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POLYMER-GRAFTING ONTO POLYURETHANE BACKBONE VIA 

DIELS-ALDER REACTION 

SUMMARY 
 

Biocompatible, biodegradable, or bioresorbable polymers are constantly being used 

in biomedical and environmental applications, such as medical implants or drug-

delivery systems. In terms of finding new technologies with the capability of having 

environmental friendly materials, it is paramount to seek new ways of improving the 

functionalities of polymers such as polyurethanes in this case. For that matter, since 

polyurethanes are an important class of polymers in the field of academy and 

industry, the development in that area would serve mankind a spectacular application 

branches in the field of medicine, autos, coatings, paintings and adhesives. 

Aliphatic polyurethane with pendant anthracene moieties (PU-anthracene) were 

prepared from polycondensation of anthracen-9-yl methyl 3-hydroxy-2-

(hydroxymethyl)-2-methylpropanoate (anthracene diol) 1, with 

hexamethylenediisocyanate (HMDI) in the presence of dibutyltindilaurate (DBTL) in 

CH2Cl2 at room temperature for 10 d.  

Aliphatic polyurethane with a pendant anthracene group is employed as a backbone. 

The graft copolymers with regular graft points containing PU backbone combed with 

poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) (PEG) side chains 

were simply achieved by a sequential polymer click reactions. The PU-anthracene 

(Mn,GPC = 12900 g/mol, Mw/Mn= 1.87, relative to PS standards) was clicked with 

a linear α-furan protected-maleimide terminated-poly(methyl methacrylate) (PMMA-

MI) (Mn,GPC = 2500 g/mol, Mw/Mn =1.33) , or –poly(ethylene glycol) (PEG-MI) 

(Mn,GPC = 550 g/mol, Mw/Mn = 1.09), to result in  well-defined PU-graft 

copolymers, PU-g-PMMA (Mn,GPC = 23800 g/mol, Mw/Mn = 1.65, relative to PS 

standards)  or PU-g-PEG (Mn,GPC = 11600 g/mol, Mw/Mn = 1.45, relative to PS 

standards) using Diels-Alder reaction in dioxane/toluene at 105 
0
C, have gained 

increasing interest for their potential use in biomedical and pharmaceutical 

applications due to their favorable biocompatibility, biodegradability, and 

nontoxicity. The Diels-Alder grafting efficiencies were found to be over 93-99% 

using UV spectroscopy. Moreover, the structural analyses and the thermal transitions 

of all copolymers were determined via 
1
H NMR, DSC and TGA, respectively. It was 

found out that all the graft structures including the model (PU-g-Adduct Alcohol, 

PU-g-PEG, PU-g-PMMA) were fitting with the results of 
1
H NMR, UV, DSC and 

TGA. With respect to the UV Diels-Alder efficiencies of those mentioned grafts 

were found to be in the range of 93 – 99 %. This vindicates the success of the yields 

of graft.  

In terms of technological aspects and future work, one can assume that, grafts onto 

Polyurethane backbone might have significant improvements in the stress vs strain 

graph. PMMA has the durability, PEG has the hydrophilicity and PU has the 

elasticity and toughness. When these are combined in the stress vs strain graph, an 

elastic, tough, strong, heat resistant (due to higher Tg points of DSC) combed like 

polymer structure is seen to be formed.
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DIELS-ALDER CLICK TEPKİMELERİ İLE POLİÜRETAN GRAFT 

KOPOLİMERLERİNİN SENTEZİ 

 

ÖZET 
 

Biyouyumlu, biyodegrede olabilen ve çözünebilen polimerler, biyomedikal ve çevre 

bilimi alanlarındaki yüksek uygulanabilirlikleri ve kullanılabilirlikleri sayesinde 

medikal implantlarda ve ilaç kimyasında vücuda taşıyı vektörler olarak kullanılması 

hususunda önemli yer almaktadırlar. Çevreye uyumlu ve zarar vermeyen yeni 

teknolojilerin keşfedilebilmesi için polimerlerin bir kolu olan poliüretanların 

fonksiyonlarının geliştirilmesi çok önemlidir. Poliüretanlar akademi ve sanayi 

tarafından çalışılan ve önem arzeden polimerler olduğundan ötürü, bu gelişim, 

teknolojinin farklı farklı alanlarında (otomotiv, medikal, kaplamalar, boya, 

adhesivler vb.) kullanılan poliüretanların insanlığa daha iyi hizmet etmesinde rol 

oynayacaktır. 

Bu manada, mekanik özellik bakımından daha dayanıklı, daha sert ve sertliğine 

rağmen elastisitesini koruyabilen yeni graft polimerler üretmek ve bunları sanayiye 

uyarlayabilmek büyük önem arz etmektedir. Sentezi yapılan yeni bir tip graft veya 

tarak kopolimerin, doğru sentezlendiğine ve yeni özellikler kazandığına dair ikna 

edici sonuçlar vermesi gerekmektedir. Proton NMR’ı bilinen en yaygın yöntem 

olmakla beraber bunu, bu tezde uygulanan UV ölçümü, GPC, DSC ve TGA gibi 

diğer yöntemler de takip etmelidir. 

Antrasen gruplu alifatik poliüretanın sentezi genellikle literatürde bilindiği üzere 

isosiyanat ve diol grubu olan iki reaktant arasında gerçekleşip, step (kademeli) 

polimerleşme sınıfı altında yer almaktadır. Genellikle step (kademeli) 

polimerleşmede küçük bir molekülün eliminasyonu gerçekleşir. Bu çoğunlukla su 

gibi bir molekül olmasına karşın, bu çalışmada hiçbir yan ürün ve küçük molekül 

ortaya çıkmamıştır. 

Poliüretanın karbamat gövdesini oluşturmak için, antrasen diol, hekzametilen 

diizosiyanat tercih edilmiştir. Bu reaktantların tepkimesi dibütiltindilaurat ile 

diklorometan çözücüsü içinde 10 gün süren kondenzasyon polimerleşmesi ile 

sentezlenmiştir. Süreç boyunca, polimerleşme tepkimesi oda sıcaklığına sabitlendi. 

Sonuçlar çekilen proton NMR’ında bakıldığında en önemli olan isosiyanat ucuna 

bağlı CH2’deki hidrojenlerin, diğer uçtaki OH grubunun hidrojeninin ve de 

antrasenin piklerinin kusursuzca spektrumda var olduğu görüldü. Çekilen UV de elin 

parmaklarını andıran özel antrasen eğrisinin varlığı ve DSC’deki 72,9 
o
C’lik Tg 

noktasının gözlemlenmesi bunu destekledi. TGA sonuçlarına göre ise yapının 200
 

o
C’den sonra  bozunuyor olması yine destekleyici bir unsurdu. 

Antrasen gruplu alifatik poliüretan homopolimeri, Diels-Alder ile oluşacak graft 

kopolimer için omurga olarak kullanıldı. Alifatik poliüretan omurgasına, ardışık 

polimer klik tepkimeleriyle poli(metil metakrilat) (PMMA) ve poli(etilen glikol) 

(PEG) başarıyla eklenerek tarak şeklinde graft kopolimer yapısı oluşturulmuştur. 

Tepkimeye BHT eklenerek, 105 
o
C gibi yüksek bir sıcaklıkta oluşabilecek ortam 

radikalleri giderilmiştir. PU-antrasen (Mn,GPC = 12900 g/mol, Mw/Mn= 1.87, PS 

standardlarına göre), α-furan korumalı maleimid uçlu poli(metil metakrilat) (PMMA-

MI) (Mn,GPC = 2500 g/mol, Mw/Mn =1.33) ile ve α-furan korumalı maleimid uçlu 

poli(etilen glikol) (PEG-MI) (Mn,GPC = 550 g/mol, Mw/Mn = 1.09) ile büyüklüğü 
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ve bağlanma yeri kesin olarak bilinecek şekilde Diels-Alder reaksiyonuna 

dioksan/toluen çözücü varlığında bağlanmıştır. Bilindiği üzere Diels Alder 

tepkimelerinin yüksek sıcaklıkta yüksek verimle gerçekleşiyor olması nedeniyle 

deneyde de 105 
o
C kullanılmıştır. Daha yüksek sıcaklığa çıkılabilmesi mümkün iken, 

dioksanın kaybını önlemek amacıyla bu sıcaklık optimum olarak seçilmiştir.  

Neticesinde PU-g-PMMA (Mn,GPC = 23800 g/mol, Mw/Mn = 1.65, PS 

standardlarına göre) ve PU-g-PEG (Mn,GPC = 11600 g/mol, Mw/Mn = 1.45, PS 

standardlarına göre) oluşmuştur. PU-g-PMMA tepkimesinin veriminin çok yüksek 

olması ve saflaştırma sonrasında dahi 90% gibi bir oranda eldenin olması kontrollü 

yaşayan radikal polimerizasyon türlerinden biri olan ATRP’nin kullanılması ile 

mümkün olmuştur. PU-g-PMMA’in metil metakrilat tarafından uç grubu Cl ile 

bitmektedir. Br yerine Cl’un uç grup olmasının sebebi, hem Bromun çok iyi bir 

ayrılan grup olması ve dolayısıyla ara basamaklardaki yapıda dursa bile, son yapıda 

uçta kalamayıp ayrılması ve de hem de Cu(I)Cl’ün katalizör olarak kullanılmış 

olması sebebiyledir. Burada tek dezavantaj, Cl gibi bir uç gruplu grafta sahip 

olmaktır. Yalnız bu durum çok basit bir post polimerizasyon modifikasyonu ile 

giderilebileceği için bu konuda tez içerisinde bir adım daha yapılması gerekli 

görülmemiştir. 

Diels-Alder graft kopolimer verimi, ultra viyole spektroskopisinde yüzde 93 ile 99 

arası gibi yüksek bir değerde bulunmuştur. Kopolimerlerin yapı analizleri 
1
H NMR 

ile, termal geçiş diyagramları ise DSC ve TGA ile sorunsuz olarak tayin edilmiştir. 

UV sonuçlarındaki Diels-Alder sonuçlarının verimlerinin bu denli yüksek olması çok 

büyük bir başarıdır. Bunu desteklemek maksatlı çekilen DSC diyagramlarında 

görülmüştür ki, PU’nun kendi Tg noktası olan 72,9’dan daha büyük değerler elde 

edilen graft kopolimerler, hem yapı olarak daha farklı davrandıklarını hem de ısıya 

karşı daha yüksek direnç gösterdiklerini ispatlamışlardır. TGA diyagramında 

bambaşka eğrilere sahip oluşları yine yapıların farklı olduğunu yani Diels-Alder 

tepkimesinin gerçekleştiğini ispatlarken, bir yandan da külleştirme sırasındaki Retro 

Diels-Alder hakkında da bizlere bilgi vermektedir. Antrasen-maleimid arasındaki 

Retro Diels-Alder 200
 o
C’den sonra gerçekleşmiştir. 

