
  

 

 
 

 
 
 
 

 
 

  

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE 
ENGINEERING AND TECHNOLOGY 

M.Sc. THESIS 

MAY 2014 
 

CONTROL OF VIRTUAL STAUBLI RX160 MANIPULATOR BY PHANTOM 
PREMIUM HAPTIC DEVICE 

Thesis Advisor: Assoc. Prof. Dr. Zeki Yağız BAYRAKTAROĞLU 

Aykut GÖREN 

Department of Mechatronics Engineering 
 

Mechatronics Engineering Programme 

 



  

 

  



  

 

 

MAY 2014 

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE 
ENGINEERING AND TECHNOLOGY 

CONTROL OF VIRTUAL STAUBLI RX160 MANIPULATOR BY PHANTOM 
PREMIUM HAPTIC DEVICE 

M.Sc. THESIS 

Aykut GÖREN 
(518111003) 

Department of Mechatronics Engineering 
 

Mechatronics Engineering Programme 

 

Thesis Advisor: Assoc. Prof. Dr. Zeki Yağız BAYRAKTAROĞLU 



  

 

  



  

 

MAYIS 2014 

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ 

SANAL STAUBLI RX160 MANİPÜLATÖRÜN PHANTOM PREMIUM 
HAPTIC CİHAZ İLE KONTROLÜ 

YÜKSEK LİSANS TEZİ 

Aykut GÖREN 
(518111003) 

Mekatronik Mühendisliği Anabilim Dalı 
 

Mekatronik Mühendisliği Programı 

 

Tez Danışmanı: Doç. Dr. Zeki Yağız BAYRAKTAROĞLU 



  

 

 
 



  

v 
 

  

Thesis Advisor :  Assoc. Prof. Dr. Zeki Yağız BAYRAKTAROĞLU 
 Istanbul Technical University  

Aykut GÖREN, a M.Sc. student of ITU Graduate School of Science Engineering
and Technology student ID 518111003, successfully defended the thesis entitled
“CONTROL OF VIRTUAL STAUBLI RX160 MANIPULATOR BY
PHANTOM PREMIUM HAPTIC DEVICE”, which he prepared after fulfilling
the requirements specified in the associated legislations, before the jury whose
signatures are below. 

Date of Submission : 5 May 2014 
Date of Defense :  30 May 2014

Jury Members :  Prof. Dr. Şeniz ERTUĞRUL 
Istanbul Technical University

Assist. Prof. Dr. Kadir ERKAN 
Yıldız Technical University 



  

vi 
 

  



  

vii 
 

 

 

 

To my family, 

 

 

 

  



  

viii 
 



  

ix 
 

FOREWORD 

This master’s thesis is about developing a software which controls a virtual Staubli 
RX160 manipulator by a Phantom Premium haptic device and was written in the 
Department of Mechatronics Engineering of Istanbul Technical University. 
I would like to thank my master’s thesis advisor Assoc. Prof. Dr. Zeki Yağız 
BAYRAKTAROĞLU, my colleagues and friends in Arçelik Inc. and Istanbul 
Technical University and my family for their moral and material support. 
 
 
 
 
May 2014 
 

Aykut GÖREN
(Mechanical Engineer)

 
 
 
 
 
 
 
 
 
 
  



  

x 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

xi 
 

TABLE OF CONTENTS 

Page 

FOREWORD ............................................................................................................. ix 
TABLE OF CONTENTS .......................................................................................... xi 
ABBREVIATIONS ................................................................................................. xiii 
LIST OF TABLES ................................................................................................... xv 
LIST OF FIGURES ............................................................................................... xvii 
SUMMARY ............................................................................................................. xxi 
ÖZET ...................................................................................................................... xxiii 
1. INTRODUCTION .................................................................................................. 1 

1.1 Purpose of Thesis ............................................................................................... 1 
1.2 Literature Review ............................................................................................... 2 
1.3 Staubli RX160 .................................................................................................... 3 
1.4 Phantom Premium 1.5 High Force 6DOF .......................................................... 5 

2. HAPTICS .............................................................................................................. 11 
2.1 Virtual Reality (VR) ......................................................................................... 13 
2.2 Haptic Rendering .............................................................................................. 13 
2.3 OpenHaptics SDK(Software Development Kit) .............................................. 14 

2.3.1 OpenGL(Open Graphics Library) API ..................................................... 15 
2.3.2 QuickHaptics micro API ........................................................................... 16 
2.3.3 HDAPI ...................................................................................................... 21 
2.3.4 HLAPI ....................................................................................................... 22 
2.3.5 Multithreading ........................................................................................... 25 
2.3.6 Mapping the device space to world space ................................................. 26 
2.3.7 Calibration ................................................................................................. 27 

3. MODELING OF 3 DOF STAUBLI RX160 ....................................................... 31 
3.1 Geometric Model .............................................................................................. 31 

3.1.1 Homogeneous transformation matrices .................................................... 31 
3.1.2 Forward geometric model ......................................................................... 33 
3.1.3 Inverse geometric model ........................................................................... 36 

3.2 Kinematic Model .............................................................................................. 41 
3.2.1 Jacobian matrix ......................................................................................... 41 
3.2.2 Forward kinematic model ......................................................................... 43 
3.2.3 Inverse kinematic model ........................................................................... 43 

3.3 Static Model ..................................................................................................... 43 
3.4 Dynamic Model ................................................................................................ 44 

3.4.1 Robot dynamic parameters ........................................................................ 44 
3.4.1.1 Inertial parameters .............................................................................. 45 
3.4.1.2 Friction ............................................................................................... 45 
3.4.1.3 Balancing system ............................................................................... 47 

3.4.2 Newton-Euler formulation ........................................................................ 48 
3.4.2.1 Newton-Euler recursive computation ................................................ 51 



  

xii 
 

4. VISUAL INTERFACE ........................................................................................ 53 
4.1 Virtual Model of Staubli RX160 ...................................................................... 53 
4.2 Motion Algorithm of the Staubli RX160 .......................................................... 54 

4.2.1 Hierarchy modeling ................................................................................... 55 
4.2.2 Proxy rendering ......................................................................................... 56 
4.2.3 Motion algorithm of the virtual Staubli RX160 ........................................ 56 

5. APPLICATION AND EXPERIMENTS ............................................................ 59 
5.1 Application Setup ............................................................................................. 59 
5.2 Experiments ...................................................................................................... 60 

6. CONCLUSION AND RECOMMENDATIONS ............................................... 89 
REFERENCES ......................................................................................................... 91 
APPENDICES .......................................................................................................... 93 

APPENDIX A ........................................................................................................ 97 
APPENDIX B ......................................................................................................... 97 

CURRICULUM VITAE ........................................................................................ 109 
 
 
 
 



  

xiii 
 

ABBREVIATIONS 

HF : High Force 
DOF : Degrees of Freedom 
Hz : Hertz 
VR : Virtual Reality 
EPP : Enhanced Parellel Por 
PDD : Phantom Device Drivers 
HAVE : Hapto-Audio-Virtual-Environment 
SDK : Software Development Kit 
API : Application Programming Interface 
IDE : Integrated Development Environment 
  



  

xiv 
 



  

xv 
 

 LIST OF TABLES 

Page 

Table 1.1 : Amplitude, speed and resolution parameters of the Staubli RX160[7]. ... 4 
Table 1.2 : Power Specifications[9]. ........................................................................... 7 
Table 3.1 : Types of equations encountered in Paul method[14]. ............................. 37 
 

 

  



  

xvi 
 



  

xvii 
 

LIST OF FIGURES 

Page 

Figure 1.1 : The Staubli RX160[7]. ............................................................................ 3 
Figure 1.2 : The physical dimension of the Staubli RX160[7]. .................................. 4 
Figure 1.3 : The work envelope of the Staubli RX160[7]. ......................................... 5 
Figure 1.4 : The work envelope of the Staubli RX160. .............................................. 6 
Figure 1.5 : Sockets and switches of the Phantom Premium 1.5 HF 6 DOF. ............. 7 
Figure 1.6 : Phantom Test Interface. ........................................................................... 8 
Figure 2.1 : The spectrum and trend for HAVE[11]. ................................................ 11 
Figure 2.2 : Approximate sensing frequencies of the cultaneous mechanoreceptors,  

															kinesthetic and the range of the kinesthetic control[12]. ...................... 12 
Figure 2.3 : Basic architecture for a virtual reality application incorporating visual, 

															auditory and haptic feedback[11].......................................................... 13 
Figure 2.4 : Haptic rendering block diagram[11]. .................................................... 14 
Figure 2.5 : The OpenHaptics overview[8]. ............................................................. 15 
Figure 2.6 : Diagram of the OpenGL rendering pipeline[13]. .................................. 16 
Figure 2.7 : Default QuickHaptics camera location[8]. ............................................ 17 
Figure 2.8 : Default clipping planes for world space[8]. .......................................... 18 
Figure 2.9 : Haptic interface point. ........................................................................... 19 
Figure 2.10 : The Cursor class association[8]. .......................................................... 20 
Figure 2.11 : QuickHaptics micro API program flow[8]. ......................................... 20 
Figure 2.12 : HDAPI program flowchart[8]. ............................................................ 22 
Figure 2.13 : The proxy position[8]. ......................................................................... 24 
Figure 2.14 : The HLAPI program flowchart [8]. ..................................................... 24 
Figure 2.15 : The haptic frames inside the HLAPI program flowchart [8]. ............. 25 
Figure 2.16 : Thread structures. ................................................................................ 26 
Figure 2.17 : The haptic device workspace coordinates to world coordinates 

																	mapping[8]. ......................................................................................... 27 
Figure 2.18 : Calibration position. ............................................................................ 28 
Figure 2.19 : Calibration interface. ........................................................................... 29 
Figure 3.1 : Transformation between frame  and frame  . ................................ 32 
Figure 3.2 : Robot Views: (a)Front View. (b)Right View. (c)Top View. 

