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a Departamento de Química Inorgánica, Universidad de Zaragoza-CSIC. Instituto de 

Síntesis Química y Catálisis Homogénea (ISQCH), Pedro Cerbuna 12, 50009 Zaragoza, 
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Palmeras 3425 Nuñoa, Casilla 653, Santiago, Chile. c Department of Chemistry, University 
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Lee Maltings, Cork, Ireland. e Materials and Surface Science Institute, University of 

Limerick, Limerick, Ireland. f Universidad Andres Bello, Departamento de Ciencias 

Química, Facultad de Ciencias Exactas. Av. Republica 275, Santiago, Chile.

Gold and silver complexes with the monophosphane 1-PPh2-2-Me-C2B10H10 have 

been synthesized. Solid-state pyrolysis of [AuCl(1-PPh2-2-Me-C2B10H10)] and [Au2(μ-1,12-

C2B10H10)(1-PPh2-2-Me-C2B10H10)2]  under air and of solutions of [AuCl(1-PPh2-2-Me-

C2B10H10)] deposited on silicon and silica at 800°C results in single crystal Au confirmed 

by diffraction and SEM-EDS. The morphology of the pyrolytic products depends on the 

thermolytic conditions and different novel 3-D superstructures or microcrystals are possible. 

Complexes [M(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B10H10)] [M = Ag, Au] and [Au2(μ-

1,n-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] (n = 2, 12) are emissive.
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ABSTRACT

Gold and silver complexes containing the monophosphane 1-PPh2-2-Me-l,2-

C2B10H10 with different coordination numbers (2, 3) have been synthesized. Complexes

[M(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B10H10)] [M = Ag, Au] and [Au2(μ-1,n-

C2B10H10)(1-PPh2-2-Me-C2B10H10)2] (n = 2, 12). Solid-state pyrolysis of [AuCl(1-PPh2-2-

Me-C2B10H10)] and [Au2(μ-1,12-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] under air and of 

solutions of [AuCl(1-PPh2-2-Me-C2B10H10)] deposited on silicon and silica at 800°C results 

in single crystal Au confirmed by diffraction and SEM-EDS. The morphology of the 

pyrolytic products depends on the thermolytic conditions and different novel 3-D 

superstructures or microcrystals are possible. We also propose a mechanism for the thermal 

conversion of these precursors to structural crystalline and phase pure materials. The 

presence of the carborane-monophosphane seems to originatequenching of the luminescence 

at room temperature in complexes [Au2(μ-1,n-C2B10H10)(1-PPh2-2-Me-C2B10H10)2], 

compared with other [Au2(μ-1,n-C2B10H10)L2] (L = monophosphane).
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INTRODUCTION

The monophosphane 1-(PPh2)-2-Me-C2B10H10, has been selected for this work due to

its electron withdrawing capacity and chemical and thermal stability (both due to the 

skeleton based on the carborane cluster). The aim is to analyse the influence of this ligand in 

the products and structures resulting from the pyrolysis of gold complexes and in the 

luminescence properties of the complexes synthesized.

From the synthetic point of view we have taken into account the varieties of 

complexes reported with carborane monophosphanes. 1,2 They consist in mononuclear 

complexes of stoichiometry: [AuClL](7-(PPh2)-8-R-C2B9H10)(PPh3)] L = (PCltBu)-

C2B10H11, 1-(PPh2)-2-Ph-C2B10H10 and P(CH2-1-C2B10H11)3 ] (Fig. 1a and 1b)1 and [Au(7-

(PPh2)-8-R-C2B9H10)(PPh3)] (R = Me, Ph, SBz, SEt).2a-2c Mixed gold–rhodium or gold-

ruthenium metallocarborane complexes (Scheme 1)2b and the metallorhodium complex 

[Ag2(thf)2(OTf)2{1-(PPh2)-3(5-Cp*)-3,1,2-RhC2B10H10}2] in which no Rh···Ag metallic 

interactions are present and the two silver atoms are bridged by two triflate ligands.2d We 

have focus our attention in two- and three-coordinated gold and silver complexes.

Figure 1. Gold complexes with carborane monophosphanes

And have also synthesised organometallic derivatives, taking into account that 

organometallic complexes with C(carboranyl)-Au -bonds are well represented for the 

ortho- isomer,3 but they are almost unknown for the meta- isomer.4 Recently we reported the 

synthesis and crystal structure of the first example of such complexes with the para-

carborane isomer.3g
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Scheme 1

The carborane cage in dicarba-closo-dodecaboranes displays high stability under 

many reaction conditions, which include oxidizing agents, alcohols or strong acids. The 

thermal and thermo-oxidative stabilities of carborane-containing polymers are also 

interesting and useful properties. Pyrolysis of such polymeric materials has been previously 

described and the salient features of the process have been established.5 The formation of 

ceramic materials (including C-Si-B), micro or nanoscale BPO4 and SiC/B4C/C 

nanocomposites has been reported. We have found that gold derivatives as gem-

[N3P3(O2C12H8)2(OC5H4N-4{Au(C6F5)})2] and its polymer 

[{NP(O2C12H8)}0.7{NP(OC5H4N-4{Au(C6F5))2}0.3]n are useful precursors for nanostructured 

Au.6 The pyrolysis of the carborane polyphosphazene 

{[NP({OCH2}2C2B10H10)]0.5[NP({OCH2}2C2B9H10NBu4)]0.5}n, affords nanostructured 

BPO4.
8d We have also analysed the deposition of micro- and nanoscale gold and silver 

structures after direct pyrolysis on silicon and silica surfaces.7 Thus we are interested in the 

resulting material and the final structures obtained upon pyrolysis of carborane derivatives 

with gold content.