1
H NMR spektrum piklerindeki en karakterize pikler olan polimer tekrar eden birimi 

hidrojenleri, antrasen hidrojenleri ve poliüretan omurga uç grup hidrojenleri 

sorunsuzca belirmiş ve yapılar ispatlanmıştır. Bunu takiben graftlarda, aynı UV’de 

olduğu gibi 
1
H NMR’ında da antrasen pikleri aromatik bölgede kaybolmuştur. 

GPC sonuçları ise PMMA’in graftının poliüretana normalde de olması gerektiği gibi 

poliüretan homopolimere oranla daha solda çıkarmıştır. GPC kolonuna tutunmadan 

hızlıca akıp geçen büyük PU-g-PMMA polimerleri kolonu erkenden terk edip, zaman 

eğrisinde solda çıkmıştır. Bu durum PU-g-PEG’de ters olmuştur. Sebebi ise PEG in 

hidrodinamik hacminin küçük olmasının onun kolona ve kolonun küçük keselerine 

tutunmasını arttırmış ve sanki küçük bir molekül kolonu geç terkediyor gibi bir 

izlenim yaratmıştır. Polistiren standartları bu datada böyle bir değişiklik yapmıştır 

ama netice kolayca bu şekilde anlaşılabilmektedir. 

Konunun sanayiye uyarlanabilirlliğini ele almak gerekirse, biyomedikal ve ilaç 

kimyası alanlarında önemli sayılacak olan biyoçözünürlük, biyouyumluluk ve toksik 

olmayan özelliklere sahip olması yönünde geliştirilme yapılmış olmasıdır. Bu 

uyumun olmasını olası mekanik özelliklerin gelişimine ait ipuçları bizlere 

göstermektedir. Gerilme-defromasyon eğrisi genellikle teknolojik veya sanayi 

değerlendirmeler için kullanılmaktadır. PMMA gibi bir sert malzemenin, PU gibi bir 
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elastic ve amorf bir polikondenzasyon polimerinin graft olarak birleşip hem elastic 

hem de güçlü bir polimer olması sanayi anlamında çok büyük önem arz etmektedir. 

PEG graftının ise düşük hidrodinamik hacmi, onu gerekli görülen viskoz alanlarda 

küçük ve dayanıklı kılabilecekken, aynı zamanda PEG’in hidrofilik özelliği yani 

suyu sevmesi, onun başlı başına kullanımına çok büyük katkı sağlayacaktır. Bu tarz 

dallı, taraklı polimerler bu tip özelliklerle tıbbi alanlarda etkin şekilde 

kullanılmaktadırlar ve bu tezdeki graftlar da yine bu yönde adımlar atabilir. İlaç 

kapsüllerinin PEG’in hidrofilik yapısında olması gibi veya dallı olan bu graftların 

hücre içerisinde yanlış katlanmış olan büyük tomarlar halindeki proteinleri tutup 

çekip çıkardığını öngörmek Parkinson, Alzheimer, ALS, Huntington gibi 

nörodejeneratif hastalıkların önüne geçmeyi dahi sağlayacaktır. Dolayısıyla hem tıpla 

hemde genetik ve biyoteknolojiyle birleşik multi disipliner çalışmalar 

yapılabilecektir. Polimer kimyasının bu geniş yelpazede kullanılabilir olması bu 

alanın önünün daha çok açık olduğunu ve yeni gelişmelere gebe olduğunu bizlere bir 

kez daha göstermektedir. 

Aynı şekilde gelecekte bu konunun gidebileceği bir alan olan kalp pilleri ve 

kateterlerin graft kopolimer yapıları bir hayli önemlidir. Vücuda uyumlu, toksik 

olmayan taraklı kopolimerler geliştirmek ve bunları ucuz maliyetle yapabilmek 

Diels-Alder Klik kimyası gibi bir kimyanın sayesinde olacaktır. 

Çevre Bilimi ve Mühendislik’inde de aynı şekilde toksiklikten uzak bu tarz 

yöntemler etkili bir biçimde kullanılabilir. 
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1. INTRODUCTION 

Polyurethanes (PUs) demonstrate an important class of polymers for the field of 

academy and industry [1]. The most popular applications of PUs are in the field of 

medicine, automobiles, coatings, paintings, and adhesives. The diol-diisocyanate 

based condensation polymerization has still been the most versatile method for the 

synthesis of PU despite the fact that isocyanate-free routes are available [2]. While 

the most of PUs are thermoset, thermoplastic PUs have found a wide range of 

applications because the mechanical, thermal, and chemical properties can be 

modified by the chemical nature and composition of the starting compounds [1]. The 

easiest way to introduce functionalities onto the PU chain is to use functionalized 

precursors [2, 3].
 
Here, much attention has been paid to the functional diols since 

most of the commercialized diisocyanates do not contain suitable functionalities [3-

5]. Even though  the functional diols are commercially available, these functional 

groups generally need to be protected during the polymerization and should be 

removed afterwards [3-5]. As a result, protection and subsequent deprotection steps 

are not convenient. Therefore, it is a great challenge to prepare functionalized diols, 

which will be used in the preparation of PU, since they stay inert during the 

polymerization and allow efficient side chain modification of PU after the 

polymerization [3-5]. The “click” reactions mostly fulfill these requirements for the 

synthesis of side chain- functionalized PUs based on diols with clickable functional 

groups [5-12]. Among click reactions, copper catalyzed azide-alkyne cycloaddition 

(CuAAC) [4, 5], Michael thiol-ene [6], thiol-ene [7, 8], thiol-yne [9], nucleophilic 

substitution on perfluorophenyl ester [10], and Diels-Alder [11, 12]
 
have been 

recently employed for the synthesis of side chain-functional PUs. In recent times, the 

Du Prez group, for the first time, reported an efficient preparation of side chain-

functionalized linear PUs by reacting the one of two types of alkyne-functionalized 

diols (together with butandiol) and hexamethylenediisocyanate (HMDI) [4, 5]. 

Subsequently, alkyne-functionalized PU was clicked to a variety of azide compounds 

via CuAAC, either catalyzed by CuBr/ N,N,N′,N′,N′′-pentamethyldiethylenetriamine 

(PMDETA) or CuSO4.5H2O/sodium ascorbate in N,N-dimethyl formamide (DMF), 
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or dimethyl sulfoxide (DMSO) at 50
o
C affording side chain-functionalized PUs 

having various degrees of functionalization. Moreover, the Du Prez group prepared 

PUs with clickable side chain groups, i.e. alkene, maleimide, and alkynes, and 

allowed to react with thiols using the Michael thiol-ene [6], thiol-ene [7b], and thiol-

yne [9] reactions, respectively, in order to quantitatively incorporate various 

functionalities. However, the Diels-Alder reaction in the PU chemistry is limited to a 

specific type of application based on the exploitation of the thermally reversible 

nature of the Diels-Alder reaction between furan and maleimide [11, 12]. The Wang 

group produced a linear PU with Diels-Alder bonds and demonstrated the self-

healing property of this PU under thermal treatment [11]. The self-healing efficiency 

was determined to be up to 80%. More recently, Du Prez employed Diels-Alder 

reaction for the preparation of furan-based thermoset PUs having a self-healing 

property [12]. In this regard, the diol with one furan functionality was first clicked 

with bis(maleimide) to yield a Diels-Alder adduct as a cross-linker and subsequently 

reacted with HMDI together with a poly(e-caprolactone) (PCL) diol in order to give 

the final thermoset polyurethane in a one-pot reaction. The self-healing system 

operates in the cycles of retro-Diels-Alder and Diels-Alder at 100 and 40 
o
C, 

respectively.  In this work, we studied here a different application of the Diels-Alder 

reaction in PU chemistry. We intended to incorporate linear polymer precursors to 

the PU backbone with the anthracene pendant units through Diels-Alder reaction. 

The linear aliphatic PU with the anthracene pendant groups was first prepared and 

subsequently α-furan-protected-maleimide terminated-linear poly(ethylene glycol) 

(PEG) and poly(methyl methacrylate)  (PMMA) precursors were introduced into this 

PU backbone to yield corresponding graft copolymers, PU-g-PEG and PU-g-PMMA 

via Diels-Alder reaction.   
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Figure 1.1: General pathway of synthesis and modification of aliphatic polyurethane 

with pendant anthracene moieties (PU-anthracene). 
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2. THEORETICAL PART 

2.1 Condensation Polymerizations 

A large number of important and useful polymeric materials are not formed by chain-

growth processes involving reactive species such as radicals, but they proceed 

instead by conventional functional group transformations of polyfunctional reactants. 

These polymerizations often occur with the loss of a small byproduct (which even no 

loss of any byproduct in this thesis’ synthesis of polyurethane), such as water, and 

generally (but not always) combine two different components in an alternating 

structure. The polyester Dacron and the polyamide Nylon 66, shown below, are two 

examples of synthetic condensation polymers, also known as step-growth polymers. 

In contrast to chain-growth polymers, most of which grow by carbon-carbon bond 

formation, step-growth polymers generally grow by carbon-heteroatom bond 

formation (C-O & C-N in Dacron & Nylon (Now You Lousy Old Nippons olarak 

bilinir), respectively). Although polymers of this kind might be considered to be 

alternating copolymers, the repeating monomeric unit is usually defined as a 

combined moiety [19]. 

 

Figure 2.1: Two examples of synthetic condensation polymers. 
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Examples of naturally occurring condensation polymers are cellulose, a polypeptide 

chain of proteins, and poly(β-hydroxybutyric acid), a polyester synthesized in large 

quantity by certain soil and water bacteria. Formulas for these are provided below. 

NOT: “Formulas for these will be displayed below by clicking on the diagram” 

yazısından dehşete kapıldım. Bütün cümleler orijinal kaynakla bire bir aynı ise 

intihalden farkı olmaz. Paraphrasing ve rewriting teknikleri ile cümleleri yeniden 

yazman lazım (biz bazen tanınmayacak hale getirme ve cümlelere tecavüz etme 

diyoruz arkadaş arasında). 

Condensation polymers form more slowly than addition polymers, often requiring 

heat, and they are generally lower in molecular weight. The terminal functional 

groups on a chain remain active, so that groups of shorter chains combine into longer 

chains in the late stages of polymerization. The presence of polar functional groups 

on the chains often enhances chain-chain attractions, particularly if these involve 

hydrogen bonding, and thereby, crystallinity and tensile strength. The following 

examples of condensation polymers are illustrative. 