														(d)Perspective View. .............................................................................. 34 
Figure 3.3 : Link coordinate frames of 3 DOF Staubli RX 160 robot. ..................... 35 
Figure 3.4 : Workspace of this study. ....................................................................... 42 
Figure 3.5 : Coulomb, viscous and static friction model[15]. ................................... 46 
Figure 3.6 : Stribeck effect of friction model[15]. .................................................... 46 
Figure 3.7 : Staubli RX160 balancing system[7]. ..................................................... 48 
Figure 3.8 : Force, torque and position vctors on Staubli RX160 manipulator. ....... 50 
Figure 3.9 : Forward and backward recursion shema. .............................................. 52 
Figure 4.1 : Links of the Staubli RX 160 manipulator. ............................................. 53 
Figure 4.2 : End-effector of the Staubli RX160 manipulator. .................................. 54 



  

xviii 
 

Figure 4.3 : Virtual model of the Staubli RX 160 manipulator. ............................... 54 
Figure 4.4 : Tree-structured hierarchy model of the Staubli RX160 manipulator. ... 55 
Figure 4.5 : The illustration of the motion algorithm for a position change of the 

													end-effector. .......................................................................................... 57 
Figure 4.6 : The visual interface window. ................................................................. 58 
Figure 5.1 : Application Setup. ................................................................................. 60 
Figure 5.2 : General scheme of the application. ........................................................ 61 
Figure 5.3 : Block diagram of the application. .......................................................... 61 
Figure 5.4 : First experiment path. ............................................................................ 63 
Figure 5.5 : Experimental results for first path, 1 1 and 2 0,01:  

													(a)Position. (b)Velocity. (c)Acceleration. ............................................. 64 
Figure 5.6 : Force graphs for first path, 1 1 and 2 0,01: (a)Computed 

													virtual end-effector force. b)Limited force applied to the haptic device. 
													 ............................................................................................................... 65 

Figure 5.7 : Experimental results for first path, K1 1 and K2 0,001: 
													(a)Position. (b)Velocity. (c)Acceleration. ............................................. 66 

Figure 5.8 : Force graphs for first path, K1 1 and K2 0,001: (a)Computed 
													virtual end-effector force. b)Limited force applied to the haptic device. 
													 ............................................................................................................... 67 

Figure 5.9 : Experimental results for first path, K1 1 and K2 0,0001: 
													(a)Position. (b)Velocity. (c)Acceleration. ............................................. 68 

Figure 5.10 : Force graphs for first path, 1 1 and 2 0,0001: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device.  
															 ............................................................................................................. 69 

Figure 5.11 : Experimental results for first path, 1 10 and 2 0,01:  
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 70 

Figure 5.12 : Force graphs for first path, 1 10 and 2 0,01: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device.  
															 ............................................................................................................. 71 

Figure 5.13 : Experimental results for first path, 1 10 and 2 0,001:     
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 72 

Figure 5.14 : Force graphs for first path, 1 10 and 2 0,001: (a)Computed   
															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 73 

Figure 5.15 : Experimental results for first path, 1 10 and 2 0,0001:  
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 74 

Figure 5.16 : Force graphs for first path, 1 10 and 2 0,0001: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 75 

Figure 5.17 : Second experiment path. ...................................................................... 76 
Figure 5.18 : Experimental results for first path, 1 1 and 2 0,01: 

															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 77 
Figure 5.19 : Force graphs for first path, 1 1 and 2 0,01: (a)Computed 

															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 78 

Figure 5.20 : Experimental results for first path, 1 1 and 2 0,001:  
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 79 



  

xix 
 

Figure 5.21 : Force graphs for first path, K1 1 and K2 0,001: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 80 

Figure 5.22 : Experimental results for first path, K1 1 and K2 0,0001:  
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 81 

Figure 5.23 : Force graphs for first path, 1 1 and 2 0,0001: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 82 

Figure 5.24 : Experimental results for first path, 1 10 and 2 0,01:  
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 83 

Figure 5.25 : Force graphs for first path, 1 10 and 2 0,01: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 84 

Figure 5.26 : Experimental results for first path, 1 10 and 2 0,001: 
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 85 

Figure 5.27 : Force graphs for first path, 1 10 and 2 0,001: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 86 

Figure 5.28 : Experimental results for first path, 1 10 and 2 0,0001:  
															(a)Position. (b)Velocity. (c)Acceleration. ........................................... 87 

Figure 5.29 : Force graphs for first path, 1 10 and 2 0,0001: (a)Computed 
															virtual end-effector force. b)Limited force applied to the haptic device. 
															 ............................................................................................................. 88 

 
Figure A.1 : QuickHaptics micro API classes and properties[8]. ............................. 95 
Figure B.1 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ..................................................................... 97 
Figure B.2 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ..................................................................... 98 
Figure B.3 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ..................................................................... 99 
Figure B.4 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ................................................................... 100 
Figure B.5 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ................................................................... 101 
Figure B.6 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ................................................................... 102 
Figure B.7 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ................................................................... 103 
Figure B.8 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ................................................................... 104 
Figure B.9 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

															(c)Acceleration. (d)Force. ................................................................... 105 
Figure B.10 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

																	(c)Acceleration. (d)Force. ................................................................. 106 
Figure B.11 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

																	(c)Acceleration. (d)Force. ................................................................. 107 
Figure B.12 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 

																	(c)Acceleration. (d)Force. ................................................................. 108 
 



  

xx 
 

 



  

xxi 
 

CONTROL OF VIRTUAL STAUBLI RX160 MANIPULATOR BY 
PHANTOM PREMIUM DEVICE 

SUMMARY 

Robots can be used for a variety of purposes in diverse application areas. Therefore, 
a wide range of tasks can be defined for robots. For satisfying these complicated 
tasks, robots need to be intelligent. Making robots intelligent is a continuously 
developable area and one of the effective ways for this purpose is improving the 
robot sensations. In this context, integrating tactile sensation to a robotic application 
is one of the objectives of this thesis.   

Haptics is the science of incorporating the tactile and/or kinesthetic sensations into 
the human-computer interaction. It has a broad range of applications in both 
commercial and scientific researches. Some of these application areas are: Virtual 
reality, robotic control, teleoperations or telerobotics, rehabilitation, tele-
rehabilitation, training simulations such as medical, surgical and dental simulations, 
virtual assembly, collision detection, molecular modeling, FEM (Finite Element 
Method) applications, nano manipulation, entertainment and games, remote 
manipulations for nuclear and hazardeus applications and 3D modeling. 

In this thesis, a computer software is written to interact with the virtual model of the 
3 DOF Staubli RX160 manipulator via Phantom Premium 1.5 High Force 6 DOF 
haptic device. OpenHaptics SDK which is based on the C/C++ programming 
language is used for programming. OpenHaptics have 3 APIs: QuickHaptics micro 
API, HLAPI and HDAPI. All of these 3 APIs are used in this study to take advantage 
of each API. A visual interface is designed to obtain a visual feedback of the 
application by using OpenHaptics commands which are based on the OpenGL API.  

In the application, human operator moves the haptic interface point and a position 
change occurs. By using this position change information, the linear velocity and 
acceleration of the haptic interface point are computed by considering time. Then, 
using the position change, velocity and acceleration information of the haptic 
interface point, the haptic rendering algorithm computes the resulting forces of the 
dynamic model of the virtual 3 DOF Staubli manipulator and the graphics rendering 
algorithm computes the resulting motion of the virtual Staubli manipulator in virtual 
environment. 

Human tactile and visual perception frequencies are approximately 1000 and 30 Hz 
respectively. Therefore, to obtain the sense of reality that occurs in user, the haptic 
rendering algorithm and the graphics rendering algorithm operating frequencies are 
determined as 1000 Hz and 30 Hz respectively. In the developed software, these two 
algorithms are programmed in seperate threads which run in parallel by utilizing 

the OpenHaptics APIs. 
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A virtual tool is designed as an end-effector of the Staubli manipulator and placed to 
the top of the tool flange of the Staubli manipulator. First 3 DOF of Staubli RX160 
manipulator provides to access to the major part of its workspace and the last 3 DOF 
provides the orientation of the end-effector. First 3 DOF of Staubli RX160 are 
modeled in this study. The geometric, inverse geometric, kinematic, inverse 
kinematic, static, dynamic and inverse dynamic model of the 3 DOF Staubli RX160 
manipulator are derived. Second link of the Staubli RX160 is equipped with a spring 
ballance system and it is provided by Staubli. The dynamic and inverse dynamic 
model of the Staubli manipulator include this spring model and the joint friction 
models. 

The position change of the haptic interface point is mapped to the position change of 
the end-effector of the virtual 3 DOF Staubli RX160. Then, the resulting forces of 
the dynamic model of the virtual 3 DOF Staubli RX160 are mapped to a limited 
range of force which is inside the Phantom haptic device capabilities. Position and 
force mappings are uniform, in other words, all the axes are mapped in the same 
proportion. The position and force scaling coefficients express the position and force 
gain respectively.  

In the experiment stage, some specific conditions are determined and the 
experiments are realized for these conditions. These conditions consist of diverse 
motion paths, position gains and force gains. During the experiments, the end-
effector of the virtual 3 DOF Staubli RX160 manipulator follows the haptic interface 
point movement, the resulting visual and force feedback are applied to the human 
operator and the developed software records the position, velocity, acceleration and 
force informations. After the application is stopped, the software writes all of the 
recorded data to a file.   

Consequently, the determined experiments are realized and the resulting graphs are 
plotted. Then, the stability of the system is investigated. Numerical derivations and 
other numerical computations caused to instability and “force kicking” in the system. 
Decreasing the position and the force gain improves the stability, however, sense of 
reality decreases. Considering the results, some suggestions are made to improve the 
stability and future works. 
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SANAL STAUBLI RX160 MANİPÜLATÖRÜN PHANTOM PREMIUM 
HAPTIC CİHAZ İLE KONTROLÜ 

ÖZET 

Robotlar çeşitli amaçlarla çok farklı uygulama alanlarında kullanılabilmektedirler. 
Bu nedenle robotlar için çok çeşitli görevler tanımlanabilir. Bu karmaşık görevleri 
yerine getirebilmek için, robotların akıllı sistemler olmaları gerekmektedir. Robotları 
daha fazla akıllı hale getirebilmek sürekli olarak geliştirilebilir bir alandır ve bunu 
gerçekleştirmenin etkin yollarından biri robot algılarını geliştirmektir. Bu bağlamda, 
robot algılarının robotik bir uygulamaya entegre edilmesi bu tezin amaçlarından 
birisidir. 

