting in a
combination of similar terminator or attenuator layouts. This suggested that
the general arguments presented for these two-device arrays could be tentatively
extended to larger arrays. Although the increase/decrease of power absorption
in spectral wave climates is not as significant as predicted in the regular wave
case, these effects may still prove significant for an array over a large period of
time, thus affecting the financial viability of commercial scale arrays.

A staggered grid array of twelve point absorber buoys was considered by
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De Backer, Vantorre, Beels, De Rouck, & Frigaard (2009). The buoys consist of
a cone shaped base with a cylindrical upper part of diameter 5m and an
equilibrium draft of 3m. The array was contained within a square of length
36m. The influence of slamming and stroke restrictions, as well as constraints
within the PTO, are investigated using WAMIT within an invicid regime and
compared to the performance of a single buoy. A slamming constraint is
imposed such that the buoy is not permitted to leave the free surface. A
stroke/amplitude constraint on the device motion is also considered, as the
motions of real-life devices will be limited by the PTO. Furthermore, a
constraint on the tuning force is considered, since optimal control parameters
may result in large control forces.

Optimisations of the array were carried out for an irregular wave climate. Three
optimisation strategies were considered, with different optimal control strategies
applied to the WECs in each case. It was found that the array performance for
each of the control strategies is significantly different, with motion amplitude
constraints also limiting power absorption.

An alternative interaction factor was defined to be the ratio of total power
absorbed by the array to that absorbed by the same number of isolated devices,
with the same constraints and exposed to the same conditions. It may be
expected that this would act as a good objective function, as it compares the
real constrained performance of the array to the analogous performance of
isolated devices, thus giving a reasonable measure of the interaction effect of
placing the WECs in an array. However, in some cases this factor was increased
due to the poor performance of the single devices rather than good performance
of the array, as isolated devices were more negatively effected by constraints.
This may lead to deceptive objective function values and knowledge of the
absolute power absorbed by both the array and the isolated WEC is required.
It was shown that the array performed slightly better as an aligned grid rather
than a staggered grid. Finally, the effects of mistuning were investigated by
optimising the control parameters for a wave angle that differs from the incident
wave by 45o and the power loss was found to be less than 2%.

Bellew, Stallard, & Stansby (2009) considered uniform linear arrays of five
devices in head and beam seas. This work attempted to obtain values of device
mass and mechanical damping such that the net power output of the array is
maximised and the variation of average power output across the array is
minimised. For a given frequency the simplest way to modify the power
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absorbed is to vary the mechanical damping and/or the device mass. The value
of net power absorbed is investigated for four different cases of mechanical
damping. For beam sea arrays, the power absorbed by allowing an unlimited
mechanical damping gives a 12% increase in the peak power absorption; when
constraints are placed on the choice of such damping, the peak performance
increase is reduced to 7%. For head seas, the peak mechanical damping values
were less than the constraint considered, so imposing the constraint had little
effect. The unlimited damping case again performed best within and outside the
peak region, with the percentage increase at the peak being 18% compared to
the constrained case.

While it may be desirable from an engineering perspective to minimise the
variation in power absorption across the array, it may not be advantageous from
a hydrodynamic interaction perspective to essentially have all WECs working
equally as hard. Forcing all WECs to perform similarly may be an overly
restrictive condition and act in direct opposition to the maximisation of array
output. Thus it may not be possible to obtain both the array power
maximisation and power variation minimisation simultaneously in a reasonable
manner.

The same authors also investigated the variation of device mass to determine
the maximum net power absorbed. This was achieved by considering a
supplementary mass on the WECs. For the case where the mechanical damping
is taken to be the diagonal of the radiation damping, it was found that the peak
frequency increased as supplementary mass increased, with the peak value
decreasing. For low frequencies, changing damping appeared to be more
effective for increasing power absorbed, whilst changing the supplementary mass
was more beneficial for higher frequencies.

The arrangement of an array of wave-power devices was also investigated by
Child (2011) with the results published in four papers: Child & Venugopal
(2007, 2008, 2009, 2010). The WEC shape is taken to be a truncated circular
cylinder and an exact hydrodynamic solution, including the scattered
wave-field, is employed. This was achieved by representing the scattered and
radiated wave fields as a linear combination of basis functions and solving the
associated hydrodynamic problems in two domains, an interior region
underneath the cylindrical device and an exterior region outside of this, with
matching of the solutions enforced between these regions. A detailed analysis
was initially performed on a single isolated WEC, including various PTO
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mechanisms and device control strategies. The ideal tuning strategy was called
real tuning or damping tuning, where the PTO damping coefficient was
maximised at a given frequency and subject to the PTO spring coefficient being
fixed at zero. This tuning resulted in more moderate (and thus physically
manageable) device displacement amplitudes but less power was absorbed in
comparison to other tuning mechanisms considered.

Arrays of five devices in regular seas were then optimised by two methods. The
first was termed the Parabolic Intersection (PI) method. This uses the phase of
the total wave-field to place devices on (or near) curves of constructive
interference to optimise the array layout. The second method of array layout
optimisation was by means of a Genetic Algorithm (GA), with the array layouts
as the solution population and the interaction factor as the objective function.
Both methods were used to maximise the performance of the arrays that were
real tuned. Reactive tuning (also known as spring-damping tuning) of array
members was also considered, where both the PTO spring and damping
coefficients are optimised. This resulted in higher performance due to the better
tuning afforded by optimising both coefficients at a given frequency, though this
was often accompanied by large motion amplitudes due to resonance. A third
case was also considered where the performance was minimised for reactively
tuned arrays in an attempt to find a worst case scenario for array arrangement.
The GA optimisation was also applied to an irregular wave regime.

A number of optimised arrays were presented which satisfied each of the three
above criteria. The optimised arrays for regular seas found were then analysed
in irregular seas, and performed reasonably well under these conditions. The
first attempt to optimise arrays in irregular seas was then conducted using
genetic algorithms in an exact hydrodynamic situation. These arrays performed
slightly better in irregular seas than the analogous arrays optimised for regular
seas. Previous literature has suggested that array interactions have a smaller
overall impact when irregular waves are considered. The work of Child shows
that arrays can be optimised to perform well in irregular waves, however this
performance may be sensitive to the specific incident wave climate considered.
For both regular and irregular seas, it was found that small changes in array
configuration could lead to considerable changes in array performance. This
shows that the optimal array layouts were highly sensitive to changes in
non-dimensional parameters and this problem of sensitivity of optimal arrays is
discussed further in Section 1.5.
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In Section 1.3.2, it was stated that Stratigaki (2014) gave general guidelines for
layout of an array of WECs, based on the results obtained from numerical and
physical modelling. Different guidelines were given for large and small arrays
and different recommendations were also given depending upon the requirement,
for example, whether maximum power absorption is desired or if minimum
wave-field effect (minimum environmental impact) is preferred. A summary of
those guidelines for general arrays in terms of improving power absorption alone
are discussed here as wave-field impact is not of primary concern in this thesis.

The best power absorption found was for staggered arrays or largely spaced
arrays, with the staggered arrays having a greater detrimental impact on the
wave height in the lee of the array. It was also found that the number of rows in
an array should be limited as much as possible, as row performance decreases
along the depth of the array after the 2nd row. However, the columns of WECs,
which are aligned parallel to the incident wave direction, perform in a similar
manner to each other and thus increasing the number of columns may be a
method of efficiently increasing power absorption. This essentially increases the
frontage of the array to the incident wave. This may be a better solution than
largely spaced arrays, particularly if limited sea area is available. The guidelines
detail different recommendations for small arrays (typically ten or less WECs),
large arrays (more than ten WECs, typically twenty or more) and all general
arrays; those summarised here correspond to general arrays alone.

An analytical solution for the optimisation of the two-WEC point absorber
problem is derived by Snyder (2013) and optimisation of arrays of point
absorbers was investigated by Snyder & Moarefdoost (2014). The usual point
absorber approximation is employed which gives the simplified expression for
the interaction factor. No device geometry was specified as the WEC
displacements were not considered. Snyder stated that a standard deterministic
optimisation which seeks to maximise the interaction factor often results in an
array layout which performs very well in only a very specific set of conditions,
again highlighting the problem of high sensitivity of optimal arrays. Therefore,
two different optimisation models were discussed: 1) a robust optimisation
which sought to maximise the minimum bound of the interaction factor; and 2)
a stochastic optimisation which sought to maximise the expected value of the
interaction factor. An example of each optimisation was performed using a GA
and the resulting array performance is compared to that of a deterministic
optimal array solution from Fitzgerald & Thomas (2007). It was found that the
peak performance is lower, but the solution in each case is more stable than the
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deterministic solution.

The paper concluded by proposing a heuristic algorithm to optimise array
layouts of a general number of WECs. This algorithm places one WEC at the
origin and sequentially adds WECs to the array and then re-optimises the
layout locally with respect to the interaction factor. This is repeated until the
desired number of WECs are included in the array. This algorithm may result in
a computational saving compared to a general optimisation, however, it assumes
that the inclusion of extra WECs does not drastically alter the optimal layout
and that the local optimisation will converge to the best layout at each iteration.

The work of Snyder & Moarefdoost (2014) is extended in Snyder & Moarefdoost
(2015), where explicit analytical formulations for both the robust and stochastic
cases were given for the two-WEC problem. It was shown that the robust
optimisation attains a maximum interaction factor of unity for an incident wave
angle range of π; it was expected that values greater than unity can be obtained
if a smaller range of incident wave angle was considered. The average
interaction factor for a spectral wave climate is defined as the product of the
standard interaction factor with the wave power spectrum, summed over the
individual spectral wave components and scaled by the total power contained in
the spectrum; a two-WEC and a five-WEC array were investigated using this
objective function. The results show that the optimal separation distance in the
two-WEC array decreases for larger variation in incident wave angle and
concluded by suggesting that the work be extended to arrays of three or more
WECs and by considering the effect of a variation in both wave angle and
wavenumber.

Preliminary work prior to this Ph.D. thesis has been conducted by McGuinness
(2013). The optimal configuration of a five-device array of heaving point
absorber WECs in regular waves was investigated, where all the devices are
constrained to lie on a straight line, with a fixed non-dimensional length of the
array. This was the first optimisation of the individual spacings between the
WECs in a linear array of fixed non-dimensional length. The formulation was
simplified by enforcing symmetry across the array layout, thereby reducing the
problem to a single variable. The interaction factor was then optimised for the
given symmetry.

Within the optimal configurations found by McGuinness (2013), the devices
tended to bunch very close together in groups of two or three, as in figure 1.6.
It is interesting that, within the theory of point absorbers, the optimal
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Figure 1.6: Example of optimal array layout found by McGuinness (2013)

configuration is with the devices very close together. This is perhaps due to the
assumption of optimal (unconstrained) motions, which implies that the
maximum constructive interaction can be achieved by placing the WECs as
close as possible.

It was hypothesised by McGuinness (2013) that replacing these groups of
devices by larger devices, perhaps two or three times the size of a standard
device, may provide good wave-power absorption. This would create a so-called
"satellite" array, with both larger and smaller devices in the same array. The
term "satellite" was used due to the appearance of the proposed array shown in
figure 1.7, with one large device in the centre surrounded by two smaller
devices. It is acknowledged that the analysis performed by McGuinness (2013)
is associated with point absorbers and does not address device sizes or motions.
Therefore, this suggestion is only a tentative preliminary proposal and further
investigation is needed to assess the viability of these types of arrays. The
preliminary work of McGuinness (2013) is further discussed and extended in
Chapter 3.

Extensions of this were considered by Costigan (2014), Fennell (2015) and
Lawton (2017), where the WECs were constrained to lie on a circle, triangle and
ellipse respectively. The uniform versions of these layouts were investigated to
provide a benchmark for optimisation results. In each case, the number of array
optimisation variables is reduced to one by defining symmetries in the array
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Figure 1.7: Example of "satellite" array configuration suggested by McGuinness
(2013)

layouts. For the circular array, it was found that the inclusion a WEC in the
centre provided an improved performance, though this was not as clear for the
triangular case. Depending upon the incident wave angle, the optimal circular,
triangular and elliptical arrays resulted in closely spaced grouped WECs in
some cases, as with McGuinness (2013). In other cases, layouts similar or
identical to the uniform benchmark cases were found to be optimal. This
suggests that the incident wave angle, the array orientation to the incident wave
and the array geometry play a crucial role in the array interaction.

1.4 Physical Testing of Arrays

In addition to numerical modelling, physical wave tank tests are the only other
viable way to investigate WEC arrays. It is acknowledged that numerical
models are deficient in some respects, due to the impositions of assumptions
and approximations, but primarily because of their lack of verification. Physical
testing provides an alternative to numerical modelling and can also be used to
verify and validate a numerical model and its predictions. However, the use of a
wave tank is expensive, thus it is prudent to thoroughly investigate the
behaviour using numerical models before proceeding to physical testing.
Physical testing and its associated models and techniques are described by
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Hughes (1993).

There are two main types of testing facility: wave flumes and wave basins.
Flumes are also known as channels and are long narrow tanks, typically 20m to
35m in length, 1m to 5m in width and 0.5m to 2m in depth. They usually
employ a wave absorbing beach at the opposite end to the wave-makers to
reduce wave reflection. Wave flumes are primarily used for the preliminary
testing of single devices and can also be used to model the interaction effect of
an infinite line of devices due to the side wall reflections. Wave basins, also
known as wave tanks, are larger tanks with a width comparable to its length,
which is typically 20m to 35m, with a depth of 0.5m to 3m deep. Wave basins
are better for array testing, as the waves can be incident onto a model array
and the effects measured. Most of these tanks can simulate regular and
irregular seas of a desired specification, using programmable wave paddles at
one or more sides of the tank.

Wave flumes and tanks do however have shortcomings associated with them.
For example, side wall effects are the most common problem in physical tests of
arrays; this is especially true in flumes, where the distance from the testing
device(s) to the wall is small. If a WEC is placed in the centre of an ideal wave
flume, it models a uniform infinite linear array of such WECs due to the
reflections off the side walls. If the WEC is placed off-centre in the flume, then
the reflections model an infinite linear array layout of the recurring symmetric
pattern given by the relative position of the WEC in the flume. Note that a
main difference between a single device (or a finite array) and an infinite line of
devices is the presence of edge effects.

In other experiments, the side walls can introduce unwanted reflected waves into
the system, which can be almost the same order of magnitude as the wave
incident onto the walls. Modern tanks attempt to overcome this problem by
using wave absorbing walls at the sides and beaches at the wave receiving end of
the tank but some reflection effects often still persist. Even with these
mitigating factors, reflections can be of the order of 10% of the wave-field
incident onto the wall, thought this is dependent on the wavelengths involved.
Non-linear effects may also be present in the wave tank, for example due to
viscous effects, which may be unwanted. Another shortcoming with tanks and
flumes is the relatively small depths which some possess, often in the range
0.5m-1m. This makes modelling large depth cases such as deep seas or oceans
difficult due to the appropriate scaling. Obviously the larger the scale, the
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closer the situation is to that of the real WEC but the small depths and wave
generating capability of a basin could severely limit this scale, depending on the
specific tank used. Sarmento & Thomas (2008) give some recommendations on
scales for testing of different phenomena. For example, basic offshore device
behaviour testing can be performed between 1:50 and 1:100 scale, while the
larger scale of 1:5 is suggested for testing of nonlinear and other hydrodynamic
effects.

The difficulties with wave tank experiments have been studied by many authors.
One example is O’Boyle, Elsaesser, Folley, & Whittaker (2011), who
investigated the variation of the wave-field within the wave basin at Queens
University Belfast, with regard to the impact on WEC array model testing. In
this work, a wave packet containing several wave components of different
frequencies and amplitudes was assessed. Using Fast Fourier Transform at each
data location, small variations in the measured frequency amplitude spectrum
relative to the target were found. These discrepancies were largest for the
highest and lowest frequency components, possibly due to noise in the data or
errors in measurements due to the small amplitude of these components.

It was also found that the amplitude of each wave component varied in an
oscillatory manner across the tank, achieving the target value only at certain
locations. A definite geometry of the amplitude variations of the different
components was observed, although this changed with frequency, suggesting
that the variation in amplitude is frequency dependent. This may be related to
Benjamin-Feir instability, where the main progressive wave train is affected by
residual wave motions at similar frequencies and results in energy transference
to the main wave train. It was suggested that phase locked (standing) waves
may be set up across the wave tank by diffraction/reflection effects and that
this causes the variation in the amplitudes observed. Poor absorption by the
wave absorbing beach at the far end of the wave basin is given as another
possible reason.

A Boussinesq numerical model was used to further investigate and attempt to
predict this effect. This is an averaged depth model and so is not accurate for
deep water waves. As the experiments considered waves mostly in the shallow
water regime, this numerical model was considered reasonably accurate except
for the highest frequency waves investigated. The numerical results were
compared to the corresponding experimental results and good agreement was
observed. However, when the entire JONSWAP spectrum was analysed, it
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showed little variation in the significant wave height, despite variations in the
amplitudes of each component. This probably is due to the relative cancellation
of the amplitude differences between the components, which may give the
incorrect impression of homogeneity of the wave basin. The effects identified
above have a significant impact when testing WECs, especially WEC arrays and
array interactions, since it would be unclear if the differences observed for an
array are due to array interactions or variations in the wave-field of the basin.

The uncertainties in the wave-field of a wave tank, together with their effects
and implications on WEC array experiments, was extended by Lamont-Kane,
Folley, & Whittaker (2013). This work considered the effect of uncertainty in
physical and numerical modelling of WEC array performance and was also
investigated using the wave basin at the Queen’s University Belfast Marine
Laboratory. The physical WEC model used was that of a truncated vertical
circular cylinder with a hemispherical bottom. This shape was chosen primarily
to simplify modelling as much as possible, by reducing the vortex shedding that
would occur at the sharp edges of the cylinder in the absence of the base. Both
single device tests and array tests were performed, with the array being a
square comprised of four devices and a device separation of three times the
diameter of the device.

Numerical investigations of WECs and WEC arrays often employ simplifying
assumptions, e.g. linear wave theory, the point absorber approximation, regular
sea states etc.. Thus, the predications of numerical studies must be validated;
this is usually accomplished by comparing the numerical results to a
"benchmark" physical test. However, one difficulty of physical testing is knowing
exactly what effects are present in the wave tank and accounting for these
effects in the experimental measurements. For example, physical tests often
involve scaling issues, such as those associated with viscous effects, which may
not accounted for in the model design. Furthermore, there may be errors or
uncertainties associated with the instrumentation or physical set up employed.
Since the effect of array interaction is often relatively small, of the order of 5%
of measured quantities, e.g. power absorbed, body motion etc., uncertainties in
these quantities of a similar magnitude would make accurate investigation of
array effects difficult. Such uncertainty ranges can overcome and mask the array
interaction effects.

To reduce these uncertainties and condense the error ranges of measurements,
Lamont-Kane et al. (2013) recommended that a statistical analysis of physical
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tests is performed. Five possible sources of uncertainty were identified, namely:
1) Spatial variation of the wave-field within the wave basin, 2) Temporal
variation of the wave-field from one repeat to another, 3) The repeatability of
model response for any single individual WEC, 4) The reproducibility of model
response between various nominally identical WECs, and 5) Variation of the
time-series of an incident irregular wave train. Each of these sources of errors
was analysed and it was found that the wave-field variability (sources 1 and 2)
had a contributed most to the errors in the measurements, although sources 3 -
5 were also significant in some cases. However, it was suggested that this could
be curtailed by considering normalised results. If physical data results are to be
used for numerical model validation, then these uncertainties would have less
impact if the wave-field variability can be incorporated in the numerical model.
Therefore, in all cases, repeatability of the wave-field is a much more important
consideration.

Finally, it was suggested that using different quantities for measuring the
interaction, e.g. displacements instead of power capture etc., may be useful as
the uncertainty in one quantity may be different to that in another. It was
shown, for a specific irregular sea, that the relative uncertainty in the
displacement amplitudes of each device in an array is considerably less than the
corresponding uncertainty in power capture. This suggests that perhaps device
displacement would be a better quantifier of array interactions due to the
smaller relative errors, though uncertainty in phase measurements may also
have an effect on the quantification of array interaction.

Experimental wave tank testing difficulties were also encountered by Stratigaki
(2014), where wave-field variability was noted in some of the results. In some
tests, the wave height was noticeably larger or smaller in certain sections of the
wave tank; this effect occurred both with and without devices present in the
water. As a result, this increased the challenge of distinguishing WEC array
effects from wave-field variability effects within the wave tank. Following private
communications with Stratigaki, it was learned that temporal variation of the
wave-field in the wave tank was also a difficulty. Even with no devices or
supporting struts in the wave tank, the wave-field produced within the tank
varied from run-to-run; this may have been due to the set-up of the wave
paddles in the DHI wave basin. This presented a major problem for physical
testing of WEC arrays and questions are raised about the experimental findings.

The physical tank testing of WECs can provide useful information and prove
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especially useful when verification/validation of numerical models are desired;
this has yet to be fully established for arrays. However, the cost alone for the
use of a wave tank facility can be prohibitive, with tank time costing anywhere
from €2000 to €20000 per day, depending on the facility and experimental
set-up available. Together with the other difficulties identified, this shows that
physical tank testing of WECs may not provide definitive verification. It is
acknowledged that tank testing is an important step in the process of
investigating a WEC device and WEC arrays, but extensive use of numerical
modelling prior and during physical modelling is prudent and should not be
neglected.

1.5 Research Shortcomings

Conducting this literature review enabled some shortcomings and open
questions to be identified. The aim of this thesis is to investigate some of these
unanswered questions and attempt to fill the gaps in the literature that are
outlined below.

The principal shortcoming identified within the literature was the high
sensitivity of optimal array layouts to changes in array parameters. This was
shown, in particular, for the optimal arrays of Fitzgerald (2006) and Child
(2011). In both of these studies, either a small change in the non-dimensional
spacing between the devices or in the incident wave angle typically resulted in a
considerable loss in performance from the optimal arrangement. The best and
poorest performing array layouts were surprisingly similar, further indicating
this sensitivity. This is highly undesirable, as WEC array sites on the open
ocean would contain some variability in the incident wave and available
deployments.

To overcome this deficiency, it is suggested that the array perfromance be
optimised by maximising over a range of parameters, rather than for specific
parameter values. This could be achieved by using the mean of array
performance as the objective function of an optimisation procedure, rather than
array performance itself. In principle, this would return good performance over
a broader range of the parameter(s) for which the mean is defined. This is
effectively a form of de-tuning and will be the main focus of this thesis.

This strategy is first examined for a mean defined over a prescribed range of
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non-dimensional array length in Chapters 3 - 6, where the array length is
dependent on the geometry imposed. It is first implemented in very simple
arrays, whose layouts have prescribed geometry and symmetry so that they are
described by one variable only. The main focus is on linear arrays initially and
is then extended to circular arrays and subsequently to more general cases
without prescribed symmetry.

It is acknowledged that array performance often appears to be more sensitive to
incident wave angle than to wavenumber variation. Therefore, Chapters 7 and 8
consider the situation where the objective function of an optimisation is the
mean of the interaction factor over a range of incident wave angle. This
formulation does not require any imposed geometry and thus has the advantage
of increased freedom within the optimisation but will also increase the intensity
of the numerical algorithm. The result of Fitzgerald (2006), regarding the mean
of the interaction factor, applies only over an interval of length π and thus
optimising the mean over a smaller range is conceptually possible, since the
necessary offset of poor performance could be located outside the range of
interest.

An analysis in regular waves provides an insight into array interactions without
an excessive computational demand. However, the influence of irregular waves
on array optimisations of this type must also be considered. Thus, a
preliminarily attempt is made in Chapter 9 to optimise arrays in an irregular
regime. An array is sought which performs as well as possible over the entire
(non-zero) spectrum considered, thus maximising the overall power absorbed by
the array. This mirrors similar studies for single devices, such as Thomas &
Gallachóir (1993) on the Bristol Cylinder and Weber & Thomas (2000, 2003,
2005) on an OWC device. The relevance of different types of spectrum should
be investigated, as the array will probably perform differently in narrow-banded
spectra in comparison to broad-banded spectra. The implementation of a
spectrum introduces considerable numerical challenges and greatly intensifies
the computational demand. Hence, a simple linear array geometry with fewer
WECs is considered to ensure that the problem remains tractable within a
reasonable time-frame.

The outstanding WEC array shortcoming is the absence of a complete
numerical optimisation of the configuration of arrays using a full interaction
regime, including the scattered wave-field. The nearest to this goal appears to
be that of Fitzgerald (2006) and Child (2011). The former optimised arrays
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numerically but a point absorber approximation was employed, so that the
scattered field is neglected. The latter optimises the arrays of cylindrical devices
in a full interaction regime, but used a GA, which is a semi-random heuristic
optimisation procedure and thus it is not known how the optimal solution is
converged to or whether a true global optimum (rather than just a local
optimum) is found. However, performing a general numerical array layout
optimisation in a full interaction regime is computationally prohibitive and not
possible in this work.

A less obvious, more specific and perhaps simpler target is the optimisation of
WEC arrays constrained to certain geometries. Some work on this topic is
undertaken by Thomas & Evans (1981) and McIver (1994), where uniform and
certain unequal array spacings were investigated using the point absorber
approximation. This was extended by McGuinness (2013) who optimised
symmetric linear arrays of fixed non-dimensional length, again using the point
absorber theory. This is the first optimisation of an array of fixed length
relative to the individual spacings between WECs. This could be extended to
more general arrays without imposed symmetry and an investigation of the
WEC motions should also be performed. A constrained optimisation, where the
WEC motions are limited to a reasonable physical value, would provide further
insight. Also of interest would be array geometries other than straight lines. For
example Costigan (2014), Fennell (2015) and Lawton (2017) performed
preliminary layout optimisations of arrays of point absorbers constrained to lie
in a circular, triangular and elliptical arrangements respectively. This could also
be extended to investigate the optimum arrangements in a more general arena
and to include an analysis of the device sizes, motions and constraints.
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Chapter 2

Mathematical Formulation

2.1 Introduction

To assess the hydrodynamic interaction between WEC array members, it is
necessary to calculate certain hydrodynamic quantities associated with device
behaviour. Array quality measures are derived to quantify array performance
and are then used to define appropriate objective functions for the forthcoming
optimisations. An appropriate mathematical model is chosen for this task and is
outlined in this chapter.

A brief description of hydrodynamics and wave theory is first provided; this is
to give the relevant basic mathematical background. Linear wave theory is then
derived and the material presented is based on this formulation. The theory of
wave energy and wave-power absorption, for both single devices and arrays, is
then provided for regular seas. Different array quality measures are defined and
their uses outlined and compared. Finally, a basic theory for WEC arrays in
irregular seas is presented. Further details and an in-depth description of some
of the mathematical principles discussed here can be found in Newman (1977),
Linton & McIver (2001) and Falnes (2002).
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2.2 Wave Theory

2.2.1 Mathematical Model of Water Waves

A Cartesian coordinate system (x, y, z) is adopted with the z-axis pointing
vertically upwards, with z = 0 being in the plane of the undisturbed fluid
surface and time is denoted by t. The basic equations of fluid dynamics are the
continuity (mass conservation) equation and the Navier-Stokes (N-S) equations.
Before presenting these equations, it is convenient for notational purposes to
introduce the convective derivative

D

Dt
= ∂

∂t
+ (u.∇∇∇)

= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
,

(2.1)

where u = (u, v, w) is the fluid velocity vector in an Eulerian frame of reference.
The continuity equation, which describes the conservation of mass in a fluid
flow, is

Dρ

Dt
+ ρ∇.u = 0, (2.2)

where ρ is the fluid density. The N-S equations are written in vector form as

Du
Dt

= −1
ρ
∇∇∇p+ F + γ

[
∇2u + 1

3∇
∇∇ (∇.u)

]
, (2.3)

where p is the pressure in the fluid, F is the total body-force present in the fluid
(defined per unit mass) and γ is the coefficient of kinematic viscosity of the
fluid, which is assumed to be time-independent. It is assumed that there is no
variation in temperature and thus temperature effects are neglected in this
model. Within this thesis, it is assumed that the only body force present is due
to gravity and so F = −gẑ, where g is the acceleration due to gravity and ẑ is
the unit vector in the z-direction. To simplify the above equations, several
assumptions and approximations are made.

If the fluid under consideration is considered to be incompressible then
ρ = constant and Dρ

Dt
= 0. Equation (2.2) then becomes the incompressible fluid

condition
∇.u = 0. (2.4)
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This also simplifies the N-S equations to

Du
Dt

= −1
ρ
∇∇∇p+ F + γ∇2u. (2.5)

The next assumption is that of an inviscid fluid, so that the approximation
γ = 0 applies. Along with (2.5), this gives the Euler equations

Du
Dt

= −1
ρ
∇∇∇p+ F. (2.6)

A further simplifying assumption is that the fluid motion is irrotational, which
is expressed as

∇× u = 0. (2.7)

Since the curl of the velocity is zero, the velocity vector can be expressed as the
gradient of a scalar function

u =∇∇∇Φ, (2.8)

where Φ is the velocity (scalar) potential.

Using (2.7)-(2.8), the Euler equation (2.6) can be rewritten as

∇∇∇
(
∂Φ
∂t

+ 1
2 |∇
∇∇Φ|2 + p

ρ
+ gz

)
= 0 (2.9)

⇔ ∂Φ
∂t

+ 1
2 |∇Φ|2 + p

ρ
+ gz = f(t), (2.10)

where f(t) is an arbitrary function of time and F = −gẑ has been used.
Equation (2.10) is known as the Bernoulli Equation. The function f(t) can be
eliminated by absorbing it into the potential Φ to create an alternate potential

Φ̃ = Φ +
∫ t
[
pa
ρ
− f(t′)

]
dt′, (2.11)

which when substituted into (2.10) gives the more common form of Bernoulli’s
equation

∂Φ̃
∂t

+ 1
2
∣∣∣∇∇∇Φ̃

∣∣∣2 + p− pa
ρ

+ gz = 0, (2.12)

where pa is the atmospheric pressure, assumed constant. The inclusion of pa in
the above is for both convenience and simplification. The quantity pg = p− pa
is sometimes termed the gauge pressure, i.e. it is the relative pressure of the
fluid to that of the atmosphere. Note that the physical characteristics of the
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flow are not altered by the transformation Φ→ Φ̃ since the gradient is
unchanged, so u =∇∇∇Φ̃ =∇∇∇Φ and the tilde notation is henceforth dropped.
Combining (2.8) with the incompressible form of the continuity equation (2.4)
gives the Laplace equation

∇2Φ = 0. (2.13)

Thus, the continuity equation (2.2) and N-S equations (2.5), which govern the
flow, have been simplified to the Bernoulli equation (2.12) and Laplace equation
(2.13), which hold in the entire domain of the fluid, including upon the
boundaries. Suitable boundary conditions must be imposed to find a solution to
the hydrodynamic problem.

2.2.1.1 Boundary Conditions

The water-wave problem is more complicated than most other wave problems,
such as electromagnetism and acoustics, due to the existence of a free surface.
Boundary conditions must be imposed upon this free surface as well as other
boundaries of the fluid domain, including the sea bed and the surfaces of any
bodies present in the fluid.

Let the vertical elevation of a point on the free surface be given by

z = η(x, y, t). (2.14)

Both dynamic and kinematic boundary conditions must be applied on the free
surface. The kinematic free surface boundary condition (KFSBC) states that
fluid particles must not cross the fluid-surface boundary and this is initially
expressed as

D

Dt
[z − η(x, y, t)] = 0 on z = η(x, y, t), (2.15)

which when expanded becomes

∂Φ
∂z

= ∂η

∂t
+ ∂Φ
∂x

∂η

∂x
+ ∂Φ
∂y

∂η

∂y
on z = η(x, y, t). (2.16)

If surface tension is neglected (which is valid for waves that are longer than a
few centimetres), the dynamic free surface boundary condition (DFSBC) for an
inviscid fluid states that the pressure must be continuous across the fluid-air
interface. Since air has a relatively small density compared to water and
atmospheric pressure varies negligibly over the small elevations of the free
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surface, the pressure across the free surface is taken to be constant. Using
Bernoulli’s equation (2.12) and taking p = pa on the free surface, the DFSBC is
expressed as

∂Φ
∂t

+ 1
2 |∇
∇∇Φ|2 + gη = 0 on z = η(x, y, t). (2.17)

Let the sea bed be described by z = −h(x, y), where h (x, y) > 0. The
appropriate boundary condition on the sea bed is a no-flow condition, which is

u.n = 0 on z = −h(x, y), (2.18)

where n is the unit normal vector into the sea bed (out of the fluid). This
boundary condition can also be written in terms of the velocity potential,

(∇∇∇Φ) .n = 0 on z = −h(x, y). (2.19)

This kinematic condition is satisfied by the normal component of the velocity
relative to the bottom surface only; no dynamic condition exists because it is a
fluid-solid boundary. Care is needed with the fluid-solid boundary conditions;
there cannot be a dynamical boundary condition except for equal and opposite
action and reaction. The continuity expressed in equation (2.18) is due to the
lack of viscosity.

A similar condition to (2.19) applies on the surface of any structures present in
the fluid. However, in general, these structures will not be stationary. Therefore,
the condition specifies that, on the surface of a body, the normal component of
the fluid velocity must equal the velocity of the body in the same direction. Let
SBj be the wetted surface of the jth body. Then the no-flow boundary is

(∇∇∇Φ) .n = U(j).n on SBj , (2.20)

where U(j) is the translational velocity vector of the jth body and n is the unit
normal into the body surface (out of the fluid). This must hold for all bodies in
the fluid. If the body is stationary, then the right hand side of (2.20) becomes
zero and a condition analogous to (2.19) is recovered. As the fluid is inviscid,
only a normal condition exists.

The full set of boundary conditions has now been obtained, along with the
equations describing the flow. For completeness, the full set of equations and
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boundary conditions describing the flow are presented:

∇2Φ = 0 throughout the fluid
(∇∇∇Φ) .n = 0 on z = −h(x, y)

(∇∇∇Φ) .n = U(j).n on SBj ∀ j
∂Φ
∂t

+ 1
2 |∇
∇∇Φ|2 + gη = 0 on z = η(x, y, t)

∂Φ
∂z

= ∂η

∂t
+ ∂Φ
∂x

∂η

∂x
+ ∂Φ
∂y

∂η

∂y
on z = η(x, y, t).

(2.21)

2.2.2 Linear Wave Theory

The nonlinearity in the boundary conditions (2.16) and (2.17) along with the
application of (2.16), (2.17) and (2.20) on a moving surface or boundary,
namely η(x, y, t) or SBj , makes the task of acquiring analytical solutions
extremely difficult. For sufficiently small motions, it is valid to linearize the
governing equations about the undisturbed or equilibrium state. This requires
the amplitude of the fluid motion to be small compared to the wavelength and
depth of the fluid throughout the domain, including in the vicinity of structures
or bodies. Hence, the amplitude of structural motions must also be small
relative to the wave motion. From the perspective of wave energy, the individual
WEC motion amplitudes must be at most the same order of magnitude as the
wave motion in order for this linearisation to remain consistent.

The main idea of linear theory is to assume that the wave motion is a
perturbation of the undisturbed state, such that Φ, η and their derivatives are
assumed to be O(ε) and where ε is a perturbation parameter satisfying ε� 1.
Only the terms of lowest order in ε are retained in the governing equations and
boundary conditions, so that terms such as 1

2 |∇∇∇Φ|2 and ∂Φ
∂x

∂η
∂x

will be O(ε2) and
hence neglected. Linear theory also allows the boundary conditions (2.16) and
(2.17) to be applied on the mean free surface z = 0 instead of the moving
surface z = η(x, y, t). This can be seen using Taylor expansions of the relevant
quantities and again only keeping the lowest order in ε. For example, let
f(x, z, t) be a quantity of O(ε) that is to be evaluated on the free surface
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z = η(x, y, t). The Taylor expansion of f about the mean free surface (z = 0) is

f (x, η(x, y, t), t) = f(x, 0, t) + η(x, z, t)
∣∣∣∣∣∂η∂z

∣∣∣∣∣
z=0

+ η2(x, z, t)
2

∣∣∣∣∣∂2η

∂z2

∣∣∣∣∣
z=0

+ . . .

= f(x, 0, t) +O
(
ε2
)
.

(2.22)

Similarly, the boundary conditions (2.20) on the bodies within the fluid can be
applied on the equilibrium position of the body surfaces SBj , instead of SBj .

After linearisation, the free surface boundary conditions (2.16) and (2.17)
respectively become

∂Φ
∂t

+ gη = 0 on z = 0, (2.23)

∂Φ
∂z

= ∂η

∂t
on z = 0. (2.24)

These can be combined into one condition by differentiating (2.23) with respect
to t and substituting for ∂η

∂t
in (2.24) to give

∂2Φ
∂t2

+ g
∂Φ
∂z

= 0 on z = 0, (2.25)

which is sometimes known as the linearized free surface boundary condition
(LFSBC).

For completeness and to allow comparison with the original non-linearised
governing equations, the linearized wave problem equations are presented:

∇2Φ = 0 throughout the fluid
(∇∇∇Φ) .n = 0 on z = −h(x, y)

(∇Φ) .n = U(j).n on SBj ∀ j
∂2Φ
∂t2

+ g
∂Φ
∂z

= 0 on z = 0.

(2.26)

It is usual to assume harmonic time-dependence of all fluid motions and of the
motions of any structures present in the fluid. This time dependence, which is
assumed to have frequency ω, can be separated from the spatial dependence of
all relevant quantities. The velocity potential is thus written as

Φ(x, y, z, t) = Re
[
φ(x, y, z)e−iωt

]
, (2.27)
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where φ(x, y, z) is the complex amplitude of the potential and Re denotes the
real part. Similarly, the free surface elevation is written

η(x, y, t) = Re
[
ζ(x, y)e−iωt

]
, (2.28)

for a corresponding complex amplitude ζ(x, y). Using (2.27), the governing
equations of the flow (2.26) simplify to

∇2φ = 0 throughout the fluid (2.29)

(∇∇∇φ) .n = 0 on z = −h (x, y) (2.30)

(∇∇∇φ) .n = U(j).n on SBj ∀ j (2.31)

∂φ

∂z
= ω2

g
φ on z = 0. (2.32)

Initially, waves in the absence of any structures are considered. The
corresponding solution to the linearised water-wave problem is written as φ0

and will represent a progressive wave in a uniform body of fluid. This will then
be utilised as the incident wave onto any structures present in the fluid and the
principle of superposition of wave-fields will be employed.

Consider the simpler case where the sea bed is at a constant depth h (x, y) = h,
which enables an analytical solution to be obtained. Using the method of
separation of variables enables a non-decaying progressive wave solution to the
Laplace equation to be found, which in Cartesian coordinates (x, y, z) is written
as

φ0 = −igA
ω

cosh [k (z + h)]
cosh kh eik(x cosβ+y sinβ), (2.33)

or alternatively, in cylindrical coordinates (R, θ, z),

φ0 = −igA
ω

cosh [k (z + h)]
cosh kh eikR cos(θ−β). (2.34)

This represents a plane progressive wave, travelling in direction β, measured
relative to the positive x-axis, with amplitude A and wavenumber k, where k is
related to the wavelength λ by

k = 2π
λ
. (2.35)

The potential (2.34) corresponds to a free surface elevation

ζ(R, θ) = AeikR cos(θ−β) (2.36)
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via (2.23), (2.27) and (2.28). Requiring φ0 to satisfy the LFSBC (2.32) gives a
relationship which ω and k must satisfy

ω2 = gk tanh kh (2.37)

and is called the dispersion relation.

The wave-power devices considered in this project are those that would be
placed off-shore, in relatively deep water; these types of devices are sometimes
termed Third Generation wave-power devices. If the depth is large enough,
greater simplification can be achieved. In water wave theory, “deep water” or
"water of infinite depth" refers to the case where kh� 1, or equivalently λ

h
� 1.

The boundary condition on the sea bed is thus replaced by the asymptotic
condition

|∇∇∇φ| → 0 as z → −∞ (2.38)

and the plane wave potential takes the Cartesian form

φ0 = −igA
ω
ekzeik(x cosβ+y sinβ). (2.39)

Equivalently, in cylindrical coordinates

φ0 = −igA
ω
ekzeikR cos(θ−β). (2.40)

The dispersion relationship then simplifies to

ω2 = gk. (2.41)

The notion of deep water is often misunderstood, as the validity of the deep
water approximation does not depend directly on the depth of the water, but
rather the ratio of depth-to-wavelength. Hence, tsunami type waves are often
considered in a shallow water regime, due to the large wavelengths involved,
while ripples in a glass of beer would be considered as deep water waves.

The plane wave potentials (2.39) or (2.40) are used to describe the incident
wave on the wave-power devices in preliminary studies concerning regular
waves. However, even in this simple case, the plane wave then interacts with the
structures of the WECs and is scattered by the devices. The devices are also
excited into oscillations and thus create radiated waves. The effect of these
interactions on the performance of the array of WECs is a primary area of
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interest in this project.

Some quantities often used to describe the wave-field are the phase velocity c
and the group velocity cg. The phase velocity is defined as

c = ω

k
(2.42)

and this is the velocity at which the wave crest propagates. From the dispersion
relationship (2.37) for arbitrary finite depth, the phase velocity can be written

c = g

ω
tanh kh =

√
g

k
tanh kh. (2.43)

The group velocity is defined as

cg = dω

dk
(2.44)

and is the velocity at which mean energy is transported in a wave. Note that in
general c

2 ≤ cg ≤ c, with equality holding at the lower and upper limits for deep
water and shallow water respectively. For arbitrary depths, using (2.37), the
ratio of group velocity to phase velocity can be written as

cg
c

= 1
2

[
1 + 2kh

sinh 2kh

]
. (2.45)

Simpler expressions exist for the group velocity and phase velocity in the
infinite depth regime. Using the infinite depth dispersion relationship (2.41),

c = g

ω
(2.46)

and
cg = g

2ω , (2.47)

so that in deep water the group velocity is exactly half the phase velocity.
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2.3 Interaction of Waves with a Structure

2.3.1 Velocity Potential due to Interaction with a
Structure

Consider a plane wave incident on a single floating body. This incident wave is
scattered by the presence of the body to produce a diffracted wave-field. As the
body is free floating, it is excited into oscillation by the incident wave and thus
also produces a radiated wave-field. Assuming linear wave theory is valid and
that all hydrodynamic boundary conditions are applied on the mean wetted
surface of the body, there are three separate wave-fields: namely incident,
diffracted and radiated. The total wave-field can then be written using linear
superposition, as

φ = φ0 + φd︸ ︷︷ ︸
φs

+φr, (2.48)

where again the time-dependence is removed from each potential in the usual
manner. In this representation φ0 is the incident wave potential, φd represents
the diffracted wave-field for the device held fixed and φr is the radiated
wave-field generated by the forced oscillations of the device in the absence of an
incident wave. The scattered wave-field φs = φ0 + φd is the combination of the
incident and diffracted wave-fields. Each potential satisfies the Laplace equation
(2.29).

