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Highlights: 

 Oxidative stress has been described as a major mechanism of nanoparticle toxicity. 
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 AgNPs were able to generate protein thiol oxidation and/or carbonyl formation. 

 ROS toxicity caused by AgNP seemed to be linked to tissue-specific function 

requirements. 

 Endocytotic uptake routes were found to be strongly underlying nanotoxicity. 

 Redox-sensitive proteins were revealed as an additional onset of NP-caused oxidative 

stress. 

 

Abstract 

Oxidative stress is often implicated in nanoparticle toxicity. Several studies have 

highlighted the role of internalization routes in determining nanotoxicity. Here, we 

investigate how two endocytotic mechanisms (clathrin- and caveolae-mediated) impact on 

redox balance in gill and digestive gland of the mussel, Mytilus galloprovincialis. Animals 

were exposed (for 3, 6 and 12 h) to two sizes of silver nanoparticles (AgNP: < 50 nm and < 

100 nm) prior to and after blockade of two endocytic pathways (amantadine blocks clathrin-

mediated endocytosis while nystatin blocks caveolae-mediated endocytosis). Redox-

proteomic tools were used to determine effects. Our results demonstrate the ability of both 

sizes of AgNP (<50 and < 100 nm) to cause protein thiol oxidation and/or protein 

carbonylation. However, blockade of endocytotic routes mitigated AgNP toxicity. 

Differential ROS-related toxicity of AgNP to mussel tissues seemed to be linked to tissue-

specific mode of action requirements. Cell uptake mechanism strongly influences toxicity of 

AgNPs in this filter-feeder. 

 

Keywords: oxidative stress; carbonyls; thiols; AgNPs; endocytosis; mussel 

 

1. Introduction: 
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Oxidative stress-related effects on cell structure, protein alteration/misfolding, cell 

membrane and DNA damage have been identified as major aspects of nanoparticle (NP) 

toxicity in bivalves (Katsumiti et al, 2015; Rocha et al, 2016). Many studies proposed as a 

paradigm that the most adverse NP-mediated effects are due to excessive production of 

reactive oxygen species (ROS) resulting in oxidative stress. Using a proteomic analysis, it has 

been shown that silver nanoparticle (AgNP) toxicity in the mussel, Mytilus galloprovincialis, 

is oxidative stress-related (Gomes et al., 2013). Other studies reported changes in antioxidant 

enzyme activities in response to NPs (McDonagh & Sheehan, 2006). Such activities have 

been shown also to be dependent on the animal’s physiological status, reproductive phase and 

maturity (Guerriero et al, 2004). Other factors affecting NP toxicity include exposure time, 

chemical composition, final NP concentration and target organ (McDonagh & Sheehan, 

2006; Katsumiti et al, 2015). NPs can decrease antioxidant defenses, cause cytoskeletal 

effects, protein oxidation, mitochondrial disruption or DNA strand breaks (D’Agata et al, 

2014; Gornati et al, 2016; Rocha et al, 2016). Canesi et al, (2008, 2010, 2012) reported that 

exposure to different NP types (carbon black, C60 fullerenes, TiO2 and SiO2) induced 

production of oxyradicals and nitric oxide even at lower (1-100µg/L) concentrations (Barmo 

et al, 2013). Tedesco et al, (2010) found redox-related proteomic changes in response to gold 

nanoparticles (AuNPs) in mussel tissues. Other studies have suggested the potential toxicity 

of NPs to be related to their ability to catalyze Haber-Weiss and Fenton reactions on their 

surfaces during interactions with biological structures (Canesi et al, 2012; Buffet et al, 2014; 

Katsumiti et al, 2015). Proteomic tools are a promising way to gain better understanding of 