Haptics dokunsal ve/veya kinestetik duyuların insan-bilgisayar etkileşimine dahil 
edilmesi bilimidir. Hem ticari hem de bilimsel araştırmalarda geniş bir yelpazede 
uygulamalara sahiptir. Bu uygulama alanlarından bazıları şunlardır: Sanal gerçeklik, 
robotik kontrol, medikal, ameliyat ve diş ile ilgili simülasyonlar gibi eğitim 
simülasyonları, sanal montaj, çarpışma algılama, moleküler modelleme, SEM (Sonlu 
Elemanlar Metodu) uygulamaları, nano manipülasyon, eğlence ve oyun, nükleer ve 
tehlikeli uygulamalar için uzaktan manipülasyon ve 3 boyutlu modelleme. 

Bu tezde, Phantom Premium 1.5 High Force 6 DOF haptic cihaz kullanılarak Staubli 
RX160 manipülatörün 3 serbestlik dereceli sanal modeli ile etkileşim sağlayabilen 
bir yazılım geliştirilmiştir. Kullanıcı haptic arayüz noktasını hareketlendirerek sistem 
için pozisyon, hız ve ivme girdisi oluşturmaktadır. Geliştirilen algoritma ile, bu 
girdiler kullanarak kullanıcıya geri besleme olarak kuvvet ve sanal robot görsel 
hareketi uygulanmaktadır. Kuvvet geri beslemesi Staubli manipülatörün oluşturulan 
dinamik modeli aracılığı ile hesaplanmaktadır. Görsel geri besleme ise 3 serbestlik 
dereceli Staubli RX160 için geliştirilen hareket algoritması tarafından 
heaplanmaktadır.  

Geliştirilen yazılım açık kaynak kodlu bir yazılımdır ve konu ile ilgili yapılacak yeni 
çalışmalara entegre edilebilmesine imkan sağlamaktadır. Gerçek robot 
davranışlarının ilk aşama olarak, sanal ortamda simüle edilmesi, gerçek robotlar ile 
yapılan deneyler esnasında oluşabilecek hasarların test ve algoritma geliştirme 
aşamalarında fark edilip önlenmesi açısından önem taşımaktadır. Ayrıca, ilk aşama 
olarak uygulamaların sanal ortamda geliştirilmesi harcanacak enerji ve zaman 
açılarından da tasarruf sağlamaktadır. Bu doğrultuda Staubli manipülatör ve Phantom 
haptic cihaz ile ilgili yapılacak çalışmaların sanal ortamda simüle edilmesi, bu tezin 
hedeflerinden birini oluşturmaktadır.   

Programlama aşamasında, C/C++ programlama dili temeline dayanan OpenHaptics 
yazılım geliştirme kiti kullanılmıştır. OpenHaptics QuickHaptics micro API, HLAPI 
ve HDAPI olmak üzere 3 UPA’ya (Uygulama Programlama Arayüzü) sahiptir. 
QuickHaptics micro API, az sayıda kod ile hızlı bir şekilde temel uygulamaların 
geliştirilmesinde kolaylıklar sağlamaktadır. HLAPI, grafiksel olarak ileri 



  

xxiv 
 

uygulamalar geliştirilmesinde avantajlar sağlamaktadır. HDAPI ise doğrudan motor 
ve enkoderlerin kullanılması ve direk kuvvet ve tork yüklemeleri gibi kontrol 
algoritmaları ile çalışılacak ileri seviyede çalışmalarda avantajlar sağlamaktadır. Bu 
çalışmada, her bir UPA’nın avantajlarından faydalanmak amacı ile 3 UPA da 
kullanılmıştır. Sanal robot hareketlerinin kullanıcıya görsel geri besleme olarak 
sağlanması için bir görsel arayüz tasarlanmıştır. Tasarlanan görsel arayüz, içerisinde 
Staubli RX160 manipülatörün katı modelinin konumlandığı sanal bir ortamı 
göstermektedir. Oluşturulan sanal ortam ve görsel arayüz OpenGL UPA temeline 
dayanan OpenHaptics komutları kullanılarak geliştirilmiştir. 

Uygulamada, kullanıcı haptic arayüz noktasını hareket ettirmekte ve bir pozisyon 
değişimi oluşmaktadır. Gerçekleşen bu pozisyon değişimi ile, zaman dikkate alınarak 
doğrusal hız ve ivme değerleri hesaplanmaktadır. Daha sonra, bu pozisyon, hız ve 
ivme değerleri kullanılarak haptic rendering algoritması 3 serbestlik dereceli sanal 
Staubli manipülatörün dinamik modelinin sonuçlanan kuvvetlerini hesaplamakta ve 
grafik rendering algoritması sanal Staubli manipülatörün sanal ortamda sonuçlanan 
hareketini hesaplamaktadır.  

Staubli RX 160 manipülatörün gerçek boyutlu katı modelleri Staubli tarafından .stp 
dosya uzantılı olarak sağlanmıştır. Sanal uzaya bu parçalar .3ds dosya formatına 
çevrilerek alınmıştır. Sanal uzayda uzuvlar birbirinden bağımsız parçalar olarak 
konumlanmakta ve hareket etmektedirler. 3 serbestlik dereceli sanal Staubli 
manipülatör uzuvlarının sanal ortamdaki koordine hareketinin elde edilmesi için 
robot uzuvları ile bir hiyerarşik model oluşturulmuştur. Daha sonra, sanal modelin 
sanal uzayda hareketi için, oluşturulan hiyerarşiyi dikkate alarak, her bir uzvun ve 
eklem koordinat sistemlerinin dönmelerini yinelemeli olarak hesaplayan ve uzuv katı 
modellerini hareketlendiren bir hareket algoritması geliştirilmiştir. Bu algoritma, 
sanal Staubli manipülatör uzuvlarının sanal ortamdaki konum ve eksen bilgilerini 
elde etmek için 3 serbestlik dereceli Staubli manipülatörün çözülen geometrik 
modelini ve katı modellerin hareketi için OpenHaptics komutlarını kullanmaktadır.  

İnsan için dokunsal algı frekansı 1000 Hz ve görsel algı frekansı 30 Hz civarındadır. 
Bu nedenle, kullanıcıda oluşan gerçeklik hissinin sağlanması için, haptic rendering 
algoritması çalışma frekansı 1000 Hz, grafik rendering algoritması çalışma frekansı 
30 Hz olarak belirlenmiştir. Geliştirilen yazılımda, bu iki algoritma OpenHaptics 
UPA’larından faydalanılarak farklı iş parçacıklarında, parelel olarak koşacak şekilde 
programlanmıştır. Böylece, kullanıcıya uygulanacak kuvvet geri beslemeleri 
saniyede 1000 defa hesaplanarak kullanıcıya uygulanmaktadır. Sanal modelin 
hareketi ise saniyede 30 defa hesaplanmakta ve arayüzde saniyede 30 kare 
yenilenmektedir. Uygulanan bu iki ayrı frekans sayesinde kullanıcı, aslında ayrık 
zamanda gerçekleştirilen uygulamayı sürekli olarak hissediyor olmaktadır. 

Staubli manipulator için, haptic device tarafından konum kontrolünün sağlanacağı bir 
sanal uç işlevci ekipmanı tasarlanmış ve sanal ortamda Staubli manipülatörün 
flanşına eklenmiştir. Staubli RX160 manipülatörün ilk 3 serbestlik derecesi robotun 
çalışma uzayının büyük kısmına erişimini ve son 3 serbestlik derecesi uç işlevcinin 
yönelimini sağlamaktadır. Bu çalışmada, Staubli RX160 manipülatörün ilk 3 
serbestlik derecesi modellenmiştir. Uygulamada Staubli manipulatörün son 4 uzvu ve 
tasarlanan uç ekipman tek bir uzuv gibi hareket etmektedir ve böylece yönelim 
açıları devre dışı bırakılmıştır. Staubli RX160 manipülatör için geometrik, ters 
geometrik, kinematik, ters kinematik, statik, dinamik ve ters dinamik modelleri 
çözülmüştür. Staubli RX160 manipülatörün ikinci uzvu yay denge sistemi ile 
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donatılmıştır ve bu model Staubli tarafından sağlanmıştır. Dinamik ve ters dinamik 
model bu yay modelini ve eklem sürtünme modellerini içermektedir. 

Haptic arayüz noktasının pozisyon değişimi belirli bir bir katsayı ile 
ölçeklendirilerek Staubli manipülatörün uç işlevcisinin pozisyon değişimine 
dönüştürülmektedir. Daha sonra, 3 serbestlik dereceli sanal Staubli manipülatör 
dinamik modelinin sonuçlanan kuvvetleri haptic cihaz kuvvet limitleri içerisinde bir 
aralığa ölçeklenmektedir. Pozisyon ve kuvvet ölçeklendirmeleri uniform olarak, 
diğer bir deyişle her eksen için aynı oranda gerçekleştirilmiştir. Uygulanan pozisyon 
ölçeği katsayısı pozisyon kazancını ve kuvvet ölçeği katsayısı kuvvet kazancını ifade 
etmektedir. 

Deney aşamasında, uygulama için şartlar belirlenmiştir ve deneyler bu koşullar 
altında gerçekleştirilmiştir. Bu koşullar farklı hareket yörüngeleri, pozisyon ve 
kuvvet kazançlarından oluşmaktadır. Deney süresince 3 serbestlik dereceli sanal 
Staubli manipülatörün uç işlevcisi haptic arayüz noktasını takip etmekte, sonuçlanan 
görsel geri beslemeler ve kuvvet geri beslemeleri kullanıcıya uygulanmaktadır ve 
geliştirilen yazılım pozisyon, hız, ivme ve kuvvet bilgilerini kayıt altına almaktadır. 
Uygulama sonlandırıldığında yazılım bu bilgileri bir dosyaya kaydetmektedir. 