If the body under consideration is rigid and three-dimensional, its motion will
possess six degrees of freedom. Three of these are translational in the x, y and z
directions, named surge, sway and heave respectively. The second three degrees
of freedom are due to rotational motion about the x, y and z axes and termed
roll, pitch and yaw respectively. Radiation of waves can occur independently for
each of these modes of motion. To describe this, the velocity of the body must
be defined for each mode of oscillation. Let the translational velocity of the
body in global (x, y, z) directions be given by U = (U1, U2, U3) and let the
corresponding rotational velocity be Ω = (Ω1,Ω2,Ω3). The velocity of a point
on the body due to rotation is Ω× r′, where r′ is the local displacement vector
of the point from the centre of rotation of the body. The total velocity of a
point on the structure for a general motion of the body is given by

V = U + Ω× r′. (2.49)
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For a freely floating body, the centre of rotation is the centre of floatation,
which is on the same z-axis as the centre of gravity and lies in the waterplane
area of the device. From this, the normal velocity of the body can be defined as

Vn = V.n = U.n + (Ω× r′) .n. (2.50)

For convenience, the second term can be written in an alternate form to give

Vn = V.n = U.n + Ω. (r′ × n) , (2.51)

so that the normal is separated explicitly in each term.

Since the structure is held fixed for the scattering problem, the appropriate
boundary condition is

∂φs
∂n

= 0 on SB (2.52)

⇔ ∂φd
∂n

= −∂φ0

∂n
on SB, (2.53)

where SB is the equilibrium surface of the body being considered and the
notation (∇∇∇ψ) .n = ∂ψ

∂n
is used. In the radiation problem, the devices undergo

forced oscillations in the absence of an incident wave and thus the boundary
condition is

∂φr
∂n

= Vn on SB. (2.54)

It should be emphasised that the underlying linear wave theory requires that
the magnitude of these oscillations should be at most the same order as the
wave amplitude.

It should be noted that it is necessary to impose a radiation condition on the
wave fields that emanate from a body, namely φd and φr. This radiation
condition specifies that the waves corresponding to these potentials must
propagate away from the bodies and is expressed in three dimensions as

lim
kR→∞

R1/2
(
∂φd
∂R
− ikφd

)
= 0 , (2.55)

where R is the horizontal polar coordinate, with a similar expression for φr.

The simplest WEC array interaction to model is where a plane wave is incident
on an array of floating devices. Each device then produces a diffracted and a
radiated wave-field, although most approximate models neglect the diffracted
wave-field. The formulation given in this section can be easily extended to an
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array of many devices by including appropriate indexes on the quantities
involved. Therefore the total, incident, radiated, diffracted and scattered
potentials are denoted as φ(j), φ

(j)
0 , φ(j)

r , φ
(j)
d , φ(j)

s respectively for the jth device,
while the boundary conditions are applied on the mean wetted surface SBj with
normal velocity U (j)

n of the jth device, for all j.

2.3.2 The Radiation Problem

It is convenient to extend the definition of the translational velocity of the body
to that of a six-dimensional generalised velocity, which also includes the
rotational motion. The quantity U is henceforth redefined as the generalised
velocity, which contains all the velocities of the body, rotational and
translational. The jth component of U is now defined as the normal (x, y, z)
translational velocities for j = 1, 2, 3 as above, and the vector dimension is
extended to include the rotational velocities so that

Uj = Uj for j = 1, 2, 3
= Ωj−3 for j = 4, 5, 6

(2.56)

⇔ U = (U1, U2, U3,Ω1,Ω2,Ω3) .

Corresponding to this, the generalised normal NNN is also defined as

Nj = nj for j = 1, 2, 3
= (r′ × n)j−3 for j = 4, 5, 6.

(2.57)

The general normal velocity of the body can now be written concisely as

Un = U. NNN =
6∑
j=1

UjNj. (2.58)

Consider the complex amplitude of the radiated wave velocity potential φr,
which is a superposition of the radiated waves due to each of the six modes of
oscillation. This can be written

φr =
6∑
j=1

(−iωξj)ϕj, (2.59)

where ϕj(x, y, z) is a function of proportionality that corresponds to a unit
displacement, and ξj is the complex amplitude of the body displacements, where
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the total time-dependent body displacements are given by

χχχ = Re
[
ξξξe−iωt

]
. (2.60)

The body velocity can be written as the time derivative of the displacements, so
that

U = dχχχ

dt

= Re
[
−iωξξξe−iωt

]
.

(2.61)

Therefore, the complex amplitude of the generalised velocity (2.56) is −iωξξξ,
where ξξξ is extended to a six-dimensional vector by including the rotational
motion in the appropriate way. Using this form of φr, the boundary condition
(2.54) can be written as

∂ϕi
∂n

= Ni on SB (2.62)

for i = 1, . . . , 6. The potentials ϕj can be interpreted as the functions related
to the radiated velocity potentials due to device oscillation in mode j with unit
velocity amplitude (i.e. with −iωξj = 1). The radiation problem has now been
reformulated in terms of the unknowns ϕj, j = 1, . . . , 6, which must satisfy the
Laplace equation

∇2ϕj = 0, (2.63)

the sea bed boundary condition

∂ϕj
∂z

= 0 on z = −h, (2.64)

and the LFSBC
∂ϕj
∂z

= ω2

g
ϕj on z = 0, (2.65)

along with boundary condition (2.62) applied on all bodies present in the fluid.

2.3.3 The Scattering Problem – Multiple Scattering
Method

The multiple scattering method and associated theory in this subsection is
described in detail in Mavrakos & Koumoutsakos (1987) and Mavrakos (1991)
and outlined in Mavrakos & McIver (1997); a brief summary is provided here
for comparative purposes. The method of Mavrakos & Koumoutsakos (1987) is
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in principle exact, whereas some preliminary work in this area has neglected
scattering effects via a point absorber approximation or by considering the
Froude-Krylov forces only (see equation (2.88)). The multiple scattering
method accurately accounts for the interference effects between N identical
axisymmetric devices, of radius a, placed in fluid and relies on single-body
hydrodynamic effects of the devices.

Consider the velocity potential of an undisturbed incident plane wave as in
(2.34), but rewritten in the alternate form with cylindrical coordinates
(Rq, θq, z) with origin Oq at body q:

φ0 (Rq, θq, z) = −iωAcosh [k(z + h)]
k sinh(kh) φ̃0 (Rq, θq) , (2.66)

where
φ̃0 (Rq, θq) = eil0q cos(θ0q−β)

∞∑
m=−∞

imJm (kRq) eim(θq−β), (2.67)

where Jm is the mth order Bessel function of first kind and
(
l0q , θ0q

)
are the

coordinates of body q relative to the global origin O. Due to the interaction of
φ0 with body q, the body produces a first order scattered field of

1φ
(q)
d = −iωA

∞∑
m=−∞

im
∞∑
j=0

1F
(q)
mj

Km (κjRq)
Km (κja) Zj(z)eimθq , (2.68)

where a is the body radius, Km is the mth order modified Bessel function of
second kind and Zj(z) are orthonormal functions defined in the domain [−h, 0]
by

Zj(z) =
(

1
2

[
1 + sin (2κjh)

2κjh

])− 1
2

cos [κj (z + h)] , (2.69)

and κj are the roots of
ω2 + gκj tan (κjh) = 0, (2.70)

with κ0 = −ik. The first order scattering coefficient 1F
(q)
mj can be obtained via

the solution of the diffraction problem around body q, using for example the
method of matched eigenfunction expansions. More explicitly, the diffraction
problem states that the diffraction potential φd satisfies the Laplace equation
(2.29), the LFSBC (2.32), the sea bed condition (2.30) and the body boundary
condition (2.54).

The scattered waves of first order emanating from the other bodies (6= q) cause
a second order excitation of body q within the multiple scattering method,
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which is written
2φ

(q)
0 =

N∑
p=1

(1− δpq) 1φ
(p)
d , (2.71)

where δpq is the Kronecker delta. In response to this, body q radiates its second
order of scattering 2φ

(q)
d , which is written similarly to (2.68) with the

appropriate indices altered and corresponding second order scattering
coefficients introduced. The total second order potential is then

2φ
(q) = 2φ

(q)
0 + 2φ

(q)
d , (2.72)

and this satisfies the appropriate imposed boundary conditions.

To solve the second order scattering problem, 1φ
(p)
d needs to be expressed in

terms of the coordinate system of body q. Completing this and manipulation of
algebra gives

2φ
(q)
0 = −iωA

∞∑
m=−∞

im
∞∑
j=0

2Q
(q)
mj

Im (κjRq)
Im (κja) Zj(z)eimθq , (2.73)

where

2Q
(q)
mj =

N∑
p=1

(1− δpq)
∞∑

n=−∞
im+nKn−m (κjlpq)

Kn (κja) Im(κja)1F
(p)
nj e

i(n−m)θpq , (2.74)

with the notation

1Q
(q)
mj = im

eikl0p cos(θ0p−β)e−imβ
Z

′
0(0) Im (κja) δ0j. (2.75)

Proceeding as above, in general the lth order scattering can be obtained and
then summing up all orders gives the total wave-field (incident and scattered),
which can be used to calculate the hydrodynamic coefficients and forces. The
total scattered wave-field (φs = φ0 + φd) is written as

φ(q) = −iωA
∞∑

m=−∞
im

∞∑
j=0

[
Q

(q)
mj

Im (κjRq)
Im (κja) + F

(q)
mj

Km (κjRq)
Km (κja)

]
Zj(z)eimθq , (2.76)

where the notation

Q
(q)
mj =

∞∑
l=1

lQ
(q)
mj and F

(q)
mj =

∞∑
l=1

lF
(q)
mj (2.77)

has been defined.
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Evaluation of this method involves truncation of the infinite series and matching
of solutions at the appropriate boundaries. Depending upon the accuracy
required, the infinite series above can be truncated to a certain order l, so that
the desired accuracy or computation time is achieved. This task is not trivial to
complete in a computational sense.

Due to the complicated nature of this method and the large associated
computation times, numerical array calculations of this type are often
intractable when scattering effects are included. This combined with the
relatively small amplitude of diffracted waves in most cases justifies its neglect
and a large saving in computation can achieved for only a small accuracy
penalty. Accounting for the diffracted wave-field and the method of multiple
scattering are computationally prohibitive and are beyond the scope of this
thesis.

2.3.4 Hydrodynamic Forces on the Devices

A body submersed or partially submersed in a fluid will be subject to forces due
to the pressure of the fluid. From the linearised form of Bernoulli’s equation
(2.12), and considering the pressure pg, which is written here as p without the
subscript, rearranging gives

p = −ρgz − ρ∂Φ
∂t
. (2.78)

The first term is the hydrostatic pressure and varies with depth only. The
second term is the one of interest and is called the hydrodynamic pressure. This
pressure, also known as the wavelike pressure or the excess pressure, is denoted
herein as pd = −ρ∂Φ

∂t
and is due to the fluid motion. The total force on the body

is a sum of the hydrodynamic and hydrostatic forces due to these pressures and
is written as

Ftot = Fd + Fhs. (2.79)

The hydrodynamic force can be further decomposed into an exciting force Fe

due to the wave motion and a radiation force Fr due to the radiation of waves
away from the device. Thus, the total force on the structure is

Ftot = Fe + Fr + Fhs. (2.80)
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Since WECs absorb power from the hydrodynamic motion of the waves and not
from the hydrostatic force, attention is initially limited to the pressure on the
structures due to this hydrodynamic pressure only. The hydrodynamic force Fd

on the structure is found by integrating the hydrodynamic pressure over the
equilibrium surface of structure, such that

Fd(t) =
∫∫
SB

pdn dS

= −ρ
∫∫
SB

∂Φ
∂t

n dS,
(2.81)

where n is the unit normal out of the fluid domain. Introducing the harmonic
time-dependence in Φ as in (2.27), with Fd(t) = Re [fe−iωt], this becomes

f = iωρ
∫∫
SB

φn dS. (2.82)

Similarly, the moment Md = Re [µµµe−iωt] can be written as

µµµ = iωρ
∫∫
SB

φ (r′ × n) dS. (2.83)

Using the generalised normal NNN and analogously defining the generalised force
as Fd = Re [FFFd e−iωt], with Fd = (Fd1, Fd2, Fd3,Md1,Md2,Md3) and
FFFd = (f1, f2, f3, µ1, µ2, µ3), then FFFd can be written

FFFd = iωρ
∫∫
SB

φNNN dS. (2.84)

As previously stated, the force (2.84) can be separated into the force due to
excitation from the scattered wave-field and the force resulting from induced
oscillations via the radiated wave-field. This is written as

FFFd = X +FFF r, (2.85)

where
X = iωρ

∫∫
SB

(φ0 + φd)NNN dS (2.86)
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is the complex amplitude of the exciting force (Fe = Re [Xe−iωt]), and

FFF r = iωρ
∫∫
SB

φrNNN dS (2.87)

is the complex amplitude of the radiation force (Fr = Re [FFF r e−iωt]), due to
forced oscillations and the radiated wave-field. A common approximation of the
exciting force is used if the diffracted field φd is sufficiently small compared to
the incident field φ0 and the corresponding force components also satisfy a
similar condition. This allows the contribution of the diffracted field in (2.86) to
be neglected and is called the Froude-Krylov approximation; the corresponding
force is thus termed the Froude-Krylov force and is given by

XFK = iωρ
∫∫
SB

φ0NNN dS. (2.88)

Since diffracted waves are neglected within this work, the Froude-Krylov
approximation to the excitation force is used throughout and the FK subscript
notation is henceforth dropped.

Using (2.59), FFF r can be rewritten as

FFF r =
6∑
j=1

fffj(−iωξj), (2.89)

where the lth component of fffj is

flj = iωρ
∫∫
SB

ϕj Nl dS. (2.90)

This is the lth component of force resulting from forced oscillations in mode j.
It is usual to decompose flj further into its real and imaginary parts by writing

flj = iω

(
alj + i

blj
ω

)
, (2.91)

where alj is termed the added mass coefficient and blj is the damping coefficient.
Since the motions are harmonic, the generalised velocity can be written as
U = Re [UUU e−iωt] from equation (2.56). Thus, the velocity and acceleration of
the body are written as UUU and −iωUUU respectively. Therefore, writing the
radiation force in terms of alj and blj as in equation (2.91) essentially separates
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the parts which are in phase with the acceleration and velocity of the device
respectively. In this way, the radiation force can be written as

{FFF r}l =
6∑
j=1

(
−aljU̇j(t)− bljUj(t)

)
, (2.92)

where Uj is the jth component of the complex amplitude of the generalised
velocity.

By considering the body displacements, as defined in equation (2.60), the
radiation force can also be expressed as

{FFF r}l =
6∑
j=1

(
ω2ξjalj + iωξjblj

)
. (2.93)

Explicitly, the added mass and damping coefficients can be written as

alj = Re

ρ ∫∫
SB

ϕj Nl dS

 , (2.94)

blj = Im

ωρ ∫∫
SB

ϕj Nl dS

 , (2.95)

where "Im" demotes the imaginary part. These coefficients can be written in
matrix form A and B, where {A}lj = alj and {B}lj = blj, and these are termed
the added mass matrix and damping matrix respectively. Thus, the radiation
force is written as

Fr = −A U̇− BU. (2.96)

Using Green’s theorem, it is shown by Linton & McIver (2001) that the
matrices A and B are both symmetric. It is further shown that Green’s theorem
can also be used to write blj in terms of a far-field integral, as

blj = ωρ
∫∫
S∞

ϕlϕ
∗
j dS, (2.97)

where ∗ denotes complex conjugate and S∞ is the surface at infinity which can
be considered to be a cylinder of infinite depth and radius R with R→∞.

To find the total force on a structure, the hydrostatic force must also be
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calculated. This is shown in Newman (1977) to be given by

{Fhs}j = Re
[
−

6∑
l=1

cjlξle
−iωt

]
, (2.98)

where cjl are elements of the hydrostatic restoring force matrix, which is
diagonal so that cjl = 0 for j 6= l. The hydrostatic restoring force elements are
related to the corresponding modes of motion. These elements are each
analogous to the restoring force felt by a mass on a spring, only here the
restoring force is due to the buoyancy of the body (hydrostatic stiffness), not
the stiffness of a spring. The hydrostatic force above can be written in matrix
form as

Fhs = Re
[
C U̇UUe−iωt

]
, (2.99)

where {C}lj = clj
ω2 . Now the total force on a body which responds to an incident

wave can be written in matrix form as

Ftot(t) = Fe + C U̇− A U̇− BU, (2.100)

or equivalently in time-independent form, using Ftot = Re [FFF tote−iωt] and
Fe = Re [Xe−iωt], as

FFF tot = X + C U̇UU − A U̇UU − BUUU , (2.101)

where the first term is due to the exciting force, the second is the hydrostatic
force, and the last two terms are due to the radiation of waves away from the
body (the radiation force). For notational purposes, Ftot and FFF tot will be
written as F and FFF respectively hereafter.

2.4 Wave-Power Array Theory

2.4.1 Wave Energy

The energy of waves in a fluid is divided into kinetic energy and potential
energy. The total potential energy of the fluid, per unit width of wave crest, can
be written as

Epot =
∫∫∫
V

ρgz dV , (2.102)
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where V is the fluid volume. Similarly, the total kinetic energy is

Eke =
∫∫∫
V

1
2ρu

2 dV , (2.103)

where u is the fluid velocity and u2 = u.u = |u|2. The total instantaneous
energy stored in the fluid is thus

E = Epot + Eke = ρ
∫∫∫
V

(1
2u

2 + gz
)
dV . (2.104)

Now consider a vertical column of fluid, of upper plane surface area δS,
bounded below by the sea bed and above by the free surface. The potential
energy, due to the elevation of the water is given by

Epot = ρg δS
∫ η

−h
z dz = 1

2ρg δS
(
η2 − h2

)
, (2.105)

so that the total potential energy in the column, per unit surface, is

Epot = 1
2ρgη

2︸ ︷︷ ︸
hydrodynamic

− 1
2ρgh

2︸ ︷︷ ︸
hydrostatic

. (2.106)

The −1
2ρgh

2 term is the hydrostatic potential energy of the water due to its
height above the sea bed. The quantity of interest here is the hydrodynamic
energy due to the wave motion (corresponding to the 1

2ρgη
2 term), so the

hydrostatic term is neglected. Thus, the hydrodynamic potential energy in the
column due to wave motion, per unit surface area, is

Epot = 1
2ρgη

2. (2.107)

Taking the incident wave to be a plane wave of amplitude A as in equations
(2.28) and (2.36) and taking the average over time and space gives

Epot = 1
4ρgA

2. (2.108)

Similarly, the kinetic energy of the column per unit surface area can be written
as

Eke = 1
2ρ
∫ η

−h
|u|2 dz = 1

2ρ
∫ η

−h
|∇∇∇Φ|2 dz. (2.109)
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This can be separated into two integrals as

Eke = 1
2ρ
∫ 0

−h
|∇∇∇Φ|2 dz + 1

2ρ
∫ η

0
|∇∇∇Φ|2 dz. (2.110)

The integrand in each integral is O(A2). However, the range of integration of
the second integral is O(A). Thus, the first term is O(A2) and the second is
O(A3). Since linear wave theory is assumed and A� h, the second term can be
neglected, giving

Eke = 1
2ρ
∫ 0

−h
|∇∇∇Φ|2 dz. (2.111)

Taking the incident wave to be a plane progressive wave with β = 0 from
equation (2.33) and calculating ∇∇∇Φ gives after simplification

Eke = ρg2k2A2

2ω2 cosh2 kh

×
∫ 0

−h

[
cosh2[k(z + h)] cos2(kx− ωt) + sinh2[k(z + h)] sin2(kx− ωt)

]
dz.

(2.112)

Performing the integral gives

Eke = ρg2kA2

2ω2

[
kh cos 2(kx− ωt)

cosh2 kh
+ tanh kh

]
. (2.113)

Taking the time and spacial average gives

Eke =
(
ω

2π

)(
k

2π

)∫ 2π
ω

0

∫ 2π
k

0
Eke dx dt

= 1
4ρgA

2.

(2.114)

Comparing (2.108) and (2.114), it can be seen that the average kinetic energy
and average potential energy contribute equal amounts to the average total
energy stored in a wave, so that

E = Epot + Eke = 1
2ρgA

2 (2.115)

for a plane progressive incident wave.

Now consider the rate of change of the total energy E, which is the rate of
energy flux. Allowing the fluid volume V , which is contained within a boundary
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surface S, to move with velocity νn yields

dE

dt
= ρ

d

dt

∫∫∫
V

(1
2u

2 + gz
)
dV

= ρ
∫∫∫
V

∂

∂t

(1
2u

2 + gz
)
dV + ρ

∫∫
S

(1
2u

2 + gz
)
νn dS,

(2.116)

which, using (2.8) and the divergence theorem, simplifies to

dE

dt
= ρ

∫∫
S

[
∂Φ
∂t

∂Φ
∂n

+
(1

2u
2 + gz

)
νn

]
dS. (2.117)

Application of Bernoulli’s equation (2.12) yields

dE

dt
= ρ

∫∫
S

[
∂Φ
∂t

∂Φ
∂n
−
(
p− pa
ρ

+ ∂Φ
∂t

)
νn

]
dS. (2.118)

Once again, restrict attention to a vertical column of fluid, bounded above by
the free surface and below by sea bed. There is no contribution to (2.118) from
the top or bottom surfaces of S. Since (2.118) holds for arbitrary νn, if
νn = ν = constant in the direction of wave propagation, this implies that the
energy enters one side at the same mean rate as it leaves the other side.
Therefore, the mean rate of energy flux across any vertical control surface
x = constant, per unit width in the y-direction, is

dE

dt
= ρ

∫ η

−h

[
∂Φ
∂t

∂Φ
∂n

+
(1

2u
2 + gz

)
ν

]
dz. (2.119)

Now, if dE
dt

= 0, then ν is the mean velocity of energy flux in the fluid, and can
be expressed as

ν = −ρ
∫ η

−h

∂Φ
∂t

∂Φ
∂n

dz/ρ
∫ η

−h

(1
2u

2 + gz
)
dz

=
−ρ
∫ η
−h

∂Φ
∂t

∂Φ
∂n

dz
1
2ρgA

2 ,

(2.120)

since the denominator is the energy density E from (2.115). It can be shown,
for arbitrary depth h, that (2.120) simplifies to

ν = cg, (2.121)
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where cg is the group velocity. Therefore, mean energy in the wave propagates
at the group velocity, as stated earlier. This is straightforward to show for the
plane progressive wave potential, as given in equation (2.33) and is thus
applicable for linear wave theory only. Furthermore, the mean rate of energy
flux across a fixed control surface is the product of the group velocity and the
energy density,

dE

dt
= cgE. (2.122)

2.4.2 Wave-Power Absorption

The power absorption by a single device is now considered. This will be
extended to array power absorption in Section 2.4.4. When a wave is incident
on a wave-power device, the wave does work on the device and sets it into
oscillatory motion. Using conservation of energy, the power absorbed by the
device is equal to the rate of work of the fluid on the device. The instantaneous
power absorbed by a device operating in mode j is

Pj = FjUj, (2.123)

where Fj = {F}j and Uj = {U}j are the jth components of the total generalised
force (2.100) and generalised velocity (2.56) respectively. The total
instantaneous power absorbed is the sum of all such contributions from each
mode of motion, which for a general body is

P =
6∑
j=1

FjUj. (2.124)

However, all quantities related to the wave-field, including the force on the
device and the resulting motion of the device, will have a harmonic
time-dependence. Thus, the value of (2.124) will oscillate with time. Therefore,
a more useful measure of the power absorbed would be the average power
absorbed P over one wave period T = 2π

ω
, written as

P = ω

2π

∫ 2π
ω

0
F(t).U(t) dt, (2.125)

or equivalently, considering F and U to be column vectors,

P = FTU, (2.126)
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where T denotes matrix transpose and the over-bar denotes time average over
one wave period. Using (2.100) and (2.126), it can be shown that

P =
(
Fe(t) + CU̇(t)− AU̇(t)− BU(t)

)T
U = FT

e U−UTBU. (2.127)

since U̇TU = 0.

2.4.3 Array Coordinates

In general, cylindrical polar coordinates (R, θ, z) are adopted to describe the
layout of the arrays within this work. To reduce the non-uniqueness in array
formations and to simplify the geometry, one device is usually placed at a fixed
location, which is often taken to be the global origin O. Since the devices are all
floating structures as in figure 1.5, the z-coordinate is not of interest for the
array geometry and the array layout (i.e. the position of the array members)
can be considered in a 2D coordinate system.

Let the position of the mth device relative to O be given by
(R, θ, z) = (dm, αm, 0). Then, an array of N devices is described by 2(N − 1)
variables (2 coordinate variables for each device except the one with fixed
position). Now define the local origins Oj in the centre of each device j and
local coordinates (Rj, θj) relative to each Oj. Let dmn be the distance between
the mth and nth device and the αmn be the corresponding angle between the mth

and nth device (measured from the positive x-axis), so that the coordinates of
device n relative to the origin at device m (denoted Om) are
(Rm, θm) = (dmn, αmn). These can be expressed in terms of the global
coordinates as

dmn =
[
d2
m + d2

n − 2dmdn cos (αm − αn)
]1/2

(2.128)

and
tan (αmn) = dm sin (αm)− dn sin(αn)

dm cos (αm)− dn cos (αn) . (2.129)

Note also that dmn = dnm and αmn = π + αnm. A general configuration showing
the coordinates of WECs 2 and 3 is presented in figure 2.1

In the case of linear arrays, it is often convenient to fix one device at the origin
and express certain quantities in terms of consecutive device separations.
Rather than employing a combination of dm or dmn terms, a shorter notation for
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WEC 2

WEC 3

d2

Α2

d3

Α3

d23

Α32

Α23

x

y

Figure 2.1: General configuration of WECs 2 and 3 in an array, showing the
corresponding array coordinates.

consecutive separations is introduced where

sm = dm(m+1). (2.130)

Similarly, if circular arrays are considered, the most convenient coordinate
system is to set the origin in the circle centre and define the positions of the
WECs by their angular positions on the circle. A convenient notation is
introduced to define the relative angles θj between each device, so that

θj = αj − αj+1, (2.131)

where the angular position of one device will be fixed.

This notation increases clarity in some expressions and enables a recognition of
which separation is being considered. In many cases, the evaluation of
quantities is in numerical computations where it is convenient to program the
variables in this manner. Therefore, expressions that are evaluated numerically
in this work are programmed in the same form as they are written in this thesis,
wherever possible.
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2.4.4 WEC Array Power Absorption Theory

Since arrays of WECs may contain many devices, matrix notation is ideal for a
mathematical representation. Previously, there were six dimensions to the single
body problem, accounting for the six degrees of freedom - three translational
and three rotational. However, the devices considered within this thesis are
assumed to absorb power in one mode of oscillation alone, namely heave. The
WECs are also restricted to moving only in heave. Therefore, all column vectors
are altered such that their jth components represent the corresponding
quantities for the heave mode of the jth device. Consider an array of N devices
so that the dimension of the vectors and matrices are now N and N ×N
respectively. In the formulation, modifications are necessary in the body
boundary conditions to remain consistent.

Let S be the wetted surfaces of all devices in equilibrium so that
S = SB1 ∪ SB2 ∪ · · · ∪ SBN , where SBj is the mean wetted surface of the jth

body. In this formulation, the radiation body boundary condition only applies
to the body which is radiating, so that (2.62) becomes

∂ϕj
∂n

= nlδjl on SBl , l = 1, 2, . . . , N, (2.132)

where δjl is the Kronecker delta, ϕj is the radiation potential of the jth body for
the heave mode and nl = {n}l is the lth component of the unit normal to
surface SBl . Similarly the scattering boundary condition becomes

∂φs
∂n

= 0 on SBl , l = 1, 2, . . . , N. (2.133)

The radiation force matrix must also be modified and the added mass and
damping matrices are now

ajl = Re
−ρ ∫∫

S

ϕjnl dS

 = Re

−ρ ∫∫
SBl

ϕj
∂ϕl
∂n

dS

 , (2.134)

bjl = Im
−ωρ ∫∫

S

ϕjnl dS

 = Im

−ωρ ∫∫
SBl

ϕj
∂ϕl
∂n

dS

 . (2.135)

The total mean power absorbed is given by equation (2.127), where the
quantities are now generalised to correspond to the heave quantity of each body
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as before. Thus, taking the mean rate of working of the hydrodynamic forces on
one device and then summing over the N devices in the array gives the power
absorbed. Thomas & Evans (1981) showed that the mean contribution to power
absorption from the added mass and hydrostatic force are zero. Therefore,
equation (2.127) now holds for an array of N heaving WECs.

Using Fe = Re [Xe−iωt] and U = Re [UUU e−iωt], (2.127) can be simplified to

P = 1
2Re

[
X†UUU

]
− 1

2 U
UU † BUUU , (2.136)

where † denotes the complex conjugate transpose. Assuming B is non-singular,
it is also shown by Thomas & Evans (1981), after some manipulation, that the
power absorbed by an array of WEC’s is given by

P = 1
8X†B−1X−1

2

(
UUU − 1

2B
−1X

)†
B
(
UUU − 1

2B
−1X

)
. (2.137)

This quantity can be maximised by taking the second (negative) term to be
zero, which occurs when the velocity is

UUUopt = 1
2B
−1X, (2.138)

so that the maximum power absorbed by the array, as found by Thomas &
Evans (1981), is

Popt = 1
8X†B−1X = 1

2 U
UU †optBUUUopt. (2.139)

It should be noted that, via an application of Green’s Theorem and the method
of stationary phase, the radiation damping matrix B can be expressed in terms
of the exciting forces in deep water as

{B}jl = bjl = 1
8λPw

∫ 2π

0
Xj(θ)X∗l (θ) dθ, (2.140)

where
Pw = ρg2A2

4ω (2.141)

is the power per unit frontage of the incident wave. This was shown by Thomas
& Evans (1981) for the application of wave energy. In this way, the maximum
power absorbed can be expressed in terms of the exciting forces alone.

As previously discussed, the individual device displacement amplitudes are also
of interest, since very large displacements are not only physically impractical,
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but also invalidate the linear wave theory employed. The displacements are
represented by the non-dimensional column vector D, such that the
displacement of the jth device is given by Re [ADje

−iωt]. This is equivalent to
writing D = ξξξ

A
. For maximum power absorption, the optimal displacements can

be written as
Dopt = i

2ωAB−1X. (2.142)

To find the power absorbed, knowledge of the exciting forces X (on each device)
is required. Consider an incident plane wave in the direction β as given in
equation (2.40), with dispersion relationship (2.41). Now consider the radiation
potentials emitted from the devices in the far-field region, where kR→∞.
These potentials must satisfy the radiation condition and thus, for device j,
must be of the asymptotic form

ϕj ∼
ig

ω

( 2
πkR

) 1
2
ekz+ikRgj(θ), (2.143)

where deep water is assumed; gj(θ) contains the angular variation of the wave
amplitude and a phase factor due to the location of body j. This can be written
as

gj(θ) = fj(θ)eikdj cos(β−αj), (2.144)

where fj(θ) is the far-field amplitude of the radiated wave-field from device j.
The exciting force is related to the far-field amplitude fj(θ); for N bodies
operating in one mode of motion, Srokosz (1979) shows that

Xj(β) =
√

2πρgA
k
fj(β)eikdj cos(β−αj)− 3

4 iπ. (2.145)

2.4.5 Array Quality Measures

To assess the nature of the arrangement of an array of WECs, quantities of
array interaction or array performance need to be defined. An absolute measure
of the power absorption is not ideal as this does not give an indication of the
power absorption capabilities of one array compared to other arrays or to an
isolated device and thus would not be a clear measure of the interaction effects
within the array. These absolute measures also lose generality by requiring
certain quantities to be specified explicitly, such as the wave amplitude A and
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device radius a. Therefore, one relative power measure is the absorption length

Labs = P

Pw
, (2.146)

which can be considered as the width of a wave train having the same mean
energy as that extracted by the array. Using (2.139), the maximum absorption
width is given by

Lopt = Popt
Pw

. (2.147)

It can be shown from equations (2.139) and (2.140) that the maximum
absorption length of a single WEC restricted to operating in heave alone is

L(1)
opt,heave = λ

2π , (2.148)

where the superscript denotes that the quantity is referring to a single WEC.
Similarly, if the WEC operates in surge alone, then the maximum absorption
length is

L(1)
opt,surge = λ

π
, (2.149)

though this will be dependent on the incident wave direction relative to the
surge direction of the WEC.

The array effectiveness will now be compared to that of N devices operating in
isolation, thus giving a measure of the performance of the array arrangement in
terms of the interaction effects. The maximum absorption length (2.147) is
recast in the alternate form

Lopt (β) = λ

2πNq (β) , (2.150)

where β is the angle of the incident wave. The λ
2π factor is the optimal

absorption length of a single isolated device absorbing power in heave from
equation (2.148), so that q(β) measures the optimal performance of an array of
N devices, compared to that of N devices operating in isolation. The quantity
q(β) is called the interaction factor or q-factor; this was first introduced
incorrectly by Budal (1977) and then in this correct form by Evans (1979).
Using the above formulation, this can be written as

q (β) = 2π
λN

Popt (β)
Pw

. (2.151)
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The q-factor can also be represented as

q (β) = maximum absorbtion length for the array
N ×maximum absorption length for isolated device

= maximum power absorption for array
N ×maximum power absorption for isolated device .

(2.152)

Note that q(β) can be expressed in terms of the exciting forces alone, using
(2.151), (2.139) and (2.140) to give

q (β) =
N∑

m,n=1
X†m (β)

[ 1
2π

∫ 2π

0
Xi (θ)X∗j (θ) dθ

]−1

mn
Xn (β) , (2.153)

where [aij]−1
mn denotes the (m,n)th term of the inverse of the matrix whose

(i, j)th term is given in [aij]. This was shown by Thomas & Evans (1981) for
this particular application of WEC array modelling.

It should be noted that the above definition of the interaction factor only
compares the optimal performance of the array to the optimal performance of N
isolated devices. However, as previously discussed, if constraints are placed on
the WEC motions, then the optimal performance may not be achievable.
Therefore, alternative versions of the interaction factor must be considered. One
such quantity is termed the averaged interaction factor q(β) and is defined as

q(β) = absorption length for array subject to constraints
N × optimal absorption length for isolated device

= power absorbed by array subject to constraints
N ×maximum power absorbed by isolated device .

(2.154)

where the actual (not optimal) power absorbed by the array is utilised. Another
version of the interaction factor is called the generalised q-factor, qgen, which
relates the constrained performance of the array to the constrained performance
of an isolated device, so that

qgen = absorption length for array subject to constraints
N × absorption length for isolated device subject to constraints

= power absorbed by array subject to constraints
N × power absorbed by isolated device subject to constraints .

(2.155)

Each of these measures of array interaction has its individual strengths and
weaknesses. Clearly, it is more desirable to examine constrained performance, as
this will more accurately model a real life scenario. However, using the optimal
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interaction factor q in the first instance is preferable as it is relatively easy to
calculate and provides an upper limit on what can be achieved. When
constraints are considered, intuitively it is more appropriate to compare
constrained performance of the array to the constrained performance of isolated
WECs, since the optimal performance of a single WEC may not be achievable
in the constrained regime. However, this requires knowledge of the single WEC
optimal displacement amplitudes and phases subject to the given constraints.
Thus, the calculation of qgen is more involved and requires greater
computational resources. However, as q compares the constrained array
performance to the maximum isolated WEC performance, no such knowledge of
the displacements are required and the calculation of q is less intensive.

In general, q ≥ qgen ≥ q. Equality will result between qgen and q if the optimal
isolated WEC displacement amplitude is less than the constraint amplitude.
Furthermore, equality will hold for all three interaction factors if the optimal
displacements for all WECs in the array are also less than the constraint
amplitude.

2.4.6 Point Absorber Theory

The point absorber theory essentially assumes that the devices are small enough
that they do not produce a scattered wave-field. The corresponding
mathematical assumption is that ka� 1, for a device radius a. This
assumption allows the far-field angular dependence of the mth device fm(θ) to
be expressed as

fm (θ) = f (θ) , (2.156)

where f(θ) is the far-field dependence for an isolated device oscillating in heave.
Further, since all devices are axisymmetric and heaving, it is assumed that
f (θ) = f = constant. For the case of semi-submerged spheres, the far-field
amplitude is shown by Havelock (1955) to be

f(θ) =
√

2πka2e−
1
4 iπ (C − iD) , (2.157)

where C and D are constants often referred to as the Havelock coefficients.

This allows analytical expressions for the excitation forces X and the radiation
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damping B to be determined. These are written as

X = 2πρga2A(C − iD) `̀̀ (2.158)

B = 2πρa4ω3(C2 +D2)
g

J, (2.159)

where `̀̀ is an N component column vector with components

`m = eikdm cos(β−αm), (2.160)

and J is an N ×N matrix with elements

Jmn = J0 (kdmn) , (2.161)

for devices operating in heave, where J0(x) is the zeroth order Bessel function of
first kind.

Thus, the q-factor of the array can be expressed in terms of the phases due to
the device positions and Bessel functions. It is shown by Evans (1979) that the
q-factor can be expressed, for an array of N devices, as

q (β) = 1
N
`̀̀†J−1`̀̀. (2.162)

Equation (2.162) holds for a general array, where the amplitudes of each device
are in general not equal. This is in contrast to the expression for the q-factor
derived by Budal (1977), which only holds for the special case when all device
motion amplitudes are equal. Budal’s expression for the interaction factor,
denoted qB, can be expressed as

qB (β) =
[ 1
N
`̀̀†J`̀̀

]−1
. (2.163)

Clearly (2.162) and (2.163) are not the same and the latter is a very special case
of the former, since via (2.142), the assumption of equal device amplitudes is
not true in general. This is because the motion amplitudes of each device
depend on the exciting forces and radiation damping coefficients.

A consistency relation for the q-factor was derived by Fitzgerald (2006). This
states, for optimal WEC motions within the limitation of the point absorber
approximation, that

1
2π

∫ 2π

0
q(β) dβ = 1. (2.164)
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It can also be shown that the q-factor for an array is invariant if the angle of
incidence is altered by π, hence

q (β + π) = q (β) . (2.165)

Thus, (2.164) can also be written as

1
π

∫ π

0
q(β) dβ = 1

π

∫ 2π

π
q(β) dβ = 1. (2.166)

For arrays with symmetry about the x and y-axes, such as linear arrays, the
above can be simplified further and written

2
π

∫ π/2

0
q(β) dβ = 1. (2.167)

Note that (2.164) and its extensions only hold for optimal WEC motions and is
not expected to be true for non-optimal motions. Results from Child (2011)
indicate that 1

2π
∫ 2π

0 q(β) dβ is slightly less than unity when the scattered
wave-field is included and a realistic PTO is applied. This was shown by Child
(2011) for optimal arrays determined using both the Parabolic Intersection (PI)
and Genetic Algorithm (GA) methods.

As discussed in Section 1.3.3, the result (2.164) obtained by Fitzgerald (2006) is
a special case of a more general result derived by Wolgamot, Taylor, &
Eatock Taylor (2012). Consider an N -device array with devices of arbitrary size
and shape. Now consider the numerator of the q-factor (2.152), which can be
written as in (2.139). Wolgamot et al. (2012) shows that the average of this
numerator with respect to the angle of incidence β is given by

1
2π

∫ 2π

0

1
8X†B−1X dβ = N

J
k
, (2.168)

where J = ρg2A2

4ω

{[
1 + 2kh

sinh 2kh

]
tanh kh

}
is the power per unit width of incident

wave front for arbitrary water depths; in deep water, this is simplified to
J = ρg2A2

4ω = Pw. This more fundamental result is valid for general device shape.
For heaving axisymmetric devices, (2.168) reduces to the result (2.164) of
Fitzgerald (2006).

Another implication of (2.168) is that, for a single non-axisymmetric device, the
directional averaged maximum power the device can absorb is the same as for
an axisymmetric device. This shows that if a device is shaped so that it absorbs
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energy very well in a particular direction β, than it will perform poorly for other
values of β, as expected, so that the average is preserved. Therefore, detailed
investigation of the wave resource at a proposed array location should be carried
out before consideration of the size and shape of both the individual devices and
the array. It is also important to note that this only applies to regular waves.

Expressions for the averaged and generalised interaction factors can also be
derived. Using UUU = −iωAD and simplifying gives

q = 4π(ka)2

N

(
−Re

[
(D + iC)D†`̀̀

]
− π(ka)2(C2 +D2)D†JD

)
. (2.169)

Similarly, by defining D1,opt as the (complex) optimal displacements of an
isolated device (subject to constraints), the generalised interaction factor can be
written

qgen = 1
N

Re
[
(D + iC)D†`̀̀

]
+ π(ka)2(C2 +D2)D†JD

Re [(D + iC)D1,opt] + π(ka)2(C2 +D2)|D1,opt|2
. (2.170)

2.5 Irregular Sea Theory

2.5.1 Introduction

Only theory involving regular waves has been presented thus far. However, in
most realistic sea states, regular waves do not occur, as is evident to any
observer on a ship or beach. The intricacy of these waves and in particular the
notion of modelling such irregular behaviour appears daunting. One reason for
this is that the waves in the ocean appear random in nature, due to their
complex sources and causes. The ocean’s waves are caused by the weather in the
Earth’s atmosphere, predominately the wind, which is itself difficult to predict.
Ocean waves are also affected by travelling great distances and encountering
random non-uniformities in the air and water. One can consider a regular plane
wave as being created by a singular “storm” event very far from the point of
interest, so that the non-linear effects of the storm are no longer present.
However, even this case results in waves of several wavenumbers; thus, real
waves cannot be thought of so simply as single wavelength regular plane waves.
Therefore, real irregular ocean waves must be described in a stochastic manner.

