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Preface 
 

Proteins are synthesised in the cell by a process known as translation, which is 

comprised of three different stages; initiation, elongation and termination. Translation 

initiation in eukaryotes involves the recruitment of the ribosome and initiation complex to 

an mRNA molecule which is facilitated by the 5’ cap and poly-A tail, ensuring an initiating 

methionine tRNA is brought to the P-site of the ribosome corresponding to an initiating ATG 

codon on the mRNA. The ribosome moves by translocating from codon to codon on the 

mRNA, an aminoacyl- tRNA synthetase charges each tRNA with one of 20 standard amino 

acid bringing it to the A-site of the ribosome forming a chain. Finally the process of 

termination is brought about when a class I release factor recognises one of three signals for 

termination (i.e. stop codons), triggering hydrolysis and releasing the chain of amino acids, 

i.e. the polypeptide. The polypeptide then folds into a functional protein. These 

biomolecules are at the core of life as we know it. Their existence in cellular biology is 

paramount for many purposes including; catalysing metabolic reactions, acting as transport 

molecules, structural purposes and for DNA replication and repair to name but a few. The 

synthesis of proteins is an enormously energy expensive process. Due to their extreme 

importance and high production costs they are also highly regulated.  

The standard genetic code which comprises 61 amino acid specifying sense codons 

and three stop codons, was long considered to be unchangeable. Since there are only 20 

standard amino acids to choose from, the genetic code expresses a level of redundancy, for 

example both CAA and CAG codons specify glutamine. A change to the 3rd codon position, 

i.e. the ‘wobble position’ from A to G or vice versa, in the case of glutamine codons will not 

change the amino acid being incorporated. The earliest variations to standard decoding 

were discovered in the 1960’s and 1970’s in bacteria and viruses, where ribosomal 

frameshifting and stop codon readthrough were identified. It was hypothesised that 

organisms with small genomes could utilize such ‘recoding’ events to maximise their coding 

potential. In more recent decades various other decoding anomalies were uncovered such 

as two additional non-standard amino acids, (selenocysteine and pyrrolysine), translational 

bypassing and stop codon reassignment. These events are rare in occurrence and are often 

regulatory in function. For example, the gene orinithine decarboxylase antizyme (OAZ) in 
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eukarotes and release factor 2 in bacteria, both require a frameshift during mRNA 

translation to synthesise a full length protein. Recent large scale sequencing projects have 

provided a wealth of new examples of frameshifting in bacteria and other organisms and 

provide the basis for new repositories such as the Recode Database (Bekaert et al. 2010). 

Additionally, new techniques make identifying recode events easier. 

One such recently developed technique is ribosome profiling (Ribo-seq), which 

captures the ~30nt protected mRNA ‘footprint’ of translating ribosomes, where it is then 

isolated and sequenced. This concept was hypothesized decades before its subsequent 

development in the lab of J. Weissman at the University of California, Santa Cruz (UCSF). The 

first publically available Ribo-seq dataset was published in April 2009, “Genome-Wide 

Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling” (Ingolia 

et al. 2009). By applying a specific 15nt offset to the 30nt footprint it is possible to identify 

which codon is in the ribosome A-site of elongating ribosomes. In combination with 

transcript data (RNA-seq), the level of translation efficiency could be determined (Ribo-

seq/RNA-seq). Ribosome profiling provided a novel way of quantifying cellular translation. 

The practical uses and applications of this new technique were not lost on the 

scientific community and our lab was one of the first to realise its potential. I commenced 

my PhD in the summer of 2013 and contributed to the development of a genome browser, 

Genome Wide Information on Protein Synthesis (GWIPS-viz), which provides analysis and 

visualization of Ribo-seq data (https://gwips.ucc.ie/). I was involved in developing a pipeline 

for processing Ribo-seq and RNA-seq data and generating the relevant tracks for each 

genome. Initially we made Ribo-seq data available from published studies for ten different 

genomes plus the corresponding RNA-seq. It became apparent that this tool was very useful 

for identifying recoding events, as large peaks in the profiling data corresponded to pausing 

ribosomes were observed at frameshift sites of; dnaX from E.coli, the gp gene in 

Bacteriophage lambda and antizyme 1 (OAZ1) in human and mouse genomes. It also 

provided evidence for stop codon readthrough in different organisms and contributed to 

identifying a novel regulatory mechanism in the AMD1 gene in humans. Currently there are 

24 genomes including the protists Plasmodium falciparum and Trypanosoma brucei 

available on GWIPS-viz. 

https://gwips.ucc.ie/
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Protists, which form an informal grouping of eukaryotes are neither animals, plants 

nor fungi. They include certain microscopic algae and red algae, which are often included in 

the Archaeplastida group of eukaryotes. Protists include other eukaryotic supergroups 

including; Excavata, Amoebozoa, Hacrobia, Apusozoa and certain Opisthokonta. The term 

protist also includes the very well-studied SAR supergroup, which consists of the superphyla: 

Stramenopiles, Alveolata and Rhizaria. Stramenopiles are also known as heterokonts, they 

include a major group of algae commonly known as diatoms, which are routinely used in 

environmental monitoring. The alveolates include numerous phyla such as: ciliates, 

dinoflagellates and apicomplexa. The latter phylum includes Plasmodium, the causative 

agent of malaria.  

The ciliates are of particular interest. Named for their cilia, they have provided the 

scientific community with an array of exceptional insights into cell biology. Ciliates contain 

two nuclei; a micronucleus active during reproduction and a macronucleus which is active 

during cell growth. Previous analyses of the species Tetrahymena thermophila which led to 

the discovery of telomeres and ribozymes, resulted in the awarding of two Nobel prizes. 

Other discoveries from this species include; the identification of self-splicing RNA and the 

reassignment of stop codons TAA and TAG to incorporate the amino acid glutamine while 

TGA functions as the only stop codon.  

Samples of transcripts taken from the ciliate of genus Euplotes, demonstrated an 

unusually high level of ribosomal frameshifting to produce full length protein products 

(Aigner et al. 2000; Tan et al. 2001; Wang et al. 2002). The frameshift site identified as a 

conserved lysine (AAA) codon directly 5’ of a TAA or TAG stop codon (5’-AAA_TAR-3’), was 

discovered to induce a +1 shift in reading frame, while it was believed the efficiency of 

frameshifting might be close to 100% (Klobutcher and Farabaugh 2002). The TGA stop codon 

is reassigned to cysteine in this species. The original estimate was put at ~10% of genes 

requiring a +1 frameshift. My supervisor, Pasha Baranov and I began a collaboration with 

the lab of Vadim Gladyshev to quantify the level of frameshifting in Euplotes. When I began 

working on this project the genomes of two closely related species E. crassus and E. focardii 

had already been sequenced and assembled. I was responsible for quantifying the number 

of chromosomes present in each species, based on telomere repeat sequences and carried 

out intron analysis. I obtained RNA-seq and Ribo-seq data for E. crassus from our 
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collaborator. I assembled the E. crassus transcriptome and mapped the corresponding Ribo-

seq data to the new assembly. I performed all corresponding Ribo-seq analysis and all 

pairwise transcriptome analysis on both species. I identified all frameshift sites and provided 

candidates for mass spectrometry investigation. 

While analysing the Euplotes data I came across The Marine Microbial Eukaryote 

Transcriptome Sequencing Project (MMETSP) (Keeling et al. 2014), which would dramatically 

influence the direction of my research over the next two years. The MMETSP provides over 

650 assembled transcriptomes from the major protist lineages and are publically available. I 

employed a wide range of different bioinformatics tools to mine the MMETSP datasets. 

Initially, I began looking for similar cases of Euplotes like frameshifting in the ciliate 

Blepharisma where TGA is reassigned to tryptophan, the results of which proved 

inconclusive. I then proceeded to look for variant genetic codes as many ciliates are known 

to reassign stop codons to sense codons. I assembled ciliate transcriptomes from the 

MMETSP and from other studies, then carried out large scale analyses on the assemblies. I 

was looking for reassigned stop codons and the amino acids they incorporate. From here I 

identified two new genetic codes, in Condylostoma and Mesodinium/Myrionecta and 

redefined a number of others. I was very fortunate to recruit the skills of Marco Mariotti 

who analysed the termination sites of Condylostoma genes. The true value of the MMETSP 

quickly became apparent.  

 In light of discoveries I made in Euplotes and other ciliates I began looking for 

orthologs of the protein ornithine decarboxylase antizyme (OAZ) in other protists. This gene 

requires a ribosomal frameshift during mRNA translation, which has regulatory functions. 

Limited information on this highly important and conserved protein was known about its 

existence in protists. It was previously identified in the ciliate Tetrahymena thermophile, but 

as a single open reading frame protein without the required frameshift. I developed a 

bioinformatics pipeline to mine MMETSP transcriptomes for antizyme signals and identified 

the protein in new protist phyla, including a unique mechanism of translation in 

dinoflagellates, experimentally validated by Gary Loughran. 

 When the MMETSP was published it provided a wealth of new data however, such 

large datasets bring new challenges, especially around the annotation of new organisms 

with high quantities of unknown sequences. The importance of correctly annotating new 
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data sets will become a challenge to database curators, as more large scale sequencing 

projects become available.  

 

 In this thesis I provide examples of discoveries I made during my time as a PhD 

student. It provides an insight into the translation machinery of protists, the novel 

mechanisms by which certain groups have evolved and to the plasticity of genetic decoding. 

Two of the chapters contained in this thesis are published while another is currently being 

prepared for journal submission. To show my contribution I highlight in red each figure I 

generated or a panel of a figure i.e. Figure 1 or Figure 3 (c). Here I list the publications with a 

short description of my findings: 

 

I identified frameshifting at an unprecedented rate of 22% of genes in E. crassus, where the 

codon upstream of a stop directs the ribosome to either the +1 frame or novel +2 frame. I 

also observed the requirement of multiple frameshifts per transcript (>3). Frameshifting is 

the standard function of stop codons when identified in the coding sequence, whereas 

termination only occurs in the context of the poly-A tail. 

Lobanov AV*, Heaphy SM*, Turanov AA, Gerashchenko MV, Pucciarelli S, Devaraj RR, Xie F, 

Petyuk VA, Smith RD, Klobutcher LA, Atkins JF, Miceli C, Hatfield DL, Baranov PV, Gladyshev 

VN. (2017) Position dependent termination and widespread obligatory frameshifting in 

Euplotes translation. Nature Structural & Molecular Biology 24:61-68  

* Equal contribution 

 

Here I discovered a novel mechanism of stop codon readthrough to regulate antizyme 

production in dinoflagellates and also additional examples of +1 frameshifting and single 

ORF sequences from other protist phyla.   

Heaphy SM, Loughran G, Atkins JF, Baranov PV. Diversity of antizyme decoding mechanisms 

among protists: classical +1 frameshifting, stop codon readthrough and single ORFs. 

Manuscript in preparation for journal submission 



9 
 

I discovered two novel genetic codes in ciliates, one where all three stop codons are 

reassigned to sense codons in the Condylostoma magnum i.e. 64 sense codon genetic code 

and where TAA and TAG are reassigned to tyrosine in Mesodinium/Myrionecta. Both new 

codes were recognised by NCBI and assigned genetic code numbers 28 and 29 respectively. 

Additionally I redefined the genetic codes of 9 other ciliates. Like Euplotes, termination for 

C. magnum also only occurs in the context of the poly-A tail.   

Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov PV. (2016) Novel Ciliate Genetic 

Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in 

Condylostoma magnum. Molecular Biology & Evolution. 33:2885-2889 

 

The publications on frameshifting in Euplotes and reassignment of all three stop codons in 

Condylostoma were the subject of a perspective published in the journal Science on 2nd of 

December 2016 entitled ‘When stop makes sense’ written by Boris Zinshteyn and Rachel 

Green. 

 

I have also contributed to the following publication however, I have not included it in the 

main body of the thesis but as an appendix. 

Michel AM, Fox G, Kiran AM, De Bo C, O’Connor PBF, Heaphy SM, Mullan JPA, Donohue CA, 

Higgins DG and Baranov PV. (2014) GWIPS-viz: development of a ribo-seq genome browser. 

Nucleic Acids Research. 42(Database issue): D859–D864.  
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Abstract 
 

During mRNA translation the ribosome reads each codon (nucleotide triplet) with a 

specific meaning. The standard genetic code comprises 61 sense-codons for specifying the 

20 standard amino acids during elongation and three anti-sense codons which signal 

termination. While variations to the standard rules of genetic decoding are widely 

acknowledged, recent advances in next generation sequencing techniques have provided a 

wealth of new examples across many species. In this thesis, I provide evidence of novel 

decoding mechanisms in protists, as identified through bioinformatics analysis. To begin 

with I analysed the genomes of two ciliate species, Euplotes crassus and E. focardii. In 

combination with the analysis of E. crassus transcriptome using ribosome profiling, I 

determined over 1,700 cases of ribosomal frameshifting (22% of genes analysed) in E. 

crassus. I identified 47 codons upstream of a stop signal which directs the ribosome to 

either the +1 or +2 reading frames. Termination only occurs in the context of the poly-A tail. 

In addition I analysed the transcriptomes of over 200 diverse protist species for the protein 

ornithine decarboxylase antizyme, a key negative regulator of cellular polyamine synthesis. 