NP toxicity mechanisms. Proteins are quantitatively the most important ROS targets in 

biological systems, and their direct oxidation can cause changes in metabolism and related 

intracellular signaling (Rainville et al, 2015). Redox-based changes in the proteome include 

carbonylation of amino acid side-chains (Dalle-Donne et al., 2003). This occurs when side 
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chains are directly oxidized or react with lipid and sugar oxidation products, forming 

aldehyde or ketone groups (Sheehan et al, 2010; Valko et al, 2007, 2016). Protein carbonyl 

levels are sensitive markers of oxidative stress in sentinel organisms. Carbonylation affects 

cell signal transduction (Dowling & Sheehan, 2006; Sheehan & McDonagh, 2008; Sheehan et 

al, 2010; Wong et al, 2010; Valko et al, 2007, 2016). Carbonyl groups are especially common 

in proline, lysine, arginine and threonine residues. Because of the abundance of these residues 

in proteins, carbonylation is the most quantitatively important redox lesion in biological 

systems. Sulfur-containing amino acids such as cysteine and methionine can also be directly 

oxidized into structural variants such as disulfides, sulfoxides or sulfones (Winterbourn, 

2008). Their modification can also be studied with redox proteomic tools (Sheehan et al., 

2010). The thiol groups of cysteines are particularly sensitive to oxidation and thiols react 

significantly faster than other amino acid side-chains with ROS thus contributing to 

antioxidant defense by redox buffering (Sheehan et al, 2010; Tedesco et al, 2010; Bruschi et 

al, 2011; Rainville et al, 2014; Valko et al, 2007, 2016). Whilst not very abundant in proteins, 

cysteines are often conserved in evolution because of their functional properties (notably in 

catalysis and redox signaling). Therefore, their oxidation can impact disproportionally on cell 

function (Winterbourn, 2008). 

Previous studies reported that the toxicity of NPs depends, in part, on physico-

chemical attributes of the material such as chemical composition, size, shape, surface charge 

and final concentration, which also influence NP behavior and fate in the water column 

(Tedesco &Sheehan, 2010; Rocha et al, 2016 and Canesi & Corsi, 2016). However, relatively 

few studies have investigated the potential for uptake mechanisms to affect toxicity (Moore, 

2006; dos Santos et al, 2011 and Khan et al, 2015). 

Uptake by endocytosis has been described as a potential mechanism for NP entry into 

cells (Moore, 2006). Clathrin-dependent endocytosis, involves assembly of clathrin (a 
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specific coat protein) to form clathrin-coated pits. This leads to formation of an endo-

lysosomal compartment (conventional endocytosis). Alternatively, caveolae-dependent 

endocytosis occurs via cell-surface flask-shaped invaginations that contain caveolin-coated 

proteins in the plasma membrane (Nichols and Lippincott-Shwartz 2001; Pelkmans and 

Helenius 2002; Razani and Lisanti 2002; Moore 2006; Puthenveedu et al. 2006; Bareford and 

Swaan 2007; Khan et al. 2015). 

In the present study we assess how cell uptake mechanisms influence NP toxicity. 

While uptake mechanisms undoubtedly facilitate NP entry into cells (Moore 2006, Ivanov, 

2008; dosSantos et al, 2011; Khan et al., 2015), it is unclear whether or not uptake 

mechanisms influence cellular oxidative balance. We blocked clathrin- and caveolae-

mediated endocytosis, respectively, and then assessed the toxicity of AgNPs (< 50 nm and < 

100 nm) following exposure for 3, 6 and 12 h. 

 

2. Material and Methods: 

2.1. Chemicals and silver nanoparticles AgNP 

Protein assay dye reagent concentrate was purchased from Bio-Rad (CA, USA). 

Unstained protein molecular weight markers for SDS-PAGE were from Thermo Scientific 

(Rockford, IL, USA). 5-Iodoacetamido-fluorescein (IAF), 5-fluorescein thiosemicarbazide 

(FTSC) and all other general reagents suitable for electrophoresis were purchased from 

Sigma–Aldrich Ireland Ltd. (Arklow, Co. Wicklow). 