One simplifying idea is that an irregular wave can be thought of as being
composed of several regular wave components of different amplitudes,
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wavenumbers and angles and thus can be written as a superposition of regular
waves.

2.5.2 Description of Irregular Waves

It is assumed that an irregular wave η can be expressed as a superposition of
regular waves ηj, which are of the form in (2.28) and (2.36), so that the free
surface is written in integral form as

η = Re
[∫ ∞

0
A (ω) ei[k(ω)r cos(θ−β0)−ωt+Ξ(ω)] dω

]
, (2.171)

for a wave travelling in the direction β0, where Ξ(ω) is a phase function and
k (ω) > 0. Extending (2.171) to include waves from all possible directions gives

η = Re
[∫ 2π

0

∫ ∞
0

A (ω, β) ei[k(ω)r cos(θ−β)−ωt+Ξ(ω)] dω dβ
]
. (2.172)

Equation (2.171) can represented approximately as linear sum of an infinite
number of wave frequency components and is written as

η =
∑
j

ηj = Re
∑

j

Aje
i[kjr cos(θ−β0)−ωjt+Ξj ]

, (2.173)

where kj = k (ωj) is given by the dispersion relationship (2.37) and Aj is the
amplitude of the discrete frequency ωj with a phase difference Ξj. Comparing
equations (2.171) and (2.173) shows that the discrete and continuous measure of
the amplitude are related by Aj = A(ω) dω. Thus, A(ω) can be considered as
an amplitude density function.

2.5.3 Power in Irregular Seas

The average energy, per unit surface area, is proportional to η2 = η∗η and is
written as

E = ρg
∫ ∞

0

∫ π

−π
S(ω, β) dβ dω, (2.174)

where S(ω, β) is the energy density of the waves for a frequency ω and wave
angle β; this is often referred to as the wave energy spectrum or the wave
spectrum. This representation allows for both directional and frequency
variation in the sea state. The non-directional frequency spectrum Sω(ω) can be
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found by integrating over β, so that

Sω (ω) =
∫ 2π

0
S (ω, β) dβ. (2.175)

It should be noted that only Sω (ω) can be obtained from taking data of the free
surface elevation at one point (e.g. by use of a single buoy, though some buoys
can measure directionality also). If the directional variability of the wave
environment is very small, it can be assumed that the waves are long-crested
and hence unidirectional; in this case (2.175) is sufficient to describe the
sea-state. This is the case when the waves can be considered to be generated by
a far off “storm” event.

The directional spectrum S (ω, β) is often assumed to be separable into a
frequency dependent part and a directionally dependent part, as

S (ω, β) = D (ω, β)Sω (ω) , (2.176)

where, for consistency, D(ω, β) must satisfy
∫ 2π

0
D(ω, β) dβ = 1. (2.177)

It is often assumed that the frequency dependence is independently separable
from S (ω, β), so that D (ω, β) = D(β) is independent of frequency. If desired
Sω(ω), S(ω, β) and D(ω, β) can be written in terms of the wavenumber k
instead of frequency ω by employing the appropriate dispersion relation (2.37),
or (2.41) for deep water. Further details of the mathematical description of
power in irregular seas can be found in Falnes (2002).

For the purposes of this thesis, a JONSWAP spectrum is chosen similar to that
used in Child (2011). The wave frequency spectrum, written in terms of angular
frequency ω is

Sω(ω) = αpg
2

ω5 exp
[
−5

4

(
ωp
ω

)4
]
γYp (2.178)

Y = exp
−1

2

( ω
ωp
− 1
σp

)2 , (2.179)

where αp is the Phillips constant, γp is the peak enhancement factor, σp is the
peak width parameter and ωp is the value of the frequency ω at the spectrum
peak. Typical values of the above constants, such as those used in Child (2011),
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are
αp = 0.0081, (2.180)

γp = 3.3, (2.181)

σp =
 0.07 for ω ≤ ωp

0.09 for ω > ωp
. (2.182)

The total wave spectrum is assumed to be separable into a product of an
ω-dependent and a β-dependent component (a special case of (2.176)). This is
written as

S(ω, β) = Sω(ω)Sβ(β), (2.183)

where Sβ(β) is the incident wave angle spectrum. One possible form of the
angle spectrum is

Sβ(β) = 22sp−1

π

Γ2(sp + 1)
Γ(2sp + 1) cos2sp

[1
2 (β − βp)

]
, (2.184)

where sp is the spreading parameter, βp is the dominant incident wave direction
and Γ is the Gamma function.

Typical values of the spreading parameter for Sβ can be chosen between
sp = 5, 10, 15, in line with Child (2011), depending on how wide an angle
spectrum is desired. The peak angle direction βp can be chosen as desired,
namely βp = 0, π4 ,

π
2 , etc.. A standard value for peak frequency could be taken as

ωp = 0.5, as this roughly corresponds to ocean wavelengths of between 200m -
250m (ω = 0.5⇒ λ = 246m) and is intended to represent a typical case.

To analyse the implications of the wave spectrum on power absorption, the
power spectrum needs to be formulated. This is formed as

SP (ω, β) = 2πρgS(ω, β)cg(ω), (2.185)

where cg(ω) is the group velocity, defined by equation (2.44) (or equation (2.47)
for deep water), and an analytical expression can be obtained from the
dispersion relationship. The factor of 2π is introduced in (2.185) since dω

df
= 2π

and this is needed to remain consistent with the total power contained in the
spectrum.

Using a unidirectional version of (2.185), where it is assumed that there is no

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

85 Justin P.L. McGuinness



2. Mathematical Formulation 2.5 Irregular Sea Theory

β-dependency, the total power contained in the incident spectrum is

P∞ =
∫ ∞

0
SP (ω) dω.

However, numerical calculations of this can be simplified by taking a smaller
range of ω that is of primary interest. Most often, the spectrum will only be
non-zero for a relatively small finite range of ω. Limiting the numerical
integration to this range will significantly reduce the computation time required,
without an appreciable loss of accuracy. It may also be desirable to avoid
certain highly oscillatory (bad-behaved) parts of the range of ω. Therefore, the
targeted power is introduced as

PT =
∫ ωu

ωl

SP (ω) dω, (2.186)

for appropriate values of ωl and ωu.

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

86 Justin P.L. McGuinness



Chapter 3

Preliminary Optimisation of
Linear Arrays in Regular Waves

3.1 Introduction

The principal objective of this chapter is the numerical optimisation of the
layout of elementary arrays of spherical point absorber WECs, that are
constrained to a linear geometry. Different array geometries, such as circular
arrays, are investigated in subsequent chapters together with arrays without a
prescribed geometry. Before a general optimisation is attempted, the case of a
simpler single-variable problem is considered, which involves symmetric linear
arrays of five point absorber WECs. This one variable set-up approximates the
more general problem and allows for greater visualisation of the results.
Another advantage is that the single-variable optimisation involves considerably
less computational effort. However, meaningful results are still obtained. The
results detailed herein also provide a benchmark for comparison in later
chapters, which consider more general problems and constrained motions.

The majority of existing work has considered the optimisation of WEC arrays
through maximisation of the interaction factor q, with respect to the array
geometry and device spacing, see for example Thomas & Evans (1981) and
McIver (1994). However, recent studies has shown that large values or peaks of
the q-factor are usually surrounded by troughs of significantly lower
performance. This can result in a move from constructive to destructive
interference for just small changes in non-dimensional spacing and incident wave
direction, as shown by Fitzgerald (2006), Child (2011), McGuinness (2013),
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Costigan (2014), Fennell (2015) and Lawton (2017). This is severely restrictive,
as the q-factor measures the optimum performance of an array and assumes
optimal WEC motions and maximum power absorption. The q-factor does not
account for device efficiency or losses in performance, such as those due to
mooring. Therefore, if q < 1, this may represent poor performance in the case of
real devices.

As the values of q can be sensitive to changes in some parameters, it is desirable
to design the array such that the interaction factor is either approximately
unity, or preferably that q > 1 for a large range of parameter values. In order to
achieve this, an array layout is sought such that the integral of q over a range of
non-dimensional spacing is maximised; this effectively maximises the mean
value of q in the specified range of interest. A detailed description of this
optimisation method is given in Section 3.2.

The work presented in this chapter is summarised by McGuinness & Thomas
(2015). This is an extension of the preliminary study by McGuinness (2013),
which subsequently led to the work of Costigan (2014) on circular array
geometries, Fennell (2015) on triangular arrays and Lawton (2017) on elliptical
arrays. The results presented by McGuinness & Thomas (2015) are extended
here to an in-depth analysis of the array performance, device displacements and
a sensitivity analysis of the optimal performance.

It is important to be aware that the device motions can have a large impact on
the interaction factor. Large motion amplitudes are undesirable for several
reasons, including associated engineering difficulties in terms of the PTO and
the fact that large device motions will violate the assumptions of the underlying
linear wave theory. For example, if a large value of q is accompanied by large
device displacements, the imposition of a realistic PTO will tend to dampen the
motion of the devices and this will have a detrimental effect on the array
performance. Furthermore, large device displacements may cause the device to
leave the water surface, which will lead to slamming forces on re-entry and
affect the device survivability.

3.1.1 Previous Research on Linear Arrays

The simplest and most investigated array geometry is that of a straight line of
WECs. This removes all the angular device coordinates and a one dimensional
coordinate system can be used. Linear arrays have been extensively studied, for
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Figure 3.1: Diagram of uniform linear array with spacing d between consecutive
devices.

example by Budal (1977), Evans (1979), Thomas & Evans (1981) and McIver
(1994). The most considered class is the uniform array, where the spacing
between each of the devices is identical. This was first studied by Thomas &
Evans (1981), where uniform linear arrays of five devices were investigated for
several angles of wave incidence. A diagram of this array is shown in figure 3.1.
The value of q was investigated with respect to the uniform non-dimensional
distance between devices kd.

Figure 3.2 from Thomas & Evans (1981) shows that relatively small changes in
kd can result in large changes in q. Considering the peak in beam seas near
kd = 5, a unitary change to kd = 6 results in much poorer performance. In
particular, these changes can result in a move from q > 1 to q < 1, i.e. from
constructive to destructive interference. This is undesirable as the wave
conditions are not constant in real seas and may vary, which in turn will alter
the non-dimensional separation kd. The same problem generally occurs for
variation of the incident wave angle.

It can be seen that the array performs better overall in beam seas compared to
head seas, which is consistent with the intuitive idea that greater frontage to
the waves allows greater power absorption. For beam seas, q > 1 for the
majority of the domain kd ∈ [1, 10] considered; while the converse is true for
head seas. This effect is related to the condition (2.164) derived by Fitzgerald
(2006), as this states that the average interaction factor over all wave angles

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

89 Justin P.L. McGuinness



3. Preliminary Optimisation of Linear
Arrays in Regular Waves 3.1 Introduction

Figure 3.2: Variation of q-factor with non-dimensional uniform spacing kd for
beam, head and intermediate (dashed curve) seas. Taken from Thomas & Evans
(1981).

must be unity. Thus good performance at one wave angle must be accompanied
by analogously poor performance at other wave angles. Note that the total
length of this array is L = 4d. In order to allow comparison between Thomas &
Evans (1981) and the notation of this chapter, the relationship between kd in
figure 3.2 and kL used here is kL = 4kd.

One aspect that has been neglected in the literature on linear arrays concerns
the optimal separations between devices within an array, for a given array
length. The objective is to optimise the layout of linear arrays of five WECs, so
that improved performance was achieved which was also stable (in some sense)
to changes in non-dimensional spacing. This was achieved by maximising the
mean of the interaction factor over a range of non-dimensional array length.
The procedure for general linear arrays is outlined below, while a detailed
presentation of the simplified optimisation procedure for the arrays investigated
by McGuinness & Thomas (2015) is given in Section 3.3.
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3.2 Optimisation Method

Consider an array of N devices with the coordinates of each device given as
described in Section 2.4.3. One device is fixed at the origin to avoid unnecessary
replication of results. This means that the array is described by 2(N − 1)
variables, which represent the positions of all the other WECs. If the array
geometry is prescribed as linear, then all the αms are zero (or can be set to zero
by an appropriate coordinate rotation) and the number of array variables is
reduced to N − 1.

The objective is to maximise the mean value of q. For a linear array of total
length L between the first and N th devices, this is defined as

Iline(ks1, . . . , ksN−1; β0) = 1
kLu − kLl

kLu∫
kLl

q (ks1, . . . , ksN−1, β0) d[kL], (3.1)

where kLu and kLl are the upper and lower limits of the range of
non-dimensional length of the linear array. The fixed prescribed incident wave
angle is β0 and the convenient notation sj = dj(j+1) for consecutive device
separations has also been used. As the objective function is an integral,
maximising (3.1) is not trivial and numerical maximisation will need to be
employed.

The values of [kLl, kLu] define the range of interest over which q is to be
optimised, with the expected or target value of kL at the centre of this range.
The value of kLl is usually chosen to not only define the lower bound of the
optimisation range, but also high enough to avoid rapid large oscillations in both
the q-factor and the displacements D for arrays with very small non-dimensional
spacings. The oscillatory manor of the expressions for q and D for low values of
non-dimensional spacing is computationally prohibitive. Low values of kLl may
also result in touching or coincident WECs, which is to be avoided.

The integration variable kL does not appear explicitly in the integrand of (3.1)
and is dependent on the sum of all the ksj’s. One way of circumventing this is
to reparameterise these variables and investigate a discrete set of values of these
variables to locate the maximum. This is done by writing

ksj = nj kL

M
, (3.2)

where nj is taken to be an integer value which defines the consecutive spacing
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between the jth and (j + 1)th devices relative to the array length and M is a
chosen discretisation integer parameter such that M = ∑N−1

j=1 nj. In this way,
the nj’s are integer variables that become the parameters of the optimisation.
Equation (3.1) can now be written as

Iline(n1, . . . , nN−1; β0) = 1
kLu − kLl

kLu∫
kLl

q (n1, . . . , nN−1, kL; β0) d[kL]. (3.3)

The integration variable kL appears explicitly in the integrand and numerical
integration can be performed. Since the sum of all consecutive device
separations is the total array length, then

N−1∑
j=1

ksj = kL, (3.4)

which in terms of the njs implies

N−1∑
j=1

nj = M. (3.5)

Therefore, one separation variable can be written in terms of all others, for
example

nN−1 = M −
N−2∑
j=1

nj, (3.6)

thus reducing the number of position variables within the optimisation to
N − 2, since kL is the variable of integration in the objective function. In
general, for a linear array of N WECs, the objective function is thus written as

Iline(n1, . . . , nN−2; β0) = 1
kLu − kLl

kLu∫
kLl

q (n1, . . . , nN−2, kL; β0) d[kL]. (3.7)

In this chapter, integer values of the nj’s are investigated for arrays of N = 5
WECs with M = 100. This was due to the computational limitations of
Mathematica 9.0, in which all calculations of this chapter were performed. In
general, however, the nj’s do not need to be integer and in later chapters
involving more general optimisations, real (non-integer) values of nj are allowed.

To perform a preliminary optimisation of this type of array efficiently, it is
desirable to have as few variables describing the array as possible. In theory,
this optimisation can be performed for any number of variables but a larger
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number of variables increases the numerical intensity of the procedure and the
computational resources required for the optimisation considerably.

3.3 Optimal Linear Arrays of One Variable

This section considers linear arrays of N = 5 devices. Within this optimisation
regime, this results in arrays that are described by three variables. Two
symmetries (or asymmetries) are enforced, so that each array investigated can
be described by one variable, namely kd1 or n1. In each case, these symmetries
are defined such that ksn = ksm, for two values of n and m between 1 and 4
(n 6= m). This allows two of the unknowns to be dropped, reducing the number
of optimisation variables to one. For example, mirror symmetry across the
middle of the array forces that ks1 = ks4 and ks2 = ks3, which in turn gives

kL = ks1 + ks2 + ks3 + ks4

= 2 (ks1 + ks2)
(3.8)

⇒ ks2 = kL

2 − ks1. (3.9)

Using (3.2), (3.4) and (3.5), this can be written in terms of the parameters n1

and n2 as
n2 = M

2 − n1. (3.10)

Equation (3.7) can then be simplified to

Iline(n1; β0) = 1
kLu − kLl

kLu∫
kLl

q(n1, kL; β0) d[kL] (3.11)

and the optimisation can now be performed in terms of one variable (n1) only.
For notational convenience, the line subscript is dropped hereafter.

Certain conditions must be imposed on the value of n1 for this formulation to
remain consistent. One requirement is that n1 must be positive, as n1 ≤ 0 gives
a non-dimensional separation of ks1 ≤ 0 which is not physically possible.
Similarly, n2 > 0 must be enforced. Using equation (3.10), this requires that
n1 ∈

(
0, M2

)
. Setting M = 100, this corresponds to n1 ∈ [1, 49] for integer n1.

The accuracy of this (discrete) optimisation method can be increased by taking
larger values of M or allowing non-integer values of n1. However, this requires a
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Figure 3.3: Diagram of array LS1, with mirror symmetry about the middle WEC.

larger range of parameter values to be investigated.

The linear arrays shown in the following subsection were optimised for the
non-dimensional length range kL ∈ [kLl, kLu] = [5, 15], as this represents a valid
range of variation for kL for a target value of kL = 10. This is chosen
arbitrarily but is intended to represent a typical case. WECs are usually
envisaged to have separations of between 50m to 100m between them, giving an
array length of between 250m and 500m for a five-WEC linear array. For
kL = 10, these array lengths correspond approximately to wavelengths of
between 150m and 320m, which are reasonable for ocean waves.

The WEC motions can only be recovered if the geometry is known. To enable
calculations of the WEC displacements, particularly the displacement
amplitudes, the WECs are assumed to be semi-submerged spheres with a fixed
non-dimensional radius of ka = 0.4. The work of Havelock (1955) can then be
used to calculate the WEC motions using equation (2.142).

Three different types of array symmetry are investigated in Sections 3.3.1 -
3.3.3. In each case, the array is optimised using the method described for several
fixed values in incident wave angle β0. The optimal arrays are then analysed for
variations in the wave-field and the stability of their performance is assessed.
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Figure 3.4: I(n1) against n1 for for array LS1 with β0 = 0.

3.3.1 Linear Symmetric Array 1 (LS1)

Consider a five device linear array such that s1 = s4 and s2 = s3, so that the
array exhibits mirror symmetry about the middle device. This array is shown in
figure 3.3 and is referred to as Linear Symmetric Array 1, which is abbreviated
to LS1. This array is described by two variables, ks1 and ks2, or equivalently n1

and n2. Using (3.10) with M = 100 means the array is governed by a single
unknown n1. The array geometry is then optimised with respect to n1 by
maximising the value of I(n1) (equation (3.11)) for n1 ∈ [1, 49]. This is done for
several values of incident wave angle, namely β0 = 0, π8 ,

π
4 ,

3π
8 ,

π
2 . A detailed

analysis is provided for the head seas (β0 = 0) case, including a sensitivity
analysis of the optimal array and a comparison of the optimal result to
non-optimal layouts. The predicted optimal WEC displacements are also
analysed; it should be stressed that linear wave theory requires that the
amplitudes of these displacements are at most the same order of the wave
amplitude. For the other values of β0, the results are summarised and only the
optimal arrays are considered in detail.

3.3.1.1 Optimisation and Analysis of Array LS1 in Head Seas

The mean performance of array LS1 in head seas is shown for all allowed values
of the array layout variable n1 in figure 3.4. It is clear that the maximum value
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Figure 3.5: Diagram of optimised array LS1 for β0 = 0, with ks1 = 4.9 and
ks2 = 0.1.

of I is for the largest allowed value of n1 = 49. This gives non-dimensional
separations of ks1 = 4.9 and ks2 = 0.1 for the target non-dimensional length
kL = 10. A diagram of the array with this optimised spacing is illustrated in
figure 3.5. This shows that the devices in the centre of the array are bunched
very close together, with a non-dimensional separation of kL

100 (1% of the total
array length). This configuration is very different from the uniform spacing of
figure 3.1. It may violate the point absorber approximation used, which requires
that ka << 1; thus the validity of these results depend strongly on the device
radius, or more specifically, on the ratio d/a. It may be unreasonable to neglect
the scattered waves if the WECs are in such close proximity, as shadowing may
have a significant effect. Also, depending on the physical value of k, the physical
separation of the devices may be small enough that collisions of the WECs may
become a concern.

Regardless of any difficulties with this result, the q-factor is investigated for this
optimal array. Figure 3.6 shows the interaction factor of array LS1 in head seas
for kL ∈ [5, 15] for various values of the parameter n1, including the optimal
value of n1,opt = 49. This clearly shows that the q-factor for n1 = 49 is larger on
average over the range kL ∈ [5, 15] for β = 0. The optimal q-factor is greater
than unity over this entire range; the lowest value obtained is q ≈ 1.1 at
kL ≈ 11.7. Although the plot for n1 = 1 outperforms the optimal case of
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Figure 3.6: Interaction factor q against kL for array LS1 for different values of
n1, with β = β0 = 0 and kL ∈ [5, 15]. q = 1 is shown by dashed line.

Figure 3.7: Interaction factor q against non-dimensional length kL and array
layout parameter n1 for array LS1 with β = β0 = 0.
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n1 = 49 within kL ∈ [11, 14], the average performance of n1 = 49 is better over
the whole domain and thus more desirable.

A 3D plot of q vs kL and n1 is shown in figure 3.7, where the effect of varying
both the non-dimensional length and the layout of the array (in terms of n1)
can be seen. The array appears to perform best for smaller kL, with the overall
optimum occurring for kL = 5 and n1 = 49. A large area of poor performance
can be seen for kL ∈ [10, 15] ∩ n1 ∈ [15, 35]. This is due to large destructive
interference in this region with the value of q dropping as low as 0.5. This plot
serves to show a broader view of the performance of the array for varying n1

and also confirms the optimal result of n1,opt = 49. This suggests that the
general performance of an array is poorer for larger kL, particularly for a
uniform array (n1 = 25). The increased performance of the smaller arrays is
probably due to the better constructive interference possible as a result of the
optimal motions and the reduced spacing between the devices. This is an
important result which indicates that arrays with larger inter-device spacings
perform poorer in terms of WEC interaction for head seas.

Figure 3.8 shows the predicted displacements (non-dimensionalised with respect
to the wave amplitude A) of the WECs within this optimal array. These values
are computed assuming optimal device motion and performance within the
point absorber and linear wave theories using equation (2.142). The devices are
assumed to be semi-submerged spheres with a non-dimensional radius of
ka = 0.4. This shows that high q-factor values correspond to larger WEC
motions. Clearly, the devices within the group in the optimal array (WECs 2, 3
and 4) have unacceptably large device motions, while those in relative isolation
surrounding this group exhibit more reasonable displacements, though still too
large for lower values of kL. The large device motions, particularly of the
central devices, are in violation of linear wave theory which assumes that these
motions are at most O(1). Furthermore, the implementation of a realistic PTO
would prevent such large motions and this would have an adverse effect on the
power absorption of the devices, and hence, the performance of the array.

As a result of these large motions of the grouped devices, it is proposed that
replacing these devices with a single larger device may reduce the device
amplitudes while retaining the good performance of the array. Figure 3.9 shows
the proposed array with the central group of three devices replaced by a single
device of three times the radius. These arrays with large devices instead of
groups of devices will be referred to as "satellite" arrays, as the isolated devices
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Figure 3.8: Predicted non-dimensional optimal WEC displacements in optimised
array LS1 (as in Figure 3.5) with n1 = 49 for β = β0 = 0.
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Figure 3.9: Suggested possible optimal "satellite" array for array LS1, correspond-
ing to figure 3.5, with larger device in place of groups of devices.
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Figure 3.10: Interaction factor q against angle of wave incidence β for optimal
LS1 array for kL = 10 (with n1 = 49).
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Figure 3.11: Interaction factor q against non-dimensional length kL and incident
wave angle β for optimal array LS1 (n1 = 49).

can be considered to be flanking or orbiting the central large device.

Replacing a group of several WECs would only work if the grouped WEC
motions were in phase with each other, otherwise the appropriate interaction
effects would not be recreated. It was found that the grouped WECs all
oscillated with opposite phases to each other, thus this idea of a larger WEC
may not be appropriate. However, if the groups were replaced by a WEC that
operated in more than one mode of motion, then it is possible that the same
interaction effects could be created. However, a multi-modal WEC would
complicate the model considerably and introduce some significant engineering
challenges.

The effect of varying the incident wave angle on the optimal LS1 array (with
n1 = 49) is shown in figure 3.10, for kL = 10 fixed. As discussed in the previous
chapters, Fitzgerald (2006) showed that the mean of the interaction factor with
respect to incident wave angle is unity, as in equation (2.164). This is evident
from figure 3.10, where the plot of q against β oscillates about the average of
q = 1. It can be seen that β = 0 is not the best performing value, as q is greater
for β = π/2. This suggests that better results could be obtained for β0 = π

2 .
However, it is noted that this is just for kL = 10 fixed.
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A more complete picture is shown in figure 3.11, where a 3D plot of q against
kL and β is presented. The effect of the wave angle β on q alters as kL is
changed, and visa versa. Therefore, results obtained must be critically analysed
for stability to changes not only in non-dimensional length kL but also in
incident wave angle β. It should be noted that generating this figure requires
considerable computational effort within Mathematica 9.0. Analysing each
array over both kL and β simultaneously is computationally demanding and
reduces the overall clarity of the results. Henceforth, when β-variations are
assessed, the non-dimensional length will be fixed at kL = 10, as this will give
the performance of array at the target value, which is of greatest concern.

3.3.1.2 Sensitivity Analysis for Optimal Symmetric Array LS1 in
Head Seas

In order to assess whether or not the optimal array obtained is stable to small
errors in non-dimensional separation between the devices, a stability analysis is
preformed; this examines the effect of an error in the separations ks1 and ks2 on
the interaction factor q. A detailed sensitivity analysis is presented in figure
3.12, which shows the effect of different combinations of small errors in the
device separations ksj (and hence in kL). These errors are assumed to follow
the symmetry of the array, i.e. the error ε1 appears in the separations of the
first-second and fourth-fifth devices, and ε2 appears in the separations of the
second-third and third-fourth device. Figure 3.12 shows the effect of these
errors on the interaction factor for several fixed values, namely
ε = 0,±0.025kL,±0.05kL.

For kL ∈ [5, 10], the effect of any small errors in the device positions is
relatively linear, where a negative error slightly increases the interaction factor
and a positive error slightly decreases it. This is because these negative/positive
errors have the effect of decreasing/increasing the total non-dimensional length
respectively; this results in a positive/negative effect on the interference effects
within the array. As previously discussed, the array seems to perform better for
smaller kL, where greater constructive interference occurs. This result is echoed
here, where an error that decreases kL results in an increase of q, while an error
that increases kL causes a decrease in q.
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(a) ε1 = 0 (b) ε1 = 0.025kL (c) ε1 = 0.05kL

(d) ε1 = −0.025kL (e) ε1 = −0.05kL (f) ε2 = 0

(g) ε2 = 0.025kL (h) ε2 = 0.05kL (i) ε2 = −0.025kL

(j) ε2 = −0.05kL

Figure 3.12: Sensitivity analysis for optimised array LS1 for β0 = 0, with n1 = 49.
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The effect of the errors for kL ∈ [10, 15] appears more complex. This is again
due to the general performance of the optimal q-factor (n1 = 49) shown in figure
3.6. The minimum of this curve occurs at kL ≈ 12. However, if the total length
of the array is altered by an error, then the location of this trough will be
shifted left or right if the error is positive or negative respectively.

The errors ε1 and ε2 have slightly different effects on the behaviour of the array,
especially for kL ∈ [10, 15]. This is possibly due to the larger relative error of
ε2
ks2

compared to ε1
ks1

. In the optimum LS1 array for head seas,

ks1 = n1

100kL = 49kL
100 (3.12)

and
ks1 = n2

100kL = 50− n1

100 = kL

100 . (3.13)

If it is assumed that the same error is applied to each quantity, so that
ε1 = ε2 = δkL, then the relative error of ks1 is ε1

ks1
= 100

49 δ, whereas that of ks2 is
ε2
ks2

= 100δ, which is 49 times larger. This is perhaps the reason why the array is
slightly more sensitive to errors in ks2. As expected, the errors have the
greatest effect when they are combined and are both present simultaneously.
However, in spite of this, each of the errors still have a relatively small overall
effect on the array performance.

It should be noted that the errors are investigated up to a value of ±0.05kL. It
is expected that the error in the deployment of these arrays will not exceed this,
as this would involve a miss-deployment of the appropriate devices of 5% of the
total physical length of the array. The physical length of these arrays will be of
the order of 200m-400m for an average incident wave length of 150m, so the
maximum error of 0.05kL corresponds to a physical error of approximately
10m-20m. It is unlikely that a WEC would be miss-deployed by a distance
greater than this.

From figure 3.12, it is clear that the plots of q for non-zero ε1 or ε2 are
perturbations of the original plot with ε1 = ε2 = 0. The curves maintain their
basic shape and the values of q obtained are relatively similar for all
combinations of ε1, ε2 investigated. This shows that the optimal head seas case
of array LS1 with n1 = 49 is stable to errors in the device separation up to ±5%
of the total length.
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Figure 3.13: I(n1) against n1 for linear array LS1 for several values of β0.

3.3.1.3 Optimisation and Analysis of Array LS1 for Alternate
Incident Wave Angles

By examining the behaviour of the array with respect to incident wave angle
(see figures 3.10 and 3.11), it is clear that β0 = 0 (head seas) may not the best
way to arrange a mirror symmetric linear array. This seems to be true in general
for linear arrays, as previous research, for example Thomas & Evans (1981), has
shown that these arrays tend to preform better in beam seas (β0 = π

2 ) in line
with the idea that greater frontage to the waves allows greater power extraction.
Therefore, the optimisation procedure used for β0 = 0 is repeated for different
values of wave incidence for the LS1 array, namely β0 = π

8 ,
π
4 ,

3π
8 and π

2 .

Firstly, the behaviour of the average interaction factor I(n1) is assessed and the
optimal value of n1,opt is identified, for each case. An analysis of the resulting
behaviour of the interaction factor in the optimal cases is then presented. The
effect of altering the non-dimensional length and the incident wave angle on the
optimal arrays is examined. Finally, a brief summary of all results relating to
array LS1 are presented in Section 3.3.1.4.

Figure 3.13 shows plots of the average interaction factor I(n1) for β0 = π
8 ,

π
4 ,

3π
8

and π
2 . Most notable is that the optimum value of n1 changes for different wave
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angles. The optimum values are n1 = 1, 1, 25 and 34 for β0 = π
8 ,

π
4 ,

3π
8 and π

2

respectively, while earlier it was found that the optimum for β0 = 0 was
n1 = 49. This indicates that even when a certain symmetry is enforced, the
layout of a linear array (particularly the spacing between the devices) has a
considerable impact on the power absorption. These results also indicate that
the incident wave angle has a very large effect on optimal array layout and
performance, in keeping with the result of Fitzgerald (2006).

It should be noted that the general performance of the array, even in optimal
cases, is severely limited for some values of β0. Consider, for example, the
β0 = π

8 case. Figure 3.13 shows that the best value of I(n1) in this regime is
approximately 0.84, which is the average interaction factor of the array over
kL ∈ [5, 15]. This implies that destructive interference dominates in this regime.
On the other hand, for beam seas (β0 = π

2 ), the array achieves
I(n1) ∈ [0.92, 1.35] for all allowed array configurations, with the majority of n1

values producing I(n1) > 1. This shows that constructive interference can be
utilised at this wave angle by intelligent arrangement of the devices, without
overwhelming destructive effects. Thus, if a given WEC array site has a low
variation in incident wave angle, the directionality of the incident waves can be
utilised by arranging the WEC array in this manner.

It is interesting to note the relatively small change in performance of the beam
seas array for n1 ∈ [30, 49]. This range of n1 corresponds to a significant
alteration in the array layout, ranging from a unequally spaced (but relatively
separated) array to an array with three grouped WECs in the centre. Despite
this considerable layout variation, the mean performance of the array varies
only slightly within this range. It should also be noted that the mean
performance of the beam seas array is much higher than the others presented
and performs slightly better than the head seas array at its optimal values.

The performance of each of the optimal LS1 arrays identified for the different
incident wave angles is now analysed. For each value of β0 considered, the
optimal interaction factor q for each optimal array is investigated for
kL-variation in figure 3.14 and for β-variation in figure 3.15.

As presented earlier, performance at some wave angles appears to be extremely
limited in even the optimal cases. The poorest case occurs for β0 = π

8 , as shown
in figure 3.14. It is clear that q < 1 for all values of kL considered, even for the
optimum case where n1 = 1. The relatively poor performance of the linear array
at β0 = π

8 is also echoed in the I values achieved. This suggests that waves
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Figure 3.14: Interaction factor q against kL for optimal LS1 array for several
values of β0.

angles near β = π
8 should be avoided.

The highest value of I(n1) was achieved in the beam seas case (β0 = π
2 ). The

optimum layout (n1 = 34) produced an average interaction factor of
I(n1,opt) = 1.34, which is slightly higher than the optimum of I = 1.33 achieved
for β0 = 0. It is intuitive that a linear array in beam seas would perform better,
as this layout would provide the greatest frontage to the incident waves.
However, the overall effect is not this simple; very good performance can also be
achieved for head seas, which corresponds to the minimum frontage to the
incident waves.

An interesting comparison can be made between the optimal interaction factor
for head and beam seas. As previously shown, the optimal array layout is
considerably different for head and beam seas. For head seas, the best case is
n1 = 49, which corresponds to a group of three devices at the centre of the
array; while for beam seas, the optimal value of n1 = 34 corresponds to an
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Figure 3.15: Interaction factor q vs β for array LS1 for several values of β0, with
kL = 10.

unequally separated array (quite similar to that investigated in McIver (1994)).
The optimal average interaction factor is almost identical in both cases, with
I = 1.33 and I = 1.34 for head and beam seas respectively.

However, by examining figures 3.6 and 3.14, it is clear that the β0 = 0 optimal
array performs better in the first half of the range of kL, namely kL ∈ [5, 10].
Conversely, the β0 = π

2 optimal array performs better for the second half of the
range, kL ∈ [10, 15]. It seems as if the optimal plots of q for head and beam seas
are almost mirror images of each other. This would allow for further
optimisation if the deployment site of the array contained a tighter range of
incident wavelengths. If it was known that kL would stay within a range of
[5, 10], then n1 = 49 with β0 = 0 would seem an intelligent choice; while if kL
was to fall within [10, 15], then n1 = 34 with β0 = π

2 would appear better.

This would also allow more freedom in the choice of physical length L of the
array, which also affects the parameter kL. The range of kL for a given site can
be contrived by an intelligent choice of physical length L, depending on the
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wavelength variation present at the site. This may also be useful if one array
layout was more preferable than the other. For example, placing the WECs so
close together (separated by 1% of kL) in the β0 = 0 optimal array results in
very large WEC motions, particularly for the grouped devices. This close
spacing between WECs may cause further complications due to shadowing
effects and possible collisions. Therefore, the array spacing that is optimal for
beam seas may be more desirable, as it may avoid some problems associated
with closely spaced WECs.

An overall observation of the results here indicates that incident wave angles
around β = π

8 result in poor performance (even when optimised) and should be
avoided. However, head and beam seas appear the most conducive to
optimisation, although the large WEC motions would present a problem; this is
an artefact of the unconstrained optimisation performed in this chapter.

The behaviour of q for variation in β is an important consideration, since the
incident angle of the waves at a given site can change with the sea conditions.
Ideally, an optimal array would perform well over a large range of both kL and
β, thus being stable to variations in both incident wavenumber and wave angle.

Figure 3.15 shows the β-variation of the q-factor for the optimal LS1 arrays for
each value of β0 investigated. In some cases, the optimal array layouts are
identical, thus the β-variation is also the same. Symmetry of all plots can be
observed about π

2 , this is due to equation (2.165) and the inherent symmetry of
the linear array.

It was previously discussed how the optimal array at β0 = π
8 is undesirable, due

to low optimal performance, and this is echoed by the β-variation of this array
shown in figure 3.15. An examination of figure 3.15 shows an oscillatory
behaviour for β0 = π

8 and β0 = π
4 (which have the same optimal array layout),

where performance moves between q ≈ 1.3 to q ≈ 0.78 for a change in β of
approximately π

8 . The period between peaks and troughs is approximately π
8 ,

with larger peaks occurring near β = π
4 and β = 3π

4 .

The beam seas array appears to be relatively stable to changes in β around the
target value of β0 = π

2 . The array maintains q > 1 for a β-variation of
approximately ±5π

24 . Similar performance is noted for the β0 = 3π
8 case, where

the optimal array layout is uniform. A comparison can be made between the
β0 = 3π

8 case and the beam seas case in terms of β-variation, as the q vs β curves
are rather similar. However, the β0 = 3π

8 case does not exhibit the same stability
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Table 3.1: Optimisation results for array LS1 with different incident wave angles.

β0 n1,opt I(n1,opt) Array Layout

0 49 1.33 * *** *
π
8 1 0.84 ** * **
π
4 1 1.12 ** * **

3π
8 25 1.18 * * * * *
π
2 34 1.34 * * * * *

as the beam seas case, since the target value occurs to the left of the peak.

3.3.1.4 Summary of Results for Array LS1

Table 3.1 provides a brief summary of the optimisation results of array LS1 for
the different wave angles considered. For each value of β0, the optimal spacing
parameter n1,opt and the mean interaction factor I(n1,opt) at this value are
presented, together with a schematic of the optimal array configuration.

The optimal value of n1, and hence of the optimal array layout, varies
considerably depending on the value of β0 assumed. The value n1 = 49 (optimal
for head seas β0 = 0) corresponds to a group of three WECs at the centre and
two isolated WECs at the ends of the array; n1 = 1 (optimal for β0 = π

8 ,
π
4 )

corresponds to two groups of two devices at the ends of the array, with a single
device in the centre; n1 = 25 (optimal for β0 = 3π

8 ) corresponds to a uniformly
spaced array; while n1 = 34 (optimal for beam seas β0 = π

2 ) almost corresponds
to the case of unequal spacing investigated in McIver (1994). It can also be seen
that the array performs quite poorly for β0 = π

8 , since the optimal configuration
gives a mean interaction factor of I = 0.84, indicating that destructive
interference dominates at this wave angle. Good performance is seen at β0 = π

2

(beam seas) and this complies with the intuitive concept that greater frontage
to the waves allows for greater power absorption. However, similar performance
is also obtained for the optimal head seas case.

The displacement amplitudes of the WECs for each optimal array were
analysed, but are not presented for brevity. Overall, the same trends as in figure
3.8 were observed, where larger motions are seen for grouped WECs and for
lower values of kL. Large amplitudes in excess of the O(1) requirement were
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Figure 3.16: Diagram of array LS2, with translational symmetry about the middle
WEC.

present in each optimal array.

The advantage of the objective function utilised is highlighted by the sensitivity
analysis in figure 3.12. Since the mean of the interaction factor is maximised
within the optimisation, this precludes the case of a large sharp peak in
performance that is surrounded by troughs being considered as optimal. The
sensitivity analysis proved that small changes in each WEC separation resulted
in only small changes in performance, thus confirming the stability of the
optimal performance and the usefulness of this approach.

3.3.2 Linear Symmetric Array 2 (LS2)

A five-device linear array such that s1 = s3 and s2 = s4 is now considered, so
that the array has translational symmetry about the middle device, as shown in
figure 3.16. This array is herein referred to as array LS2.

A detailed description is provided for the optimisation and optimal results of
the head seas (β0 = 0) case in Section 3.3.2.1, while the results for other wave
angles are summarised in Section 3.3.2.2. The results for all wave angles follow
a similar pattern as those presented and so a detailed analysis is omitted in
Section 3.3.2.2 for brevity. Further supplementary results are provided in
Appendix A. All optimisation results for array LS2 are summarised in table 3.2.
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Figure 3.17: I(n1) against n1 for n1 ∈ [1, 49] for array LS2 with β0 = 0.

Figure 3.18: Diagram of optimised array LS2 for β0 = 0, with ks1 = 0.1 and
ks2 = 4.9.

3.3.2.1 Optimisation and Analysis of Array LS2 in Head Seas

The effect of the parameter n1 on the mean value of q for array LS2 with β0 = 0
is shown in figure 3.17, which shows that the optimum case is when either
n1 = 1 or n1 = 49. This is to be expected, as the physical layout of array LS2
with n1 = 1 and n1 = 49 are the reverse of each other, so the interaction factors
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Figure 3.19: Interaction factor q against kL for array LS2 for different values of
n1, with kL ∈ [5, 15] and β0 = 0. q = 1 is shown by dashed line.

are the same by (2.165) and the symmetry of the system. In either case, this
configuration consists of two groups of two devices and an isolated fifth device,
as shown in figure 3.18, where n1 = 1 is the chosen configuration.

The variation of the interaction factor for different values of n1 with respect to
kL is shown in figure 3.19. In this figure only n1 ∈ [1, 25] needs to be
considered, due to the same symmetry identified above. For example, the
interaction factor for n1 = 5 behaves the same as that for n1 = 45.

There is very little difference in the performance of array LS2 for all values of n1

in the lower half of the domain, i.e. kL ∈ [5, 10]. The optimal array with n1 = 1
performs poorest in this region, but only by a small amount. The main
difference is noticed for kL ∈ [10, 15] where the optimal array outperforms all
others by a more considerable margin. For the optimal array with n1,opt = 1, the
array maintains q > 1 for all kL ∈ [5, 15], with q ∈ [1.06, 1.65]. A 3D plot of the
array performance for variation in both kL and n1 is presented in figure A.5 in
Appendix A. Similar behaviour to the LS1 array is observed, where the array
generally performs better for smaller kL and a trough exists for
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kL ∈ [10, 15] ∩ n1 ∈ [15, 30].

The predicted optimal displacements for this optimal array are shown in figure
3.20. Similarly to array LS1, the main concern occurs for the grouped WECs,
where excessively large motions are seen. The displacement amplitudes of
WECs 1-4 are O(100) times the wave amplitude. These motions are required to
be at most O(1) by the underlying model. Therefore these motions invalidate
the model and would probably be damped by any realistic PTO, thus reducing
the array performance. The motion of WEC 5 is within acceptable limits for
kL ∈ [9, 15], but for lower values of kL the amplitude can no longer be
considered O(1) and is thus also unacceptable.