Luminescence has revealed as a property shown for several complexes and useful in 

medicine both in diagnosis (for immunoassay) and in photodynamic therapy.8 Also, in the 

design of volatile organic compound (VOC) detectors, as the presence of organic molecules 

may change the emission maxima or even lead to luminescence quenching. On the other 

hand, complexes with a triplet excited state may be used as phosphor dopants in the 

fabrication of phOLEDs (phosphorescent organic/organometallic light emitting diodes).9

Taking into account these facts, the work has been completed with the analyses of the

luminescent properties of the complexes synthesized, as dicarba-closo-dodecaboranes 

themselves and their derivatives, including different coordination complexes and the effect 

of the incorporation of fluorescent molecules in the carborane cage have been reported.3g,10

As part of our previous studies we have analysed different mono [M(7-(PR2)-8-Ph-

C2B9H10)L]10s,10t,10v (M = Au, Ag, Cu; L = monophosphane) and dinuclear [Au2(μ-1,n-

C2B10H10)(PR3)2] (n = 2,7,12)3g systems with carborane backbones. In this work we are 

interested in the effect the electron withdrawing carborane-monophosphane 1-(PPh2)-2-Me-

C2B10H10 in the luminescent properties of these systems.

Thus, in this work we present different gold and silver complexes with the 1-(PPh2)-

2-Me-C2B10H10 monophosphane. Many of the properties of the carborane derivatives, some 
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of which were mentioned above, are enhanced by increasing the boron content. Thus, in 

most cases, the synthesis has been directed to obtain molecules with high boron content. We 

also report the influence of the carborane monophosphane in the luminescent properties of 

mononuclear [M(7,8-(PPh2)2-C2B9H10)(PR3)] and dinuclear [Au2(μ-1,n-C2B10H10)(PR3)2] (n

= 2, 12) gold systems and the thermolysis of gold complexes containing carborane ligands, 

in order to elucidate if the resulting material will be nanostructured Au, BPO4 or both, what 

its crystal structure will be, and whether or not the resulting material is a complex 

composite. To the authors’ knowledge, this is the first dedicated investigation of the 

pyrolysis into monomeric (not polymeric) carborane materials that includes the para-

isomer, as opposed to previous thermolytic studies using ortho-carborane derivatives. Thus 

these complexes allow the evaluation of the effect of the nature of the carborane precursor 

ie.: one gold atom by one carborane unit with two gold atoms by three carborane units, on 

the phase, morphology and size of the pyrolytic products.

EXPERIMENTAL

General comments

[AuCl(tht)]11 (tht = SC4H8) and the monophosphane12 1-(PPh2)-2-Me-C2B10H10 were

synthesized according to published procedures. Other reagents and solvents were used as 

received. When anhydrous solvents were needed they were obtained from the purification 

solvent (SPS) PS-MD-5 Innovative Technology, Scharlab. Solution 1H and 31P{1H} NMR 

spectra were recorded using BrukerAvance 400 and Bruker ARX 300 spectrometers. The 

chemical shifts (δ) were referenced to SiMe4 (1H, external) or 85% H3PO4 (31P, external). 

Steady-state photoluminescence spectra were recorded with a Jobin-Yvon Horiba Fluorolog 

FL-3-11 spectrometer.

[AuCl(1-PPh2-2-Me-C2B10H10)] (1): To a dichloromethane solution (15 mL) of 1-PPh2-2-

Me-C2B10H10 (0.2 mmol, 68.5 mg) [AuCl(tht)] (0.2 mmol, 64.1 mg) was added. The mixture 

was stirred for 1 h and then the solution was concentrated to c.a. 3 mL under reduced 

pressure. Precipitation of 1, as a white solid was afforded by addition of n-hexane. Yield:

97%. Analytical data (%), calculated for C15H23AuB10ClP: C, 31.34; H, 4.03; found: C, 

31.31; H, 3.96. 1H NMR (CDCl3, ppm): 0-3 (m, br, 10H, BH), 2.39 (s, 3H, Me), 7.61-7.69 

(m, br, 5H, Ph), 8.17-8.23 (m, br, 5H, Ph). 31P{1H} NMR (CDCl3, ppm): 50.9 (s). I.R. (cm-

1): (BH) = 2570 (st), (AuCl) = 327 (st).
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[Au(1-PPh2-2-Me-C2B10H10)(tht)]OTf (2): A dichloromethane solution (15 mL) of 1-PPh2-

2-Me-C2B10H10 (0.2 mmol, 68.5 mg) was added to a freshly prepared solution of 

[Au(tht)2]OTf (0.2 mmol) ([Au(tht)2]OTf was synthesized in situ from 0.2 mmol of 

[AuCl(tht)] (64.1 mg), AgOTf (56.5 mg) and tht (17.63 μL) in dichloromethane). The 

mixture was stirred for 1.5 h and concentrated under reduced pressure. Compound 2, as a 

white solid, was obtained by addition of n-hexane. Yield: 84%. Analytical data (%), found: 

C, 30.44; H, 4.15; S, 8.73; calculated for C20H31AuB10F3O3PS2: C, 30.93; H, 4.02; S, 8.26. 

1H NMR (CDCl3, ppm): 0-3.5 (m, br, 10H, BH); 2.27-2.31 (m, br, 4H, CH-tht), 2.34 (s, 3H, 

Me), 3.66 (m, br, 4H, CH-tht), 7.70 (br, 5H, Ph), 8.18-8.23 (m, br, 5H, Ph).31P{1H} NMR

(CDCl3, ppm): 54.4 (s). 19F NMR (CDCl3, ppm): -78.1 (s, OTf). I.R. (cm-1): (BH) = 2578 

(st), as(SO3) = 1287 (st), sim(CF3) = 1223 (st), as(CF3) = 1162 (st), sim(SO3) = 1025 (st).