Poly-vinyl-pyrrolidone (PVP)-coated AgNP (< 100 nm; 99.5 % trace metal based) 

was purchased from Sigma (Steinheim, Germany). PVP-coated AgNP (< 50 nm; 99.1% 

purity) was produced locally using a modified polyol process (Mezni et al. 2014a,b) by the 

chemistry department (FSB, Bizerte, Tunisia). AgNP stock solutions were then prepared and 

suspended in artificial sea water (ASW; salinity = 35%, pH 8.0), prepared as previously 
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described (Bouallegui et al., 2017b). Briefly, AgNP stock solution was mixed several times 

by inversion and an aliquot removed as a working solution that was sonicated for 15 min in 

alternating cycles (2 x 30 s) in an ultrasonic bath (100 W; 40 KHz; VWR, Strasbourg, 

France). Transmission electron microscopy (TEM) analysis was performed on a TECNAI 

G20\ instrument (Ultra-Twin, FSB, Bizerte, Tunisia). X-ray diffraction (XRD) analysis was 

performed with a D8 Advance diffractometer (Bruker, Bizerte, Tunisia). UV-Vis 

spectrometry was performed in a PG-instruments T60 spectrophotometer (PG-instruments, 

Leicestershire, UK). 

Endocytotic uptake can be selectively blocked with amantadine (clathrin-mediated 

pathway) and nystatin (caveolin-mediated pathway), respectively (Ivanov, 2008; Khan et al, 

2015). A stock solution of amantadine (3 mg/mL; Sigma, Steinheim, Germany) was prepared 

in ultrapure water. Nystatin (Sigma) stock solution (5 mg/mL; Sigma) was prepared in 

dimethyl-sulfoxide (DMSO, Sigma); the final concentration of DMSO in all Nystatin 

exposures was 0.05% (v/v) (Ivanov 2008, Khan et al. 2015). 

2.2. Mussels and experimental design 

Mussels (M. galloprovincialis) of average shell length 75 [± 5] mm were collected 

from Bizerte Lagoon (Northeast Tunisia), immediately transported to the laboratory and 

maintained in oxygenated ASW (salinity 35%, pH 8) in static tanks under standard conditions 

(aeration, photoperiod: 12/12 h; T= 16°C). They were acclimated for 48 h with change of 

water each 12h prior to exposure. Mussels were separately exposed to 100 µg AgNP/L 

<50nm and <100nm before and after uptake route inhibition for 3, 6 and 12 h (treatment 

group: N=10; exposure rate=1 mussel/0.5 L ASW/tank) (Bouallegui et al., 2017b, Katsumiti 

et al. 2015; Canesi & Corsi 2016). For inhibitor-treated groups, effective concentration 

ranges used were selected based on a previous study (Khan et al., 2015). Mussels were 

incubated for 3 h with 100 µM amantadine (Sigma, Steinheim, Germany), then placed in 
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AgNP exposure solutions (without amantadine) for the required times. For nystatin, mussels 

were exposed with 50 µM nystatin/ 0.05% (v/v) DMSO for 1 h and then exposed to AgNP 

(Ivanov 2008; Angel et al. 2013; Khan et al. 2015). Control groups (N=10) of mussels were 

maintained in oxygenated tanks of only ASW and/or ASW with the inhibitors exactly as 

above with the AgNP treatments. Exposures to vehicle alone or in the presence of AgNP of 

differing sizes were conducted to ensure effects were not caused by any carrier modulation of 

NP behavior or by the carrier itself. All exposures were performed in triplicate. 

2.3. Animal dissection and homogenate preparation 

Digestive gland and gill tissues were dissected from control and treated groups of 

mussel and were then homogenized (10mM Tris-HCL, pH 7.2; 0.5 M sucrose; 1 mM EDTA; 

1 mM PMSF), centrifuged at 20,000xg for 1h and supernatants were stored at -80°C until 

required. 

