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APPLICATION OF THE MULTIVARIABLE CALIBRATION 
TECHNIQUES TO DETERMINE THE PHYSICAL-CHEMICAL 

PROPERTIES AND QUALITY OF GASOLINE PRODUCTS 

SUMMARY 

Gasoline is one of the main fuels used in transportation and is produced in petroleum 
refineries via distillation of crude oil, followed by some other processes. For every 
batch of gasoline prepared at petroleum refineries, all the parameters given in TS EN 
228 specifications are analyzed according to reference method published by ISO 
17025 accredited laboratories to determine if the product meets the limits. 

Multivariate calibration techniques, a subject in chemometrics, take an important role 
here. Multivariate calibration method is a technique in which spectroscopic 
measurement is combined with the reference test methods results to obtain a model for 
future prediction. 

In this thesis work, 46 gasoline samples, obtained from the Quality Control Laboratory 
of Tupras Izmit Refinery, were studied to establish multivariate calibration models to 
see if they can be used instead of reference test methods and the prediction error is 
determined to compare. Octane number (RON and MON), distillation, hydrocarbon 
types (aromatics, olefins and benzene) and density parameters were the parameters 
studied, and all gasoline samples were analyzed by using reference test methods for 
these parameters. Same samples were analyzed by NIR spectroscopy in wavelength 
range of 800 – 2500 nm. After baseline correction, mean centering and removal of 
outlier, PCR and PLS multivariate calibration methods used to obtain calibration 
models. 

One sample is removed from data set as outlier. 30 samples were used as a calibration 
data set and 15 samples were used as a validation data set, which are not used in 
calibration data set. Predicted results, residuals, root mean squared error of prediction 
(RMSEP) were calculated, and some useful plots were plotted for both calibration and 
validation data sets. 

According to the results, all the residuals calculated for MON and Aromatics by using 
PCR and for RON, MON and Aromatics by using PLS are smaller than reproducibility 
of reference test method. The PLS model results indicated that more than 90% of 
residuals are even smaller than half of the reproducibility (R/2) for RON, MON, 
Aromatics and E150. It can be concluded that the PLS model can be safely used as a 
replacement for the reference test methods for RON, MON, Aromatics and E150 with 
the condition of remaining in studied range and with the condition of using samples of 
similar molecular structure. The residuals and RMSEP values were found higher for 
olefins and density parameters, a detailed study with different parameters needed in 
order to get better results. 
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BENZİN ÜRÜNLERİNİN KİMYASAL – FİZİKSEL ÖZELLİKLERİNİN VE 
KALİTESİNİN BELİRLENMESİNDE ÇOK DEĞİŞKENLİ KALİBRASYON 

TEKNİKLERİNİN UYGULANMASI 

ÖZET 

Dünya enerji ihtiyacının % 85 i fosil yakıtlar kullanılarak karşılanmaktadır. Fosil 
yakıtlar, elektrik üretimi, ulaşım ve ısınma gibi temel ihtiyaçlar için kullanılan en 
önemli kaynaklardır. British Petroleum (BP) un Haziran 2015 te yayınladığı Dünya 
Enerji Değerlendirme raporuna göre, global enerji tüketimi 2014 yılında 2013 yılına 
göre % 0,9 artmıştır. Bu artış son 10 yılın artış oranı olan % 2,0 a göre düşük olmasına 
rağmen, daha önceki yıllarda olduğu gibi 2014’te de yıllık enerji tüketiminde artış 
görülmüştür. Benzer durum Türkiye için de geçerlidir. Aynı raporda verilen verilere 
göre, Türkiye’de 2014 yılı enerji tüketimi bir önceki yıla göre % 2,7 artmıştır. Toplam 
enerji tüketiminin, yenilenemeyen ve yenilenebilir enerji kaynakları oranları şu 
şekildedir; petrol % 27,0, doğal gaz % 34,9, kömür % 28,7, hidroelektrik % 7,3 ve 
yenilenebilir enerji % 2,2. 2013 yılı ile 2014 yılı arasındaki enerji kaynakları tüketim 
oranlarındaki değişiklik raporda şu şekilde verilmektedir; petrol + %0,6, doğal gaz + 
%6,3, kömür + %13,6, hidroelektrik - %32,0 ve yenilenebilen enerji + %21,0. 
Tüketimdeki en büyük artış yenilenebilir enerji alanında olduğu görülse de 
yenilenebilir enerji tüketiminin toplam tüketimin sadece % 2,2 si olduğu göz önünde 
bulundurulmalıdır. Fosil yakıtların tüketimindeki artış göze çarpmaktadır. 

Yukarıda verilen oranlardan da görüleceği üzere, fosil yakıtlar Türkiye’nin 2014 yılı 
enerji tüketiminin % 90 ını oluşturmaktadır ve petrol bu miktarın % 27 sini 
oluşturmaktadır. Miktar olarak bakıldığında, 2014 yılında 33,8 milyon ton petrol 
(petrol ürünleri) tüketilmiştir. 

Benzin, petrolün damıtılması sonucu direk olarak üretilen saf bir ürün değildir. Nafta, 
isomerat, reformat, gibi bazı ara ürünlerin karışımı sonucu elde edilen bir üründür. 
Benzin içindeki temel hidrokarbon türleri parafinler, aromatikler ve olefinler 
olup,karbon sayısı C4 ten başlayarak C12’ye kadar devam etmektedir. Benzinin tipik 
kaynama aralığı 30 – 200 oC’dir. Benzin, ulaşım amaçlı kullanılan yakıtların başında 
gelmektedir. 

Bahsedilen gereksinimleri karşılamak için benzin standardında bulunan analizler, ISO 
17025 akreditasyon belgesine sahip laboratuvarlar tarafından analiz edilip, TS EN 228 
standardında verilen limitlere uygunluğu kontrol edilir. Bu analizlerin laboratuvarda 
yapılması için genel olarak cihaz, gerekli aparatlar, kimyasal ve teknik yeterliliğe sahip 
personel gerektirmektedir. Ayrıca analizin sürekli olarak yapılması için sarf 
malzemeler ve cihazların düzenli bakımı için gerekli olan masraflar bu analizlerin 
maliyetini arttırmaktadır. Ek olarak, analiz süresi ve analiz öncesi yapılması gereken 
ön hazırlık aşamaları, bazı analizler için oldukça fazla olabilmektedir. 

Bu aşamada, çok değişkenli kalibrasyon teknikleri, konvansiyonel analiz yöntemleri 
yerine geçebilecek modeller oluşturma ve bu modellerle konvansiyonel analiz 
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yapmadan hızlı spektroskopik analiz verisi kullanarak sonuç elde etme imkanı 
vermektedir. Çok değişkenli kalibrasyon, kemometride kullanılan yöntemlerden 
sadece bir tanesidir. 

Kemometri, analitik kimyanın alt dalı olup istatistik ve matematiksel modelleme 
tekniklerinin kullanıldığı disiplinler arası bir bilim dalıdır. Kemometri, çok karmaşık 
ve fazla veri içeren kimyasal verileri analiz ederek anlamlı kimyasal bilgiyi elde etmek 
için oldukça önemli bir araçtır. Deneysel tasarım, modelleme, kalibrasyon, resim 
işleme, kemometrinin en önemli konu başlıkları arasındadır. Bilgisayar, yazılım ve 
uygulamalı matematik alanlarındaki gelişmelerin artması ile kemometriye olan ilgi ve 
bu alanda yapılan çalışmaların sayısı oldukça artmaktadır. Gıda, ilaç, kimya sektörü 
kemometrik uygulamaların oldukça yaygın kullanıldığı alanlardır. 

Bu çalışmada, 46 adet benzin numunesi kullanılarak çok değişkenli kalibrasyon 
yöntemleri geliştirilmiştir. Bu yöntemler ile referans olan konvansiyonel yöntemler 
karşılaştırılarak sonuçlar değerlendirilmiştir. Referans analizlere alternatif olarak 
kullanılan yöntem oluşturmak için, çok değişkenli kalibrasyon metotları yardımıyla 
çeşitli spektroskopik analizlerden ve referans test metotlarının sonuçlarından elde 
edilen bilgi kullanılarak çeşitli parametreler için modeller oluşturulur. 

Benzinin ulaşım amaçlı kullanılabilmesi için Türk Standartları Enstitüsü tarafından 
belirlenen ve oldukça sıkı limitler içeren, TS EN 228 – Otomotiv Yakıtları – 
Kurşunsuz Benzin – Özellikleri ve Deney Yöntemleri standardının gerekliliklerini 
karşılamalıdır. Bu standardın içeriği, yakıtın çeşitli performans özelliklerini 
karşılamak ve ülkede uygulanan çevresel düzenlemelere uyumunu sağlamak için 
birçok parametreden oluşmaktadır. Uçuculuk, vuruntu yapmama (antiknock) ve yakıt 
ekonomisi, yakıt performansını etkileyen önemli ölçütlerdir. Bu ölçütleri kontrol 
etmek ve düzenlemek için TS EN 228 standardında yoğunluk, distilasyon, oktan 
sayısı, buhar basıncı parametreleri ile ilgili limit değerler yer almaktadır. Ayrıca, 
benzinin yanması ile ortaya çıkan karbon monoksit (CO), uçucu organik karbonlar 
(VOC), azot oksitler (NOx) ve partiküller gibi kirleticilerin miktarlarını olması gereken 
seviyelerin altında tutmak için, standartta aromatik, benzen, kurşun içeriği gibi 
analizlerle ilgili limit değerler de bulunmaktadır. 

Benzin numuneleri RON, MON, Aromatik, Olefin, Benzen, Distilasyon ve Yoğunluk 
analizleri için TS EN 228 standardında verilen test metotlarına uygun olarak analiz 
edilmiştir. Aynı numuneler, 800 – 2500 nm dalga boyu aralığından NIR spektroskopi 
ile de analiz edilmiştir. Bu numunelerin 30 adeti kalibrasyon seti, 15 adeti de 
validasyon seti olarak ayrılmıştır. Burada kalibrasyon ve validasyon numunelerinin 
birbirinden bağımsız numuneler olması, elde edilen modellerin doğruluğunun kontrolü 
için oldukça önemlidir. Modelleme çalışmasından önce baseline düzeltmesi, 
merkezileştirme işlemleri gibi bazı önişlemler yapılmıştır. Kalibrasyon seti 
numunelerinin referans ve NIR sonuçları kullanılarak, tüm parametreler için ayrı ayrı 
PCR ve PLS yöntemleri ile kalibrasyon modelleri elde edilmiştir. Bu modeller 
kullanılarak validasyon seti numuneleri için ilgili parametreler tahmin edilip, referans 
analiz yöntemleri değerleri ile istatistiksel olarak karşılaştırılmıştır. Ayrıca, 
kalibrasyon ve validasyon veri seti için, referans yöntem ile analiz edilerek elde edilen 
ve çok değişkenli model ile tahmin edilen değerlerin grafikleri çizilerek 
değerlendirilmiştir. 

Elde edilen sonuçlara göre, kalibrasyon ve validasyon veri setleri kullanılarak,  MON 
ve Aromatik parametreleri için PCR yöntemi ile elde edilen artıkların hepsi referans 
test metodunun uyarlık değerinden küçüktür. Yine kalibrasyon ve validasyon veri 
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setleri kullanılarak,  RON, MON ve Aromatik parametreleri için PLS yöntemi ile elde 
edilen artıkların hepsi referans test metodunun uyarlık değerinden küçüktür. Ayrıca, 
PLS modeli ile tahmin edilen sonuçların % 90 ından fazlası RON, MON, Aromatik ve 
E150 (distilasyon) parametreleri için uyarlık değerinin yarısından küçüktür. PCR ile 
elde edilen model MON ve Aromatik parametreleri, PLS ile elde edilen model RON, 
MON, Aromatik ve E150 parametreleri için kullanılan referans analiz yöntemlerinin 
yerine kullanılabilir. Olefinler ve Yoğunluk parametreleri için hem PCR hem de PLS 
modelleri ile elde edilen tahmin sonuçları başarılı olmamıştır. Bu parametreler için 
ilave çalışmalar yapılması gereklidir. 
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1.  INTRODUCTION 

Crude oil is refined and processed in refineries in order to produce petroleum products. 

Firstly, crude oil is separated into fractions by fractional distillation according to 

boiling points of hydrocarbon types. Then, the fractions are further processed with 

many different types of processes to get final petroleum products such as LPG, 

naphtha, gasoline, kerosene, diesel, fuel oil, bitumen. Petroleum products are playing 

very critical, important and indispensable role in human life. They are almost 

everywhere in our daily life, like transportation, power generation, heating, raw 

material used in petrochemical plants, etc. In Figure 1.1, the distribution of oil use in 

daily life in 2010 and expected use in 2035 is given. The transportation and industry 

take the first and second place. Oil is the main component that acts as an energy source 

with a percentage of 32.2, as given in Table 1.1. 

 

Figure 1.1: Percentage shares of oil demand by sector in 2010 and 2035 [1] 

Gasoline is one of the main petroleum products produced in refineries and used as 

second preferred transportation fuel after diesel, globally and in Turkey. 

Major investments in worldwide refineries are mainly focused on producing gasoline 

and diesel products having ultra-low sulfur concentration, that is below 10 parts per 
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million (ppm) by weight, in order to comply very tightened regulations about exhaust 

emission limits for sulfur dioxide, SO2. In addition to sulfur dioxide, carbon dioxide, 

CO2 is also very important parameter that must be controlled to avoid air pollution. 