[Au(1-PPh2-2-Me-C2B10H10)2]OTf (3): Method A: A dichloromethane solution (20 mL) of 

1-PPh2-2-Me-C2B10H10 (0.4 mmol, 137.6 mg) was added to a freshly prepared solution of 

[Au(tht)2]OTf (0.2 mmol) (synthesized in situ as described for complex 2). The mixture was 

stirred for 2 h. The solution was then concentrated under reduced pressure and the product,

as a white solid, was obtained by addition of n-hexane. Method B: To a dichloromethane 

solution (20 mL) of [Au(1-PPh2-2-Me-C2B10H10)(tht)]OTf (2) (0.2 mmol, 155.3 mg) 1-PPh2-

2-Me-C2B10H10 (0.2 mmol, 68.5 mg) was added. Then the procedure was similar to that 

described in method A. Yield: 78%. Analytical data (%), found: C, 35.64; H, 4.11; S, 3.94; 

calculated for C31H46AuB20F3O3P2S: C, 36.11; H, 4.49; S, 3.11. 1H NMR (CDCl3, ppm): 1-3 

(m, br, 20H, BH); 2.15 (s, 6H, CH), 7.76 (br, 10H, Ph), 8.20 (br, 10H, Ph). 31P{1H} NMR

(CDCl3, ppm): 62.4 (s). 19F NMR (CDCl3, ppm): -78.3 (s, OTf). I.R. (cm-1): (BH) = 2586 

(st), as(SO3) = 1271 (st), sim(CF3) = 1252 (st), as(CF3) = 1156 (st), sim(SO3) = 1028 (st).

[M(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B10H10)] M = Ag (4), Au (5): A solution (20 

mL) of 1-PPh2-2-Me-C2B10H10 (0.2 mmol, 68.5 mg) in ethanol was added to a solution of 

[MX(1,2-(PPh2)2-C2B10H10)] (0.2 mmol, MX = Ag(OTf) 153.9 mg; AuCl 149 mg) in 

ethanol. The mixture was refluxed for 1.5 h and a white (4) or yellow (5) solid appeared 

which was collected by filtration and washed with n-hexane. 4. Yield: 87%. Analytical data

(%), found: C, 51.53; H, 5.10; calculated for C41H53AgB19P3: C, 51.72; H, 5.61. 1H NMR 

(CDCl3, ppm): -2.08 (s, br, 1H, B-H-B), 0-3 (m, br, 19H, BH), 1.90 (s, 3H, Me), 6.92-7.24 

(v.m, br, 10H, Ph), 7.30-7.64 (v.m, br, 15H, Ph), 7.90-7.94 (m, br, 5H, Ph). 31P{1H} NMR

(300 MHz, CDCl3, ppm): A = 40.9, X = 19.6; J[109Ag-PA] 583.4 Hz, J[109Ag-PX] 383.4 Hz, 
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JAX 63.4 Hz. I.R. (cm-1): (BH) = 2542 (st). 5. Yield: 87%. Analytical data (%), found: C, 

47.13; H, 5.10; calculated for C41H53AuB19P3: C, 47.29; H, 5.13. 1H NMR (CDCl3, ppm): -

2.12 (s, br, 1H, B-H-B), 0-3 (m, br, 19H, BH); 1.68 (s, 3H, CH), 7.15-7.22 (m, br, 4H, Ph), 

7.30-7.46 (v.m, br, 14H, Ph), 7.55-7.63 (m, br, 8H, Ph), 7.91-7.96 (m, br, 4H, Ph). 31P{1H}

NMR (CDCl3, ppm):AB2 system A = 68.8, B = 60.0; JAB = 138.1. I.R. (cm-1): (BH) = 

2541 (st).

[Au(1-PPh2-2-Me-C2B10H10)(1,2-(PPh2)2-C2B10H10)]OTf (6): A solution (20 mL) of 

[Au(1-PPh2-2-Me-C2B10H10)(tht)]OTf (7) (0.2 mmol, 155.3 mg) in dichloromethane was 

added to a solution of 1,2-(PPh2)2-C2B10H10 (0.2 mmol, 102.4 mg) in dichloromethane. The 

mixture was stirred for 1.5 h. The solution was then concentrated to c.a. 3 mL under reduced 

pressure and the product, as a pale yellow solid, was obtained by addition of n-hexane.

Yield: 75%, white colour. Analytical data (%), found: C, 41.81; H, 4.51; S, 2.57; calculated 

for C62H84Au2B30F6O6P4S3: C, 42.10; H, 4.20; S, 2.67. 1H NMR (CDCl3, ppm): 1-3.5 (m, br, 

20H, BH); 2.29 (s, 3H, CH), 7.42-7.90 (v.m, br, 25H, Ph), 8.16-8.21 (m, br, 5H, Ph). 

31P{1H} NMR (CDCl3, ppm): A = 70.9, X = 57.8; JAX = 146.25 Hz (Δν>>J). 19F NMR

(CDCl3, ppm): -78.1 (s, OTf). I.R. (cm-1): (BH) = 2575 (st), as(SO3) = 1272 (st), sim(CF3)

= 1222 (st), as(CF3) = 1153 (st), sim(SO3) = 1028 (st).

[Au(1-PPh2-2-Me-C2B10H10)(PPh3)]OTf (7): A solution (20 mL) of [Au(1-PPh2-2-Me-

C2B10H10)(tht)]OTf (2) (0.2 mmol, 155.3 mg) in dichloromethane was added to a solution of 

PPh3 (0.2 mmol, 52.4 mg); in dichloromethane. The mixture was stirred for 1.5 h. The 

solution was then concentrated to c.a. 3 mL under reduced pressure and a white solid was

obtained by addition of n-hexane. The solid contains a mixture of complexes 7 and the 

homoleptic species [Au(1-PPh2-2-Me-C2B10H10)2]OTf and [Au(PPh3)2]OTf. The following 

NMR data correspond to 7: 1H NMR (CDCl3, ppm): 0.5-3 (m, br, 10H, BH), 2.27 (s, 3H, 

CH), 7.51-7.73 (v.m, br, 15H, Ph), 8.16-8.21 (m, br, 10H, Ph). 31P{1H} NMR (CDCl3, ppm):

AB system; A = 43.1(d, PPh3), B = 61.1 (d, PPh2), JAB = 325.5 Hz. 19F NMR (CDCl3, 

ppm): -78.1 (s, OTf).