2.4. Protein quantification 

Protein concentration was measured by the method of Bradford (1976). Protein 

estimation was performed in quadruplicate in a microplate reader at a wavelength of 595 nm 

using bovine serum albumin as a standard. Protein content for each tissue (digestive gland 

and gill) was calculated and recorded. 

2.5. Labeling protein thiols 

Protein thiols were labeled with IAF (Baty et al., 2005) (stock solution 20mM IAF in 

DMSO) by adding prepared tissue homogenates (40µg protein) to a final concentration of 

200 µM (Chaudhuri et al, 2006). Proteins were exposed to IAF for 2 h at 4°C in the dark 

before precipitation of proteins with a final concentration of 20% (w/v) trichloroacetic acid 

(TCA) for 5 min at 4° C and centrifuged at 11,000g for 3 min at 4°C. Pellets were 

resuspended in 40 µl of water and 500µl of ice cold acetone (incubated for 2h up to overnight 

at -20°C) before centrifugation at 11,000g for 3 min at 4°C. The pellet was dried for 5-10 min 
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to ensure there was no acetone present and then resuspended in sample buffer (deionised 

water; 0.5 M Tris-HCl, pH 6.8; glycerol; 10% (w/v) SDS; 0.5% (w/v) bromophenol blue). 

(Laemmli, 1970). 

2.6. Labeling protein carbonyls 

Protein carbonyls were labeled by adding FTSC to tissue homogenates (40µg) to a 

final concentration of 1 mM (Chaudhuri et al, 2006). Samples were incubated for 2h in the 

dark at 4°C before precipitation of proteins with a final concentration of 10% (w/v) TCA. 

Pellets were washed twice with 500 µl of ice cold 1:1 ethanol-ethylacetate. Prior to 

resuspension and electrophoresis as above, pellets were centrifuged and dried to make sure no 

solvent remained. All subsequent steps were performed with minimal exposure of samples to 

light. 

2.7. One-dimensional electrophoresis (1DE) 

The IAF/FTSC labeled proteins were run on discontinuous polyacrylamide gels (12% 

resolving gel and 4.5% stacking gel; Laemmli et al., 1970). Protein samples and markers 

were denatured by heating at 95°C for 5 min before loading into wells at 20μg per lane, with 

three replicate lanes per sample. After electrophoresis at 90V for 1-1.5 h and 120V for 2h, the 

gels were scanned using a Typhoon scanner (9410, Amersham Biosciences), with an 

excitation wavelength of 488 nm and emission wavelength of 520 ±20 nm (bandpass filter). 

After acquisition of fluorescence images, gels were stained with colloidal coomassie blue, 

and gel images were acquired with a GS-800 calibrated densitometer (BioRad, Herculus, CA, 

USA). 

2.8. Data analysis 

For each 1DE separation, all bands were subsequently analyzed by Quantity One 

image analysis software (BioRad, Hercules, CA, USA) measuring the total intensity for each 

lane quantified as arbitrary unit (a.u.). Fluorescence values were normalized for loading by 
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normalizing them with coomassie staining intensity for the same lane. An average of three 

replicates from three different extracts for each treatment and for each tissue was determined. 

Results are presented as means ±SD of protein thiol/carbonyl. Normal distribution and 

homogeneity of variance were tested using Shapiro-Wilk and Bartlett tests prior to statistical 

analysis. Statistical analysis was performed using a one-way analysis of variance (ANOVA) 

with a Tukey’s HSD post-hoc test and significance determined at p<0.05. 

 

3. Results 

3.1. Properties of Nanoparticles 

TEM analysis showed a homogeneous spherical shape for both sizes of NP, with an 

approximate primary size of 90 nm and 50 nm for AgNP <100 nm and AgNP <50nm, 

respectively. Size distribution revealed median sizes of 85±32.57 nm and 41.6±18.82 nm, 

respectively. XRD analysis revealed the crystalline nature of the AgNPs with diffraction 

peaks matching the face centered cubic (fcc) phase of silver. The UV-Vis spectrum (T60; 

PG-instruments, Leicestershire, UK) of the colloidal solution (λmax = 400 nm) performed 

prior to exposure was consistent with a homogenous dispersion of AgNP in aqueous 

solution (Leopold & Lendl, 2003). 