Oxygenated fuels, produced as a mixture of MTBE (methyl tert-butyl ester), ETBE 

(ethyl tert-butyl ester), FAME (fatty acid methyl ester) and ethanol with fuels, are 

primary solutions for reducing carbon dioxide emissions. Reduction of benzene 

concentration and aromatics concentration in gasoline will follow in following years 

[1]. 

Table 1.1: World Supply of Energy [1] 

  
  Levels   Growth   

Fuel 
shares 

  

    mboe/d   % p.a.   %   

  2010 2020 2035 2010–35 2010 2020 2035 

Oil 81.2 89.7 100.2 0.8 32.2 30 26.3 

Coal 69.8 84.9 104 1.6 27.7 28.4 27.2 

Gas 54.8 69 99.8 2.4 21.7 23.1 26 

Nuclear 14.3 16 21.6 1.7 5.7 5.4 5.7 

Hydro 5.8 7.4 10.1 2.3 2.3 2.5 2.6 

Biomass 24.4 28 35.2 1.5 9.7 9.4 9.2 

Other renewables 1.8 3.6 10.7 7.5 0.7 1.2 2.8 

Total 251.9 298.6 381.7 1.7 100 100 100 

In 2013, gasoline production is 4.307.303 tons and diesel production is 7.636.794 tons 

in Turkey; in percentages as 19% and 33% for gasoline and diesel, respectively. [2] 

In Turkey, the gasoline fuel specification “TS EN 228: Automotive Fuels - Unleaded 

Petrol - Requirements and Test Methods”, is published by TSE (Turkish Standards 

Institute) with the latest revision issued in 2013. Table 1.2 indicates the complete 

requirements for unleaded gasoline.  
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Table 1.2: Gasoline requirements and test methods [3]. 

Property Test Unit Guarantee Limit Test Method 

Appearance  Clear and 
Bright 

  Visual 

Corrosion, Copper 
Strip  (3 h at 50 oC) 

 No.1   Max TS 2741 EN ISO 
2160 

Density at 15 oC kg/m3 720-775   TS 1013 EN ISO 
3675   

TS EN ISO 12185 

Distillation       TS EN ISO 3405  

 Evaporated at 70 oC     

            Summer grade (a) vol% 20-48   

           Winter grade (b) vol% 22-50   

Evaporated at 100 oC     

           Summer grade (a) vol% 46-71   

          Winter grade (b) vol% 46-71   

 Evaporated at 150 oC vol% 75 Min  

End Point  oC 210 Max  

Residue % vol 2 Max  

Gum, Existent  (Washed) mg/100 
ml 

5 Max  TS EN ISO 6246 

Oxidation Stability  minutes 360 Min  TS 2646 EN ISO 
7536 

Research Octane Number RON 95 Min  TS EN ISO 5164 

Motor Octane Number  MON 85 Min  TS EN ISO 5163 

Lead  mg/l 5 Max  TS EN 237 

Sulfur mg/kg 10 Max  TS EN ISO 20846 

 TS EN ISO 20884 

Vapor Pressure (DVPE)     TS EN 13016-1   

      Summer grade (a)      kPa 45-60   

      Winter grade (b) kPa 60-90   

VLI (Vapor Lock 
Index)**  

Index 1150 Max  

Transition period for 

Summer and Winter 
grade 

Benzene  vol % 1.0 Max TS 7088 EN 238  

TS EN 12177 

TS EN ISO 22854  

Olefins vol % 18.0 Max TS EN ISO 22854 

TS EN 15553 

Aromatics vol % 35.0 Max TS EN ISO 22854 

TS EN 15553 
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Table 1.2 cont.: Gasoline Requirements and test methods [3]. 

Oxygen wt % 2.7 Max 

TS 11413 EN 1601  

TS EN 13132 

TS EN ISO 22854 

Oxygenates content 

      TS 11413 EN 1601  

TS EN 13132 

TS EN ISO 22854 

-Ethers vol % 15 Max   

-Methanol vol % 3 Max   

-Ethanol vol % 5 Max   

-Iso-propyl alcohol vol % 10 Max   

-Iso-butyl alcohol vol % 10 Max   

-Tert-butyl alcohol vol % 7 Max   

-Other oxygenates vol % 10 Max   

As seen from above table, there are almost 20 parameters that should be met in order 

to sale gasoline product in the local market. Similar parameters and associated limits 

are also valid for EU countries.  

In order to do these analyses, there should be a very well designed, established and 

accredited laboratory with required instruments and well-educated technicians and 

chemists. The above test methods require long analysis time, expensive instruments to 

be invested in and high maintenance cost. 

1.1 Purpose of Thesis 

RON, MON, aromatics content, benzene content, and distillation points are some of 

the essential components for gasoline-type hydrocarbon products. CFR (Cooperative 

Fuel Research) test engines, gas chromatography and physical distillation instruments 

are used to perform RON, MON, aromatics content,, benzene content, and distillation 

analyses correspondingly in a petroleum-testing laboratory. As a very good and 

practical alternative to these conventional test methods, “Near-Infrared (NIR) 

spectroscopy is an excellent analytical method for the identification of petroleum 

products because it is fast, rugged, and provides highly reproducible results with 

minimal maintenance” (Choi et al, 1999, p.1021). NIR spectra of a sample consist of 

spectroscopic information like absorbance, transmittance etc. in a very large 

frequencies (or wave-lengths). Only the NIR spectroscopy data is not enough to get 
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quantitative results for above-mentioned parameters. Some multivariate statistical 

calibration techniques are needed to extract the valuable information from very large 

and complex spectral data. 

The main goal of this thesis work is to predict the essential physicochemical and 

quality-related components of the gasoline products, which are RON, MON, aromatics 

content, olefins content, benzene content, density and E150 via the NIR spectroscopy 

analysis combined with multivariate calibration techniques by utilizing the data 

obtained in the Quality Control Laboratory of TÜPRAŞ Izmit Refinery. The predicted 

results will also be compared with the results obtained from the conventional methods, 

which are CFR engine analysis, multidimensional gas chromatography, atmospheric 

distillation, automated densitometer. A good prediction ability of the model proposed 

in this work will be very useful to refiners to adjust and control the process for the 

production of final products like gasoline with ease and confidence. The valuable 

outputs of this work will be saving time and money, taking immediate actions in case 

of any deviation from production set points and safe process operations. 

1.2 Literature Review 

Chemometrics (the science of getting chemical information from a chemical system 

by using mathematical based approach), combined with NIR spectroscopy has been 

widely used, starting at mid-1970’s by many academicians and industry practitioners. 

As technology extends, meaning better computer systems and spectroscopy 

instruments with very high resolution and fast analysis time, it became inevitable for 

people to use these techniques in their studies and work environment. Although 

combination and overtone bands in near-infrared region, that is 800 – 2500 nm, are 

very broad and difficult to interpret, they give very valuable structural information 

which is not available in MIR, middle infrared region. Main chemometric methods are 

experimental design, classification, pattern recognition, clustering and multivariate 

calibration. Multivariate calibration is a good way of identifying the relationship 

between the measured property and the concentration of component in the sample of 

interest by following the Beer’s Law. Multivariate calibration is used when simple 

univariate calibration is not enough for complicated systems, like having several 

components in a sample that absorbs at a given wavelength. Partial least squares (PLS) 

is one of the best multivariate calibration techniques used widely. There are other 



6 

techniques like multiple linear regression (MLR), principal component regression 

(PCR), genetic algorithm (GA). Having these calibration techniques, coupled with 

NIR spectroscopy as a fast and reliable spectroscopic analysis technique, revealed 

many application areas for chemometrics, like agriculture, food, pharmaceutical, and 

refinery/petrochemical. The following review is based on the literature studies related 

to chemometric techniques, mostly including multivariate calibration methods used in 

different applications, and is especially focused on the hydrocarbon-type samples 

produced and analyzed in the refinery/petrochemical areas. 

Determination of gasoline quality parameters by applying various types of multivariate 

calibration techniques has been studied by many researchers in order to control the 

process in a production facility continuously and to find an alternative testing method 

to replace the traditional test method. Measurement of octane numbers (RON and 

MON) in a laboratory requires very large investment cost initially to purchase the 

instrument, constant and expensive maintenance, long time of analysis (around 45 

minutes) and very experienced and trained personnel to perform the analyses. These 

difficulties led people to look for alternatives and thus, there have been many studies 

attempting to correlate the octane number to chemical structure of gasoline. 

The role of fossil fuels in daily life and estimation of quality parameters about these 

fossil fuels are emphasized, along with a review of the chemometric methods for the 

determination of characteristics of petroleum-based products, by Khanmohammadi et 

al. (2012). 

The main target is given as estimation of physico-chemical parameters of petroleum 

products especially gasoline and diesel by establishing a relation between the property 

interested and spectroscopic response (e.g. absorption, reflection and transmission) at 

spectral region [45]. API, octane number, TBP (true boiling point) curve, benzene, 

aromatics and olefins are the main parameters considered for gasoline and diesel. In 

addition, various chemometric approaches like PCA (principal component analysis), 

PLS, PCR, ANN are explained in [45]. A summary given in Table 1.3 shows the 

spectroscopic techniques, spectral regions and chemometric methods to predict fuel 

quality parameters determined with reference methods. 
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Table 1.3: Strategies for IR spectroscopic analysis of petroleum (physical 
characterization and chemical structure) [45]. 

 

(TAN: total acid number, MW: molecular weight, ATR: attenuated total reflectance, bi-PLS: backward 
interval PLS, dyn bi-PLS: dynamic backward interval PLS, PoLiSh: smoothed PLS, mw-PLS: moving 
window PLS) 

In addition to estimation of quality parameters, structural analysis and classification, 

especially to detect adulteration, is also discussed and spectroscopic techniques and 

chemometric methods are reviewed [45]. Detection of adulteration and identification 

of external materials are very difficult tasks. IR spectroscopy is one of adulteration-

detecting instrumental analysis and it is very powerful to separate adulterated and non-

adulterated fuel both qualitatively and quantitatively. MIR (middle infrared region) 

and NIR are very good at to determine adulteration of diesel and biodiesel with 

vegetable oil when combined with chemometric methods PCR, PLS, ANN and 

SIMCA (soft independent modelling of class analogy). Gasoline is another petrol-

based fuel that is very open to adulteration by using cheaper chemical like kerosene, 

diesel oil, petrochemical thinner and turpentine. 

H+ NMR ( Nuclear Magnetic Resonance) spectra at 100 MHz was studied by Meyer 

et al. (1975) to correlate the octane numbers with chemical structure by using linear 

regression analysis [23]. The main interested regions are due to methylene protons and 

methyl protons in NMR spectra. Study revealed that the relationship between octane 

numbers and chemical structure was not linear. Another similar study was established 

by using individual integrated areas of aliphatic, allylic and aromatic regions of NMR 

spectra to establish a linear relation to get a good correlation with octane numbers of 

gasoline samples. Dolbear (1972) found the following linear equations; 

1.55 76.5RON AromaticH OlefinicH     (1.1)

0.55 0.27 71.6MON AromaticH OlefinicH      (1.2)
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Chemical information taken from NIR analysis combined with mathematical methods, 

i.e. multivariate calibration, provides very good and reliable results. NIR spectroscopic 

region has very good structural information for gasoline samples since the absorption 

bands in this region are the overtones and combinations of C-H stretching vibrations 

of the hydrocarbon molecules. The absorptivity of C-H stretching of methyl, 

methylene, olefinic and aromatic groups have different absorptivity in this region than 

other components in gasoline. Kelly et al. (1989) studied 65 gasoline samples with a 

range of RON from 91.7 to 98.4 and MON from 82.0 to 87.4, each sample was 

analyzed according to ASTM reference test methods. Then, SW-NIR (Short Wave 

NIR) spectra were recorded between 660 – 1215 nm wavelengths with a 2.00 cm path 

length. The reason to choose SW-NIR is that the range was just enough because of 

overtones of symmetric and antisymmetric C-H stretching vibrations. MLR and Partial 

Least Squares (PLS) techniques were used to correlate the SW-NIR spectra and ASTM 

reference test methods results. MLR technique lead to R2 values of 0.979 for RON and 

0.957 for MON with a linear regression equation calculated at 3 different wavelengths 

chosen as 932 nm, 1164 nm, 896 nm for RON and 930 nm, 1012 nm, 940 nm for 

MON, respectively. For the same validation sample set, 4 variable PLS regression gave 

R2 values of 0.949 for RON and 0.993 for MON. It was concluded that although the 

weak absorptions by various C-H bonds overlapping in this region, MLR gave good 

correlation, but PLS was better. Both MLR and PLS results were satisfying and 

showed smaller variations then ASTM reference methods [25]. 

Another study with gasoline samples were done by Bohacs et al. (1998), which 

consists of 350 gasoline samples at 3 different research octane number (RON) grade 

as 91, 95 and 98, including summer and winter grades. The gasoline sample set was 

different than Kelly et al. (1989) in the number of samples and variety of seasonal and 

RON requirement grades. 12 different chemical and physical properties of gasoline 

including RON, MON, benzene, methyl-tertier-butyl-ether (MTBE), Sulphur content, 

distillation points, Reid vapor pressure (RVP) and density at 15 oC were correlated by 

using PLS regression as multivariate calibration method. NIR spectra of gasoline 

samples were recorded from 900 to 1700 nm spectral range with 10 mm quartz cuvette 

and baseline correction was adopted. After recording spectra, there is a data pre-

processing step which is different from that of the previous reference, Kelly et al. 