[Au2(μ-1,n-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] [n = 2, (8); n = 12, (9)] To a 0 ºC diethyl 

ether solution (20 mL) of ortho- or para-carborane 1,n-(CH)2B10H10 (n = 2, 12; 28.4 mg, 0.2 

mmol), under argon atmosphere, LinBu (n-hexane solution 1.6 M, 0.38 mL, 0.6 mmol) was 

added and the mixture was stirred for 1.5 h (8) or 2.5 h (9). The solution was warmed up to 

room temperature and [AuCl(1-PPh2-2-Me-C2B10H10)] (0.35 mmol, 201 mg) was added. The 
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suspension was stirred for 4.5 h (8) or 1.5h (9) and the remaining solid filtered through 

celite. The filtrate was concentrated under reduced pressure and n-hexane was added to 

obtain a pale yellow solid, which was collected by filtration. 8: Yield: 87%. Analytical data 

(%), found: C, 31.87; H, 4.89; calculated for C32H56Au2B30P2: C, 31.47; H, 4.62. 1H NMR 

(CDCl3, ppm): 1-3 (m, br, 30H, BH); 2.36 (s, 6H, Me); 7.43-7.46 (m, br, 5H, Ph), 7.62 (m, 

br, 5H, Ph), 7.99-8.04 (m, br, 10H, Ph). 31P{1H} NMR (CDCl3, ppm): 54.5 (s). I.R. (cm-1): 

(BH) = 2562 (st). 9. Yield: 87%. Analytical data (%), found: C, 31.19; H, 4.18; calculated 

for C32H56Au2B30P2: C, 31.47; H, 4.62. 1H NMR (CDCl3, ppm): 1-3 (m, br, 30H, BH), 2.32 

(s, 6H, CH), 7.55-7.63 (m, br, 12H, Ph), 8.04-8.10 (m, br, 8H, Ph). 31P{1H} NMR (CDCl3, 

ppm): 53.4 (s). I.R. (cm-1): (BH) = 2580 (st).

Crystallography

Crystals were mounted in inert oil on glass fibers and transferred to the cold gas stream of 

Xcalibur diffractometer equipped with a low-temperature attachment. Data were collected 

using monochromated Mo K radiation ( = 0.71073 Å). Absorption corrections: 

SADABS.13 The structures were refined on F2 using the program SHELXL-97.14 Selected 

details of the data collection and refinement are given in Table 1. CCDC 962746-962747 

contain the supplementary crystallographic data for complexes 5 and 8, respectively,

reported in this paper. These data can be obtained free of charge from the Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk.data-request/cif.

Casting and pyrolysis

The pyrolysis experiments were conducted by pouring a weighed portion (0.05–

0.15 g) of the precursor 1, 9 into aluminum oxide boats that were placed in a furnace 

(Daihan oven model Wise Therm FHP-12) under a flow of air, heating from 25°C to 

upper temperature limits of 300°C, and then to 800 °C, followed by annealing for 2-4 

h and at rates of 10 °C min-1 in each case.

A drop of CH2Cl2 solution containing the mixtures (solutions/suspensions in the 

range 1  10-3 – 5  10-4 g/mL) of 1 was cast over either a silicon or oxidized silicon 

surface and the solvent evaporated. The Si or SiO2 wafer (with 400 mg of thermally 

grown oxide) was subsequently pyrolyzed at 800C using a predefined temperature 

program (Daihan oven model FHP-12) where the polymer samples were heated at a 

rate of 10°C min-1 from room temperature to 800°C under a constant air flow of 120 

mL min-1 and subsequently annealed for 2 h. The resulting depositions give a 

http://www.ccdc.cam.ac.uk.data-request/cif
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uniform areal coverage for each mixture. 

Table 1. X-ray data for complexes 5 and 8

Formula C41H53AuB19P3 (5) C34.5H61Au2B30Cl5P2 (8)

Crystalsystem Triclinic Triclinic

Spacegroup P-1 P-1

Cellconstants: 

a 12.033(2) Å 12.631(3) Å

b 14.106(3) Å 13.741(3) Å

c 15.195(3) Å 18.619(4) Å

 81.71(3)° 95.48(3)°

 71.56(3)° 106.80(3)°

 73.15(3)° 100.43(3)°

V (Å3) / Z 2337.9(8) / 2 3004.8(10) / 2

Dx (Mg m-3) 1.479 1.584

 (mm-1) 3.282 5.181

F(000) 1036 1382

2max 50 52

No. of refl.:

measured 32377 165111

independen 8202 10531 

Transmisión max-min 0.827-0.639 0.653-0.395

Rint 0.0425 0.0261

Restraints/parameters 18 / 641 244 / 655

S 1.109 1.080

wR(F2, all Refl.) 0.1493 0.1051

R(I, >2(I)) 0.0588 0.0431

max.  (e Å-3) 5.744 2.907

Electron microscopy and energy dispersive X-ray analysis

Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) 

were acquired with a Hitachi S4800 and SU70 FESEM operating at 10 kV equipped with an 

Oxford Instruments X-max 50 mm2 solid-state EDX detector for elemental line scanning and 

mapping. Suitably dispersed powders were also analyzed on holey carbon Cu grids by 
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transmission electron microscopy (TEM) using a JEOL 2100F FEGTEM operating at 200 

kV.

RESULTS AND DISCUSSION

Synthesis and characterization

Reaction of the monophosphane 1-PPh2-2-Me-C2B10H10  with [AuCl(tht)] or 

[Au(tht)2]
+ in 1:1 molar ratio leads to the formation of [AuCl(1-PPh2-2-Me-C2B10H10)] (1)

and [Au(1-PPh2-2-Me-C2B10H10)(tht)]OTf (2), respectively. If the reaction with 

[Au(tht)2]OTf is carried out in 2:1 molar ratio compound [Au(1-PPh2-2-Me-C2B10H10)2]OTf

(3) is obtained (Scheme 2).

In the I.R. spectra of complexes 1-3 the (BH) vibration appears between 2563 and 

2606 cm-1, in addition the (Au-Cl) vibration appears in 1 and the absorptions attributed to 

the presence of the triflate anion in 2 and 3. A broad signal from ca.1 to 3 ppm is assigned to 

the BH hydrogen atoms of the carborane moiety in the 1H NMR spectra. The resonance 

corresponding to the methyl group of the carborane cage appears at about 2 ppm. Compound 

2 also displays two multiplets due to the hydrogen atoms of the that ligand. The three

complexes display one singlet in the 31P{1H} NMR spectra between 50.9 and 62.4 ppm.