The synthesis of this protein usually requires a +1 ribosomal frameshift at the end of the 

first open reading frame. In this study I identified a novel mechanism of stop codon 

readthrough to regulate antizyme production in dinoflagellates and single ORF sequences 

from other protist phyla. Further I analysed transcriptomes of diverse ciliate organisms to 

characterize stop codon reassignments in their genetic codes. In addition to finding novel 

stop codon reassignments, I identified an organism, Condylostoma magnum where all three 

stop codons TAA, TAG & TGA have been reassigned to sense codons. All three stop codons 

are enriched at the expected positions of translation termination sites which occur at a 

short distance from the 3’ poly-A tail.     
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Introduction 
 

The standard genetic code, which consists of 61 sense codons for incorporating the 

20 standard amino acids during translation elongation and three anti-sense codons (TAA, 

TAG & TGA), which signal translation termination, was long considered to be immutable 

while its ancestry was believed to be a ‘frozen accident’ (Crick 1968). Variations to the 

standard rules of genetic decoding were soon identified, including; frameshifting (Riyasaty 

and Atkins 1968), stop codon readthrough (Weiner and Weber 1971) and translational 

bypassing (Huang et al. 1988). Two additional non-standard proteinogenic amino acids were 

also identified; selenocysteine (Sec) (Chambers et al. 1986) and pyrrolysine (Pyl) (Srinivasan 

et al. 2002). It is possible that additional amino acids are still waiting to be discovered 

(Ambrogelly et al. 2007). These recoding events are always in direct competition with 

standard decoding and as a result the efficiency of their translation varies. These events 

usually employ signals in the mRNA or nascent peptide which act to stimulate or supress the 

recoding process and can result in more than one synthesised protein product from a single 

mRNA transcript (reviewed by Atkins and Gesteland 2010). Variant recoding events are 

expected to occur in most organisms. Recent bioinformatics analyses of bacterial genomes 

identified many examples of ribosomal frameshifting (Sharma et al. 2011; Antonov et al. 

2013). 

In addition to the standard genetic code a number of variant codes exist. According 

to the National Center for Biotechnology Information (NCBI), there are 23 alternative codes 

(as of December 2017), the majority of which are mitochondrial in origin. Such variant 

genetic codes evolve in response to an altered meaning of a codon and these anomalies are 

known as codon reassignments. The majority of these are stop codon reassignments and are 

facilitated by changes to the translation machinery, namely; tRNAs, aminoacyl-tRNA 

synthetase or release factors (reviewed by Baranov et al. 2015). Codon reassignments are 

pervasive in the genomes where they are found, no additional elements are involved and 

they are perfectly efficient. A recent study highlighted the immense level of stop codon 

reassignments in prokaryotes and phages from environmental samples (Ivanova et al. 2014). 

Stop codon reassignments may have evolved as a defensive mechanism to protect the host 
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against invading pathogens (Li et al. 2013). The differences between recoding and 

reassignment are highlighted by (Atkins and Baranov 2010). 

Stop codons are the most versatile of codons and they are found in the majority of 

recoding and reassignment cases. Stop codons are extremely rare in the protein coding 

sequences of transcripts compared to sense codons. The usage of individual stop codons 

varies considerably also (Korkmaz et al. 2014) and as a result, changing the meaning of a less 

frequent stop codon may not alter the function of a protein. Stop codon triplets are found in 

comparatively equal frequencies in the non-coding regions of transcripts to other nucleotide 

triplets, such that if a readthrough event occurs, the ribosome will find another stop codon 

shortly downstream resulting in a short C-terminal extension to the protein.  

Translation termination relies upon the class I release factor (eRF1 in eukaryotes and 

aRF1 in archaea; RF1 & RF2 in bacteria) to recognise one of three stop codons (TAA, TAG & 

TGA) on the mRNA and facilitate release of the polypeptide. During termination the 

nucleotide sequence downstream of a stop codon can affect the efficiency of termination 

(Namy et al. 2001) and weak termination at stop codons can facilitate readthrough and 

frameshifting. The 21st amino acid identified, the non-standard selenocysteine, which is 

found in all three domains of life, is incorporated into the polypeptide at a TGA codon 

(Chambers et al. 1986), and facilitated by a downstream secondary structure known as a 

SECIS element (Berry et al. 1993). The ciliate Euplotes crassus can support the incorporation 

of both cysteine and selenocysteine at a TGA codon (Turanov et al. 2009). It was recently 

observed that selenocysteine may also be incorporated into TAA and TAG in bacterial cells 

(Mukai et al. 2016). Pyrrolysine, the 22nd amino acid identified, is incorporated into a TAG 

stop codon in archaea and methanogenic bacteria (Srinivasan et al. 2002).  

 

Reassignment 

During mRNA translation sense codons and stop codons have different functions and 

machinery to decipher their meaning. Elongating ribosomes add amino acids to a growing 

chain upon identifying one of 61 sense codons on the mRNA, and this process is facilitated 

by a tRNA that recognises the codon along with aminoacyl- tRNA synthetase that charges 

the tRNA with one of 20 standard amino acids. A change to the meaning of a sense codon 
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here would involve altering either one or both of these two proteins, or subsequently if they 

were lost by the organism. Translation termination is facilitated by the class I release factor 

which triggers hydrolysis resulting in the release of the nascent peptide. In eukaryotes and 

archaea RF1 (eRF1 & aRF1) will recognise all three stop codons; TAA, TAG, and TGA. The 

majority of bacteria and other organelles have two release factors. RF1 recognises stop 

codons TAA and TAG, while RF2 recognises TAA and TGA (Duarte et al. 2012). For eRF1 the 

recognition patterns involved with identifying stop codons were found on the N-terminal 

domain of the protein (Nakamura and Ito 1998; Bertram et al. 2000). Subsequently a variety 

of cross-linking and mutagenesis studies have identified highly conserved motifs within the 

N-terminal domain such as TASNIKS, for stop codon recognition, while YxCxxxF and GTS 

motifs are implicated in purine recognition in the second and third sub-codon positions 

(Chavatte et al. 2002; Frolova et al. 2002; Ito et al. 2002; Kolosov et al. 2005; Bulygin et al. 

2010; Conard et al. 2012). The structural basis for these motifs were determined by cryo-EM 

(Brown et al. 2015). An additional two residues critical for eRF1 recognition of all three stops 

has been reported (Blanchet et al. 2015). 

Of the variant genetic codes that are currently available on NCBI, nine are eukaryotic 

nuclear in origin, while seven of these are stop codon reassignments. The two exceptions 

are changes to the CTG codon; from leucine to serine in the Candida genus of yeast (Ohama 

et al. 1993) and more recently leucine to alanine in another yeast species Pachysolen 

tannophilus (Mühlhausen et al. 2016). The earliest stop codon reassignments were reported 

in ciliates of genera; Paramecium (Caron and Meyer 1985), Stylonychia (Helftenbein 1985) 

and Tetrahymena (Horowitz and Gorovsky 1985), where glutamine was found inserted at 

stop codons TAA and TAG. Subsequently TGA was also reported to be reassigned to cysteine 

in Euplotes (Meyer et al. 1991) and to tryptophan in Blepharisma (Liang and Heckmann 

1993). Additional ciliate genetic codes in other lineages were also identified (Lozupone et al. 

2001; Sánchez-Silva et al. 2003). Apart from ciliates, similar reassignments of TAA & TAG to 

glutamine were found in two green algae species Acetabularia (Schneider et al. 1989) and 

Batophora (Schneider and de Groot 1991) and also in diplomonads (Keeling and Doolittle 

1996).  

The majority of stop codon reassignments occur in mitochondrial genomes where 

TGA is reassigned to tryptophan, summarized by (Knight et al. 2001). A variant 
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mitochondrial genetic code also reassigns TAG to leucine (Laforest et al. 1997; Fučíková et 

al. 2014). Such reassignments may be influenced by their small genome sizes; the 

mitochondrial genome of Arabidopsis thaliana contains a mere 57 genes and is 0.37 

megabases (Mb) in size (Unseld et al. 1997). Stop codon reassignments in bacterial genomes 

may be explained through a mechanism known as codon capture (Osawa and Jukes 1989). 

Here, the loss of a codon along with its corresponding machinery, such as the stop codon 

TGA and its release factor (RF2), could support the re-emergence of TGA as a near cognate 

sense codon i.e. tryptophan. However, this is less likely to explain stop codon reassignment 

in ciliates, where genomes are much larger. The macronucleus of Tetrahymena is 104Mb in 

size spanning 225 chromosomes (Eisen et al. 2006). It was previously hypothesised that 

mutated eRF1 sequences which are common in ciliates, do not recognise stop codons as 

signals for termination which lead to their reassignment (Lozupone et al. 2001). It is not 

clear how stop codons are recognised by eRF1 in variant genetic codes, and a number of 

studies attempting to identify the residues involved provide alternative mechanisms (Salas-

Marco et al. 2006; Lekomtsev et al. 2007; Vallabhaneni et al. 2009).  

In 2016, five additional genetic codes were added to the NCBI list. Three studies 

reported on the reassignment of all three stop codons, i.e. genetic codes with 64 sense 

codons. They include, two ciliate species Parduczia sp. and Condylostoma magnum (Heaphy 

et al. 2016; Swart et al. 2016) and the trypanosomatid Blastocrithidia (Záhonová et al. 2016). 

These three studies redefine our understanding of protein synthesis; in particular 

termination, the applications of which may have far reaching implications in the field of 

synthetic biology (Bezerra et al. 2015).  

In eukaryotes where stop codons TAA and TAG were previously reported as 

reassigned, they both acquired the same new meaning. A recent study, however, reports for 

the first time that these stop codons can have different functions independent of each 

other: TAG is reassigned to leucine in a rhizarian species, while TAG to glutamine in the 

fornicate Iotanema spirale. In both cases the corresponding TAA codon functions as a signal 

for termination, with variant eRF1 residues implicated in the reassignment (Pánek et al. 

2017).  
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Recoding 

Frameshifting 

One of the earliest conflicts to the ‘frozen accident’ theory of standard genetic 

decoding was that of frameshifting. Here ribosomes break from triplet decoding and shift 

forwards (+) or backwards (-) into a different reading frame at specific sites. These rare 

events can be exploited for regulatory purposes or for the synthesis of additional proteins 

and are often programmed to occur in response to signals located within the mRNA, 

generally referred to as programmed ribosomal frameshifting (PRF). The synthesis of 

additional proteins from a single mRNA is a common feature of translation in mobile genetic 

elements and viruses. They utilize frameshifting in order to expand the coding potential of 

their small genomes. Regulatory frameshifting is found in cellular genes such as ornithine 

decarboxylase antizyme in eukaryotes and release factor 2 in bacteria (Gesteland and Atkins 

1996). 

Most recoding events are stimulated by signals in the RNA or the nascent peptide. 

RNA secondary structures such as stem loops are found both 5’ and 3’ of the recode sites, 

however, the vast majority are found downstream (Kim et al. 2014). Other structures 

include pseudoknots, which generally contain multiple stem loops, and G-quadruplexes, 

both act as 3’ stimulators (Endoh and Sugimoto 2013). Long range stimulators have been 

reported to act up to 4Kb downstream of the recode site (Wang and Miller 1995). The 

nascent peptide was shown to act as a stimulator when interacting with the ribosome exit 

tunnel in fungal antizyme (Yordanova et al. 2015). Secondary structures that stimulate 

frameshifting must not completely block the ribosome (Tholstrup et al. 2012). Translating 

ribosomes will unwind pseudoknots and stemloops slowing the rate of translation, thus 

increasing the time it spends on a slippery sequence allowing for greater opportunity to 

facilitate a shift in frame (Farabaugh 2000). 

    The first examples of frameshifting were reported in viruses and were of -1 in 

mechanism. They included phages; MS2 (Atkins et al. 1979) and T7 (Dunn and Studier 1983). 

The slippery sequence is usually seven nucleotides taking the form of X.XXY.YYZ (where X, Y 

& Z can be either nucleotide and ‘.’ defines the codon boundary), tRNAs in the A and P sites 

shift -1 to a new reading frame XXX.YYY in a process known as tandem slippage (Jacks et al. 
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1988a). In E.coli the gene dnaX which encodes the gamma and tau subunits of DNA 

polymerase III requires a -1 frameshift to produce the gamma subunit (Blinkowa and Walker 

1990). The slippery sequence A.AAA.AAG directs the ribosome with an efficiency of 50% into 

the -1 frame, terminating at a stop codon shortly downstream and producing the gamma 

subunit (Flower and McHenry 1990). The efficiency of frameshifting is supported by a Shine-

Dalgarno sequence upstream and an RNA stemloop structure downstream of the slippery 

site (Tsuchihashi 1991; Larsen et al. 1994). The Human immunodeficiency virus 1 (HIV-1) 

also requires a -1 frameshift to produce the gag-pol fusion protein (Jacks et al. 1988b; Parkin 

et al. 1992). The slippery sequence T.TTT.TTA is crucial to the efficiency of frameshifting 

making it a target for anti-viral therapy (Biswas et al. 2004). 

In contrast to -1 frameshifting, examples of known +1 frameshifting are far less 

abundant. The mechanisms involved are more diverse and far more difficult to identify. In 

bacteria, stop codons TAA and TGA are recognised by RF2 and for many species it is 

regulated by a +1 frameshift during protein synthesis (Craigen and Caskey 1986; Bekaert et 

al. 2006). In E. coli the +1 frameshift occurs at the sequence CTT.TGA. When RF2 levels are 

high, termination occurs at the TGA stop codon, however, when RF2 levels are low efficient 

termination decreases inducing a +1 frameshift resulting in more RF2 synthesis and 

therefore autoregulating its own production (Adamski et al. 1993). In the yeast 

Saccharomyces cerevisiae, +1 ribosomal frameshifting is required for expression of the Ty1 

transposon at the frameshift site GCG.AGT.T in response to a rare arginine codon (AGT), 

with an efficiency of 40% (Belcourt and Farabaugh 1990).  