Yazılımın geliştirilmesinin ardından bu tezde incelenecek deney şartları 
belirlenmiştir. Öncelikle iki farklı hareket yörüngesi kurgulanmıştır. İlk yörüngede 
haptic arayüz noktasının x,y ve z eksenlerinde sıralı olarak hareket ettirilmesi 
planlanmıştır. İkinci yörüngede ise haptic arayüz noktasının x, y ve z eksenlerinde 
aynı anda hareketini sağlayacak dairesel bir yörünge planlanmıştır. Diğer deney 
şartları kuvvet ve pozisyon kazançlarının farklı değerleri için deneylerin 
tekrarlanmasını kapsamaktadır.  

Yörüngelerin tasarlanmasından sonra, bu çalışma için uygun olacak şekilde iki adet 
pozisyon kazancı ve üç adet kuvvet kazancı belirlenmiştir. Tasarlanan her bir 
yörünge için, iki pozisyon kazancı ve her bir pozisyon kazancı için üç kuvvet kazancı 
deney şartlarını oluşturmaktadır. Böylece, bu şartlar altında 12 deney 
gerçekleştirilmiştir.  

Belirlenen şartlar için deneyler gerçekleştirilmiş ve sonuçlanan pozisyon, hız, ivme 
ve kuvvet değerleri zamana bağlı olarak çizdirilerek, grafikler elde edilmiştir. Deney 
esnasında oluşan pozisyon, hız, ivme ve kuvvet bilgilerinin, x, y ve z eksenlerindeki 
etkilerinin detaylı olarak incelenebilmesi için grafiklerde, bu bilgilerin x, y ve z 
eksenlerine izdüşümleri çizdirilmiştir. Aynı sonuçların büyüklük eğrileri ise eklerde 
verilmiştir. 

Sonuç olarak, hedeflenen yazılım geliştirilmiş ve çeşitli yörünge, pozisyon ve kuvvet 
kazançları için deneyler gerçekleştirilmiştir. Daha sonra, uygulanan deney koşulları 
için sistemin kararlılığı ve gerçeklik hissi incelenmiştir. Sayısal olarak hesaplanan 
türevlerin ve diğer sayısal hesaplamaların sonuçlarda gürültü ve düzensizliklere 
neden olduğu gözlemlenmiştir. Genel olarak, pozisyon ve kuvvet kazançlarının 
azaltılmasının kararlılığı iyileştirdiği fakat kullanıcı tarafından algılanan gerçeklik 
hissini düşürdüğü, hem sonuçlanan grafiklerden hem de haptic cihaz tarafından 
kullanıcıya uygulanan kuvvet geri beslemelerinden saptanmıştır. Sonuçları dikkate 
alarak, sistem kararlılığının iyileştirilmesi ve kuvvet düzensizliklerinin azaltılması 
amacıyla, çeşitli sinyal işleme filtrelerinin ve yapay zeka algoritmalarının sisteme 
uygulanması gibi bu çalışmanın geliştirilmesine ve ileriki çalışmalara yönelik 
öneriler sunulmuştur. 
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1.  INTRODUCTION 

A broad range of tasks can be defined for robots. Therefore, making the robots more 

intelligent is a continuously developable area. One of the effective ways for this 

purpose is improving the sensations of the robots.  In this context, integrating the 

tactile unilateral or bilateral force/torque feedback to the robotic applications is the 

one of the state of the art in robotic researches. 

Developing the robotic applications in a virtual environment is a safety and fast 

method to test the applications. These kinds of virtual reality applications can prevent 

the possible damages in the developing or the testing stage. 

The tactile perception of the robots is the objective of this study. A master-slave 

robot system is used. The master robot is the Phantom Premium 1.5 6DOF /1.5HF 

6DOF haptic device and the slave robot is the virtual model of the Staubli RX160 

manipulator. The stylus of the haptic device controls the end-effector position of the 

virtual model of the Staubli manipulator. The haptic device provides position, 

velocity and acceleration informations for the virtual Staubli manipulator. Then, by 

calculating the resulting forces of the derived dynamic model of the 3 DOF Staubli 

RX160 manipulator, the haptic device applies the force feedback toward the human 

operator. 

12 experiments are realized for two different paths and diverse position and force 

gains. After 12 experiments are completed, position, velocity, acceleration and 

computed force values are obtained. Then, the stability of the system is investigated 

for these experiments. 

1.1 Purpose of Thesis 

The purpose of this thesis is to visualize the motions of the Staubli manipulator and 

feel the resulting forces at the end-effector of the Staubli manipulator controlling the 

end-effector by the haptic device. A software application developed in this context 

can be used to simulate the manipulator behaviours in the virtual environment. Thus, 
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the application allows to analyze and avoid the unexpected behaviors before run the 

applications on the real manipulator. The software developed in the scope of this 

study can be also used for further researches about the Staubli manipulator and the 

haptic device. 

1.2 Literature Review 

In the literature, there is a wide range of applications including the communication 

between Staubli manipulators and Phantom haptic devices. Some of these 

applications are stated below.   

In reference [1], an open robotic platform based on Staubli RX60 manipulator is 

introduced, different possibilities of software configurations explaining the 

advantage and drawbacks of these software configurations are described and 

experimental results are given to validate the performance of the robotic setup. The 

experimental setup consists of a Staubli RX60 manipulator, a CS8 controller, a 6 

DOF ATI wrist force-torque sensor, a 3 DOF capacitive accelerometer, a 3 DOF 

gyroscope, an acquisition board integrated to the robot controller and a 6 DOF 

Phantom haptic device.   

In reference [2], bilateral haptic guided robot teleoperation using Internet Protocol 

version 6 (IPv6) with high Quality of Servis (QoS) is achieved. The Phantom 1.5 6 

DOF haptic device, Staubli TX90, CS8 controller and JR3 force-torque sensor are 

used. 

In reference [3], eliminating and scaling the non-contact forces and torques from the 

measurements of a wrist-mounted force-torque sensor are studied. The Phantom 

Premium 1.5 HF 6 DOF haptic device, either Staubli RX60 or RX90, CS7B 

controller and a combined force-torque sensor are used.  

In reference [4], path planning techniques based on harmonic functions are used to 

generate force feedbacks for teleoperated assembly tasks. A phantom haptic device 

and a Staubli TX90 manipulator are used. The cross-platform tools Qt (as application 

frame-work), Coin3D (as graphics toolkit) and OpenHaptics Toolkit are used for 

programming. The communication between the haptic device and the Staubli 

manipulator is achieved via internet protocol. 
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The workspace of the Phantom 1.5 High Force 6DOF haptic device is physically 

limited by using mechanical stops. The device must be operated in this workspace.  

GHOST® SDK and OpenHaptics™ Toolkit are two Software Development Kits, 

which are generated to use in haptics applications. 
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2.3.3 HDAPI 

The HDAPI provides low-level haptic rendering. Control and haptics algorithms can 

be applied to the haptic applications with the HDAPI by using the motors and the 

encoders directly. Therefore, it has an important role in haptics researches. 

The HDAPI can be used to query the device capabilities and parameters during the 

application.  

The servo loop is a control loop for computing force algorithms and sending the 

forces to the haptic device. The servo loop can be adjusted by the HDAPI and needs 

1 kHz or higher haptic update rate for a stable force feedback. To obtain this high 

update rate, the servo loop should be executed in a particular high-priority thread. 

There are two fundamental components in the HDAPI involving the device and the 

scheduler. The device component provides the communication process with the 

haptic device. The device processes comprise device initialization, device safety and 

device state.  

The device initialization is about the communication settings with the haptic device. 

The device safety includes the device protection routines and controls the safety 

parameters of the haptic device like maximum velocities, maximum forces and motor 

tempratures. The device state provides the settings and queries about the haptic 

device. 

The scheduler enables the user to access the servo loop with routines. Thus, forces, 

which will be applied to the haptic device can be sent to the servo loop and the 

device state informations can be obtained. 

A typical program flowchart of the HDAPI is given in Figure 2.12. The main 

operations of the HDAPI are realized in the servo loop. 

A typical application starts by initializing the haptic device. Then, force output is 

enabled and the scheduler is started. Afterwards, the haptic frame is begun in servo 

loop. In the servo loop, the haptic rendering algorithms are run and then, the haptic 

frame is stopped. These haptic frames are repeated until the haptic rendering 

algorithm is stopped.  

After the servo loop is stopped, finally, the scheduler is stopped and the haptic device 

is disabled. 
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3.  MODELING OF 3 DOF STAUBLI RX160  

In this chapter, the geometric, kinematic, static and dynamic models of the 3 DOF 

Staubli RX160 manipulator are derived.  

3.1 Geometric Model 

The geometric model consists of the forward and inverse geometric model. The 

homogeneous transformation matrices are the fundamental computation tools for the 

geometric model. By defining homogeneous transformation matrices, the 

computations of the forward and inverse geometric model are achieved.    

3.1.1 Homogeneous transformation matrices 

In robotics, transformation between frames is a crucial topic since, computing the 

location, position and orientation of robot links relative to each other or specific 

frames are the basic calculations of robotics. 

The transformation matrix expresses a frame  according to a frame  describing 

translations and rotations between these two frames. 

(4X4) Homogeneous transformation matrix structure   is used in this study.  

represents translations and rotations of a frame  with respect to a frame . The 

matrix form is stated in Equation (3.1). 

 

0 0 0 1
0 0 0 1

 (3.1)

( ,  and ) expresses the (3X3) rotation matrix and  expresses the 

translation vector. Since,  is orthogonal: 

  (3.2)
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However,  

  (3.3) 

Illustration of   is stated in Figure 3.1. 

 

Figure 3.1 : Transformation between frame  and frame  . 

The transformation matrix including only translation is expressed as Trans(a,b,c), 

where a,b and c denotes the translation along x,y and z axes.  