Note that for commercial synthesis the carboxylic acid components may actually be 

employed in the form of derivatives such as simple esters. Also, the polymerization 

reactions for Nylon 6 and Spandex do not proceed by elimination of water or other 

small molecules. Nevertheless, the polymer clearly forms by a step-growth process. 
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Figure 2.2: Some Condensation Polymers. 

The difference in Tg and Tm between the first polyester (completely aliphatic) and 

the two nylon polyamides (5th & 6th entries) shows the effect of intra-chain 

hydrogen bonding on crystallinity. The replacement of flexible alkylidene links with 

rigid benzene rings also stiffens the polymer chain, leading to increased crystalline 

character, as demonstrated for polyesters (entries 1, 2 &3) and polyamides (entries 5, 

6, 7 & 8). The high Tg and Tm values for the amorphous polymer Lexan are 

consistent with its brilliant transparency and glass-like rigidity. Kevlar and Nomex 

are extremely tough and resistant materials, which find use in bullet-proof vests and 

fire resistant clothing [19]. 
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Figure 2.3: Enhancement of crystallinity by hydrogen bonding. 

Many polymers, both addition and condensation, are used as fibers. The chief 

methods of spinning synthetic polymers into fibers are from melts or viscous 

solutions. Polyesters, polyamides, and polyolefins are usually spun from melts, 

provided the Tm is not too high. Polyacrylates suffer thermal degradation and are 

therefore spun from solution in a volatile solvent. Cold-drawing is an important 

physical treatment that improves the strength and appearance of these polymer fibers. 

At temperatures above Tg, a thicker than desired fiber can be forcibly stretched to 

many times its length; and in so doing the polymer chains become untangled, and 

tend to align in a parallel fashion. This cold-drawing procedure organizes randomly 

oriented crystalline domains, and also aligns amorphous domains so they become 

more crystalline. In these cases, the physically oriented morphology is stabilized and 

retained in the final product. This contrasts with elastomeric polymers, for which the 

stretched or aligned morphology is unstable relative to the amorphous random coil 

morphology. This cold-drawing treatment may also be used to treat polymer films 

(e.g. Mylar & Saran) as well as fibers. 
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Figure 2.4: Types of crystalline domains. 

Step-growth polymerization is also used for preparing a class of adhesives and 

amorphous solids called epoxy resins. Here the covalent bonding occurs by an SN2 

reaction between a nucleophile, usually an amine, and a terminal epoxide. In the 

following example, the same bisphenol A intermediate used as a monomer for Lexan 

serves as a difunctional scaffold to which the epoxide rings are attached. Bisphenol 

A is prepared by the acid-catalyzed condensation of acetone with phenol [19]. 

 

Figure 2.5: The structure of an epoxy resin. 

2.2 Controlled/‘‘Living” Polymerizations 

Conventional free radical polymerization (FRP) has many advantages over other 

polymerization processes. FRP does not require rigid conditions and can be used for 

the copolymerization of wide range of vinyl monomers [20]. The major limitation of 

FRP is poor control over some of the key elements of process that would allow the 

preparation of well-defined polymers with controlled molecular weight, 

polydispersity, composition, chain architecture, and site-specific functionality [21]. 

Living radical polymerizations started in the mid-1990s; radical polymerization was 

thought to be a mature process with relatively little left to discover. Chain 

polymerizations without chain-breaking reactions are called as living polymerization 

by Szwarc [1]. 
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Well-defined polymers can only be synthesized by living ionic polymerizations or 

controlled/ “living” radical polymerization (C/LRP) methods [22]. Until recently, 

ionic polymerizations (anionic or cationic) were the only living techniques that 

efficiently controlled the structure and architecture of vinyl polymers. These 

polymerization techniques ensure low polydispersity materials, controlled molecular 

weight and defined chain ends but they are not useful for the polymerization and 

copolymerization of a wide range of functionalized vinylic monomers [23]. 

Furthermore, these techniques require stringent reaction conditions and pure 

reagents. To overcome all these limitations polymer chemists developed new 

concepts. These new concepts are often called controlled radical polymerization, 

living radical polymerization, control/“living” radical polymerization [24, 25]. 

Living or controlled/”living” polymerization techniques allow the synthesis of well-

defined polymers with controlled molecular weight, polydispersities, and terminal 

functionalities. The polymerization proceeds until all of the monomer has been 

consumed, and further additions of monomer result in continued polymerization. 

Living or controlled/“living” polymerization can proceed by anionic, cationic, group 

transfer, metathesis, Ziegler-Natta or radical mechanisms [26]. 

Living polymerization provides end-group control and enables the synthesis of block 

copolymers by sequential monomer addition. Living polymerization would be 

demandable because of allowing the synthesis of block copolymers by sequential 

addition of different monomers. A reactive species I* initiates polymerization of 

monomer A (Figure 2.6). 

 

Figure 2.6: Polymerization pathway. 

When the polymerization of monomer A is complete, the reactive centers are intact 

owing to the absence of chain-breaking reactions. Addition of a second monomer B 

culminate in the formation of a block copolymer containing a long block of A repeat 

units followed by a long block of B repeat units. 

Block copolymers have commercial potential for obtaining products that can include 

demandable properties of two or more homopolymers. Living radical 

polymerizations have good commercial potential for materials synthesis because 

many more monomers undergo radical polymerization [1]. However, it does not 
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necessarily provide polymers with molecular weight (MW) control and narrow 

molecular weight distribution (MWD). To obtain well defined polymers the initiator 

should be consumed at early stages of polymerization and that the exchange between 

species of various reactivities should be at least as fast as propagation [27-29]. 

2.2.1 Atom Transfer Radical Polymerization (ATRP) 

Atom transfer radical polymerization (ATRP) is a living radical polymerization 

process, which is consisting of the monomer, initiator, and catalyst composed of 

transition metal species with any suitable ligand. ATRP is a facile technique, which 

allows the preparation of well-defined polymers with narrow molecular weight 

distribution, predictable chain length, controlled microstructure, defined chain-ends 

and controlled architecture [30]. The ATRP system is consisting of the monomer, 

initiator, and catalyst composed of transition metal species with any suitable ligand. 

ATRP, which is the most versatile method of the controlled radical polymerization 

system, uses a wide variety of monomers, catalysts, solvents, and reaction 

temperature. ATRP is one of the most convenient methods to synthesize well-defined 

low molecular weight polymers [31]. 

 

Figure 2.7: The mechanism of ATRP. 

A general mechanism for ATRP shown in Fig. 2.7. The radicals the propagating 

species Rn•, are generated through a reversible redox process catalyzed by a 

transition metal complex. Radicals react reversibly with the oxidized metal halide 

complexes, X–Mtn+1 / ligand, the deactivator, to reform the dormant species and the 

activator. These processes are fast, and the dynamic equilibrium that is established 

favors the dormant species. For that matter, all chains can begin growth at the same 

time, and the concentration of the free radicals is quite low, resulting in reduced 

amount of irreversible radical-radical termination. Since the deactivation rate 

constant is substantially higher than that of the activation reaction, 

 

 

𝒌𝒆𝒒 =
𝒌𝒂𝒄𝒕

𝒌𝒅𝒆𝒂𝒄𝒕
~𝟏𝟎−𝟕 
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Each polymer chain is protected by spending most of the time in the dormant state, 

and thereby the permanent termination via radical coupling and disproportionation is 

substantially reduced [32]. ATRP will not occur at all, or occur very slowly, if the 

equilibrium constant is too small. On the contrary, too large an equlibrium constant 

will cause to a large amount of termination because of a high radical concentration 

[33]. Polymer chains grow by the addition of the free radicals to monomers in a 

manner similar to a conventional radical polymerization, with the rate constant of 

propagation, kp. Termination reactions (kt) also occur in ATRP, mainly through 

radical coupling and disproportionation. However, in a well-controlled ATRP, only 

several percents of the chains become dead via termination [32]. Polydispersities in 

ATRP decrease with conversion, with the rate constant of deactivation and also with 

the concentration of deactivator. 

The molecular conversion and the amount of initiator used,  

 

polydispersities are low: 

 

ATRP was grown by designing a suitable catalyst (transition metal compound and 

ligands), using an initiator with the suitable structure, and adjusting the 

polymerization conditions such that the molecular weights increased lınearly with 

conversion and the polydispersities were typical of a living process [34, 35]. This 

allowed for an unprecendented control over the chain topology (stars, combs, 

branched), the composition (block, gradient, alternating, statistical), and the end 

functionality for a wide distribution of radically polymerizable monomers [36-38]. 

2.2.1.1 Components of ATRP 

ATRP is a multicomponent system, which is comprises of the monomer, an initiator 

with transferable (pseudo)halogen. 

a) Monomers  

A variety of monomers have been used for atom transfer radical polymerization. The 

typical monomers are methacrylates, acrylonitriles, styrenes, acrylates and 

𝑫𝑷 =
∆ 𝑴 

 𝑰 𝟎
;  

𝑴𝒘

𝑴𝒏
< 𝟏, 𝟑. 
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(meth)acrylamides in bulk, solution using organics or water as solvents, and 

emulsion, supercritical carbon dioxide, producing polymers with well-controlled 

molecular weights and structures [39].  

Each monomer has its own intrinsic radical propagation rate. Therefore, for a 

specific monomer, the concentration of propagating radicals and rate of radical 

deactivation need to be adjusted to maintain polymerization control [33]. 

b) Initiators 

In ATRP, alkyl halides are typically used as the initiator and the rate of the 

polymerization is first order with respect to the concentration of alkyl halides.  

To obtain well-defined polymers with narrow molecular weight distributions, the 

halide group X, must rapidly and selectively migrates between the growing chain and 

the transition-metal complex. Thus far, bromine and chlorine are the halogens that 

afford the best molecular weight control [40-43]. Iodine works well for acrylate 

polymerizations; however, in styrene polymerizations the heterolytic elimination of 

hydrogen iodide is too fast at high temperatures [44]. Fluorine is not used, because 

the C-F bond is too strong to undergo homolytic cleavage [33].  

It should be noted that R-X bonds can be cleaved not only homolytically, but also 

heterolytically, which depends mostly on the initiator structure and the choice of the 

transition metal catalyst. 

The amount of the initiator in the ATRP determines the final molecular weight of the 

polymer at full monomeric conversion. The main role of the initiator is to determine 

the number of growing polymer chains. If initiation is fast and transfer and 

termination negligible, then the number of growing chains is constant and equal to 

the initial initiator concentration. The theoretical molecular weight or degree of 

polymerization (DP) increases reciprocally with the initial concentration of initiator 

in a living polymerization (Fig. 2.8). 