A similar satellite array to that described in Section 3.3.1 can be proposed for
this array, where the grouped pairs of devices are replaced by devices that are
twice as large. This is shown in figure 3.21. Further analysis is needed to assess
the viability of such an array, which is beyond the scope of this thesis.

A sensitivity analysis similar to that in Section 3.3.1 was performed for array
LS2. Similar results to array LS1 were found, where the errors in WEC positions
merely caused perturbations in the interaction factor and overall performance
was maintained. Hence the details of this analysis are omitted for brevity.

3.3.2.2 Optimisation and Analysis of Array LS2 for Alternate
Incident Wave Angles

Optimisation of array LS2 was also performed for a number of incident wave
angles, namely β0 = π

8 ,
π
4 ,

3π
8 ,

π
2 . Figure 3.22 shows the optimisation results for

these values of β0, while figures 3.23 and 3.24 show the performance of the
optimal arrays for variation in kL and β respectively.

Diminished performance is seen for β0 = π
8 , with the maximum value of

I(n1,opt) ≈ 0.82 obtained. This also results in the poorest overall performance
for the wave angles considered, as illustrated in figures 3.22-3.24. However,
unlike array LS1, the optimal array layout for β0 = π

8 is identical to the β0 = 0
case. Similarly poor performance is seen for β0 = π

4 with I < 1, although better
than the β0 = π

8 case. Again, the optimal array layout is unchanged from
β0 = π

8 with n1 = 1. It is clear that both β0 = π
8 and β0 = π

4 should be avoided,
since these cases maintained I < 1, even in the optimal cases.

It is interesting to note how little the array layout parameter n1 effects the
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Figure 3.20: Predicted non-dimensional optimal WEC displacements in optimised
array LS2 (as in Figure 3.18) with n1 = 49 for β = β0 = 0.
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Figure 3.21: Suggested possible optimal satellite array for array LS2, correspond-
ing to figure 3.18, with larger device in place of groups of devices.

10 20 30 40 50
n1

0.7

0.8

0.9

1.1

1.2

1.3

IHn1L

Β0=
Π

8
Β0=

Π

4
Β0=

3 Π

8
Β0=

Π

2

Figure 3.22: I(n1) against n1 for array LS2 for several values of β0.
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Figure 3.23: Interaction factor q against kL for all optimal LS2 arrays for several
values of β0.

average performance of the β0 = 3π
8 case, where I ≈ 1.16 for all n1 ∈ [1, 49].

Thus, decent performance is seen for all possible layouts at β0 = 3π
8 , despite

large gaps or groups of WECs that exist for some of these configurations.

It is clear from figure 3.23 that the best case is for beam seas, where q > 1 for
all kL ∈ [5, 15]. Furthermore, q is increasing with kL, indicating that the array
performs better for larger kL in beam seas. This agrees with the analogous
results for array LS1. It is interesting to note that the poorest performance
corresponds to optimal arrays that consist of closely spaced groups of WECs
(n1,opt = 1 for β0 = π

8 and β0 = π
4 ). Conversely, the best performance is seen for

optimal arrays with uniform layouts n1,opt = 25 for β0 = 3π
8 and β0 = π

2 .

Rather surprisingly, the β-variation of array LS2 for both n1 = 1 and n1 = 25
are very similar and only deviate near β = π

2 , as shown in figure 3.24. This
shows that the beam seas optimal array is quite stable to changes in β, as it
maintains q > 1 for a variation of approximately ±5π

24 , similarly to array LS1.
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Figure 3.24: Interaction factor q against β for array LS2 optimised for for several
values of β0, with kL = 10.

This is not as ideal for the other values of β0, since the target wave angle occurs
away from the central peak at β = π

2 .

3.3.2.3 Summary of Results for Array LS2

The results for array LS2 are concisely presented and summarised for each value
of β0 in table 3.2, which lists the optimal value of the spacing parameter n1

(n1,opt), the optimal mean value of q, and also shows a schematic of the optimal
array layout. As in Section 3.3.1, the general array performance and the
optimal array layouts differ considerably for changing values of β0.

Once more, the incident wave angle changes the optimal arrangement in some
cases. For this prescribed symmetry, the optimal situation jumps from two
groups of two devices n1 = 1, 49 to the uniform array n1 = 25 between β0 = π

4

and β0 = 3π
8 . As with array LS1, both the beam and head seas cases perform

the best, with the former slightly outperforming the latter. For β0 = π
8 the
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Table 3.2: Optimisation results for array LS2 with different incident wave angles.

β0 n1,opt I(n1,opt) Array Layout

0 1 1.25 ** ** *
π
8 1 0.82 ** ** *
π
4 1 0.97 ** ** *

3π
8 25 1.18 * * * * *
π
2 25 1.32 * * * * *

optimal array performs quite poorly, with destructive interference dominating,
similarly to array LS1.

3.3.3 Linear Asymmetric Array 3 (LS3)

The final linear array considered in this chapter is an asymmetric one such that
s1 = s2 and s3 = s4, as shown in figure 3.25; this array is referred to as array
LS3. The same procedure is followed and the array is analysed for several
incident wave angles. The effect of the parameter n1 is investigated in each case
and the optimal array formation is also assessed in terms of performance and
stability. A detailed analysis of results is provided for β0 = 0 in Section 3.3.3.1,
while the results for other wave angles are summarised in Section 3.3.3.2.

3.3.3.1 Optimisation and Analysis of Array LS3 in Head Seas

The optimisation results for array LS3 in head seas are shown in figure 3.26. As
with array LS2, symmetry exists about n1 = 25, so only n1 ∈ [1, 25] needs to be
considered. The optimal case is when n1 = 3 or n1 = 47, which results in the
array layout shown in figure 3.27, where n1 = 3 is demonstrated. This results in
a closely spaced group of three WECs to the left of the array, with two isolated
WECs in the centre and to the right of the array.

The performance of array LS3 in head seas is shown for several values of n1 in
figure 3.28. Similar to array LS2, very little variation is seen in q for different n1

values for kL ∈ [5, 10], and the optimal value of n1 = 3 is almost the poorest in
this region, with n1 = 1 producing slightly lower performance. However, for
kL ∈ [10, 15], the optimal array outperforms all others and maintains q > 1,
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Figure 3.25: Diagram of array LS3, with asymmetry about WEC 3.
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Figure 3.26: I(n1) against n1 for n1 ∈ [1, 49] for array LS3 with β0 = 0.
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Figure 3.27: Diagram of optimised array LS3 for β0 = 0, with ks1 = 0.3 and
ks2 = 4.7.
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Figure 3.28: Interaction factor q against kL for array LS3 for different values of
n1, with kL ∈ [5, 15] and β = 0. q = 1 is shown by dashed line.
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Figure 3.29: Predicted non-dimensional optimal WEC displacements in optimised
array LS3 (as in Figure 3.27) with n1 = 3 for β = β0 = 0.
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Figure 3.30: Suggested possible optimal "satellite" array for array LS3, corre-
sponding to figure 3.27, with larger device in place of groups of devices.

with q ∈ [1.15, 1.63] for all kL ∈ [5, 15].

As with previous optimal arrays, the WEC displacement amplitudes are shown
in figure 3.29 to be excessively large. This is particularly true for the group of
devices (WECs 1-3), whose motions are O(1000) to O(10000) times the incident
wave amplitude. The isolated devices (WECs 4 and 5) exhibit reasonable
motions for kL ∈ [8, 15], but for smaller kL these also exceed the O(1) limit.

Following the previous discussion, one possible solution to this is to replace the
group of WECs with an appropriately larger WEC, creating an analogous
satellite array, as shown in figure 3.30. Again, this requires further investigation
and validation that is beyond the scope of this thesis.

A sensitivity analysis was also performed for array LS3, analogous to that in
figure 3.12 for array LS1. Similar performance to arrays LS1 and LS2 is seen,
where an error in either separation has little effect on the overall performance
and is merely a perturbation of the undisturbed array. As no further insight is
provided by the sensitivity analysis in this case, it is omitted for brevity.
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Figure 3.31: Plot of I(n1) against n1 for array LS3 for several values of β0.

3.3.3.2 Optimisation and Analysis of Array LS3 in Alternate
Incident Wave Angles

The optimisation results for array LS3 with β0 = π
8 ,

π
4 ,

3π
8 and π

2 are shown in
figure 3.31. Similar results to the previous arrays are obtained, with β0 = π

8

performing poorest and β0 = π
2 performing best.

The beam seas array shows very little variation in mean performance for all
allowed values of n1. This is rather surprising as the extreme values of n1 result
in large gaps in the array and groups of three devices. A similar argument can
be made for the intermediate seas β0 = π

4 case, though the overall performance
of the array is much lower, even in the optimal case.

Figure 3.32 shows that the beam sea optimal array outperforms those at other
wave angles and maintains q > 1 for all kL ∈ [5, 15]. The array performs better
for larger kL values, as with previous beam seas arrays investigated. Similar
performance is seen for the β0 = 3π

8 case, where q increases almost linearly with
kL. In this case, q < 1 for kL < 8, however q > 1 is maintained for the rest of
the domain. Both the β0 = π

8 and β0 = π
4 cases perform quite poorly, with q < 1

for the majority or all of the domain of kL.

Broadly similar behaviour is seen for all optimal arrays with respect to
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Figure 3.32: Plot of q against kL for optimised LS3 array for several values of β0.

β-variation in figure 3.33, with a peaked performance at or near β = π
2 and a

secondary peak at β = 0. The beam seas array achieves relatively stable
performance around the target value of β = π

2 , where q > 1 is maintained for a
±5π

24 variation around this target. The performance for the other values of β0 is
not as good, since the peak in the q vs β curve appears away from the target
values.

3.3.3.3 Summary of Results for Array LS3

Table 3.3 shows a summary of the optimisation results corresponding to array
LS3. For each wave angle considered, the optimal spacing parameter n1,opt, the
mean of the interaction factor at this value I(n1,opt) and a rough diagram of the
resulting optimal array are presented. Again, this shows the relative importance
of the incident wave angle β, since different array layouts are identified as
optimal for different values of β0, with varying optimal performance. Both
β0 = π

8 and π
4 achieved optimal mean performance of I < 1, indicating that

destructive interference dominates at these wave angles. The best array is the
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Figure 3.33: Plot of q against β for optimised LS3 array for several values of β0,
with kL = 10.

beam seas array, which achieved I = 1.34 with an unevenly spaced array layout,
although the array contains no closely spaced WECs.

The head sea optimum occurs for n1 = 3, which is quite similar to the n1 = 1
case. It is clear that taking n1 = 1 results in only a very small decrease in I(n1).
Therefore, arrays with uniform (n1 = 25) or extremely grouped (n1 = 1, 3)
layouts are found to be optimal (depending on the angle in consideration).
However, for this prescribed symmetry, a small improvement on the uniform
array can be obtained for beam seas, by taking n1 = 16. This results in an
asymmetric array which is unequally spaced.

It is also evident that array LS3, optimised for β0 = π
2 with n1 = 16, gave the

highest value of mean interaction factor I = 1.34. Therefore, this may be a good
choice for array layout if the wave direction is relatively constant at the site
location. However, caution should be exercised in making such a judgement, as
a large mean interaction factor may not necessarily correspond to good
performance over the entire domain; the exact form of the interaction factor

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

126 Justin P.L. McGuinness



3. Preliminary Optimisation of Linear
Arrays in Regular Waves 3.4 Discussion of Results

Table 3.3: Optimisation results for array LS3 with different incident wave angles.

β0 n1,opt I(n1,opt) Array Layout

0 3 1.28 * * * * *
π
8 1 0.83 *** * *
π
4 25 0.90 * * * * *

3π
8 25 1.18 * * * * *
π
2 16 1.34 * * * * *

must be investigated. An example of this can be seen by comparing the
interaction factor for optimal arrays LS1 and LS3 for β0 = 0. Array LS1 had the
higher value of I = 1.33, however the plot of q varied over a larger range
q ∈ [1.1, 1.7]; array LS3 had I = 1.28 but less variance in interaction factor,
q ∈ [1.18, 1.65]. Depending on the desires of the user, the latter case may be
preferred.

3.4 Discussion of Results

The principal objectives of this chapter were to consider the preliminary
optimisation procedure, introduce the objective function utilised, consider the
concept of maximising the mean of performance and to examine the simplest
case of this problem, namely where it is reduced to one variable. By enforcing
symmetry and writing the objective function in terms of one variable only, this
allows preliminary results to be achieved relatively quickly in Mathematica.
This also serves to provide an appreciation of the problem by looking at the
simplest case first, before considering more general problems with increased
difficulty. The single-variable optimisation also allows the optimisation to be
visualised and the behaviour of the optimisation variable explicitly shown,
which proved insightful.

Three types of symmetric five device linear arrays were investigated. A certain
symmetry or asymmetry was imposed in each case to reduce the number of
variables with respect to which the array is optimised. The symmetries chosen
are merely examples of three of the simplest cases. Many other types of
symmetry and asymmetry exist, such as enforcing one separation to be an
integer multiple of another (e.g. s1 = 2s3 etc.). Also, a less stringent geometry
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could be enforced by stipulating that only one separation is the same as
another, thereby allowing the linear five device arrays to be described by two
variables instead of one. However, an increase in variables complicates the
optimisation considerably and increases the computational effort for a given
algorithm. This also prevents an in-depth analysis of how the array behaves
within the optimisation process, since the performance can no longer be
visualised as a function of one array parameter. More general cases without
imposed symmetry are examined in subsequent chapters.

The most noteworthy result in this chapter is the fact that the optimal array
layout changes considerably depending on the incident wave angle β0

considered. A relatively small change in β0 of ±π
8 can result in a considerable

alteration of the array performance and also the optimal array layout. This is
illustrated most clearly by the results listed in tables 3.1 - 3.3. For example,
table 3.1 shows that moving from β0 = 0 to β0 = π

8 results in a considerable
change in n1,opt, from one extreme with n1 = 49 to the other with n1 = 1. These
values correspond to considerably different layouts; one with a group of three
WECs in the centre of the array, the other with two groups of two WECs at the
edges of the array. This indicates the influence of the incident wave angle on
array performance, particularly for the directionally dependent geometry of a
linear array.

Overall, the best performance for all symmetries is achieved in beam seas
(β0 = π

2 ) with optimal objetive function values of I = 1.34, I = 1.32 and
I = 1.34 for arrays LS1, LS2 and LS3 respectively. This resulted in each
optimal beam seas array maintaining q > 1 for all kL ∈ [5, 15]. These arrays
also exhibited a large range of good performance for varying β where, for each
symmetry, q > 1 is maintained for approximately β = π

2 ±
5π
24 . Furthermore, the

optimal layouts for all symmetries at beam seas did not include grouped WECs;
these were either uniformly or unequally spaced (with the minimum separation
between devices being 16% of the total array length). This avoids the difficulty
of having devices so close that they may collide or shadow each other.

Throughout this chapter, there is a notable difference between the optimal array
layout/performance between the head and beam seas cases. In general, optimal
head seas arrays contain groups of closely spaced WECs. This is to maximise
the possible constructive interaction between the WECs. For head seas, the
wave travels along the same line as the WEC array. Since the radiated
wave-field decays as it propagates, the maximum constructive interference can
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be achieved by placing the WECs as close as possible and contriving the WEC
motions as necessary.

In contrast, the members of optimal beam seas arrays are more spread out, with
uniform or unequal separations. This suggests that when a linear array faces
the incoming wave in a terminator type layout, it is better not to have large
gaps between the WECs, through which wave energy can escape. Spreading the
WECs to give a greater frontage to the incoming wave appears to be best for
beam seas.

It is shown here that constructive interaction can be achieved for head seas; the
optimal head seas performance was competitive with that of beam seas in terms
of the interaction factor. This is counter-intuitive to some extent, since head
seas arrays provide the smallest frontage to the incoming waves. However, for
each symmetry investigated, this optimal performance in head seas required the
devices to be in closely spaced groups of two or three WECs. The head seas
optimal performance is also more sensitive to changes in β compared to beam
seas. This is shown by the analysis of q with respect to changes in β and also by
the optimal performance of the arrays at nearby wave angles such as β0 = π

8 . At
this target wave angle, change of ± π

12 is enough to result in destructive
interference. This indicates that the head seas arrays are considerably less
stable to β-variation than beam seas arrays.

It can be seen for all symmetries that arrays optimised for β0 = π
8 perform very

poorly compared to other angles. The best optimal value achieved at this angle
was an average interaction factor of I = 0.84. This is severely limiting,
especially since this work assumes maximum power absorption of the array and
does not take the PTO (and any related inefficiencies) into account. This value
is an upper bound on what can theoretically be achieved; therefore the
performance of a real array in this scenario is liable to be much poorer.

A similar argument can be applied for arrays with β0 = π
4 , though the

destructive effect is not as severe at this wave angle. The value I = 1.12 is
achieved for the optimal array LS1 for β0 = π

4 ; though this is the only example
where constructive interference dominates at this wave angle.

A broader investigation of the effect of the array parameters kL, β and n1 is
given in Appendix A, where 3D plots involving these parameters are presented.
Due to the nature and volume of these plots, these are omitted for clarity from
this chapter for all but head seas arrays.
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Sensitivity analyses similar to figure 3.12 were performed for each optimal array
in this chapter. Broadly similar results were obtained for each symmetry, such
that the errors (up to ±0.05kL) had little effect on the optimal performance,
hence showing the stability of the optimal arrays. This is only shown explicitly
for the head seas array LS1 and omitted for brevity for other arrays, as no
further insight is provided by the analogous plots for the other array
symmetries.

The WEC displacement amplitudes are only shown for the head seas array for
each symmetry investigated in this chapter. The displacement amplitudes for
other values of β0 are presented in Appendix A. For the other wave angles,
similar displacement behaviour was seen where larger motions occurred for
grouped WECs and for lower values of kL. Slightly lower motion amplitudes are
observed for the more separated arrays, such as uniform layouts with
n1,opt = 25. It is possible that the imposition of constraints would have less of a
detrimental effect on such layouts. However, with optimal unconstrained
motions, each array investigated still contained displacement amplitudes above
the O(1) requirement. The effect of motion constraints are considered in
subsequent chapters.

The associated optimal device motions is one major source of difficulty with the
arrays investigated in this chapter. It is suggested by Thomas & Evans (1981)
that a reasonable upper limit of device amplitudes could be three times the
incident wave amplitude; this limit is considerably exceeded for all grouped
devices in the optimal arrays found. These motions are predicted using linear
wave theory which assumes all motions are at most of the same order as the
wave motion, which is assumed to be small in some sense. Large device motions
violate this approximation and thus invalidate the underlying linear wave
theory. Furthermore, the application of a physical PTO will not allow these
large motions, which in turn will affect device interaction and hence power
performance.

A potential way to reduce the large device motions, while retaining the benefit
of the constructive interference caused by the groups of devices, may be to
replace these groups with larger devices corresponding to the group size.
Following this proposal, the optimised array LS1 for β0 = 0 would have the
central group of three devices replaced by a device three times the radius of the
original devices, giving the array shown in figure 3.9. Similarly, groups of two
devices would be replaced by a device of twice the original radius. The idea of

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

130 Justin P.L. McGuinness



3. Preliminary Optimisation of Linear
Arrays in Regular Waves 3.4 Discussion of Results

arrays of WECs of different sizes has not been investigated previously and
would be a natural extension of this work.

Preliminary calculations have been performed and show the device motions can
indeed be reduced to acceptable values. It is also hoped that the larger power
absorption of the larger devices (due to the increased mass, momentum, PTO
etc.) would offset the reduction of array members. A full interaction theory is
needed to confirm this hypothesis, as the scattered wave-field from the larger
devices may become significant. Also, the original devices are assumed to have a
radius ka = 0.4, so that the larger devices would have radii of ka = 0.8 and
ka = 1.2, which would violate the point absorber approximation, although the
results of Mavrakos & McIver (1997) suggest that the point absorber
approximation may be accurate enough for the smaller of these larger devices.

A further optimisation method was investigated, which optimised the array
layout with respect to the mean of the interaction factor over non-dimensional
length and over a range of incident wave angle simultaneously. The objective
function (analogous to equation (3.1)) is written as

Iβ(n1, . . . , nN−1) = 1
(βu − βl)(kLu − kLl)

βu∫
βl

kLu∫
kLl

q(n1, . . . , nN−1, kL, β) d[kL] dβ,

(3.14)
where the average is now taken over both kL ∈ [kLl, kLu] and β ∈ [βl, βu]. This
methodology therefore accounts for varying incident wave angle as well as
non-dimensional length and the method was used to optimise similar arrays for
small ranges of angular variation. Preliminary calculations of this nature
showed little difference to the results presented within this chapter. It was
found again that the angular range considered had a large impact on the
optimal array geometry.

It should be noted, however, that this optimisation strategy assumes that each
wave angle in the range [βl, βu] is equally important and thus occurs equally
often. This is perhaps a good approximation for seas states which have a small
wave angle variation. However, for sea states which have considerable angular
variation there is often a dominant direction, in which case irregular wave
modelling and wave spectra should be used. Optimisations of this nature, where
the mean is defined over the incident wave angle, are examined in Chapters 7
and 8.

The algorithms used in this chapter were implemented in Mathematica 9.0 and
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involved evaluation of the objective function at discrete (integer) values of the
single array variable. This was due to the circumstance that numerical
calculations of this type are very slow in Mathematica, compared to
implementations in other programs and languages. Consequently, the
calculations in subsequent chapters are performed in a FORTRAN
implementation, with the aid of Numerical Analysis Group (NAG) routines.
This gives a much quicker run-time of optimisations and allows optimisation
over an increased number of variables within a reasonable time frame.

An obvious extension of this simple problem is to somehow extend the
single-variable optimisation to a two-variable optimisation. However, there is no
clear non-arbitrary way of defining symmetry in a five-device array. It would be
possible to examine a four-device array in this manner as a two-variable
problem. However, this is omitted in favour of more general optimisations of
arrays of five or more WECs in subsequent chapters.
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Chapter 4

Optimisation of General
Five-Device Linear Arrays in
Regular Waves

4.1 Introduction

Chapter 3 considered optimisation of arrays with symmetry imposed, so that
each array is described by just a single variable. The case of a non-symmetric
linear array is investigated here, without any stipulated enforced symmetry.
Thus, for an array of N WECs, each layout is described by N − 1 variables in
total, since one WEC will be fixed at the origin. However, the objective
function of the optimisation describes the mean performance over the
non-dimensional array length. Hence, the number of variables in the
optimisation involves N − 2 device separation variables. For an array of N = 5
devices, this results in three optimisation variables, rather than one as in the
previous chapter. The results of Chapter 3 and McGuinness & Thomas (2015)
are extended in a more general formulation.

All calculations in Chapter 3 were performed using Mathematica 9.0, but due to
the increased generality of the present problem, the calculations were moved to
a FORTRAN implementation with the aid of Numerical Analysis Group (NAG)
routines1. This was employed due to the increased speed and accuracy of the
NAG routines in comparison to Mathematica, which was found to perform
extensive numerical calculations very slowly. For the single-variable

1http://www.nag.co.uk

133



4. Optimisation of General
Five-Device Linear Arrays in
Regular Waves 4.2 Optimisation Method

optimisations in the previous chapter, using the NAG routines enabled the
optimal solutions to be determined approximately 1000 times faster compared
to Mathematica. Appropriate NAG routines were employed to calculate and
numerically integrate the interaction factor, as well as perform the optimisation.

This chapter details the results published in McGuinness & Thomas (2016)
concerning linear arrays, as well as extended results omitted from this
publication for brevity. These include results for optimisations with more values
of the fixed incident wave angle β0 and a discussion of the resulting
implications. A more extensive list of the optimisation results obtained are
provided in Appendix B, while a summery of these results is provided herein.

4.2 Optimisation Method

The overall setup and optimisation method follows that described in Chapter 3.
No symmetry is imposed and the array is described by three variables, namely
ks1, ks2, ks3. A slightly different parameterisation is also made here, where

ksj = nj kL, (4.1)

and the nj are real quantities. This formulation requires that nj ∈ (0, 1), with
the only difference between Chapter 3 and here being the absence of the scaling
factor M = ∑N−1

j=1 nj in the reparameterisation. Since the sum of all separations
is the total length, ∑N−1

j=1 ksj = kL and consistency requires

N−1∑
j=1

nj = 1. (4.2)

This formulation is essentially identical to the previous chapter with M = 1.

The array is now described by the three real variables n1, n2, n3 ∈ (0, 1). For a
non-dimensional length that remains within kL ∈ [kLl, kLu], the objective
function for the unconstrained optimisation is defined as

I(n1, n2, n3; β0) = 1
kLu − kLl

∫ kLu

kLl

q(n1, n2, n3, kL; β0) d[kL], (4.3)

for a fixed prescribed incident wave angle β0. It is assumed, as previously, that
the target non-dimensional length of a given array is kL = 10 and that the sea
state under consideration is such that kL remains within the range
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Figure 4.1: General five-device linear array (without imposed symmetry)

[kLl, kLu] = [5, 15]. The method can be applied to any range of kL as required,
as the values used in this work are chosen arbitrarily but are intended to
represent a typical case.

A diagram of the array under consideration is shown in figure 4.1. Initially,
constraints on the device motions are not considered and the objective is simply
to maximise the mean of the interaction factor with respect to the array layout,
under the assumption of maximum power absorption.

4.2.1 Implementation

Numerical calculations were performed on a Dell Latitude E6330 running
Windows 7 with 8GB of RAM and an Intel Core i3-3130M (2.6GHz) processor.
The optimisation routine chosen to find the maximum of (4.3) is NAG routine
E04UCF2, with appropriate algorithms employed for the calculation of Bessel
functions, matrix inversion and quadrature. This algorithm searches for the
minimum value of the objective function using a sequential quadratic

2https://www.nag.co.uk/numeric/fl/manual/pdf/E04/e04ucf.pdf
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programming method. In order to find the maximum rather than the minimum,
the negative of (4.3) is supplied to the algorithm. A starting point is required as
input to the optimisation algorithm. The algorithm initially uses the gradient of
the objective function at this point to define a search direction, with the step
size chosen such that a sufficient decrease in a Lagrangian type merit function is
achieved. This procedure is repeated until an optimum is found. The algorithm
E04UCF is essentially identical to the subroutine NPSOL as described by Gill
et al. (1986).

The interaction factor is acknowledged as being a highly oscillatory function,
with many local maxima and minima. However, the results of this and previous
work indicate that the mean of the interaction factor is a more well-behaved
function, particularly for the case of linear arrays. Despite this, it is prudent to
perform an exhaustive search of the variable space for optimal values. This is
conducted in a similar manner to Fitzgerald (2006), where the optimisation
routine is run for a wide range of initial starting points for each variable. All
permissible unique combinations of starting points with nj = {0.1, 0.2, . . . , 0.7}
with j = 1, . . . , 4 were investigated, where some combinations were omitted due
to consistency considerations in line with equation (4.2). For each value of β0

investigated, the resulting optimal variable parameters and optimal mean
interaction factor are then tabulated and presented. Diagrams of the best
performing array layouts are also presented and analysed in each case.

This exhaustive search of the variable space involves many iterations of the
optimisation routine for different starting values of each variable, resulting in
many optimisation outputs. The global optima can then be chosen from these,
provided it is converged to frequently enough to give confidence in the
optimality of the solution. To avoid unnecessary presentation of data, the
optimisation results are summarised within this chapter and the more detailed
results are provided in Appendix B.

Minimum and maximum values of each separation parameter were enforced
within the optimisation procedure so that 0.05 ≤ nj ≤ 0.85 for j = 1, . . . , 4.
This ensures that no device will be within 5% of the total array length of
another device. The upper bound of 0.85 was chosen to allow the possibility
that all but one of the separations coincided with the minimum bound. Linear
constraints on the sum of the separations were also included in the algorithm in
order to ensure consistency. This minimum bound is more limiting than that
used in Chapter 3 and McGuinness & Thomas (2015), where a minimum value
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Table 4.1: Optimal linear array parameters for each value of β0 considered

β0 n1 n2 n3 n4 Iopt

0 0.0500 0.0500 0.0500 0.8500 1.4802
π
8 0.0500 0.8500 0.0500 0.0500 0.8794
π
4 0.0500 0.8500 0.0500 0.0500 1.1431

3π
8 0.2512 0.2488 0.2488 0.2512 1.1822
π
2 0.0500 0.2252 0.3859 0.3359 1.3643

of 0.01 was allowed. It may be unrealistic to allow devices to be positioned
within 1% of the total array length of each other, as the devices will be touching
or intersecting for all but very large array lengths. A 5% constraint was chosen
here as it is a more feasible scenario. This value also avoided potential
calculation difficulties due to numerical inaccuracies and poor behaviour of the
objective function caused by small non-dimensional separation arguments.

4.3 Unconstrained Optimisation Results

The best optimal arrays found for each value of β0 = 0, π8 ,
π
4 ,

3π
8 ,

π
2 are presented

in table 4.1. More detailed lists of all optimal solutions found by the
optimisation are given in Appendix B in tables B.1-B.5. Within these tables,
arrays that were found to be similar to those presented, either by symmetry or a
negligible change in layout or performance, are omitted for brevity. For the best
layout for each value of β0, the behaviour of the optimal interaction factor is
shown with respect to changes in kL and β in figures 4.2 and 4.3 respectively.

4.3.1 Head Seas: β0 = 0

A diagram of the best array found for head seas is shown in figure 4.4. The
optimal array variables determined by the algorithm are given in detail in table
B.1 of the Appendix, in descending order of performance. The best array for
head seas is when four of the devices are grouped closely together at one side of
the array, with a relatively isolated device at the other end. This array achieves
an average interaction factor of I = 1.48, which is considerably greater than
unity; this is the best average value obtained for all the optimal linear arrays. It
is clear from figure 4.2 that good performance is achieved over the entire
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Figure 4.2: Optimal interaction factor q against non-dimensional length kL for
the best linear arrays found for each value of β0 examined. The horizontal dotted
line represents q = 1

domain considered, with q ∈ [1.42, 1.64] for kL ∈ [5, 15]. The plot of q against
kL can be seen to perform small oscillations about the average value of
q = 1.48. The range of variability of q is also surprisingly small and this may be
desirable so as to provide more certainty for a given WEC array developer over
a range of conditions.

Figure 4.3 shows that there is a range of approximately ± π
10 around β = 0 where

q remains greater than unity; outside this range, the array moves into areas of
destructive interference. This behaviour is quite similar to that observed in
Chapter 3 and McGuinness & Thomas (2015), for some of the arrays optimised
in head seas. However, a greater peak in q is obtained here, which is also
accompanied by larger troughs at non-optimal wave angles; this is probably due
to the increased freedom of the array layout within this optimisation.

The optimal displacements of the WECs within the optimal array for β0 = 0 are
presented in figure 4.5; these are calculated using equation (2.142). As
expected, these optimal displacements are unacceptably large (|D| > 100) for
the grouped devices, agreeing with previous results. This is enhanced for the

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

138 Justin P.L. McGuinness



4. Optimisation of General
Five-Device Linear Arrays in
Regular Waves 4.3 Unconstrained Optimisation Results

-
Π

2
-

3 Π

8
-
Π

4
-
Π

8
0

Π

8

Π

4

3 Π

8

Π

2

Β

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

q

Β0=0 Β0=
Π

8
,
Π

4

Β0=
3 Π

8
Β0=

Π

2
q=1

Figure 4.3: Optimal interaction factor q against incident wave angle β for the
best linear arrays found for each value of β0 examined. The horizontal dotted
line represents q = 1

Figure 4.4: Optimal linear array found for β0 = 0
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smaller non-dimensional array lengths, where the predicted optimal
displacements increase with decreasing kL. The isolated device exhibits more
reasonable motions of |D| ≈ 3 for the entire domain.

It should be noted that the array layout obtained here is highly dependent on
the constraints and consistency relations imposed within the calculations.
Firstly, all of the optimal separation parameters are at their maximum or
minimum allowable values. This suggests that if these variable constraints were
altered, the resulting optimal array layout and performance would also change.
Calculations have been performed with different minimum values of nj and in
each case the optimal array tended to an analogous optimal layout, with n1, n2

and n3 at the minimum allowed values. Secondly, the isolated device in these
optimal array layouts is an artefact of the formulation employed, particularly
via (4.2). In the optimal case, this consistency forces one of the separations to
be considerably larger than the others in order to preserve the total length of
the array. It may be the case that allowing the fifth device to be closer to the
group may give improved performance, although it is acknowledged that this
would cause deployment difficulties and even larger displacements.

In the case of head seas, the incident wave direction is parallel to the line of
devices and the optimisation pushes all the devices as close together as possible,
with one device preserving the total length of the array. This may be due to the
decrease in radiating wave amplitude as it moves away from the originating
WEC. Therefore, since optimal unconstrained device motions are assumed, the
optimisation wants to place the WECs as close as possible to maximise the
constructive interference due to the radiated wave field. This physical
interpretation only applies to linear arrays in head seas since the wave direction
and the interaction direction are parallel.

4.3.2 β0 = π
8

The best array for β0 = π
8 is comprised of two separated groups of two and three

devices at either end of the array, shown in figure 4.6. This configuration only
obtained an average interaction factor of I = 0.8794, which is considerably lower
than unity and poorer performing than all other optimal arrays in this section.
The detailed optimisation results for β0 = π

8 are given in table B.2, which show
that all the optimal arrays obtained have a considerably reduced performance at
this wave angle.
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Figure 4.5: Optimal displacement amplitudes for best optimised linear array with
β0 = 0. The displacements of WECs 3 and 4 are very similar to WECs 2 and 1
respectively and are thus omitted for clarity.
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Figure 4.6: Optimal linear array found for β0 = π
8 ,

π
4
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Figure 4.7: Optimal displacements of WECs for best linear array optimised for
β0 = π

8
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Clearly, figure 4.2 shows that q < 1 for the entire domain of kL, although q is
increasing with kL. A similar β-variation is observed in figure 4.3 to the β0 = 0
case, with poor performance at β = π

8 (although slightly better than the
analogous performance for β0 = 0).

The predicted optimal displacements are presented in figure 4.7. This shows
that, despite the relatively poor performance of the array, all devices still exhibit
unacceptably large motion amplitudes of |D| ≥ 10. Therefore, when motion
constraints are imposed in practice, performance may be much poorer, resulting
in an array which has very low power absorption due to array interactions.

A similar physical explanation to that in Section 4.3.1 can be applied to the
optimal layout for β0 = π

8 . However, due to the intermediate wave angle, the
interaction is not as simple, since the wave direction and interaction direction
are no longer collinear. More spacing between devices, albeit in two groups at
either end of the array, outperforms the case when all devices are pushed
together. This may be because an increased frontage becomes important for
non-head seas and both groups interact well while spanning the length of the
array.

4.3.3 The Intermediate Angle: β0 = π
4

The best array layout for β0 = π
4 is identical to that for β0 = π

8 , as shown in
figure 4.6. The detailed optimisation results for this case are shown in Table B.3
of Appendix B.

It can be seen from figure 4.2 that, for β0 = π
4 , this array achieves q > 1 for the

majority of the domain, with the exception of when kL < 7.7. A maximum
value of q ≈ 1.29 is achieved at kL ≈ 12.5, while the minimum value is q ≈ 0.93
at kL ≈ 6. The average performance obtained is I = 1.1431, which is
considerably less than the corresponding optimal array for head seas.
Comparing the β-variation in figure 4.3 with that of the β0 = 0 case: there also
exists a much smaller range of approximately ± π

16 around the optimal value of
β = π

4 where q is greater than unity.

The displacements of this optimal array are presented in figure 4.8. Similar to
the previous case, large motions of |D| > 10 are required for all values of kL,
with the general trend that the displacement amplitudes increase for decreasing
kL. Although the motions are smaller overall than the optimal β0 = 0 case,
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Figure 4.8: Optimal displacements of WECs for best linear array optimised for
β0 = π

4

these displacements are clearly still unacceptably large. This, combined with
the more modest performance and the presence of closely spaced groups of
WECs within the array, suggests this may not be a good choice of layout.

Similarly to β0 = π
8 , the interaction direction is no longer parallel to the wave

direction for this intermediate wave angle. Therefore, the same physical
justification for the optimal layout is proposed.

4.3.4 β0 = 3π
8

The best array for β0 = 3π
8 is symmetric about the middle device and is very

close to a uniform array layout, with the two separation values differing by only
0.24% of kL, as shown in figure 4.9. This result agrees with those of
McGuinness & Thomas (2015), where for each symmetry investigated, a
uniform array layout was found to be optimal for β0 = 3π

8 . The result presented
here is a slight refinement, where WECs 2 & 4 are slightly closer to the middle
WEC compared to a uniform layout. The detailed optimisation results for this
incident wave angle are given in table B.4 of Appendix B.

It is clear from figure 4.2 that q > 1 for the majority of the domain of kL for
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Β
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Figure 4.9: Optimal linear array found for β0 = 3π
8

β = β0 = 3π
8 , except for kL < 8. It is also shown that q increases with kL within

the range examined. The array also achieves a respectable average interaction
factor of I = 1.1822. A notable difference in the plot of q against β is observed
in figure 4.3 for this array. It is clear the plot has shifted to reduced
performance at β = 0 and increased performance around β = π

2 . This has the
effect of increasing the performance at the desired wave angle of β = 3π

8 .

The optimal displacements for this array are shown to be much more reasonable
in figure 4.10 compared to previous arrays. The displacement amplitudes are all
|D| < 10 for kL ∈ [5, 15], although for the most part |D| > 4, which is still too
large from a practical perspective. In theory, the displacements must be O(1)
and it can be argued that D ≈ 4 both does or does not violate this. The
imposition of constraints on these motions may be less detrimental to array
performance due to their already low optimal values. It is interesting to note
that for kL ≈ 8, WEC 3 (the middle WEC) has a zero motion amplitude,
indicating that it does not move in the optimal case at this value of kL. The
lower values of displacement amplitude are probably due to the larger spacing
between the individual devices, and importantly, the lack of grouping of the
devices. Therefore, this may be a more desirable array layout depending on the
effect of limiting the device motions on the performance of this and other arrays.

For β0 = 3π
8 , the interaction direction differs considerably from the wave

direction, although it is not perpendicular. The resulting optimal layout is
almost uniform, suggesting that wider spacing is more beneficial approaching
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Figure 4.10: Optimal displacements of WECs for best linear array optimised for
β0 = 3π

8

normal incidence. This conforms with the idea that a greater frontage to the
waves allows a greater power absorption. It may be that groups of devices with
large spaces between these groups would not be ideal for this incident wave
angle, as much of the power incident on the spaces may escape through the
array. This is only a tentative explanation of the more spread-out layout
obtained here.

4.3.5 Beam Seas: β0 = π
2

The premier optimal array for beam seas is shown in figure 4.11, which consists
of a group of two devices accompanied by three relatively separated devices.
The detailed optimisation results for β0 = π

2 are shown in table B.5 of Appendix
B. Only two unique optimal array layouts were discovered by the exhaustive
search and the optimisation algorithm for this wave angle. The implication of
this is that the optimisation is very stable, with a dominant global maximum.
For all iterations performed, the optimisation converged to the global optimum
and one local optimum, with the majority converging to the former.

It is interesting that despite the array orientation to the incoming wave, the
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Figure 4.11: Optimal linear array found for β0 = π
2

optimal layout is not symmetric as may have been expected for beam seas. It
may be the case that an increased benefit is obtained from having a greater
constructive interaction between the closely spaced pair on the one side, while
maintaining a greater separation at the other side to avoid large gaps through
which wave energy could escape unabsorbed. The array presented in figure 4.11
achieves an average interaction factor of I = 1.3643. The results of Chapter 3
show that a uniform array achieves a value of I = 1.32 in beam seas (table 3.2)
and the best symmetric array found achieved I = 1.34 (table 3.1), both of which
are outperformed by the non-symmetric array determined by this more general
optimisation.

Figure 4.2 illustrates that this array achieved q > 1 for the entire range of
kL ∈ [5, 15] at the optimal wave angle (β = β0 = π

2 ). An average interaction
factor of I = 1.3643 is achieved along with an impressive maximum of q ≈ 1.7
around kL = 13.7. The interaction factor increases with kL until it reaches this
maximum value, where it begins to decrease with increasing kL. Although this
is the highest peak in q achieved by any of the optimal arrays thus far, the
average value of I = 1.3643 falls below that of the best β0 = 0 array in Section
4.3.1.

There is a surprisingly large range of approximately ±3π
16 around the optimal

value of β = β0 = π
2 where q remains greater than unity, as shown in figure 4.3.

Comparing all the curves of q against β for the different optimal arrays, it is
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Figure 4.12: Optimal displacements of WECs for best linear array optimised for
β0 = π

2

clear that the shape of the curve is altered so as to achieve good performance at
β = β0 = π

2 , which results in poorer performance at other wave angles. It is
interesting to compare the curves in figure 4.3 and note the change in behaviour
as different optimal wave angles are considered. As the incident wave angle
changes, the plot of q against β alters to increase at the desired value of β = β0;
this necessarily results in poorer performance at other angles.

The displacements for this optimal array are shown in figure 4.12. These are
unacceptably large (|D| > 5) for the entire domain of kL ∈ [5, 15] for all but
WEC 4, whose displacements approach zero only in the close vicinity of kL ≈ 7.
In general, larger displacements are predicted for smaller kL. All devices have
|D| < 20 for kL ∈ [10, 15], suggesting that this region may not be as much
affected by imposition of motion constraints. As expected, the grouped devices
exhibit larger motions than the relatively isolated WECs. It is interesting that,
in the optimal scenario, WEC 4 has |D| = 0 near kL ≈ 7.1. The combination of
high q-factor, large range of β-stability and relatively low displacements in the
region kL ∈ [10, 15] indicate this array may be an ideal candidate for WEC
array design. This is discussed further in Chapter 6, where constrained
optimisations linear arrays are considered.
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Due to the normal wave incidence onto the array (wave direction and
interaction direction are perpendicular), it is perhaps that greater frontage
would result in better overall performance as opposed to groups of WECs.
However, one closely spaced pair is still present at one side, indicating that
uniform spacing is not optimal. It should be noted that since q(β + π) = q(β)
applies, the mirror image of this optimal array also represents the same
optimum and performs equally well. It is unclear why this layout is not
symmetric; perhaps this is due to the fact that the optimisation is maximising
the mean of q over kL ∈ [5, 15]. Another possible explanation is that there
exists a optimum which is symmetric about the middle WEC but which is also
very unstable, such that a small change in array parameters destroys this
optimum and thus the optimisation failed to converge to it.