3.2. Redox-based changes in proteins after 3h of exposure 

The free thiol content of gill tissue showed a significant increase when exposed to 

AgNP<100nm for 3h in the presence of nystatin (a caveolae-mediated endocytosis blocker) 

(Fig. 1A). In the presence of amantadine (a clathrin-mediated endocytosis blocker) a 

significant decrease in free thiols (thiol oxidation) with either AgNP<50 nm and AgNP<100 

nm was observed (Figure 1A). In the same context, protein carbonyl content showed a 

significant increase only with exposure to AgNP<100 nm, whilst significant decreases were 

noticed when exposed to AgNP<50 nm and AgNP<100 nm in the presence of amantadine 
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(Figure 1A). Otherwise, digestive gland free thiol content increased when exposed to 

AgNP<50 nm either in the presence of DMSO or amantadine, whilst the carbonyl content 

increased with AgNP< 50 nm alone, and in the presence of nystatin with both sizes of AgNPs 

and a decrease for AgNP < 50 nm in the presence of DMSO (Figure 1B). 

3.3. Redox-based changes in proteins after 6h of exposure 

After 6h exposure, gill free thiol content increased significantly with AgNP<50 nm 

whilst thiol oxidation was observed in the presence of DMSO with either AgNP size (<50nm 

or <100nm; Figure 2A).An increase in protein carbonyl content was evident only when 

exposed to AgNP< 50nm in the presence of nystatin, whilst carbonyl content decreases were 

evident with both sizes of AgNP in the presence of DMSO, and with AgNP< 100nm in the 

presence of amantadine (Figure 2A). In the digestive gland, at this time-point (6h), free thiol 

content increased with AgNP< 50nm and AgNP< 100nm alone and in the presence of 

DMSO. Significant protein thiol decreases (thiol oxidation) were observed with both sizes of 

AgNP in the presence of nystatin (Figure 2B). In this same context, protein carbonyl content 

increased only in the presence of amantadine with both sizes of AgNP used in this study 

(Figure 2B). 

3.4. Redox-based changes in proteins after 12h of exposure 

Decreased free thiol content coupled with an increase in protein carbonyls was 

observed in gills of mussels exposed for 12h to AgNP< 50 nm (Figure 3A). However, only an 

increase in the carbonyl content was found on exposure to AgNP< 100 nm (Figure 3A). In 

the presence of DMSO with AgNP< 100 nm, free thiol content increased, whilst both sizes of 

AgNP increased the protein carbonyl content in the presence of DMSO (Figure 3A). Also, in 

the presence of nystatin AgNP< 100 nm caused a significant decrease in free thiols. However, 

in the presence of amantadine, AgNP< 50 nm caused increased protein thiols. Low levels of 

carbonyl content were observed with both sizes of AgNP in the presence of either nystatin or 

ACCEPTED M
ANUSCRIP

T



11 
 

amantadine (versus nystatin and amantadine treatment alone, respectively) (Figure 3A). 

Furthermore, in the digestive gland, free thiol content showed significant decreases when 

mussels were exposed to either size of AgNP in the presence of DMSO (Figure 3B). Also, an 

increase in free thiols was evident with both NP sizes in the presence of amantadine. Protein 

carbonyl content was found to have increased on exposure to AgNP <50 nm in the presence 

of nystatin (Figure 3B). 