The three-coordinated complexes [Ag(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-

C2B10H10)] (4) and [Au(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B10H10)] (5), which contain a 

closo-carborane-monophosphane and a nido-carborane-diphosphane may be obtained from 

the reaction of [Ag(OTf)(1,2-(PPh2)2-C2B10H10)] or [AuCl(1,2-(PPh2)2-C2B10H10)], with the 

monophosphane in refluxing ethanol (Scheme 1). During these reactions the partial 

degradation of the carborane cluster of the diphosphane and coordination of the gold or 

silver center to the monophosphane takes place. The degradation of the carborane cage has 

been shown to be favored upon coordination of the diphosphane to a metallic center.15 This 

idea could support the fact that it is the diphosphane and not the monophosphane which is 

partially degraded in the reaction. Nevertheless we have carried out the reaction of complex 

[AuCl(1-PPh2-2-Me-C2B10H10)] (1) with the diphosphane 1,2-(PPh2)2-C2B10H10 in refluxing 

ethanol and the result of the process is the formation of 5. Thus, in both experiments it is the 

diphosphane which is partially degraded. Partial degradation of carborane clusters may take 

place with lewis bases like alkoxides, amines, fluorides and even heterocyclic carbenes and 

consist on a nucleophilic attack of one of the two boron atoms nearest to the carbon ones. In 

alcoholic media the RO- is the nucleophilic species.16 It has also been reported that 
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coordination to the diphosphane to a metal enhances the partial degradation process.17 A 

possible explanation to the fact that in both experiments is the diphosphane the partially 

degradated carborane ligand could be substitution of PPh2 in the diphosphane by Me in the 

monophosphane, would lead to a less favorable nucleophilic attack over one of the boron 

atoms nearest to the carbon ones.

The I.R. spectra and 1H NMR spectra of compounds 4 and 5 prove the presence of 

the carborane clusters, in addition the partial degradation of the carborane cages is 

confirmed by the presence of a broad signal at about -2 ppm in the 1H NMR spectra, 

assigned to the bridging hydrogen atom in the open face of the nido-carborane. The 31P{1H} 

NMR spectra consist on AX2 (4) or AB2 (5) systems which confirm the expected geometry,

but the pattern of that corresponding to 4 is complicated by coupling to the silver 107Ag and 

109Ag nuclei. 

The crystal structure of compound 5 has been elucidated by X-ray diffraction studies

(Figure 2). The gold atom displays a trigonal planar geometry with the gold center 0.12 Å 
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out of the plane formed by the three phosphorous atoms P1, P2 and P3. The major distortion 

is due to the chelate angle of the diphosphane [P-Au-P = 83.18(6)º].

The bonding distances and angles may be compared (Table 2) with different three 

coordinated species18,5s,5t,5v as [Au(1,2-(PPh2)2-C2B10H10)(PPh3)]OTf or [Au(7,8-(PPh2)2-

C2B9H10)}(PR3)] (PR3 = monophosphane).

Complexes 1 and 2 contain a chloride and tht ligand, respectively which, upon 

reaction with carbanionic species (as RLi) of the former or through substitution of the tht 

ligand in the later, may lead to organometallic or metallorganic gold complexes (Scheme 1). 

Thus, substitution of tht in 2 by 1,2-(PPh2)2-C2B10H10, leads to the formation of [Au(1-PPh2-

2-Me-C2B10H10)(1,2-(PPh2)2-C2B10H10)]OTf (6), which is analogous to 5, but contains two 

closo-carborane ligands, and thus is an ionic compound. Similar features are observed in the 

IR and NMR spectra of 5 and 6, except for the absence of the signal at -2 ppm and the 

presence of the vibrations corresponding to the presence of the triflate group in the 1H NMR 

and IR spectrum of 6, respectively. The 31P{1H} NMR spectrum of 6 consists on a AX2

system.

The 31P{1H} NMR spectrum of the reaction of 2 with PPh3 consists on a AB system 

assigned to the expected complex 7 and two singlets at 62.4 ppm and 45.1 ppm, 

corresponding to the homoleptic species [Au(1-PPh2-2-Me-C2B10H10)2]OTf and 

[Au(PPh3)2]OTf, respectively. Equilibrium PA-Au-PB 
   PA-Au-PA + PB-Au-PB in solution 

between mixed and homoleptic species are well known in gold chemistry.

Figure 2. ORTEP representation of compound 5. Hydrogen atoms have been omitted for 

clarity.
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Table 2. Bond lengths [Å] and angles [] for [Au(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-

C2B10H10)] (5) and other three coordinated gold complexes with diphosphanocarborane 

ligands.

Compuesto P-Au-P (°)a Åb Au-Pa Au-Pc

5 83.18(6) 0.12
2.4223(18)

2.4223(18)
2.3234(19)

[Au(dppnc)(PPh3)]
17b 84.91(4) 0.07

2.3896(13)

2.3952(12)
2.2831(13)

[Au(dipnc)(PPh3)]
10s 90.38(2) 0.15

2.4083(6)

2.3076(6)
2.3791(6)

[Au(dppc)(PPh3)]ClO4
17a 90.2(1) 0.18

2.405(1)

2.417(1)
2.318(1)

[Au(dppnc)(PPh2OEt)]10v 83.15(6) 0.14
2.3917(19)

2.3934(18)
2.2579(19)

Closo- and nido-carborane diphosphane: dppc: closo-, R = Ph; dppnc: nido-, R = Ph, dipnc: nido-

, R = iPr.a diphosphane,b Distance of the Au atom to the plane defined by the three phosphorous 

atoms c monophosphane.

As discussed above, complex [AuCl(1-PPh2-2-Me-C2B10H10)] 1 may react with 

carbanionic reagents as RLi. Such processes afford complexes [AuR(1-PPh2-2-Me-

C2B10H10)]. We have chosen the meta- and para- isomers of carborane as R fragments. 