 Comparable to RF2 in bacteria, ornithine decarboxylase antizyme (OAZ), which is a 

key regulator of cellular polyamine levels, requires an unusual and rare +1 frameshift during 

mRNA translation. Cellular polyamine levels are tightly regulated, as expected from their 

multiple important roles in cell functioning. The first identified OAZ gene, encoding rat 

antizyme 1 (Matsufuji et al. 1990), has its coding sequence in two different and partially 

overlapping ORFs with synthesis of functional antizyme involving a programmed ribosomal 

frameshift event at the end of ORF1 (Miyazaki et al. 1992). The frameshift sequence of 

mammalian OAZ1 is a conserved TCC.TGA. There are five known cases of frameshifting 

genes in humans, three of these are antizymes OAZ1, OAZ2 & OAZ3 (Ivanov and Atkins 

2007). 
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The efficiency of ribosomes shifting to the +1 reading frame to enter ORF2 and so of 

the amount of antizyme synthesized, is dependent on cellular polyamine levels (Matsufuji et 

al. 1995). Elevated polyamine levels enhance frameshifting efficiency, closing an 

autoregulatory negative feedback loop. Antizyme translation is also dependent on a diverse 

range of cis-acting stimulatory signals which facilitate frameshifting (Ivanov and Atkins 

2007). For mammalian antizymes 1 and 2, a sequence 5’ of the frameshift site has been 

shown to enhance the efficiency rate (Matsufuji et al. 1996;Ivanov et al. 2000), while the 

most common 3’ stimulator is an RNA pseudoknot located directly downstream of the 

frameshift site (Matsufuji et al. 1995). Some eukaryotes most likely have lost antizyme, e.g. 

plants. However, where antizyme is found, the requirement for a +1 frameshift during 

mRNA translation is nearly universal, a single known exception is in the ciliate 

Tethramymena thermophile where it is encoded in a single ORF (Ivanov and Atkins 2007). 

A number of studies which sequenced genes from the ciliate of genus Euplotes 

reported the on the unusually high level of frameshifting observed. It was proposed the that 

frameshifting may be more frequent in this organism than any other, with estimates of 

~10% of genes and near 100% efficient (Aigner et al. 2000; Klobutcher 2005). The frameshift 

motif consists of an AAA (lysine) codon directly 5’ of a stop codon, either TAA or TAG (5’-

AAA.TAR-3’), while TGA is reassigned to cysteine in Euplotes. This motif is known to induce a 

+1 frameshift during mRNA translation and more than one frameshift per gene has been 

reported (Karamysheva et al. 2003). It has been proposed that frameshifting in Euplotes 

evolved as a result of TGA reassignment from a termination signal to cysteine, reducing 

eRF1 recognition of the remaining stop codons (Klobutcher and Farabaugh 2002; Giedroc 

and Cornish 2009). It has been demonstrated experimentally in a hybrid system that 

Euplotes eRF1 does not efficiently recognise the remaining stop codons (Vallabhaneni et al. 

2009). A more recent study searched the entire transcriptome and genome of E. 

octocarinatus and identified a frameshift frequency of >11%, containing alternative shift 

sites (Wang et al. 2016). This type of high frequency frameshifting has not been reported in 

any other genus of ciliate.  
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Readthrough 

The three stop codons TAA, TAG & TGA, generally function as signals for translation 

termination. However, an elongating ribosome can continue through a stop codon in a 

process known as stop codon readthrough. It has been demonstrated that translation 

termination is slower and less accurate than translation elongation and as a result, low 

efficiency stop codon read through may occur in the absence of any stimulatory signals such 

as RNA secondary structures (Freistroffer et al. 2000; Bertram et al. 2001). When 

readthrough occurs the ribosome inserts an amino acid at the stop codon, and translation 

proceeds in the same frame until it encounters another stop codon, resulting in a 

proportion of proteins with C-terminal extensions (Namy and Rousset 2010). Observations 

of readthrough in chromosomal genes in Drosophila estimated an average C-terminus 

extension of 35 amino acids (Jungreis et al. 2011). In cases where a near cognate tRNA is 

inserted at a stop codon, the readthrough efficiency can be greater than 5% of transcripts 

(Namy et al. 2001). Readthrough of TGA codons, has shown that near cognate tRNAs are in 

competition with the eukaryotic release factor 1 (eRF1) for pairing with codons and 

cysteine, tryptophan and arginine have been observed here (Blanchet et al. 2014). The 

readthrough of stop codons, which extends the length of the protein in the C-terminal, is 

akin to ‘leaky’ ATG initiation which affects the length of the protein at the N-terminal, and 

both types of ‘leakiness’ contribute to the variety of protein isoforms synthesised in the cell 

(Touriol et al. 2003).  

Like frameshifting, stop codon readthrough can be utilised for regulatory purposes 

particularly by viruses in order to expand their coding potential by producing functional C-

terminal extensions or additional proteins from single mRNAs. One of the earliest examples 

was the readthrough of the coat protein (CP) stop codon of phage Qβ, where the extended 

protein is used for viral propagation (Weiner and Weber 1971; Hofstetter et al. 1974). 

Similar readthrough in tobacco mosaic tobamovirus (TMV) utilizes readthrough to produce 

the replicase protein (Gesteland et al. 1976; Pelham 1978). Many studies have highlighted 

the importance of stimulatory factors promoting readthrough, such as translation of the 

gag-pol gene of the murine leukemia virus (MuLV) (Feng et al. 1992; Firth et al. 2011).  
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Until recently only a few examples of readthrough in eukaryotic organisms were 

known outside of selenocysteine insertion. In Drosophila the kelch kel gene, which is 

involved in viable egg production in females, requires a TGA readthrough to produce a full-

length functional protein (Robinson and Cooley 1997) and also the headcase, hdc gene, 

where a hairpin loop was proposed to stimulate readthrough of a TAA codon (Steneberg 

and Samakovlis 2001). Two cases were reported in the yeast Saccharomyces cerevisiae 

(Namy et al. 2003). Recently the number of readthrough cases in Drosophila has increased 

dramatically based on analyses of 12 genomes (Jungreis et al. 2011) and additional cases 

confirmed by ribosome profiling (Dunn et al. 2013). The number of cases in humans is also 

increasing (Eswarappa et al. 2014; Loughran et al. 2014; Schueren et al. 2014) Recent 

observations have identified readthrough in four mammalian genes with the highly 

conserved tetranucleotide motif CTAG downstream from a TGA stop codon as an essential 

component to facilitate readthrough (Loughran et al. 2014). 

 

Selenocysteine  

Similar to readthrough, selenocysteine, which is a non-standard amino acid is 

inserted at a TGA codon facilitated by a 3’ secondary structure referred to as the 

selenocysteine insertion sequence (SECIS). Selenocysteine, which is an analogue of cysteine 

contains the element selenium which plays a great number of roles related to human health 

and development (Rayman 2000). The biochemical properties are also enhanced in the 

proteins where selenocysteine is inserted (Lee et al. 2000; Zhong et al. 2000). Proteins 

containing selenocysteine are referred to as selenoproteins and are found in the three 

domains of life; however, they are not present in fungi or land plants (Lobanov et al. 2009). 

Protists display a scattered distribution of selenoproteins (Mariotti et al. 2015), while 

selenoproteins specific to certian protists were identified (Cassago et al. 2006; Lobanov et 

al. 2006; Novoselov et al. 2007). Some protists have reported high quantities of 

selenoproteins in their genomes; as many as 60 in the algae Aureococcus anophagefferens 

(Gobler et al. 2011). 

For eukaryotes the SECIS element is located in the 3’ untranslated region of the 

mRNA transcript (Berry et al. 1993). A specific Sec tRNA and a complex of proteins, 
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specifically SBP2 are involved to facilitate incorporation of selenocysteine (Copeland et al. 

2000; Fletcher et al. 2001). The human selenoprotein SelP can facilitate incorporating up to 

ten selenocysteine amino acids due to the same number of TGA codons in the mRNA (Hill et 

al. 1993). In bacteria the SECIS element is located within the coding sequence, a stem loop 

3’ of the TGA codon (Heider et al. 1992). As previously noted, selenocysteine was shown to 

be incorporated at the other stop codons (TAA and TAG), in bacterial cells (Mukai et al. 

2016). 
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Recoding 
 

Position dependent termination and widespread obligatory frameshifting in Euplotes 
translation 
 

This chapter has been published as a research article in Nature Structural and Molecular 

Biology, 2017 Jan;24(1):61-68. Journal Article.  
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Abstract 

The ribosome can change its reading frame during translation in a process known as 

programmed ribosomal frameshifting. These rare events are supported by complex mRNA 

signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit 

widespread frameshifting at stop codons. 47 different codons preceding stop signals 

resulted in either +1 or +2 frameshifts, with the +1 frameshifting at AAA being the most 

frequent. The frameshifts show unusual plasticity and rapid evolution, and have little 

influence on translation rates. Proximity of a stop codon to the 3'-mRNA end rather than its 

occurrence or sequence context appeared to designate termination. Thus, a stop codon is 

not a sufficient signal for translation termination, and the default function of stop codons in 

Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and 

likely requires additional factors. 

 

Introduction  

There are several known mRNAs where translating ribosomes shift reading frame at 

specific locations with high efficiency that in very rare cases may even exceed the rate of 

concurrent standard translation. This phenomenon is known as programmed ribosomal 

frameshifting and is mostly observed in viruses (Atkins et al. 2016). While programmed 

ribosomal frameshifting is an omnipresent translation process, it is usually considered as a 

recoding mechanism. Recoding describes alterations in genetic decoding that take place at 

specific locations within particular mRNAs and is distinguished from codon reassignment 
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(Baranov et al. 2015). With an exception of 40% efficient programmed ribosomal 

frameshifting at a heptanucleotide site in Saccharomyces cerevisiae that is used during 

expression of the Ty1 transposon (Belcourt and Farabaugh 1990), complex stimulatory 

signals, such as RNA pseudoknots, are required for a high efficiency of programmed 

ribosomal frameshifting (Giedroc and Cornish 2009).   

However, previous analyses of several sequenced genes of the ciliates Euplotes, 

suggested that +1 ribosomal frameshifting may be more common in these organisms, 

reviewed by (Klobutcher and Farabaugh 2002). All frameshift motifs in Euplotes identified 

until recently consist of an AAA codon followed by a stop codon, either TAA or TAG. It has 

been hypothesized that frameshifting evolved as a consequence of TGA codon reassignment 

from stop to cysteine, which weakened release factor recognition of the remaining stop 

codons, TAA and TAG (Klobutcher and Farabaugh 2002; Vallabhaneni et al. 2009). 

Furthermore, it has been shown experimentally in a hybrid system that Euplotes release 

factors indeed recognize these stop codons inefficiently (Vallabhaneni et al. 2009).  

To understand this unusual case of frameshifting and the molecular mechanisms 

involved, we sequenced and analyzed the macronuclear genomes of two Euplotes species: 

E. crassus and E. focardii (Valbonesi and Luporini 1993; Pucciarelli et al. 2009). We also 

sequenced the transcriptome of E. crassus and carried out ribosome profiling and proteomic 

analyses. The genomic and high-throughput biochemical analyses allowed us to identify and 

characterize over a thousand frameshift sites. This revealed that ribosomes of the Euplotes 

ciliates are characterized by inability to terminate at stop codons in internal positions of 

coding sequences and instead frameshift at these signals, whereas termination likely 

requires additional components in these organisms and occurs only at specific mRNA 

positions.  
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Macronuclear genomes of E. crassus and E. focardii and their transcriptomes.  

Similar to other ciliates, Euplotes DNA is distributed among its two compartments: 

the macronucleus, which controls all cell functions during vegetative growth, and the 

micronucleus, which is needed for reproduction. The macronuclear genome consists of 

many small chromosomes. The copy number of individual chromosomes in ciliates may 

range from 100 to 10,000, with an average of 2,000 per macronucleus in Euplotes (Baird and 

Klobutcher 1991; Prescott 1994). These chromosomes are generated from the micronuclei 

DNA following sexual reproduction (Wong and Landweber 2006). It is the macronuclear DNA 

that is actively transcribed and is used as a template for mRNA synthesis, and therefore we 

were interested primarily in the macronuclear genomes.  

To understand how Euplotes genes are translated, it was beneficial to examine at 

least two genomes, thereby allowing comparative sequence analysis. Thus, we sequenced 

macronuclear genomes of two related Euplotes. One is E. crassus, a sand-dwelling 

hypotrichous ciliate of the marine intertidal zone. The other is a recently isolated E. focardii, 

which is endemic to the Antarctic (Valbonesi and Luporini 1993). The strain TN1 was 

obtained from the samples collected in Terra Nova Bay, and its psychrophilic phenotypes 

(optimal survival and multiplication rates at 4–5 °C) suggest adaptation to the stably cold 

Antarctic waters (Valbonesi and Luporini 1993). The general properties of their genomes are 

described in Supplementary Figure 1. 