4.4 Discussion of Results

This chapter describes the optimisation of general linear five-device arrays, such
that the optimal array layouts are stable to changes in non-dimensional
parameters. The arrays considered have no enforced symmetry and are
therefore an extension of the results presented in the previous chapter. It has
been shown that it is possible to obtain arrays that perform well over a very
large range of non-dimensional length for fixed incident wave angle. It has also
been shown that this performance was maintained for large ranges of incident
wave angle (up to β0 ± π

5 ), so that a small change in incident wave angle does
not result in destructive interference between the array members. However, it is
unclear if this will be the case if WEC motion constraints are enforced.

One major difficulty with the optimal arrays obtained is the large magnitude of
the associated device motions. In general, better performing arrays are expected
to involve larger device motions in an unconstrained optimisation. However, it
was noticed that closely grouped devices exhibited much larger motions than
more separated ones, in line with the results of Chapter 3. Arrays which
contained groupings of two or more devices had larger motions in general; thus
the presence of such grouping in optimal layouts is an indication that large
optimal motions are probable.

In some of the cases presented here, better performance was achieved relative to
other optimal arrays, despite smaller predicted device motions. This may
indicate that the imposition of device motion constraints may not be as limiting
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and it is possible that good performance can be maintained. It may be
beneficial to deploy a sub-optimal array layout, which may not have the best
optimal performance but has relatively large separation between devices and
low predicted optimal device motions. This is suggested since the imposition of
constraints may be less harmful to array performance in such cases. The large
device separations would also avoid other physical difficulties associated with
closely spaced groups of WECs. These difficulties may include device collisions
and the possibility of wave shadowing, which would invalidate the underlying
point absorber (small body) approximation.

Many optimal arrays obtained possessed groupings of two, three or four devices;
the difficulties associated with this have been discussed. One possible solution
to this problem may be to replace these groups of devices with an
appropriately-sized larger device, as suggested in Chapter 3. These arrays would
then contain devices of different sizes, a possibility the literature has broadly
neglected. These arrays could then be considered as satellite arrays, since one
could often describe such arrays as involving several smaller devices orbiting a
larger device. It is not known what the effect on power absorption and array
performance would be. Another possibility would be to replace these groups of
devices with a single device that absorbs power (oscillates) in two modes of
motion, thereby recreating the dipole effect often exhibited by the pairs of
devices in optimal layouts. It is hoped that either a larger device or one that
operates in two (or more) modes would recreate the constructive interference
pattern without the problems of close deployment and large motions.

The results of this chapter agree well with those of the previous chapter and
provide a slight improvement on the resulting performance. This small benefit
in performance indicates that the simpler one-variable optimisation gives good
results relative to the more general optimisation in this chapter. In particular,
the overall performance for different wave angles was quite similar in this more
general case. The optimal performance at β0 = π

8 was quite poor in both the
one-variable case of Chapter 3 and the more general case presented here. The
increased freedom within the optimisation allowed only a small improvement
from an average interaction factor of I ≈ 0.84 to I ≈ 0.88. This indicates that
array interactions at this wave angle are necessarily destructive for linear arrays,
even in the optimal cases. Hence, it is recommended that this incident wave
angle should be avoided. It should be noted that array performance relative to
isolated device performance is measured, rather than actual power absorption.
Therefore, it is possible that a larger amount of power may be absorbed at this
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angle compared to others. These results merely relate to the array interaction,
showing that it is destructive for β0 = π

8 .

Within the unconstrained optimisation, the array which had the best average
interaction factor was the β0 = 0 case, with I = 1.4802. This layout was
comprised of four grouped devices at one side of the array, with a relatively
isolated device at the other. As postulated earlier, the isolated device position
may be an artefact of the problem formulation, as it is necessary to preserve the
total length of the array. However, this array may be undesirable from the
perspective of a physical implementation, due to its closely spaced devices and
associated large motion amplitudes.

A contender for the best overall array discovered within the unconstrained
optimisation was the optimal linear array for β0 = π

2 , which had a balance
between good performance and relatively small motions, as discussed in Section
4.3.5. Within the region of kL ∈ [10, 15], this array achieves q ∈ [1.3, 1.7], while
the non-dimensional displacement of all the array members are |D| ∈ [5, 15].
These displacements are considerably lower than WECs within other optimal
arrays. Since a motion constraint would have a lesser relative effect on these
motions, it is reasonable to suggest that this constraint would also have a less
relative impact on array performance. The array also has a large range of
approximately ±3π

16 around the optimal value of β0 = π
2 where q > 1 is

maintained. The effect of constraints on this and other arrays are discussed in
future chapters.

The results of this chapter show considerable variations in the optimum
configuration of a linear array for different prescribed incident wave angles β0.
Tentative physical explanations are provided as to the reasons for the optimal
layout in each case. The overall behaviour suggests that groups of closely
spaced WECs are more beneficial for parallel incidence (β0 = 0), while a more
separated configuration is better for normal incidence (β0 = π

2 ). Contrary to
expectation, a symmetric (and almost uniform) layout is found to be optimal
for β0 = 3π

8 , while an asymmetric layout containing a closely spaced pair of
WECs is found for β0 = π

2 . Due to the uniform layout, reasonable performance
(I = 1.1822) and relatively small optimal WEC motions, the β0 = 3π

8 is also a
candidate for the best overall linear array.
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Chapter 5

Optimisation of General Circular
Arrays in Regular Waves

5.1 Introduction

This chapter builds upon Chapter 4, by extending the previous results to arrays
of an alternate geometry, namely circular arrangements. Some preliminary work
on elementary circular arrays, described by one variable, was performed by
Costigan (2014). This was then extended in McGuinness & Thomas (2016) to a
more general circumstance. The mean performance of the arrays is defined over
a prescribed range of a non-dimensional radius. This provides the objective
function when optimising these circular arrays. The results published in
McGuinness & Thomas (2016) for circular arrays are outlined and extended
herein.

Initially, the investigation of circular arrays was motivated by the idea of an
isotropic array, i.e. one that looks and behaves the same from all wave
directions. This would then normalise the performance over all wave angles, so
that the interaction factor is approximately unity from all directions. This is an
ideal concept and not achievable in practice. This was shown by Costigan
(2014) for the case of a uniform six-device circular array, where an oscillatory
pattern with a period of 2π

N
= π

3 was seen for q(β). Extending this to a larger
number of devices will approach the scenario of an isotropic array, namely that
of a single large toroidal device.

Although it is impossible to construct an array that is complectly isotropic, an
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array could be arranged so that it is approximately isotropic for a small range of
incident wave angle of primary interest. Alternatively, if the wave climate at a
given site contains relatively low angular variability, an array could be formed
so that its performance is good over the entire range of interest. For such cases,
the necessary poor performance at other wave angles, due to (2.164), would be
inconsequential.

Calculation of the array performance, particularly the mean performance, is
more complicated for circular arrays in comparison to the linear array. The
WEC position variables for a circular geometry depend on both the distance
and angle from the origin, whereas in linear arrays only the distance from the
origin was needed as the angular positions of all WECs were zero. This angular
dependency of the device positions manifests itself as a trigonometric term
within an exponential, of which the average is taken. Greater computation time
for each call to the objective function is required and hence longer run times for
the optimisation routine.

The previous work presented for linear arrays is extended to consider general
non-symmetric circular array geometries, with the WECs constrained to lie on
the circumference; the possibility of including a further device in the circle
centre is also investigated. The arrays are described by angular variables, which
the arrays are optimised with respect to. The most convenient coordinate
system is to take the centre of the circle at the origin and fix the angle of WEC
1 (α1). Thus the N circumferential devices are a fixed distance from the centre
(commonly notated as r for radius). There are N + 1 variables describing the
array layout. However, since WEC 1 will have a fixed angular position (without
loss of generality) and the objective function is the average over kr, the
optimisation involves N − 1 variables.

For a circular array of radius r, the position variables of the devices can be
simplified, since dm = r for each device on the circle circumference. If the mth

device is in the centre of the circle, dm = 0 since it is fixed at the origin. This
does not add any extra variables to the problem, thus giving a total of N − 2
array variables when a central device is included.
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5.2 Optimisation Method

For a circular array of radius r, the position variables are the angular positions
of each device on the circle. A convenient notation is introduced to define the
relative angles θj between each device, so that

θj = αj − αj+1. (5.1)

As one device will be at a fixed angular separation, this can be used to remove
one variable from the optimisation process. There are now N − 1 variables and
consistency requires that

N∑
j=1

θj = 2π. (5.2)

In keeping with earlier chapters, the mean of the interaction factor is defined
over a range of non-dimensional radius kr. Similarly, the upper and lower
bounds of the non-dimensional array radius are denoted as kru and krl
respectively. The objective function for circular arrays is written as

Icircle(θ1, . . . , θN−1; β0) = 1
kru − krl

kru∫
krl

q(θ1, . . . , θN−1, kr; β0) d[kr], (5.3)

for a fixed prescribed incident wave angle β0. For convenience, the circle
subscript is henceforth dropped.

The optimisation is performed for β0 ∈ [0, 7π
8 ] in multiples of π

8 . In contrast to
the linear array, symmetry about β = π

2 cannot be assumed so the range of
investigation is β0 ∈ [0, π). As with the linear arrays in Chapter 4, NAG1

routines implemented in FORTRAN were used to evaluate the objective
function and perform the optimisation. This optimisation method involves
iterations of a routine for many different starting points, with the best solutions
obtained analysed in detail. In order to avoid unnecessary presentation of data,
the optimisation results are summarised in this chapter with a more detailed
output given in Appendix C.

Two cases of circular arrays are considered and compared in this chapter. The
first is an array with N = 6 devices constrained to lie on a circle circumference
of radius r. The second is an array of N = 7 devices, with the extra device fixed
in the centre of the circle. Clearly, the optimisation of each array involves the

1https://www.nag.co.uk/

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

154 Justin P.L. McGuinness



5. Optimisation of General Circular
Arrays in Regular Waves 5.3 Behaviour of Uniform Circular Arrays

Θ1

Θ5

Θ4 Θ3

Θ2

2 Π -â
j=1

5

Θ j

Β

1

2

3

4

5

6

x

y

Figure 5.1: General six-device circular array, without middle device

same number of variables (five), although the calculation of the objective
function and hence the optimisation is expected to be longer in the second case.
A diagram of the array without a central device is shown in figure 5.1.

5.3 Behaviour of Uniform Circular Arrays

The performance of the uniform versions of these arrays (θ1 = · · · = θ5 = π
3 ),

both with and without the central WEC are presented. Figures 5.2 and 5.3
show the variation of the q-factor for the uniform array with changes in kr and
β respectively. The average interaction factor for these arrays for two different
values of incident wave angle are shown in table 5.1, with [krl, kru] = [5, 15].
Since the performance of the uniform arrays are π

3 periodic and symmetric
about multiples of π

3 , only the mean performance for β0 = 0 and π
6 is shown.
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Figure 5.2: Interaction factor q against non-dimensional radius kr for uniform six
and seven WEC arrays, with β = 0
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Figure 5.3: Interaction factor q against incident wave angle β for uniform six and
seven WEC arrays, with kr = 10
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Table 5.1: Average interaction factors I for uniformly spaced circular arrays

β0 I

Without Central Device 0 0.890253
π
6 1.0654

With Central Device 0 0.883032
π
6 1.12195

Overall, the uniform layouts do not perform well over the range of kr ∈ [5, 15]
and performance is very oscillatory for changes in β. The inclusion of a central
device improves performance only in some regions and decreases performance
slightly in others. The interaction factor (and its mean) appear to be highly
dependent on the incident wave angle for the uniform cases.

It is also clear from table 5.1 that the mean performance of the uniform arrays
is better for β0 = π

6 in comparison to β0 = 0. This suggests that greater
constructive interference is achieved if a lone device is facing the incoming
waves (WEC 5 in figure 5.1 for β = π

6 ), rather than two WECs meeting the
incident waves at the same time (WECs 5 and 6 in figure 5.1 for β = 0).

5.4 Optimisation Results

The angular position of one device (WEC 1) is fixed and is arbitrarily forced to
lie at the top of the array, so α1 = π

2 . These arrays have five optimisation
variables, namely θ1, . . . , θ5, which define the positions of the WECs on the
circumference, shown in figure 5.1. As in previous chapters, the array is
optimised about the target value of kr = 10 and it is assumed that the sea state
is such that [krl, kru] = [5, 15]. Similarly to the range of kL utilised in Chapters
3 and 4, this range of kr is arbitrarily chosen but is intended to represent a
typical case. However, it should be noted that numerical difficulties arise for
kr < 5, as this corresponds to small spacings between the devices. As before,
constraints on the device motions are not imposed.

In order to enforce similar spacing restrictions to the linear arrays in Chapter 4,
each angular parameter was limited to remain within 0.1 ≤ θj ≤ 2π − 0.5 and
the consistency constraint equation (5.2) was also enforced. This minimum
bound of θj ≥ 0.1 is slightly more restrictive than that in Chapter 4, as it
corresponds to a minimum separation between consecutive devices of
approximately 0.1 kr. However, this was found to be necessary to avoid
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calculation difficulties when calling the objective function, particularly when the
array possesses a central device. The upper constraint of θj ≤ 2π − 0.5 is to
allow the possibility that all but one of the variables are at their minimum
allowed value of 0.1, while retaining consistency.

An exhaustive search routine similar to the linear array case is performed over
the search space of possible starting values of the parameters, to insure that the
best global optima are found. Within McGuinness & Thomas (2016), all
permissable combinations of θj = {π5 ,

2π
5 , . . . π} for j = 1, . . . , 6 were

investigated as starting points for the optimisation routine, with some
combinations omitted due to consistency considerations. It was noticed for
circular array geometries that the objective function was not as well behaved as
in the linear array case. This is perhaps due to the increased number of
variables or to an increased numerical intensity of the interaction factor (and
hence its mean) due to the array geometry. It was thus acknowledged by
McGuinness & Thomas (2016) that the above selection of starting points may
not result in the optimisation finding all the possible optimal solutions. The
optimisation often converged to a "best" array layout for only one run,
indicating that the solution is not particularly stable or that it was not a true
global optimum. Preliminary results for McGuinness & Thomas (2016) showed
that increasing the number of starting points, by subdividing the range further,
results in improvements of optimal values of I by the order of 2-5%. This also
requires a considerably longer run time for the optimisation, which rendered it
unfeasible in the short term. Therefore, the above set of starting points was
chosen as the best practical case at the time.

In the present study, more starting points were allowed in the exhaustive search
and resulted in longer run times for the optimisation. Here, the starting points
were taken to be θj = { π10 ,

2π
10 , . . .

15π
10 } for j = 1, . . . , 6 with consistency enforced

via equation (5.2). This resulted in a slight improvement of the results
presented in McGuinness & Thomas (2016) at the penalty of considerably
increased computation time. The optimisation tended to repeatedly converge to
a given solution, suggesting that it was indeed a global optimum. This gives
confidence in the optimisation results as the routine continuously converges to a
given solution from many starting variable combinations.
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Table 5.2: Optimal array parameters for the six-device circular arrays (without
middle device) for eight values of β0

β0 θ1 θ2 θ3 θ4 θ5 Iopt

0 0.1000 1.4868 1.4171 0.1000 0.1000 1.5910
π
8 1.1547 1.4619 0.1000 0.1000 3.3666 1.5802
π
4 0.6388 0.3423 1.2086 0.1000 0.1000 1.5563

3π
8 0.3539 0.3235 1.1056 0.1000 0.1000 1.5883
π
2 1.4417 0.1000 0.1000 3.1329 0.1000 1.5921

5π
8 4.3001 0.1000 0.1000 1.1056 0.3235 1.5883

3π
4 3.8935 0.1000 0.1000 1.2086 0.3423 1.5563

7π
8 0.1000 3.3666 0.1000 0.1000 1.4619 1.5802

5.4.1 Circular Arrays without a Central Device

The optimal parameter values for six-device arrays without a central WEC are
summarised in table 5.2. A detailed list of optimal solutions found by the
routine are presented in Appendix C in tables C.1 - C.8. These provide the
values of the optimal mean interaction factor I and the optimal layout variables
θ1, . . . , θ5, with the remaining angular separation given by

θ6 = 2π −
5∑
j=1

θj, (5.4)

from equation (5.2). All values within these tables have been provided to five
significant figures. The top eight optimal cases discovered by the routine are
given for each angle of incidence. The best cases found by McGuinness &
Thomas (2016) are also highlighted (marked by "M") in the corresponding
tables, namely table C.1, table C.3 and table C.5. This allows comparison with
the more detailed results presented in Appendix C and shows the effect of
allowing an increased number of starting points within the optimisation.

It can be seen from table 5.2 that symmetry exists in the optimal array layouts
and performance about β0 = π

2 . The optimal array for an incident wave angle
β0 ∈ [0, π) performs the exact same as that for π − β0. Further examination of
the tabulated results shows that this is due to the symmetry in array layouts:
an array optimised at β0 is essentially the same as that for π− β0 rotated to face
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Figure 5.4: Interaction factor q against non-dimensional length kr for the optimal
six-WEC circular arrays for β0 ∈ [0, 7π

8 ]

the incoming wave in the same way. This was confirmed by behaviour of the
optimal q against kr curves, as the behaviours were the same for β0 and π − β0.

Due to this symmetry, only the best performing optimal arrays for β0 ∈ [0, π2 ]
are analysed with respect to the array layout and optimal displacements in the
following subsections. A diagram of the top three optimal layouts is presented
for all cases and these show the symmetry in the optimisation about β0 = π

2 .
The predicted displacements for the optimal arrays are also presented; these
again show symmetry about β0 = π

2 and are omitted for wave angles β0 >
π
2 .

The variation of the interaction factor of all the optimal arrays with changes in
kr and β are shown in figures 5.4 and 5.5 respectively.

5.4.1.1 β0 = 0 Case

The best three array layouts discovered by the optimisaiton are shown in figure
5.6 and the optimal layouts presented differ from each other. However, all
involve closely spaced groups of two and three devices. These layouts are quite
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Figure 5.6: Optimal six-device circular arrays for β0 = 0

similar to each other and differ by either slight perturbations in WEC positions
or through mirror symmetry, or both. It would be anticipated that the
optimisation routine would converge to layouts such as these, since they are
analogous and perform in the same manner. Convergence to one optimal layout,
or its symmetric analog, is dependent on the starting points of the optimisation.
A more detailed list of the optimisation results for the six-device circular array
with β0 = 0 are provided in Appendix C in table C.1.

It was shown via a sensitivity analysis in Chapter 3 that the optimal layouts
that maximised the mean of q were relatively stable to changes in array layout
parameters. This is also true for the circular array though not explicitly shown
for brevity. Thus, a small change in WEC positions from the optimal case
would result in only a small change in performance. Hence, the optimisation
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Figure 5.7: Predicted displacement amplitudes for optimal six-WEC circular ar-
ray with β0 = 0

converged to some secondary optimal arrays which were only slightly different
and performed only slightly poorer.

The optimal layout occurs with groups of two and three devices at the top and
bottom of the array respectively and an isolated device to the right. It is
noteworthy that the devices can be considered to be arranged almost within a
semicircle orientated opposing to the incident wave direction. This optimal
array achieves an average interaction factor of I = 1.5910 and figure 5.4 shows
that it achieves a peak value of q ≈ 1.82 around kr ≈ 6.6. A secondary
maximum of q ≈ 1.76 is seen around kr = 8.6. Above this value of kr, q
decreases to the minimum value of q ≈ 1.2 at kr = 15.

Figure 5.5 indicates that there is a relatively large range of approximately ±π
5

about β = 0, where q remains greater than unity. Away from this range, it is
also evident that quite poor performance occurs at other wave angles, as would
be expected.

The non-dimensional displacement amplitudes of each WEC in this optimal
array are presented in figure 5.7. In keeping with previous findings, the grouped
devices exhibit relatively large motions compared with the isolated device. The
displacement of the isolated device (WEC 3) is maintained around |D| ≈ 5 for
the entire domain of kr. All other devices have |D| > 6 for all kr ∈ [5, 15], with
the group of three devices at the bottom of the array (WECs 4, 5 and 6) having
considerably larger displacements, especially for lower kr. It worth noting that

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

163 Justin P.L. McGuinness



5. Optimisation of General Circular
Arrays in Regular Waves 5.4 Optimisation Results

the displacements of exhibited in figure 5.7 are much lower than those for the
optimal linear arrays in Chapters 3 and 4.

A similar physical interpretation to the optimal linear arrays in Chapter 4
(particularly Sections 4.3.3 and 4.3.5) may apply here. The two groups at either
end of the array seem to cause constructive interference, with WEC 3 required
to capture power incident through the middle of the array, that would otherwise
escape. The semicircular arrangement may be due to a need to avoid rows of
devices, i.e. devices stacked behind one another, unless these device are within
an interacting group.

5.4.1.2 β0 = π
8 Case

The top three optimal array layouts for β0 = π
8 are shown in figure 5.8, while a

detailed list of optimisation results are provided in table C.2 of Appendix C.
The best array is one with a group of two devices at the top, a group of three
devices offset to the right of the bottom, and a relatively isolated device
between these groups. The next best arrays are rather different; these contain
two groups of two devices at similar positions to the groups in the best array,
with two relatively separated devices between these groups.

As with the β0 = 0 case, in each of the top array layouts, the WECs can be
considered to be lying almost within a semicircle opposite the incident wave
direction. The best array attains a mean performance of I = 1.5802, while
figure 5.4 shows that a maximum of q ≈ 1.86 is achieved around kr ≈ 8.5.
Performance is reduced for larger kr with a minimum of q ≈ 1.2 at kr = 15 (the
same as the β0 = 0 case). However, good performance is maintained over
kr ∈ [5, 11] with q ≥ 1.6 within this range.

The variation with β shown in figure 5.5 indicates broadly similar performance
to the β0 = 0 case, with a range of approximately ±π

5 where q remains greater
than unity. This range is centred about the target wave angle of β = β0 = π

8 .
Outside this range, poor performance is observed, dropping as low as q ≈ 0.6 for
some wave angles.

The optimal displacement amplitudes for the best array with β0 = π
8 are shown

in figure 5.9. A similar pattern to the previous case emerges, with the grouped
WECs predicted to have larger displacements than isolated WECs. It is also
clear that the devices in larger groups exhibit larger motions than those in
smaller groups. Here, WEC 2 (which is isolated) maintains |D| ∈ [2, 6] for all
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Figure 5.8: Optimal six-device circular arrays for β0 = π
8 . The third best layout

is very similar to the second and is omitted for clarity

kr ∈ [5, 15], while the WECs in the group of two devices (WECs 1 & 6) have
6 ≤ |D| ≤ 18 and those in the group of three devices (WECs 3 - 6) have
|D| ≥ 8. Although not explicitly shown, WEC 4 is predicted to have a
maximum of |D| ≈ 90 at kr ≈ 5. Another trend shown is that for groups of
three WECs, the central WEC has larger displacements that the surrounding
devices. Finally, it can also be seen that the WECs in general exhibit larger
motions for smaller kr, indicating that the closer they are positioned, the larger
the predicted optimal motions.

Since the optimal array layout is similar to that of Section 5.4.1.1, an analogous
physical interpretation of the array layout applies. The two groups (WECs 1 &
6 and WECs 3 - 5) appear to provide good constructive interaction with the
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Figure 5.9: Predicted displacement amplitudes for optimal six-WEC circular ar-
ray with β0 = π

8

isolated device (WEC 2) capturing power incident on the large gap between
these groups, even though WEC 2 operates with a relatively small displacement
amplitude.

5.4.1.3 β0 = π
4 Case

The top three optimal array layouts for β0 = π
4 are visualised in figure 5.10. A

more detailed list of the optimal arrays found by the optimisation is given in
Appendix C in table C.3. The best array contains a group of three devices offset
to the right of the bottom of the array, with three relatively isolated devices
spaced between this group and the top of the array. The next best performing
arrays contain either two groups of two devices or a group of two and three
devices, with isolated device(s) between them. As before, all these arrays are
mostly contained within a semicircle opposite the incident wave angle.

The top array achieves an average performance of I = 1.5563, this is only
approximately 1-2% better than the next best arrays found for this incident
wave angle. Figure 5.4 shows that this optimal array achieves a maximum of
q ≈ 1.72 near kr ≈ 13 and a minimum of q ≈ 1.34 when kr ≈ 6.6. There exists
an area of stable good performance for kr ∈ [8, 14], where q ≈ 1.6 throughout.

It is shown in figure 5.5 that there is a similar range of ±π
5 around β = β0 = π

4

where q ≥ 1 is maintained. The minimum value achieved outside this range is
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Figure 5.10: Optimal six-device circular arrays for β0 = π
4

q ≈ 0.7, which not as poor as other cases. Also, examination of the plot shows
that the non-optimal performance (outside this range where q ≥ 1) is less
oscillatory than other cases.

The predicated optimal displacement amplitudes for the best array with β0 = π
4

are presented in figure 5.11. The three isolated devices (WECs 1 - 3) have
relatively low motion amplitudes of |D| ≈ 5 for all kr ∈ [5, 15], while the
grouped devices (WECs 4 - 6) have considerably larger motions with |D| > 8.
The motions of these grouped devices increase as kr decreases, while all devices
have similar motion amplitudes of |D| ∈ [4, 12] when kr = 15.

A similar physical explanation to the array in Section 5.4.1.1 can be applied to
this array layout, with two groups at either end of the array (with respect to the
incident wave direction) and a single WEC bridging the gap between these
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Figure 5.11: Predicted displacement amplitudes for optimal six-WEC circular
array with β0 = π

4

groups. The performance of this array is less that that in Section 5.4.1.1,
presumably due to the fixed position of WEC 1 and the associated lack of
freedom.

5.4.1.4 β0 = 3π
8 Case

The best three array layouts found for β0 = 3π
8 are presented in figure 5.12. The

detailed optimisation results are given in table C.4 of Appendix C. The best
array layout is quite similar to that of the β0 = π

4 case, with a group of three
devices offset to the bottom right of the array and three relatively isolated
devices between the top of the array and the group of three. This layout is
located within approximately one third of the circle and so still follows the
pattern of lying within a semicircle opposite the incident wave direction. This
holds for all of the top three arrays presented. These layouts are similar to each
other, in that they all consist of a group of three devices with three relatively
isolated WECs at the top of the array.

The best layout achieved an average performance of I = 1.5883, with a
maximum of q ≈ 1.8 at kr ≈ 13.5 and a minimum of q = 1.3 at kr = 5, as
shown in figure 5.4. The behaviour of q tends to increase with kr up to the
maximum value, after which it decreases. Good performance is maintained for
kr ∈ [10, 15], where q ≥ 1.6 for the majority of this domain.

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

168 Justin P.L. McGuinness



5. Optimisation of General Circular
Arrays in Regular Waves 5.4 Optimisation Results

WEC 1

r-r

r

-r

Best: I=1.5883 2nd: I=1.554 3rd: I=1.5056

Figure 5.12: Optimal six-device circular arrays for β0 = 3π
8

Similar behaviour to the previous optimal arrays is shown in figure 5.5 for
variation in β, where a range of approximately ±π

5 exists around the target
value of β = β0 = 3π

8 such that q > 1 is maintained. There also exists a broad
peak in β-variation, where q ≥ 1.5 for a range of ±π

8 around β = β0 = 3π
8 . This

is due to a double peak around β = 3π
8 , which has the effect of widening the

near peak performance, so that q ≈ 1.55 is maintained for small changes around
β = β0 = 3π

8 .

The optimal motion amplitudes for the best array are shown in figure 5.13. As
expected, relatively small displacements |D| ≤ 8 are observed for the more
isolated devices, while the grouped devices all have |D| > 8 for all kr ∈ [5, 15].
The displacements of the grouped devices (WECs 4 - 6) appear to increase for
decreasing kr, while the non-grouped device motions are more stable with
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Figure 5.13: Predicted displacement amplitudes for optimal six-WEC circular
array with β0 = 3π

8

|D| ≈ 6. Note that the maximum interaction factor of q ≈ 1.8 at kr ≈ 13.5
corresponds to a case where the motions are all within |D| ∈ [5, 14]. These
motions are still too large to be considered O(1), which realistically requires
that |D| ≤ 3. However, it may be inferred that since the motions are smaller for
this optimal array, the imposition of displacement constraints would have a less
relative impact; thus, this may have a less detrimental impact on array
performance. It should further be stressed that the displacement amplitudes of
this array are much lower than the linear arrays analysed in previous chapters.

The array presented here is slightly different to previous arrays and thus the
physical interpretation of the optimal result is moderately altered. As with
previous arrays, a closely spaced group of three devices is present but there is
no corresponding pair of devices. Devices 1 - 3 are separated at the top-right of
the array. The group (WECs 4 - 6) causes constructive interference as
previously outlined while WECs 1 - 3 are more separated to capture power at
the top of the array. This indicates that a greater frontage or coverage of area
to avoid large gaps is more beneficial in this case. Note that the average
performance of this array is less than those for previous wave angles. One would
expect that a simple rotation of the optimal array would occur for different β0.
However, this result suggests that the constrained position of WEC 1 prevents a
group of two or three devices forming in the optimal case.
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Figure 5.14: Optimal six-device circular arrays for β0 = π
2

5.4.1.5 β0 = π
2 Case

The top three optimal arrays for β0 = π
2 are visualised in figure 5.14, while table

C.5 in Appendix C gives a more comprehensive list of the optimisation results.
The optimal array consists of groups of two and three WECs at the left and
right of the array respectively, with an isolated device between these groups at
the top of the array. The second best layout is similar to the optimal
arrangements of the previous two cases, with a group of three devices at the
right, with three relatively separated WECs at the top. Notably, the third best
array has a perfectly symmetric layout, with groups of two devices at the left
and right, with isolated WECs at the top and bottom. Apart from the third
case, the other arrays again almost lie within a semicircle opposite the incident
wave direction.
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Figure 5.15: Predicted displacement amplitudes for optimal six-WEC circular
array with β0 = π

2

The best array layout achieves an average interaction factor of I = 1.5921, while
figure 5.4 shows that a maximum of q ≈ 1.85 at kr ≈ 6.5 and a minimum of
q ≈ 1.25 at kr = 15 is obtained. A secondary maximum of q ≈ 1.8 is also seen
at kr ≈ 8.6, above which q decreases with increasing kr to the minimum value.
The best area of performance is kr ∈ [5, 12], as q ≥ 1.5 is maintained within this
domain.

The β-variation presented in figure 5.5 shows that there is a similar range to
previous optimal arrays of ±π

5 around the target of β = β0 = π
2 . The plot also

shows one of the poorest performances away from the optimal angle, as the
interaction factor drops as low as q ≈ 0.56 near β ≈ 3π

4 .

The optimal motion amplitudes shown in figure 5.15 are in line with
expectations, with the WECs in the group of three (WECs 2 - 4) exhibiting the
largest motions (particularly for the central device WEC 3). The devices in the
group of two also undertake large displacements but less than the group of
three, while the isolated device exhibits the smallest motions, although still too
large to be considered O(1) with 3 ≤ |D| ≤ 7. The general trend of smaller
displacements for larger kr is upheld, with all devices having |D| ∈ [3, 11] for
kr = 15. It is noteworthy that the maximum performance in q was for relatively
small values of kr and thus would be accompanied by large motions of most
devices.

This optimal array layout is a special case, since the fixed device (WEC 1) is in
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line with the incoming wave direction. The array is almost identical to that in
Section 5.4.1.1, with the incident wave angle and array rotated by π

2 . Hence, a
similar physical interpretation of the array applies, with the two groups
providing good interaction at the sides and the isolated WEC absorbing power
incident on the large gap between these groups.

5.4.1.6 β0 = 5π
8 ,

3π
4 ,

7π
8 Cases

The optimisation results for β0 = 5π
8 ,

3π
4 and 7π

8 are detailed in Appendix C in
table C.6, table C.7 and table C.8 respectively. The diagrams of the top three
array layouts corresponding to these optimisation results are shown shown in
Appendix C in figure C.1, figure C.2 and figure C.3 respectively. Since these
arrays for β0 = 5π

8 ,
3π
4 ,

7π
8 are essentially the same as the previous arrays

discussed for β0 = 3π
8 ,

π
4 ,

π
8 respectively by symmetry, a detailed discussion on

their behaviour is omitted and reference can be made to the previous sections.
The interaction factor curves for both variation in kr and β, as well as the
optimal displacement amplitudes, are identical to the analogous arrays
previously discussed.

5.4.2 Circular Arrays including Central Device

The configuration is now extended to a circular array of seven devices, with the
additional device in the centre of the circle. In this way, one device is fixed at
the origin, which is denoted as WEC 7 with (d7, α7) = (0, 0). The angular
position of another device (WEC 1) remains fixed at the top of the array with
α1 = π

2 as before. The number of optimisation variables is therefore the same as
the previous case (namely five) and the process follows in a similar manner to
Section 5.4.1, with all other optimisation parameters the same.

Optimal parameter values are presented in Appendix C in detailed tabular form
for β0 ∈ [0, 7π

8 ] in multiples of π
8 in tables C.9 - C.15, which list the best eight

solutions found by the optimisation routine. The best cases found by
McGuinness & Thomas (2016) are also marked. These results are summarised
in table 5.3, which gives the best case found at each wave angle. The behaviour
of the interaction factor is shown for variation in kr in figure 5.16 and for
variation in β in figure 5.17. Diagrams of the optimal array layouts and plots of
the predicted optimal displacements are also provided for each case. The top
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Table 5.3: Optimal array parameters for the seven-device circular arrays (includ-
ing a middle device) for eight values of β0

β0 θ1 θ2 θ3 θ4 θ5 Iopt

0 0.1000 2.9420 0.1000 0.1000 2.9420 1.5680
π
8 1.1503 1.4850 0.1000 0.1000 3.3479 1.5320
π
4 0.7534 1.4852 0.1000 0.1000 3.7020 1.4957

3π
8 0.3465 0.3231 1.1262 0.1000 0.1000 1.4785
π
2 1.3060 0.1000 3.2065 0.1000 0.1000 1.5361

5π
8 4.2874 0.1000 0.1000 1.1262 0.3231 1.4785

3π
4 0.1426 3.7020 0.1000 0.1000 1.4852 1.4957

7π
8 0.1000 3.3479 0.1000 0.1000 1.4850 1.5320

three optimal layouts are visualised for each value of β0.

5.4.2.1 β0 = 0 Case

A diagram showing the best three layouts for β0 = 0 is shown in figure 5.18 and
the detailed results of the seven-WEC array optimisation for this are presented
in Appendix C in table C.9. The premier array layout contains two groups of
three devices, one at the top and bottom of the array, with the central device
between them. Interestingly, this array is symmetric about the origin (both x
and y-axes). The second best array is only a perturbation of the first, with both
groups of three WECs moved slightly. The third best layout contains the same
group of three at the top of the array, but has a group of two WECs offset to
the right of the bottom and an isolated device on the right. It should be noted
that there is only a small difference of approximately 2% in performance
between these arrays. The best array is quite similar to some optimal linear
arrays discovered in previous chapters, where two groups of WECs were
positioned at each end of an array with an isolated device between them,
though a different incident wave angle β0 was considered in that case. Most
devices in all the optimal arrays presented lie within a semicircle opposite the
incident wave direction, as with arrays which were previously investigated.

The best array obtained an average interaction factor of I = 1.568, with a
maximum of q ≈ 1.88 at kr ≈ 8.0 and a minimum of q ≈ 1.38 near kr ≈ 10.6, as
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Figure 5.16: Interaction factor q against non-dimensional length kr for the opti-
mal seven-WEC circular array for β0 = 0, π8 ,

π
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π
2 ,

5π
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3π
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7π
8

shown in figure 5.16. Relatively good and stable performance is obtained over
the entire domain considered, as q > 1.38 for all kr ∈ [5, 15]. Areas of stable
constructive interference are found within kr ∈ [5.5, 8.5] where q > 1.6 and also
for kr ∈ [12, 14.5] where q ≈ 1.55.

Figure 5.17 shows that there a relatively large range of ±π
5 around the target

wave angle β = β0 = 0, where the interaction factor remains greater than unity,
similar to previous arrays. If this condition is relaxed slightly, there exists a
very large range of approximately ±π

3 where q > 0.9, which appears to be larger
than most other arrays investigated. This effect is due to a small secondary
peak near β ≈ ±π

3 . As expected, this area of good performance is offset by
considerably poor performance away from the optimal wave angle, where the
interaction factor drops as low as q ≈ 0.52.

The optimal displacements corresponding to the best array for β0 = 0 are shown
in figure 5.19. As with previous arrays involving groups of three devices, the
grouped devices exhibited prohibitively large motions, particularly for the
WECs in the centre of the groups (WECs 1 and 4). These grouped devices
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Figure 5.17: Variation of interaction factor q against angle of incidence β for the
optimal seven-device arrays, with kr = 10 fixed. The data is presented in two
figures for clarity.
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Best: I=1.568 2nd: I=1.5408 3rd: I=1.5366

Figure 5.18: Optimal seven-device circular arrays for β0 = 0

(WECs 1 - 6) have |D| > 10 for all kr ∈ [5, 15], while the isolated device (WEC
7) has |D| ≈ 5 for the entire domain. The general trend of larger displacements
for smaller kr is mostly upheld. Note that the maximum in q around kr = 8
corresponds to a small peak in |D| for all devices. The secondary area of good
performance for kr ∈ [12, 14.5] corresponds to motion amplitudes of
5 ≤ |D| ≤ 20, which are lower than the rest of the range. In particular, the
displacements in this area are lower than those for the peak performance around
kr = 8. Therefore, this secondary area of good performance may be preferable,
as the imposition of motion constraints may not be as limiting.

A physical interpretation analogous to that in Section 5.4.1.1 can be made to
the optimal layout presented here, since these layouts are quite similar. As
WEC 7 is forced to be in the centre of the array, another WEC is not needed
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Figure 5.19: Predicted displacement amplitudes for optimal seven-WEC circular
array with β0 = 0

along the x-axis to absorb power in the gap between the groups. This results in
the two groups containing three devices, presumably to maximise the
constructive interference. It should be stressed that although the best array
presented here has a slightly lower value of I than that in Section 5.4.1.1, more
power is absorbed by this array due to the extra device.

5.4.2.2 β0 = π
8 Case

The best three optimal array layouts for β0 = π
8 are presented in figure 5.20 and

the detailed optimisation results are listed in Appendix C in table C.10. The
top performing array consists of groups of two and three WECs at the top of
the array and offset to the right of the bottom of the array respectively, along
with isolated devices between these groups to the right of the array and in the
centre. The second and third best arrays are quite similar to this configuration,
as they are either small perturbations or mirror images of the best array or
both, hence the small difference of approximately 1% - 3% in mean
performance. As with previous optimal arrays, the first and second best arrays
are located within a semicircle opposite the incident waves, while the third
array is approximately positioned in a semicircle facing the incident waves.
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Figure 5.20: Optimal seven-device circular arrays for β0 = π
8

The optimal array achieves a mean performance of I = 1.532 and figure 5.16
shows that this encompasses an impressive maximum of q ≈ 2.2 near kr ≈ 7.8
and a minimum of q ≈ 1.19 at kr = 15. A large area of good performance is
seen for kr ∈ [5, 9], where q ≥ 1.5, which includes the aforementioned maximum.

A slightly smaller range of approximately β0 ± 3π
16 exists where constructive

interference (q > 1) is maintained by this array compared to others, as shown in
figure 5.17. However, due to a secondary peak at β ≈ −3π

16 , this range is
considerably larger (−π

4 ≤ β ≤ 5π
16 ) if the condition is relaxed to q > 0.9. Note

that this larger domain is extended further to the left of the optimal wave angle
than the right, so that the domain length is no longer symmetric about β0 = π

8 .
As expected, poor performance is seen away from this range, with q ≈ 0.6 for
β ≈ ±π

2 .
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Figure 5.21: Predicted displacement amplitudes for optimal seven-WEC circular
array for β0 = π

8

The optimal WEC displacement amplitudes for this case are shown in figure
5.21. The group of three devices (WECs 3 - 5) exhibit larger motions, especially
the central of these (WEC 4). The paired devices (WECs 1 and 6) also exhibit
larger motions compared to the more isolated devices (WECs 2 and 7), which
have |D| ≈ 5 for all kr ∈ [5, 15]. In general, smaller values of kr correspond to
larger motions. The peak in q at kr ≈ 7.8 corresponds to a slight peak in the
motion amplitudes of all devices. At kr = 15, all devices have |D| ∈ [2, 12].

This array is slightly different to the previous one, as WEC 2 is isolated. It
appears that the constraint on the position of WEC 1 prevents a group of three
WECs forming at the top of the array in the optimal solution, hence the slightly
lowered optimal value of I. As a result, WEC 2 is moved to bridge the gap
between the two groups, thus aiding WEC 7 in absorbing the power that would
escape through this region.
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Figure 5.22: Optimal seven-device circular arrays for β0 = π
4

5.4.2.3 β0 = π
4 Case

The top three optimal layouts for β0 = π
4 are illustrated in figure 5.22 and the

detailed optimisation results are listed in table C.11 of Appendix C. The best
array is comprised of a pair of closely spaced WECs at the top of the array, a
group of three WECs offset to the bottom right and two relatively isolated
devices between these groups (one on the top right and one in the centre). The
group of three devices is present in all the top three layouts and is located in
approximately the same position for each. The second best array is slightly
different from the first in that WECs 1 - 3 are spaced relatively far apart at the
top to top-right of the array, while the third best array is very similar to the
first with the pair of WECs at the top mirrored about the y-axis. It is
noteworthy that all these arrays are again almost situated within a semicircle
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opposite the incident wave direction.

The best array achieved I = 1.4957 with a maximum of q ≈ 1.75 near kr ≈ 7.8
and a minimum of q ≈ 1.19 at kr = 15, as shown in figure 5.16. It should be
noted that the minimum achieved here is the smallest for arrays of this type
with seven devices. Overall, the behaviour of this array is quite oscillatory, with
the q against kr curve showing a wavy nature, with peaks and troughs for every
two or three unit changes in kr. The range of performance of q with changes in
kr is slightly smaller than other arrays, with q ∈ [1.19, 1.75] for kr ∈ [5, 15].
There exists a large domain of good performance for kr ∈ [5, 11], where q > 1.4.