 

4. Discussion 

Oxidative stress-related changes have been identified as a major component of NP toxicity in 

marine organisms. Several studies have found toxicity to be strongly related to 

physicochemical attributes of NPs such as chemical composition and particle size (Tedesco & 

Sheehan, 2010; Gomes et al, 2011, 2013; Tedesco et al, 2008; Hu et al, 2014; Rainville et al, 

2014; Katsumiti et al, 2015). Tedesco and Sheehan (2010) highlighted the necessity of further 

studies to probe the dependence of nanoparticle toxicity on cell/tissue uptake with the aim to 

understand better their role in determining the potential toxicity of NPs. The present study 

aimed to investigate redox changes in gill and digestive gland, and to probe the relationship 

between such changes and cell uptake route. Our results reveal that a decrease in reduced 

thiols (free thiol oxidation) is evident in gills of mussels exposed to AgNP< 50 nm for 12h 

without any uptake pathway inhibition. This showed that these NPs were triggering oxidative 

stress under the experimental conditions used. Moreover, longer exposure times gave greater 

levels of protein oxidation (Gomes et al, 2013). AgNPs have previously been suggested to 

induce leakage of electrons from the mitochondrial electron transport chain promoting ROS 

generation (Tedesco and Sheehan, 2010). Ag ions released from AgNPs in this timeframe 

(12h) could directly oxidize protein thiols (Dobias & Bernier-Latmani, 2013; Park et al, 

2013). Differential redox-based changes (i.e., oxidized thiols, carbonyls formation, or both) 
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in different tissues might be related to tissue-specific functional requirements associated with 

their individual physiological roles (Guerriero et al, 2003; Limon-Pacheco & Gonsebatt, 

2009; Guerriero et al, 2014). Paradoxically, protein free thiol content (reduced thiols) actually 

increased in gills and digestive gland after exposure to AgNP< 50 nm for 6h, and only in the 

digestive gland after exposure to AgNP< 100 nm for 6h. This might represent an attempt by 

mussels to decrease the NP toxicity by reducing proteins. These findings agree with 

observations on exposure of Daphnia magna to AgNPs (Rainville et al., 2014). In fact, 

increased protein thiol content can be considered as increasing cellular redox buffering 

capacity in an attempt to restore the redox balance of the cell. Protein disulfide bond 

formation and reduction depend on the availability of electrons donors or acceptors, which 

might be impacted by the presence of Ag ions leached from AgNP and/or be due to NP 

interactions with cell structures (Deneke, 2001). AgNPs increased protein carbonyl content in 

some instances where no thiol oxidation was evident (Figure 1 A&B; Figure 3A) which, 

again, was observed in D. magna exposure (Rainville et al., 2014). It is expected that 

irreversible protein side-chain modifications (i.e., protein carbonyls and hyper-oxidized 

cysteines and methionines) lead to partially unfolded and inactivated proteins that are rapidly 

cleared from cells (Dowling and Sheehan, 2006; Regoli and Giuliani, 2014).  

mTOR is an evolutionarily conserved serine/threonine protein kinase that senses and 

integrates a variety of cellular physiological and environmental signals to regulate cell growth 

(Jung et al., 2010). The phosphorylated active form of mTOR is involved in various cellular 

processes, such as activation of protein translation and inhibition of autophagic activity 

(Sforzini et al, 2017). Since protein carbonyls are often formed on proline, lysine, arginine 

and threonine residues (Dalle-Donne et al., 2003; Sheehan et al, 2010; Tedesco et al, 2010), it 

is possible that mTOR-induced autophagic sequestration is a response to AgNP stress. 

Autophagy is a well-documented general mechanism of cytoplasmic protein turnover in 
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eukaryotic cells that plays an essential role in cell survival of toxic insults. It involves 

sequestration of cytoplasmic components, removal of damaged organelles and protein 

aggregates and their subsequent degradation within lysosomes. Excessive autophagy has 

deleterious consequences for tissue/organism health as lysosomal cytotoxicity decreases in 

circulating hemocytes and is associated with enhanced inflammatory response and tissue 

damage in mussel gill and digestive gland (Bouallegui et al., 2017a, b, c and d). Such damage 

is related with either over-expression of cytokines or over-production of ROS, which will 

inhibit the mTOR signaling pathway and activate stress-induced autophagy (Moore et al., 

2015). 