 

Simultaneously, polydispersities decrease with the conversion: 

Polydispersity = (
𝑀𝑤

𝑀𝑛
) 

𝑫𝑷 =  
[𝑴𝟎]

[𝑰𝒏𝒊𝒕𝒊𝒂𝒕𝒐𝒓]𝟎
× 𝒄𝒐𝒏𝒗𝒆𝒓𝒔𝒊𝒐𝒏  
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The most frequently used initiator types used in the atom transfer radical 

polymerization systems are, 1-bromo-1-phenylethane (Styrene), 1-chloro-1-

phenylethane (Styrene), ethyl 2-bromopropionate (Methyl methacrylate), and ethyl 

2- bromoisobutyrate (Methyl methacrylate). Two parameters are important for a 

successful ATRP initiating system; first, initiation should be fast in comparison with 

propagation. Second, the probability of side reactions should be minimized [45]. 

c) Catalysts 

Catalyst is another important component of ATRP. Catalyst determines the position 

of the atom transfer equilibrium and the dynamics of exchange between the dormant 

and active species. There are several prerequisites for an efficient transition metal 

catalyst. First, the catalyst should react with initiator fast and quantitatively to ensure 

that all the polymer chains start to add monomer at the same time. Second, the 

catalyst must have moderate redox potential to ensure an appropriate equilibrium 

between dormant and active species. In general, a low redox potential of the catalyst 

leads to formation of the high Cu(II) concentration (equilibrium is shifted toward 

transient radicals). Consequently, a fast and uncontrolled polymerization is observed. 

In contrast, high redox potential strongly suppresses Cu(II) formation (equilibrium is 

shifted toward dormant species) via a halogen atom abstraction process leading to 

very slow polymerization. Third, the catalyst should be less sterically hindered, 

because large steric congestion around the metal center of catalyst results in a 

reduction of the catalyst activity. Fourth, a good catalyst should not afford side 

reactions such as Hoffman elimination, β-H abstraction, and oxidation/reduction of 

radicals [50]. 

A variety of transition metal complexes with various ligands have been studied as 

ATRP catalysts. The majority of work on ATRP has been conducted using copper as 

the transition metal. Apart from copper-based complexes, iron, nickel, rhenium, 

ruthenium, rhodium, and palladium have been used to some extent [51-56]. Recent 

work from Sawamoto and co-workers shows that the Ru-based complexes can 

compete with the Cu-based systems on many fronts. A specific Fe-based catalyst has 

also been reported to polymerize vinyl acetate via an ATRP mechanism [46]. 
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d) Ligands 

The main role of the ligand in ATRP is to solubilize the transition-metal salt in the 

organic media and to adjust the redox potential and halogenophilicity of the metal 

center forming a complex with an appropriate reactivity and dynamics for the atom 

transfer. The ligand should complex strongly with the transition metal, should also 

allow expansion of the coordination sphere, and should allow selective atom transfer 

without promoting other reactions. 

Nitrogen ligands have been used in copper- and iron-mediated ATRP. For copper-

mediated ATRP, nitrogen-based ligands work particularly well. In contrast, sulfur, 

oxygen, or phosphorus ligands are less effective due to in appropriate electronic 

effects or unfavorable binding constants.  

For copper-based ATRP, the coordination chemistry of the transition-metal complex 

greatly affects the catalyst activity. The electronic ans steric effects of ligands are 

also important [33].  

The most common ligands for ATRP systems are substituted bipyridines, alkyl 

pyridylmethanimines and multidentate aliphatic tertiary amines such as 

N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA), and tris[2-

(dimethylamino)ethyl]amine (Me6-TREN) [58, 59]. In addition to those commercial 

products, it has been demonstrated that hexamethyltriethylene tetramine (HMTETA) 

provides better solubility of the copper complexes in organic media and entirely 

homogeneous reaction conditions [57]. Since copper complexes of this new ligand 

are almost insoluble in water, ATRP technique can be employed in preparing 

poly(acrylate esters) in aqueous suspensions [47]. 

In ATRP, also phosphorus-based ligands can be used to make complex most 

transition metals containing rhenium, ruthenium, iron, rhodium, nickel, and 

palladium, however not copper [33]. 
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Figure 2.8: The most common ligands for ATRP systems. 

e) Solvents 

ATRP can be carried out either in bulk, in solution or in a heterogeneous system 

(e.g., emulsion, suspension). Various solvents such as benzene, toluene, anisole, 

diphenyl ether, ethyl acetate, acetone, N,N-dimethyl formamide (DMF), ethylene 

carbonate, alcohol, water, carbon dioxide and many others have been used for 

different monomers. A solvent is sometimes necessary especially when the obtained 

polymer is insoluble in its monomer [48].  

2.3 Graft Copolymers 

Graft copolymers belong to the general class of segmented copolymers and generally 

consist of a linear backbone of one composition and randomly distributed branches 

of a different composition.  They have been prepared for many decades and have 

been used as impact resistant materials, thermoplastic elastomers, compatibilizers or 

emulsifiers for the preparation of stable blends or alloys. The number of potential 

applications has now expanded with the development of CRP.   

Well-defined graft copolymers are most frequently prepared by either 2.3.1) a 

"grafting through" or 2.3.2) a "grafting from" controlled polymerization process. 



17 

 

However the development of "click" chemistry [60] has led to a third approach, 

2.3.3) based on site specific "grafting onto" chemistry. 

2.3.1 Grafting through 

The "grafting through" method (or macromonomer method) is one of the simplest 

ways to synthesize graft copolymers with well defined side chains. 

 

Figure 2.9: .The “grafting-through” mechanism. 

Typically a low molecular weight monomer is radically copolymerized with a 

(meth)acrylate functionalized macromonomer. This method permits incorporation of 

macromonomers that have prepared by other controlled polymerization processes 

into a backbone prepared by a CRP.  Macromonomers such as polyethylene [61, 62], 

poly(ethylene oxide) [63], polysiloxanes [64], poly(lactic acid) [65], 

polycaprolactone [66] have been incorporated into a polystyrene or 

poly(meth)acrylate backbone.  

Moreover, it is possible to design well-defined graft copolymers by combining the 

CRP "grafting through" macromonomers procedure where the macromonomers had 

been prepared by any controlled polymerization process [67]. This combination of 

controlled polymerization processes allows control of polydispersity, functionality, 

copolymer composition, backbone length, branch length, and branch spacing by 

consideration of mole-ratio of the MM in the feed and reactivity ratio of both the 

monomer and macromonomer.  Branches can be distributed homogeneously or 

heterogeneously based on the reactivity ratio of the terminal functional group on the 

macromonomer and the low molecular weight monomer; and, as shown in the 

properties section, this has a significant effect on the physical properties of the 

materials [65, 66]. 
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Figure 2.10: Homogeneous or heteregeous distribution of grafts. 

A series of segmented poly(alkyl methacrylate)-g-poly(D-lactide) / 

poly(dimethylsiloxane) terpolymers, with different topologies were prepared by 

employing a combination of the "grafting through" technique and CRP [68]. Two 

synthetic pathways were used. The first was a single-step approach in which a 

methacrylate monomer (methyl methacrylate or butyl methacrylate) was 

copolymerized with a mixture of a PLA macromonomer and a PDMS 

macromonomer. The second strategy was a two-step approach in which a graft 

copolymer containing one macromonomer was chain-extended by a 

copolymerization of the second macromonomer and the low-molecular weight 

methacrylate monomer. The molecular structure of the terpolymers was investigated 

by 2D GPC which indicated that well-defined terpolymers with controlled branch 

distribution were prepared via both pathways.  The topologies of the graft 

terpolymers prepared by different combinations of the two step approach are 

displayed in the following schematic diagrams. 

 

Figure 2.11: Types of gradients. 

While properties have yet to be fully explored, it is likely that phase separation is 

modified by polymer topology and hence the properties of the material will differ 

even though compositions were held constant.  

A spontaneous gradient graft copolymer was prepared by grafting through two 

different PEO macromonomers [69]. Selection of a PEO methacrylate with a methyl 

end-group (PEOMeMA, DP of the PEO = 23) and a PEO acrylate end-capped by a 
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phenyl ring (PEOPhA, DP of the PEO = 4) for the copolymerization led to a 

spontaneous gradient of PEO grafts along the copolymer backbone. A gradient 

copolymer was formed because of the significant difference in the reactivity of the 

two PEO macromonomers. The resulting copolymer has a high fraction of 

PEOMeMA grafts at one end of the polymer chain, gradually changing through 

hetero-sequences to predominately PEOPhA at the other chain end. An increase in 

the initial feed ratio of PEO acrylate reduced the rate of change in the shape of the 

gradient. 

2.3.2 Grafting from 

The primary requirement for a successful "grafting from" reaction is a preformed 

macromolecule with distributed initiating functionality. 

 

Figure 2.12: The "grafting from" technique. 

Grafting from reactions have been conducted from polyethylene [70-72], 

polyvinylchloride [73,74], and polyisobutylene [75,76]. The only requirement for a 

multifunctional ATRP grafting from macroinitiator is distributed radically 

transferable atoms along the polymer backbone. The initiating sites can be 

incorporated by copolymerization [70-73], be an inherent part of the first polymer 

[74], or incorporated in a post-polymerization reaction [75]. Indeed a pre-

functionalized isobutylene rubber is commercially available from Exxon, (EXXPRO 

3035) and has been employed in a grafting from ATRP of MMA forming a spectrum 

of materials ranging from elastomers to impact resistant poly(MMA) [75]. 

2.3.3 Grafting onto 

Grafting onto has become a more efficient method for the preparation of graft 

copolymers with the rise of various "click" chemistries.  This approach has been used 

for the preparation of well defined star molecules [77], loosely grafted copolymers, 

[78] and as noted in the following section densely grafted structures [79, 80]. 
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Figure 2.13: An example of "grafting onto". 

A well-defined copolymers of glycidyl methacrylate (<40 mol %) and Me 

methacrylate prepared by ATRP. The glycidyl butyrate monomer unit that had been 

incorporated into the copolymer was efficiently opened with sodium azide in the 

presence of ammonium chloride in DMF at 50 
0
C to prepare a copolymer suitable for 

"grafting onto" using click linking chemistry.  This click-type reaction led to the 

formation of a copolymer with distributed units of the corresponding 1-hydroxy-2-

azido functional group in high yields. These azide-cont aining copolymers were 

further functionalized in a second click reaction conducted at room temp. 