The β-variation for this array shown in figure 5.17 is not the same as with
previous arrays. As expected, a peak is achieved near the optimal value of
β = β0 = π

4 and there exists a range with an approximate length of 2π
5 where q

remains greater than unity. However, this range is not centred about the target
wave angle of β = β0 = π

4 . Instead, the range runs approximately within
β ∈ [− π

12 ,
3π
8 ], which is skewed to the left of the optimal wave angle. This

behaviour appears to be due to a secondary peak at β = 0, which stretches the
constructive interference area more to the left of the target wave angle.

The optimal displacement amplitudes are shown in figure 5.23 for each WEC in
this optimal array. Similar behaviour to previous arrays is observed, with the
grouped devices (WECs 3 - 5) exhibiting larger motions than isolated WECs
and the overall trend that motions are larger for smaller kr (though this is not
true for all devices). It is noteworthy that the paired device motions (WECs 1
and 6) are not excessively large with |D| ∈ [3, 10]. This is perhaps due to this
pair being more separated than previous pairs, with θ6 = 0.1426. Both isolated
devices (WECs 2 and 7) have small displacements of |D| ≈ 5 throughout
kr ∈ [5, 15]. The grouped devices exhibit very large motions of |D| ≥ 10 for the
lower half of the domain (kr ∈ [5, 10]) while all other devices have |D| < 12.
The minimum in q at kr = 15 corresponds to displacements of 2 ≤ |D| ≤ 12 for
all devices.

A similar physical explanation to the previous array with β0 = π
8 is given for the

best layout presented here. The two groups at the top and bottom of the array
may maximise constructive interference by the radiated wave field. WECs 2 and
7 may be located in the middle of the array to absorb the power that would
otherwise escape through the gap between these groups.
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Figure 5.23: Predicted displacement amplitudes for optimal seven-WEC circular
array for β0 = π

4

5.4.2.4 β0 = 3π
8 Case

Figure 5.24 shows the top three optimal layouts for the target wave angle
β0 = 3π

8 , while the optimisation results are listed in detail in table C.12 of
Appendix C. The best array is comprised of three relatively isolated devices at
the top right of the array with a closely spaced group of three WECs on the
right. The second best array is very similar to the first, with the group of three
devices in a mirrored position on the opposite side of the array. The third best
array has the grouped devices in roughly the same location as the first, the
other three devices are more separated across the top of the array, with one
device to the left and one to the right of WEC 1 at the top. Similar to previous
results, the pattern of being located within a semicircle opposite β0 is also
upheld for each array.

The best array achieves an average performance of I = 1.4785 with a maximum
of q ≈ 1.65 near kr ≈ 10.8 and a minimum of q ≈ 1.21 at kr ≈ 6.8, as shown in
figure 5.16. This maximum is the lowest for each of the seven-WEC circular
arrays investigated. However, good stable performance of q ≈ 1.6 is maintained
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Figure 5.24: Optimal seven-device circular arrays for β0 = 3π
8

within kr ∈ [10, 15], with very little variability in interaction factor, suggesting
this as possible area for viable array deployment.

Figure 5.17 shows a large range of β ∈ [ π16 ,
9
16 ] where constructive interference

(q > 1) is maintained. Similarly to the β0 = π
4 case, this range is non-symmetric

about the target angle of β0 = 3π
8 , with a larger domain to the left of this value

than the right. This is due to a secondary peak near β = 5π
16 and a tertiary peak

near β = 3π
16 , which improves performance in this region.

The predicted displacement amplitudes required for optimal performance of this
array are shown in figure 5.25. Similar trends are seen, with grouped devices
having larger motion amplitudes than the more isolated devices, particularly for
smaller kr. The most noteworthy behaviour is that of the central device (WEC
7), whose displacement approaches zero for kr ≈ 6.8, 9.6, 13.2 (though it never
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Figure 5.25: Predicted displacement amplitudes for optimal seven-WEC circular
array for β0 = 3π

8

reaches zero). All isolated devices (WECs 1, 2, 3 and 7) have |D| ≤ 10, while
the grouped devices have displacement amplitudes of |D| ≥ 9 which increase to
|D| ≥ 22 for kr < 8. Also shown are slight peaks in the displacement
amplitudes of some devices at kr ≈ 7.5, 10.3; these are most prominent for the
grouped devices. Comparing figure 5.16 and figure 5.25, it is clear that the
stable area of good performance of q ≈ 1.6 for kr ∈ [10, 15] identified above
corresponds to motions of |D| ∈ [0.5, 32]. This can be improved further by
considering the domain kr ∈ [12, 15], where q ∈ [1.52, 1.65] and all devices have
optimal motions within |D| ∈ [0.5, 18], with the central of the grouped devices
(WEC 5) having the largest motion amplitude.

The array layout here is similar to the analogous array in Section 5.4.1.4, with
the inclusion of WEC 7 in the circle centre. A similar physical interpretation of
the behaviour of the optimal layout is proposed. The group of three WECs 4 - 6
create constructive interaction while the forced position of WEC 1 prevents a
group forming at the top of the array. Consequently, WECs 1 - 3 are spread
across the top right of the array. Therefore, WECs 1 - 3 along with WEC 7
absorb power in the gap between the top of the array and the group of three
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Figure 5.26: Optimal seven-device circular arrays for β0 = π
2

devices.

5.4.2.5 β0 = π
2 Case

Figure 5.26 illustrates the optimal array layouts discovered by the optimisation
for β0 = π

2 , while the detailed optimisation results are listed in table C.13 of
Appendix C. The array layout with the best mean interaction factor consists of
groups two and three devices at the right and left of the array respectively, with
isolated devices at the top and centre. The group of three is centred on the
x-axis and the pair is offset slightly above the x-axis. The second best array is
almost a mirror image about the y-axis of the first array, with the groups of two
and three devices on opposite sides. The third best array consists of two pairs of
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closely spaced devices at the left and right (offset just above the x-axis) and
isolated devices at the top, bottom and centre. Apart from the third case, the
pattern of these arrays mostly being located within a semicircle opposite β0 is
upheld.

The best array for this incident wave angle attained an average performance of
I = 1.5361, which encompassed a maximum interaction factor of q ≈ 1.9 at
kr ≈ 8.0 and a minimum value of q ≈ 1.25 at kr = 15, as shown in figure 5.16.
There is an area of very stable performance within kr ∈ [10, 14] where q ≈ 1.45,
with very little variation in q with kr.

It is shown in figure 5.17 that there exists a large range of approximately
β ∈ [5π

16 ,
5π
6 ] where q > 1 is maintained. As with the previous case, this range is

non-symmetric about the target value of β = β0 = π
2 , with a larger range to the

right of this value than to the left. This is due to a secondary peak near β = 13π
16

which extends the domain of q > 1 in this region. Unlike the previous cases
where there was a nonsymmetric domain of constructive interference about β0,
the larger domain is now to the right of β0, rather than the left. As expected,
poor performance is seen away from this region, where a minimum of q ≈ 0.52 is
reached near β = π

8 .

The optimal displacements for this array are shown in figure 5.27. Previously
identified patterns are again observed, with the group of three devices (WECs 4
- 6) exhibiting largest motions (largest for central device), followed by the paired
devices (WECs 2 and 3), with the lowest amplitudes of |D| ≈ 5 shown by the
relatively isolated devices (WECs 1 and 7). Motions are also generally larger for
smaller kr. It can be seen that the peak in interaction factor near kr = 8
corresponds to large motions for most devices, with subtle peaks in displacement
amplitudes for some devices at this value. The minimum performance at
kr = 15 corresponds to the lowest motions of |D| ∈ [3, 11]. Interestingly, the
area of stable good performance within kr ∈ [10, 14] corresponds to relatively
low and stable displacements, with little change in the motion amplitudes of
each device throughout this domain. This area has the smallest displacements
for most devices, with |D| ∈ [2, 22], indicating the possibility that constructive
interference may be maintained after the imposition of motion constraints.

The physical justification behind the optimal layout here is similar to the
analogous array in Section 5.4.1.5 and to the array in Section 5.4.2.2. There are
two groups at either side of the array to maximise constructive interference,
while two devices (WECs 1 and 7) are present in the centre of the array (along
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Figure 5.27: Predicted displacement amplitudes for optimal seven-WEC circular
array for β0 = π

2

the y-axis) to bridge the gap between these groups. It may have been expected
that the optimal array layout would simply be a rotation of that in Section
5.4.2.1. However, the fixed position of WEC 1 forbids this and so the layout
found is optimal given this restriction.

5.4.2.6 β0 = 5π
8 ,

3π
4 ,

7π
8 Cases

The detailed optimisation results for β0 = 5π
8 ,

3π
4 and 7π

8 are listed in Appendix
C in tables C.14, C.15 and C.16 respectively. The diagrams of the top three
unique array layouts corresponding to these optimisation results are also shown
in Appendix C in figures C.4, C.5 and C.6 respectively. As with the six-WEC
arrays, the arrays for β0 = 5π

8 ,
3π
4 ,

7π
8 are essentially the same as those discussed

for β0 = 3π
8 ,

π
4 ,

π
8 due to rotation and symmetry. A detailed discussion on their

behaviour and presentation of the the q vs kr and displacement curves are
omitted and reference is made to the previous sections and diagrams.
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5.5 Discussion of Results

This chapter examines the unconstrained optimisation of arrays of WECs which
are constrained to lie in a circular geometry. The arrays contain six WECs that
lie on the circumference of a circle; the case where a seventh device is placed at
the centre of the circle centre is also investigated. As in Chapter 4, no
symmetry is imposed on the layout of the array and only the angular position of
WEC 1 is fixed to avoid replication of results. These circular arrays are
optimised over the non-dimensional radius of kr ∈ [5, 15], analogous to the
previous optimisations on linear arrays. Each array is thus described by five
angular positional variables and the mean optimal performance is maximised
with respect to these optimisation variables.

In general, this study shows that optimal six and seven member circular arrays
can perform better than optimal five member linear arrays, as shown by the
higher values of I obtained in comparison to those of Chapter 4. This may be
due to the enforced geometry performing better in the circular case, or it may
be due to the increased freedom in the optimisation due to the larger number of
variables. It should also be noted that the optimisation calculation took
considerably longer to execute for the circular arrays in comparison to that for
linear arrays. This was probably due to the combination of an increase in
numerical intensity of the objective function (due to the geometry) and to the
increased number of variables.

The results pertaining to circular arrays in this thesis are presented as optimal,
in contrast to the results of McGuinness & Thomas (2016). Time constraints
did not permit the long run-times required by the optimisation algorithm to
find a global optimum in that paper. However, for this thesis, a finer scan of the
starting variable space was conducted. This resulted in a 20 - 40 fold increase in
run-time of the optimisations and allowed these global optima to be recovered
within a high certainty. Overall, comparing the results of the more intense
optimisation here to those of McGuinness & Thomas (2016), it can be seen that
the large increase in run-time resulted in an improvement of at most 5% in the
optimal solutions. In some cases (table C.11 and table C.13 in Appendix C),
the global optimum was found by the shorter optimisation. The difference
between the results of the long and short optimisations are relatively minor,
with only small increases in the objective values and slight differences in
optimal array layouts.
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It should be stressed that in order to reliably find the global optima as
described, the optimisation routine required run-times of the order of twenty to
forty hours for each case. As anticipated, the calculations were more intense for
the seven member arrays and consistently required run-times closer to forty
hours.

One major difficulty with the optimal arrays obtained in this study is the
magnitude of the associated device motions. Previous studies, such as Thomas
& Evans (1981) and Fitzgerald (2006), suggest that an upper limit of device
motions should be at most three times the incident wave amplitude. This limit
was exceeded by the majority of WECs in all the optimal arrays discovered.
These motions are predicted using linear wave theory, which assumes all
motions are at most of the same order as the wave motion and are assumed to
be small in some sense. Large device motions violate this approximation and
thus invalidate the underlying linear wave theory. Furthermore, the application
of a realistic PTO would prevent such large motions, which in turn will
adversely affect device interaction and hence array performance.

In general, better performing arrays are expected to involve larger device
motions. In some cases presented here, better performance was achieved relative
to other optimal arrays, despite smaller predicted device motions. This may
indicate that the imposition of device motion constraints may not be as limiting
and it is possible that good performance can be maintained. The concept of
constrained motion amplitudes is examined in Chapter 6 with respect to linear
arrays and where the results are compared to the unconstrained optimisations
of Chapter 4.

Many of the optimal array layouts presented here include closely spaced groups
of two or three devices. These groups of WECs are predicted to exhibit the
largest motions, with larger motion amplitudes for larger groups. Placing WECs
in such close proximity identifies other possible difficulties, such as collisions
between devices. In addition, the point absorber approximation may no longer
be valid, as it may be unreasonable to neglect the scattered wave field if the
WECs are in such close proximity to each other.

As proposed in previous chapters, one possible solution may be to replace these
groups of closely spaced devices with a single appropriately-sized larger device.
These arrays would then contain devices of different sizes, a possibility previous
literature seems to have largely neglected. These arrays could be considered as
satellite arrays, since one could often describe such arrays as involving several
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smaller devices orbiting a larger device. This idea was initially suggested by
McGuinness & Thomas (2015), where it was observed that larger devices did
indeed reduce device motions within the point absorber approximation.
However, it is not known what the effect on power absorption and array
performance would be. Another possibility would be to replace these groups of
devices with a single device that absorbs power in two modes of motion, thereby
recreating the dipole effect often exhibited by the pairs of devices in optimal
layouts. It is hoped that either a larger device or one that operates in two (or
more) modes would recreate the constructive interference pattern without the
complications of close deployment and large motions.

Comparing the results of Sections 5.4.1 and 5.4.2, it is clear that the addition of
the seventh device in the centre of the circle influences the array performance
and optimal array layout, even though this does not add any extra variables to
the optimisation. The results shown here, particularly the optimal values of I,
suggest that the inclusion of an extra device reduces the average optimum
interaction factor. This is contrary to expectation, as preliminary results by
Costigan (2014), on similar symmetric arrays of one variable, suggested the
opposite. Costigan’s work optimised circular arrays with different (a)symmetries
imposed, so that each array is described by just one variable. The arrays were
optimised by maximising the mean of the interaction factor over the
non-dimensional radius. It may be that, due to the strict assumptions of array
layouts (symmetry, one variable etc.), the inclusion of a central device improved
performance in those special cases and that this does not hold for a more general
layout. The work of Costigan (2014) also showed that the optimal arrays tended
to contain groups of devices, albeit in a simpler optimisation regime. This
agrees with the results presented here and with those of McGuinness & Thomas
(2015, 2016). It should be stressed that a decreased average interaction factor I
does not necessarily mean that the array absorbers less power. It is probable
that the arrays in Section 5.4.2 absorb greater power due to the extra WEC.
This result merely states the interaction is slightly less constructive.

It was found that the arrays considered here often converged to a layout that
was contained approximately in a semicircle facing in the same direction as the
incident wave angle. It is interesting that optimal interaction and constructive
interference seems to occur when all devices are located in a semicircle, the
orientation of which is dependent on the incident wave angle. Future research
could examine this effect further and investigate the possibility of limiting an
optimisation to a semicircle, which would be computationally more efficient.
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It can be seen from figure 5.16 that a peak in q is present for each optimal
seven-WEC array near kr ≈ 8. This peak is the highest performance of q for all
optimal seven-WEC arrays except β0 = 3π

8 ,
5π
8 , where it instead represents a

local maximum. Corresponding peaks can be seen in the optimal displacements
of the WECs in these arrays in most cases, near the same value of kr ≈ 8. This
is particularly pronounced for the grouped devices which have larger
displacements in general. These peaks do not represent the largest values of the
displacements for kr ∈ [5, 15], but a clear pattern of peaks at kr ≈ 8 is visible
for most optimal seven-device circular arrays. It is unclear why this behaviour
occurs, but it is of little interest due to the relatively large corresponding
optimal motions.

The best performing array in this chapter, which obtained the largest average
performance is the optimal six-WEC array for β0 = π

2 . This layout achieved an
average interaction factor of I = 1.5921, which is a subtle improvement of the
corresponding six-WEC array for β0 = 0, which achieved I = 1.5910. These
array layouts and their performance differ by very little, with a very slight
improvement in the β0 = π

2 case, probably due to the fixed position of WEC 1.
However, these arrays have their best performance of q ≈ 1.7 for kr ∈ [5, 10],
which correspond the displacements of |D| > 5 for all devices. A more modest
performance of q ≈ 1.25 is achieved at the upper end of the domain and is
accompanied by smaller motions of |D| ∈ [2, 11].

It could be proposed that the best overall array is not the one outlined above,
for the restricting reasons of closely spaced devices and large motions.
Therefore, the optimal six-WEC and seven-WEC arrays for β0 = π

4 are
suggested as good performing arrays overall. Although these arrays both contain
a group of three WECs, the other devices are separated and are accompanied by
moderate displacement amplitudes, particularly for larger kr. For the upper
bound of kr = 15, the device motions are |D| ∈ [2, 11] for both the six-WEC
and seven-WEC layouts, suggesting that the imposition of constraints may not
have too large an effect on these arrays. Both arrays also have a relatively large
range of β-variation where constructive interference in maintained.

Chapter 6 will consider device motion constraints and assess the effect on array
performance and optimal array layout for a linear array geometry. This will be
achieved by including the device displacements as variables in the objective
function, with upper limits imposed on the amplitudes. Possibilities for further
work include examining other array geometries, such as triangular and elliptical
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layouts. It should be noted that in order to define the mean of the interaction
factor over some non-dimensional length, it is necessary to define an array
geometry as the mean interaction factor has no sensible definition for general
two-dimensional geometries. Further investigation into semicircular array
layouts could be conducted and extended to semi-elliptical arrays, as results in
this chapter suggest that this may be the optimal case when devices are
constrained to such geometries.

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

193 Justin P.L. McGuinness



Chapter 6

Constrained Optimisations of
Linear Arrays in Regular Waves

6.1 Introduction

In earlier chapters, array formations were optimised while permitting optimal
motions of the individual WECs. In many cases, this resulted in an optimal
array whose members exhibited unacceptably large motions, sometimes of the
order of one hundred to one thousand times the wave amplitude. These large
motions would create engineering difficulties, as discussed in Chapters 3 - 5.
More importantly, they would violate the underlying linear wave theory, which
requires that the device motions are at most of the same order of magnitude as
the wave motions, which are assumed small in some sense.

In this chapter, an extension of previous optimisations of linear arrays is
investigated, where the WEC motions are limited to a specified value, such that
linear wave theory remains consistent. Since the amplitude of the
non-dimensional device displacements D must be O(1), upper limits of |Dj| ≤ 2
or |Dj| ≤ 3 are imposed on all WECs within the array. These limits have been
considered by Thomas & Evans (1981) and Fitzgerald (2006), who showed that
constructive interference is still possible for a constraint of |Dj| ≤ 3, while a
constraint of |Dj| ≤ 2 may be severely limiting. Most importantly, these upper
limits of device motions can be considered to be within the O(1) requirement
for the validity of the underlying theory. A summary of the results of this
chapter is given by McGuinness & Thomas (2017a).
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6.2 Optimisation Methodology

The optimal interaction factor q can no longer be used within the optimisation
for the constrained motions considered, as this assumes optimal motions
Dopt = i

2ωAB
−1X. Therefore, objective functions analogous to equation (4.3) are

employed here using the averaged interaction factor q (2.169) and/or the
generalised interaction factor qgen (2.170).

The same notation for consecutive device separations (ksj) and
reparameterisations thereof (nj), from Chapter 4, are retained in this chapter.
Two objective functions are defined, one as the mean of q and the other as the
mean of qgen. Including all the relevant variables, the first objective function can
be written

I(n,D; β0) = 1
kLu − kLl

∫ kLu

kLl

q(n,D, kL; β0) d[kL], (6.1)

where n is an N − 2 component vector containing all the nj parameters, such
that {n}j = nj, and D is an N component vector containing the complex
displacements of the devices. Similarly, the qgen variant of this can be written as

Igen(n,D;D1,opt, β0) = 1
kLu − kLl

∫ kLu

kLl

qgen(n,D, kL;D1,opt, β0) d[kL], (6.2)

where D1,opt is the optimal non-dimensional complex displacement of an isolated
device subject to constraints. Note that I assesses the average performance of
the constrained array relative to the same number of unconstrained isolated
WECs, while Igen measures the average performance of the constrained array
relative to the constrained performance of isolated WECs. Therefore, Igen ≥ I

in general, with equality holding if the optimal single WEC motions do not
exceed the applied constraint over the range of kL considered.

Since the displacements D are complex quantities that contain both the
amplitude and phase of the WEC motions, it is beneficial to separate these
quantities explicitly for numerical implementation. Let δδδ and ψψψ be
N -component real vectors containing the motion amplitudes and phases of each
device respectively, so that the non-dimensional complex displacement of the jth

device is given by
Dj = δje

iψj . (6.3)

Using this notation and explicitly including all real variables, the objective
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functions are written as

I(n, δδδ,ψψψ; β0) = 1
kLu − kLl

kLu∫
kLl

q(n, δδδ,ψψψ, kL; β0) d[kL] (6.4)

Igen(n, δδδ,ψψψ; δ1,opt, ψ1,opt, β0) =

1
kLu − kLl

kLu∫
kLl

qgen(n, δδδ,ψψψ, kL; δ1,opt, ψ1,opt, β0) d[kL], (6.5)

where D1,opt = δ1,opte
iψ1,opt . In the above expressions, the optimisation variables

are listed first and the prescribed fixed constants of the optimisation follow the
semi-colon. In each optimisation, there are 2N displacement variables
(δj and ψj) and N − 2 position variables (nj), giving a total of 3N − 2 variables
upon which these objective functions depend. These functions will be
maximised using a similar procedure to that in Chapter 4, with appropriate
constraints placed on the variables. If δmax denotes the upper limit of
displacement constraint applied, then δmax = 2 or 3 is applied.

The displacement amplitude δj is required to be positive by definition, so for a
maximum displacement constraint of δmax, the range of the displacement
variables would be 0 ≤ δj ≤ δmax and 0 ≤ ψj ≤ 2π. However, this is equivalent
to allowing the amplitude to be both positive and negative, and restricting the
phase to 0 ≤ ψj ≤ π. Since the ψj variables are contained within a complex
exponential expression, the variation over this variable within the optimisation
would be more computationally intensive than variation over δj, albeit only
slightly. However, given the large number of calls to the objective function and
the large number of iterations of the optimisation necessary, every effort was
made to make the calculations as efficient as possible. Therefore, in this
implementation, a new variable δ̃j is introduced and the displacements are
written as

Dj = δ̃je
iψj . (6.6)

If δmax is a given amplitude constraint, then the limits on the displacement
variables are −δmax ≤ δ̃j ≤ δmax and 0 ≤ ψj ≤ π for j = 1, . . . , N .

The optimal isolated WEC displacement is found from maximising the
absorption length of an isolated device. Therefore, the optimal values δ̃1,opt and
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Table 6.1: Optimum isolated WEC displacement parameters

Constraint δ̃1,opt ψ1,opt

δ ≤ ∞ -3.30738 1.72658
δ ≤ 3 -3 1.72658
δ ≤ 2 -2 1.72658

ψ1,opt are found from the following maximisation

max
|δ̃1|≤δmax
0≤ψ1≤π

[
−4π(ka)

(
Re[(D + iC)δ̃1e

iψ1 ] + π(ka)(C2 +D2)δ̃1
2
)]
. (6.7)

The values of δ̃1,opt and ψ1,opt are listed for the unconstrained case and for both
constrained cases in table 6.1. Note that the phase in each case is
ψ1,opt = 1.72658, which corresponds to approximately 0.549587π.

Throughout this procedure, the non-dimensional radius of the WECs is
assumed to have a fixed value of ka = 0.4 in line with previous chapters. This
value is chosen as a typical case that is within the point absorber regime and is
applied to the implementation of both objective functions.

To enable comparison with the results of Chapter 4, the optimisations are
performed using both objective functions I and Igen with respect to the layout
of the array. It was found that the optimisations involving Igen produced the
same optimal array layouts as those for I. The optimal performance as
described by qgen was found to be a slightly increased version of the optimal q,
with both following the same overall performance patterns. This is to be
expected given the definitions of the interaction factors (equations (2.154) and
(2.155)) and the results in table 6.1, as the application of constraints reduces
the single WEC performance slightly, which affects the denominator of qgen.
Thus, there is no significant difference between the results obtained by the use
of either objective function.

Both q and qgen measure the constrained performance of the array relative to the
performance of isolated devices. However, q compares the array performance to
unconstrained isolated WECs, while the denominator of qgen is the constrained
isolated WEC performance. Thus, qgen gives a more realistic measure of array
interaction when considered alone. However, q (and hence I) would give a
better comparison between the unconstrained and constrained regimes, as both
q and q contain the same denominator. Since the implementation of the Igen
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optimisations require greater computational effort and provide no further
insight, attention is restricted to the I optimisations which allow a better direct
comparison to the unconstrained results of Chapter 4.

Two cases are examined within this chapter. Firstly, the constrained
performance of unconstrained optimal array layouts from Chapter 4 is assessed
in Section 6.3.1. Writing n∗ as the unconstrained optimal layout, the objective
function can be written

I(δδδ,ψψψ; n∗, β0) = 1
kLu − kLl

kLu∫
kLl

q(δδδ,ψψψ, kL; n∗, β0) d[kL]. (6.8)

Since the WEC positions are prescribed, there is a total of 2N variables in this
optimisation. Secondly, in Section 6.3.2, the array layout is not prescribed and
an optimisation is performed over both the WEC motions and positions.
Finally, a discussion of the results is given in Section 6.4, together with
conclusions.

The optimisation algorithm involves a similar procedure to that in Chapter 4
and is performed using NAG routine E04UCF1. An exhaustive search procedure
of the set of possible starting points is again used, with all possible
combinations of nl ∈ {0.1, 0.2, . . . , 0.7} ∪ ψj ∈ {0, π2 , π} ∪ δ̃j ∈ {−3,−1, 1, 3} for
l = 1, . . . , 4 and j = 1, . . . , 5 examined for the upper constraint δ ≤ 3. For the
lower constraint δ ≤ 2, the set of starting points for WEC motion amplitude
was taken to be δ̃j ∈ {−2, 0, 2}. It was found that the optimisation behaved
satisfactorily with respect to the starting values of δ̃j and ψj, hence the
relatively sparse sampling of starting points of these variables.

As in Chapters 4 and 5, the exhaustive search outlined above involves many
iterations of the optimisation routine. The results are summarised in this
chapter with the best results chosen for analysis. For brevity, the detailed
optimisation results are omitted from this chapter and are provided in
Appendix D.

1https://www.nag.co.uk/numeric/fl/manual/pdf/E04/e04ucf.pdf
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Table 6.2: Performance of optimal layouts from Chapter 4 subject to motion
constraints

β0 n∗1 n∗2 n∗3 n∗4 Iopt(δ ≤ ∞) Iopt(δ ≤ 3) Iopt(δ ≤ 2)

0 0.0500 0.0500 0.0500 0.8500 1.4802 0.5469 0.4691
π
4 0.0500 0.8500 0.0500 0.0500 1.1431 0.3070 0.2624
π
2 0.0500 0.2252 0.3859 0.3359 1.3643 0.9486 0.7693

6.3 Constrained Optimisation Results

6.3.1 Comparison of Unconstrained Optimal Layout

The constrained performance of the optimal formation of an array of five
devices in a linear geometry, previously considered in Chapter 4 and
McGuinness & Thomas (2016), is now examined. With the optimal spacing
denoted by n∗, the array is subject to the direction of the incident waves. Since
the layout is prescribed before the optimisation, there are ten optimisation
variables for N = 5 devices, namely the amplitudes δ̃j and phases ψj of the
displacements of each WEC. The objective function is given by (6.8) and is
maximised with respect to these variables subject to the limits enforced. The
increased number of variables in this optimisation requires a considerable
increase in computational effort and only results pertaining to β0 = 0, π4 ,

π
2 are

presented in this chapter.

Table 6.2 lists the optimal layouts n∗ from the unconstrained optimisation in
Chapter 4, together with the performance of these arrays in the unconstrained
case and a motion constraint of δ ≤ 2 or δ ≤ 3 is enforced. The optimal values
of the displacement variables δ̃j and ψj are also listed in table 6.3. The
computation time for each case examined in this section was of the order of one
to five minutes. This was due to the exhaustive search and optimisation
routines scanning over ten variables.

As expected, performance is considerably poorer when constraints are applied,
with the lower constraint having a greater impact. Where β0 = 0 or π

4 , the
application of the δ ≤ 3 constraint causes a reduction in performance of between
63% and 73%, with only a further small difference between δ ≤ 2 and δ ≤ 3.
This is probably due to the presence of grouped devices in these layouts and the
associated large optimal WEC motions. Since the optimal motions are
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Table 6.3: Optimal WEC displacement parameters for optimal layouts from
Chapter 4 subject to constraints

β0 δmax δ̃1 δ̃2 δ̃3 δ̃4 δ̃5 ψ1 ψ2 ψ3 ψ4 ψ5

0 2 -2.0000 -2.0000 2.0000 2.0000 -0.5326 0.8933 1.7679 0.0542 1.0235 2.5317
3 -3.0000 -3.0000 -3.0000 3.0000 -0.5174 0.5977 1.8731 3.1236 1.3434 2.6386

π
4 2 -2.0000 -2.0000 -1.2500 2.0000 -1.4587 1.1384 2.6780 1.5186 0.8910 0.1221

3 -3.0000 -3.0000 -1.6884 3.0000 -1.9200 0.8875 2.9290 1.3618 0.8832 0.3028
π
2 2 -2.0000 -1.1760 -2.0000 -2.0000 -2.0000 1.7266 1.7266 1.7266 1.7266 1.7266

3 -3.0000 -0.1103 -3.0000 -3.0000 -3.0000 1.7266 1.7266 1.7266 1.7266 1.7266

predicted to be O(100)−O(1000) from Chapter 4, it is expected that limiting
the motions to O(1) would have a large effect on array performance. This also
explains the relatively small difference between the two constraints, as the
relative difference between δ = 2 or 3 and δ = O(100)−O(1000) is also small.

The application of constraints has a smaller impact on the β0 = π
2 array, as was

anticipated in Chapter 4. This is due to the larger spacing between most of the
devices in this layout and the smaller associated motions. The application of
the δ ≤ 3 and δ ≤ 2 constraints is associated with performance losses of 30.5%
and 43.6% respectively. Given these fixed layouts, it does not appear to be
possible to maintain average constructive interference (I > 1) after the
application of constraints; although moderate performance of I = 0.94859,
albeit slightly destructive, is achieved for β0 = π

2 with δ ≤ 3.

Table 6.3 shows that the majority of the amplitude variables δ̃j attained the
enforced limit of ±2 or ±3. All optimal arrays resulted in one or two of the δj
values smaller than the limit and requiring some value in the centre of the
allowed range. This indicates that within the constrained problem, the best
solution does not result from simply setting all device amplitudes to their
largest allowed values. The optimal case appears to be when one or two WECs
oscillate at a slightly smaller amplitude, which appears to improve interference.
This could be an artifact of forcing the WECs to be arranged in a layout which
was optimised for unconstrained motions. The displacement phases of each
WEC are all different within each optimal solution found, with the obvious
exception of the β0 = π

2 array. For both constraints applied, all the WEC phases
were equal in the optimal beam seas array.
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Table 6.4: Optimal linear array layout parameters subject to motion constraints

β0 δmax nopt,1 nopt,2 nopt,3 nopt,4 Iopt

0 2 0.0978 0.0532 0.1139 0.7351 0.49441
3 0.1057 0.0504 0.1048 0.7391 0.58438

π
4 2 0.0940 0.1532 0.2259 0.5269 0.42508

3 0.1310 0.3066 0.1103 0.4521 0.45507
π
2 2 0.2679 0.2321 0.2321 0.2679 0.87771

3 0.2679 0.2321 0.2321 0.2679 1.06779

6.3.2 Undetermined Layout

A more detailed analysis of the constrained performance of these arrays is now
undertaken, where the array layout is allowed to vary within a constrained
optimisation. The performance of the array layouts, identified previously as
optimal in the unconstrained optimisation, are then compared to the
performance of the arrays where the WEC positions are not fixed and are also
fed into the optimisation as variables.

The optimisation is without a prescribed layout, so that the array formation
and the device displacements are variables of the optimisation, giving a total of
3N − 2 = 13 variables for N = 5 WECs. This is performed for two different
maximum displacement constraints of δ ≤ 2, 3 and the three values of
prescribed incident wave angle β0 = 0, π4 ,

π
2 . The results of the optimisations are

summarised in table 6.4 and the corresponding optimal values of δ̃j and ψj are
listed in table 6.5. The detailed results of the optimisations are provided in
tables D.1 - D.6 of Appendix D, where all solutions found by the optimisation
are listed. These tables are omitted from this chapter for brevity and only the
best cases found by the optimisation are presented and examined. The optimal
constrained layouts are denoted as nopt. In this section, the computation times
for each case examined was of the order of one hour. The increase in
computation time was due to the exhaustive search and optimisation routines
scanning over 13 variables, three more variables than the optimisation in Section
6.3.1. These three extra WEC position variables also required a finer scan
within the exhaustive search routine, further adding to the computational effort.

As in the procedure employed in McGuinness & Thomas (2016), minimum and
maximum values of each separation parameter were enforced within the
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Table 6.5: Optimal WEC displacement parameters for constrained optimal lay-
outs in table 6.4

β0 δmax δ̃1 δ̃2 δ̃3 δ̃4 δ̃5 ψ1 ψ2 ψ3 ψ4 ψ5

0 2 -2.0000 -2.0000 2.0000 2.0000 -0.5044 0.9841 2.6244 0.3064 2.0858 2.5309
3 -3.0000 -3.0000 3.0000 3.0000 -0.4828 0.7737 2.6660 0.3878 2.4455 2.5965

π
4 2 -2.0000 -2.0000 2.0000 1.5094 0.5083 1.1987 2.6658 0.5846 1.9964 2.0989

3 -3.0000 3.0000 2.4695 -1.7879 0.5566 1.2333 0.1285 1.0368 0.2747 2.4616
π
2 2 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 1.7266 1.7266 1.7266 1.7266 1.7266

3 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 1.7266 1.7266 1.7266 1.7266 1.7266

optimisation so that 0.05 ≤ nl ≤ 0.85 for l = 1, . . . , 4. This ensures that no
device will be within 5% of the total array length of another device. The upper
bound of 0.85 was chosen to allow the possibility that all but one of the
separations was exactly the minimum bound. A 5% minimum constraint was
chosen as this value also avoided possible difficulties due to numerical
inaccuracies and poor behaviour of the objective function caused by small
non-dimensional separation arguments. It is also a physically reasonable lower
bound on WEC separation distances.

In the following subsections, the unconstrained optimal layout n∗ and the
constrained optimal layouts nopt are presented for each of β0 = 0, π4 and π

2 ; the
performance of the arrays are also analysed for variation in kL and β
respectively. There are five curves in each q plot for each value of β0 and these
are intended to show the performance of the unconstrained optimal array q(n∗),
the constrained arrays with the unconstrained optimal layout q(n∗) for both
δ ≤ 2 and δ ≤ 3 and the optimal constrained arrays with re-optimised layouts
q(nopt) for both δ ≤ 2 and δ ≤ 3.

It is anticipated a priori that each constrained array would perform poorer that
the unconstrained equivalent and it is also expected that

I(nopt, δ ≤ 3) > I(n∗, δ ≤ 3) > I(nopt, δ ≤ 2) > I(n∗, δ ≤ 2). (6.9)

However, it is unclear how sharp the inequalities will be, i.e. how close to
equality they can become. It is only by consideration of the individual cases
that this information can be obtained.

Similar conclusions to the previous section can be drawn from table 6.5, where
the majority of δj values require the limit of δmax imposed. In head and
intermediate seas, one or two δj did not converge to the maximum allowed value
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and all WECs have different phases ψj. However, in beam seas, δj = δmax and
the phases are equal for all WECs, as would be expected. This is unlike the
results in table 6.3, since in this case the WECs were optimised for constrained
motions. Thus for beam seas, where the wave hits all WECs at the same time,
the array is contrived such that the displacement limit is reached for all WECs,
thereby maximising power capture. Furthermore, it should be noted that the
optimal array layout in beam seas is symmetric about the middle device for
both applied constraints.

6.3.2.1 Head Seas β0 = 0

Figure 6.1 shows the unconstrained optimal layout (n∗) and the constrained
optimal layouts (nopt) for the general layout optimisation in head seas. The
constrained optimal layouts for both constraints are very similar, so the diagram
corresponding to δ ≤ 3 is omitted. The detailed optimisation results for β0 = 0
are listed in Appendix D in tables D.1 and D.2 for δ ≤ 2 and δ ≤ 3 respectively.

As in Section 6.3.1, it is clear that the imposition of constraints has a large
impact on the performance of the array, with the best arrays achieving
I = 0.49441, 0.58438 for δ ≤ 2, 3 respectively. This is a reduction in performance
of between 60.5% and 66.6% relative to the corresponding unconstrained array.
Allowing the array layout to be optimised in the constrained regime results in
different spacings, where the group of four devices becomes slightly more
separated. This is probably due to a similar physical explanation, as given in
Chapter 4. Since the devices can no longer oscillate at as large an amplitude,
maximum constructive interference cannot be achieved by simply allowing the
devices as close as possible. It seems a slightly more separated layout enables
the best interaction to be achieved with the amplitude limits enforced. Note
that WECs 2 & 3 are still placed very close together, which may still cause
some physical difficulties such as shadowing and possible collisions.

The performance of the arrays under consideration is shown in figures 6.2 and
6.3 for variation in kL and β respectively. The performance of all constrained
arrays are much poorer compared to the unconstrained case. Overall, the best
constrained array is the nopt, δ ≤ 3 array, as expected. In general, the δ ≤ 3
arrays perform better than the δ ≤ 2 arrays; while within this pattern the nopt
layouts perform better then the n∗ ones. There are some specific values of kL
where this pattern is broken, though this pattern holds when performance over
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kx

ky

(a) Unconstrained

Β

kx

ky

(b) δ ≤ 2, 3

Figure 6.1: Constrained and unconstrained optimal linear arrays for β0 = 0. The
optimal layout for the δ ≤ 3 case is very similar to the δ ≤ 2 case and is omitted
for clarity
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Figure 6.2: Performance of constrained and unconstrained linear arrays for vari-
ation in kL with β = β0 = 0
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Figure 6.3: Performance of constrained and unconstrained linear arrays for vari-
ation in β with β0 = 0 and kL = 10

the entire range of kL ∈ [5, 15] is considered.

From figure 6.2, the overall behaviour of the constrained arrays is seen to be
similar to the unconstrained array, in that there is small variation throughout
kL ∈ [5, 15]. Interestingly, from figure 6.3, it is clear the the constrained arrays
have a much broader peak performance in β-variation than the unconstrained
array, although the peak is much lower. The unconstrained array has a range of
approximately ±π

8 where q > 1, while the constrained arrays have a large range
of ±π

4 where q ≈ 0.5. This coupled with the low variation of q with kL suggests
a large stability of performance for these constrained arrays, although the
performance achieved is rather poor in comparison to the optimal performance
of the same number of isolated devices. It should also be noted from figure 6.3
that the q values become negative outside a certain range, indicating a that the
power absorbed by the array is negative in this constrained case and the WECs
are injecting power into the waves rather than absorbing power.
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kx

ky

(a) Unconstrained
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ky

(b) δ ≤ 2

kx

ky

(c) δ ≤ 3

Figure 6.4: Constrained and unconstrained optimal linear arrays for β0 = π
4 .

6.3.2.2 Intermediate Seas β0 = π
4

Figure 6.4 illustrates the unconstrained and constrained optimal layouts for the
β0 = π

4 case, while tables D.3 and D.4 in Appendix D give the detailed
optimisation results for δ ≤ 2 and δ ≤ 3 respectively. As for head seas, the
optimal constrained arrays are more separated than the unconstrained optimal
layout. However, the optimal layouts corresponding to δ ≤ 2 and δ ≤ 3 differ.
In both constrained cases, WEC 5 is relatively isolated at the right of the array.
For the δ ≤ 2 array, WECs 1 - 4 have an increasing separation between them,
with the smallest separation between WECs 1 & 2 being 9.4% of the total
length. In contrast, the δ ≤ 3 array has two pairs of devices approximately
0.11kL− 0.13kL apart, with the distance between the pairs being
approximately 0.3kL.

Figures 6.5 and 6.6 show the performance of all constrained arrays, together
with the unconstrained case, with kL and β-variation respectively for β0 = π

4 .
As for head seas, the application of amplitude constraints has a considerable
detrimental effect on the array performance, with an overall reduction from
q ∈ [0.9, 1.3] to q ∈ [0.1, 0.6]. This is probably due to the presence of closely
spaced groups of WECs and the associated large motions in the optimal
unconstrained case.

The expected trend of δ ≤ 3 outperforming δ ≤ 2 is not maintained, as it is
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qHnopt,∆£2L qHnopt,∆£3L neutral

Figure 6.5: Performance of constrained and unconstrained linear arrays for vari-
ation in kL with β = β0 = π

4

clear from figure 6.5 that q(nopt, δ ≤ 2) > q(n∗, δ ≤ 3). This is perhaps because
the optimal array layout is noticeably different when constraints are applied.
Therefore, applying constraints to the unconstrained optimal layout may result
in very poor performance. This figure also shows that

I(nopt, δ ≤ 3) > I(nopt, δ ≤ 2) > I(n∗, δ ≤ 3) > I(n∗, δ ≤ 2),

in contrast with the expectation (6.9) and the results of the head seas case.

As with head seas, figure 6.5 shows that the constrained array performance
varies relatively slowly with kL. This indicates that the performance of the
array is relatively stable to changes in kL, although a large reduction in
interaction factor is again seen when constraints are imposed. Examination of
figure 6.6 shows a similar behaviour to head seas, where a broader performance
with respect to β is achieved around β = 0. This is not beneficial, as the target
wave angle is β0 = π

4 , around which are significant variations in q. This is
particularly evident for |β| > π

4 , where the nopt arrays give q < 0 for |β| > 3π
8 .