We aimed to assess the involvement of uptake pathways by blocking such routes with 

pharmaceutical inhibitors. DMSO did not cause any evident carrier-mediated effect but, in 

the presence of AgNPs, it influenced the redox-sensitivity of the surrounding medium, 

causing significant redox-based changes (e.g., oxidation of protein thiols in the gills and 

digestive gland, with both sizes of AgNP at different time points).Unusually, in the digestive 

gland increases in carbonyl content with either size of AgNP were found. It has previously 

been shown that formation of endocytotic coated pits in digestive cells is important in 

digestive cells during nutrient uptake (Dimitriadis et al., 2004). Therefore, digestive cells 

would be expected to contain a well-developed lysosomal vacuolar system for uptake and 

digestion of nutrients. Metal accumulation in vesicles is prevented by uptake blockers such as 

nystatin. Late-exposure observations (6h and 12h), showed altered redox equilibrium, despite 

the blockade of caveolae-mediated uptake route (e.g., increase of carbonyls in gill extracts 

[AgNP<50nm] and thiols oxidation in digestive gland [both sizes]). These results could be 

due to the ability of cells to internalize AgNPs by activating other uptake pathways (e.g., 

phagocytosis, macro-micro-pinocytosis) (Ivanov, 2008). 
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Our data are in good agreement with previous investigations (Bouallegui et al., 2017a) 

assessing the role of uptake pathways in determining lysosomal cytotoxicity of AgNP to 

mussel immune cells. More interestingly, inhibition of clathrin-mediated endocytosis may 

decrease deleterious effects of excessive autophagic rate, by inhibiting the turnover 

mechanism of AgNP uptake. 

A clear relationship linking NP size to redox-based changes in the M. 

galloprovincialis proteome was not demonstrated in this study. Overall, the role of clathrin-

mediated endocytosis, as a major mechanism of sorting cargos including NPs to the endo-

lysosome vacuolar system merits more detailed investigation. 

5. Conclusion 

We demonstrated that NP uptake pathways play a major role in affecting the redox 

balance and in determining redox-based changes in cells. Blockade of clathrin-mediated 

endocytosis had a beneficial role in preventing ROS-related disturbance. There is also a 

possible role for the mTOR pathway in responding to NP toxicity. Our results also reveal 

differential tissue-specific redox changes. Overall, uptake routes impact NP toxicity more 

than NP size. 
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Figure captions 

 

Figure 1. Thiol and carbonyl content in the gills (A) and the digestive gland (B) from 

mussels exposed to different experimental conditions for 3h. Data are presented as Means 

±SD in arbitrary units (n=3). P value is set to *< 0.05 and **<0.01; Ag50: AgNPs<50 nm; 

Ag100: AgNPs<100 nm; Cont: control; Amant: Amantadine; Nyst: Nystatine. 

Figure 2. Thiol and carbonyl content in the gills (A) and the digestive gland (B) from 

mussels exposed to different experimental conditions for 6h. Data are presented as Means 

±SD in arbitrary units (n=3). P value is set to *< 0.05 and **<0.01; Ag50: AgNPs<50 nm; 

Ag100: AgNPs<100 nm; Cont: control; Amant: Amantadine; Nyst: Nystatine. 

Figure 3. Thiol and carbonyl content in the gills (A) and the digestive gland (B) from 

mussels exposed to different experimental conditions for 12h. Data are presented as Means 

±SD in arbitrary units (n=3). P value is set to *< 0.05 and **<0.01; Ag50: AgNPs<50 nm; 

Ag100: AgNPs<100 nm; Cont: control; Amant: Amantadine; Nyst: Nystatine. 
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