 

1 0 0
0 1 0
0 0 1
0 0 0 1

 (3.4) 

The translation matrix including only rotation about principle axes (x,y,z) by an 

angle θ is expressed as Rot(x,θ), Rot(y,θ) and Rot(z,θ). Whereas, rot(x,θ), rot(y,θ) 

and rot(z,θ) denotes the (3X3) orientation matrices about x, y and z axes by an angle 

θ.  

Equation (3.5), (3.6) and (3.7) are shown Rot(x,θ), Rot(y,θ) and Rot(z,θ) matrices. 

 Rot x, θ

1 0 0 0
0 0
0 0
0 0 0 1

0
rot x, θ 0

0
0 0 0 1

 (3.5) 
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 Rot y, θ

0 0
0 1 0 0

0 0
0 0 0 1

	 0
rot y, θ 	 0

	 0
0 0 0 1

 (3.6)

 Rot z, θ

0 0
0 0

0 0 1 0
0 0 0 1

	 0
rot z, θ 	 0

	 0
0 0 0 1

 (3.7)

where Cθ and Sθ denotes cos(θ) and sin(θ) respectively. 

3.1.2 Forward geometric model  

Robot operations are described in the task space. However, robots are controlled in 

joint space. The forward geometric model is calculated for defining transformation 

equations from the joint space to the task space.  

The end-effector position for applied rotation angles to links relative to the base 

frame is determined by multiplying its coordinate vector by the transformation 

matrix.  

In Equation (3.8),  is a vector, which is defined in a frame  and it is transformed 

to a vector .  expresses the  according to the frame  by multiplying  by 

. 

  (3.8)

The transformation matrices of robots, which have serial links are calculated by 

multiplying coordinate frame transformations of joints consecutively. The 

homogeneous transformation matrices from frame 0 to frame n are stated in Equation 

(3.9). The orientation matrix  has also this property as shown in Equation (3.10).  

 …  (3.9)

where q is the joint varible. 	

 …  (3.10)
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  (3.15) 

The direct geometric model of the 3DOF Staubli RX 160 is obtained as Equation 

(3.16). 

1 4 4 1 2 3 1 2 3 4 1 2 3 1 2 3 4 1
1 4 4 1 2 3 2 3 1 1 4 4 1 2 3 2 3 1

23 4 23 4
0 0

 

 

23 1 1 0.825 2 0.825 23 0.15
23 1 1 0.825 2 0.85 23 0.15
23 0.85 23 0.825 2
0 1

 (3.16) 

where S23 denotes	 sin . 

3.1.3 Inverse geometric model 

The inverse geometric model calculates the required joint variables to obtain the 

specified location of the end-effector. These calculations are complex and their 

complexity depends on the geometry of the robot. The inverse geometric model can 

have multiple solutions as well. There are both numerical and analytical computing 

methods to achieve the solution.  

In this study, an analytical solution of 3 DOF Staubli RX160 is calculated using Paul 

method [Paul 81]. Paul method [Paul 1981] solves the transformation equation 

premultiplying left and right side of the equation by , for  increasing from 1 to 

n-1 consecutively. For each equation 

 …   

 …  (3.17) 

 …   

All joint variables are obtained by equating left and right sides of Equation (3.17).  

In generally, necessary equations to obtain the joint variables are must be determined 

intuitively. Then, appropriate solution methods are applied to the equations.  
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The equation types which is encountered in Paul method and solutions of these types 

of equations are given in [14]. The equations which are encountered in this study are 

given in Table 3.1. Then, solutions of type-2, type-3 and type-6 system of equations 

are given to derive the inverse geometric model of 3-DOF Staubli RX160. 

Table 3.1 : Types of equations encountered in Paul method[14]. 

Type 2 XS YC  

Type 3 
X1S Y1C 1 

X2S Y2C 2 

Type 6 
W1S X1C Y1S 1 

W2C X2S Y2C 2 

Solutions of types of equations which are given in Table 3.1 are as follows[14]: 

Solution of type-2 system of equation: 

X, Yand Z are not zero in this study. Therefore, type-2 equation is written as: 

 Y (3.18)

Squaring the Equation (3.18), Equation (3.19) is obtained: 

 1 2 	 (3.19)

By solving a second degree equation in , an equation is written in  and Equation 

(3.20) is obtained: 

 

√

√
	 (3.20)

with ε=±1. If , there is no solution. Otherwise, 

 2 , (3.21)
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Solution of type-3 system of equation: 

If X1Y2 X2Y1 0, two solutions of type-3 system of equation are independent. 

However, it is not for the equation, which is encountered in this study. Thus, one of 

these equations are solved as a type-2 equation. Since X1Y2 X2Y1 0, solution of 

type-2 equation is reduced to Equation (3.21): 

 
1 1
2 2 (3.22) 

Thus, solution is as follows: 

 2
1
1
,
2
2

 (3.23) 

Solution of type-6 system of equation: 

For Z1≠0 and/or Z2≠0, by squaring the both equations and adding them, a type-2 

system of equation is obtained in : 

 B1S 2 3 (3.24) 

with: 

 B1 2 1 2 (3.25) 

 B2 2 1 2 (3.26) 

 B3 2 1 2 (3.27) 

with  known,  is obtained by solving type-3 system of equation.  

The homogeneous transformation matrix  of 3 DOF Staubli RX160 has already 

been derived in Equation (3.16). Considering Equation (3.16), inverse geometric 

model of 3 DOF Staubli RX160 is obtained by applying Paul method to the derived 

forward geometric model. ,  and  are assumed as the x, y and z coordinates of 

the end-effector position of the virtual Staubli RX160 relative to the world frame. 

Premultiplying the transformation matrix  by the origin coordinates (0,0,0) of the 

, ,  and  are obtained as Equation (3.28):  
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1

0
0
0
1

 (3.28)

By applying Paul method to the model, Equation (3.30) and (3.34) are derived:  

 

1

0
0
0
1

	 (3.29)

 

cos	 sin
cos	 sin

1

0.825cos sin 0.15
0

0.85sin 0.825sin	
1

 (3.30)

By equating the second raws of the matrices in the Equation (3.30), the following 

results are obtained: 

 2 ,  (3.31)

  (3.32)

In order to find  and , left and right side of the Equation (3.29) are premultiplied 

by 	 : 

 

1

0
0
0
1

	 (3.33)

 

cos cos cos 0.15 sin

sin	 cos sin 0.15 cos	
sin	 cos	

1

0.825 0.85sin
0.85cos

0
1

	

(3.34)

First and second raw of the Equation (3.34) must be solved to obtain  and .  
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 W 0.85 (3.35) 

 X cos cos 0.15 (3.36) 

 Y (3.37) 

 Z1 0.825 (3.38) 

 Z2 0 (3.39) 

 B1 2 0.825 (3.40) 

 B2 2 0.825 cos cos 0.15 (3.41) 

 
B3 2 0.85 cos cos 0.15

0.825
(3.42) 

 
2

1 3 2√ 1 2 3
1 2

2
2 3 1√ 1 2 3

1 2

	 (3.43) 

The solution for  is obtained in Equation (3.44): 

 2 2, 2 (3.44) 

Thus,  is known and  is obtained by solving a type-3 system of equation. 

 2 3, 3  (3.45) 

 
3

0.15 2 2 0.825
0.85

3
2 0.15 2

0.85

	 (3.46) 
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3.2 Kinematic Model 

Kinematics deals with pure motion without considering the effects of forces, 

moments or masses to the motion. Kinematic model consists of forward and inverse 

kinematic model.  

Jacobian matrix of 3 DOF Staubli manipulator is derived to obtain the forward and 

the inverse kinematic models in this chapter. 

3.2.1 Jacobian matrix  

In robotics, the Jacobian matrix can be used for multiple objectives. In this study, 

Jacobian matrix is applied in the following calculations: 

 To obtain the end-effector force, which represents the calculated joint 

torques,    

 To obtain angular velocities of the joints, which represent the linear velocity 

of the end-effector, 

 To obtain the angular accelerations of the joints, which represent the linear 

acceleration of the end-effector.  

The Jacobian matrix is calculated by differentiating the forward geometric model. 

The forward geometric model is leaded as Equation (3.47) as well. 

  (3.47)

where  is the position and q is the joint variable for this study. This notation is also 

used in the following calculations due to its simplicity.  Differentiation is achieved 

by using partial derivatives of the model according to joint variables as Equation 

(3.48) 

 

⋯

⋮ ⋱ ⋮

⋯

	 (3.48)
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3.2.2 Forward kinematic model 

The forward kinematic model calculates the linear velocity of the end-effector  in 

terms of the angular velocities of the joints . Premultiplying the angular velocities 

of the joints by Jacobian, end-effector velocity is obtained as in the equation (x.x). 

 (3.50)

3.2.3 Inverse kinematic model 

Unlike the forward kinematic model, the inverse kinematic model calculates the 

angular velocities of the joints  in terms of the linear velocity of the end-effector . 

Premultiplying the linear velocity of the end-effector by inverse of the Jacobian 

matrix, angular velocities of the joints are obtained.  

  (3.51)

3.3 Static Model  

The static model provides the joint torques or forces exerted to the environment by 

the end-effector. For revolute joints, it gives the joint torques and for prismatic joints, 

it gives the joint forces. For 3 DOF Staubli RX160 all the joints are revolute. 

Therefore, joint torques are calculated with the static model. 

Vector pairs, which consist of forces and moments exerted on a rigid body are called 

wrenches. Wrenches are represented by screws and a screw is a six-dimensional 

vector composed of a pair of three-dimensional vectors. Representation of a wrench 

is shown in Equation (3.52). 

  (3.52)

where  is wrench,  is force and  is moment. 

Since, 3 DOF Staubli RX160 is considered in this study, in other words, orientation 

of the Staubli RX160 is not used, wrench is reduced as the jacobian matrix. Thus, 

wrench is taken into account as follows: 
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  (3.53) 

An external wrench is mapped into the joint torques as in Equation (3.54). 