A large number of very short (20-30 nts) introns is a characteristic feature of 

macronuclear protein coding genes in some ciliates (Ricard et al. 2008; Swart et al. 2013), 

but accurate prediction of introns is complicated by instances of alternative splicing and 

non-canonical splice junctions (Vinogradov et al. 2012). Some short introns, if not detected 

by annotation pipelines, may result in ORF disruption and thus be misinterpreted as 

frameshift sites. To account for this possibility, we utilized experimentally confirmed rather 

than predicted mRNA transcripts (Supplementary Fig. 2).  
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Identification of ribosomal frameshifting using phylogenetics, ribosome profiling and 

proteomic analyses.  

To identify sites of ribosomal frameshifting and estimate its efficiency, we first 

carried out ribosome profiling (Ribo-seq) in E. crassus. Ribosome profiling is based on 

sequencing of mRNA fragments protected by the translating ribosomes from nuclease 

digestion (Ingolia et al. 2009). It provides information on ribosome locations and their 

densities at the whole transcriptome level (Michel and Baranov 2013; Ingolia 2014). 

Ribosome-protected fragments are expected to occur immediately downstream of stop 

codons only in cases of efficient stop codon readthrough or ribosomal frameshifting. To 

discriminate between readthrough and ribosomal frameshifting in -1 or +1 direction we 

compared the span of Ribo-seq coverage with ORF organization (Fig. 1). In certain cases, 

where unambiguous discrimination between potential events was difficult, we sought 

additional information. Using BLAST, we explored which of the potential products is more 

likely to have closely related homologs. Overall, we identified 1,765 putative frameshift sites 

spanning 1,326 transcripts from a total of 6,087, with at least 100 Ribo-seq reads per 

transcript. In a number of transcripts we found more than one site of ribosomal 

frameshifting (Fig. 1b). In addition to +1 frameshifting, we detected frameshifting into the -

1/+2 frame (Fig. 1c). However, we did not find a single example of stop codon readthrough. 

The sequences of the transcripts were compared to the sequences of genomic contigs to 

exclude the possibility of identifying frameshifting as a result of misidentification of 

sequencing errors during RNA-seq analysis (Fig. 1a,d).  
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Figure 1. Frequent frameshifting in Euplotes. Ribo-seq profiles of individual mRNAs are 
shown in the upper panels, RNA-seq in the middle panels, and features of reading frames in 
the lower panels. Start (ATG, green vertical lines) and stop codons (TAA, TAG, red lines) are 
shown in each of the three reading frames for chromosomes (a, d) and transcripts (b, c). 
Inferred translated regions are highlighted in blue. ATG codons corresponding to translation 
initiation sites are indicated beneath each plot. Stop codons (and adjacent upstream 
codons) where termination or frameshifting occur are also indicated. (a) Example of +1 
ribosomal frameshifting at AAA_TAA. (b) Example of mRNA with several ribosomal 
frameshifting sites. (c) Example of +2 frameshifting at the ATA_TAA. (d) Example of +1 
frameshifting at AAC_TAA. 

 

To verify putative sites of frameshifting and determine the associated mechanisms 

(i.e. direction and identity of amino acids incorporated at frameshift sites), we carried out 

LC-MS/MS proteomics analyses of soluble E. crassus fractions, following trypsin and Glu-C 

digestions (the latter was used to preserve peptides with internal Lys). We examined if any 

of these peptides covered two different frames within the same gene and detected 13 such 

peptides with validated MS/MS spectra (Fig. 2, Supplementary Note 1, Supplementary Note 

2). In addition to +1 frameshifting, some peptides were the products of +2 ribosomal 
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frameshifting, consistent with our observation of ribosomal frameshifting into the -1/+2 

frame based on Ribo-seq data.  

 

 

 

Figure 2. Identification of amino acids inserted at frameshift sites. (a) Lysine (K) and 
asparagine (N) are inserted at the AAA_TAA_C heptamer. Nucleotide sequence surrounding 
the AAA_TAA +1 frameshift site is shown in the middle. Amino acid sequence is shown 
above for the zero frame and below for the +1 frame. (b) Recorded MS/MS spectrum 
confirming the presence of a peptide derived from predicted frameshifting. (c) Peptides 
detected by MS/MS analysis that were derived from the translation of frameshift sites are 
shown along with the corresponding nucleotide templates. Nucleotides “skipped” as a result 
of frameshifting are highlighted in gray. Codons preceding stop codons are shown in red, 
and the amino acids inserted at frameshifting sites are indicated. 
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Sequence properties of +1 and +2 frameshifting sites.  

Among 1,765 putative frameshift sites detected with Ribo-seq, about three quarters 

(1,368) consisted of an AAA codon followed by a stop codon, and a quarter (397) contained 

other codons preceding stop. Altogether, we observed 47 out of 62 possible sense codons at 

the frameshift sites. The supporting information (ribosome footprint density and BLAST hit 

alignments) for various types of frameshifting sites is shown in Supplementary Note 3.  

Earlier observations of frequent use of AAA_TAA and AAA_TAG as frameshifting sites 

in Euplotes prompted researchers to speculate that there is something special about AAA 

that allows frameshifting to take place at this codon (Klobutcher and Farabaugh 2002). Our 

comparison of codon frequencies upstream of stop codons in the frameshift sites and in the 

sites of termination revealed that AAA was not only the most frequent codon at the 

frameshift sites (Fig. 3a), but also was the second most frequent codon at the termination 

sites (Fig. 3b). However, high frequency of AAA codons at frameshift sites cannot be 

explained simply by their high frequency upstream of stop codons. The AAA codon was 

overrepresented at the frameshift sites in comparison with its usage in internal positions of 

coding frames, occurring ~8 times more frequently than expected (Fig. 3a). Moreover, 6 out 

of 7 AT-only codons were the most frequent codons at the frameshift sites, and they were 

also overrepresented at the frameshift sites in comparison with internal positions (Fig. 3a). 

A higher frequency of AT-rich codons among frameshift sites suggests that weak 

interactions between P-site tRNA and its codon in the initial frame increases possibility of 

frameshifting. We also found that all XXX codons (i.e. codons with identical nucleotides) 

were also enriched (relative to most non-AAA codons) at the frameshift sites (Fig. 3a, right), 

even though CCC and GGG were not the most frequent ones, owing to a relatively low GC 

content of Euplotes genomes. This suggests that the ability of P-site tRNAs to form base 

pairing with a codon in +1 frameshifting also increases chances of frameshifting because XXX 

codons would re-pair with XXT forming perfect Watson-Crick interactions with the first two 

subcodon positions. 
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Figure 3. Distribution of codons upstream of stop codons at the frameshift sites and at the 
sites of translation termination. (a) Frameshift sites. The plot on the left shows absolute 
frequency of each sense codon ranked based on its frequency. Identity of codons is given by 
Codon in the middle table. GC content and the inferred mechanism of frameshifting (+1 or 
+2) are also indicated (nr indicates that the mechanism was not resolved). The absolute 
number of frameshift sites is listed in Count. Plot on the right shows frequency of codons 
relative to their expected occurrence based on their usage in internal positions of coding 
regions. Rows are colored according to codon type. (b) Sites of translation termination. See 
panel (a) for details. Broken lines indicate average values for absolute frequencies and 
expected values for normalized frequencies. 

 

Interestingly, XYX codons (same nucleotides at the 1st and 3rd subcodon position, 

but a different nucleotide in the 2nd subcodon position) supported +2 ribosome 

frameshifting. Figure 1c shows a ribosome density profile for an mRNA containing an 

ATA_TAA frameshift site. It appears that the ribosomes shifted into the -1 frame. However, 

the mechanism was found to be +2 frameshifting based on the MS/MS analysis 

(Supplementary Note 1). Also, +2 frameshifting seemed to be more likely because in this 

case the isoleucine tRNA decoding the ATA codon would re-pair with the same ATA codon. 

We found 9 XYX codons (out of 16 possible) in the +2 frameshift sites (Fig. 3a) with ATA 
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being the most frequent. The other codons that seemed to support +2 frameshifting were 

XTA that have T and A in the +2 and +3 positions. 

Surprisingly, we did not observe noticeable underrepresentation of “shifty” codons 

upstream of stop codons that are recognized as terminators. The AAA codon was the second 

most frequent codon preceding terminator stop codons (Fig. 3b). An example of termination 

at AAA_TAA is shown in Supplementary Fig. 3a. Therefore, it is clear that whether the 

ribosome terminates or not at a particular stop codon does not depend solely on the 

identity of a codon preceding it, and that additional signals should be in place. Examination 

of information content surrounding frameshift sites and termination sites did not reveal 

position-specific sequence signals (Fig. 4a). Instead, it appears that the translation 

machinery senses the end of the mRNA and terminates only at the stop codons close to 

polyA. This is consistent with Euplotes having very short 3’ UTRs. Some mRNAs require 

longer 3’UTRs, e.g. selenoprotein mRNAs need to accommodate SECIS elements 

(Supplementary Fig. 3b). However, the “distance” between the polyA tail and the genuine 

site of termination could be structural rather than sequence-based such that the SECIS 

structure could bring the polyA tail close to the position of the termination site. Indeed, we 

observed highly structured 3’UTRs in all selenoprotein genes and found only a single 

example of a long 3’UTR other than that coding for selenoproteins (Supplementary Fig. 3c), 

but even in this case there is a possibility of a functional RNA secondary structure in its 

3’UTR.  

 

The effect of frameshifting on gene expression.  

The high frequency of ribosomal frameshifting in Euplotes suggested that it was not 

as detrimental as in other organisms. Metagene analysis (Fig. 4a, see Supplementary Fig. 4 

for corresponding RNA-seq density) revealed similar ribosome density upstream and 

downstream of frameshift sites. Therefore, the efficiency of frameshifting was comparable 

to that of standard decoding. On the other hand, there was a substantial drop of density 

relative to stop codons identified as termination sites (Fig. 4b). At the same time, a peak of 

ribosome density was also present about 30 nts upstream of frameshift sites (Fig. 4a), the 

distance roughly corresponding to the distance between A-sites of the two stacked 
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ribosomes. Such stacking would be expected if ribosomal frameshifting is slower than 

standard decoding of sense codons. A slight depletion of ribosomes was also observed 

immediately downstream of the frameshift sites (Fig. 4a). Therefore, it is plausible that 

while ribosomal frameshifting does not impose considerable costs on the accuracy of 

synthesized proteins (e.g. AAA_TAA_A would be decoded in the same way as AAA_AAA), 

there is a cost to the speed of the ribosome and subsequently increase the number of 

ribosomes per mRNA. In this case frameshifting would be expected to be harmful in genes 

expressed at high levels.  
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Figure 4. Metagene analysis of ribosome profiling and distribution of frameshifting 
according to transcript levels. (a) Metagene analysis of ribosome density in the vicinity of 
frameshift sites. First nucleotide of a stop codon is shown as zero coordinate. Note that 
while ribosome density upstream and downstream of frameshift sites is similar, there is a 
peak of density at the frameshift sites and this is accompanied by another peak 30 
nucleotides upstream. A sequence logo below represents the information content of 
sequences used for metagene alignment. The sequence AAA_TAA is predominant, and there 
are no other position-specific signals associated with frameshifting. (b) Metagene analysis of 
ribosome density in the vicinity of translation termination sites. A drop in ribosome density 
is evident downstream of stop codons. A sequence logo representing information content in 
the sequences used for metagene analysis is given below. Only mRNAs with 3’UTRs longer 
than 90 nts (polyA is not included) were used. (c) Frequency of transcripts with the sites of 
ribosomal frameshifting (axis X) versus the transcripts ranked based on the levels of protein 
synthesis (Ribo-seq density), axis Y. (d) Similar to (c), but ranking is based on RNA levels 
(RNA-seq density). (e) Distribution of transcripts with different Ribo-seq to RNA-seq ratios 
containing frameshift sites (red) and not containing frameshift sites (black). 

 

To test this hypothesis, we explored how frameshifting relates to gene expression 

levels based on RNA-seq and Ribo-seq signals (Fig. 4c,d). Indeed, we found that 

frameshifting was less frequent in highly expressed genes, supporting the idea that 

frameshifting is somewhat harmful in highly expressed genes. However, when we measured 
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frequency of frameshifting in genes with different translation efficiency (TE) measured as 

the ratio of Ribo-seq signal to RNA-seq signal, we found that frameshifting was more 

frequent in genes with high TE (Fig. 4e). The ribosome density at any given location is 

expected to positively correlate with translation initiation rates and anticorrelate with 

elongation rates at that location. Therefore, while we cannot exclude the possibility that 

frameshifting is more frequent in genes with high initiation rates, a much more likely 

explanation is that the high Ribo-seq to RNA-seq ratio in mRNAs expressed with ribosome 

frameshifting was due to increased ribosome density caused by ribosome pauses and 

queuing induced by ribosomal frameshifting.  

Since we found that particular codons are the most frequent at the frameshifting 

sites (mononucleotide and AT-rich with AAA being overrepresented the most), we 

hypothesized that frameshifting efficiency may vary depending on the identity of a codon 

upstream of a stop. To verify the hypothesis, we split frameshifting sites on AAA and non-

AAA and analyzed the distribution of footprint densities (Fig. 5a,b). It appeared that the 

ribosome density does not change significantly downstream of frameshifting sites neither 

for AAA nor for non-AAA frameshifting sites (Fig. 5c), although the pause at non-AAA 

containing sites is less frequent (Fig. 5e). Why then are AAA codons preferred at 

frameshifting sites? A possible explanation is that the efficiency of frameshifting at non-AAA 

codons is context dependent and only efficient frameshifting sites are selected during 

evolution. While we have not observed a specific nucleotide context associated with non-

AAA codons at the frameshifting sites, we noticed that TAG occurs almost three times more 

frequently (~29%) at non-AAA frameshifting sites than at AAA frameshifting sites (~12%) 

(Fig. 5a,b). To analyse how TAA and TAG stop codons affect frameshifting we compared 

footprint densities at the frameshifting sites depending on which stop codon is used (Fig. 