(1989) the transmittance values were converted to absorbance values, first and second 
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derivative of the absorbance values were calculated in order to remove shifts. After 

regression analysis, the authors found that the NIR methods developed to predict RON, 

MON, benzene and MTBE were very successful and they could be used as substitute 

for the reference methods. The R2 and SEP (standard error of prediction) values are as 

following for these four quality parameters; 0.975 and 0.34 for RON, 0.972 and 0.30 

for MON, 0.970 and 0.13 %v/v for benzene, 0.999 and 0.2 %v/v for MTBE. Prediction 

models developed for other gasoline properties showed poor correlation and gave 

higher standard error than the reference methods [26]. Although both studies, Bohacs 

et al. (1998) and Kelly et al. (1989), have similar regression coefficients and good 

predictions for RON and MON, the latter has a more robust prediction model since 

samples were collected at different RON grades and seasonal variety was also 

considered. Since the specification of gasoline has some difference in summer and 

winter grade, meaning that the volatility, which is vapor-pressure property, is limited 

to max. 60 kPa in summer season, starting from late March to October. In winter 

season, vapor pressure should be min. 60 kPa and max. 90 kPa (further details are in 

Table 1.3). This change in volatility also changes the molecular structure of gasoline 

and causes changes in the NIR spectra collected. In addition to this, variations in RON 

grades also affect molecular structure of gasoline. Having these variations in 

calibration sample set makes the prediction model more robust in real-life applications. 

It is very important to have a valid prediction method that gives correct results 

according to seasonal and process changes. 

PLS is very powerful tool to be used in chemometric studies and there are many PLS 

algorithms studied so far. Felicio at al. (2005) presented a work to compare different 

PLS algorithms based on MIR (4000 cm-1 – 600 cm-1 ) and NIR (9400 cm-1 – 4500 

cm-1 ) spectra. RMSEP (root mean square error of prediction) and %95 confidence 

intervals were used for comparison of PLS algorithms for diesel sample flash point 

and gasoline benzene and RON quality parameters. 249 gasoline samples and 128 gas 

oil samples were analyzed by MIR and NIR instruments and after eliminating some 

regions that could lead erroneous results in MIR and NIR spectra and pre-processing, 

PLS algorithms were applied where randomly chosen %80 of data used as calibration 

and %20 of data used as validation. PLS (single PLS), MB-PLS (multi block PLS) and 

S-PLS (serial PLS) are three PLS algorithms compared and RMSEP and confidence 

intervals were given for PLS-MIR, PLS-NIR, MB [46]. Following results were 
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obtained; RMSEP for flash point is 2.95 oC obtained by S-PLS algorithm applied to 

MIR spectra, RMSEP for benzene is 0.0641 % vol. obtained by PLS algorithm applied 

to MIR spectra and RMSEP for RON is 0.52 obtained by PLS algorithm applied to 

NIR spectra. The confidence intervals are 1.83 – 5.16 oC, 0.0459 – 0.0847 % vol. and 

0.42 – 0.63 correspondingly [46]. Because of this study, spectroscopic technique, 

chemometric modelling method and sample & parameters to be predicted are three 

important points that should be determined and combined according to prediction 

needed or targeted.  

Besides having very common multivariate calibration techniques like MLR and PLS, 

there is another technique called Genetic Regression (GR), which is a calibration 

technique that optimizes linear regression models using a genetic algorithm. GR is an 

implementation of Genetic Algorithm (GA) selects an optimum linear combination of 

wavelengths and simple mathematical operators to build a linear combination model 

using the simple least squares method [27]. GA consists of several steps, such as the 

initialization of gene population, evaluation of the population, selection of parent 

genes for breeding and mating, crossover and mutation, and replacing parents with 

their offspring. Ozdemir (2005) studied a data set obtained from a web source that 

consist of 60 gasoline samples with known octane numbers collected using diffuse 

reflectance NIR analysis in the range of 900 to 1700 nm. 60 samples were divided into 

three sets, one for calibration, one for prediction and one for validation purposes. He 

applied three different genetic multivariate calibration methods, genetic regression 

(GR), genetic classical least squares (GCLS), and genetic inverse least squares (GILS). 

The regression coefficients for GR, GCLS and GILS are 0.9931, 0.9538, and 0.9962 

respectively [27]. As a result of this study it is very obvious that GA improves the 

prediction power of CLS and ILS multivariate calibration techniques. 

As stated at the beginning, spectroscopy measurements combined with multivariate 

calibration has various applications for hydrocarbon products. There are many studies 

for naphtha, kerosene, gas oil, diesel, crude oil and residue hydrocarbon products in 

literature. Ultraviolet absorption spectra of 114 gasoil and diesel fuels were collected 

in the range of 200 – 400 nm with a 1 cm flow-through cell (Wentzell et al. 1999). 

Supercritical fluid chromatography with flame ionization detection was used to 

quantify saturates %, monoaromatics %, diaromatics %, and poly aromatics %. All 

spectra data first were analyzed for outliers and then mean centered. CLS, FS-MLR 
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(Forward Selection), SS-MLR (Stepwise Selection), PCR, and PLS multivariate 

calibration techniques were applied. Except the CLS technique to predict 

polyaromatics property, all calibration techniques were very successful to evaluate 

four properties in interest. A detailed table of findings are given in Wentzell et al. As 

a result, the UV spectroscopic measurements used with multivariate calibration 

methods are good enough to predict saturates and aromatics content of diesel type of 

hydrocarbon products successfully [28]. 

Another interesting study to predict asphaltenes in crude oil by using ATR-IR 

spectroscopy together with ANN was carried out (Colaicco and Farrera, 2008). 

Asphaltenes are asphalt like substances found in crude oil and bitumen products, which 

have high asphaltene concentration, are mostly used in paving materials on road and 

waterproof coatings [Url-5]. Determination of asphaltene in crude oil is very difficult, 

time-consuming laboratory test method. The test method, that is IP-143, contain many 

wet chemistry steps like reflux, precipitation, filtering extraction and weighing [47]. 

Qualified laboratory personnel analyzed 19 Venezuelan crude oil samples with 

reference test method (IP-143) and ATR-IR spectroscopy (spectral range from 10000 

to 650 cm-1 with an accumulation of 128 scan and resolution of 2 cm-1), the these data 

used for modeling by three layer neural network configuration. The reason to use ANN 

as modeling tool is that Wild et al. (1998) and Aske et al. (2001) tried to predict 

asphaltene content by using NIR and IR data with PLS modeling but the error found 

was higher than standard laboratory test method precision [49,50]. The study revealed 

very good results and plot of ATR-IR-ANN predicted asphaltene concentration for 19 

samples (16 of 19 are calibration and 3 of 19 are validation samples) versus reference 

test methods results has a correlation, R2 of 0.996 and standard error of calibration 

(SEC) is 0.37 wt % [48]. The model established is very successful for asphaltene 

concentrations lower than 10 wt%. The highest residue value is -0.7 wt% for a 

reference value of 17.8 wt% whereas predicted value is 17.1 wt%. Standard test 

method, IP-143, has a reproducibility, R, value of 3.56 wt% for 17.8 wt% asphaltene 

result. The residue is 5 times smaller than test method precision value. Considering 

low number of total samples studied, only 4 samples have asphaltene concentration 

higher than 10 wt%, better prediction values most probably would be obtained when 

more samples included in study with high asphaltene concentration. 
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Besides predicting quality parameters of hydrocarbon type products, chemometric 

techniques are widely used for classification purposes as reviewed before in this 

section (Khanmohammadi et al, 2012). Balabin and Safieva (2007) studied for 

classification of 382 gasoline samples by source (refinery and process) and type 

(regarding to octane number). They divided all gasoline samples into three sets as A, 

B, C. Set A was used for classification by source (refinery), and it has three classes 

called as Refinery 1, Refinery 2 and Refinery 3. Set B was used for classification by 

source (process), and it has six classes called as straight-run, reformate, catalysate, 

isomerizate, hydrocracking gasoline and mixture. Set C was used for classification by 

type, and it has three classes called normal, regular and premium. Linear discriminant 

analysis (LDA), Multilayer perceptron (MLP) and Soft independent modelling of class 

analogy (SIMCA) are three tools used for classification by combining with NIR 

spectra of gasoline samples. Prediction efficiency was determined by calculating error 

that is the ratio of number of wrongly classified samples to total number of samples in 

the data set. Predicted classification results according to source by refinery has errors 

of 13%, 14% and 8% for LDA, SIMCA and MLP correspondingly. Similar errors 

calculated according to source by process are 35%, 30% and 18% for LDA, SIMCA 

and MLP correspondingly. These results show that it is difficult to classify gasoline 

according to source by process. Lastly, the prediction errors for classification 

according to types are 12%, 10% and 9% for LDA, SIMCA and MLP correspondingly. 

Because of this study, it is concluded that MLP is more very powerful tool than LDA 

and SIMCA for classification of gasoline samples in relation to source (refinery and 

process) and type (octane number).  

In light of the above-mentioned studies and many others in the literature, predicting 

hydrocarbon product properties and classification of these hydrocarbons using 

spectroscopic measurements, mainly the NIR, combined with multivariate calibration 

techniques are of interest to many researchers and provide successful prediction 

models. There are many variations used in all these studies such as type of 

spectroscopic measurement (NIR, NMR, UV), wavelength range chosen, type of 

samples, pre-processing techniques (first derivative, second derivative, mean 

centering), multivariate calibration methods (MLR, CLS, PLS, ILS, GA, ANN). 

Depending on the sample and property to be predicted, above possible options are 
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chosen and optimized. Including sample production and property variations to 

calibration sample sets provides more robust prediction models.
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2.  PETROLEUM AND PETROLEUM REFINING 

2.1 Petroleum and Crude Oil 

Petroleum is naturally occurring mixture containing of carbon and hydrogen as main 

elements. In addition to carbon and hydrogen, nitrogen, sulfur, oxygen and some 

smaller amounts of vanadium, nickel elements are also available in petroleum. 

Petroleum can include three phases: gaseous (natural gas), liquid (crude oil), and solid 

or semisolid (bitumen, asphalt, tars, and pitches) [5]. Crude oils are a highly complex 

combination of hydrocarbons, heterocyclic compounds of nitrogen, oxygen and sulfur, 

organometallic compound, inorganic sediment, and water (Giles and Mills, 2010). 

Common crude oils have elemental composition range given in Table 2.1. 

Table 2.1: Crude oil element composition [5]. 

 

Many of these compounds are identified but there are some compounds, which are not 

identified yet [5]. 

Crude oil has different properties like odor and color, usually depending on its origin. 

The main properties to classify the crude oil are API gravity and sulfur content. API 

gravity is special function of relative density (specific gravity) 60/60oF, as given in 

equation 2.1 [6]. 

141.5
131.5

60 / 60
o

o
API

specific gravity F

 
  
 

 (2.1) 

Crude oils are called as light and heavy according to the density property. Light crude 

oils are low in density and have light hydrocarbons, thus they have paraffinic 
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hydrocarbons. On the other hand, heavy crude oils have high density, high viscous 

asphalt like molecules. Distillation, pour point, viscosity, and element content are also 

important to process crude oil in oil refineries. Crude oil is used as raw material in 

petroleum refining industry. In petroleum refining, the fractions in the crude oil are 

separated via distillation according to their boiling point. As a fundamental principle, 

longer hydrocarbon chains boil at higher temperature. This provides the separation of 

lighter hydrocarbons from the heavier ones. By using distillation as a separation 

technique, many products are produced by distillation of crude oil in refining process. 

LPG, naphtha, gasoline, kerosene, diesel oil, lubrication oil, fuel oil, residue and 

bitumen are main fractions found after crude oil distillation. A general scheme of 

distillation column is given in Figure 2.1 and related distillation ranges for these 

fractions are given in Table 2.2. 

Table 2.2: Distillation ranges for fractions obtained from crude oil refining [5]. 

 

These fractions are intermediate products and it is not possible to use them as final 

product. There are many processes in which these fractions are further processed and 

become ready for use. LPG treating, hydrotreating, isomerization, reforming, 

sweetening, hydrocracking, and FCC are main methods to further process crude oil 

fractions. A modern refinery scheme consisting of many processes is available in 

Figure 2.2. As seen, gasoline production is done by mixing various intermediate 

products coming from different processes like isomerization, reforming, gasoline 

treater, hydrocracking, fluid catalytic cracking etc. 
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Figure 2.1: Fractions of crude oil distillation [Url-1]. 
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Figure 2.2: Refining flow scheme [Url-2]. 

2.2 Gasoline 

Gasoline is one of the main petroleum products produced in oil refineries and mainly 

used for transportation purposes in internal combustion and spark ignition engines. 

Gasoline is not a pure substance, it is a homogenous mixture of various hydrocarbon 

intermediate products like naphtha, isomerate, reformate, MTBE, ethanol etc. Typical 

distillation range is in the rage of 30 – 200 oC, containing paraffins, aromatics and 

olefins as major hydrocarbon types with an overall carbon number range of C4 – C12. 