 (3.54) 

By considering Equation (3.54), calculated joint torques can be mapped into the end-

effector force as in Equation (3.55). Inverse of the transpose of the Jacobian matrix 

must be available for the actual configuration to obtain a solution. 

 (3.55) 

3.4 Dynamic Model  

The dynamic model represents the relation between the applied forces/torques and 

the resulting motion of a rigid body. The forward dynamic model expresses the joint 

accelerations in terms of the joint positions, velocities and torques. Equation (3.56) 

defines the forward dynamic model.  

 , , , (3.56) 

where  is the joint positions,  is the joint velocities,  is the joint accelerations,  

is the joint torques and  is the forces and moments exerted by the robot on the 

environment. 

The inverse dynamic model expresses the joint torques and forces in terms of the 

joint positions, velocities and accelerations. The inverse dynamic model is often 

called the dynamic model[14]. In this study, inverse dynamic model is called as the 

dynamic model as well and is given in Equation (3.57). 

 , , , (3.57) 

3.4.1 Robot dynamic parameters 

In this chapter, robot parameters, which are used in the computations of dynamic 

model are stated.  
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3.4.1.1 Inertial parameters 

Moment of inertia is a mass property of a rigid body and indicates the required 

torque value for rotating the rigid body about an axis with a specified angular 

acceleration. (3X3) inertia matrix is called inertia tensor. 

Inertial parameters of each link of the Staubli RX160 are provided by Staubli as the 

form of the Equation (3.58). The inertia tensor is specified for the x,y,z axes and 

origin of rotation is the center of mass for the given inertia tensor.  

 (3.58)

Center of mass coordinates of each link of Staubli RX160 are also provided by 

Staubli. All of the robot links are imported in a solid model software and masses, 

inertial tensors and center of mass coordinates provided by Staubli are defined in the 

software for each link. Since,  the last 4 links of Staubli RX160 are assumed as a 

single link, the mass of the last 4 links are summed and center of mass coordinates 

are calculated. Inertial tensor of each link is defined in part module of the software. 

Then, inertia tensor for the last 4 links is measured in the assembly module of the 

software. Thus, The inertia tensor for the last 4 links as a single link is computed via 

the software.   

3.4.1.2 Friction 

A significant proportion of friction is occurred in powertrains of robot manipulators. 

Sliding friction is constituded a resistance to the motion on the powertrain surfaces. 

Therefore, sliding friction effects are investigated and added to the dynamic model. 

In reference [15], a suitable friction model for Staubli RX160 has already been 

obtained. This friction model and identified parameters in [15] are used for the 

friction model, which is given in Equation (3.62). 

Equation (3.59) gives the frictional torque, which includes Coulomb, viscous and 

static frictions. Figure 3.5 shows the relationship between friction torque and joint 

velocity[15]. There are sharp transitions in the Figure 3.5. 
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 , , , ⁄ 	 (3.60)

where  is the Stribeck velocity,  is the empirical parameter dependent on the 

material ranging between 0.5 and 1 and ,  is the Coloumb friction torque.  

Armstrong-Helovury added the viscous parameter  to the Equation (3.60) and 

Equation (3.61) is created. Equation (3.61) is widely used to obtain sliding friction 

torques of manipulators[15].  

 , , , ⁄ 	 (3.61)

However, it is complicated to apply the Equation (3.61) to all of the friction 

components in the powertrains. Therefore, the Equation (3.61) is applied to the 

significant components in terms of friction. The significant terms of the Staubli 

RX160 manipulator in terms of sliding friction model include effect of the asperity of 

rolling bearings ,  and viscous effects. 

Finally, the Equation (3.62) is obtained for the Staubli RX160 manipulator as the 

friction torque equation[15]. 

 , ⁄ 	 (3.62)

3.4.1.3 Balancing system 

The Staubli RX160 manipulator is equipped with a spring balance system located 

inside the joint 2. The springs compensate the weights situated after joint 2. The 

balancing system is shown in Figure 3.7. 

The spring torque is changed by position of the joint 2. The equation of the spring 

torque is provided by Staubli and it is added to the dynamic model in this study. 

Thus, the spring effect is also computed during the application. 

The majority of the computed force values occur on the z axis for low velocity and 

acceleration values due to the earth gravity. By adding the spring model to the 

dynamic model, the maximum force values are reduced in these cases. Thus, the 
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with reference to the base coordinates. Equations (3.65) and (3.66) represent these 

vectors. 

 (3.65)

 (3.66)

where  is the unit vector of the  on z axis. 

 and  are given in Equation (3.67) and (3.68) respectively. 

 ̂ (3.67)

 ̂ ̂ (3.68)

 and  are the linear velocity and linear acceleration vector of joint 1 

respectively and given in Equation (3.69) and (3.70). 

 ∗ (3.69)

 ∗ ∗ 	 (3.70)

The forces and moments exerted to the link  by link 1 and  1 are added to the  

total force and torque in Equation (3.71) and (3.72).  

 (3.71)

 ∗ ∗ ̂ (3.72)

Representation of , , ̂  and 							∗ are stated in Figure 3.8. 

Equation (3.73) computes the torque projections on the joints for a robot motion. 

These torque projections are the resulting scalar torque values of the robot joints for 

the motion. 

 (3.73)

where  is the visous damping coefficient.  
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 (3.78)

 	 (3.79)

 (3.80)

 ̂ ̂ 	 (3.83)

 ∗ 	 (3.84)

 

∗

							∗ 	
(3.85)

 (3.86)

 

∗

		∗ ̂ 	
(3.87)

 (3.88)

3.4.2.1 Newton-Euler recursive computation 

Newton-Euler approach is an efficient method to compute the dynamic model for 

real time applications. Newton-Euler recursive computation is proposed by Luh, 

Walker and Paul in 1980[16]. It is called Luh-Paul-Walker algorithm as well. The 

algorithm consists of two recursive computations as forward recursion and backward 

recursion.  

The variables, which are used in Luh-Paul-Walker algorithm are stated as[16]: 

(1)  Constants are determined: n=number of the joints, 0 and 0, 

since the robot is fixed to the ground, however, using 
0
0

9,8 /
, effect of 

the gravity is taken to the account.  

(2)  Joint variables are , 		 	  for 0,1,2,… , . 
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4.2.2 Proxy rendering 

The HLAPI provides the both direct and default proxy rendering. The default proxy 

rendering is disabled to translate and rotate the proxy by user defined motion 

algorithms. In this study, the proxy rendering is achieved by the user commands, 

which update the proxy position by the movements of the haptic interface point. 

The default proxy is a 3D blue cone and also it is called cursor. It starts to move from 

the origin of the world space. However, the robot is controlled at the end-effector or 

origin of the 4th frame in this study. Therefore, the cursor is moved to the origin of 

the 4th frame. Thus, the proxy starts to motion from the zero position of the Staubli 

RX160, which is stated in Figure 3.2. 

4.2.3 Motion algorithm of the virtual Staubli RX160 

All the links and the tool are located at their initial position into the world space and 

an algorithm is developed to obtain the robot motion. In this study, the proxy moves 

by the movement of the haptic interface point. Therefore, the position information is 

fed to the proxy from the haptic device. The angle values of the Staubli RX160 are 

calculated by the inverse geometric model of the 3 DOF Staubli RX160, which is 

derived in chapter 2 to obtain the proxy position. 

The motion algorithm has 5 basic steps: 

Step 1: Calculate the distance between the origin of the world space and the rotation 

point of the link: 

 

0
0
0
1

 (4.1) 

where,  is the link number and the  is the distance between the origin of the world 

space and the rotation point of link . By multiplying the transformation matrix 

	  by the origin position (0, 0, 0) of the th link, the  is obtained. 

Step 2: Move the link to the origin of the world space using the distance obtained in 

step 1. 

Step 3: Calculate the rotation axis vector of the link  corresponding to the coordinate 

system of the world space.  
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5.  APPLICATION AND EXPERIMENTS  

In this chapter, application setup and experiments are described and the experimental 

results are given. 

5.1 Application Setup 

The application setup consists of a PC and a Phantom Premium 1.5 HF 6 DOF haptic 

device. The communication between the haptic device and the PC are achieved via 

the parellel communication by the parallel ports of the PC and the haptic device. The 

application is developed using the OpenHaptics SDK, which is based on the C/C++ 

programming language in Microsoft Visual Studio IDE (Integrated Development 

Environment). 

At first, the haptic device is calibrated. Before running the application, the haptic 

device is positioned at its zero position. When the application is run, the interface 

and MS-DOS windows appear. The movement of the virtual Staubli manipulator is 

visualized in the graphical interface and the desired information about the application 

is printed in the MS-DOS window on-line. Thus, the user can follow both the 

movement of the virtual Staubli manipulator and the desired information such as 

position, velocity, acceleration inputs and resulting forces. User defined informations 

about the application can be printed in the MS-DOS window as well.  

Initially, the virtual model of the Staubli RX 160 manipulator is its zero position and 

it moves by the movement of the haptic interface point. The software computes 

graphics and haptic rendering algorithms and applies the resulting visual and force 

feedback toward the user in real time.  

During the experiment, the software records the position, velocity, acceleration input 

and the resulting forces. After the application is stopped, the software writes the 

recorded data to a file. 

The application setup is shown in Figure 5.1. 



 

 

5.2 Exp

The ma

diverse 

are reali

The gen

loops in

The hum

tactile p

renderin

The end

in the a

Then, th

frequen

Hz appl

periments 

ain objective

conditions.

ized for the

neral schem

n the scheme

man eye ca

perception c

ng loop runs

d-effector of

application.

he graphic a

ncies. Finall

lied toward 

Fig

e of the exp

. Some part

se condition

me of the ap

e running at

an perceive

can feel the 

s at 30 Hz a

f the Staubl

 The huma

and haptic r

ly, resulting

the human 

gure 5.1 : A

periments is

ticular cond

ns.   

pplication is

t 30 Hz and

e approxima

impacts co

and the hapt

li RX160 m

an operator 

rendering lo

g visual feed

operator. 