5d,e). While we did not find a significant difference in a change of density downstream of 

frameshifting sites, it appeared that the peak of density associated with presumed ribosome 

pausing at the frameshifting sites was significantly greater for TAA codons than for TAG 

codons (Fig. 5f).  
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Figure 5. Comparison of ribosomal frameshifting at AAA vs non-AAA frameshifting sites 
and TAA vs TAG frameshifting sites. Aggregated densities of ribosome footprints around 
frameshift sites containing AAA codon preceding stop (a), non-AAA codons (b), TAA stop 
codons (d) and TAG stop codons (e). Comparison of footprint density changes observed at 
frameshift sites at each mRNA (D3 region) and downstream of frameshift sites (D2) relative 
to footprint density upstream of frameshift sites (D1). D1 and D3 regions were chosen 60 
nts upstream and downstream of frameshift sites in order to avoid aberrant densities 
inflicted by ribosome pauses at frameshifting sites. Box plots represent ratio distributions 
with horizontal line corresponding to the median, box representing 25th and 75th 
percentiles and whiskers 5th and 95th percentiles. The comparison was carried out for AAA 
(n=1368) vs non-AAA (n=397) containing frameshift sites (e) and TAA (n=1488) vs TAG 
(n=277) containing frameshifting sites (f). P-values were calculated using unpaired Wicloxon 
rank-sum test on log ratios.  The data suggest that the frameshifting efficiencies are similar 
at all frameshift sites, but strong pauses (D3/D1) are less frequent in non-AAA and TAG 
containing sites. 



34 
 

Frameshift patterns do not evolve under strong purifying selection.  

In most well-studied cases of programmed ribosomal frameshifting (e.g. eukaryotic 

antizymes and bacterial release factor 2), the frameshift sequence and its occurrence are 

remarkably conserved (Baranov et al. 2002; Ivanov and Atkins 2007). In fact, evolutionary 

conservation of frameshift patterns is frequently used for the detection of recoded genes 

(Sharma et al. 2011). In all these cases, the efficiency of frameshifting is below 100%, and 

two protein products are usually synthesized from the same mRNA, one being decoded 

according to the rules of standard genetic decoding and another being a product of 

frameshifting. The ratio between these two products is functionally important and is often 

tightly regulated (Atkins et al. 2016). Therefore, there is a strong evolutionary pressure to 

preserve the frameshift site and its regulatory capacity, leading to strong stabilizing 

selection acting on the sequences of frameshift sites and stimulatory signals. In contrast, 

frameshifting in two Euplotes species was often characterized by cases where only one of 

the two orthologous sites used frameshifting (a typical example is shown in Fig. 6a). While 

the amino acid sequences of two orthologous genes were conserved, the corresponding 

nucleotide sequences differed by a single indel. Thus, frameshifting in Euplotes is not 

regulatory and the phenotypic difference between gene variants with and without 

frameshift sites is unlikely to be high.  

Normally, there is a strong negative selection acting on single nucleotide indels 

inside protein coding regions due to their dramatic effects on the sequence of synthesized 

protein. In Euplotes, however, it could be expected that certain indels that likely create an 

efficient site of ribosomal frameshifting irrespective of nucleotide context (e.g. AAA_AAA to 

AAA_TAA_A mutation) would have no effect on the sequence of the synthesized protein. 

Therefore, indels would be expected to evolve under different evolutionary selection 

depending on where they occur. To explore evolution of indels, we analyzed the frequency 

of sequences surrounding single nucleotide indels. We generated pairwise alignments of 

orthologous sequences from the transcriptomes of both species using FASTA (Pearson 2004) 

and counted occurrences of each hexamer where a gap in the alignment corresponded to 

the fourth position (from the 5’ end) of the hexamer (highlighted sequence in Fig. 6a). Then, 

we normalized the frequency of such patterns in gapped alignments to the total number of 

their occurrence in the two transcriptomes (Fig. 6b,c). The abundance of patterns matching 
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AAATAA was striking (Fig. 6b,c). Indels in the center of the AAATAA pattern were strongly 

overrepresented in comparison with other patterns in both species, suggesting that 

frameshifting in Euplotes evolves essentially neutrally to produce AAA-stop frameshifting 

sites, though this is unlikely to be the case for non-AAA frameshifting sites.  

 

 

 

Figure 6. Cross-species comparison and frequency of nucleotide deletions in different 
hexamers. (a) Two typical pairwise alignments containing single nucleotide gaps in one of 
two orthologous sequences in E. crassus and E. focardii. (b) Frequency analysis of all 
possible hexamer patterns corresponding to deletions (as highlighted in yellow in a) in 
pairwise alignments for E. crassus (left) and E. focardii (right). The Y axis shows the 
frequency of each hexamer found in the pairwise alignments with a gap corresponding to 
the fourth position of the hexamer. Hexamers that end with either TAA or TAG are shown in 
red. Two most frequent hexamers, AAATAA and AAATAG, are indicated. 
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Conclusions.  

In this work, we provide manifold evidence for the frequent occurrence of ribosomal 

frameshifting during translation in Euplotes ciliates. Ribosomal frameshifting occurs at the 

stop codons where tRNAs in the P-site slip forward predominantly either by 1 or 2 

nucleotides. The most frequent type of frameshifting is +1 at AAA codons preceding stop; 

however, frameshifting also occurs at many other sense codons. While this work was under 

review, a study of two other Euplotes was published where frameshifting sites were 

predicted based on genomic and transcriptomic sequences (Wang et al. 2016), supporting 

our findings. Our analyses further show that ribosomal frameshifting in Euplotes is plastic 

and rapidly evolves, that it is the predominant process at stop codons and that it has no or 

low impact on the accuracy of protein synthesis, though it likely affects ribosome speed. 

Interestingly, sequences that trigger ribosomal frameshifting are also found as genuine 

termination sites. The data suggest that the function of stop codons as frameshifters or 

terminators is determined by their proximity to polyA tails and that additional mechanisms 

are required for efficient termination. Thus, the presence of a stop codon is not a sufficient 

feature for translation termination in Euplotes. Instead, the default function of stop codons 

is ribosomal frameshifting. This is consistent with recent findings of reassignment of all stop 

codons in Condylostoma magnum where stop codons function as terminators only in close 

proximity to mRNA 3’ ends (Heaphy et al. 2016; Swart et al. 2016). A significant evolutionary 

distance between Euplotes and Condylostoma suggests an intriguing possibility that it may 

be a general property of ciliate decoding. If so, it may explain high frequency of changes in 

the genetic code in these species. A degree of positional preference of translation 

termination in other eukaryotes requires further exploration. 

 

Accession Codes.  

PRJNA329413; SAMN05412464; SRP078897; PRJNA329414; SAMN05412809; SRP078901; 

MJUV00000000; MECR00000000; PXD004333; . 
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Data availability.  

Sequence data that support the findings of this study have been deposited in the 

following repositories: for E. crassus (BioProject: PRJNA329413; BioSample: 

SAMN05412464; SRA: SRP078897) and for E. focardii (BioProject: PRJNA329414; BioSample: 

SAMN05412809; SRA: SRP078901). Proteomics data were deposited to PRIDE (PXD004333) 

the interpretations of sequence data, such as coordinates of frameshifting sites are available 

upon request. 

                                                                                                                                                               

Online Methods 

Genome sequencing and assembly. The nucleotide sequence of the E. crassus strain 

CT5 macronuclear genome was obtained by using a combination of Roche 454 (a total of 

2,550,648 reads covering 577,513,019 bp, with an average read length of 236 bp) and 

Illumina (27,092,578 reads with an average read length of 77 bp, totaling 2,086,128,506 bp) 

sequencing. The macronuclear genome of E. focardii was generated through Illumina 

paired-end sequencing (a total of 43,588,788 reads covering 4,402,467,588 bp, with an 

average read length of 100 bp). 

To identify sequences of other organisms within the dataset, we utilized DeconSeq 

(Schmieder and Edwards 2011). The following datasets were used: bacterial genomes (2,206 

unique genomes, 02/12/11), archaeal genomes (155 unique genomes, 02/12/11), 

Salmonella enterica genomes (52 strains, 12/16/10), bacterial genomes HMP (76,337 WGS 

sequences, 02/12/11), and viral genomes in RefSeq 45 (3,761 unique sequences, 02/12/11). 

Whereas very little contamination was observed in E. crassus samples, bacterial sequences 

were found in E. focardii samples. To filter them out, we applied the following procedure: 

for E. crassus threshold values were left at default values (80% coverage and 95% identity), 

whereas for E. focardii they were changed to 50% coverage and 80% identity. Bacterial 

sequences in the genome data are not unexpected, considering that both ectosymbionts 

and endosymbionts have been reported in ciliates (Dziallas et al. 2012). 

Several assembly programs were used to generate independent whole-genome 

assemblies, including ABYSS (Simpson et al. 2009), SOAP (Luo et al. 2012), SSAKE (Warren et 
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al. 2007), Velvet (Zerbino and Birney 2008), Celera  (Myers et al. 2000), 454 Newbler v.2.7, 

and PCAP  (Huang et al. 2003; Huang and Yang 2005). To perform the assembly, we followed 

the instruction manuals for Newbler and Celera and the published protocols for other 

programs. A hybrid assembly (short reads pre-assembled using Velvet, with the final 

assembly done using Newbler) was chosen for further analyses (designated as "Newbler" in 

Supporting data Table 1). The E. crassus genome assembly consisted of 56,588 contigs, with 

N50 of 1.6 kb. The E. focardii genome assembly consisted of 109,492 contigs, of which 

36,663 contigs (59M) were larger than 500 bp with the N50 of 2.1 kb. 

Separately, selenoprotein genes were analyzed as described (Turanov et al. 2009). 

tRNA prediction was carried out using tRNAscan-SE (Lowe and Eddy 1996)and ARAGORN 

(Laslett and Canback 2004).  

Transcriptome analysis. Frozen E. crassus pellets were cryogenically ground in a 

Biospec bead homogenizer. Cell powder was lysed in 1 ml of lysis buffer (20 mM Tris-HCl, pH 

7.5, 140 mM KCl, 10 mM MgCl2, 0.25% Triton, 100 mg/l cycloheximide, protease inhibitors 

from Roche). Lysate was loaded on a 2 ml cushion of 1 M sucrose in 20 mM Tris-HCl, pH 7.5, 

140 mM KCl, 5 mM MgCl2, 100 mg/l cycloheximide). Samples were centrifuged for 2 h at 

45,000 rpm in a SW55 rotor. Pellets were recovered and resuspended in lysis buffer, and 

then incubated for 1 h with 750 U of RNAse I (Ambion) per 30 U of lysate (measured at 

A260). Following RNA digestion, sequencing libraries were prepared as described 

(Gerashchenko et al. 2012), starting with gradient ultracentrifugation. There were several 

additional changes to the procedure. Instead of polyadenylation, we attached a 3ʹ adapter 

(IDT, miRNA linker #1) as a handle for subsequent reverse transcription step using T4 RNA 

ligase 2 (NEB). The reverse transcription primer was changed accordingly: (5’-

GATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/iSp18/CAAGCAGAAGAC

GGCATACGAATTGATGGTGCCTACAG-3ʹ), which allowed us to keep the 3ʹ ends of footprints 

unperturbed. The following are the sequences of forward and reverse primers for the final 

PCR: CAAGCAGAAGACGGCATACGA and AATGATACGGCGACCACCGA. Sequencing was 

performed on an Illumina HiSeq2000 platform. The transcriptome assembly was carried out 

using de novo assembler Trinity (Haas et al. 2013), producing 33,701 unique transcripts.  

Identification of frameshift sites. Sequences of ribosome footprint cDNAs (Ribo-seq) 

from E. crassus obtained in three replicates were aggregated producing 9,620,943 reads. 
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They were aligned to the transcriptome using Bowtie software v.0.12.839 allowing 

ambiguous mapping and up to 3 mismatches per read (-v 3). 8,353,221of reads (86.2%) 

were aligned to the transcriptome. The Integrative Genomics Viewer (IGV) 40 was used to 

visualize reads aligned to each transcript. Using IGV we visually analyzed all transcripts 

where the number of mapped footprints was ≥ 100 reads. Supplementary Note 4 shows 

examples of IGV screenshots in the vicinity of frameshifting sites whose productive 

translation was directly supported by peptides matching mass spectra (shown in 

Supplementary Note 1b). The obtained alignments were used to determine the boundaries 

of translated segment within a transcript. Frameshift sites were identified by analyzing ORF 

organization within the translated region at internal stop codons using maximum parsimony 

as a guiding principle in determining the direction of frameshifting to yield the minimal 

number of frameshift sites per transcript in most cases. Transcripts with frameshift sites 

were aligned to corresponding genomic contigs to verify sequence identity and avoid 

misinterpretation of indel sequencing errors as ribosomal frameshifting sites.  