CuBr/N,N,N',N'',N''-pentamethyldiethylenetriamine-catalyzed 1,3-dipolar cyclo-

addition of poly(ethylene oxide) methyl ether pentynoate yielded loosely grafted 

polymeric brushes with hydrophilic PEO side chains. 

Another "high yield" chemical reaction, familiar to all interested in CRP, was 

exploited in a simple one-pot synthesis of heterograft copolymers via "grafting onto" 

by atom transfer nitroxide radical coupling chemistry [81]. The main chain was 

prepared by anionic ring-opening copolymerization of ethylene oxide (EO) and 4-

glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (GTEMPO) then polystyrene and 

poly(tert-Bu acrylate) with bromine end (PS-Br, PtBA-Br) were prepared by ATRP. 

When the three polymers were mixed in the presence of CuBr/N,N,N',N'',N''-

pentamethyldiethylenetriamine (PMDETA) at 90 
0
C, the formed secondary carbon 

radicals at the PS and PtBA chain ends were quickly trapped by nitroxide radicals on 
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poly(GTEMPO-co-EO). It was found that the density of GTEMPO groups on the 

main chain of the poly(GTEMPO-co-EO), the MW of PS/PtBA side chains, and the 

structure of macroradicals significantly affected the efficiency of the grafting onto 

reaction. 

Heterograft copolymers poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl-co- 

ethylene oxide)-graft-polystyrene and poly(tert-Bu acrylate) (poly(GTEMPO-co-

EO)-g-PS/PtBA) were synthesized in one-pot by atom transfer nitroxide radical 

coupling (ATNRC) reaction via "graft onto." 

2.4 Click Chemistry 

In 2001, Sharpless and coworkers introduced “click” chemistry, a new approach in 

organic synthesis that involves a handful of almost perfect chemical reactions [82]. 

Click chemistry can be summarized to only one sentence: “Molecules that are easy to 

make”. Requirements for click reactions involving one or more polymeric reagents, 

which orginally defined by Sharpless, are high yields, stable compounds, modular, 

wide in scope, chemoselective, single reaction trajectory. There are other adapted 

requirements, which are related to synthetic polymer chemistry, like equimolarity, 

large-scale purification, fast timescale [83]. 

 

Figure 2.14: A general notation of click chemistry. 

Nowadays there are several processes have been identified under this term in order to 

meet these criterias such as nucleophilic ring opening reactions; non-aldol carbonyl 

chemistry; thiol additions to carbon–carbon multiple bonds (thiol-ene and thiol-yne); 

and cycloaddition reactions. 
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Among these selected reactions, copper(I)-catalyzed azide-alkyne (CuAAC) and 

Diels-Alder (DA) cycloaddition reactions and thiol-ene reactions have gained much 

interest among the chemists not only the synthetic ones but also the polymer 

chemists. 

 

Figure 2.15: A selection of reactions which match the criteria of Click Chemistry. 

During the last years, “click” cycloadditions became also very popular in polymer 

chemistry, as a tool for functionalizing synthetic macromolecules [30]. 

2.4.1 Diels-Alder Reaction 

Diels-Alder (DA) reaction is one of the most common reactions used in organic 

chemistryand invented by Otto Diels and Kurt Alder who recieved the Nobel Prize in 

1950 for their discovery [84]. The Diels-Alder reaction is a concerted [4π+2π] 

cycloaddition reaction of a conjugated diene and a dienophile to yield a 6-membered 

ring. This reaction is one of the most powerful tools used in the synthesis of 

important organic molecules. The three double bonds in the two starting materials are 

converted into two new single bonds and one new double bond to afford 

cyclohexenes and related compounds (Fig. 2.18).  

This reaction is named for Otto Diels and Kurt Alder, who received the 1950 Nobel 

prize for discovering this useful transformation [85-87]. 
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Figure 2.16: The mechanism of Diels-Alder reaction. 

DA cycloaddition reaction forms not only carbon-carbon bonds but also heteroatom-

heteroatom bonds (hetero-Diels-Alder, HDA) and it is widely used synthetically to 

prepare six-membered rings [88]. Typically, the DA reaction works best when either 

the diene is substituted with electron donating groups (like -OR, -NR2, etc) or when 

the dienophile is substituted with electron-withdrawing groups (like -NO2, -CN, -

COR, etc) [89]. 

Some attractive features of DA reactions (retro-Diels-Alder, rDA) are thermal 

reversibility and decomposition reaction of the cyclic system that can be controlled 

by temperature [90]. 

 

Figure 2.17: General mechanism of Diels-Alder/retro Diels-Alder reactions of 

dienophile and dien. 

These DA reactions are suitable for green chemistry because of the absance of metal 

catalyst in reaction medium. DA “click” reactions can be combined with the living 

/controlled polymerization methods such as RAFT, NMRP, ATRP and ROP. By 

using simple and efficient DA cycloaddition reactions, linear thermoplastic, 

thermosetting polymers and telechelic polymers can be synthesized.  

In brief, DA “click” reactions show great potential for the prepration of tailor-made 

functional materials such as telechelic polymers, block, graft, star, star-block, H-

shaped polymers, dendirimers, bioconjugates and hybris materials. DA “click” 

chemistry has some advantages such as water-solubility, high reaction yields, no 

detectable side-reactions and no requirement for additional catalysts [91]. 
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2.4.1.1 Stereochemistry of Diels-Alder Reaction 

There are stereochemical and electronic requirements for the DA reaction to occur 

smoothly. First, the diene must be in an s-cis conformation instead of an s-trans 

conformation to allow maximum overlap of the orbitals participating in the reaction 

(Fig. 2.20). 

 

Figure 2.18: Diels-Alder reaction’s cis- and trans conformations. 

The “s” in s-cis and s-trans refers to “sigma”, and these labels describe the 

arrangement of the double bonds around the central sigma bond of a diene. Dienes 

often exist primarily in the lower energy s-trans conformation, but the two 

conformations are in equilibrium with each other. The s-cis conformation is able to 

react in the DA reaction and the equilibrium position shifts towards the s-cis 

conformer to replenish it. Over time, all the s-trans conformer is converted to the s-

cis conformer as the reaction proceeds.  

A unique type of stereoselectivity is observed in DA reactions when the diene is 

cyclic. In the reaction of maleic anhydride with cyclopentadiene, for example, the 

endo isomer is formed (the substituents from the dienophile point to the larger 

bridge) rather than the exo isomer (the substituents from the dienophile point away 

from the larger bridge) (Fig.  2.21).  

The preference for endo–stereochemistry is “observed” in most DA reactions. The 

fact that the more hindered endo product is formed puzzled scientists until 

Woodward, Hoffmann, and Fukui used molecular orbital theory to explain that 

overlap of the p orbitals on the substituents on the dienophile with p orbitals on the 

diene is favorable, helping to bring the two molecules together [92, 93]. 
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Figure 2.19: Endo and exo conformations. 

Hoffmann and Fukui shared the 1981 Nobel Prize in chemistry for their molecular 

orbital explanation of this and other organic reactions. In the illustration below, 

notice the favorable overlap (matching light or dark lobes) of the diene and the 

substituent on the dienophile in the formation of the endo product (Fig. 2.22): 

 

Figure 2.20: Pi overlaps of endo – exo conformations. 
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Often, even though the endo product is formed initially, an exo isomer will be 

isolated from a DA reaction. This occurs because the exo isomer, having less steric 

strain than the endo, is more stable, and because the DA reaction is often reversible 

under the reaction conditions. In a reversible reaction, the product is formed, reverts 

to starting material, and forms again many times before being isolated.  

The more stable the product, the less likely it will be to revert to the starting material. 

If the reaction is not reversible under the conditions used, the kinetic product will be 

isolated. However, if the first formed product is not the most stable product and the 

reaction is reversible under the conditions used, then the most stable product, called 

the thermodynamic product, will often be isolated. 
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3. EXPERIMENTAL WORK 

3.1 Materials 

Methyl methacrylate (MMA, 99%, Aldrich) was passed through basic alumina 

column to remove inhibitor and then distilled over CaH2 in vacuum prior to use. 

Poly(ethylene glycol monomethyl ether) (PEG-OH) (Mn = 550 g/mol, Acros) was 

dried over anhydrous toluene by azeotropic distillation. N,N,N’,N’’,N’’-

pentamethyldiethylenetriamine  (PMDETA, 99%, Aldrich) was distilled over NaOH 

before use. Hexamethylenediisocyanate (HMDI, 98%, Aldrich), dibutyltindilaurate 

(DBTL, 95%, Aldrich), N,N’-dicyclohexylcarbodiimide (DCC, 99%, Aldrich), 4-

dimethylaminopyridine (DMAP, 99%, Acros), CuCl (99.9 %, Aldrich), 9-anthracene 

methanol (97%, Aldrich) were used as received. CH2Cl2 (99.9%, Aldrich) was used 

after distillation over P2O5. Tetrahydrofuran (THF, 99.8%, J.T. Baker) was dried 

and distilled over benzophenone-metallic sodium. Solvents unless specified here 

were purified by conventional procedures. All other reagents were purchased from 

Aldrich and used as received without further purification. 

3.2 Instrumentation 

1H NMR spectra were recorded on an Agilent VNMRS 500 (500 MHz for proton 

and 125 MHz for carbon). The conventional gel permeation chromatography (GPC) 

measurements were carried out with an Agilent instrument (Model 1100) consisting 

of a pump, refractive index (RI), and ultraviolet (UV) detectors and four Waters 

Styragel columns (guard, HR 5E, HR 4E, HR 3, and HR 2), (4.6 mm internal 

diameter, 300 mm length, packed with 5 μm particles). The effective molecular 

weight ranges are 2000-4,000,000, 50-100,000, 500-30,000, and 500-20,000, 

respectively. THF and toluene were used as eluent at a flow rate of 0.3 mL/min at 30 

°C and as an internal standard, respectively. The apparent molecular weights 

(Mn,GPC and Mw,GPC) and polydispersities (Mw/Mn) were determined with a 

calibration based on linear PS standards using PL Caliber Software from Polymer 

Laboratories. The differential scanning calorimetry (DSC) measurements were 
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performed on a DSC Q1000 (TA Instruments) with a heating rate of 10oC /min 

under nitrogen. All data were collected from a second heating cycle, and the glass 

transition (Tg) temperatures were determined as a midpoint of thermograms. Thermo 

gravimetric analysis (TGA) measurements were carried out by using TGA Q50 (TA 

instruments) at a heating rate of 10 °C/min under nitrogen atmosphere. UV 

measurements were recorded using VWR UV-1600 PC spectrophotometer in 

CH2Cl2. The Diels-Alder reaction efficiency was monitored by following the 

disappearance of a characteristic signal at 367 nm.  