Thus, reaction of 1,n-(LiC)2B10H10 (n = 2, 12) with 1 in molar ratio 1:2 affords the 

organometallic complexes [Au2(μ-1,n-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] (8, n = 2; 9, n = 

12). The I.R. and 1H NMR spectra confirm the presence of the carborane cluster. The 

31P{1H} NMR spectra of both complexes display one singlet at about 54 ppm. The crystal 

structure of 8 has been elucidated by X-ray diffraction studies (Figure 3). The gold centers 

display linear geometry. Gold distances and angles are in the range found for complexes 

[Au2(μ-1,n-C2B10H10)(PPh3)2] (n = 2, 7, 12; PR3 = PPh3 or PMe3) which are shown in Table 

3. No aurophilic contact has been found in 8 between the gold centers [Au···Au distance ca. 

3.5 Å]. Comparison of the Au-Au distances in Table 3 indicates that complexes with PPh3 or 

PMe3 display no aurophillic interaction. So the use of the smaller PMe3 monophosphane 

seems not to lead to the presence of aurophillic interaction. Aurophillic interactions have 

been found in complexes with diphoshane [7,8-(PPh2)2-C2B9H10]
- and dithiolate [1,2-S2-

C2B10H10]
-2 carborane ligands.19 So that maybe it is the carborane geometry that leads to 

such an orientation of the C-Au bonds that does not allow the two gold atoms to get closer 

each other.
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Figure 3. ORTEP of compound 8. Hydrogen atoms have been omitted for clarity. 

Table 3. Bond lengths [Å] and angles [] for 8 and other three coordinated gold 
complexes with phosphanocarborane ligands

Distance/

Angle

[Au2(μ-1,n-C2B10H10)(PPh3)2] [Au2(μ-1,2-C2B10H10)L2]

N = 23f N = 74 N = 123g L = PMe3
7h L = 1-PPh2-2-Me-C2B10H10 (8)

C-C* 1.71(2) - - 1.693(5) 1.681(9)

C-Au
2.055(14) 

2.033(15)

2.054(7) 

2.047(7)
2.058(4)

2.049(4) 

2.068(4)

2.047(6)

2.052(7)

Au-P
2.270(4) 

2.273(5)

2.265(2) 

2.271(2)
2.273(10)

2.262(12) 

2.273(10)

2.2721(17)

2.2821(18)

Au···Au 3.567(1) 6.14 - 3.522(7) 3.516(1)

C–Au–P 178.9(4)

174.2(4)

179.3(2)

174.1(2)
175.7(10)

175.8(11)

175.7(10)

175.59(18)

173.14(18)

*Carborane carbon atoms

Luminescence studies

The emission spectra of complexes 4 and 5 in the solid state at 298 K  (Figure 4) 

exhibit one emission whose maximum appears at 397 nm for 4 and at 480 nm for 5. At 77 K, 

compound 4 shows one band with a maximum at 450 nm. Two different emissions are 

observed for 5 at 77 K. Upon excitation at 320 nm the emission maximum appears at 526 

nm. Excitation at lower energies leads to a weaker emission in the red region.



15

400 600
0.0

0.5

1.0
In

te
n

s
it

y
 (

a
.u

.)

 (nm)

 Compound 4 

 Compound 5 

400 600 800
0.0

0.5

1.0

In
te

n
s
it

y
 (

a
.u

.)

(nm)

 Compound 4

 Compound 5

Figure 4. Normalized emission spectra of 4 and 5 at room temperature (left) and 77K (right)

Our previous results indicate that the free nido-diphosphane and three coordinated 

gold complexes [M(7,8-(PR2)2C2B9H10)}(PR’3)] (M = Au, Ag, Cu; R = Ph, iPr) are 

luminescent 10s-10v with lifetimes in the microsecond range10t,10v and aid in the assignation of 

the origin of the emissions.

The emission observed in the blue-yellow region resembles those of the free nido-

diphosphane. They have been assigned to intraligand transitions (IL) modified upon 

coordination to the metal. The energy maximum for this IL band is lower for the gold 

complex (5), compared with the silver one (4). There is a shift to the red region upon 

coordination of the free diphosphane, compared with the emission of the free nido-

diphosphane, and this shift follows the same trend reported for complexes [M(7,8-

(PR2)2C2B9H10)}(PR’3)] with other monophosphanes for which the influence of the metal in 

this IL band follows the pattern Au > Ag. The red emission observed for 5 at 77 K is also 

consistent with the low energy emissions observed for three-coordinate gold complexes with 

this diphosphane, which have been assigned to metal to ligand charge transfer (MLCT) 

transitions or a mixture of MLCT and intra-ligand charge transfer (ILCT) transitions.

We have also studied the luminescent characteristics of 8 and 9, as different ortho-, meta-, 

and para-dinuclear gold derivatives of stoichiometry [Au2(μ-1,n-C2B10H10)(PR3)2] (n = 2, 7, 

12; PR3 = PPh3, PMe3) are luminescent (Figure 5, Table 4).3g We have found that 8 and 9 are 

not emissive in the solid state at room temperature. At 77 K, in the solid state, complex 8

displays two bands. Upon excitation at 280 nm, an emission at 480 nm is observed, whereas 

excitation at lower energies lead to a band centered at 580 nm. Compound 9 displays one 

band at 680 nm upon excitation at 360 nm. Dual emission, at similar energies has been 
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observed for organometallic dinuclear complexes of formula [Au2(μ-1,n-C2B10H10)(PR3)2]

(Table 4). The band at higher energy has been attributed to IL(carborane) transitions and the 

Stokes shift points to a fluorescent nature, and the one at lower energy to charge transfer 

transitions involving the gold centers in the reported examples, and the Stokes shift seems to 

point to a phosphorescent nature.