Proteomic and Ribo-Seq analyses. Proteomics analysis employed conventional 

shotgun bottom-up approach described elsewhere (Petyuk et al. 2008; Depuydt et al. 2013; 

Depuydt et al. 2014). Briefly, cells were resuspended in the lysis buffer (50 mM Tris-HCl pH 

8.0, 8 M urea, 10 mM DTT, 1 mM EDTA), pulverized in liquid nitrogen followed by melting 

and sonication in a water bath for 1 min. The proteins were then digested using trypsin 

(samples 1 and 2) and Glu-C (sample 3, pH 7.5), followed by fractionation by SCX (trypsin 

sample, 25 fractions collected) and High-pH RP (trypsin and Glu-C samples, 24 concatenated 

fractions collected (Yang et al. 2012)). Analysis by liquid chromatography coupled with LTQ 

Orbitrap (Thermo Fisher, San Jose, CA) mass spectrometry (LC-MS/MS) was performed using 

a 100 min LC gradient. The details on the gradient and mass spectrometer settings can be 

found elsewhere41. The data were pre-processed with DeconMSn (Mayampurath et al. 

2008) and DtaRefinery (Petyuk et al. 2010) tools, and analyzed using MS-GF+ (Kim and 

Pevzner 2014). The raw, peak lists and MS/MS identification files were deposited at PRIDE 

(dx.doi.org/10.6019/PXD004333).   Amongst the all peptide identifications, we retained only 

those that uniquely matched protein sequences originating from the frameshift events. The 

tolerances on parent ion mass measurement and MS/MS spectrum matching scores were 

optimized to achieve maximum number of identifications while not exceeding false 
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discovery rate of 5%. Spectra for peptides spanning the frameshift locations were manually 

verified. The details on MS/MS data analysis along with parameter files and executable 

document reproducing all the post-search analysis steps were deposited as an R package at 

GitHub https://github.com/vladpetyuk/EuplotesCrassus.proteome. 

For Ribo-Seq analysis, frozen E. crassus pellets were cryogenically ground in a 

Biospec bead homogenizer. Pellets were recovered and resuspended in lysis buffer, and 

then incubated for 1 h with 750 U of RNAse I (Ambion) per 30 U of lysate (measured at 

A260). Following RNA digestion, sequencing libraries were prepared as described 37, 

starting with gradient ultracentrifugation. Sequencing was performed on an Illumina 

HiSeq2000 platform.  

E. crassus genome and transcriptome sequences were used as references for read 

alignments. The alignments were generated using Bowtie software v.0.12.7 (Langmead et al. 

2009); up to two mismatches per read were allowed. We estimated positions of the 

ribosome A-sites with an offset of 15 nucleotides downstream of 5’ ends of Ribo-seq data. 

Visualization and further manual analysis were conducted by using SAMtools package (Li et 

al. 2009), custom scripts and IGV (Thorvaldsdóttir et al. 2013). 

Sequence patterns analysis. To analyze for frequency of indels that occurred since E. 

crassus and E. focardii split from their common ancestor we generated a set of pairwise 

alignments using FASTA (Pearson 2004). The alignments were generated by searching E. 

crassus sequences as query against E. focardii and also in a reverse order. The sequence 

pairs with the best scores were considered as true orthologous sequences and were used in 

further analysis. To minimize the potential effect from misalignments, or highly diverged 

sequence pairs, only those indels were analyzed that occurred exactly in the center of a 41-

nucleotide stretch of the alignment containing no other indels. For each gap a hexamer 

pattern was registered whose fourth position (counting from the 5’ end) corresponds to a 

gap in the alignment, e.g. PPPPPP pattern in the schematic alignment below 

NNPPPPPPNN 

NNNNN-NNNN 
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The observed-to-expected ratio of deletions in hexamers was calculated as the following 

(gi∑f)/(fi∑g)  

where gi is the number of gaps corresponding to pattern i and fi is the number of patterns i 

in the fraction of the genome predicted as coding.  

Statistics. For the data shown in Figure 5 to estimate statistical significance between 

distributions of changes in footprint densities downstream of, upstream of and at the 

frameshifting sites. log(D2/D1) and log(D3/D1) we used Wilcoxon rank test. The exact p-

values and degrees of freedom are provided in figure legend.  
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Reassignment 

 

Novel ciliate genetic code variants including the reassignment of all three stop codons to 
sense codons in Condylostoma magnum 
 

This chapter has been published as a Letter Discovery in Molecular Biology and Evolution, 

Volume 33, Issue 11, 1 November 2016, Pages 2885–2889, 

https://doi.org/10.1093/molbev/msw166 

 

Abstract  

mRNA translation in many ciliates utilises variant genetic codes where stop codons are 

reassigned to specify amino acids. To characterise the repertoire of ciliate genetic codes we 

analysed ciliate transcriptomes from marine environments. Using codon substitution 

frequencies in ciliate protein-coding genes and their orthologs we inferred the genetic codes 

of 24 ciliate species. Nine did not match genetic code tables currently assigned by NCBI. 

Surprisingly, we identified a novel genetic code where all three standard stop codons (TAA, 

TAG, TGA) specify amino acids in Condylostoma magnum. We provide evidence suggesting 

that the functions of these codons in C. magnum depends on their location within mRNA. 

They are decoded as amino acids at internal positions, but specify translation termination 

when in close proximity to an mRNA 3’ end. The frequency of stop codons in protein coding 

sequences of closely related Climacostomum virens suggest that it may represent a 

transitory state.    

 

Key words: the genetic code, ciliates, translation termination, stop codon reassignment, 

alternative genetic decoding. 
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The standard genetic code contains 61 amino acid specifying codons and 3 codons 

that specify translation termination. It was long considered to be unchangeable and its 

origin was described as a ‘frozen accident’ (Crick 1968). Since then a number of variant 

genetic codes have been discovered, and the National Center for Biotechnology Information 

(NCBI) currently reports 18 additional genetic codes alongside the standard one 

(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi). The majority of them have 

been found in mitochondrial and bacterial genomes. The rise of variant genetic codes is due 

to a change in codon meaning which is referred to as codon reassignment. This 

phenomenon can occur due to alterations in the components of translation machinery 

(tRNAs, aminoacyl-tRNA synthetases or release factors), see (Baranov et al. 2015) for a 

review. 

 Stop codon reassignments are a particularly common feature of mRNA translation in 

ciliates (Knight et al. 2001; Lozupone et al. 2001). Species belonging to the genera 

Paramecium, Tetrahymena and Oxytricha are known to translate TAA and TAG as glutamine 

(Q) and only recognise TGA as a signal for termination (Horowitz and Gorovsky 1985), while 

Blepharisma translates TGA as tryptophan (W) and recognises TAA and TAG as signals for 

translation termination (Liang and Heckmann 1993). In Euplotes, TGA is reassigned to 

cysteine (C) (Meyer et al. 1991) and high frequency of +1 frameshifting during mRNA 

translation occurs at TAA and TAG codons (Klobutcher and Farabaugh 2002; Wang et al. 

2016). It has been conjectured recently that Euplotes species use additional mechanisms to 

discriminate between TAA/TAG codons specifying ribosomal frameshifting and termination 

of translation (Lobanov et al. 2017). 

To obtain a more detailed picture of stop codon reassignment events in ciliates, we 

took advantage of recent advances in large scale sequencing projects. The Marine Microbial 

Eukaryote Transcriptome Sequencing Project (MMETSP) (Keeling et al. 2014) provides 

transcriptomic data for over 650 different marine microbes including ciliates.  We obtained 

RNA-seq from 18 different ciliate genera from the MMETSP. In addition, transcriptomics for 

four additional genera were obtained from (Feng et al. 2015), one from (Kodama et al. 2014) 

and one from (Lobanov et al. 2017). We assembled each transcriptome de novo using Trinity 

(Grabherr et al. 2011), see Methods. 
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Using BLAST (Altschul et al. 1997), we searched each transcript against the NCBI 

Reference Sequence (RefSeq) protein database with an e-value of 10-30 as a threshold for 

significant sequence similarity for individual transcript hits. Table 1 summarises 

characteristics of each transcriptome composition and provides information on the number 

of transcripts with statistically significant similarity hits.  

 

Table 1. Summary of 24 species analysed; including the assembled transcriptome size and 
the number of significant alignment hits. Comparison between NCBI genetic codes and the 
genetic codes inferred in this study (separated with /). - refers to no reassignment and ‘?’ 
shows that the function of the codon cannot be classified based on threshold used in this 
study. (Q = Glutamine, E = Glutamic Acid, W = Tryptophan, C = Cysteine, Y = Tyrosine) 

    

Genus & Species Assembled Transcripts TAA TAG TGA Source 
 Transcripts  E= 10-30 NCBI/Here NCBI/Here NCBI/Here  
Anophryoides haemophila 14,853 2,189 Q/Q Q/Q -/- Keeling et al. 2014 
Aristerostoma sp. ATCC 30,326 3,950 Q/Q Q/Q -/- Keeling et al. 2014 
Blepharisma japonicum 32,295 6,392 -/- -/- W/W Keeling et al. 2014 
Campanella umbellaria 171,018 16,384 Q/E Q/E -/- Feng et al. 2015 
Carchesium polypinum 87,362 8,610 Q/E Q/E -/- Feng et al. 2015 
Climacostomum virens 23,177 5,718 -/? -/? C/? Keeling et al. 2014 
Colpoda aspera 87,297 9,079 -/- -/- C/- Feng et al. 2015 
Condylostoma magnum 29,437 4,510 Q/Q Q/Q -/W Keeling et al. 2014 
Euplotes focardii 34,984 3,939 -/? -/? C/C Keeling et al. 2014 
Euplotes crassus 33,701 3,619 -/- -/- C/C Lobanov et al. 2017  
Fabrea salina 15,706 4,340 -/- -/- C/- Keeling et al. 2014 
Favella ehrenbergii 31,448 3,387 Q/Q Q/Q -/- Keeling et al. 2014 
Litonotus pictus 30,341 2,692 -/- -/- -/- Keeling et al. 2014 
Mesodinium pulex 84,288 7,615 -/Y -/Y -/- Keeling et al. 2014 
Myrionecta rubra 40,881 3,579 -/Y -/Y -/- Keeling et al. 2014 
Paralembus digitiformis 108,308 5,579 Q/Q Q/Q -/- Feng et al. 2015 
Paramecium bursaria 128,693 13,341 Q/Q Q/Q -/- Kodama et al. 2014 
Platyophrya macrostoma 46,111 7,407 Q/- Q/- -/- Keeling et al. 2014 
Protocruzia adherens 42,999 4,835 Q/- Q/- -/- Keeling et al. 2014 
Pseudokeronopsis sp.OXSA 32,771 3,919 Q/Q Q/Q -/- Keeling et al. 2014 
Strombidinopsis acuminata 66,812 7,693 Q/Q Q/Q -/- Keeling et al. 2014 
Strombidium inclinatum 38,510 3,545 Q/Q Q/Q -/- Keeling et al. 2014 
Tiarina fusus 77,484 6,261 Q/Q Q/? -/- Keeling et al. 2014 
Uronema sp.Bbcil 14,501 2,843 Q/Q Q/Q -/- Keeling et al. 2014 

 

 

 

 



70 
 

To infer stop codon reassignment events, we first calculated the density of stop 

codons in pairwise alignments of conceptually translated ciliate mRNAs (with stop codons 

translated as an unknown amino acid) for each dataset.  Figure 1 shows the densities of 

each stop codon (see Methods for the description of the pipeline). Blepharisma and 

Paramecium were used as reference organisms for determining a threshold for 

discrimination between stop codons that were reassigned to code for amino acids and stop 

codons that function as signals for termination. The threshold is shown as a grey shaded 

area in Figure 1. It can be seen that the distribution of stop codon frequencies is bimodal 

with a clear separation between two classes. The few stop codons falling into the grey area 

may represent very recent stop codon reassignments, transitory states, or may correspond 

to organisms with a large number of pseudogenes in their genomes or frequent utilization 

of recoding mechanisms in translation of their transcriptomes. Most species have either 1 or 

2 stop codons reassigned to amino acids. It is also clear that evolution of TAA and TAG 

codon meanings is coupled, i.e. if one of these codons is reassigned the other codon is also 

reassigned. This is most likely because these two codons differ at the wobble position and 

could be recognized by the same tRNA. A few exceptions where one of these two codons 

occur in the grey area could be due to inability of the threshold used to provide a clear 

discrimination (see discussion below). Most striking, however, is that all three stop codons 

in Condylostoma magnum show frequencies indicative of reassignment to sense codons. 
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Figure 1. Classification of ciliate stop codons. Stop codon densities (axis y) in protein coding 
sequences are indicated for each species (bottom). Rectangles specify stop codons of the 
organisms used for defining a threshold (grey area) for discriminating reassigned codons 
(above grey area) from those that retained their function as signals for termination (below 
grey area). The phylogenetic tree constructed with 18S rRNA sequences above indicates the 
relatedness of each species. The histogram on the right shows distribution of stop codon 
densities. 

 

To determine the meaning of reassigned stop codons, we evaluated the frequency of 

amino acid substitutions in pairwise alignments of translated mRNAs and their close 

homologs from other species. Occasional matching of a ciliate stop codon (functioning as a 

terminator) to a sense amino acid in a homolog may occur close to N- or C- termini if a 

ciliate homolog is shorter, in the case of transcribed pseudogenes containing nonsense 

mutations, when a ciliate transcript contains a sequencing error or when a specific stop 

codon is recoded to an amino acid in the context of a specific mRNA. However, if a stop 
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codon reassignment took place, it is expected that the reassigned stop codon would 

frequently match the specific amino acid to which it was reassigned. We provide the total 

substitution values of all three stop codons for each ciliate in supplementary tables S1-S3. 