3.3 Synthetic Procedure 

Anthracen-9-yl methyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate 

(anthracene diol), 1,13 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-

ene-3,5-dione 2,14 α-furan protected-maleimide terminated-PEG (PEG-MI)15 

(Mn,theo= 840 g/mol,  Mn,NMR= 860 g/mol, Mn,GPC= 550 g/mol, Mw/Mn= 1.09, 

relative  to  PS standards) and α-furan protected-maleimide terminated-PMMA 

(PMMA-MI)15 (Mn,theo= 1700 g/mol,  Mn,NMR =  2100 g/mol, Mn,GPC = 2500 

g/mol,  Mw/Mn = 1.33, relative  to  PMMA standards) were prepared according to 

the published procedures.  

3.3.1 Synthesis of 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid 

The 2,2-bis(hydroxymethyl)propanoic acid (16 g, 119.2 mmol) along with p-TSA 

(0.9 g, 4.64 mmol), and 2,2-dimethoxypropane (22.4 mL, 178.8 mmol) dissolved in 

80 mL of dry acetone, and stirred 2 h at room temperature. In the vicinity of 2 h, 

while stirring continued the reaction mixture was neutralized with 12 mL of totally 

NH4OH (25%), and absolute ethanol (1:5), filtered off by-products and subsequent 

dilution with dichloromethane (240 mL), and once extracted with distilled water (80 

mL). The organic phase dried with Na2SO4, concantrated to yield 14.8 g (71%) as 

white solid after evaporation of the solvent. 1H NMR (CDCl3, δ) 4.18 (d, 2H, 

CCH2O), 3.63 (d, 2H, CCH2O), 1.38 (s, 3H, CCH3) 1.36 (s, 3H, CCH3), 1.18 (s, 

3H, C=OC(CH2O)2CH3). 
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3.3.2 Synthesis of anthracen-9-ylmethyl 2,2,5-trimethyl-[1,3]dioxane-5-

carboxylate 

9-Anthracene methanol(6.5 g, 31.25 mmol) was dissolved in 100 mL of CH2Cl2 and 

5 (6.5 g, 37.4 mmol), and DMAP (5.5 g, 45.13 mmol) were added to the reaction 

mixture in that order. After stirring 5 minutes at room temperature, DCC (9.25 g, 

44.9 mmol) dissolved in 50 mL of CH2Cl2 was added. Reaction mixture was stirred 

overnight at room temperature and urea byproduct was filtered. Solvent was 

evaporated and the remaining product was purified by column chromatography over 

silica gel eluting with hexane/dichlorometane (4:1) to give pale yellow oil (Yield = 

9.22 g; 81 %). 1H NMR (CDCl3, δ) 8.50 (s, 1H, ArH of anthracene), 8.32 (d, 2H, 

ArH of anthracene), 8.02 (d, 2H, ArH of anthracene), 7.60-7.45 (m, 4H, ArH of 

anthracene), 6.2 (s, 2H, CH2-anthracene), 4.14 (d, 2H, CCH2O), 3.58 (d, 2H, 

CCH2O), 1.38 (s, 3H, CCH3), 1.35 (s, 3H, CCH3), 1.08 (s, 3H, 

C=OC(CH2O)2CH3). 

3.3.3 Synthesis of anthracen-9-yl methyl 3-hydroxy-2-(hydroxymethyl)-2-

methylpropanoate 

9-anthrylmethyl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate (9.22 g, 25.3 mmol) was 

dissolved in a mixture of 100 mL of THF and 100 mL of 1 M HCl. The reaction 

mixture was stirred for 2 h at room temperature. The precipitated product was 

filtered off and reaction mixture was concentrated and extracted with 480 mL of 

CH2Cl2 and 80 mL of water. The combined organic phase was dried with Na2SO4 

and concentrated. Hexane was added to the reaction mixture and it was kept in deep 

freeze overnight to give white solid (Yield = 8.2 g, 89 %). 1H NMR (CDCl3, δ) 8.52 

(s, 1H, ArH of anthracene), 8.30 (d, 2H, ArH of anthracene), 8.03 (d, 2H, ArH of 

anthracene), 7.60-7.45 (m, 4H, ArH of anthracene), 6.2 (s, 2H, CH2-anthracene), 

3.85 (d, 2H, CH2OH), 3.66 (d, 2H, CH2OH), 2.17(br, 2H, OH), 1.01 (s, 3H, CCH3). 

3.3.4 Synthesis of pendant anthracene-functional polyurethane (PU-

anthracene) via condensation polymerization 

1, anthracen-9-ylmethyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate ( 

anthracene diol 0.500 g, 1.54 mmol, 1.0 equiv), HMDI (0.247 mL, 1.54 mmol 1.0 

equiv) and DBTL (0.045 mL, 0.077 mmol, 0.05 equiv) were dissolved in CH2Cl2 (5 

mL). Subsequently, the solution was bubbled with nitrogen for 30 min and stirred at 
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room temperature for 10 days. After that time the polymer solution was precipitated 

in 50 mL of methanol and the solvent was removed by decantation. The residual 

solid was dissolved in THF and consequently precipitated in methanol. The purified 

polymer was finally dried at 40 °C in a vacuum oven for 24 h (Yield = 0.65 g, 86%, 

Mn,GPC = 12900 g/mol, Mw/Mn= 1.87, relative to PS standards). 1H NMR (500 

MHz, CDCl3, δ) 8.46 (s, ArH of anthracene), 8.32 (s, ArH of anthracene), 7.99 (s, 

ArH of anthracene), 7.60-7.20 (m, ArH of anthracene), 6.15 (s, CH2-anthracene), 

4.80-4.34 (br, NH of PU), 4.30-4.00 (m, CH2OC=O of PU), 3.70-3.50 (m, CH2OH 

and CH2N=C=O end group protons of PU), 3.20-2.85 (m, CH2NHC=O of PU), 

1.50-0.80 (m, CCH3 and (CH2)4 of PU).  

3.3.5 Synthesis of 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene 

3,5- dione  

The adduct 1 (10 g, 60 mmol ) was suspended in methanol ( 150 mL ) and the 

mixture was cooled to 0 °C. A solution of ethanolamine (3.6 mL, 60 mmol) in 30 mL 

of methanol was added dropwise (10 min) to the reaction mixture, and the resulting 

solution was stirred for 5 min at 0 °C, then 30 min at ambient temperature, and 

finally refluxed for 8 h. After cooling the mixture to ambient temperature, solvent 

was removed under reduced pressure, and residue was dissolved in 150 mL of 

CH2Cl2 and washed with 3 × 100 mL of water. The organic layer was separated, 

dried over Na2SO4 and filtered. Removal of the solvent under reduced pressure gave 

white-off solid which was further purified by flash chromatography eluting with 

ethylacetate (EtOAc) to give the product as a white solid. (Yield= 4.9 g, 40%). Mp = 

138-139 °C (DSC). 1H NMR (CDCl3, δ) 6.51 (s, 2H, CH=CH, bridge protons), 5.26 

(s, 2H, -CHO, bridge-head protons), 3.74-3.68 (m, 4H, NCH2CH2OH), 2.88 (s, 2H, 

CH-CH, bridge protons). 13C NMR (CDCl3, δ) 177.03, 136.60, 81.09, 60.53, 47.74, 

42.03.  

3.3.6 Preparation of furan-protected maleimide-end-functionalized PEG 

(PEG-MI)  

Me-PEG20 (Mn = 840 g/mol) (2.0 g, 3.63 mmol) was dissolved in 50 mL of 

CH2Cl2. To the reaction mixture were added DMAP (0.044 g, 0.363 mmol) and 3 

(2.24 g, 7.27 mmol) in that order. After stirring 5 min at room temperature, a solution 

of DCC (1.49 g, 7.27 mmol) in 10 mL of CH2Cl2 was added. Reaction mixture was 



31 

 

stirred for overnight at room temperature. After filtration off the salt, the solution 

was concentrated and the viscous brown color product was purified by column 

chromatography over silica gel eluting with CH2Cl2/EtOAc mixture (1:1, v/v) and 

then with CH2Cl2/methanol (90:10, v/v) to obtain MI-PEG as viscous brown oil. 

Yield: 2.7 g (88%). 1H NMR (CDCl3, δ) 6.50 (s, 2H, CH=CH as bridge protons), 

5.24 (s, 2H, -CHO, bridge-head protons), 4.21 (m, 4H, CH2OC=O), 3.74-3.53 (m, 

OCH2CH2 repeating unit of PEG, C=ONCH2, and CH2-PEG repeating unit), 3.36 

(s, 3H, PEG-OCH3), 2.86 (s, 2H, CH-CH, bridge protons) 2.61-2.56 (m, 4H, 

C=OCH2CH2C=O). 

3.3.7 Preparation of furan-protected maleimide-end-functionalized PMMA 

(PMMA-MI) 

In a 25 mL of Schlenk tube, MMA (5.0 mL, 47 mmol), PMDETA (0.20 mL, 0.94 

mmol), CuCl (0.093 g, 0.94 mmol), toluene (5 mL), and 2-bromo-2-methyl-

propionic acid 2-(3,5-dioxo-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-en-4-yl)-ethyl 

ester  (0.34 g, 0.94 mmol) were added, and the reaction mixture was degassed by 

FPT cycles, and left in argon. The tube was then placed in a thermostated oil bath at 

40 °C for a predetermined time. The polymerization mixture was diluted with THF, 

passed through a basic alumina column to remove the catalyst, and precipitated into 

hexane. The polymer was dried for 24 h in a vacuum oven at 40 °C (Mn,theo = 2800 

g/mol, Mn,NMR = 2700 g/mol, Mn,GPC=2500 g/mol, Mw/Mn = 1.32). 1H NMR 

(500 MHz, CDCl3, d) 6.54 (s, 2H, CH=CH, bridge protons), 5.27 (s, 2H, -CHO, 

bridge-head protons), 4.17 and 4.12 (m, 2H, NCH2CH2OC=O), 3.75-3.50 (m, OCH3 

of PMMA and NCH2CH2OC=O), 2.91 (s, 2H, CH-CH, bridge protons), 2.20-0.75 

(m, aliphatic protons of PMMA). 

3.3.8 Synthesis of Diels-Alder model reaction of PU-anthracene with 4-(2-

hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione, 2 (PU-g-2) 

PU-anthracene (0.100 g, 0.203 mmol of anthracene, 1 equiv) and 2 (0.0558 g, 0.305 

mmol, 1.5 equiv) were dissolved in 30 mL of dioxane/toluene mixture (2:1, v/v). 