Table 3. Emission maxima (nm) for solid samples of complexes [M(7,8-

(PR2)2C2BxH10)}(PR’3)]
n [x = 9, n = 0; x = 10, n = +1; M = Au, Ag]

Compound 298K 77K

M
bc M

b

[Ag(1,2-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B9H10)] (4) 397 450

[Au(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B9H10)] (5) 480 526

670

[Au(7,8-(PPh2)2-C2B9H10)(PPh3)]
10s 540 529

670 676

[Ag(7,8-(PPh2)2-C2B9H10)(PPh3)]
10v 470 465

500 515

[Au(7,8-(PPh2)2-C2B9H10)(PPh2(CH2)2Py)]10v 510 520

670

[Ag(7,8-(PPh2)2-C 2B9H10)(PPh2(CH2)2Py)]10v 530 500

[Au(7,8-(PPh2)2-C 2B9H10)(PPh2OEt)]10v 519  525

670  670

[Ag(7,8-(PPh2)2-C 2B9H10)(PPh2OEt)]10v 400 398

It is noticeable that 8 and 9, both containing the carborane monophosphane are not 

emissive at room temperature. Quenching processes are difficult to predict. Objective facts 

when comparing [Au2(μ-1,2-C2B10H10)(PPh3)2] and 8 are the more electron withdrawing 

nature of the carborane cluster, compared with the phenyl unit and the three dimensional 

aromatic nature of the carborane cluster. Although a concrete quenching mechanism is 

dificult to predict, it is possible to discuss the different behaviour of 8 and 9 at room 

temperature and 77K and the quenching of the IL emission at 77 K in 8 but not in 9 as 

follows. The rigidity imposed at 77K could explain the emissive behavior at this 

temperature, as quenching processes are in many cases less favorable at low temperatures 

and rigidity favors the emissive behavior. Nevertheless it is interesting to observe that the 

emission which is quenched in 9 both at room temperature and 77K is that assigned to IL 

(carborane) transition, but not that at lower energy, attributed to charge transfer processes 
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involving the gold center. It seems that, for 9 at high temperature quenching of the first 

excited singlet occurs. Upon cooling intersystem crossing is more favorable than direct 

decay to the ground state and phosphorescent charge transfer transitions lead to red 

emission. Changing the para isomer in 9 by the ortho isomer in 8 seems to make less 

favourable intersystem crossing and thus, both fluorescence and phosphorescence are 

observed in 8.
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Figure 5. Normalized emission spectra of 8 (dual emission) and 9 at 77 K.

Table 5. Emission maxima (nm) of organometallic gold complexes with carborane 

ligands. Excitation wavelength for the higher energy band is about 290 nm and about 400 

nm for the lower energy band.

Pyrolysis and conversion to gold crystals

Two complexes have been selected for these studies, compound 1 (mononuclear) 

with 34.4 % of gold and 18.8 % boron content and compound 9 (dinuclear) with lower gold

(32.3 %) but higher boron (26.6 %) content. Compounds 1 and 9 have been heated to 800 ºC 

in air, whereas 1 was selected for the study after its deposition on Si or SiO2 surfaces and 

dryness and heating to 800ºC.

Complex RT 77 K

[Au2(μ-1,2-C2B10H10)(PPh3)2]
3g 368, 500 500, 570

[Au2(μ-1,7-C2B10H10)(PPh3)2]
3g 364, 530 396, 510

[Au2(μ-1,12-C2B10H10)(PPh3)2]
3g 350, 506 396, 555

[Au2(μ-1,12-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] (9) -- 680

[Au2(μ-1,2-C2B10H10)(PMe3)2]
3g 391, 500 403, 516

[Au2(μ-1,2-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] (8) -- 410, 580
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Pyrolysis of [AuCl(1-PPh2-2-Me-C2B10H10)] (1) and [Au2(μ-1,n-C2B10H10)(1-PPh2-2-Me-

C2B10H10)2] (9)

Pyrolysis of the Au precursors 1 and 9 at 800 °C in air, results in a reddish-yellow 

solid that adheres well to the crucible. XRD patterns indicate the presence of pure cubic gold 

crystals. The typical strong reflexions for the (111), (200), (220) and (311) planes of metallic 

gold in a face-centerd cubic lattice were observed as shown in Fig. 610, for the pyrolytic 

product from 1. Similar XRD pattern was observed for the product from thermolysis of 9.

SEM imaging shows, for both pyrolytic products, a sponge-like porous morphology20. EDS 

analysis also confirmed that only pure Au is present. Consistent with the SEM observations 

TEM analysis confirms the porous gold comprises agglomerated crystals arranged in a 

random matrix akin to a 3D disordered gyroidal morphology. Porous metals have been 

recently employed for ultra-sensitive surface-enhanced Raman scattering (SERS)

substrates21and have unique properties such as low density, gas permeability and high 

surface area of high index crystal facets for catalysis, hydrogen storage and other 

applications. Preparative methods for metal foams to date most commonly involve de-

alloying of bimetallic AuxAgy.
22

Figure 6. XRD patterns of crystalline porous Au from direct pyrolysis of compound 1. 

(Inset left) SEM image of the porous gold morphology, scale bar 5μm. (Inset right) TEM 

image: agglomerated crystals of the structure of the porous gold, scale bar 1.5μm.
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Pyrolysis of [AuCl(1-PPh2-2-Me-C2B10H10)] (1) deposited on silicon or silica

Using precursor 1, we successfully afforded complex geometrically shaped single Au 

crystals directly from pyrolysis of the previously deposited sample. The important gold 

content in 1 (36.21%) leads to demixed phases and mobile agglomeration. This demixing

process results from the interaction of inert Au NPs within a decomposing organic phase 

that undergoes carbonization. Prior to solidification as a carbon, the separated Au NPs 

migrate and agglomerate to crystallize as larger single crystals. This association process is 

similarly found in Au NPs on PMMA or PS thin films23 and has been described by Avrami 

kinetics for solid species within liquid polymer films, and by Ostwald ripening in thermally 

driven solid state processes. In the present case, agglomeration and growth of a larger single 

crystal from the nanoparticles is observed to occur until the surrounding carbonaceous 

material solidifies. This solidification is the reason for the variety in sizes and geometries of 

the resulting crystals; their shape, dispersion and size depend on the local density of building 

block NPs of Au formed through the initial decomposition of the gold containing 

complexes.

The initially formed gold nanopaticulate clusters ripen to microcrystals with defined

shapes. The growth of gold microcrystals eventually stops when triangular plates are 

formed. In some cases these plates ripen to full tetrahedra. This happens in some cases, 

when sufficient gold source is present in the surrounding area (depending on the density of 

other growing crystal in the vicinity using the Au source within the deposit). Structural 

variants related to the cubic structure are mainly represented, followed by octahedral fully 

formed crystals.