60 

Application 

s investigat

ditions are 

s shown in 

d 1000 Hz. 

ately 30 fra

ontinuous at

tic rendering

manipulator 

provides th

oops proces

dback at 30

Setup. 

ting the stab

determined

Figure 5.2

ames per se

t 1000 Hz. T

g loop runs 

follows the 

he position

ss the posit

0 Hz and re

 

bility of the

d and the ex

. There are

econd and t

Therefore, t

at 1000 Hz

haptic inter

n input to th

ion input at

esulting for

 

e system in 

xperiments 

e two main 

the human 

the graphic 

z.  

rface point 

he system. 

t particular 

rce at 1000 



 

 

Block diag

Fi

gram of the

Fi

gure 5.2 : G

application

igure 5.3 :

61

General sch

n is shown i

Block diagr

1 

heme of the 

in Figure 5.3

ram of the a

application

3. 

application.

 

n. 

. 

 



  

62 
 

The inverse dynamic model block is the main process of the servo loop thread. The 

inverse dynamic model of the 3 DOF Staubli RX160 including the joint frictions and 

the spring system is derived as Equation (5.1). 

 , , (5.1) 

,  and  are the inputs and  is the output of the inverse dynamic model.  

,  and  are the position information of the haptic interface point and it is obtained 

from the encoders of the Phantom haptic device using the HDAPI. ,  and  are the 

linear velocity information of the haptic interface point and are obtained by taking 

derivative of the ,  and  numerically. ,  and  are the linear acceleration 

information of the haptic interface point and are obtained by taking derivative of the  

,  and  numerically. 

 is the joint positions of the Staubli manipulator for its desired end-effector position. 

The end-effector position of the virtual Staubli manipulator depends on the ,  and 

.  is computed using inverse geometric model, which is derived in chapter 3.  is 

the joint velocity vector of the virtual Staubli manipulator and it is computed using 

inverse kinematic model, which is derived in chapter 3.  is the joint acceleration 

vector of the virtual Staubli manipulator. By taking derivative of the forward 

kinematics model, Equation (5.2) is obtained. 

 (5.2) 

Then,  is computed using Equation (5.3). 

 (5.3) 

 is the position gain and scales the haptic interface point movement to the end-

effector movement of the Staubli maniulator.  is the force gain and scales the 

computed forces to the Phantom haptic device. By using the static model equations, 

computed torques are mapped to the end-effector force.  

The motion algorithm of the 3 DOF Staubli RX160 is in the graphics thread. It is 

given in chapter 4 and provides the visual feedback toward the user. 
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Experiment 1: Position gain 1, 0,01. 

 

 

 

Figure 5.5 : Experimental results for first path, 1 and 0,01: (a)Position. 
																										(b)Velocity. (c)Acceleration. 
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Figure 5.6 : Force graphs for first path, 1 and 0,01: (a)Computed virtual 
																																																																			end-effector force. b)Limited force applied to the haptic device. 

Figure 5.5 shows the resulting position, velocity and acceleration values of the 

experiment 1. There is a small amount of noise on position curves and this shows the 

instability of the system. Since, the velocity and the acceleration values are obtained 

by numerical derivation, some peak values are occured on the velocity and 

acceleration curves. Figure 5.6 shows the resulting force values. In first force graph, 

numerical calculations caused some peak values. Second graph shows the force 

values inside the force limits of the application. If the resulting force values are more 

then 5 N or less than -5 N, 0 N force applied to the user. There are quite a lot of peak 

values in the first force graph and in second graph, many force values are outside of 

the force limits. These fluctuations force the user to move the haptic interface point 

irregularly and this cause instability. Therefore, experiment 1 is quite unstable. 
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Experiment 2: 1, 0,001. 

 

 

 

Figure 5.7 : Experimental results for first path, 1 and 0,001:    
																																																												 (a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.8 : Force graphs for first path, 1 and 0,001: (a)Computed 
																																																																								end-effector force. b)Limited force applied to the haptic device. 

In experiment 2, only the force gain  is reduced. The instability is improved as can 

be shown in position graph in Figure 5.7 and force graphs in Figure 5.8. The position 

curves are smoother than experiment 1. However, decreasing the force gain cause to 

reduce the sense of reality.  

By improving the stability, the acceleration graph becomes more regular. Thus, 

acceleration effects on the computed forces can be observed from the acceleration 

and computed force graphs clearly. 

The haptic interface point have to move inside the haptic device velocity limits and 

the position gain is 1 in this experiment. Therefore, low acceleration values occured 

in the system. 
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Experiment 3: 1, 0,0001. 

 

 

 

Figure 5.9 : Experimental results for first path, 1 and 0,0001: 
																																																												(a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.10 : Force graphs for first path, 1 and 0,0001: (a)Computed 
																																																																								end-effector force. b)Limited force applied to the haptic device. 

In experiment 3, only the force gain  is decreased again. The system is more stable 

than experiment 1 and 2 as can be shown in position graph in Figure 5.9 and force 

graphs in Figure 5.10. However, force magnitudes and the sense of reality are quite 

reduced. 

The numerical computations caused to peak values in the force graphs. Since, the 

force gain is very low, these peak forces act as force kicking. Because, after applying 

the force gain to the peak forces, some of them are within the force limits of the 

application. There are a small number of these forces as can be seen in Figure 5.10. 

Therefore, they are felt during the experiment, however, they don’t effect the 

stability of the system significantly. 
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Experiment 4: 10, 0,01. 

 

 

 

Figure 5.11 : Experimental results for first path, 10 and 0,01: 
																																																														 (a)Position. (b)Velocity. (c)Acceleration. 

‐2000

‐1000

0

1000

2000

3000

4000

5000

6000
0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

P
o
si
ti
o
n
 [
m
m
]

Time [msec]

Px

Py

Pz

‐5

‐4

‐3

‐2

‐1

0

1

2

3

4

5

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

V
e
lo
ci
ty
 [
m
/s
]

Time [msec]

Vx

Vy

Vz

‐0.002

‐0.0015

‐0.001

‐0.0005

0

0.0005

0.001

0.0015

0.002

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

A
cc
e
le
ra
ti
o
n
 [
m
/s
²]

Time [msec]

Ax

Ay

Az

(a) 

(b) 

(c) 



  

71 
 

 

 

 

Figure 5.12 : Force graphs for first path, 10 and 0,01: (a)Computed 
																																																																									end-effector force. b)Limited force applied to the haptic device. 

In experiment 4, the position gain  is increased for high force gain. Thus, the end-

effector of the Staubli manipulator moves 10 times more than the haptic interface 

point on each axis.  Therefore, the velocity and acceleration values of the end 

effector is increased as can shown in Figure 5.11. Thus, the resulting forces are 

increased in Figure 5.12.  

The position, velocity and acceleration signals are quite noisy. Therewith, the force 

feedback is quite noisy as well. 

Under these conditions, the system is not stable. Consequently, the sense of reality is 

lost. 

‐100

‐80

‐60

‐40

‐20

0

20

40

60

80

100

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

Fo
rc
e
 [
N
] 

Time [msec]

Fx

Fy

Fz

‐5

‐4

‐3

‐2

‐1

0

1

2

3

4

5

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

Fo
rc
e
 [
N
] 

Time [msec]

Fx

Fy

Fz

(a) 

(b) 



  

72 
 

Experiment 5: 10, 0,001. 

 

 

 

Figure 5.13 : Experimental results for first path, 10 and 0,001: 
																																																												 (a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.14 : Force graphs for first path, 10 and 0,001: (a)Computed 
																																																																								end-effector force. b)Limited force applied to the haptic device. 

By decreasing the force gain, the resulting force values are occurred inside the force 

limits in experiment 5. However, the system is still quite unstable as can be seen in 

position graph in the Figure 5.13. 

The noises in the velocity and the acceleration graphs are reduced. However, they are 

not adequate to compute smooth force values. Therefore, the computed force values 

fluctuate. 

In Figure 5.14, the force values inside the force limits are high and abrupt force 

changes caused a significant amount of force kicking. Consequently, irregular force 

values occur in the system. 
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Experiment 6: 10, 0,0001. 

 

 

 

Figure 5.15 : Experimental results for first path, 10 and 0,0001: 
																																																											 (a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.16 : Force graphs for first path, 10 and 0,0001: (a)Computed 
																																																																							end-effector force. b)Limited force applied to the haptic device. 

In experiment 6, the force gain is decreased. The system is stable relative to the 

experiment 4 and 5 as can be seen in the position curves in the Figure 5.15.  

The velocity and acceleration values are smoother than experiment 4 and 5. 

However, they still need to be smoother than experiment 6. The numerical 

differentiation caused these irregularities in the velocity and the acceleration graphs. 

They effect the computed force values as well. 

Numerical computations caused to occur peak force values as can be seen in Figure 

5.16 and they can be felt during the experiment.  

Since, the position gain is low, the computed force values are also quite low in this 

experiment. Therefore, the sense of reality decreased under these conditions. 

‐10

‐8

‐6

‐4

‐2

0

2

4

6

8

10

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

Fo
rc
e
 [
N
] 

Time [msec]

Fx

Fy

Fz

‐5

‐4

‐3

‐2

‐1

0

1

2

3

4

5

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

Fo
rc
e
 [
N
] 

Time [msec]

Fx

Fy

Fz

(a) 

(b) 



 

 

The sec

interfac

red circ

In the f

investig

seperate

seperate

In this 

determi

each oth

By mov

projecti

the velo

values a

the velo

understa

Last 6 e

as the fi

cond path is

e point is m

le in Figure

first path, 

gate the po

ely by cre

ely. 

path, a circ

ned. Invest

her is the pu

ving the ha

on signals 

ocity and th

are compute

ocity, accel

and the resu

experiments

irst 6 experi

s a circular 

moved to pr

e 5.17. 