The n∗ arrays are slightly more stable around the target wave angle, although
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Figure 6.6: Performance of constrained and unconstrained linear arrays for vari-
ation in β with β0 = π

4 and kL = 10

the performance of these arrays is not as high as the nopt arrays.

6.3.2.3 Beam Seas β0 = π
2

Figure 6.7 shows the optimal constrained and unconstrained array layouts for
beam seas. The optimal array layout in both the constrained cases is very close
to a uniform array. This reinforces the idea that constrained arrays tend to have
their optimal layouts more widely spaced apart, avoiding groups of WECs, with
the exception of head seas. It is also consistent with the idea that greater
frontage to the waves gives greater power absorption, since an array with
greater frontage to the incident wave has a greater amount of wave-power
incident upon it. However, as shown in previous studies, this is not always
equivalent into increased power absorption or better WEC interference.

The detailed constrained optimisation results are given in Appendix D in tables
D.5 and D.6 for δ ≤ 2 and δ ≤ 3 respectively. Most notably, these tables only
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kx

ky

(b) δ ≤ 2, 3

Figure 6.7: Constrained and unconstrained optimal linear arrays for β0 = π
2 . The

optimal layout for δ ≤ 3 is identical to the δ ≤ 2 case and is omitted for clarity

contain one entry; this is because each run of the optimisation for different
combinations of starting parameters converged to one optimal solution, or an
analogous one by symmetry. Similar behaviour of the optimisation was observed
in the unconstrained beam seas case, where only two optimal solutions were
attained by the routine. This suggests that the optimal solutions, constrained
or otherwise, are relatively stable for β0 = π

2 , since there is only one or two
optimal layouts found. The condition I > 1 is achieved for the δ ≤ 3 constraint
at this wave angle; this is the only case where average constructive interference
is maintained after the application of constraints on a linear array.

The performance of the arrays for beam seas are shown in figures 6.8 and 6.9 for
variation in kL and β respectively. Both figures show that the application of
constraints do not have as severe a negative impact on q in comparison to other
wave angles. A loss is seen for the q values compared to q but constructive
interference is still achieved in some cases. As with β0 = 0, a constraint of δ ≤ 2
has a greater impact on performance than δ ≤ 3; within this pattern, the nopt
arrays perform better than the n∗ layouts, so that (6.9) holds true as expected.

As in the previous two configurations, figure 6.8 shows the slow variation of q
with kL, indicating that a small change in kL produces only a small change in
array performance. In general, this figure shows the better performance is
achieved for larger values of kL within the domain examined. Constructive
interference q > 1 is achieved for the δ ≤ 3 arrays, while the best case for δ ≤ 2
is q ≈ 1 at kL = 15 for the nopt layout. Both configurations with δ ≤ 2 resulted
in q ≤ 1. The fact that q(nopt, δ ≤ 3) ≈ 1.2 for kL ∈ [10, 15] is promising, as this
indicates that constructive interference is still possible after the imposition of a
reasonable constraint. This layout is also almost uniformly-spaced and so avoids
the problems associated with closely spaced devices.
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Figure 6.8: Performance of constrained and unconstrained linear arrays for vari-
ation in kL with β = β0 = π

2

The β-variation of the array performances are shown in figure 6.9. Contrary to
head and intermediate seas, the imposition of constraints results in a narrower
peak performance around β = β0 = π

2 compared to the unconstrained case. A
high peak value is achieved with max[q] ∈ [0.8, 1.2] depending on the constraint
and layout but the peak is significantly narrower. This results in q < 0 for a
relatively small change of β0 ± π

12 , which may be undesirable and is highly
dependent upon the angular variation within the incident wave-field.

The results of figure 6.8 can be compared with the work on constrained motion
performance of the uniform array in Thomas & Evans (1981). In both cases, the
constrained array examined is almost identical in geometry, since the
constrained array presented here (nopt) for beam seas is almost uniform. Note in
Thomas & Evans (1981) that the quantity examined is the absorption length
scaled by the total WEC covering in the array labs

10a . Furthermore, this quantity
was assessed with respect to variation in the device spacing kd, not the array
length kL. Agreement is seen, however, in the overall performance of the array
with respect to the application of constraints, i.e. an application of a constraint
of three times the wave amplitude still allows for constructive interference, while
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Figure 6.9: Performance of constrained and unconstrained linear arrays for vari-
ation in β with β0 = π

2 and kL = 10

a constraint of twice the wave amplitude is severely limiting and results in
destructive interference dominating.

6.4 Discussion of Results

This chapter considers the extension of linear arrays to where the WECs are
constrained to oscillate at most two or three times the incident wave amplitude.
This is necessary as most of the optimal arrays resulted in predicted optimal
displacement amplitudes well in excess of the incident wave amplitude. Such
large displacements would not only cause significant physical and engineering
difficulties but also violate the underlying linear wave theory, which assumes
WEC motions are at most the same order of magnitude as the wave motions
and are assumed small in some sense.

Initially, two different objective functions I and Igen were defined for the
constrained arrays and which depended on two quality measures, namely the
averaged interaction factor q and the generalised interaction factor qgen
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respectively. Although the numerical calculations in this chapter were
performed using both the averaged and generalised objective functions, the
findings related to Igen are omitted. These results follow the same overall
patterns of I and so their inclusion would not be additionally informative; for
δ ≤ 3, the averaged and generalised results were almost identical. This was
because the optimal performance of an isolated device resulted in an optimal
motion amplitude of δ1,opt ≈ 3.307, which is only slightly greater than the
imposed constraint of δ ≤ 3. A noticeable difference was seen for the lower
constraint of δ ≤ 2 but the behaviour of Igen and qgen were merely slightly
increased versions of I and q. Both objective functions produced identical
optimal array layouts and the resulting performances, as measured by either q
or qgen, followed similar patterns.

The imposition of constraints had a significant impact on array performance,
particularly when optimal performance was accompanied by very large device
motions. In previous chapters, the impression of good performance was given by
the large values of q achieved. However, these were accompanied in most cases
by unacceptably large motion amplitudes. Therefore, the application of
constraints was expected to have a large negative impact on array performance.
This was particularly true with groups of closely spaced devices, which were
associated with the largest predicted optimal motions.

This effect is most clearly seen by comparing the results of head seas and beam
seas in figures 6.1 and 6.7. The β0 = 0 unconstrained optimal layout from
Chapter 4 contained a close group of four devices and predicted very unrealistic
motions of the order of 1000 times the wave amplitude. When constraints are
applied, the array performance is reduced by approximately 60% and resulted in
the domination of destructive interference (q < 1). In contrast, the β0 = π

2

unconstrained optimal array was more spaced, although it still contained a
closely spaced pair of WECs. The application of constraints resulted in a
smaller performance reduction of approximately 30% (for δ ≤ 3) and allowed
the possibility of constructive interference (q > 1).

When the array layout parameters were added as optimisation variables,
noticeably different layouts were obtained in comparison to the unconstrained
optimisation (n∗ 6= nopt). This resulted in a more separated layout in each case,
which reduced the number closely spaced WECs within the array or eliminated
these groups of WECs altogether. For β0 = 0, the constrained optimal layout
separated the group of four devices slightly but still retained a closely spaced
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pair. This was very similar for both δ ≤ 2 and δ ≤ 3. In the intermediate case
of β0 = π

4 , no closely spaced devices remained in the constrained optimal
layouts. Most notably, the different constraints resulted in significantly different
optimal layouts at this wave angle. A symmetric and almost uniform layout was
found to be optimal when the constraints were applied in the beam seas case,
with the exact same layout found for both δ ≤ 2 and δ ≤ 3. This optimisation
eliminated the pair of closely spaced devices on the left of the unconstrained
optimal layout for this wave angle. This was also the best performing
constrained array with the largest I for both constraints, with mean
constructive interference (I > 1) maintained for the δ < 3 constraint. The
finding that the optimal array layout changes with the imposed constraint
agrees with the result of Garcia-Rosa, Bacelli, & Ringwood (2015), which shows
that the control problem is related to the array layout problem.

Although both constraints considered were within the O(1) regime, the δ ≤ 2
constraint had a more severe detrimental impact on array performance; this was
not unexpected. In general, the arrays with the δ ≤ 3 constraint performed
better than the δ ≤ 2 arrays, with varying differences between these depending
on the wave angle and layout considered. Previous studies, such as Thomas &
Evans (1981) and Fitzgerald (2006), have discussed how the imposition of a
constraint of three times the wave amplitude still allows for constructive
interference in some cases, while a constraint of two times the wave amplitude is
severely restrictive. This idea is echoed here, where δ ≤ 2 had a greater negative
impact on all arrays considered, while constructive interference was still possible
in some cases for δ ≤ 3.

It would be reasonable to argue that the best linear array presented in this
chapter was the almost uniform layout found for β0 = π

2 . This array had the
greatest overall performance with constraints imposed, by a considerable
margin. The array was widely spaced and symmetric, which avoided the
problems of closely spaced WECs. Most importantly, mean constructive
interference was possible for the larger constraint and stable performance with
respect to changes in kL was also observed. However, the array was very
sensitive to changes in incident wave angle. Moving away from the target wave
angle by ± π

12 resulted not only in destructive interference, but q < 0, indicating
that the array is adding power to the waves rather than extracting it.

The results obtained in this chapter show that a trade-off is made either in
overall performance of the array or in the sensitivity of the optimal array. When
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examining the β-plot for the head seas case (figure 6.3), it is clear that the
imposition of constraints widens the peak performance of the q against β curve
compared to the unconstrained case, although the overall performance is
severely reduced. However, the opposite is seen for beam seas (figure 6.9), where
reasonable performance is maintained under the imposition of constraints, but
the peak performance is significantly narrowed, thus severely increasing the
sensitivity of the array to changes in the incident wave angle. Within the
current analysis, it does not seem to be possible to have an array under motion
constraints that both performs well and is stable to parameter changes.

In subsequent chapters, a more detailed investigation of this trade-off will be
undertaken. One possible method would be to consider the objective function as
the mean performance over the incident wave angle, rather than a
non-dimensional length. This is motivated by the greater effect that β has on
the optimal array formation compared to changes in kL (or kr). This formation
of the objective function would also allow for a generalised 2D array layout
optimisation, since no array geometry need be imposed. It would also assess
whether this trade-off is present in general WEC arrays or if it is specific to
linear arrays. Chapter 7 considers this β-optimisation applied to linear arrays
and is compared with the results of this chapter and Chapter 4, while Chapter 8
considers the general 2D variant of the β-optimisation, without any prescribed
array geometry.
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Chapter 9

Optimisation of Linear Arrays in
Irregular Waves

9.1 Introduction

This chapter extends the work of previous chapters by considering an array of
WECs in an irregular wave regime. A summary of the work contained within is
provided in McGuinness & Thomas (2017b). This is an important extension, as
often results obtained in regular wave regimes cannot be replicated when
irregular waves are incident onto the array. The existing literature is rather
sparse but suggests that interaction between array members tends to be less
influential in irregular waves, as indicated by Babarit (2010).

A major problem with extending the previous work to irregular waves is the
increase in numerical intensity of the associated optimisation problem. A wave
spectrum that represents the irregular sea state must be incorporated in some
way, together with some measure of the array performance. This increases the
numerical intensity of the calculations and thus increases the optimisation
run-time significantly. As a consequence, only arrays with three devices are
examined, as including five or more WECs, as with previous chapters, makes
the resulting numerical problem almost intractable.
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9.2 Optimisation Method

As an irregular wave regime is under consideration, the wave spectrum must be
specified prior to the optimisation. A JONSWAP spectrum is chosen for this
purpose, with the energy density Sω of the waves at a frequency ω given by

Sω(ω) = αpg
2

ω5 exp
[
−5

4

(
ωp
ω

)4
]
γYp (9.1)

Y = exp
−1

2

( ω
ωp
− 1
σp

)2 , (9.2)

where αp is the Phillips constant, γp is the peak enhancement factor, σp is the
peak width parameter and ωp is the value of the frequency ω at the spectrum
peak. Typical values of the above constants, such as those used in Child (2011),
are

αp = 0.0081, (9.3)

σp =
 0.07 for ω ≤ ωp

0.09 for ω > ωp
. (9.4)

Three values of the peak enhancement factor

γp = 1, 3.3, 10 (9.5)

are employed to represent broad, intermediate and narrow-banded spectra
respectively. Figure 9.1 shows the normalised spectrum for each value of γp,
where the spectrum is scaled by the targeted power contained within the
spectrum PT , given by equation (2.186), to ensure that the area under each
curve is unity. There is more power contained in the spectra corresponding to
higher γp values but a normalised version is utilised within the optimisation in
order to compare array performance within different spectra. A brief discussion
on the comparison of wave energy extraction between two different spectra,
namely those found at Pico and South Uist, is given by Thomas (2008).

The power absorbed by the array at a given frequency ω, as in equation (2.136),
is

P
(N)
abs = 1

8X†B−1X− 1
2

(
UUU − 1

2B
−1X

)†
B
(
UUU − 1

2B
−1X

)
, (9.6)

where the superscript is included to explicitly show the number of devices in the
array.
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Figure 9.1: Normalised Power spectrum SP (ω)
PT

against frequency ω for several
values of γp.

Previously, the WEC displacements were non-dimensionalised relative to the
incident wave amplitude A and displacement limits of two or three times the
wave amplitude were enforced. However, as the present work concerns frequency
components over a given wave spectrum, the wave amplitude is not fixed
universally and depends upon the frequency. It is therefore more sensible to
non-dimensionalise with respect to a fixed quantity that remains constant over
the entire spectrum. The device radius a is a natural choice, such that the
velocity of the devices at a given frequency ω is

UUU(ω) = −iωaD. (9.7)

This allows a displacement limit to be fixed that would apply for all frequencies
in the spectrum. The implementation of a no slamming condition (such that the
WECs do not leave the water) simply requires that the amplitude of the
non-dimensional displacements are less than unity for a semi-spherical device.

The wave amplitude still appears in the excitation forces, and hence the power
absorbed; thus its variation must still be accounted for. By relating the wave
spectrum Sω(ω) to the energy contained in a wave train E = 1

2ρgA
2, the
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amplitude can be written in terms of the spectrum as

A(ω) =
√

2Sω(ω)
ρg

. (9.8)

Using equations (2.143), (2.144), (2.145) and (2.157), the excitation force vector
and radiation damping matrix can be written as

X = −2πρga2A(C − iD) `̀̀, (9.9)

B = 2π2ρa4ω3

g
(C2 +D2) J. (9.10)

From (9.6), (9.7), (9.9) and (9.10), the mean power absorbed by the array at
each frequency is

P
(N)
abs = πρa3ω

(
−gA Re

[
(D + iC)D†`̀̀

]
− πa3ω4

g
(C2 +D2)D†JD

)
. (9.11)

The aim of the optimisation strategy is to seek an array layout whose
performance matches the power distribution within the target spectrum. Thus
the objective function must account for both the performance of the array and
the effect of the wave spectrum and must be done in a manner that is
meaningful and consistent with the frequency variation allowed for within the
spectrum. For example, maximum power capture cannot be assumed as adding
a Popt term to the integral objective function would implicity assume that the
WECs are all optimally tuned for all frequencies, which is not possible. Further
care must be taken if the array performance is scaled with respect to single
WEC performance in the objective function, as the optimisation may seek to
minimise the single WEC performance (to improve the ratio) rather than
maximising the array performance as desired.

An appropriate objective function is the frequency integral of the product of the
power spectrum and the power absorbed by the array,

Q(s,D; β0) = 1
PT

∫ ωu

ωl

SP (ω)P (N)
abs (w, s,D; β0) dω, (9.12)

where s is a (N − 1)-component vector containing the positions of the WECs in
the array (the first WEC is fixed at the origin), D is a vector containing the
complex displacements of the WECs and β0 is a fixed prescribed incident wave
angle. The power spectrum is scaled by PT , so that it does not contribute to the
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magnitude of the objective function values since
∫ ωu
ωl

SP (ω)
PT

dω = 1. The objective
function can be re-written in terms of real variables using equation (6.3),

Q(s, δδδ,ψψψ; β0) = 1
PT

∫ ωu

ωl

SP (ω)P (N)
abs (w, s, δδδ,ψψψ; β0) dω, (9.13)

where δδδ and ψψψ are N -component vectors containing the displacement
amplitudes and phases of each WEC respectively.

The objective function values are essentially a weighted sum of all power
absorbed by the array within the power spectrum. This is a relative measure
which forces the absorption associated with the array layout to match the
incident wave spectrum as closely as possible, but the objective function values
have no direct physical meaning. However, the objective function values can be
compared relative to each other to identify better performing arrays in irregular
waves.

Clearly this objective function depends on the Havelock coefficients C and D
through equation (9.11). These coefficients depend upon the non-dimensional
radius of the WECs ka = ω2a

g
. Thus, the values of these coefficients will be

different throughout the range of ω considered in the spectrum and C and D
must be included as varying functions of ω2a

g
within the objective function.

Given the calculation method of Havelock (1955), it is not sensible to
recalculate these accurately for each frequency within the objective function
integral (9.13). To address this, accurate solutions were obtained for C and D
for an appropriately large number of values within the range of interest
(ka ∈ [0, 1]) and these were used to create Chebyshev interpolation functions for
both C and D. These interpolation functions were then included in the objective
function and this significantly reduced the intensity of the calculations.

It should be noted that the inclusion of a spectrum, and the interpolating
functions within an objective function that contains 3N − 2 variables, demands
a numerical effort considerably more intense than optimisations performed in
previous chapters. Another numerical difficulty that limited the scope of this
work was the requirement that the optimisation routine needed to read in a
starting point from which it converged to an optimal solution. As in previous
optimisations in Chapters 4 - 8, this required the implementation of an
exhaustive search of the possible space of starting points, resulting in many
iterations of the optimisation and many more calls to the objective function.

Although the point absorber approximation requires that ka� 1, it has been
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shown by Mavrakos & McIver (1997) to be accurate for ka ≤ 0.8. Consequently,
care must be exercised when considering a spectrum of performance, as there
may be some range of ω such that the above tolerance of the point absorber
approximation is exceeded. This would invalidate the underlying theory of the
optimisation and perhaps also cause numerical difficulties. Hence, a reasonable
value of a must be specified such that the above limit on ka is not exceeded.
This was also the reason that the interpolated values of C and D were limited to
ka ∈ [0, 1]. Care must also be taken to ensure that the interpolation functions
for C and D are applicable and accurate for all values of ω within the range of
interest in the spectrum.

9.3 Optimisation of Three-WEC Linear Arrays
with Fixed Length

Despite the efforts outlined in the previous section to reduce the computational
demand, the optimisation remains numerically intensive and requires long
run-times. To overcome these difficulties, the problem was simplified as much as
possible in order to obtain results in a reasonable time. Therefore, linear arrays
of only three WECs are considered. The first WEC is fixed at the origin and the
array length is also specified and fixed at L = 300m. This essentially means that
the first and third WECs are fixed in space and the optimisation only considers
the position of the middle device (WEC 2), along with the displacement
variables for all three WECs, thus giving a total of seven array variables in
general. A diagram of the array considered is shown in figure 9.2. This
simplified set-up resulted in run-times of the order of twenty to thirty hours.

Since the objective function involves an integral over the frequency ω, the
problem cannot be studied in a non-dimensional manner, as was the case with
previous studies in regular waves. Thus, the variables of the optimisation
become the physical positions of the WECs, along with the non-dimensional
displacement variables. This also requires several physical values to be specified
prior to the optimisation, such as the device radius a. Within this chapter, the
WEC radius was taken to be a = 2.5m. This was chosen as it is a reasonable
physical value representative of physical devices. This value also avoids the
pitfall of violating the point absorber approximation for the wave frequency
range of interest. In this calculation, the value of ρ is taken to be the density of
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Figure 9.2: Diagram of three-WEC uniform linear array.

fresh water, i.e. ρ = 1000 kgm−3kg m−3.

The peak frequency of the JONSWAP spectrum was taken to be
ωp = 0.5rad s−1 and the imposed upper and lower bounds of frequency were
[ωl, ωu] = [0.1, 1.1]. This value of ωp is intended to represent typical ocean waves
of wavelength of approximately 250m. This also enables the majority of the
non-zero JONSWAP spectrum to fall within ω ∈ [0.1, 1.1], thus avoiding
interpolation difficulties with C and D. Taking this value of ωp and L = 300m
also allows a comparison with previous chapters regarding regular waves, where
a similar non-dimensional target value of kL = 10 was assumed, although less
WECs are considered in this case.

The interpolation points of C and D were accurate solutions for the constants
for ka = {0, 0.1, 0.2, . . . , 1.0}. It was found that including more interpolated
values produced a marginal increase in accuracy, at the expense of either
significantly longer run times for the optimisation or an ill-conditioned
interpolation procedure due to over-specification. The above range of
interpolation points resulted in the interpolated values of C and D being
accurate to three to five significant figures.

The optimisation algorithm is implemented in Fortran with the aid of
Numerical Analysis Group (NAG) routines. As in previous chapters, the
optimisation routine chosen to find the maximum of equation (9.13) is
E04UCF1, with appropriate algorithms employed for the calculation of Bessel

1https://www.nag.co.uk/numeric/fl/manual/pdf/E04/e04ucf.pdf
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functions, quadrature and interpolation.

In common with previous optimisations, it was found that the displacement
variables δj and ψj behaved well from a numerical perspective and converged to
the optimal case without the need for an overly dense search space. Thus, the
search examined all possible starting points for δj = {0, 0.25, 0.50, 0.75, 1} and
ψj =

{
0, π2 , π,

3π
2 , 2π

}
for the displacement variables. For cases involving

optimisation of the array layout, a finer scan of the search space was required
for the layout variable, such that s1 = {20, 40, 60, . . . , 280}.

The minimum separation between devices enforced was 20m, as placing the
WECs closer may invalidate the point absorber approximation and cause
numerical difficulties. Furthermore, having WECs closer than 20m would result
in significant engineering difficulties in practice. Therefore, limits were placed
on each variable within the optimisation such that 0 ≤ δj ≤ 1, 0 ≤ ψj ≤ 2π and
20 ≤ s1 ≤ 280.

The performance of uniform arrays are first optimised and examined to assess
the effect of the array layout. This will then provide a benchmark for a layout
optimisation and allow a comparison between the array layouts and resulting
performance.

9.3.1 Uniform Layout

A uniform array of three WECs is initially investigated, where the positions of
all three WECs are fixed at 0m, 150m and 300m along the line (i.e. s1 = 150m).
Only the displacement variables are fed into the optimisation, giving a total of
six variables. This was implemented in order to create a benchmark with which
to compare the optimised layouts. The displacement amplitudes and phases
would also change when the layout is optimised, so comparison can also be
drawn between the behaviour of these displacement variables. The results of the
uniform array optimisation are listed in table 9.1. This fixed uniform layout was
investigated for head, intermediate and beam seas. The variation of the power
absorbed by the optimal uniform arrays with frequency is shown in figures
9.3− 9.5, while the effect of incident wave angle variation is shown in figures
9.6− 9.8.

It is clear from the tabular results that the array performance improves as the
spectrum becomes more narrow-banded. This is also echoed in figures 9.3 - 9.8,
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Table 9.1: Optimisation results for uniform three-WEC linear array

γp β0 δ1 δ2 δ3 ψ1 ψ2 ψ3 Q

0 0.3981 0.1269 0.0358 4.7179 2.4679 5.1826 812.42
1.0 π

4 0.3949 0.1818 0.0782 4.7287 1.4247 3.5621 912.57
π
2 0.4133 0.4272 0.4133 4.7259 4.7259 4.7259 2290.07
0 0.7532 0.4528 0.2785 4.6730 2.4356 6.2688 3158.83

3.3 π
4 0.7318 0.4935 0.3776 4.7511 1.2606 3.8254 3555.88
π
2 0.8469 0.9350 0.8469 4.7227 4.7227 4.7227 7145.26
0 1.0000 1.0000 1.0000 4.6148 2.3381 0.0692 14341.05

10 π
4 1.0000 1.0000 1.0000 4.7875 1.2215 3.8358 15312.29
π
2 1.0000 1.0000 1.0000 4.7211 4.7211 4.7211 21804.11

where the largest peak in each case corresponds to γp = 10. This is to be
expected, since the device displacements can be optimised for a small set of
conditions for narrow spectra, allowing for better performance at the spectrum
peak. For a broader spectrum, the optimisation requires good performance over
a wider set of conditions, which generally results in a reduced overall
performance.

Table 9.1 clearly shows that, for each spectra considered, the array performs
best in beam seas, i.e. as a terminator type configuration. This was shown to be
the case for linear arrays in regular waves in Chapters 3, 4 and 6, in agreement
with the preliminary results of Thomas & Evans (1981), though an increased
sensitivity often accompanied this optimal performance. It is also evident that
the array performs poorest in head seas, indicating that this type of attenuator
array layout is to be avoided. It may be associated with the first WEC
shadowing WECs 2 and 3, by absorbing some of the incident power and
resulting in destructive interference. In the case of beam seas, the waves strike
all devices at the same time, which would avoid this shadowing effect. In
principle, this also allows the possibility of creating constructive interference
between the WECs, given the appropriate control.

This is further supported by the optimal displacement variables δj and ψj in
table 9.1. For beam seas, the WECs are all in phase and the amplitudes are
symmetric about the middle device, with the amplitude of WEC 2 slightly
larger to ensure constructive interference (for γp = 10, they are all equal at the
maximum allowed value). For head and intermediate seas with γp = 1, 3.3, all
values of δj and ψj are different, with δ1 being the largest of the amplitude
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Figure 9.3: Power absorbed P (N)
abs (ω, β0) in kilowatts against frequency ω for op-

timised uniform arrays with β0 = 0 (head seas).
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Figure 9.4: Power absorbed P (N)
abs (ω, β0) in kilowatts against frequency ω for op-

timised uniform arrays with β0 = π
4 (intermediate seas).
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Figure 9.5: Power absorbed P (N)
abs (ω, β0) in kilowatts against frequency ω for op-

timised uniform arrays with β0 = π
2 (beam seas).

variables. This shows that WEC 1 is working the hardest and thus absorbing
the most energy, while WECs 2 and 3 are shadowed and have smaller optimal
displacement amplitudes. For γp = 10, the amplitude variables all converge to
the largest allowed value δj = 1. Since the spectrum is narrow-banded, this
allows the WECs to be highly tuned to the peak performance and thus the
displacement limit is reached.

For all cases presented in figures 9.3 - 9.5, the power absorbed by the array
becomes negative for values of approximately ω > 0.6rad s−1. This indicates
that the array is injecting power into the waves for these wave frequencies
rather than extracting power as desired. This is perhaps a consequence of the
optimisation maximising the power absorbed in the spectrum peak around
ωp = 0.5rad s−1, which results in poor performance away from this value. This
is largely inconsequential as these ranges of ω correspond to low spectrum
values, particularly for γp = 3.3, 10. Therefore, this negative performance
contributes very little to the objective function and the overall performance of
the array in the given sea conditions. For γp = 1.0, the spectrum does have
significant non-zero values in this range, and this contributes to the reduced
performance of the arrays in the broad-banded spectrum.

Examining the frequency sensitivity of the optimal arrays in figures 9.3 - 9.5, it
is clear that arrays optimised for narrow and intermediate spectra are more
sensitive to changes in comparison to broad-banded spectra but this is not a
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Figure 9.6: Power absorbed P (N)
abs (ωp, β) in kilowatts at peak frequency ω = ωp =

0.5 against incident wave angle β for uniform arrays optimised in head seas with
β0 = 0 (shown by y-axis).
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Figure 9.7: Power absorbed P (N)
abs (ωp, β) in kilowatts at peak frequency ω = ωp =

0.5 against incident wave angle β for uniform arrays optimised with β0 = π
4

(shown by the vertical dashed line).
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Figure 9.8: Power absorbed P (N)
abs (ωp, β) in kilowatts at peak frequency ω = ωp =

0.5 against incident wave angle β for uniform arrays optimised in beam seas with
β0 = π

2 (shown by y-axis).

concern as the P (N)
abs peaks correspond to the spectrum peaks. This may be

problematical if the wave conditions are more varied than indicated by the
spectrum fed into the optimisation. Since the broad-banded spectra arrays
attempt to perform well over a broader range, this results in more stable but
significantly reduced performance. It is also clear from figure 9.5 that the beam
seas arrays are slightly more stable to changes in ω with both higher and wider
peaks. This is an important point, since real seas may be composed of widely
differing sea states. This is one of the many considerations associated with site
selection.

In contrast, figure 9.6 shows that the head seas arrays are more stable to
β-variation in comparison to intermediate (figure 9.7) and beam seas (figure
9.8), indicating this may be a better option for sites with large β-variability.
This again shows the trade-off between higher performance and stability of
performance in different array variables. For the γp = 10 case, the peak
reduction between beam and head seas is approximately 10%, while the range
over which P (N)

abs > 30kW is significantly increased from approximately
β = π

2 ±
π
24 to β = 0± π

8 , thereby tripling this range. Similarly for γp = 3.3, there
is approximately a 45% peak reduction between beam and head seas, but the
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range of β for which P (N)
abs > 9kW is increased from approximately β = π

2 ±
π
16 to

β = 0± π
8 , which doubles this stability range. Performance is much lower for

γp = 1.0 in general. The beam seas array achieves a peak performance of
P

(N)
abs ≈ 5kW, which drops to near zero around β = π

2 ±
π
8 . However performance

is much smoother with very little variation for head seas, where P (N)
abs ≈ 2kW for

all values of β ∈ [−π, π]. This indicates that although power absorption is quite
low for this array, it is one of the most stable to changes in incident wave angle.

For β0 = 0, π4 , secondary peaks of comparable height are observed in the P (N)
abs vs

β plots away from the target incident wave angle β0. For head seas, a secondary
peak occurs at β ≈ 3π

4 , which corresponds to an array layout more akin to the
intermediate seas case. For intermediate seas, a secondary peak occurs near
β ≈ 7π

8 , which when extended shows a wide area of good performance at
β = π ± π

5 , corresponding to a mirrored head seas case. If stability to
β-variability is more desirable, then applying the optimal displacement variables
for β0 = π

4 to the head seas case may be ideal. However, it is possible that this
would result in an increased ω-sensitivity and thus may not perform well over
the frequency spectrum.

9.3.2 Optimised Layout

Consider the case where only the first and third WECs are fixed (at 0m and
300m along the line respectively). The middle WEC is now free to move within
the optimisation procedure; this adds an extra variable (s1) to the previous
optimisation, resulting in seven variables in total. The method follows the
previous section and the optimisation results for the non-uniform arrays are
listed in table 9.2, together with a schematic of the optimal array layout. The
variation of the power absorbed by the optimised arrays with respect to
frequency ω and incident wave angle β is also shown in figures 9.9 - 9.11 and
figures 9.12 - 9.14 respectively.

This configuration behaves in a similar manner to the previous one, as seen by
comparing the values in tables 9.1 and 9.2. The array once more performs
better for more narrow spectra and performance is also greatest for beam seas.
The results in table 9.2 are slightly greater than (or equal to) those in table 9.1,
attributable to the increased freedom of the position of WEC 2. As with the
uniform array, the displacement limit of δj = 1 is reached for all arrays with
γp = 10.
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Table 9.2: Optimisation results for non-uniform three-WEC linear array

γp β0 s2 δ1 δ2 δ3 ψ1 ψ2 ψ3 Q Array Layout

0 35.54 0.3947 0.3334 0.0383 4.5516 6.1237 5.1849 1223.85 * * *
1.0 π

4 46.28 0.3932 0.3420 0.0822 4.6848 5.8524 3.6110 1293.87 * * *
π
2 97.71 0.4306 0.4333 0.4014 4.7259 4.7259 4.7259 2311.22 * * *
0 50.43 0.7840 0.6847 0.2864 4.5997 0.0009 6.1768 4060.11 * * *

3.3 π
4 63.17 0.7644 0.7024 0.4292 4.6735 6.0691 3.8395 4431.33 * * *
π
2 150.00 0.8469 0.9350 0.8469 4.7227 4.7227 4.7227 7145.26 * * *
0 70.11 1.0000 1.0000 1.0000 4.6306 0.3645 6.2151 16346.12 * * *

10 π
4 74.07 1.0000 1.0000 1.0000 4.6973 6.1832 3.8742 17635.17 * * *
π
2 150.00 1.0000 1.0000 1.0000 4.7211 4.7211 4.7211 21804.11 * * *

In the majority of cases, the optimal layout diverges from the uniform array and
tends to place WEC 2 closer to WEC 1. For head and intermediate seas, the
separation between WECs 1 and 2 is reduced and the value of δ2 is comparable
to δ1, indicating that both WECs work similarly hard. The shadowing effect is
still observed for WEC 3, with a significantly lower value of δ3, except for
γp = 10, where δj = 1 for all WECs. For beam seas, with γp = 3.3, 10, the
optimal layout is the uniform array layout and the results of table 9.1 are
repeated.

For γp = 1, a slight improvement on the uniform beam sea case is achieved by
moving WEC 2 closer to WEC 1, with the same phases and slightly altered
amplitudes. This may be because it is more beneficial to maximise the
constructive interaction between WECs 1 and 2, rather than to minimise the
interaction by having the devices as separated as possible in a uniform layout.
However, it should be noted that the improvement in comparison to the
corresponding uniform array in table 9.1 is less than 1%. As discussed
previously, the Havelock coefficients are accurate to three to five significant
figures, implying a similar accuracy for the objective function and the
optimisation results. The corresponding error may absorb the difference of 1%
between the uniform and non-uniform array performances. Thus the 1%
improvement seen in this case may be due to a numerical anomaly caused by
the level of accuracy employed.

Figures 9.9 - 9.14 exhibit similar behaviour to figures 9.3 - 9.8, with a slight
increase in relative performance. In some cases, the stability of performance is
also increased slightly. The major difference is seen in the β-plots, where the
secondary peaks seen for the uniform arrays are no longer present for the
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Figure 9.9: Power absorbed P (N)
abs (ω, β0) in kilowatts against frequency ω for op-

timised non-uniform arrays with β0 = 0 (head seas).
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Figure 9.10: Power absorbed P
(N)
abs (ω, β0) in kilowatts against frequency ω for

optimised non-uniform arrays with β0 = π
4 (intermediate seas).
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Figure 9.11: Power absorbed P
(N)
abs (ω, β0) in kilowatts against frequency ω for

optimised non-uniform arrays with β0 = π
2 (beam seas).
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Figure 9.12: Power absorbed P (N)
abs (ωp, β) in kilowatts at peak frequency ω = ωp =

0.5 against incident wave angle β for non-uniform arrays optimised in head seas
with β0 = 0 (shown by y-axis).
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Figure 9.13: Power absorbed P (N)
abs (ωp, β) in kilowatts at peak frequency ω = ωp =

0.5 against incident wave angle β for non-uniform arrays optimised with β0 = π
4

(shown by the vertical dashed line).
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abs (ωp, β) in kilowatts at peak frequency ω = ωp =

0.5 against incident wave angle β for non-uniform arrays optimised in beam seas
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majority of cases with optimised layouts.

9.4 Discussion of Results

This chapter describes a preliminary implementation of a numerical
optimisation method for linear arrays of three identical WECs in irregular
waves. This is an initial extension of previous work that was targeted at regular
wave regimes. A JONSWAP spectrum was employed in this study but the
method is applicable for any given spectrum. It is assumed that all wave
components are long-crested and approach the array from a single wave angle.
In principle, a wave angle spectrum can be incorporated into the method but
the objective function would then require a double integral, over both ω and β,
which would increase the computational time required.

Early studies on array optimisation targeted the maximisation of array
performance, which resulted in highly sensitive optimal arrays. This output was
improved in earlier chapters of this thesis by maximising the mean performance
of the array over some domain of non-dimensional array variables, which
resulted in more stable performance. The extension to irregular waves has been
made by maximising the weighted sum of the power absorbed by the array over
a range of frequency, where the weighting is the normalised power spectrum.
This involves a frequency integral and the problem can no longer be studied in a
non-dimensional manner, thus dimensional quantities must be utilised. This
requires certain quantities to be specified prior to the optimisation, most
significantly the device radius a. A relatively small value of a = 2.5m was
chosen in order to avoid calculation difficulties with the Havelock coefficients
and to ensure the point absorber approximation was not violated.

Within this chapter, the WEC displacements are non-dimensionalised with
respect to the device radius a, whereas previously these were
non-dimensionalised with respect to the wave amplitude A. For a wave
spectrum, the wave amplitude will vary across the spectrum as a function of ω
and A = A(ω). In principle, this can be implemented into the optimisation via
equation (9.8) but this increases the numerical demand of the optimisation.
From a physical perspective, it is also impractical to implement a controlled
displacement amplitude that will depend on the wave frequency. A fixed known
displacement is essential from an engineering perspective and by
non-dimensionalising with respect to a, this means that the displacement
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amplitudes values will remain fixed over the spectrum. This also allows a
sensible no-slamming limit to be placed on the motion amplitudes such that the
WEC does not leave the water, i.e. 0 ≤ δj ≤ 1 for a semi-spherical device.

Two types of linear 3-WEC arrays were considered: a uniform array with the
positions of all WECs fixed and a non-uniform array where the middle WEC is
free to move in the optimisation. The calculation was simplified in order to
reduce the computational requirement by fixing the total length of the array
(the position of WEC 3) at L = 300m. Three types of JONSWAP spectrum
were considered, chosen to represent narrow-banded, intermediate-banded and
broad-banded spectra. Optimal values for peak power absorbed in the order of
30kW to 40kW were achieved for narrow-banded spectra, while peak values of
between 1kW to 4kW were obtained for broad-banded spectra. This indicates
an O(10) difference between the array performance in narrow- and
broad-banded spectra. The optimisation forced the P (N)

abs curve to match the
shape of the peak of the spectra closely in most cases, thus maximising the
utilisation of the resource.

Negative power values were seen for larger frequencies for all three spectra. This
is attributed to the devices having forced motions which are tuned to absorb as
much of the spectrum as possible. This generally resulted in high P (N)

abs values
near the peak of ωp = 0.5rad s−1. However for larger frequencies, the negative
P

(N)
abs are associated with detuning of the forced WEC motions at these

frequencies. The WECs would effectively be creating waves rather than
absorbing them. However, this generally has little effect as the spectrum
possessed small or negligible values at these frequencies.

The optimal arrays performed better when optimised for narrow-banded spectra
as expected, as the WECs can be tuned more easily to the peak of the
spectrum. Arrays also achieved higher objective function values for beam seas,
in agreement with the intuitive idea that a greater frontage to the waves allows
a greater power take off. For arrays in head and intermediate seas with narrow-
and intermediate-banded spectra, a shadowing effect was seen in the optimal
cases, where WEC 1 (which was first to meet the wave) operated at a higher
displacement amplitude than WECs 2 and 3, with all WECs having differing
phases. This implies that WEC 1 takes off the most power and the other WECs
are shadowed by WEC 1, hence their lower motion amplitudes. For beam seas
(where the waves strikes each WEC at the same time), the motion amplitudes
were symmetric about the middle WEC and all devices moved in phase. This
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indicates that constructive interference is possible and further agrees with the
shadowing phenomenon for other wave angles. For the narrow-banded spectrum
with γp = 10, the displacement amplitude limit was reached for all arrays, due
to the WECs being as highly tuned as allowed to the spectrum peak.

An increase in optimal array performance occurred in all but two cases when
WEC 2 was free to move within the optimisation. Optimal layouts for head and
intermediate seas consisted of WEC 2 being placed closer to WEC 1 with
altered displacement variables relative to the uniform layout. In two of the
three spectra, the optimal array layout for beam seas was the uniform
arrangement, with WEC 2 placed exactly half way between WECs 1 and 3, and
with the same displacement values as the uniform optimisation result. This
suggests that when narrow-banded spectra are present at a site, a uniform
terminator type layout performs best.

It must be noted that the beam seas array is sensitive to incident wave angle
variability, with a π

24 change resulting in significant power loss. Comparing this
to the analogous head seas array, which is of attenuator type, the peak
performance is lowered by approximately 10% but the array is much more
stable to β-variation, with good power absorption maintained for a change of up
to π

8 . As with McGuinness & Thomas (2017a), this highlights the trade off that
exists between obtaining high performance and maintaining good performance
over a range of different array variables.

Overall, the preliminary results in this study suggests that, if WEC arrays are
deployed in irregular waves with considerable frequency variation, then the best
layout is that of a uniform array in a terminator type layout (beam seas). This
can be considered as resorting to an average layout in order to best account for
the variation in wave conditions. It should be stressed that this is a tentative
deduction based upon preliminary results considering small linear arrays of
fixed length containing three WECs. The result that a uniform array is optimal
may be an artifact of considering such a small number of array members. It is
possible that non-uniform and non-symmetric array may be optimal in irregular
waves if more than three WECs and different configurations are considered.
Previous work conducted primarily in regular waves often suggested that
non-uniform and non-symmetric arrays performed well. Though, in certain
cases, uniform layouts were also found to be optimal in regular waves. This
suggests that array layout optimisations in regular waves cannot always be
transferred to irregular waves, particularly if there is considerable variation
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within the spectrum.

The main restriction on this work was the numerical intensity and long
run-times of the calculations involved. In principle, this method can be
extended to arrays of five or more WECs, however became prohibitive with the
resources available due to the "parameter explosion" effect of including extra
WECs. For this reason, the formulation was kept as simple as possible by
limiting the number of optimisation variables and assuming a fixed incident
wave angle. Future research should attempt to extend this to include more
WECs, where the interaction between the devices would be more complex, and
to include the wave angle variation into the power spectrum. This can be done
relatively easily using equations (2.175), (2.176), (2.183) and (2.184). Other
array geometries could also be investigated, with the ultimate goal of a general
layout optimisation with no prescribed geometry.
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Chapter 10

Discussion & Conclusion

10.1 Summary & Discussion

Chapter 1 introduced the concept of wave energy and described a number of
types of WECs, including the heaving point absorber considered in this thesis.
The chapter summarised the relevant literature and identified those areas where
existing knowledge is not sufficient. A primary concern identified from available
literature on arrays in wave energy is the relative sensitivity of optimal arrays to
changes in array parameters. This was noted particularity in the work of
Fitzgerald (2006) and Child (2011), where either the optimal array layouts were
very close in configuration to the poorest performing arrays or the optimal
arrays resulted in a sharp peak in performance surrounded by large troughs.
The principal cause was the deterministic optimisations implemented in these
studies, where the performance of the array was maximised directly with
respect to the array layout. This identified the primary aim of this thesis: to
optimise an array layout such that good performance is maintained for small
changes in sea conditions. In this sense, the stability of the optimal array
performance is the primary goal.