As seen in Table 2.3 below, total gasoline sales in 2013 by retailers is 1,853,741 tons, 
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according to Turkey Energy Market Regulatory Authority 2013 report [2]. It seems 

that gasoline consumption is less than diesel consumption, mainly because of tax 

policy and high fuel prices. 

Table 2.3: Domestic fuel sales [2]. 

 

According to global petroleum products, demand given in World Oil Outlook 2013 

report in Table 2.4, there will be 1 million barrels per day (mb/d), approximately 

118,343 tons, gasoline demand increase for every 5 years starting from 2015 up to 

2035 with a total demand of 27.5 mb/d.  

Table 2.4: Global Petroleum Products Demand [1]. 

  2012 2015 2020 2025 2030 2035 

Light products (mb/d)             

Ethane/LPG 9.7 10 10.5 10.9 11.2 11.5 

Naphtha 5.9 6.2 6.8 7.3 7.9 8.5 

Gasoline 22.7 23.3 24.4 25.5 26.5 27.5 

Middle distillates (mb/d)             

Jet/Kerosene 6.5 6.7 7.1 7.4 7.7 8.1 

Diesel/Gasoil 25.8 27.3 30 32.2 34.1 36 

Heavy products (mb/d)             

Residual fuel* 8.2 7.8 7.1 6.6 6.3 6 

Other** 10 10.2 10.5 10.7 10.8 10.9 

Total (mb/d) 88.9 91.6 96.3 100.7 104.6 108.5 

*   Includes refinery fuel oil       

** Includes bitumen, waxes, still gas, coke, sulphur etc.       

As seen from Table 2.3 and 2.4, gasoline is currently second main transportation fuel 

with an increasing demand for future.  

In order to use gasoline in transportation vehicles, the limits for components given in 

TS EN 228 - specification for automotive gasoline (Table 1.2) must be fulfilled to meet 

fuel performance factors such as volatility, antiknock, and fuel economy. Another very 



20 

important factor is environmental policies and regulations and they take place in 

specification for automotive gasoline. Main vehicle emissions produced by gasoline 

powered transportation cars are Carbon Monoxide (CO), Hydrocarbons (HC), Oxides 

of Nitrogen (NOx) and Particulates (PM10 - particles have diameter less than 10 

micron). These emissions are directly contribute to the air pollution. Hydrocarbons are 

main source for Volatile Organic Compounds (VOCs). Interaction of NOx, organic 

gases and sunlight produce Ozone (O3) and it is one of main air pollutants. Sulfur in 

the fuel contributes as Sulfur Dioxide (SO2) after combustion in engine. CO is another 

main pollutant comes from vehicles after burning the fossil-based fuel. The limits for 

air pollutants and more details are given in Ambient Air Quality Evaluation and 

Management Directive [55]. In addition, The Clean Air Act Amendments of 1990 

classified following pollutants related to gasoline vehicles; benzene, formaldehyde, 

acetaldehyde, Polycyclic organic matter (POM), and 1,3-butadiene [54]. Benzene is 

found in gasoline (max. 1% vol.) and other pollutants are formed during combustion. 

All above pollutants have effects on human diseases about respiratory tract, cancer, 

heart attacks etc. 

The concentration of components given in specification for gasoline have direct effects 

on emissions and air pollutants, thus quality control of gasoline plays an important and 

critical role in human life. 

It would be meaningful to give detailed information about essential properties of 

gasoline, which are subject to this thesis study. 

2.2.1 Octane Number 

Octane is the most well known component of gasoline. It is a measure of combustion 

characteristics of gasoline. Gasoline octane number is measured by depending on its 

knocking tendency. To have a better understanding about knocking, the following 

information is given: “The fuel-air mixture undergoes chemical reactions that may 

cause it to auto-ignite and detonate the entire remaining mixture. Instead of being 

pushed down smoothly on the power stroke, the piston is given a hard instantaneous 

rap to which it cannot respond because of the large mechanical inertia present in the 

crankshaft and other pistons. This rapid energy release causes pressure fluctuations in 

the cylinder which result in a loud metallic noise commonly called knock” [5].  
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There are two laboratory test methods (TS EN ISO 5164 and TS EN ISO 5163) to 

measure octane numbers called Research Octane Number (RON) and Motor Octane 

Number (MON). RON is measured under low engine speed and MON is measured 

under high engine speed. RON is always higher than MON and the difference between 

these two gives information about the sensitivity of gasoline to changes in operating 

conditions [54]. RON is more common than MON and it is usually RON when octane 

number of gasoline is mentioned. 

One should note that knocking tendency is very dependent on chemical structure of 

the fuel and it decreases in the following order: alkanes > branched chain alkanes > 

cycloalkanes > alkenes > aromatics, thus aromatics have higher octane number 

compared to other hydrocarbon types [52]. In Figure 2.3, RON variation is given with 

respect to different hydrocarbon types. There are also some additives used as octane 

improver, like oxygenates and patented chemicals. 

 

Figure 2.3: Research Octane Number for hydrocarbon groups [53]. 

Both octane numbers (RON and MON) are measured by using a knock engine in the 

laboratory with different test conditions. The standard knock engine is a single cylinder 
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cooperative fuels research (CFR) engine. To have similar driving conditions on the 

road, there are to different test method conditions, given in Table 2.5, to determine 

RON and MON. It is possible to run the engine with sample fuel and the reference 

fuel. According to reference fuel knocking tendency, it is possible to find the octane 

number of sample fuel. There are two main reference fuels, iso-octane (2, 2, 4-

trimethyl pentane) and n-heptane, having octane number of 100 and 0 respectively. 

Any volumetric mixture of these two reference fuels gives us the reference fuel needed 

for intermediate octane numbers between 0 and 100. Comparison of reference fuel and 

sample fuel knocking tendency is key to measure octane number. 

Table 2.5: Octane test method conditions [10, 11]. 

 

Detailed information regarding to octane number analysis can be easily found in TS 

EN ISO 5164 (or ASTM D 2699) and TS EN ISO 5163 (or ASTM D 2700) test 

methods for RON and MON [8-11]. 

2.2.2 Distillation 

Since gasoline is a mixture of many intermediate petroleum products, it boils over a 

range of temperatures. Instead of having a single boiling point, gasoline has a 

distillation curve starting from initial boiling point (IBP), which is the first drop 

recovered after boiling starts, up to final boiling point (FBP), which is the temperature 

when there is not more recovered liquid. Distillation range is very important for 

gasoline performance such as cold start, hot start, fuel economy, power, acceleration 

and exhaust emissions. The relation between gasoline performance indicators and 

distillation curve can easily be seen in Figure 2.4. 

100 ml of sample is distilled at a rate between 4 – 5 ml/min by applying heat. After 

heating and start of boiling, vapors of sample are condensed in condenser kept at a 

temperature around 10 oC and collected in receiver. Sample collected in receiver is 

measured volumetrically and temperature is recorded at the same time.  
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Figure 2.4: Correlation of gasoline performance with distillation profile [54]. 

 Temperature data is recorded at each volume collected in receiver after condensation. 

Also IBP and FBP are recorded. By plotting temperature versus percent sample 

evaporated and collected in receiver, a distillation curve is established. In order to 

avoid any sample loss during distillation, gasoline sample temperature should be below 

18 oC and receiver and condenser temperatures should be at around 15 oC. A typical 

example of distillation apparatus is given in Figure 2.5 [12]. 

Detailed information for distillation test method is in TS EN ISO 3405 [7]. In gasoline 

specification given in Table 1.3, distillation analysis points are given as evaporated at 

70 oC (E70), evaporated at 100 oC (E100) and evaporated at 150 oC (E150). These 

points are for evaporated volume of sample at the specific temperatures. 
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Figure 2.5: Distillation apparatus [12]. 

2.2.3 Hydrocarbon Composition 

Gasoline contains of many types of hydrocarbons starting from C5 to C12. Parafins, 

naphtenes, aromatics, olefins are essential hydrocarbon groups in gasoline. When 

gasoline specification (Table 1.2) is examined, there are some components related to 

hydrocarbon types. In order to determine concentration of hydrocarbon types 

(paraffins, aromatics, olefins, benzene) and oxygenates in automotive-motor gasoline, 

multidimensional gas chromatography method, that is TS EN ISO 22854, is the 

primary method used [13].  

Gas chromatography (GC) is a very well known and most widely used laboratory 

technique for the separation and analysis of volatile compounds with a history of more 

than 60 years. Separation method is used to identify the components in a sample, and 

then the concentrations of these components are calculated by using reference 
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standards for the calibration of GC. A gas chromatography system consists of 

following parts, carrier gas source helps component to move in the column, sample 

inlet to vaporize sample, column to have separation, detector to measure output and 

computer to collect data [55]. A very common scheme is given in Figure 2.6. 

Figure 2.6: Gas Chromatography Scheme [Url-9]. 

A small amount of sample is injected to the column, where separation in time is 

achieved by retaining components inside the column with the help of special materials 

coated to internal surface of column, and then separated components are detected at 

the detector. The detector output is converted to a chromatogram by using computer 

and software. A typical chromatogram is given in Figure 2.7. Individual components 

have unique retention time, the interval between injection of sample and detection of 

component at detector, used to identification and the area under the peak is used for 

determination of concentration. 

Gasoline sample is separated into hydrocarbon groups (also according to carbon 

numbers) by gas chromatographic analysis using column-coupling and column 

switching procedures. There are columns, traps and valves inside gas chromatography 

system with a flame ionization detector. A typical chromatogram of gasoline with 

MTBE analysis according to TS EN ISO 22854, is given in Figure 2.8 [13]. 
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Figure 2.7: A typical Gas Chromatography chromatogram [Url-10]. 

It should be noted that in this chromatogram the hydrocarbons are grouped and 

separated by carbon number. Combination of traps specific to hydrocarbon group 

types, switching valves, boiling point column results in a non-typical chromatogram 

as given above Figure 2.8. 

  

 

Figure 2.8: Typical chromatogram of a gasoline sample containing MTBE [13]. 
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2.2.4 Density 

Density is defined as mass per unit volume at a specified temperature; it is usually 

given in kg/l or kg/m3 for petroleum products [57]. Sample temperature is set to density 

measurement temperature if possible; otherwise, 20 oC above the pour point of sample 

might be used. An important point in this analysis is that the temperature of sample 

and the measurement instrument should be stable. Sample should be clean, free of 

particles and air bubbles. A small volume of liquid is injected into an oscillating tube 

and the change in oscillation frequency caused by the change in mass of tube is 

correlated to calibration [58]. The result is provided as an average of three consecutive 

measurements and it is recorded with ±1kg/m3 and temperature value. Density is 

determined according to given equation 2.2 [58]. 

2 2
1 ( )w s wd d K T T        (2.2)

where d is density at test temperature, kg/l or kg/m3, K1 is instrument constant for 

density, Tw is observed period of oscillation for cell containing water (used for 

calibration), Ts is  observed period of oscillation for cell containing sample and dw is 

density of water at test temperature. 

  



28 

 

  



29 

3.  NIR SPECTROSCOPY 

NIR is a form of molecular spectroscopy and the near-infrared region of 

electromagnetic spectrum is from 700 nm to 2500 nm. NIR energy is firstly found by 

William Herschel in 19th century [Url-11]. Different from mid-IR spectroscopy, NIR 

has molecular overtone and combination of vibrations, which are forbidden transitions 

according to quantum mechanics selection rules. Broad bands found in NIR spectra 

are complex and difficult to assign a molecular structure. Researchers overcame this 

difficulty by using chemometric models combining with spectroscopy data. 

3.1 Electromagnetic Radiation and Energy Levels 

Electromagnetic radiation in terms of classical theory is the flow of energy at the speed 

of light through free space or through a material medium in the form of electric and 

magnetic field. Electromagnetic radiation consists of electromagnetic waves which 

can be defined as oscillating waves of electric and magnetic fields (Figure 3.1).  

 

Figure 3.1: Oscillating electromagnetic waves [15]. 

Oscillations in different wavelength or frequency form the electromagnetic spectrum 

and, according to wavelength, there are some regions of energy levels; radio waves, 

microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma 

rays as given in Table 3.1. The oscillations of the two fields are perpendicular to each 

other and perpendicular to the direction of energy and wave propagation. Relation 



30 

between frequency and wavelength is given as Equation 3.1, where c is speed of light, 

ν is frequency and λ is wavelength [15]. 

c
 

   (3.1) 

Table 3.1: Electromagnetic spectrum [14]. 

 

According to modern quantum theory, electromagnetic radiation is the flow of photons 

through space. Photons are called as wave-like particles and they can be treated as the 

"carriers" and "transferers" of energy [15]. Energy of photon is given by Equation 

(3.2), also called Bohr equation where h is Planck constant (h=6.626x10-34 Js) and ν is 

frequency.  

E h          (3.2) 

Matter is anything that has mass and takes up space. It is made up of atoms and atoms 

are made up of protons (positively charged), electrons (negatively charged) and 

neutrons (no charge). Protons and neutrons are located in the center of atom, that is 

nucleus, but electrons are around the nucleus, that is called as orbital. Orbitals are 

particular energy levels around the nucleus and they have particular energies with 

individual distance from the nuclei. 