Supplementary Figure S1 shows z-scores of amino acid substitution frequencies for each 

likely reassigned stop codon. It can be seen that for each reassigned stop codon there is only 

a single amino acid with exceptionally high Z-score. An even clearer picture is obtained 

when substitution frequencies are calculated only for amino acid residues evolving under 

strong stabilizing selection (Figure 2 and Supplementary Table S4).  

 

 

 

Figure 2. Identification of amino acid specifications of the reassigned codons. Each row 
corresponds to a single reassigned codon. The organism source of a codon, its identity and 
the total number of occurrences at highly conserved positions of aligned sequences are 
indicated on the left. The normalized frequencies of amino acid substitutions are shown as 
heatmaps.   
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For Paramecium we observe that Q is the most frequently substituted amino acid for 

both TAA and TAG, and for Blepharisma and both Euplotes species tryptophan (W) and 

cysteine (C) are the most frequently substituted amino acids for TGA, respectively. With the 

same frequency as Blepharisma we can clearly see that TGA in Condylostoma is likely 

reassigned to W along with TAA and TAG also reassigned to Q. The specificity of 

substitutions in Condylostoma further supports the notion that all three codons are 

reassigned in this organism. In addition, we report novel stop codon reassignments in 

Mesodinium and Myrionecta where TAA and TAG appear to code for tyrosine (Y). In total, 

we provide evidence in support of redefining the genetic codes of nine ciliates. Table 1 

compares the genetic code of each ciliate species analysed with the NCBI assigned code. 

The unclassified, grey shaded region of Figure 1 requires additional attention. It is 

likely that Mesodinium TAA is reassigned to Y. It is very close to the threshold and such 

reassignment would be consistent with the function of TAG in Mesodinium. Climacostomum 

is closely related to Condylostoma and may represent a transitory state that potentially 

could provide an answer to how Condylostoma emerged as an organism with the genetic 

code composed of 64 sense codons. Recently we carried out ribosome profiling analysis of 

E. crassus translatome and mass-spectrometry analysis of its proteome (Lobanov et al. 

2017). While the analysis revealed thousands of ribosomal frameshifting occurrences at 

TAA/TAG codons, it revealed no cases of stop codon readthrough that preserved the frame. 

As can be seen in Figure 1, the density of TAA/TAG codons is much higher in E. focardii than 

in E. crassus and this could be due to potential utilization of stop codon readthrough in 

addition to ribosomal frameshifting. 

 Identification of an organism with all stop codons reassigned to sense codons poses 

a question of how translation termination is accomplished in Condylostoma. A theoretical 

possibility is a regulated termination where stop codon function would depend on specific 

ligands whose expression is regulated by a specific condition. Such a situation has been 

observed previously in Acetohalobium arabaticum, where the function of TAG codon as a 

signal for termination or as a codon for pyrrolysine depends on the energy source used by 

these bacteria (Prat et al. 2012). This, however, seems an unlikely possibility because of very 

high frequency of stop codons in protein coding genes and tremendous impact of such 

switches on the whole proteome. An alternative possibility is that the function of stop 
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codon depends on its position within mRNA. Based on our recent characterization of E. 

crassus translatome and proteome (Lobanov et al. 2017) we proposed that the translational 

machinery of E. crassus is able to discriminate stop codons in internal positions of mRNAs 

from those at the ends and use only the latter for termination of translation. Such a 

mechanism could also explain the enigmatic reassignment of all three stop codons in 

Condylostoma. To address this possibility, we analysed codon frequencies relative to the 

expected ends of protein coding regions (CDS). For this purpose, the Condylostoma 

transcriptome was aligned to the most conserved eukaryotic proteins using eukaryotic 

orthologous groups KOGs (Tatusov et al. 2003). The positions in pairwise alignments 

matching the stop codons of homologous sequences were considered as expected locations 

of stop codons in the corresponding Condylostoma sequence. Figure 3 shows frequencies of 

all 64 codons relative to expected CDS ends. It can be seen that stop codons (TAG and TGA 

in particular) are overrepresented at the expected locations of CDS ends. Importantly, it also 

can be seen that ~15 nt downstream of expected termination locations there is 

overrepresentation of AAAs which probably reflects locations of mRNA polyA tails. This 

suggests that 3’UTRs in Condylostoma are very short and conserved and may be implicated 

in recognition of stop codons signalling for termination of translation. Consistent with this 

hypothesis, a depletion of stop codons is observed within the upstream ~30 nt of expected 

locations of termination sites, which probably is due to selection to avoid premature 

termination due to close location of stop codons to the poly-A tails. 
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Figure. 3. Frequency of codons relative to expected positions (zero on axis x) of translation 
termination in Condylostoma. Top panel – frequency of each out of 64 codons (stop codons 
are highlighted). Bottom panel – total number of codons found at corresponding location. 
The total number differs due to variance in transcript and CDS lengths and also due to 
presence of ambiguous nucleotides (codons with ambiguous nucleotides were ignored). 
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Since the strength of stop codons as signals for termination is highly dependent on 

the identity of the nucleotide adjacent at the 3’ end (McCaughan et al. 1995; Poole et al. 

1995) we explored the possibility of a particular context preference at internal (reassigned) 

or terminal positions of coding regions. We observed that in both cases A and T occur more 

frequently than G and C consistent with AT richness of the Condylostoma genome 

(Supplementary Fig. S2). However, Ts downstream of TAGs and TGAs are more frequent 

than As at the sites of termination, but not at the internal positions. 

Given that Euplotes and Condylostoma are distant relatives within the ciliophora 

phylum, it is possible that a polyA distance mechanism of translation termination has 

emerged in the course of convergent evolution; however, it is also conceivable that the 

mechanism evolved earlier in the evolution and is common to all ciliates. If the latter is true, 

it could explain the high propensity of ciliates for stop codon reassignment. The difference 

in genetic codes among ciliates would depend primarily on the availability of specific tRNAs 

for recognition of stop codons when those occur in internal positions. Emergence of such 

tRNAs is not an unlikely event in the light of a recent discovery of substantial variability in 

identity of codons recoded as selenocysteine in bacteria (Mukai et al. 2016). Sequence 

analysis of ciliate tRNAs and future experimental studies may shed a light on this intriguing 

possibility and disclose the molecular machinery used by ciliates to discriminate between 

stop codons at different positions. Possibilities include interactions between poly-A biding 

proteins (PABP) and ribosome complexes with release factors, as it has been shown recently 

that PABPs enhance termination in a mammalian system in vitro (Ivanov et al. 2016). It is 

also conceivable that the first ribosome reading through all stop codons could stall in the 

beginning of poly-A tails and serve as a barrier for trailing ribosomes favouring termination 

of translation when the trailing ribosomes are located at stop codons shortly upstream of 

ploy-A tails. Ribosome stalling at the beginnings of ploy-A tails have been observed in a 

yeast strain lacking ribosome rescue factor Dom34 (Guydosh and Green 2014).  
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METHODS 

Data sources and assembly 

We obtained RNA-seq data for 19 of the MMETSP ciliate species from iMicrobe 

(http://data.imicrobe.us/), along with four sequence read archive (SRA) files from (Feng et 

al. 2015) and one SRA file from (Kodama et al. 2014). SRA files were converted to fastq with 

FASTQ-DUMP. We used RNA-seq forward strand reads to assemble a transcriptome de novo 

using Trinity version r20140413p1 (Grabherr et al. 2011)for each species. A summary of the 

assemblies is tabulated in Table 1.  

 

Stop codon densities and substitution frequencies 

We performed pairwise alignments of conceptually translated ciliate mRNAs using 

standalone BLASTX 2.2.31 (Altschul et al. 1997) for each transcriptome against NCBI 

Reference Sequence (RefSeq) protein sequences database with an e-value of 10-30 as a 

threshold for significant sequence similarity for individual transcript hits. In order to indicate 

each stop codon individually we performed pseudo reassignments of two stop codons to 

amino acids with the one remaining stop codon translated as an unknown amino acid, 

denoted by ‘*’ . In total we carried out three alignments for each of the species analysed, 

one per stop codon. The alignments were output in format option 2 ‘query-anchored no 

identities’. We removed alignments where hits were originating from mitochondrial and 

bacterial species to reduce contamination from unintended assembled transcripts. From this 

output we were able to calculate the density of stop codons in each query sequence, based 

on the frequency in the pairwise alignments and the length of the alignment size, as 

illustrated in Figure 1. 

Using a custom Python script, we calculated the frequency of amino acid 

substitutions (20 standard amino acids) in pairwise alignments for each stop codon classified 

as reassigned (Fig. 1).  For each amino acid substitution, we calculated corresponding z-

scores which are displayed as a heatmap in Supplementary Figure S1. For Figure 2, the 

analysis was limited only to substitutions at the positions evolving under strong stabilizing 

selection, i.e. the positions that are at least 95% identical across 100 closest homologs found 
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in RefSeq database. The absolute substitution counts among conserved positions is 

summarised in Supplementary Table S4. 

 

Position specific codon frequencies in Condylostoma. 

 Individual transcripts from MMETSP0210 Condylostoma magnum, strain COL2 from 

iMicrobe (http://data.imicrobe.us/) were searched using a collection of eukaryotic 

orthologous groups, KOGs (Tatusov et al. 2003). One “profile” alignment was built for each 

KOG and the pipeline (Mariotti and Guigó 2010) was used to perform protein-to-RNA 

alignments. The hits were filtered with a blast e-value threshold 10-10 and a minimum profile 

coverage of 90% (i.e. the predicted Condylostoma protein sequence was required to span at 

least 90% of the input KOG alignment). When multiple transcripts matched the same KOGs 

family, only the best scoring sequence was chosen for further analysis. The sequences at the 

3’ of the homologous regions identified in this way in the Condylostoma transcriptome were 

treated as expected locations of translation termination. The frequency of each of the 64 

codons was counted at each position relative to the expected location of termination (Fig. 

3). The analysis of nucleotide context at the 3’ ends of stop codons was performed in the 

same way, except that quadruplets (stop codon and adjacent 3’ end nucleotide) were used 

instead of codons.   
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Conclusions 
 

In this thesis I have directed my efforts to investigating alternative genetic decoding 

in protists. I provide additional examples of decoding plasticity including; novel mechanisms 

of frameshifting, stop codon readthrough and stop codon reassignment. I identified 

frameshifting in Euplotes at a frequency of over 20%, twice the previous known level. This 

type of frameshifting is independent of stimulatory signals and is perfectly efficient. I 

identified stop codon readthrough in the highly regulated gene OAZ in dinoflagellates. This 

type of recoding is rare for chromosomal genes, especially for regulatory purposes. The 

most significant discovery was that of a 64 sense codon genetic code in the ciliate 

Condylostoma magnum. The applications of alternative genetic decoding are becoming 

more relevant to the field of synthetic biology (Bezerra et al. 2015; Haimovich et al. 2015). 

Genetic codes are being designed to incorporate engineered amino acids into site specific 

locations (Chin 2014), while other engineered modifications include the development of a 

quadruplet-decoding ribosome (Neumann et al. 2010).  

 

Much of the data for this thesis came from publically available datasets, in particular 

from The Marine Microbial Eukaryote Transcriptome Sequencing Project, which I have 

mined extensively. It provided an insight into a largely undiscovered area for scientists 

studying translation and recoding. With advances in sequencing technologies and 

techniques, more large scale sequencing projects are being made available. With new 

datasets providing opportunities for novel discoveries, the variety and frequency of 

recoding and reassignment examples will surely increase. However, mass sequencing of new 

transcriptomes and genomes from diverse organisms such as protists, provide databases 

with vast quantities of uncharacterised sequences. Mining these largely unknown sequences 

may become an issue for future comparative sequence analysis.  

. 
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Appendix 
 

GWIPS-viz: Development of a ribo-seq genome browser  

This appendix has been published as a research article Nucleic Acids Res. 2014 Jan 1; 

42(Database issue): D859–D864.   

https://doi.org/10.1093/nar/gkt1035  

  

ABSTRACT  

Ribosome profiling (ribo-seq) is a recently developed technique that provides Genome Wide 

Information on Protein Synthesis (GWIPS) in vivo. It is based on the deep sequencing of 

ribosome protected mRNA fragments which allows the ribosome density along all mRNA 

transcripts present in the cell to be quantified. Since its inception, ribo-seq has been carried 

out in a number of eukaryotic and prokaryotic organisms. Due to the increasing interest in 

ribo-seq, there is a pertinent demand for a dedicated ribo-seq genome browser. Therefore 

we have developed GWIPS-viz, an online genome browser for viewing ribosome profiling 

data. GWIPS-viz is based on the UCSC Genome Browser. Ribo-seq tracks coupled with 

mRNA-seq tracks are currently available for several genomes: Human, Mouse, Zebrafish, 

Nematode, Yeast, Bacteria (Escherichia coli K12, Bacillus subtilis), Human Cytomegalovirus 

and Bacteriophage lambda. Our objective is to continue incorporating published ribo-seq 

datasets so that the wider community can readily view ribosome profiling information 

without the need to carry out computational processing.  