The mathematical formulation is outlined in Chapter 2. This begins with an
outline of water wave theory and the linear wave theory approximation. The
hydrodynamic modelling of the interaction between regular waves and a floating
body, including the radiation and scattering problems for small body motions, is
introduced. This is followed by the modelling of a single WEC and its power
absorption, before an array formulation for many such WECs operating in a
single mode of motion is presented. The point absorber approximation is then
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introduced to simplify the calculations and explicit expressions for the power
absorbed by the array are obtained. The interaction factor is introduced as a
measure of the interaction effects within the array, for both optimal and
sub-optimal motions. Finally, a brief description of irregular wave theory is
given.

A preliminary investigation of a robust optimisation was performed in
Chapter 3. The simplest form of the problem was first examined, which
considered a linear array of five WECs with an enforced symmetry in the array
layout. In order to achieve stable constructive interaction, the optimisation
should maximise the average array performance in some manner, rather than
directly maximising the performance for a very specific set of parameter values.
The objective function was defined as the continuous mean of the interaction
factor over some range of non-dimensional length of the array kL. With the
enforced symmetry and the assumption of optimal motions, this optimisation
was a function of one variable only. This represented the simplest possible case
of the optimisation and also yielded a visualisation of the performance of the
array with respect to this one variable. Many different cases were examined,
involving different incident wave angles and considering a number of enforced
symmetries. Three basic symmetries were investigated for five different wave
angles between head seas and beam seas.

It was found for unconstrained motions that this robust optimisation resulted in
stable constructive interference over the majority of the range of interest of
kL ∈ [5, 15] for most incident wave angles. However, incident wave angles near
β0 = π

8 resulted in very poor performance, even in the optimal case with
unconstrained motions. In order to confirm the stability of the optimal
performance, a sensitivity analysis was performed which showed that small
changes in WEC positions resulted in only small changes in the interaction
factor. It was shown that the incident wave angle had a considerable impact on
the optimal array layout, with significantly different layouts found for different
values of β. In general, it was found that arrays performed best in beam seas
with the largest mean interaction factors but head sea arrays also achieved
comparable constructive interference. Some optimal arrays were shown to be
highly sensitive to changes in β, despite being stable to changes in
non-dimensional array length kL.

The predicted optimal displacements of all arrays obtained in Chapter 3 were
excessively large. The underlying linear theory requires that the WEC motions
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are at most the same order of magnitude as the wave amplitude. For each
optimal array of Chapter 3, the individual device motions were O(100) to
O(1000) times the wave amplitude. This would violate the underlying linear
wave theory. Furthermore, these displacements would not be implementable
using a realistic PTO, which would damp the WEC motions and result in a
reduction in the optimal array performance.

This approach was extended in Chapter 4 to examine general linear arrays of
five WECs, without any imposed symmetry and the results of Chapter 3 were
confirmed in a more general arena. The topic of closely-spaced WECs was
identified in both Chapters 3 and 4, where optimal arrays typically contained
closely-spaced groups of between two to four WECs. There are several
shortcomings associated with these closely-spaced WECs such as possible
collisions and associated maintenance and engineering difficulties. As in Chapter
3, these WECs are also accompanied by very large optimal motion amplitudes,
which invalidates the underlying linear wave theory. Furthermore, it may be
unreasonable to treat these closely-spaced WECs as point absorbers, since there
may be considerable scattering or shadowing effects for WECs in such proximity.

Better performing arrays were obtained in Chapter 4 in comparison to Chapter
3, due to the increased freedom of the WEC positions within the optimisation.
However, the much simpler optimisation in Chapter 3 yielded results comparable
with the more general implementation of Chapter 4, with at most an 11%
difference between the resulting objective function values. This illustrates the
benefit of considering the simple problem before generalising to more
sophisticated cases. The single variable optimisation also enabled visualisation
of the array performance in detail, which is not possible for several variables.

Chapter 5 is associated with an array of WECs in a circular arrangement.
Arrays of six or seven WECs are considered, with six WECs constrained to lie
on the circle circumference and a seventh WEC placed in the circle centre in
some cases. This configuration was chosen as it allowed for a more
two-dimensional geometry to be investigated in comparison to a linear array,
while maintaining a relatively low number of optimisation variables. The
objective function for the circular arrays was defined as the mean of the
interaction factor over a range of non-dimensional radius of the array kr. Only
unconstrained motions are considered for circular arrays due to the relative
numerical intensity of the optimisations. As a consequence of the increased
number of WECs and increased freedom of the WEC positions, greater values of
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the objective function were found relative to the linear array cases.

The optimal circular arrays were found to maintain constructive interference
over all the range of kr ∈ [5, 15] considered. In each case, the performance of
the array with respect to incident wave angle was forced to peak at the
prescribed value of the angle of incidence β0. In most cases, the optimal circular
array layouts consisted of all WECs being placed in a semi-circle opposite to the
incident wave direction. The inclusion of the central seventh WEC resulted in
slightly lower objective function values, although these arrays may absorb more
power relative to the six-WEC arrays due to the presence of the extra device.

Constrained motions of WECs in linear arrays was considered in Chapter 6.
The displacement amplitudes of the WECs are limited to two or three times the
incident wave amplitude. Enforcing suboptimal motions requires the inclusion
of an extra 2N variables in the optimisation, corresponding to the displacement
amplitudes and phases for each WEC; this increases the computational effort
significantly. It was found that the optimisation was well-behaved in terms of
convergence to the optimal solutions for the displacement variables. Thus a
more sparse scan of these variables was implemented, while a finer scan of the
WEC position variables was performed.

The optimal constrained layouts of Chapter 6 were compared to the analogous
unconstrained layouts of Chapter 4 and it was found that the constrained
layouts were generally more widely spread. The unconstrained layouts were also
assessed within the constrained regime and it was shown that the imposition of
constraints severely degraded the performance and prevented constructive
interaction from being maintained. Most of the optimised constrained layouts
did not achieve constructive interference, with the exception of the δmax = 3
case for beam seas. It was shown that the constraint of three times the wave
amplitude allowed for modest performance in some cases, while the lower
constraint of twice the wave amplitude was severely limiting, in agreement with
preliminary findings in the previous literature.

Although considerably lower performance was seen for the constrained arrays in
head and intermediate seas, a much greater β-stability was observed. In
contrast, the better performing arrays in beam seas were much more sensitive to
changes in the incident wave angle. This suggests that there exists a trade-off
between high performance and stability of performance when WEC motion
constraints are applied, where lower overall performance is more stable to
β-variation and higher performance results in greater β-sensitivity.
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An alternative objective function was introduced in Chapter 7, in which the
mean is taken over the incident wave angle rather than the non-dimensional
array length. This was applied to linear arrays for a number target incident
wave angles with a variation of ±π

8 in the range considered. Uniform linear
arrays were investigated initially, with the objective function for both
constrained and unconstrained motions utilised to provide a benchmark for
comparison. Optimised layouts were also considered and gave an improvement
on the uniform arrays, although this improvement was only slight for
constrained motions. As with the previous optimisations, the unconstrained
optimal layouts contained closely spaced WECs, while in general the
constrained arrays were more widely-spaced, though some still contained closely
spaced WECs. The constraint applied also had a considerable effect on the
optimal layout, with different optimal layouts found for the different constraints
in most cases.

The beam sea arrays performed best for unconstrained motions, while the head
sea arrays obtained the highest objective function values for constrained
motions. This illustrates a considerable shift in the best array layout when
constraints are applied. In all cases, the resulting interaction factors were forced
to perform as well as possible in the specified range of β, with broad peaks
occurring near the target wave angle. For head seas, a relatively small reduction
in performance was obtained following the imposition of constraints but a much
greater wavenumber sensitivity was also obtained. In contrast, for beam seas,
the imposition of constraints produced a significant reduction in performance
but a much better wavenumber stability. Once more, this indicates that there is
a trade-off between high performance and performance stability. More
specifically, the trade-off is between β-stability and k-stability, since the
optimisation forces the array to perform as well as possible with respect to β
within the range of interest.

One advantage of this β-optimisation is that it does not require a prescribed
geometry and is well defined for a general 2D array layout, which is considered
in Chapter 8. Both constrained and unconstrained motions were investigated. It
was found that the constraint applied had a considerable effect on the optimal
layout, with noticeably different arrangements obtained in some cases. Better
performance was obtained for the narrower β-ranges, as this allowed the WECs
in the arrays to be more tuned to the peak performance. The trade-off between
β-stability and k-stability is not as evident for these general array layouts,
indicating that this phenomenon is limited primarily to linear arrays. However,
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there does exist a trade-off between higher performance and β-stability, with
lower overall performance of the broader β-ranges.

A preliminary investigation of a robust optimisation in irregular waves was
presented in Chapter 9. An irregular wave implementation involves a frequency
integral over a wave energy spectrum and this requires that physical
(dimensional) separations of the WECs be considered; certain physical
quantities (such as WEC radius) must also be specified. This reduces the
generality of the formulation, as it can no longer be considered in a
non-dimensional manner. It is not consistent to implement optimal motions
across a spectrum and so constrained motions are also enforced. An objective
function, which was the frequency integral of the product of the wave energy
spectrum and the power absorbed by the array, was employed. This is a relative
measure which forces the absorption associated with the array layout to match
the incident wave spectrum as closely as possible, but the objective function
values have no direct physical meaning. Implementing a scaled version of this
objective function, such as a measurement relative to isolated WECs, is difficult
due to the intensity of the numerical optimisation.

A further limit on this implementation is the computational demand of the
optimisation, as detailed in Chapter 9. As a consequence, an elementary linear
array of three WECs is examined. To further simplify the formulation, one
WEC position variable is removed by fixing the total length of the array. Three
JONSWAP wave spectra are considered, ranging from broad to narrow-banded.
Uniform layouts are investigated initially as a benchmark case, before
considering a layout optimisation. As expected, better performance is seen for
the narrow-banded spectrum since the WECs are able to be tuned to the
relatively small frequency range of importance. Within this pattern, the best
performance is also seen for beam seas arrays, which for most cases of
consideration was a uniform layout. The trade-off between high performance
and both k-stability and β-stability is observed, as with previous linear arrays.

Throughout this thesis, optimal linear array layouts were obtained in beam seas
which did not exhibit symmetry about the middle WEC, as would be
anticipated. It is not fully understood why this is the case, as symmetry was
initially expected for beam seas since the wave is normally incident onto the
linear array. It may be that having some of the WECs in close proximity at one
side of the array gives greater constructive interaction, or that this layout gives
a greater stability in performance to kL or β variation. Another possible
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explination is that the q-factor may be an imperfect measure of the array
performance, as it assumes optimal motions and considers array interaction only.

It should be noted that all models of the type implemented within this work
inherently overestimate the the physical power absorption of a WEC. This
model considers the hydrodynamic power absorbed by the device, so the PTO is
essentially assumed to be 100% efficient. If a PTO term were included in the
equation of motion and the power absorbed calculated from this term alone,
then this term would absorb some fraction of the total available hydrodynamic
power. However, this would result in more intensive calculations and increase
the difficulty of a numerical optimisation of the type performed in this
preliminary work.

This work is intended to extend previous studies of this nature; it should not be
placed on a plinth but rather utilised as part of the existing literature. This
thesis highlights the importance of considering the stability of optimal array
performance. It is intended to inform prospective WEC array developers of the
importance of considering the stability of the performance, particularly in terms
of the interaction between array members, as opposed to simply maximising the
array performance for a very specific set of conditions or parameter values.

10.2 Conclusion & Recommendations

This thesis highlights the need to consider the stability of optimal array
performance, not just the optimal performance itself. This is an important
element of WEC array design, as often the incident wave conditions will contain
some variability or uncertainty. In order to make WECs economically viable,
the reliability of the array performance is a necessary hurdle that must be
overcome. It is clearly undesirable that a small change in incident wave
conditions results in a large detrimental impact on optimal array performance.
Thus, the array should be arranged such that its overall performance, within
the variability of the incident waves, is as high as possible. It may also be
desirable that this performance be as smooth as possible, without large drops in
performance for small changes in wave conditions.

This thesis utilises several approximate methods to achieve this goal. The
approach is developed from the simplest case in Chapter 3 to the general 2D
layout optimisation of Chapter 8 and the irregular wave implementation of
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Chapter 9. The importance of examining approximate methods, particularly
with unconstrained optimal motions, should not be underestimated; this
provides an insight into the best possible theoretical performance. Without the
requirement of a sophisticated numerical optimisation, it was deduced at a
preliminary stage that an incident wave angle of β = π

8 should be avoided for
linear arrays, as this gave very poor performance even in the optimal
unconstrained case. Similarly, limited performance was seen for intermediate
seas, with β = π

4 , and this is confirmed by the more accurate calculations of
later chapters.

The preliminary results of Chapter 3 were confirmed in a more general arena in
Chapters 4 and 6, where it was again shown that linear arrays perform very
poorly near β = π

8 , even when optimised for this wave angle. Most notably, the
results of these chapters also showed that considerably different array layouts
are found for different incident wave angles, indicating the importance of
including the influence of this array parameter.

A general finding was that the optimal unconstrained layouts for head seas
consisted of closely spaced groups of WECs, which would cause physical and
theoretical difficulties, as previously identified. This also indicates that these
layouts are accompanied with excessively large motions and the imposition of
constraints would have a severe detrimental impact on array performance. In
contrast, the optimal beam sea arrays were often more widely-spaced, in order
to maximise the frontage to the incoming wave in some sense. As a
consequence, these beam sea linear arrays were often accompanied by less
extreme motion amplitudes and thus may be more desirable.

One aspect of linear WEC array behaviour, particularly when WEC motion
amplitude constraints are enforced, is the trade-off between high mean
performance and the stability of the performance to change in incident
wavenumber or wave angle. Throughout Chapters 6 - 9, it was shown that
higher objective function values were associated with a greater sensitivity to
β-variation, while lower objective values had a greater stability to β-variation.
Depending upon the WEC array site, it may be more beneficial or desirable to
sacrifice the greater performance for a greater stability. Clearly, a site with as
little incident wave variation as possible is more desirable as better performance
can be achieved, but this is often not the case in practice.

This trade-off does not seem to be as pronounced for the general 2D arrays
which not placed in a line, as seen in Chapter 8. This suggests that it is possible
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to maintain stable performance for variation of wave conditions in certain cases.
Although a linear array may seem to be desirable for a WEC array developer
due to its simple geometry and sea area requirements, the findings of Chapter 8
suggest that other array layouts are more beneficial, not only for the greater
constructive interference achieved but also for the increased stability to both
incident wavenumber and wave angle. However, the ability to achieve both high
and stable performance is greatly dependent upon the incident wave conditions
at the given site.

10.3 Future Work

One of the most interesting avenues of future research was identified during the
relatively simple optimisations undertaken in Chapters 3 and 4. The presence of
groups of closely spaced WECs in most unconstrained optimal array layouts
suggested that it may be possible to replace the group of closely-spaced WECs
by an appropriately-sized larger single WEC. Hopefully, this would recreate the
constructive interaction pattern created by the group, without the difficulties of
the close proximity of WECs or the associated large WEC motions. From the
present perspective, this would only be valid if all of the WECs in an interacting
group operated in phase with each other; preliminary calculations have shown
this is not the case for the arrays of Chapters 3 and 4, where the grouped
WECs were π out of phase. However, it may still be possible to recreate the
desired interaction with a larger WEC that operates in two or more modes.

Arrays of differently sized WECs have not been considered within the literature
to date. An investigation into this possibility would require a more accurate
mathematical model than that implemented in this thesis, as clearly the WECs
are no longer identical and the point absorber approximation would possibly
not be valid for the larger WECs. Previous work has considered the
optimisation of single WEC sizes, for example Weber & Thomas (2000, 2003,
2005) considered the design optimisation of a OWC device and Thomas &
Gallachóir (1993) considered the design optimisation of a Bristol Cylinder
WEC. One possibility for future work would be to include the WEC sizes (ka)
along with the WEC positions and displacements as variables within an
optimisation similar to that implemented in this thesis. It is acknowledged that
this would add an additional N variables to the optimisation (or more
depending on the size/shape implementation) and thus increase the

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

296 Justin P.L. McGuinness



10. Discussion & Conclusion 10.3 Future Work

computational demand significantly. The requirement of a more accurate model
would also add to the numerical intensity, which together with the increased
number of variables may render it untractable.

The concept of maximising the mean performance of WEC arrays has been
utilised throughout this thesis, where "mean" is defined over a range of
non-dimensional array length in Chapters 3 - 6, while it is defined over a range
of incident wave angle in Chapters 7 and 8. A further extension of this work
would be to consider a combination in which the mean is defined over both
non-dimensional length and incident wave angle. This would include both the
incident wave number and wave angle and thus would ideally produce array
configurations that are stable to variations in all incident wave parameters.

This concept was briefly investigated in Chapter 3 but was not pursued as the
optimisation over both kL and β required a double integral, resulting in a
considerably increased computational demand. The results were not
significantly different than those obtained for a kL-optimisation for the single
variable linear arrays. It may be possible though, to obtain improved behaviour
for more general array configurations. One potential difficulty is that a general
2D optimisation cannot be performed in this manner, as there does not seem to
be a suitable procedure to define a non-dimensional length measure for a
non-prescribed geometry. Unless a reasonable way to define this measure of
mean performance of a general 2D layout is identified, the double integral
optimisation cannot be performed.

An extension of the circular array geometry of Chapter 5 would be to consider a
semi-circular layout. The optimal unconstrained circular array configurations
seemed to position all WECs in a semicircle opposite the incident wave
direction. This suggests that the semicircle may be a more natural choice for a
prescribed geometry than a circular one and would reduce the intensity of the
numerical calculations due to the reduced variable domain. The extension to
constrained motions could also be examined; this was omitted in this thesis in
favour of moving to the β-optimisation of Chapters 7 and 8 and the irregular
wave optimisation of Chapter 9. An important obstacle with examining a
constrained optimisation of the circular arrays is the large number of associated
variables. For a circular array of seven WECs, with one WEC fixed in the
centre and the angular position of another fixed, the optimisation contains five
WEC position variables and fourteen WEC displacement variables. This gives a
total of nineteen optimisation variables, which exceeds the number considered in
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the general 2D optimisation of Chapter 8 and would require substantial
computational resources.

The methods presented in this thesis could be readily extended to other array
geometries, such as square, rectangular, elliptical, triangular, double row or
triple row layouts. Some preliminary work on triangular and elliptical layouts
with unconstrained WEC motions was undertaken by Fennell (2015) and
Lawton (2017) respectively. These alternate geometries may be of interest if a
certain area must be utilised and the array geometry has been decided a priori.
Although arrays of more than five to seven WECs could also be considered and
may provide interesting results, the implementation would be limited by the
computational resources available.

One possible extension of the β-optimisation of Chapters 7 and 8 is a weighted
version of the objective function, such as in equations (8.4) and (8.5). This
approach is particularly useful if there is an incident wave angle variation that is
not uniform. In most wave climates, the majority of waves come from a small
range of angles, while a reduced resource occurs away from the dominant
direction. If an accurate description of the angle of the incident waves is known,
then an appropriate weighting function can be added to the objective function
to model this functionality. It is essential to ensure that this weighting function
be normalised, so that it has no net effect or contribution to the integral in the
objective function. This may be regarded as a move towards an irregular wave
regime that accounts for the complete wave angle spectrum. However, this
weighted regular wave implementation allows the non-dimensionality of the
problem to be maintained and also requires considerably less computational
resources in comparison to a full irregular wave regime.

Several avenues of extension exist for the irregular wave implementation of
Chapter 9. The most obvious is to consider arrays of more than three WECs, to
enable a direct comparison with the findings of earlier chapters. Another
extension would be to consider alternative array geometries in irregular waves
or even a general 2D unprescribed geometry. These advancements, however
desirable, would require a considerably increased computational effort and may
not be tractable in some cases. Alternate spectra could also be examined,
including the possibility of using a real measured spectrum from a given ocean
site. Finally, the variation of the incident wave angle could also be included into
the spectrum and accounted for within the optimisation, as described in Section
9.4. The objective function would then involve a double integral over both ω
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and β, which would once more require additional computational resources.

Future studies should consider the importance of the WEC geometry,
particularly for irregular waves. In Chapter 9, hemispherical devices were
assumed and a displacement constraint relative to the hemispherical radius was
imposed to prevent the device from leaving the water. However, it is
acknowledged that a hemispherical WEC is an ideal modelling assumption and
a more practical shape would be a vertical circular cylinder with a
hemispherical base. With this WEC geometry, the importance of the device
draught on both the applied constraint and the hydrodynamic forces should be
considered. It may be more appropriate the apply a motion constraint relative
to the draught to allow reasonable motions while preventing any slamming
forces. Furthermore, the majority of the hydrodynamic forces will occur over
the base of the WEC, which may be at a lower depth in comparison to a
hemispherical WEC. Therefore the draught may also have a significant influence
on resulting forces and hence the power absorbed.

The influence of finite depth on WEC arrays is not considered by a large
majority of the available literature. This adds an additional variable to the
formulation, namely the water depth. Optimisation of arrays in finite depth is
an interesting yet considerable task; it is unclear currently how finite depth
affects array performance and consequently, how it affects the optimal array
configuration. The inclusion of finite depth effects often arises when a wave
spectrum is employed to describe an irregular sea state, as the spectrum may
contain non-zero components corresponding to frequencies that belong in a
finite depth regime. In this case, it would be necessary to apply finite depth
calculations over the entire spectrum.

Other interesting questions related to the influence of finite depth can also be
identified. For example: Does the optimal array configuration change if the
water depth is changed, and if so, how does it change? This could be
investigated by extending the work of Linton (1991) to address the above tasks,
although it is acknowledged that Linton’s work is only valid for spherical
devices. A different formulation would be needed for different device shapes,
which is another topic of considerable interest.

The principal limitation encountered in the latter parts of this thesis is the
associated computational demand of the optimisations performed. As more
general cases are considered with more accurate approximations, the
computation time of the calculations becomes a limiting factor in what can be
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reasonably achieved. The number of WECs included is also limited by this
effect, as increasing the number of WECs causes a "parameter explosion" effect,
where the number of optimisation variables quickly becomes intractable. For
example, in the general 2D optimisation of Chapter 8, an array of five WECs
(with one fixed at the origin) results in eighteen optimisation variables. Even
this number of variables is too many for numerical confidence and hence the
reason why the results of Chapter 8 are not advertised as globally optimal.
Increasing the array to ten WECs requires 38 variables, identifying the
"parameter explosion" effect. The extension to irregular waves also resulted in
significantly increased computation times, which further limited the scope of
this thesis. If greater computational resources were available, further extensions
such as those listed here could be examined.
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Chapter 3

(a) β0 = π
8 , n1,opt = 1 (b) β0 = π

4 , n1,opt = 1

(c) β0 = 3π
8 , n1,opt = 25 (d) β0 = π

2 , n1,opt = 34

Figure A.1: Interaction factor q vs kL vs β for array LS1 optimised for several
values of β0.
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(a) β0 = π
8 , n1,opt = 1 (b) β0 = π

4 , n1,opt = 1

(c) β0 = 3π
8 , n1,opt = 25 (d) β0 = π

2 , n1,opt = 34

Figure A.2: Interaction factor q vs kL vs n1 for array LS1 for several values of
β0.

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

303 Justin P.L. McGuinness



A. Supplementary Results to
Chapter 3

6 8 10 12 14
kL

20

40

60

80

100

120

D

WECs 1,2,4,5 WEC 3

(a) β0 = π
8 , n1,opt = 1

6 8 10 12 14
kL

100

200

300

400

D

WEC 1,2,4,5 WEC 3

(b) β0 = π
4 , n1,opt = 1

6 8 10 12 14
kL

2

4

6

8

10

12

14

D

WEC 1,5 WEC 2,4 WEC 3

(c) β0 = 3π
8 , n1,opt = 25

6 8 10 12 14
kL

5

10

15

20

25

30
D

WEC 1,5 WEC 2,4 WEC 3

(d) β0 = π
2 , n1,opt = 34

Figure A.3: Predicted optimal displacement amplitudes for array LS1 for several
values of β0.
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(a) β0 = π
8 , n1,opt = 1 (b) β0 = π

4 , n1,opt = 1

(c) β0 = 3π
8 , n1,opt = 25 (d) β0 = π

2 , n1,opt = 25

Figure A.4: Interaction factor q vs kL vs β for array LS2 optimised for several
values of β0.
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Figure A.5: Interaction factor q vs kL vs n1 for array LS2 for several values of
β0.
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Figure A.6: Predicted optimal displacement amplitudes for array LS2 for several
values of β0.
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(a) β0 = 0, n1,opt = 3 (b) β0 = π
8 , n1,opt = 1

(c) β0 = π
4 , n1,opt = 25 (d) β0 = 3π

8 , n1,opt = 25

(e) β0 = π
2 , n1,opt = 16

Figure A.7: Interaction factor q vs kL vs β for array LS3 optimised for several
values of β0.
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(a) β0 = 0, n1,opt = 3 (b) β0 = π
8 , n1,opt = 1

(c) β0 = π
4 , n1,opt = 25 (d) β0 = 3π

8 , n1,opt = 25

(e) β0 = π
2 , n1,opt = 16

Figure A.8: Interaction factor q vs kL vs n1 for array LS3 for several values of
β0.
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Figure A.9: Predicted optimal displacement amplitudes for array LS3 for several
values of β0.
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Table B.1: Optimal linear array parameters for β0 = 0
n1 n2 n3 n4 Iopt

0.0500 0.0500 0.0500 0.8500 1.4802
0.0500 0.8500 0.0500 0.0500 1.3501
0.0500 0.4500 0.4500 0.0500 1.2058

Table B.2: Optimal linear array parameters for β0 = π
8

n1 n2 n3 n4 Iopt

0.0500 0.8500 0.0500 0.0500 0.8794
0.0500 0.0500 0.0500 0.8500 0.8364
0.0500 0.0500 0.1606 0.7394 0.8363
0.0500 0.4500 0.4500 0.0500 0.8326
0.0500 0.0500 0.4816 0.4184 0.8267

Table B.3: Optimal linear array parameters for β0 = π
4

n1 n2 n3 n4 Iopt

0.0500 0.8500 0.0500 0.0500 1.1431
0.0500 0.4500 0.4500 0.0500 1.1049
0.0500 0.0500 0.0500 0.8500 0.8662

Table B.4: Optimal linear array parameters for β0 = 3π
8

n1 n2 n3 n4 Iopt

0.2512 0.2488 0.2488 0.2512 1.1822
0.0500 0.3998 0.1752 0.3750 1.1637
0.0500 0.0950 0.2296 0.6254 1.1266
0.3000 0.6000 0.0500 0.0500 1.0199

Table B.5: Optimal linear array parameters for β0 = π
2

n1 n2 n3 n4 Iopt

0.0500 0.2252 0.3859 0.3359 1.3643
0.3419 0.1581 0.1581 0.3419 1.3437

Hydrodynamic Optimisation of an Array of
Wave-Power Devices

312 Justin P.L. McGuinness



Appendix C

Supplementary Results to
Chapter 5

Table C.1: Optimal array parameters for the six-device circular array (without
middle device) with β0 = 0. The best result found by McGuinness & Thomas
(2016) is marked "M"

θ1 θ2 θ3 θ4 θ5 Iopt
0.1000 1.4868 1.4171 0.1000 0.1000 1.5910
0.1000 3.0972 0.1000 1.4153 1.4707 1.5907 M
0.1000 3.0044 0.1000 0.1000 1.3617 1.5895
0.1000 0.1000 1.3148 1.6284 0.1000 1.5878
0.1000 0.1000 1.0850 0.3233 0.3529 1.5877
0.1000 0.1000 1.3424 1.4756 0.1000 1.5870
1.5755 1.5424 0.1000 1.4984 1.4669 1.5809
0.1000 1.1992 0.3233 0.3531 4.2076 1.5791

Table C.2: Optimal array parameters for the six-device circular array (without
middle device) with β0 = π

8

θ1 θ2 θ3 θ4 θ5 Iopt
1.1547 1.4619 0.1000 0.1000 3.3666 1.5802
1.0544 0.3376 1.1613 0.1000 3.5298 1.5738
1.0403 0.3367 1.2632 0.1000 3.4430 1.5733
0.1000 0.9337 0.3367 1.3169 0.1000 1.5707
0.1000 1.0407 1.4760 0.1000 0.1000 1.5699
0.1000 0.9705 0.3406 1.1077 0.1000 1.5673
2.7081 0.1000 0.1000 1.2923 1.9829 1.5569
1.1145 0.3390 0.8566 0.1000 3.7737 1.5561
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Table C.3: Optimal array parameters for the six-device circular array (without
middle device) with β0 = π

4 . The best result found by McGuinness & Thomas
(2016) is marked "M"

θ1 θ2 θ3 θ4 θ5 Iopt
0.6388 0.3423 1.2086 0.1000 0.1000 1.5563
0.7380 1.5292 0.1000 0.1000 3.7028 1.5306
0.6787 0.3334 1.3131 0.1000 3.7463 1.5280
0.1000 0.6512 1.5252 0.1000 0.1000 1.5101 M
0.6214 0.3844 0.8682 0.1000 4.1959 1.5036
0.1000 0.6055 0.3320 1.2812 0.1000 1.4940
2.3500 0.1000 0.1000 1.1174 0.3102 1.4882
0.4810 0.3283 0.3106 1.0354 0.1000 1.4814

Table C.4: Optimal array parameters for the six-device circular array (without
middle device) with β0 = 3π

8

θ1 θ2 θ3 θ4 θ5 Iopt
0.3539 0.3235 1.1056 0.1000 0.1000 1.5883
0.3238 0.3741 4.4075 0.1000 0.1000 1.5540
0.4303 1.4350 0.1000 0.1000 3.9840 1.5056
0.4270 1.4475 0.1000 3.1593 0.1000 1.5026
0.4000 1.3221 0.1000 3.5833 0.1000 1.4997
0.4451 1.3823 0.1000 0.1000 3.5184 1.4961
0.4468 1.3921 0.1000 0.1000 3.3160 1.4934
0.4802 1.3115 0.1000 0.1000 0.1000 1.4924

Table C.5: Optimal array parameters for the six-device circular array (without
middle device) with β0 = π

2 . The best result found by McGuinness & Thomas
(2016) is marked "M"

θ1 θ2 θ3 θ4 θ5 Iopt
1.4417 0.1000 0.1000 3.1329 0.1000 1.5921
0.3152 1.0723 0.1000 0.1000 4.3317 1.5855
1.5208 0.1000 1.5208 1.5208 0.1000 1.5824 M
0.3097 0.8228 0.1000 3.6801 0.1000 1.5472
0.2983 1.0820 0.1000 0.1000 4.0926 1.5387
0.3043 1.0285 0.1000 3.3942 0.1000 1.5369
0.2863 1.0837 0.1000 0.1000 2.6281 1.5309
0.2929 1.0833 0.1000 0.1000 3.4943 1.5247
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Table C.6: Optimal array parameters for the six-device circular array (without
middle device) with β0 = 5π

8

θ1 θ2 θ3 θ4 θ5 Iopt
4.3001 0.1000 0.1000 1.1056 0.3235 1.5883
0.9778 0.1000 0.1000 4.4075 0.3741 1.5540
0.2338 3.9840 0.1000 0.1000 1.4350 1.5056
1.0493 0.1000 3.1593 0.1000 1.4475 1.5026
0.7778 0.1000 3.5833 0.1000 1.3221 1.4997
0.7374 3.5184 0.1000 0.1000 1.3823 1.4961
0.9283 3.3160 0.1000 0.1000 1.3921 1.4934
4.1915 0.1000 0.1000 0.1000 1.3115 1.4924

Table C.7: Optimal array parameters for the six-device circular array (without
middle device) with β0 = 3π

4

θ1 θ2 θ3 θ4 θ5 Iopt
3.8935 0.1000 0.1000 1.2086 0.3423 1.5563
0.1131 3.7028 0.1000 0.1000 1.5292 1.5306
0.1117 3.7463 0.1000 1.3131 0.3334 1.5280
3.8068 0.1000 0.1000 1.5252 0.6512 1.5101
0.1132 4.1959 0.1000 0.8682 0.3844 1.5036
3.8645 0.1000 1.2812 0.3320 0.6055 1.4940
2.3057 0.3102 1.1174 0.1000 0.1000 1.4882
4.0279 0.1000 1.0354 0.3106 0.3283 1.4814

Table C.8: Optimal array parameters for the six-device circular array (without
middle device) with β0 = 7π

8

θ1 θ2 θ3 θ4 θ5 Iopt
0.1000 3.3666 0.1000 0.1000 1.4619 1.5802
0.1000 3.5298 0.1000 1.1613 0.3376 1.5738
0.1000 3.4430 0.1000 1.2632 0.3367 1.5733
3.4958 0.1000 1.3169 0.3367 0.9337 1.5707
3.4665 0.1000 0.1000 1.4760 1.0407 1.5699
3.6644 0.1000 1.1077 0.3406 0.9705 1.5673
0.1000 1.9829 1.2923 0.1000 0.1000 1.5569
0.1000 3.7737 0.1000 0.8566 0.3384 1.5561
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Figure C.1: Optimal six-device circular arrays for β0 = 5π
8

Table C.9: Optimal array parameters for the seven-device circular array (includ-
ing a middle device) with β0 = 0. The best result found by McGuinness &
Thomas (2016) is marked "M"

θ1 θ2 θ3 θ4 θ5 Iopt
0.1000 2.9420 0.1000 0.1000 2.9420 1.5680
0.1000 0.1000 2.8270 0.1000 0.1000 1.5408 M
0.1000 1.4838 1.2789 0.1000 3.2204 1.5366
0.1000 1.4738 1.4706 0.1000 0.1000 1.5146
0.1000 1.4118 1.7719 0.1000 2.7994 1.5139
0.1000 0.1000 1.3797 1.2066 0.1000 1.5136
0.1000 0.1000 3.0606 0.1000 1.3241 1.5132
0.1000 0.1000 1.2963 1.7589 0.1000 1.5103
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Figure C.2: Optimal six-device circular arrays for β0 = 3π
4

Table C.10: Optimal array parameters for the seven-device circular array (includ-
ing a middle device) with β0 = π

8

θ1 θ2 θ3 θ4 θ5 Iopt
1.1503 1.4850 0.1000 0.1000 3.3479 1.5320
0.1000 1.0448 1.4793 0.1000 0.1000 1.5197
2.6702 0.1000 0.1000 1.3456 1.9674 1.4915
1.0536 0.3389 1.0827 0.1000 3.6080 1.4899
1.0178 0.3331 1.2799 0.1000 0.1000 1.4825
1.1092 0.3362 0.8741 0.1000 3.7637 1.4814
0.1000 0.8160 0.3310 1.0241 0.1000 1.4788
0.1000 1.0096 0.3309 0.8214 0.1000 1.4788
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Figure C.3: Optimal six-device circular arrays for β0 = 7π
8 . The third array is

very similar to the second and is omitted for clarity

Table C.11: Optimal array parameters for the seven-device circular array (in-
cluding a middle device) with β0 = π

4 . The best result found by McGuinness &
Thomas (2016) is marked "M"

θ1 θ2 θ3 θ4 θ5 Iopt
0.7534 1.4852 0.1000 0.1000 3.7020 1.4957 M
0.6333 0.3336 1.2604 0.1000 0.1000 1.4759
0.1852 0.5914 1.4754 0.1000 0.1000 1.4645
0.1000 0.6599 1.4931 0.1000 0.1000 1.4641
0.6812 0.3227 1.3021 0.1000 3.7448 1.4365
0.7031 0.3357 1.1011 0.1000 3.9150 1.4340
0.6486 0.3175 1.5301 0.1000 3.5552 1.4330
0.7891 1.4185 0.1000 0.1000 0.1000 1.4264
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Table C.12: Optimal array parameters for the seven-device circular array (includ-
ing a middle device) with β0 = 3π

8

θ1 θ2 θ3 θ4 θ5 Iopt
0.3465 0.3231 1.1262 0.1000 0.1000 1.4785
0.3263 0.3662 4.3849 0.1000 0.1000 1.4450
0.4368 1.4314 0.1000 0.1000 3.2881 1.4317
0.4364 1.2737 0.1000 3.4408 0.1000 1.4310
0.3272 0.3394 0.8322 0.1000 3.9719 1.4240
0.4354 1.4234 0.1000 0.1000 3.9749 1.4171
0.3197 0.3509 0.7762 3.9619 0.1000 1.4152
0.4288 1.4179 0.1000 0.1000 3.5061 1.4113

Table C.13: Optimal array parameters for the seven-device circular array (in-
cluding a middle device) with β0 = π

2 . The best result found by McGuinness &
Thomas (2016) is marked "M"

θ1 θ2 θ3 θ4 θ5 Iopt
1.3060 0.1000 3.2065 0.1000 0.1000 1.5361 M
1.4453 0.1000 0.1000 2.8821 0.1000 1.5055
1.3774 0.1000 1.6642 1.6642 0.1000 1.4965
0.3134 1.0854 0.1000 0.1000 4.3294 1.4753
0.3020 0.8243 0.1000 3.8186 0.1000 1.4677
1.2937 0.1000 3.5037 0.1000 0.9844 1.4616
1.3198 1.9006 1.3732 0.1000 0.1000 1.4528
0.2888 1.1404 0.1000 0.1000 3.3680 1.4513

Table C.14: Optimal array parameters for the seven-device circular array (includ-
ing a middle device) with β0 = 5π

8

θ1 θ2 θ3 θ4 θ5 Iopt
4.2874 0.1000 0.1000 1.1262 0.3231 1.4785
1.0058 0.1000 0.1000 4.3849 0.3662 1.4450
0.9269 3.2881 0.1000 0.1000 1.4314 1.4317
0.9323 0.1000 3.4408 0.1000 1.2737 1.4310
0.7125 3.9719 0.1000 0.8322 0.3394 1.4240
0.2495 3.9749 0.1000 0.1000 1.4234 1.4171
0.7745 0.1000 3.9619 0.7762 0.3509 1.4152
0.7304 3.5061 0.1000 0.1000 1.4179 1.4113
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Table C.15: Optimal array parameters for the seven-device circular array (includ-
ing a middle device) with β0 = 3π

4

θ1 θ2 θ3 θ4 θ5 Iopt
0.1426 3.7020 0.1000 0.1000 1.4852 1.4957
3.8558 0.1000 0.1000 1.2604 0.3336 1.4759
3.8313 0.1000 0.1000 1.4754 0.5914 1.4645
3.8301 0.1000 0.1000 1.4931 0.6599 1.4641
0.1324 3.7448 0.1000 1.3021 0.3227 1.4365
0.1282 3.9150 0.1000 1.1011 0.3357 1.4340
0.1317 3.5552 0.1000 1.5301 0.3175 1.4330
3.7756 0.1000 0.1000 0.1000 1.4185 1.4264

Table C.16: Optimal array parameters for the seven-device circular array (includ-
ing a middle device) with β0 = 7π

8

θ1 θ2 θ3 θ4 θ5 Iopt
0.1000 3.3479 0.1000 0.1000 1.4850 1.5320
3.4590 0.1000 0.1000 1.4793 1.0448 1.5197
0.1000 1.9674 1.3456 0.1000 0.1000 1.4915
0.1000 3.6080 0.1000 1.0827 0.3389 1.4899
3.4524 0.1000 0.1000 1.2799 0.3331 1.4825
0.1000 3.7637 0.1000 0.8741 0.3362 1.4814
3.9121 0.1000 1.0241 0.3310 0.8160 1.4788
3.9214 0.1000 0.8214 0.3309 1.0096 1.4788
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Figure C.4: Optimal seven-device circular arrays for β0 = 5π
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Figure C.5: Optimal seven-device circular arrays for β0 = 3π
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Figure C.6: Optimal seven-device circular arrays for β0 = 7π
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Table D.1: Optimal linear array layout parameters subject to δ ≤ 2 for β0 = 0

n1 n2 n3 n4 Iopt

0.0978 0.0532 0.1139 0.7351 0.49441
0.0839 0.0500 0.1076 0.7585 0.49113
0.1229 0.0500 0.1185 0.7086 0.48502
0.1230 0.0500 0.1182 0.7088 0.48315
0.1197 0.0967 0.1261 0.6575 0.47595

Table D.2: Optimal linear array layout parameters subject to δ ≤ 3 for β0 = 0

n1 n2 n3 n4 Iopt

0.1057 0.0504 0.1048 0.7391 0.58438
0.0869 0.0500 0.0988 0.7643 0.57784
0.1236 0.0500 0.0990 0.7274 0.57028
0.1237 0.0500 0.0989 0.7274 0.56885
0.1309 0.0819 0.0872 0.7000 0.56573

Table D.3: Optimal linear array layout parameters subject to δ ≤ 2 for β0 = π
4

n1 n2 n3 n4 Iopt

0.0940 0.1532 0.2259 0.5269 0.42508
0.0832 0.1473 0.1538 0.6157 0.41728
0.1243 0.1979 0.1605 0.5173 0.41682
0.1398 0.2328 0.1741 0.4533 0.41388
0.1234 0.1959 0.1504 0.5303 0.41383

Table D.4: Optimal linear array layout parameters subject to δ ≤ 3 for β0 = π
4

n1 n2 n3 n4 Iopt

0.1310 0.3066 0.1103 0.4521 0.45507
0.1267 0.2848 0.1424 0.4461 0.45480
0.1193 0.2732 0.1600 0.4475 0.45350
0.1333 0.3235 0.0862 0.4570 0.45303
0.1620 0.6131 0.1240 0.1009 0.40869

Table D.5: Optimal linear array layout parameters subject to δ ≤ 2 for β0 = π
2

n1 n2 n3 n4 Iopt

0.2679 0.2321 0.2321 0.2679 0.87771

Table D.6: Optimal linear array layout parameters subject to δ ≤ 3 for β0 = π
2

n1 n2 n3 n4 Iopt

0.2679 0.2321 0.2321 0.2679 1.06779
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