Since molecular vibrations are the basis for complete IR region spectroscopy, it would 

be useful to understand energy of levels (orbitals) by looking harmonic and 

anharmonic oscillator models in view of classical mechanical and quantum mechanical 

models. 
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A diatomic molecule can be treated as two spherical masses (m1 and m2) attached to 

one another with a spring given force constant (k).  

According to Hook’s Law, the energy (E) of this system is given by Equation (3.3); 

                       
2

h k
E 

 
                   (3.3) 

where µ is reduced mass; 
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The potential energy is given by Equation (3.4); 
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2
V kq                    (3.4) 

where q is displacement between r ( inter-nuclear distance during vibration) and re 

(inter-nuclear distance at equilibrium). 

                       eq r r                     (3.4a) 

Quantum mechanically, it is well known that electrons can stay in specific energy 

levels, not in between two energy levels, that also means that electrons stay in specific 

orbitals. Equation (3.5) gives the energy of these levels, where En is molecule 

vibrational energy, n is (0, 1, 2, 3 ...), h is Plank's constant, k is force constant and µ is 

reduced mass. 
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Regarding to absorption frequency, it has another form in terms of wavenumber in 

Equation (3.6) where c is the speed of light. 

1 1
,

2

k
cm

c m


 


        (3.6) 

In harmonic oscillation, energy levels given in above equations are in equal distance 

and transitions are only allowed between neighboring energy levels, Δn=±1. 

According to the Boltzmann distribution, most molecules at room temperature 

populate the ground level n=0, and consequently the allowed, so-called fundamental, 

transitions between n=0 and n=1 dominate the vibrational absorption spectrum . These 

fundamental vibrations is mainly Mid-IR (MIR) spectra region. MIR region, from 

8500 to 12.500 nm, is very characteristic for molecules and called as fingerprint region. 

Thus, mid-IR is mostly used for qualitative analysis. A change in the dipole moment 

of the molecule needed to get absorption of infrared radiation for any type of vibration 

[16].  

According to Stuart (2004), “A molecule can only absorb radiation when the incoming 

infrared radiation is of the same frequency as one of the fundamental modes of 

vibration of the molecule” (p. 8). Vibrations are in form of stretching (change in bond 

length) and bending (change in bond angle). There are symmetrical and asymmetric 

stretching, in-phase and out-of-phase respectively. These vibrations are given in 

Figure 3.2 [17]. 

 

 

Figure 3.2: Molecular Vibration types; Bending,  Symmetric and Asymmetric 
stretching [17]. 
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Harmonic oscillation phenomena is very good to understand fundamental vibrations, 

but it is not enough to explain energy level transition like Δn=±2 or more where 

overtone bands exist. According to harmonic oscillation model, combination of 

vibrations is not possible because of restriction rules. However, it is well known that 

there are overtones and combinations in NIR region. 

Anharmonic oscillator model comes into place where “The model considers some non-

ideal behaviors of the oscillator which account for repulsion between electronic clouds 

when the atomic nuclei approach (the potential energy rises fasten than in the harmonic 

model) and a variable behavior of the bond force when the atoms move apart from one 

another” (Pasquini, 2003, p. 202). For anharmonic oscillator model, the energy levels 

do not have equal distance and the transitions to more than on level is possible, that is 

Δn=±2, ±3 etc. These are called as first, second etc. overtones. In addition to overtones, 

any combination of vibrational transitions form combinations. NIR region contains 

absorption bands for overtone and combination absorptions. Then the vibrational 

energy levels are given in Equation (3.7). 

2

0 0

1 1

2 2
nE n h n h

   
         
   

 
                    (3.7)

where χ is anharmonicity constant of vibration. Energy levels for harmonic and 

anharmonic models are shown in Figure 3.3. 

 

Figure 3.3: Harmonic and anharmonic models for potential energy of a diatomic 
molecule (de: equilibrium distance) [18]. 
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Figure 3.4, given below, is also a good summary of above discussions.  

 

Figure 3.4: Summary of IR region spectroscopy techniques [16]. 

3.2 NIR Spectroscopy 

Near infrared radiation is first discovered by William Herschel who was a successful 

musician and astronomer. He realized that there is heating effect beyond the visible 

light range. He called this as radiant heat and the thermometrical spectrum. However, 

he mistakenly defined this radiant heat different than light [16]. In 1835, Ampere 

contributed to Herchel’s studies that NIR had same properties with UV light except 

the wavelength. 

NIR is a form of molecular spectroscopy and it utilizes the spectral range from 780 to 

2500 nm (12,500 and 4,000 cm-1) and provides complex structural information related 

to the vibration behavior of combinations of bonds in molecules. Similar to UV, visible 

and mid-IR spectroscopy, NIR also follows Beer’s Law. Same philosophy, that is the 

frequency of light matches the frequency of a suitable molecular vibration, then the 

light can be absorbed, applies for NIR spectroscopy. The major bands in the NIR 

region are second or third harmonics of fundamental O−H, C−H, and N−H stretching 

vibrations found in the mid-IR region, detailed in section 3.2.1.  Monochromatic light 

produced by an NIR instrument interact with material as reflection, refraction, 

absorption, diffraction, and transmission. A representative scheme is given in Figure 

3.5 for NIR radiation for various different type of samples [18]. 
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Figure 3.5: Types of measurements in NIR Spectroscopy. a) Transmittance, 
b)Transflectance, c) Diffuse Transflectance, d) Interactance, 
e)Transmittance through scattering medium [18]. 

These are different techniques to get the spectra from sample. They are different for 

the different positioning of the light source and of the measurement sensor around the 

sample. Transmittance (absorption) and reflectance, given in equation 3.8 and 3.9, are 

most important and used techniques among others [18]. 

Transmittance is based on the measuring the light that goes through whole sample, and 

at this time some of it absorbed by sample. This type of analysis can give information 

about internal structure of sample. Since the light from source should pass through the 

sample, there is need a high intensity light source and high sensitive measuring 

detector. Transmittance is a measure of light intensity in terms of wavelength 

remaining after the absorption of light by sample. The sample takes place in between 

the light source and the detector. Either transmittance (T) or absorbance (A) is 

determined because of measurement [17,18]. 

0

I
T

I
                      (3.8)

where I = intensity of transmitted radiation and I0 = intensity of incident radiation. 
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Diffuse Reflectance (R), given in equation 3.10, is measured by component of 

radiation reflected from the sample. An incident light penetrates into sample and some 

part of light absorbed and some part reflected back again. Measuring the reflected light 

gives information about the relation between reflected light intensity and analyte 

concentration in sample. Reflectance technique is better for solid samples [18]. 
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where I = intensity of light diffusively reflected from the sample and Ir = intensity of 

light reflected from background or reference reflected surface. 

This technique is mostly used with solid samples. Baseline is acquired by the radiation 

reflected from a background reference, Ir. By using same source, reflectance of sample 

is also measured. These two spectra used to obtain related absorbance value [18]. A 

design of monochromator scanning instrument is given in Figure 3.6. 

 

Figure 3.6: A design of monochromator scanning instrument [16]. 
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In the interactance measurement type, light is interacted with sample more than the 

other techniques. Thus, we gather more information about the sample composition. 

Interactance as shown in Figure 3.5 e), mainly for solid samples and it is a good 

technique for quantitative determination in pharmaceutical studies. The path length 

that light travel through sample is 65 times greater than the thickness of the drug tablet 

[18].  

3.2.1 Overtones and combinations 

As discussed earlier, together with the vibrational bands, there are overtone bands, 

rising from transitions for more than one energy level and combination bands, rising 

from combination of two or more fundamental vibrations. In order to make these 

overtones or combinations, the energy absorbed by the molecule should exactly be 

same as energy levels between two transition levels. In addition to this, there should 

be a dipole moment change because of vibrational motion of the molecule. When 

considering combinations are allowed by anharmonicity, it is possible that one specific 

combination of vibrations is infrared active (causing a change in dipole moment) and 

this can only be displayed in NIR spectrum, not in MIR spectrum. The intensity of 

absorption band is directly related with the degree of change in dipole moment [18]. 

NIR spectra are dominated by hydrogen which are mainly overtone and combination 

bands of some fundamental groups containing C-H, O-H, and N-H bonds. Common 

NIR bands are given in Table 3.2 with respect to vibrational groups. Some detailed 

information about NIR bands with structure information is given in Table A.1 in 

Appendix A. 
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Table 3.2: NIR bands of some vibrational groups [17]. 

 

By looking at the NIR spectra of a simple and a complex structure, as given in the 

following figures, very big differences are observed between spectra according to the 

complexity. 

In Figure 3.7, NIR spectrum of Chloroform – CHCl3 where only one Hydrogen atom 

causes the absorption. There are almost no broad typical NIR bands. 

 

Figure 3.7: NIR spectrum of chloroform [14]. 

In order to understand structural differences in absorption bands, it is valuable to 

analyze NIR spectrum of pure hydrocarbons. One can easily observe different 

absorption peaks between normal paraffin and iso-paraffin hydrocarbons as given in 

Figure 3.8 [21]. 
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Straight chain normal paraffins which are n-Hexane, n-Heptane and n-Octane have 

similar NIR spectra since their molecular structure are similar except the number of 

methylene groups, -CH2-. But NIR spectra of branched hydrocarbons which are 2,2-

Dimethylpentane and 2,2-Dimethylbutane have different absorption peaks at around 

4400 cm-1 and they have more different spectral features compared with normal 

paraffins [21].  

NIR spectra of naphtha, n-hexane – C6H14, toluene – C7H8, cyclohexane – C6H12 are 

shown in Figure 3.9 Since the structure becomes more complex, the spectra include 

broad NIR bands. 

 

Figure 3.8: NIR spectra, between 5000 – 4000 cm-1 of normal paraffin and iso-
paraffin hydrocarbons [21]. 
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Figure 3.9: NIR spectra of naphtha, n-hexane, toluene and cyclohexane (offset for 
clarity) [4]. 

According to Ku et al. (1998), very valuable spectral information can be seen in 1100-

1650 nm and 1800-2100 nm regions. The 1650-1800 nm and 2100-2500 nm ranges do 

not contain valuable information because of strong and saturated absorption bands 

form a long optical path length. According to structures of individual samples, 

differences in NIR absorption bands are observed. The bands around 1200 nm stand 

for the second overtone of fundamental CH stretching band at 3000-2700 cm-1 in MIR 

region. The second overtone of a fundamental absorption at 2870 cm-1 is 3 x 2870 cm-

1, that is 8610 cm-1 or 1161 nm. The bands around 1400 nm stand for the combination 

bands with the first overtone of CH stretching band at 3000-2700 cm-1 range and 

CH3/CH2 bending around 1450 cm-1. This combination band wavelength is found as 2 

x 2870 cm-1 + 1450 cm-1, that is 7190 cm-1 or 1390 nm. The bands around 1800-2100 

nm range stand for the shoulder of the strongly absorption combination band at 2300 

nm, that is formed by combination of CH stretching band at 3000-2700 cm-1 range and  

CH3/CH2 bending around 1450 cm-1. This combination results in an absorption at 2870 

cm-1 + 1450 cm-1, that is 4320 cm-1 or 2314 nm [4]. 

3.2.2 Advantages and disadvantages of NIR 

As detailed in previous given information, NIR spectroscopy has many advantages in 

quantitative analysis and structural identification of various type of samples in the form 

of solid and liquid. 
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NIR application is mostly chosen because of being a very rapid and nondestructive 

analysis. The sample after NIR analysis can be used for other purposes since there is 

not any chemical or physical reactions take place. Since no chemicals are used, there 

is not any need for sample disposal. No sample preparation before NIR analysis is 

required and this makes it very time saving and thus requires less man-hour for the 

analyses. By using the advantage of fiber optics, NIR spectroscopy can be used in 

many industrial areas which are in exproof or non-exproof conditions. This provides 

different application in many processes like drug, oil, chemical etc. Lastly, very 

successful calibrations and studies based on chemometrics make NIR an indispensable 

tool. All these advantages are good reasons to choose NIR instead of traditional 

methods. 

However, calibration task is not easy for NIR. There should be separate calibrations 

for each property to be quantitatively analyzed. Also someone should take care about 

the calibrations to monitor the accuracy. According to process and sample, the 

calibrations should be updated periodically. Although chemometrics with NIR is very 

powerful tool, chemometrics is difficult and sophisticated to study. It requires some 

level of training and time to spend. 
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4.  CHEMOMETRICS 

According to International Chemometrics Society, “The science of relating 

measurements made on a chemical system or process to the state of the system via 

application of mathematical or statistical methods” is stated as the definition of 

chemometrics. Advanced instrumentation on measurement with enormous valuable 

data and increased power in computing have taken attention of many people who study 

on spectroscopy, process control, food, drug, environmental chemistry, statistics etc. 

Then chemometrics is recognized as a sub-discipline within analytical chemistry. 

Although it is known as a sub-discipline within analytical chemistry, it takes an 

integral part of many scintific disciplines. The relation between different disciplines is 

given in Figure 4.1 [19]. 

 

Figure 4.1: Relation between other disciplines with respect to chemometrics [19]. 

Chemometrics is an interdisciplinary science that involves statistics, mathematical 

modelling, computer science and analytical chemistry. Major application areas are 

calibration, validation, optimization of chemical measurements and experimental 

procedures, and getting most out of chemical information from analytical analysis. 