Database URL: http://gwips.ucc.ie  

  

INTRODUCTION   

Ribosome profiling is based on the isolation of mRNA fragments protected by ribosomes 

followed by massively parallel sequencing of the protected fragments or footprints. This 

allows the measurement of ribosome density along all mRNA transcripts present in the cell 

providing genome-wide information on protein synthesis (GWIPS) in vivo (1). The ribosome 

profiling technique, also known as ribo-seq, was first carried out in Saccharomyces 
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cerevisiae (2). Since the original publication, the technique has been carried out in many 

organisms including Homo sapiens (3-10) Mus musculus (3,7,9,11,12) Danio rerio (13), 

Caenorhabditis elegans (4,14), Saccharomyces cerevisiae (15,16), Escherichia coli (17,18), 

Bacillus subtilis (18), human cytomegalovirus (19) and, Bacteriophage lambda (20). .   

To date, there have been two main strategies of ribosome profiling: ribosome profiling of 

initiating ribosomes and ribosome profiling of elongating ribosomes. For a review on the 

usages and advantages of each approach, please see (21).   

The majority of published studies using ribosome profiling provide the raw sequencing data 

in NCBI’s Sequence Read Archive (SRA)(22). In addition, most published ribosome profiling 

experiments have corresponding naked mRNA control, where total mRNA is randomly 

degraded to yield fragments of a size similar to ribosome protected fragments. For simplicity 

here we refer to it as mRNA-seq. mRNA-seq is carried out under the same experimental 

conditions. It helps to take into account the differential abundance of mRNA between 

experimental conditions and to monitor technical biases associated with cDNA libraries 

generation and sequencing.  

Due to the increasing popularity of the ribo-seq technique, the number of ribosome 

profiling experiments is expected to increase dramatically in the near future. However, the 

visualization of ribosome profiling data in a browser first requires pre-processing and 

aligning the raw sequencing reads. As with any type of next-generation sequencing data 

(NGS), demands are placed on biomedical researchers in terms of time, data storage, 

computational knowledge and prototyping of computational pipelines (23). Web-based 

integrative framework tools such as Galaxy (24) provide centralized platforms for 

researchers to carry out NGS alignment pipelines. However, due to decreasing costs, the 

coverage depth of ribo-seq and corresponding mRNA-seq data is continually increasing 

resulting in ever larger datasets. Consequently the computational resources required to 

process such data and the computer memory required to store such data may not be 

available to many biologists. Indeed, the time required to download, pre-process and align 

the raw data may be the most limiting factor of all for time-poor researchers.   

To address these issues, we introduce GWIPS-viz (http://gwips.ucc.ie), a free online browser 

which is pre-populated with published ribo-seq data. The aim of GWIPS-viz is to provide an 
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intuitive graphical interface of translation in the genomes for which ribo-seq data are 

available. Users can readily view alignments from many of the published ribo-seq studies 

without the need to carry out any computational processing. GWIPS-viz is based on a 

customized version of the UCSC Genome Browser (http://genome.ucsc.edu) (25). Riboseq 

tracks, coupled with mRNA-seq tracks, are currently available for Human, Mouse, Zebrafish, 

Nematode Yeast, two bacterial species (Escherichia coli K12 and Bacillus subtilis) and two 

viral genomes (Human Cytomegalovirus and Bacteriophage lambda).  

USAGE  

In GWIPS-viz, users can search for their gene(s) of interest in the genome(s) for which 

riboseq data is available and view a snapshot of the gene’s translation under the conditions 

of the experiment. Ribosome coverage plots (red) and mRNA-seq coverage plots (green) 

display the number of reads that cover a given genomic coordinate. Figure 1 provides 

coverage plots for the S. cerevisiae genome locus containing ABP140, MET7, SSP2, and PUS7 

(from Ingolia et al. PMID:19213877) and illustrates how differential translation can be 

viewed in GWIPS-viz.  

 

   

Figure 1. Observing differential translation in GWIPS-viz. Ribo-seq (red) and RNA-seq 
(green) coverage plots for the S. cerevisiae genome locus containing ABP140, MET7, SSP2 
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and PUS7 genes from (2). Under starvation conditions (right panel), ABP140, MET7 and 
PUS7 are transcribed, but not trnslated.  

 

 

  

Figure 2. Comparing profiles from independent studies. Data from different studies and 
different organisms can be compared in GWIPS-viz. The C11orf48 locus in the human 
genome is shown where translation of an ENSEMBL transcript (brown bars) not annotated in 
RefSeq (blue bars) has been identified in HeLa cells (26). As can be seen, translation of the 
Ensembl transcript occurs in both, HeLa (3) and human PC3 cells (6).  

  

Users can visually identify which isoform(s) of a gene is transcribed and translated and also 

compare translation of the gene between different ribo-seq studies. For example, Figure 2 

provides a comparison of two ribo-seq datasets obtained in different tissuecultured human 

cells, HeLa (3) and PC3 cells (6). It can be seen that translation of a nonRefseq ENSEMBL 

transcript, reported based on the analysis of HeLa cell data (26), is observed in both datasets  

For the eukaryotic datasets, ribosome profiles display the number of footprint reads at a 

particular genomic coordinate that align to the A-site (elongating ribosomes) or P-site 

(initiating ribosomes) of the ribosome, depending on the study. For the prokaryotic 

datasets, a weighted centred approach (17) is used to indicate the positions of ribosomes. 

Figure 3 shows ribosome profile densities in a region of the E. coli genome that includes the 
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gene dnaX (b0470). The ribosome density is scaled relative to the maximum density present 

within the displayed genomic segment. As a result at the zoom allowing visualization of 

neighbour genes (top), dnaX appears as lowly expressed. However, at a range covering only 

the dnaX locus, it can be seen that nearly all codons in the dnaX mRNA are covered with 

footprints. Moreover the coverage is sufficient to allow visual detection of decreased 

ribosome density downstream of the site of programmed ribosomal frameshifting which is 

known to causes about 50% of translating ribosomes to terminate prematurely (27,28).  

Figure 4 provides an example of how ribo-seq tracks for elongating and initiating ribosomes 

can be compared. The example illustrates the data obtained in Human HEK293 cells (7) 

mapped to TOMM6 and SFPQ genes, the latter gene apparently uses two sites of translation 

initiation for its expression.  

  

 

  

Figure 3. Ribo-seq data for the dnaX locus in the E.coli genome. The top panel corresponds 
to a segment containing neighbouring genes. The bottom panel contains the dnaX 
coordinates only. The displayed ribosome density is scaled relative to the maximum density 
within the selected region. The position of the programmed ribosomal frameshifting site in 
dnaX is indicated with an arrow.   

  

DATABASE DESIGN AND IMPLEMENTATION  

GWIPS-viz is a customized version of the UCSC Genome Browser (25) version 269, and runs 

on Ubuntu Linux version 12.04.1, with Apache version 2.2.22 and MySQL 5.2.24. Static 

HTML and CSS files of the UCSC Genome Browser were downloaded from  

http://hgdownload.cse.ucsc.edu/ and rehosted on our local server, while C source code for 

the CGI executables was downloaded and compiled using gcc 4.6.3. Selected parts of the 
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MySQL databases were synced from the UCSC browser for the majority of organisms 

included in GWIPS-viz.  

Our partial mirror of the UCSC Genome Browser hosted on our server displays tracks for 

human (hg19), mouse (mm10), S. cerevisiae (sacCer3), zebrafish (danRer7), C. elegans 

(ce10), Escherichia coli K12 (eschColi_K12), Bacillus subtilis (baciSubt2), human 

cytomegalovirus (Human herpesvirus 5 strain Merlin (HHV5)) and Bacteriophage lambda 

(NC_001416) assemblies. While several genome assemblies are available for many of the 

organisms, we chose to include only the most recent genome assembly for each organism.  

   

 

Figure 4. Combining profiles of initiating and elongating ribosomes. Profiles of initiating 
(blue) and elongating (red) ribosomes generated in Human HEK 293 cells (7). Locations of 
elongating and initiating ribosomes are consistent with the annotated coding region of the 
TOMM6 gene (left). However, ribosome profiles of the SFPQ gene points to the existence of 
an additional start codon (stronger peak) upstream of the annotated start codon (weaker 
peak).  

  

Since the goal of GWIPS-viz is to be a browser for ribo-seq data, rather than a mirror of the 

UCSC browser, some of the functionality of the UCSC browser was removed in order to 

streamline the interface of GWIPS-viz. For example, the ‘clade’ menu in the genome 

selection menu was removed. In the browser window, a link was added in the top bar to 

allow the user to view the current genome position in the UCSC browser.  

Depending on the organism, certain tracks were retained from the UCSC browser (25) and 

were consolidated into one group called ‘Annotation Tracks’. Examples include RefSeq (29), 

Ensembl (30), CCDS (31), Conservation (32), RepeatMasker (Smit et al., unpublished data, 

www.repeatmasker.org), Mouse ESTs (33), SGD genes (34), tRNA genes (35).  

Ribo-seq and mRNA-seq tracks were added by incorporating the outputs of our RUM (36) 

alignment pipeline into the MySQL database. These tracks are divided into groups by 
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publication and data type (ribo-seq and mRNA-seq). Tracks generated from uniquely 

mapping reads are colour coded according to their experiment type (elongating ribosome 

footprints are red, initiating ribosome footprints are blue, mRNA-seq reads are green).   

Raw sequencing data retrieval  

Published Ribo-seq and mRNA-seq datasets are downloaded from the NCBI Sequence Read  

Archive (SRA) (22) and converted to FASTQ format using the fastq-dump utility (SRA 

Handbook citation, not in PubMed). Data from replicate experiments are consolidated into 

one dataset so as to have one browser track for each experimental condition. An additional 

“All” track is generated for each study by aggregating the short reads from all available ribo-

seq or mRNA-seq experiments for the given study.  

Alignment pipeline  

As there are no specific tools as yet for aligning ribo-seq data, RNA-seq tools are used in our 

pre-processing and alignment pipeline.  

Depending on the study, adaptor linker sequence or poly-(A) tails are trimmed from the  

3’ ends of reads using Cutadapt version 1.1 (37). Trimmed reads shorter than 25 nucleotides 

are discarded.  

Contamination from ribosomal RNA may account for a significant proportion of the raw 

reads even after depletion by subtractive hybridization during the experiment. Hence it is 

desirable to remove rRNA reads from the dataset before performing alignments in order to 

increase the proportion of informative sequences and improve alignment efficiency. To 

detect reads which are the result of ribosomal RNA contamination, trimmed reads are 

aligned to rRNA sequences using Bowtie (38). Bowtie version 0.12.8 is run using the -v 

option allowing three or fewer mismatches between the read sequence and the reference 

(rRNA) sequence. All reads that align to rRNA are discarded.  

In most eukaryotes, a proportion of ribosome footprints will span splice junctions, i.e. the 

read will span the 3’ end of one exon and the 5’ end of another. There is the added 

complexity that ribo-seq reads are typically ~30 nucleotides in length. Hence the short-read 

alignment program needs to be capable of aligning reads of ~30nt across splice junctions. 
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We use the RNA-seq Unified Mapper (RUM), (current version 2.0.5_05) (36). RUM handles 

splice junctions by using the short read aligner Bowtie (38) to align sequence reads to both 

the genome and transcriptome and merging the results, before attempting to map 

remaining unaligned reads using another existing short-read aligner, BLAT (39).   

Due to the relatively short lengths of ribosome footprint reads, a read may align to two or 

more distinct genomic locations due to sequence similarity. RUM outputs information 

separately for uniquely mapping reads and non-uniquely mapping reads (reads which align 

to several positions in the genome). Currently we provide tracks of uniquely mapping reads 

only in GWIPS-viz.   

RUM’s output files include a SAM alignment file showing the alignment(s) for each read, 

files giving the span of the alignment in genomic coordinates (RUM_Unique and RUM_NU) 

and coverage files (RUM.cov and RUM_NU.cov) listing the depth of coverage of reads across 

the genome.  

The coverage files generated by the RUM alignment, RUM_Unique.cov and RUM_NU.cov, 

are in 4 column bedGraph format. The bedGraph data are converted into bigWig format, an 

indexed binary format that results in higher performance (40).   

Ribosome profiles are generated from the RUM_Unique and RUM_NU files by obtaining the 

number of footprint reads whose 5’ ends align at a given genomic coordinate (with an offset 

of 12nt designating the ribosome P-site for initiating ribosomes or 15nt for the ribosome A-

site for elongating ribosomes).   

  

FUTURE PERSPECTIVES  

We plan to expand the existing repertoire of ribo-seq tracks by integrating publically 

available ribosome profiling experiments as they become available.  

GWIPS-viz currently displays positions of the ribosomes mapped to the reference genomes. 

In case of eukaryotic organisms that extensively use RNA splicing, visualization of ribosome 

positions in GWIPS-viz could be problematic due to a large number of long exons. Therefore, 

visualization of ribosome positions mapped to individual RNA transcripts is among our top 

priorities.   
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We currently provide ribo-seq and mRNA-seq tracks of uniquely mapping reads only. In the 

future, we wish to provide a differential display that will incorporate non-unique mapping 

reads (mapping to two or more locations in the genome) with uniquely mapping reads.  

We also aim to provide access to the Galaxy platform from within GWIPS-viz so that 

researchers who generate their own ribo-seq experimental data can pre-process and align 

their data with the tools provided within Galaxy and then view the alignments in GWIPS-viz.  

Our overall objective is to continuously improve the service we provide in GWIPS-viz. As 

GWIPS-viz is under intensive development, some of the features described in this article 

could become outdated soon. Hence we encourage users to post their questions, comments 

and feedback on the GWIPS-viz forum.  
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