Figure

the haptic 

osition, vel

eating sinu

cular motio

tigating the 

urpose of de

aptic interfa

are created 

e accelerati

ed. Therefo

leration and

ulting comp

s are realize

iment. 

path as sho

ovide the p

e 5.17 : Seco

interface p

locity, acce

soidal sign

on including

effect of t

etermining t

ce point on

simultaneo

ion projectio

ore, investig

d the comp

plicated forc

ed for this p

76 

own in Fig

ostion chan

ond experim

point is mo

eleration an

nals for po

g movemen

the sinusoid

this path. 

n all axes s

ously. The p

on signals. 

gating the p

puted forces

ce values. 

path. The p

ure 5.17. In

nge on all ax

ment path. 

oved on the

nd the com

ostion proj

nts on all ax

dal position

simultaneou

position pro

Consequen

projection si

s is giving 

position and

 

n this path, 

xes as show

e x, y and 

mputed for

jections on

xes simulta

n projection 

usly, multipl

ojection sig

tly, complic

ignals of th

more infor

d force gain

the haptic 

wn with the 

z axes to 

rce effects 

n all axes 

aneously is 

n signals to 

le position 

gnals effect 

cated force 

he position, 

rmation to 

ns are same 



  

77 
 

Experiment 7: 1, 0,01. 

 

 

 

Figure 5.18 : Experimental results for first path, 1 and 0,01: 
																																																																									(a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.19 : Force graphs for first path, 1 and 0,01: (a)Computed 
																																																										end-effector force. b)Limited force applied to the haptic device. 

In experiment 7, there are noises on the position signals as can be seen in the position 

graph in Figure 5.18. The instability caused these noises and they influenced the 

velocity and acceleration values as can be seen in the velocity and the acceleration 

graphs in Figure 5.18.  

The majority of the computed force values in the y and the z axes are within the 

application force limits as can be seen in Figure 5.19. Computed force values on the 

x axis are higher than the y and the z axes.  

It can be seen in the Figure 5.19 that after 2200 milliseconds, the haptic interface 

point stands at approximately a constant point. However, the force values fluctuate. It 

also shows that the system is not stable adequately. 
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Experiment 8: 1, 0,001. 

 

 

 

Figure 5.20 : Experimental results for first path, 1 and 0,001: 
																																																																			 (a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.21 : Force graphs for first path, 1 and 0,001: (a)Computed 
																																																									end-effector force. b)Limited force applied to the haptic device. 

In experiment 8, the force gain is reduced and the noise on the position, velocity and 

acceleration signals are reduced as can be seen in Figure 5.20. 

The computed force values are decreased and the numerical computations caused the 

peak force values. 

The complicated motion of the virtual Staubli manipulator results with the 

complicated force values, which occur at the end-effector. For example, between 

1400 and 1600 milliseconds in Figure 5.20 and Figure 5.21, the acceleration values 

on the z axis are high, however, the computed force values are high on the x axis in 

same time interval. Therefore, investigating the projection values helps to investigate 

the effects of the values, which occur on the coordinate axis to each other. 
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Experiment 9: 1, 0,0001. 

 

 

 

Figure 5.22 : Experimental results for first path, 1 and 0,0001: 
																																																																			 (a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.23 : Force graphs for first path, 1 and 0,0001: (a)Computed 
																																																								end-effector force. b)Limited force applied to the haptic device. 

In experiment 9, the force gain is reduced again and the noise on the position, 

velocity and acceleration signals are reduced as can be seen in Figure 5.22. 

The position signal is quite smooth. However, there are noises on the velocity and 

acceleration signals. These are the results of the numerical differentiation. The 

effects of the numerical differentiation can be seen in this experiment clearly. 

The computed force values are quite reduced and the sense of reality is lost. The 

numerical computations caused to occur high peak force values. By applying the low 

force gain to these high peak force values, they reduced within the application force 

limits. Thus, they caused to abrupt force changes. During the experiment, these peak 

force values are felt.  
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Experiment 10: 10, 0,01. 

 

 

 

Figure 5.24 : Experimental results for first path, 10 and 0,01: 
																																																																						 (a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.25 : Force graphs for first path, 10 and 0,01: (a)Computed 
																																																									end-effector force. b)Limited force applied to the haptic device. 

In experiment 9, the position gain is increased and the force gain is low. Therefore, 

there are noises on the position signals as can be seen in the position signals in 

Figure 5.24 and they influenced the velocity and the acceleration signals. 

It can be seen in the position graph in Figure 5.24 that between 200 and 800 

milliseconds and between 1800 and 2200 milliseconds, the position is increased on 

the z axis. The position increase on the z axis influences all the axes. Because there 

are similar noises on all the axes in these time intervals.    

The computed force values are high and the major part of the computed forces are 

out of the application limits. Therefore, the system is quite unstable under these 

conditions. 
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Experiment 11: 10, 0,001. 

 

 

 

Figure 5.26 : Experimental results for first path, 10 and 0,001: 
																																																																				 (a)Position. (b)Velocity. (c)Acceleration.  
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Figure 5.27 : Force graphs for first path, 10 and 0,001: (a)Computed 
																																																								end-effector force. b)Limited force applied to the haptic device. 

In experiment 11, the force gain is increased and the position gain is high. The 

position curves are quite smooth as can be seen in the position graph in Figure 2.26. 

However, there are still noises in the velocity and acceleration curves. The numerical 

differentiation caused these noises. 

There are noises in the computed force signals as can be seen in Figure 2.27. The 

majority of the computed force values are within the application force limits. 

However, abrupt force changes occur in the system and the numerical computations 

caused the peak force values. 

The position projections are close to the 0 between 1000 and 1400 milliseconds and 

it results with the force fluctuation in this time interval. 
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Experiment 12: 10, 0,0001. 

 

 

 

Figure 5.28 : Experimental results for first path, 10 and 0,0001: 
																																																																 (a)Position. (b)Velocity. (c)Acceleration. 
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Figure 5.29 : Force graphs for first path, 10 and 0,0001: (a)Computed 
																																																						end-effector force. b)Limited force applied to the haptic device. 

In experiment 12, the force gain is increased again and the position gain is high. The 

position curves are still quite smooth as can be seen in the position graph in Figure 

2.28. There are noies on the velocity and the acceleration signals. The numerical 

differentiation caused these noises. There are position changes on all the axes 

simultaneously between 1200 and 1600 milliseconds and all the position projections 

are close to the 0 in this time interval. This results with the force fluctuations in this 

time interval as can be seen in Figure 5.29. 

The majority of the computed force values are within the application force limits. 

However, the computed force values are very low. Therefore, the sense of reality is 

lost under these conditions. 
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6.  CONCLUSION AND RECOMMENDATIONS  

An open source and developable computer software is developed for this thesis and 

future haptics researches. By using this software, the experiments are realized for 

determined conditions. 

The experiments are realized for two different paths. For each path, 1 and 10 position 

gains and for each poisition gain, 0.01, 0.001 and 0.0001 force gains are used as 

experiment conditions. Then, resulting position, velocity, acceleration and force 

values are obtained and plotted with respect to time.  

The position and force gain effects on the stability of the system is investigated. 

Numerical differentiation caused to occur noises on the velocity and acceleration 

signals and they influenced the stability of the computed force values. Numerical 

computations caused the peak position, velocity, acceleration and computed force 

values.  

Increasing the position gain causes to occur high velocity and acceleration values. 

Hence, the high force values are obtained and they cause to instability. Decreasing 

the force gain improves the stability, however, the sense of reality is reduced. 

The instability causes to abrupt force and position changes. Thus, vibration occurs on 

the system. Furthermore, numerical computations cause the peak forces. The peak 

forces and abrupt major force changes result in large discontinuities in force 

magnitude, hence, force kicking occurs in the system. 

The vibration is a noise on both the position input and the force feedback signal and 

it needs to be filtered to improve the stability of the system. To achieve this, diverse 

filters, which are used in the signal processing applications can be used. Another way 

is placing a virtual spring-damper system between the haptic interface point and the 

end-effector of the virtual Staubli manipulator. Thus, the noise, which is occurred on 

the signals can be eliminated. In addition to these methods, artificial intelligence 

algorithms can be applied to the system to detect the noise and improve the stability 

in future works. 
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APPENDICES 

APPENDIX A: QuickHaptics micro API classes and properties 
 
APPENDIX B: Resulting position, velocity, acceleration and computed force values      
																														(Magnitudes) of the experiments 
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Figure AA.1 :  QuickHap
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APPENDIX B  

 

 

 

 

Figure B.1 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.2 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.3 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 

0

1000

2000

3000

4000

5000

6000

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

P
o
si
ti
o
n
 [
m
m
]

Time [msec]

Pr

0

1

2

3

4

5

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

V
e
lo
ci
ty
 [
m
m
/s
]

Time [msec]

Vr

0

0.0005

0.001

0.0015

0.002

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

A
cc
e
le
ra
ti
o
n
 [
m
m
/s
²]

Time [msec]

Ar

0

10

20

30

40

50

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

4
0
0
0

4
2
0
0

4
4
0
0

4
6
0
0

4
8
0
0

5
0
0
0

5
2
0
0

5
4
0
0

Fo
rc
e
 [
N
]

Time [msec]

Fr

(a) 

(b) 

(c) 

(d) 



  

100 
 

 

 

 

 

Figure B.4 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.5 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.6 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.7 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.8 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.9 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force. 																																						 
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Figure B.10 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force.  																																			 

0

1000

2000

3000

4000

5000

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

P
o
si
ti
o
n
 [
m
m
]

Time [msec]

Pr

0

1

2

3

4

5

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

V
e
lo
ci
ty
 [
m
m
/s
]

Time [msec]

Vr

0

0.002

0.004

0.006

0.008

0.01

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

A
cc
e
le
ra
ti
o
n
 [
m
m
/s
²]

Time [msec]

Ar

0

10

20

30

40

50

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

Fo
rc
e
 [
N
]

Time [msec]

Fr

(a) 

(b) 

(c) 

(d) 



  

107 
 

 

 

 

 

Figure B.11 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force.  																																			 
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Figure B.12 : Resulting values (Magnitudes): (a)Position. (b)Velocity. 
(c)Acceleration. (d)Force.  																																			 
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