The first word “Chemometrics” was mentioned in the 1970s and mainly involved in 

multivariate analytical data derived from analytical chemistry analysis data. In the 

1980s, chemometrics as a discipline became organized in various  journals, societies, 
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books, meetings and it was separated from other disciplines, like computational and 

theoretical chemistry. In these years, chemometricians also started to use Matlab 

instead of FORTRAN that was used initially. Currently, with the emerging technology 

in computers and analytical instruments used for analysis, data sets became much 

bigger in size and applications in chemometry became more critical. Application areas 

have been expanded starting from 1970s; the first studies were in food and 

pharmaceutical chemistry areas. Petrochemical, environmental and bioinformatics are 

the other areas studied by people in both academic life and industry [19]. 

4.1 Calibration 

Calibration is one of the most important tasks required to perform a quantitative 

analysis in chemistry. According to Lavine and Workman (2008), “Calibration 

involves relating, correlating, or modeling a measured response based on the amounts, 

concentrations, or other physical or chemical properties of a set of analytes.” By 

establishing relationship between response and property, then it is possible to 

determine the amount of property because of obtained response from analytical 

instrument. A scientific law formed of mathematical formulas mostly describes this 

relationship; a very famous example is Beer’s Law that relates the attenuation of light 

to the properties of the material through which the light is traveling [Url-3]. 

There are mainly two types of calibration, univariate and multivariate calibration. In 

univariate calibration, one signal response is correlated to a specific analyte property, 

but in the multivariate calibration, multiple responses correlated to one or more 

property of interest. Although there are some solutions to avoid the interferences if 

there is any, it is obvious some more study should be carried out in order to find the 

correlation in case of having a very broad NIR spectrum over a wide wavelength range. 

Multivariate calibration is a good solution for this type of solution to establish a 

prediction model. 

4.1.1 Univariate Calibration 

A very common and known example of univariate calibration is to determine the 

concentration of a single compound by using the response of single detector, 

correlation of concentration of compound of interest to a peak found at a fixed 

wavelength for a spectroscopic measurement. In order to apply univariate calibration, 
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the signal or response must be selective for the interested analyte property. According 

to IUPAC “selectivity refers to the extent to which the method can be used to determine 

particular analytes in mixtures or matrices without interferences from other 

components of similar behavior” [33]. Thus univariate calibration is also named as 

single-component analysis. There are two methods of getting univariate calibration, 

classical calibration and inverse calibration. 

4.1.1.1 Classical Calibration 

Evaluating the correlation of a single component concentration to a response is a 

simple explanation of classical univariate calibration. Beer’s Law is a very good 

example to apply this rule. Absorbance is considered as a function of absorbance from 

a spectroscopic measurement. It is simply given as; 

A bc

 

                    (4.1)

where A is absorbance, ε is molar absorptivity, c is concentration. In vector notation, 

we have following equation. 

 . sa c                          (4.2) 

where a is the vector of absorbances (response) at one wavelength for a number of 

samples, and c is the vector of corresponding concentrations. These two vectors have 

same size, which is the number of samples. The scalar coefficient s is related with 

these parameters and can be calculated (via pseudo-inverse) by solving 4.2 as follows: 
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(4.3) 

where c  is the transpose of vector c. 

When s is calculated, the prediction model is as follows: 
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ˆ .̂a c s                      (4.4) 

where â  and ĉ are refer to prediction. Since s  is calculated from the model, for a 

given absorbance, the corresponding concentration can be calculated, or for a given 

concentration, the corresponding absorbance can be calculated. 

In order to see the prediction error (e), also named as residual, the difference between 

observed and predicted values is calculated [34]. 

ˆe a a                       (4.5) 

4.1.1.2 Inverse Calibration 

The response is predicted in univariate calibration, but in most cases, predicting 

concentration from the response is more of interest, especially in analytical chemistry. 

Another reason to use inverse calibration is the source of prediction error. The 

prediction error in classical calibration comes from the error in response, which is 

essentially instrumental, but with improving technology, the instruments are very 

reliable. The instrumental errors very small when compared to errors occurred by the 

measurement of concentration. Weighing and dilution steps, equipment used (flask, 

pipette etc.), and human factor are very common sources of contamination used in 

prediction model. Thus, inverse calibration is better to predict the concentration and 

that is why it is used extensively. Classical calibration fits a model so that the errors 

are in the response, while inverse calibration fits a model so that the errors are in the 

concentration [34]. A schematic view of error source for two calibration types is in 

Figure 4.2. 

 

Figure 4.2: Errors in Classical calibration (a) and Inverse calibration (b) [34]. 
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Since concentration is a function of absorbance than we have following equations in 

vector notation: 

.bc a                      (4.6) 
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                    (4.7) 

 

ˆ ˆ.c ab                      (4.8) 

 

where b  is scalar coefficient. The error in prediction of concentration is given in 
equation 4.9. 

ˆe c c   
                    (4.9) 

b  is only approximately inverse of s, since each calibration has different approach to 

error calculation as given in Figure 4.2. For a good data, both models should give 

similar prediction results and errors. Intercept, non-linearity, noise can affect the data 

and the prediction differs between two calibration methods [19]. 

In both regressions, the regression line is forced through zero since it is assumed that 

the intercept is zero. This assumption gives poor fit, because of other components in 

the sample also absorbs. 

4.1.1.3 Intercept 

Mostly an intercept is added to inverse calibration model, as follows: 

0 1.c b b a   

                    

(4.10) 

and matrix/vector notation is given in equation 4.11. 

.c A b                     (4.11) 
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where c is vector of concentrations, b is vector consisting of b0 as intercept and b1  as 

slope. A is a matrix of two columns, first column of 1’s and second column is 

responses. Same pseudo-inverse rule is applied to calculate coefficients, b0 and b1. 

1( . ) . . b A A A c  

              

(4.12) 

The predicted concentrations are calculated by using below equation given in matrix 

notations [34]. 

ˆ .c A b                     (4.13)

4.1.2 Multivariate Calibration 

Multivariate calibration is used in many applications and it depends on a vector or 

matrix of data for each sample, such as a full wavelength range of spectrum, whereas 

univariate calibration depends on a single scalar measurement for each sample. There 

are many different calibration techniques available; they only differ from each other 

in methods used to calculate regression coefficients. 

Interferences are very common problems to establish a calibration according to Beer’s 

Law. If there is a specific response for interested specific property or component in a 

sample, then univariate calibration is good enough. In case of having difficult samples 

and corresponding interferences in the spectra, then univariate calibration does not 

respond very well, and we need multivariate calibration to overcome this problem. 

Instead of correlating the concentration to a single wavelength, using full spectrum or 

important wavelengths in calibration as multivariate calibration, is very successful. 

Thus, the difficulties caused by interferences are removed and it is very time saving 

method when compared to removing interferences by applying difficult and long pre-

analysis techniques. A schematic explanation of this advantage is given in Figure 4.3. 

As seen in the graph, it is not possible to have a reliable calibration when there are 

interferences between the components in the sample for analyzed wavelength range 

[39]. 



49 
 

 

Figure 4.3: a) Some spectra of multiple samples without any interferences, b) 
univariate calibration of samples in a). c) Some spectra of multiple 
samples with interferences, d) univariate calibration of samples in c) 
[34]. 

A very general calibration procedure consists of following steps. A set of samples is 

collected and the compositional range is included. Then a spectroscopic measurement 

(or any other interested measurement to get a data set) is performed and corresponding 

spectrum is collected in a given wavelength range. In addition to spectroscopy 

measurement, reference analysis of interest is executed to have concentrations for each 

sample. Lastly, the sample set is divided into two sets, one set for calibration and one 

set for validation studies, and one of multivariate calibration methods is applied with 

calibration set [28]. 

4.1.2.1 Classical Least Squares (CLS) 

In classical least squares, also known as K-matrix method, the response is considered 

as a function of concentrations, where response is treated as dependent variable 

whereas the concentration is independent variable. A very common example is Beer’s 
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Law, absorbance is a function of concentration. Matrix notation form of CLS is given 

as; 

.A C B                     (4.14)

where A is a mxn matrix of spectra, m samples measured at n wavelength, C is a mxp 

matrix of concentrations of p components for each m samples. B is calculated by 

solving linear equations. 

1ˆ ( . ) . . B C C C A  
                   (4.15)

CLS is a good calibration technique if all components in sample contributing to the 

spectra are identified and their concentrations are known. The concentration of the 

interested property must be related with the defined spectrum. Otherwise some 

properties might have interferences with another property that affects the spectrum. 

Another condition for CLS is that the number of components must be less than or equal 

to number of experiments or wavelengths. 

4.1.2.2 Multiple Linear Regression 

Multiple linear regression is also called as inverse least squares where concentration 

is modeled as function of response, i.e. spectrum. It is not required anymore to identify 

all components in the sample. Therefore, it is possible to apply this methods only 

property of interest. The difficulty with the MLR is that the number of samples in 

calibration set must be greater than the number of wavelength measured. It is 

impossible to have this condition with high technology spectroscopy instruments; a 

smaller set of wavelength must be selected. 

The matrix notation of MLR is given as below; 

.C A B                     (4.16)

where C is mxp matrix of  concentrations of p properties for m samples, and A is mxn 

matrix of responses of n wavelengths of m samples. B is nxp matrix of regression 

coefficients for n wavelengths and p properties. Once this equation is solved, B matrix 

is found as; 
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1( . ) . . B A A A C                     (4.17)

Since the number of samples must be greater than the number of wavelengths, there 

are some algorithms to reduce the number of wavelengths to the most meaningful ones 

in order to use inverse method. In order to do this, very good knowledge is required 

about the errors occurred. Then the regression equation takes the following form for 

the ith property.  

0 1 1 2 2 3 3 ...i i i i ic b b A b A b A                         (4.18)

4.1.2.3 Principal Component Analysis (PCA) 

A very common problem with the multivariate calibration is the difficulty to see the 

relation within the variables since the data is very large. Latest technology 

spectrometers can produce data as a result of an analysis in a very wide wavelength 

range. The aim to use principal component analysis is to reduce the dimension of the 

data, by capitalizing on the colinearity of the data, in order to make the evaluation 

without losing any valuable information. In addition to this, it is a very useful tool 

about identifying the relation between variables. PCA, a schematic view is given in 

Figure 4.4, is used for many different multivariate calibration techniques as an initial 

step before establishing prediction model. Two most common PCA algorithms are 

NIPALS and SVD (Singular Value Decomposition). 

 

Figure 4.4: Data reduction in PCA [30]. 
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The original data, in form of a matrix, is transformed as following in PCA analysis,   

.MxN MxA AxN MxN X T P E                     (4.19)

where X is orginial data matrix, T are the scores, P are the loadings, and E error matrix 

associated from transformation. Scores and loadings matrices can only be calculated 

if their dimensions are smaller or equal to smallest dimension of original matrix, which 

is also the maximum number of principal components to be calculated. The number of 

rows in the original data matrix is also the number of rows in score matrix (usually 

number of samples). The number of columns for score matrix are limited to number of 

principal components. For loadings matrix, the number of columns equals to the 

number of columns in the original data matrix (response i.e. detectors, wavelengths). 

The number of rows is determined by the number of principal components and each 

row corresponds to one principal component. First principal component, PC1, is 

defined by a loading vector as follows, where m is the number of variable. 

1 1 2 3( , , ,..., )mp p p pp                     (4.20)

The corresponding score vectors are linear combinations of loadings and the variables. 

For sample i, score ti1 for PC1 is as following; 

1 1 1 1 2. . ... .i i i im mt x p x p x p                        (4.21)

For all n samples (objects) arranged as rows in X matrix, the score vector t1 of PC1 is 

obtained by equation 4.22. 

1 1.t X p                     (4.22)

where p1 is given as; 

1 3

2 4

p p

p p

 
  
 

P  

 1 1 21 ,PC p p p ;  2 3 42 ,PC p p p  

                   (4.23)

In mathematical terms, the principal components are the eigenvectors of the covariance 

matrix of original data matrix. Eigen analysis is applied to find eigen value and 
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corresponding eigenvector. Eigen value gives the amount of variation in the data set 

and the eigen value of PC1 has larger variation. 

Once loading matrix (principal component eigenvectors) P and score matrix T are 

calculated, X matrix can be predicted back.  

ˆ . X T P ; .  X T P E ; ˆ E X X  
                   (4.24)

As stated above, the maximum number of PCs must be smaller or equal to minimum 

dimension of original data matrix. All PCs are not required to be used in PCA analysis 

and further multivariate calibration methods. There are a few ways of determining the 

number of PCs to be used in analysis, like comparing the eigen values for each PC 

(eigen vector) and cross validation. 

Eigen value of a PC (eigen vector) is mentioned as sum of squares of scores, with ga 

is ath eigen value and I is number of rows (objects, samples etc ) in original matrix. 
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                   (4.25)

 

Figure 4.5: A schematic explanation of PCA and data reduction [30]. 
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Eigen values are also analyzed in percentages and cumulative percentages in order to 

see the contribution of each PC to variation. A graph of number PCs vs cumulative 

percentage is very common. 
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                    (4.26)

Once the contribution to variation by adding another PC becomes less than %5 to 

cumulative variation, and then it is good to keep number of PCs instead of increasing 

more. A random example is given in Table 4.1. Thus, 4 PCs that has % cumulative of 

%93.09, would be enough since there is not significant contribution with 5th PC. A 

summary of PCA is given in Figure 4.5. 