Following that, the solution was bubbled with nitrogen for 30 min and refluxed at 

105°C in the dark for 24 h. The solution was evaporated to dryness and the residual 

solid was dissolved in THF, and subsequently precipitated in 50 mL of diethyl ether. 

This dissolution-precipitation procedure (THF-ether) was repeated two times and the 
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obtained product was dried in a vacuum oven at 40 °C for 24 h (Yield = 0.123 g, 

90%, Mn,GPC = 9350 g/mol, Mw/Mn = 1.52, relative to PS standards). 1H NMR 

(500 MHz, CDCl3, δ) 7.50–7.00 (m, ArH), 5.60-5.00 (m, CH2-Diels–Alder adduct 

and NH of PU), 4.78 (s, CH, bridge-head proton), 4.40-4.05 (m, CH2OC=O of PU), 

3.70-3.50 (m, CH2OH and CH2N=C=O end group protons of PU), 3.50-2.90 (m, 

CH2NHC=O of PU, CH-CH bridge protons, OCH2CH2N, OCH2CH2N), 1.50-1.00 

(br, CCH3 and (CH2)4 of PU).  

3.3.9 Synthesis of PU-g-PEG copolymer via Diels-Alder reaction between PU-

anthracene and PEG-MI  

PU-anthracene (0.100 g, 0.203 mmol of anthracene, 1 equiv) and PEG-MI (0.204 g, 

0.244 mmol, Mn,theo= 840 g/mol, 1.2 equiv) were dissolved in 30 mL of 

dioxane/toluene mixture (2:1, v/v). The reaction mixture was bubbled with nitrogen 

for 30 min and refluxed at 105°C in the dark for 48 h. It was evaporated to dryness, 

and the residual solid was dissolved in THF, and subsequently precipitated in 50 mL 

of diethyl ether. The remaining solid was isolated by decantation. This dissolution-

precipitation procedure (THF-ether) was repeated two times and the obtained product 

was dried in a vacuum oven at 40 °C for 24 h (Yield = 0.14 g, 52 %, Mn,GPC = 

11600 g/mol, Mw/Mn = 1.45, relative to PS standards). 1H NMR (500 MHz, CDCl3, 

δ) 7.50–7.00 (m, ArH), 5.45 (bs, CH2-Diels–Alder adduct), 5.20-4.90 (br, NH of 

PU), 4.74 (s, CH, bridge-head proton), 4.40-4.00 (bs, CH2OC=O of PU and 

C=OOCH2CH2), 3.90–2.80 (m, CH2OH and CH2N=C=O end group protons of PU, 

OCH2CH2 of PEG, C=OOCH2CH2N, C=OOCH2CH2N, OCH3 end-group of  PEG 

and CH-CH bridge protons, CH2NHC=O of PU), 2.70-2.40 (br, C=OCH2CH2C=O), 

1.50-1.00 (m, CCH3 and (CH2)4 of PU).  

3.3.10 Synthesis of PU-g-PMMA copolymer via Diels-Alder reaction between 

PU-anthracene and PMMA-MI  

PU-anthracene (0.100 g, 0.203 mmol of anthracene, 1 equiv) and PMMA-MI (0.609 

g, 0.244 mmol, Mn,GPC = 2500 g/mol, 1.2 equiv) were dissolved in 30 mL of 

dioxane/toluene mixture (2:1, v/v). Following that, the solution was bubbled with 

nitrogen for 30 min and refluxed at 105°C in the dark for 48 h. The solution was 

evaporated to dryness and the residual solid was dissolved in THF, and subsequently 

precipitated in methanol/diethyl ether mixture (1:1, v/v).  This dissolution-
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precipitation procedure was repeated two times and the obtained product was dried in 

a vacuum oven at 40°C for 24 h (Yield = 0.5 g, 80 %, Mn,GPC = 23800 g/mol, 

Mw/Mn = 1.65, relative to PS standards). 1H NMR (500 MHz, CDCl3, δ) 7.50–7.00 

(m, ArH), 5.48 (bs, CH2-Diels–Alder adduct), 5.20-4.90 (br, NH of PU), 4.79 (s, 

CH, bridge-head proton), 4.30-4.00 (m, CH2OC=O of PU), 3.90-2.90 (m, CH2OH 

and CH2N=C=O end group protons of PU, OCH3 of PMMA, C=OOCH2CH2N, 

C=OOCH2CH2N, CH-CH bridge protons and CH2NHC=O of PU), 1.50-0.80 (m, 

CH2 and CH3 of PMMA, CCH3 and (CH2)4 of PU).
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4. RESULTS AND DISCUSSION 

4.1 Synthesis of Adduct Functional Structures 

Maleic anhydride and furan were reacted in toluene at reflux temperature for 8 h to 

give 4,10-dioxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione , 1 (Fig. 4.1). The anhydride 

1 (maleimide) was obtained as small white needles. 

 

Figure 4.1: Formation of the adduct. 

The reaction of the anhydride 1 (maleic anhydride) was then carried out to give the 

4-(2-Hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5- dione, 2 . In this 

reaction, the anhydride 1 was suspended in MeOH and a solution of ethanolamine in 

MeOH was added at 0 °C, then the mixture refluxed for 8 h (Fig. 4.2). Finally, 

compound 2 (adduct alcohol) was obtained as a white solid. 

 

Figure 4.2: Formation of the adduct alcohol. 

The synthesis of 2-bromo-2-methyl-propionic acid 2-(3,5-dioxo-10-oxa-4-

azatricyclo[5.2.1.02,6]dec-8-en-4-yl) ethyl ester 3 was obtained via an esterification 

reaction between 2 and 2-bromoisobutryl bromide in THF at room temperature (Fig.  

4.3). Thus, the initiators with proper functionalities for DA reaction were first 

prepared. 
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Figure 4.3: The synthesis of 2-bromo-2-methyl-propionic acid 2-(3,5-dioxo-10-oxa-

4-azatricyclo[5.2.1.02,6]dec-8-en-4-yl) ethyl ester. 

The hydoxyl functionality of 2 was converted to carboxylic acid via a reaction with 

succinic anhydride in the presence of Et3N/DMAP catalyst system and 1,4-dioxane 

as solvent in order to give the 4-(2-{[(3-acetyl-7-oxabicyclo[2.2.1]hept-

yl)carbonyl]amino}ethoxy)-4-oxobutanoic acid, 4 (Fig. 4.4). 

 

Figure 4.4: The synthesis of 4-(2-{[(3-acetyl-7-oxabicyclo[2.2.1]hept-

yl)carbonyl]amino}ethoxy)-4-oxobutanoic acid. 

From overlay 1H NMR spectra Figure 4.5 of 4, methylene protons next to the ester 

(NCH2CH2OC=O) and methylene protons adjacent to nitrogen (NCH2CH2OC=O)  

appeared at 4.25 ppm and 3.74 ppm respectively. Moreover, the multiplet peaks 

around 2.66-2.53 ppm confirmed successful conversion of hydroxyl group to 

carboxylic acid. From spectrum (c), it is clearly seen that the methyl protons next to 

Br were detected at 1.87 ppm and the methylene protons next to the ester unit at 4.31 

ppm. Moreover, the characteristic protons of the adduct were also detected at 6.49 

ppm (bridge vinyl protons), 5.24 ppm (bridge-head protons) and 2.85 ppm (bridge 

protons) respectively. These results confirmed that the synthesis of 3 was achived. 
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Figure 4.5: Overlay 1H-NMR spectra of the compounds. 

a) 3-acetyl-N-(2-hydroxyethyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid (1); 

b) 3-acetyl-N-(2-hydroxyethyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxamide (2); c) 

2-bromo-2- methyl-propionic acid 2-(3,5-dioxo-10-oxa-4-azatricyclo[5.2.1.02,6]dec-

8-en-4-yl) ethyl ester (3); d) 4-(2-{[(3-acetyl-7-oxabicyclo[2.2.1]hept-

yl)carbonyl]amino}ethoxy)-4-oxobutanoic acid (4) in CDCl3. 

To synthesize 1-(3,5-bis(trifloromethyl)phenyl)-3-cyclohexylthiourea) is in other 

world co-catalyst (TU), cyclohexylamine and 3,5-bis(trifluoromethyl)phenyl 

isothiocyanate were reacted in THF at room temperature for 4h (Fig.4.6). Finally, 

compound 5 was obtained as a white solid. 

 



38 

 

 

Figure 4.6: The synthesis of 1-(3,5-bis(trifloromethyl)phenyl)-3-

cyclohexylthiourea). 

4.2 Synthesis of Anthracene Functional Monomers 

2,2,5-Trimethyl-[1,3]dioxane-5-carboxylic acid (1) was synthesized by the reaction 

between 2,2-bis (hydroxymethyl)-propanoic acid and 2,2-dimethoxy-propane with 

excess amount of dry acetone using p-toluene sulfonic acid as catalyst. 

 

Figure 4.7:Formation of the acid ketal. 

1H NMR spectrum of 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid, 6 showing 

resonances corresponding to -COOH proton at 11.20 ppm, methylene groups at 4.18 

and 3.63, the methyl protons adjacent to ketal group and adjacent to methylene 

groups at 1.38-1.36 ppm and 1.18 ppm respectively. 

 

Figure 4.8: 1H NMR spectrum of 6 in CDCl3. 
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Initially, esterification reaction of anthracen-9-ylmethanol and 2,2,5-trimethyl-1,3-

dioxane-5-carboxylic acid 6 was prepared to synthesize  (anthracen-9-ylmethyl 2,2,5-

trimethyl-1,3-dioxane-5-carboxylate), 7 by catalyzing DCC and DMAP in CH2Cl2 at 

room temperature overnight. 

 

Figure 4.9: Synthesis of the anthracene ketal. 

Next, (anthracene-9-ylmethyl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate) 7 was 

hydrolized in THF by adding HCl solution stirring for 2 hours at room temperature. 

 

Figure 4.10: Synthesis of the anthracene diol. 

Thus, anthracen-9-ylmethyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate 8 

was obtained.  

4.3 Synthesis of Co-Catalyst TU 

To synthesize thiourea (TU) 9 co-catalyst simply reacted two compound shown in 

Figure 4.5 which those are cyclohexylamine and 3,5-bis(trifluoromethyl)phenyl 

isothiocyanate, respectively. Cyclohexylamine was added dropwise at room 

temperature to a stirring solution of 3,5-bis(trifluoromethyl)phenyl isothiocyanate 

using THF as solvent. 

 



40 

 

 

Figure 4.11: Synthesis of the thiourea derivative. 

On the NMR spectrum of 1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexyl thiourea 

(TU) integration values corrected the structure of the compound. 