The gold comes from the complex and the decomposing carborane precursor results 

in a carbon residue that is removed after the end of the pyrolitic process. Figure 7 illustrates 

this process. 

Deposition on Si and pyrolysis [Fig. 7a] leads to spherical crystals which develop 

faceting only if enough atomic source is available. As a high density of nucleated crystals is 

formed, many remain non-faceted. At the earlier stages of the pyrolysis of the 

dichlorometane solutions of 1 deposited on silica (Fig. 7b1), the crystals are found on the 

surface of a roughening carbon residue and subsequent time allows for shape development 

and diameter increase [Fig. 7b (2-4)]. 

Without relying on ligands or shape selective surfactants (the organic matrix 

decomposes and thus does not fulfill this function in the present case) a random but uniform 

surface coverage of individual crystals (Fig. 7a,b) shows the variety of crystal shapes 
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possible through coarsening of NPs formed by cleavage, aglomeration and ripening of metal 

atoms. Compositional analysis using EDX mapping in Fig. 7c confirms that the polyhedral 

crystals are phase pure. 

Figure 8 shows that the early stage crystals formed by pyrolysis of dichloromethane 

solutions of 9 deposited on SiO2 are surrounded by a thin carbon coating. Larger crystals

that are faceted also are likely to contain a very thin layer, and quantitative EDS shows that 

some remnant carbon is likely to stem from underlying carbon as the measurement also 

detects oxygen from the underlying substrate. Typically, the fully formed crystals post 

pyrolysis are free from carbon coatings.

Figure 7. Various stage of the crystal growth where small low density crystals eventually 

becomes a higher density of larger crystals with further pyrolysis followed by SEM images

of precursor 1 deposited on Si (a) and SiO2 (b1-b4) after pyrolysis. (c) The EDX mapping 

confirms that Au content for the particles and some regions of the surrounding precursor 

where the Au source has not agglomerated to the growing crystals.

In terms of their formation, phase separation of the metal form the organic portion of 

the precursor is expected, as has been found in asymmetric polymer-particle mixtures24 for 

large particle-to-monomer size ratios. An entropically driven surface phase transition has 
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been observed25 for low-Mw simpler polymer-particle thin films, resulting in the expulsion 

and layering of NPs along the solid substrate. Au association, observed in the bulk above a 

threshold temperature,26 forms into a ripening phase that is bound to the surface and fed 

from the Au content within the surrounding matrix, within and on a carbonaceous material 

during pyrolysis. Low-Mw thin composite films have been shown to form a diffuse layer of 

NPs at the substrate interface after spin coating which failed to be redispersed by subsequent 

thermal annealing. A phase separation and crystallization, where NPs form due to the 

chemical decomposition, allows crystals eventually grow due to the physical decomposition. 

The decomposition follows expected pathways, including carbonization and release of Au 

metals, similar to what we demonstrated using other forms of Au-containing phosphazene 

structures. There is no formal relationship between the nanostructures and the crystal 

structure of the compound. The nanostructures form from migration and crystallization of 

nanoparticles that are formed from the release of metal centers during decomposition, which 

is outlined in the manuscript. Further work will be required to determine the kinetics and 

coarsening/crystallization of metal crystal from these types of precursors.

Figure 8.Studies of the pyrolysis of solutions in dichloromethane of 1 deposited on SiO2. (a) 

Early stage Au crystal prior to full facet development coated with a remnant carbon 
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overlayer (see inset). Scale bar = 100 nm.  (b) EDS map analysis of elemental (i) C (white), 

(ii) Si substrate, and (ii) Au (yellow).Scale bar = 1µm

CONCLUSIONS

Gold and silver complexes have been synthesized with the 1-PPh2-2-Me-C2B10H10

monophosphane. Complexes [AuCl(1-PPh2-2-Me-C2B10H10)] (1) and [Au(1-PPh2-2-Me-

C2B10H10)(tht)]OTf (2) are good starting products in the synthesis of metallorganic or 

organometallic derivatives.

Complexes [M(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B10H10)] [M = Ag (4), Au (5)]

and [Au2(μ-1,n-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] [n = 1 (8), 12 (9)] are luminescent.

Dual emission has been observed for 5 and 8. The emissive behaviour is attributed to the 

metal center and the nido-carborane diphosphane in the three coordinated compounds, or to 

the carborane cluster and the gold centers in the dinuclear complexes. Derivatives [M(7,8-

(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B10H10)] [M = Ag (4), Au (5)] follow the pattern observed 

for similar complexes with other monophosphanes. The influence of the metal in the 

emission energy of the band at higher energy follows the order Au > Ag. Complexes [Au2(μ-

1,n-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] [n = 1 (8), 12 (9)] exhibit differences with the 

homologous containing other monophosphanes. They are not luminescent at room 

temperature and for compound 9 only the emission at lower energy is observed. Dual 

emissions have been observed for 8 at 77K which are observed for the analogous complexes

with other monophosphanes both at room temperature and 77K. The presence of the electron 

withdrawing closo-carborane-monophosphane leads to the quenching of both emissions at 

room temperature for 8 and 9, and to the emission at higher energy for 9 at 77 K. It seems 

that in 9 intersystem crossing is the most important process leading only to the 

phosphorescent emission.

Compounds 1 and 9 are useful solid-state precursors for forming porous metals via 

agglomeration (but of individual single crystals) or shaped Au microcrystals depending on 

the pyrolysis conditions. As observed for other metals (noble and transition),11,19,27 pyrolysis

on Si or SiO2  wafers produces crystals that include nanoparticle formation, mobility through 

the composite and ripening crystallization into defined shapes and with a relatively uniform 

spatial distribution when pyrolyzed on substrates. The decomposition process and resulting 

mechanism is inherently linked to the structure of the compounds. The use of molecular Au-

carborane-monophosphane precursors leads to the formation of Au phase pure products and 
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the formation of BPO4, which is a product of the pyrolysis of 

{[NP({OCH2}2C2B10H10)]0.5[NP({OCH2}2C2B9H10NBu4)]0.5}n has not been detected.
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