Table 4.1: Eigen values and cumulative in percentage [36]. 

4.1.2.4 Principal Component Regression (PCR) 

Contrary to multiple linear regression, that requires information about all components 

in the sample, principal component regression (PCR) method only requires the 

concentration information of interested components (or property, compounds) in the 

sample. This makes PCR very important in use of spectroscopic measurement data, in 

which the spectra collected in a very large/wide wavelength range but limited 

information about the compounds (property) in the sample, except the interested ones. 

Since the original data is very large, PCA analysis is necessary to calculate scores 

matrix, T, and loadings matrix, P. The next step is regression (transformation or 

rotation) by finding a relation between scores matrix, T, and the concentrations of 

interested components in the sample. The concentrations of interested components are 

determined by reference analysis methods in a trusted laboratory. The accuracy of the 

concentration results are very critical in the prediction error of regression model. 
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.a ac T r                     (4.27)

The concentration of interested component n is ca and ra is a column vector (also called 

as transformation or rotation vector) having equal number of rows with the number of 

principal components. It is preferred to choose the number of PCs equal to the number 

of components in the sample [19,34]. 

The vector ra is calculated by equation 4.28 since c and T are known. 

1( . ) . .n n
 r T T T c                     (4.28)

Finally, it is possible to estimate the concentrations of components interested by 

knowing scores matrix, T [34]. A schematic explanation of PCR is given in Figure 4.6. 

If there is concentrations to be calculated more than one, we have the following matrix 

form of above equations. 

.C T R                     (4.29)

 

Figure 4.6: A schematic of Principal Component Regression [37].  
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4.1.2.5 Partial Least Squares (PLS) 

Partial least squares (PLS) is mostly accepted as major multivariate calibration 

technique. Similar to PCR, PLS is also forms the linear combinations of predictor 

variables (concentration), but the way of choosing the linear combinations is different. 

In PLS, the errors coming from both concentration estimate and spectra are used, 

whereas PCR assumes that the concentration predictions do not have any errors. While 

determining the concentration of interested component in a laboratory, there are many 

source of errors like sample preparation, personal, instrument etc. These errors are 

much larger than instruments error in spectra. Then, it is meaningful to consider the 

errors in concentration. In PLS, the covariance between both variables’ spectra (X) 

and concentration (c) is minimized. Modelling concentration data and spectra data 

together is main principle of PLS. Thus, modelling the concentration data is also 

important as modelling the spectral data [37]. A schematic view is given in Figure 4.7. 

There are several algorithms for PLS, it is expressed mainly by the equations given 

below.: 

. X T P E                     (4.30)

. c T q f                     (4.31)

where q is similar to a loadings vector.  

T and P are for estimating the spectra data and T and q are estimating the concentration 

data. As seen above, T score matrix is same for both set of data. The PLS eigenvalues, 

sum of squares of each component, is different than PCA eigenvalues since both 

concentration and spectra are taken into account. For each PLS, there are spectral 

scores vector t, spectral loadings vector p, and concentration loadings scalar q [34]. 

The concentration of compound n is predicted by the below equations. 

1

ˆ
A

in ian an i
a

c t q c


   
                   (4.32)

. n n n nc T q c                     (4.33)

where nc is the vector of average concentration. 
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Figure 4.7: A schematic presentation of Partial Least Squares (PLS) [34]. 

PLS and PCA are similar to each other in dimension reduction. PLS reduces the 

dimension of a data set by projecting the data onto components of maximum variance 

with a second data set, which is y. Matrix notation of this definition is as following. 

. XE X T P                     (4.34) 

. YF Y U Q                     (4.35) 

where X is a matrix of predictors (i.e. NIR spectra), Y is corresponding matrix of 

responses (i.e. reference analysis results), T and U are matrices which are projections 

of X and Y, score matrices. P and Q are orthogonal loading matrices. E and F terms 

are errors. In PLS, the covariance between score matrices is maximized. 

As PLS regression followed, one gets couple of factors, which used to explain data 

further. Well knowns are loading graphs, residual graphs and score graphs, and they 

are used for group identification, outlier detection, and data analysis [40]. As 

mentioned above, PLS regression is also used for multivariate calibration tool to get 

prediction models. A regression vector, composed from regression coefficients, shows 

the interaction between raw data and predicted data. If there is only one y variable to 

predict, the algorithm used to make prediction model is called as PLS1, and if there 

are multi-variable to predict, it is as PLS2 algorithm. For quantitative analysis using 

spectroscopy data, usually PLS1 is used since it is possible to use different number of 

PLS factors (PCs) for each y variable. 
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There are many algorithms used for PLS1 regression and they give very close results. 

Some differences may arise from chosen number of factors or significant factors used 

in calculations. SIMPLS  [42] and NIPALS (non-linear iterative partial least squares) 

[43] are very well known two alternative algorithms. In this thesis, SIMPLS algorithm 

is used for PLS regression. For univariate regression, SIMPLS algorithm is same as 

PLS1 algorithm. SIMPLS algorithm formulated by Jong [42] is given in Table 4.2.  

For both PCA and PLS, R (combination of r vectors) defines the transformation of X 

to T. In PCA, T explains the variance of X but in PLS T explains covariance between 

X and Y. 

Table 4.2: SIMPLS algorithm formulated by Jong [42] 
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4.2 Developing Chemometrics based Analytical Methods 

Multivariate calibration techniques are widely used in industry as qualitative and 

quantitative analytical methods performed in both laboratory and process [60, 62, 63]. 

When fast response of NIR spectroscopy is combined with chemometrics modelling, 

it is very useful to use it in order to reduce cost and analyze more samples for a quality 

control laboratory. While doing this, keeping the precision and accuracy of results 

obtained by prediction models same or even lower than the reference method is one of 

the main advantages. Besides performing chemometrics based analytical methods off-

line in the laboratory, having them on-line and/or in-line process systems makes life 

easier for companies which have continuous manufacturing process. There are mainly 

two chemometric-related systems for manufacturing process named as Process 

Analytical Technology (PAT) is in mostly pharmaceutical business and Process 

Analytical Chemistry (PAC) is in mostly other business segments [59, 60]. PAT is 

defined by US Food and Drug Administration (FDA) as “a system for designing, 

analyzing, and controlling manufacturing through timely measurements (i.e., during 

processing) of critical quality and performance attributes of raw and in-process 

materials and processes with the goal of ensuring final product quality” [Url-12]. 

Although it is defined for PAT but it is same for every industry that uses similar 

chemometric methods to control the process. 

In order to have reliable chemometric prediction models, there should be a dedicated 

team and very well written procedures about development, evaluation and 

maintenance of methods. An example of groups involved this type of study is given in 

Figure 4.8. 

 

Figure 4.8: Process analytical chemistry team approach [61]. 
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The essential steps to produce chemometric prediction models are summarized in 

below Table 4.3. Selection of samples before starting the study is very critical, since 

the samples must cover the range to be studied or planned to study. The rule of thumb 

is that the variation in concentration must be ±5 R (reproducibility) of the reference 

method. Then, performing reference analysis and spectroscopic measurements must 

be done by qualified personnel very precisely. Model building, validating and 

predicting steps play very important role since the model will be used as replacement 

for the reference method. Chemometrician must apply best techniques for the lowest 

prediction error. As a result of continuous manufacturing processes, the process is not 

stable and samples collected for the process are subject to change, thus the models 

always should be updated by collecting new samples not included at the initial steps. 

Table 4.3: Essential steps for building chemometric prediction model [18]. 

1. Selection of calibration and validation test 

2. Determination of the concentration for property interested by using reference 

test method 

3. NIR spectra analysis 

4. Development and optimization of the multivariate calibration model 

5. Validation of calibration model 

6. Predicting unknown samples by using calibration model 

7. Maintenance of the calibration model 
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5.  EXPERIMENTATION and INSTRUMENTATION 

5.1 Experimentation 

Commercial gasoline samples, produced in Tupras Izmit Refinery as non-oxygenate 

and with oxygenate containing MTBE, were collected with two grades in RON 

property, which are 95 RON and 97 RON. Samples were kept at 4 oC temperature and 

in dark place before analysis to avoid any evaporation and possible interferences as a 

result of direct light. All gasoline samples were tested in Tupras Izmit Refinery Quality 

Control Laboratory, accredited from ISO/IEC 17025:2005 (General requirements for 

the competence of testing and calibration laboratories), according to standard test 

methods given in TS EN 228 - Automotive Fuels - Unleaded Petrol Requirements and 

Test Methods - Specification. 

Basic descriptive statistical information of analyses results and precision data for test 

methods are given in Table 5.1.  

Repeatibility, r and reproducibility, R values are two very important precision data for 

any test method. Repeatibility is defined by ASTM as the difference between 

successive test results, obtained by the same operator using the same apparatus under 

constant operating conditions on identical test material, would in the long run, in the 

normal and correct operation of test method. Reproducibility is defined as the 

difference between two single and independent test results, obtained by different 

operators working in different laboratories on identical test material, would in the long 

run, in normal and correct operation of test method. R and r values were calculated by 

using average values for each property. 

A brief table including all the analysis results are given in Appendix Table A.2. These 

analyses results were used as reference results to be modeled by multivariate 

calibration techniques. Only the distillation E150 property is used to get a prediction 

model for distillation characteristics.  
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Table 5.1: Basic statistical data for 45 gasoline sample analysis results 

  min max average 
std 

deviation 
r R 

RON 94.9 97.4 95.5 0.8 0.2 0.7 

MON 85.1 86.9 85.9 0.4 0.2 0.9 

Aromatics,  %(v/v) 29.7 39.9 33.8 2.3 0.5 1.7 

Olefins, %(v/v) 1.2 9.8 5.5 2.0 0.2 1.2 

Benzene, %(v/v) 0.57 0.95 0.78 0.09 0.02 0.04 

Density, kg/l 0.7291 0.7491 0.7398 0.0055 0.0003 0.002 

Distillation - E70, deg C 33.8 48.6 40.9 3.9 0.9 2.2 

Distillation - E100, deg C 55.3 66.8 61.6 2.9 0.7 1.8 

Distillation - E150, deg C 89.3 92.9 91.2 0.9 0.5 1.2 

5.2 Instrumentation 

All reference analysis were done by the Quality Control Laboratory.of Tupras Izmit 

Refinery. A brief information about the analysis and the pictures of instruments and 

apparatus were given as following. 

5.2.1 NIR 

45 gasoline samples were analyzed by FT-NIR spectroscopy (MATRIX-F, Bruker-

Germany) in wavelength rage of 800 – 2500 nm. For regression analysis, the spectral 

region of 1100 – 2200 nm was used. Before starting the analysis cycle, a background 

against air was taken. All analysis were done at room temperature 23 – 25 oC.  

NIR instrument, set-up and flow cell apparatus are given in Figure 5.1.  

Absorbance spectrum was collected by single channel NIR, using 10 mm quarts 

cuvette with InGaAs amplified photodetector with thermo-electric cooled (Te-

InGaAs). The instrumental parameters used in NIR analysis are given as follows; 

resolution 8 cm-1, background and sample scan time 16 scans, scanner velocity 10 

KHz, open aperture. Fourier Transform parameters are as give follows; phase 

resolution 128, phase correction mode: power spectrum, apodization function: 

Blackman-Harris 3-term, zero-filling factor: 2.  
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a) 

 

b) 

Figure 5.1: a) NIR Instrument and b) Flow Cell apparatus from laboratory. 

5.2.2 Octane Number – RON and MON 

RON and MON analysis were done by using Cooperative Fuel Research (CFR) 

engines, Figure 5.2,  (Waukesha, CFR Engines Inc., USA) which testing capability in 

the 40-120 octane number range. Main parts of the CFR engine are variable 
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compression ratio cylinder (4:1 to 18:1) and sleeve assembly, four-bowl falling level 

carburetor, CFR crankcase, intake air humidity equipment, exhaust surge system, and 

knock meter [Url-13].  

 

Figure 5.2: CFR Engine from laboratory. 
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5.2.3 Distillation 

Distillation analysis were done by using atmospheric distillation instruments, Figure 

5.3, (OptiDist, PAC, USA)  according to TS EN ISO 3405 ( ASTM D 86) standard 

test method. Following analysis parameters, given in Table 5.2, were set while 

performing distillation analysis. 

Table 5.2: Distillation analysis parameters [7]. 

Sample temperature: < 10oC 

Temperature of cooling bath: 0 – 1 oC 

Temperature of bath around receiving cylinder: 13 – 18 oC 

Distillation rate: 4 – 5 ml/min. 

 

Figure 5.3: Atmospheric Distillation instrument from laboratory. 
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5.2.4 Hydrocarbon Types 

Hydrocarbon types, aromatics, olefins and benzene, were analyzed by 

multidimensional gas chromatography, Figure 5.5, (AC Reformulyzer, PAC, USA) 

according to TS EN ISO 22854 standard test method. The instrument has benefits from 

using auto injector, FID detector, capillary/micropacked columns and traps to get a 

good separation and save analysis time. In Table 5.3, the parameters and usage of traps 

and columns are given [64]. The picture of gas chromatography and flow diagram of 

application are given in Figure 5.4 and Appendices Figure B.1 [64], correspondingly. 