 

Figure 4.12: 1H-NMR spectrum of 1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexyl 

thiourea (TU) in CDCl3 (500 MHz). 

4.4 Homopolymers and Diels Alder Products 

Diels-Alder reactions have been extensively employed for the post-polymerization 

functionalization of a wide variety of polymer backbones13,16 as well as for the 

polymer-polymer conjugation. Therefore, here we explored the use of anthracene 

diol, 1 for PU-anthracene synthesis, followed by its post-functionalization via Diels-

Alder reaction using well-defined polymer precursors with a maleimide terminal 

group (Fig. 4.13). To verify the efficiency of Diels-Alder reaction for grafting onto 
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the PU-anthracene, a model reaction of maleimide functional group with the PU-

anthracene backbone was first studied. 

 

Figure 4.13: . General reaction pathway for the synthesis of PU-graft copolymers. 

The linear PU with regular pendant anthracene functional groups (PU-anthracene) 

was synthesized by step-growth polymerization of anthracene diol, 1 (1 equiv) and 

HMDI (1 equiv) using DBTL (0.05 equiv) as the catalyst in CH2Cl2 at room 

temperature for 10 days. 1H NMR spectroscopy confirmed the expected structure of 

the PU-anthracene primarily displaying the characteristic signals of the ArHs of 

anthracene and the CH2NHC=O of PU backbone at 8.46-7.20 and 3.20-2.85 ppm, 

respectively. Notably, an integrated ratio of the ArHs of anthracene unit to the 

CH2NHC=O of PU was found to be 9:4, indicating the successful formation of the 

PU-anthracene. Gel permeation chromatography (GPC) analysis exhibited: Mn,GPC 

= 12900 g/mol, Mw/Mn= 1.87 relative to PS standards in THF at 30oC. 
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Figure 4.14: 1H NMR spectra of PU-anthracene and PU-g-2 (model reaction) in 

CDCl3 (500 MHz). 

A model reaction between the PU-anthracene and the maleimide functional 

compound, 2 was accomplished to determine the efficiency of Diels-Alder click 

reaction prior to the synthesis of PU-graft copolymers (Fig. 4.14) The Diels-Alder 

adduct formation (in dioxane/toluene at 105 oC for 24 h) was monitored by UV 

spectroscopy following the disappearance of the characteristic five-finger absorbance 

of the anthracene at 300-400 nm due to the formation of the Diels-Alder adduct (Fig. 

4.19). The Diels-Alder reaction efficiency was calculated to be >99% using an 

equation given in ref. 13, and thus, indicating a quantitative functionalization of 2 
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onto the PU backbone in order to yield PU-g-2. Moreover, the PU-g-2 was also 

subsequently analyzed by 1H NMR spectroscopy.  Remarkably, 1H NMR revealed a 

complete disappearance of ArH signals assignable to the anthracene at 8.46, 8.32 and 

7.99 ppm and the appearance of new signals regarding the CH2 linked to the adduct 

and the CH (bridge-head) at 5.48 and 4.78 ppm, respectively together with signals of 

2 (Fig. 4.14). An integrated ratio of the CH2OC=O in the PC backbone (δ 4.40-4.05) 

to the CH (bridge-head proton, δ 4.78) also gave a 4:1, indicating quantitative Diels-

Alder click reaction.  Therefore, the confirmed structure of the PU-g-2 demonstrates 

that Diels Alder click reaction can be employed in the preparation of the PU graft 

copolymers. As a matter of interest, the GPC trace of the PU-g-2 displayed a shift to 

higher elution time compared to its starting precursor PU-anthracene, while 

maintaining moderately narrow polydispersity index and monomodal distribution 

(Fig. 4.20). This may be attributable to that an incorporation of pendant OH groups 

onto the PU backbone may cause to adsorption rather than real size exclusion in the 

GPC using THF as solvent.13,15a,17  

Next, the PU-anthracene main backbone was clicked with a PMMA-MI or PEG-MI 

as a side chain at reflux temperature of dioxane/toluene mixture for 48 h to result in 

the final graft copolymers. A 1.2 equiv of the side chains to the repeating anthracene 

units of the PU main backbone was used to ensure the reaction completion. The 

efficiency of Diels-Alder reactions was monitored by UV measurements in the range 

of 300-400 nm and found to be 99 and 93% for the PU-g-PMMA and PU-g-PEG, 

respectively.  (Fig 4.21 and 4.22)  

A clear shift to the higher molecular weight region was detected from GPC 

measurements while maintaining moderately narrow polydispersity index and 

monomodal distribution, except PU-g-PEG, where an adsorption of the graft 

copolymer to the stationary phase rather than a selective permeation occurred during 

this operation (Figs. 4.15 a and b). 
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Figure 4.15: Overlays of GPC. 

In Figure 4.15, (a) GPC overlays of PU-g-PMMA copolymer, PU-anthracene and 

PMMA-MI precursors in THF; (b) GPC overlays of PU-g-PEG copolymer, PU-

anthracene, and PEG-MI precursors in THF. An assessment of the 1H NMR 

spectrum of the PU-g-PMMA revealed that the resonances related to the ArHs of 

anthracene at 8.50-7.50 completely had disappeared and two signals regarding the 

CH2-Diels-Alder adduct and CH (bridge-head proton) had appeared at 5.48 and 4.79 

ppm, respectively (Fig. 4.16). 

 



45 

 

 

Figure 4.16: 1H NMR spectrum of PU-g-PMMA copolymer in CDCl3 (500 MHz). 

An integrated ratio of the OCH3 of the PMMA at 3.61 ppm to the CH2-Diels-Alder 

adduct of the PU at 5.48 ppm gave the calculated DPn = 16 of the PMMA side chain 

incorporated to the PU backbone. It should be noted that this is comparable to the 

DPn = 18 of the linear PMMA precursor.  

As a second sample of graft copolymer, the PU-anthracene was subjected to the 

Diels Alder click reaction with PEG-MI to yield the PU-g-PEG copolymer at reflux 

temperature of dioxane/toluene for 48 h. The 1H NMR spectroscopy analysis 

revealed the presence of both the CCH3/ (CH2)4 of PU and the CH2CH2O of the 

PEG segments at 1.50-1.00 and 3.74-3.50 ppm, respectively (Fig. 4.17). In addition, 

a similar calculation based on an integrated ratio of the OCH2CH2 of the PEG at 

3.74-3.50 to the CCH3/(CH2)4 of the PU (11 H) at 1.50-1.00 ppm resulted in the 

calculated DPn = 9.9 of the PEG side chain in the PU-g-PEG copolymer being 

consistent with the DPn = 11 of the linear PEG precursor. 
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Figure 4.17: 1H NMR spectrum of PU-g-PEG copolymer in CDCl3 (500 MHz). 

The thermal transitions from a second heating cycle were measured by DSC at a 

heating rate of 10oC/min under nitrogen. The PU-anthracene exhibited a glass 

transition (Tg) at 73oC (Fig. 4.18). When the PU-anthracene was modified by 

reacting with 2 in order to give PU-g-2, the higher Tg at 99oC was observed. The 

higher Tg of PU-g-2 suggests that an extra contribution of the OH groups to the 

intermolecular hydrogen bonding associated with urethane groups exists. Any Tg of 

the PU-g-PEG copolymer could not be detected due to the fact that maybe an 

incorporation of the PEG chains  might have increased the crystallinity of the PU-g-

PEG copolymer and thus have decreased the intensity of the Tg signal. . For the PU-

g-PMMA copolymer, only one Tg at 113oC, which may be attributed to PMMA 

grafts was observed. Moreover, it should be noted that the lack of existence of a Tg 

value for the PU backbone, might have caused due to the chain stiffness arising from 

the incorporation of PMMA side chains [17]. 
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Figure 4.18: DSC thermograms of PU-anthracene, PU-g-2 (model reaction), and 

PU-g-PMMA copolymer at a heating rate of 10oC/min in nitrogen. 

TGA measurements of PU-anthracene, PU-g-2, PU-g-PMMA and PU-g-PEG were 

carried out via TGA Q50 at a heating rate of 10oC/min under nitrogen. The 

degradation of PU-anthracene starts in the range of 250-300oC, which is consistent 

with the literature [18]. From the TGA thermograms of the PU-g-2 and PU-g-PMMA 

copolymers, it is deduced that these polymers displayed two degradation processes in 

the ranges of 250-350oC and 350-450oC (Fig. 4.23). For the PU-g-PMMA, it can be 

described that the first step corresponds to the degradation of the PU backbone 

followed by the depolymerization of PMMA grafts as a second step. In the literature, 

it is given that the PMMA with saturated end groups is thermally stable up to 300oC 

in nitrogen atmosphere.18 For the PU-g-2 case, the degradation of the PU main 

backbone is followed by evolving the compound 2 by retro Diels-Alder reaction. As 

a matter of interest, the TGA thermogram of the PU-g-PEG copolymer displayed one 

step degradation process similar to that of PU-anthracene. It may be concluded that 

the degradation of both PU backbone and PEG grafts occurred concurrently. 
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Figure 4.19: UV spectra of PU-anthracene (C0 = 0.033 g/L) (at 0 h) and PU-g-2 (at 

24 h) in CH2Cl2.  

 

Figure 4.20: GPC overlay of PU-anthracene and PU-g-2 (model reaction) in THF. 
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Figure 4.21: UV spectra of PU-anthracene precursor (C0 = 0.033 g/L) (at 0 h), and 

PU-g-PMMA copolymer (at 48 h) in CH2Cl2. 

 

Figure 4.22: UV spectra of PU-anthracene precursor (C0=0.033 g/L) (at 0 h) and 

PU-g-PEG copolymer (at 48 h) in CH2Cl2. 
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Figure 4.23: TGA traces of PU-anthracene, PU-g-2 (model reaction), PU-g-PMMA copolymer and PU-g-PEG copolymer at a heating rate of 

10oC/min under nitrogen.
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5. CONCLUSION 

In this study, we prepared two examples of PU-graft copolymers (PU-g-PMMA and 

PU-g-PEG) via an incorporation of well-defined PMMA or PEG as a side chain onto 

the PU main backbone using Diels-Alder reaction.  The linear aliphatic PU with 

anthracene pendant groups was prepared by reacting anthracene diol, 1 with HMDI 

using DBTL as catalyst in CH2Cl2 at room temperature is soluble in common 

organic solvents (CH2Cl2 and THF). We showed here for the first time that Diels-

Alder click reaction is an efficient synthetic approach for the incorporation of a wide 

variety of linear polymers into the PU main backbone in order to yield PU-graft 

copolymers.
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