Table 5.3: Gas Chromatography parameters [64]. 

 

 

Figure 5.4: Picture of Gas Chromatography from laboratory. 
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5.2.5 Density 

Density measurements were done by density meter, Figure 5.6, (DMA 5000M, Anton 

Paar, USA) according to TS EN ISO 12185 (ASTM D 4052) standard test method. 

Measurement temperature was set to 15.6 oC as reference temperature.  

 

Figure 5.5: Density Meter form laboratory. 

5.3 Data Analysis 

The collected spectra were transferred in ASCII format and were combined in 

Microsoft® Excel® 2013. Then the data converted to text file for regression analysis. 

MATLAB R2014b (MathWorks Inc., MA) with PLS_Toolbox Graphical User 

Interface (GUI) (Eigenvector Research Inc., USA) was used for PCR and PLS 

regression analysis.
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6.  RESULTS & DISCUSSION 

6.1 Data pre-processing 

Before applying the regression techniques, baseline correction is applied by using 

baseline function of PLS_Toolbox, version 8.0.2 and release 18015, (Eigenvector 

Research Inc., USA). The methodology here is ‘The Weighted Least Squares’ which 

determines the spectral regions due to baseline only. Baseline correction was done in 

order to remove baseline offsets from raw data. This application is very helpful where 

there is signal variation due to baseline or background. Some specific baseline 

references are required, where there is no spectral information, and they are used as 

basis to eliminate baseline effects for the whole spectrum. The range used in this NIR 

spectrum is as following; 1280 – 1330, 1540 – 1580 and 1900 – 1950 nm. 46 raw NIR 

spectra without baseline correction and with baseline correction are given in Figure 

6.1 and Figure 6.2 correspondingly  

After correcting baseline, another most common pre-processing technique which is 

‘mean centering’ was applied to NIR spectra data. After mean centering is applied to 

data, each row of mean-centered data includes how that individual row is different 

from the average sample in the original data matrix. Mean centering is applied as given 

in Equation 6.1. 

1

1 n

ij ij ij
j

b a a
n 

    (6.1)

where aij is original row entry and bij is the mean centered entry. 

For the Xmxn matrix, i is from 1 to m (number of samples) and j is from 1 to n (number 

of wavelengths). By applying same formula to each entry in the matrix, we can get 

mean centered matrix. Thus the mean-centered matrix is 46 x 1179, that is the NIR 

spectra of 46 samples with absorbance for 1179 different wavelengths. 
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Figure 6.1: NIR Spectra without baseline correction. 
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Figure 6.2: NIR Spectra with baseline correction. 
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As a last step before starting regression, all 46 gasoline sample NIR spectra were 

checked against any outlier in the data set. Some useful plots, which are scores on 

Latent Variable 1 (Principal Component 1) and scores on Latent Variable 2 (Principal 

Component 2), Q residuals and Hotelling’s T2, measured and predicted were used to 

identify any outlier after mean centering the data after determining the principal 

components for spectral data by using PLS_Toolbox Graphical User Interface (GUI).  

Q residuals are calculated as the sum of squares of each row of error matrix, E, given 

in equation 4.17 and 4.26, resulting from prediction and are the measure of difference 

-between sample and its projection [Url-4]. 

 
T

i i iQ e e  (6.2)

where Qi is the Q residual for ith sample and ei is the ith row of error matrix, E. 

Hotelling’s T2 is a form of Student’s t distribution for multivariate analysis and 

Hotelling’s T2 values represent a measure of variation in each sample in model. 

Hotelling’s T2 is the sum normalized squares of scores given in scores matrix. 

 
2 1 T

i i iT t t  (6.3)

where ti is the ith term of score matrix, T, from the model and λ is diagonal matrix of 

eigenvalues [Url-4]. 

Hotelling’s T2 and Q residuals are very helpful statistics used to explain how a model 

is describing a given sample data set.  

As seen in Figures 6.3 and 6.4, data with sample number 2 is clearly an outlier and it 

was removed from data set before regression analysis. In Figure 6.4, Studentized 

Residual vs Leverage graph (at top-right corner) is given. Leverage shows the 

influence of a sample on the model, smaller the leverage, better model fit for the 

inspected sample. Sample 2 has a big leverage and away from the 0 line at studentized 

axis. Thus, after the outlier removal, the mean-centered data matrix is 45x1179 that is 

the NIR spectra of 45 sample with absorbance for 1179 different wavelenghths.  
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Figure 6.3: Residual vs Cross-Validation Residual Plot. 

6.2 Principles and Essential Practices used for Regression Analysis 

After data pre-processing the sample data set, which is composed of 45 gasoline NIR 

spectra after removing outlier, the main data set was divided into two data sets as 

calibration data set and validation data set, sample 1- 30 and sample 31 – 45 

correspondingly. Xcalibration has size of 30x1179 and Xvalidation has size of 15x1179 for 

each property to be modelled. The calibration data set was used for establishing the 

prediction model for the related regression technique and the validation set was used 

to predict the properties related to the NIR spectral data by using the prediction model 

to assess the predictive power of the developed model. 

Any regression algorithm requires a certain number of variables, i.e. Principal 

Components or Latent Variables, to be included in the prediction model. Choosing the 

best number of variables is very important and a few common rules of thumb should 

be followed. At this point, the plots gathered after regression analysis are very helpful 

to determine the number of variables according to some critical parameters. Using 

external set of samples to be predicted by the model and cross-validation procedures 

are two main tools to estimate the number of variables. 
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Figure 6.4: Hotelling’s T2 vs Q Residuals – Scores on LV1 vs Scores on LV2 – Measured vs Predicted – Leverage vs Studentized Residual. 
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The cross-validation will remove one sample or a given number of samples from the 

calibration data set and construct the model without this data and the sample(s) 

remaining is predicted by the model, resulting with a calibration error. Then another 

sample or set of samples are removed from the calibration data set and prediction and 

error calculation repeated in similar manner. After iterating this procedure for every 

sample or sample set, a parameter called ‘RMSECV - Root Mean Square Error of 

Cross Validation’ is determined.  

2

1

ˆ( )
n

i i
i

y y

RMSECV
n








 

                   (6.4)

where 
ˆ

iy
 is the predicted sample results for sample not used for calibration and iy

 is 

the reference data. 

In case of using external data set for prediction, the error resulting from the predicted 

result is calculated by using reference results. In this case, the errors is called as 

‘RMSEP – Root Mean Square Error of Prediction’. The equation is same with equation 

6.4 but the predicted y values comes from determining external data set values by using 

prediction model. 

2

1

ˆ( )
n

i i
i

y y

RMSEP
n








 

                   (6.5)

where ˆ
iy  is the predicted results for external data set and iy  is the reference result. 

After determining these parameters, plot of PCs vs RMSECV/RMSEP is very helpful 

for determining the number of variables to include the model. 

A very critical point in determining the number of variable is to avoid increasing the 

number of variable without a valid reason. A good rule of thumb is not to include any 

additional variable unless it improves the RMSECV by at least %2. Also considering 

the cumulative RMSECV is also important; covering %95 of variability is usually 

valid. Another very common rule is keeping the number of variables as low as possible 

in order to avoid complexity. If more variables than required are put into the model, 

one may get very good results for calibration set but poor results with predicting the 
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external data set. This issue is called as ‘over-fitting’ and obviously it should be 

avoided [18, 44]. 

RMSEP parameter is also used for evaluating the performance of prediction model in 

validation step since it is determined by using and independent external data set from 

calibration data set. 

6.3 Evaluation of NIR Spectra 

As explained in detail in Section 3, near-infrared region includes weak absorption 

bands by mainly overtones and combinations of hydrocarbon C-H bonding, also N-H, 

and O-H bonding. 

According to Ku et al. (1998), very valuable spectral information can be seen in 1100-

1650 nm and 1800-2100 nm regions. The 1650-1800 nm and 2100-2500 nm ranges do 

not contain valuable information because of strong and saturated absorption bands 

form a long optical path length. The bands around 1200 nm correspond to second 

overtone of methyl and methylene CH band at 3000 – 2700 cm-1 MIR range and bands 

around 1400 nm stands for the combination bands between the first overtone of CH 

stretching at 3000 – 2700 cm-1 and CH3/CH2 bending at 1450 cm-1. There is also a 2nd 

overtone of aromatic C-H band at around 1145 nm.  

In Figure 6.2, the regions without any spectral information were shown in red colored 

rectangles. This spectral information can easily be seen in NIR spectra plot of collected 

gasoline samples in Figure 6.5, which shows the wavelengths range that are 

informative and that will be used in subsequent regressions. 

NIR Spectra between 1100 – 1550 nm. The absorption bands in the 1800 – 2100 nm 

range (Figure 6.6) corresponds to coupling between the C-H stretching at 3000 – 2700 

cm-1 and CH3/CH2 bending at 1450 cm-1 [4]. 

As seen in NIR spectra in these figures, gasoline sample is a very complex 

hydrocarbon mixture (C5 – C10 in carbon number) and this results in many 

overlapping bands in the spectrum. Although there are some regions are available to 

interpret such as specific overtones and combinations, it is required to use multivariate 

calibration techniques to solve these overlapping issues in order to get quantitative 

information interested property. 
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Figure 6.5: NIR Spectra between 1100 – 1550 nm. 

Detailed information regarding to NIR spectral bands can be found in Section 3 with 

given Table 3.2 and Table A.1 in Appendix A. 

 

Figure 6.6: NIR Spectra between 1800  - 2200 nm. 

In addition, Figure 3.8 is also very informative in order to understand the NIR bands 

for pure normal linear hydrocarbons and C6 structural isomers [4, 14, 16, and 17]. 
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6.4 Principal Component Regression – PCR 

After pre-processing raw NIR spectra, PCR was applied to establish prediction models 

(using the PLS_Toolbox GUI given in Figure 6.7) for RON, MON, aromatics, olefins, 

benzene, density, and E150, individually. 

The reason for applying the PCR to each of the measurement individually is the 

flexibility of choosing the number of PCs independently for each measurement. In 

order to determine the number of principal components, leave-one-out principle was 

followed. The PC vs RMSEC plot is helpful to determine the number of PCs. Samples 

1 – 30 are used as calibration data set and samples 31 – 45 are used as validation data 

set, after removing the outlier from complete data set. 

Some useful plots and a few critical parameters (RMSEC, RMSEP, R2-calibration, and 

R2-validation) will be shown in order to evaluate the performance of each prediction 

model. RMSEC and RMSEP values are compared with reproducibility, R, values of 

standard test methods. In addition, the predicted and reference values are given in 

corresponding tables for each property. 

 

Figure 6.7: Graphical User Interface (GUI) for PCR in PLS Toolbox.  
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6.4.1 RON – Research Octane Number 

According to Figure 6.8, the optimum number of principal components for 30 gasoline 

sample NIR spectra, that is X matrix in vector notation given in section 4.1.2.4, was 

determined as 6 PCs. As seen in Fig 6.8 a) and b), after the 6th PC, there is no more 

significant contribution to the variance from PC 7, 8 etc. 6 PCs are good enough to 

cover 96.18% of X data variance. Furthermore, the RMSECV (cross-validation error) 

values start to increase beyond 6 PCs. 

 

Figure 6.8: PCR-RON: a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The reproducibility of TS EN ISO 5164 analysis is given as 0.7 in. Sample 34 has a 

residual value higher than this reproducibility value. The residuals for the all sample 

set are plotted in Figure 6.9. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.1 for both the calibration and validation data sets.  



80 
 

 

Figure 6.9: PCR-RON: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values for the all sample set, 

calibration set and validation set in Figure 6.10 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.940. 

Table 6.1: PCR-RON: Measured, Predicted results and Residuals. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample    Measured Predicted Residual 

1 95.10 94.97 -0.13  24 97.20 97.14 -0.06 

2 95.20 95.12 -0.08  25 95.20 95.11 -0.09 

3 97.20 97.01 -0.19  26 95.00 94.79 -0.21 

4 95.20 95.32 0.12  27 95.10 95.07 -0.03 

5 95.20 95.13 -0.07  28 95.20 94.96 -0.24 

6 95.00 95.39 0.39  29 95.10 94.93 -0.17 

7 95.10 95.11 0.01  30 95.30 95.13 -0.17 

8 95.10 95.27 0.17  31 95.10 95.06 -0.04 

9 95.10 95.21 0.11  Validation Set (32-45)  

10 97.00 96.71 -0.29  32 95.10 95.15 0.05 

11 95.30 95.29 -0.01  33 97.20 96.56 -0.64 

12 95.10 95.19 0.09  34 95.50 94.67 -0.83 

13 95.20 95.14 -0.06  35 95.10 94.83 -0.27 

14 95.20 95.34 0.14  36 95.30 95.01 -0.29 

15 97.40 97.28 -0.12  37 94.90 94.85 -0.05 

16 95.00 95.58 0.58  38 95.30 95.27 -0.03 

17 97.20 97.06 -0.14  39 95.20 95.37 0.17 

18 95.20 94.92 -0.28  40 95.20 95.42 0.22 

19 95.10 95.31 0.21  41 95.10 95.55 0.45 

20 95.20 95.30 0.10  42 97.20 97.56 0.36 

21 95.20 95.21 0.01  43 95.40 95.39 -0.01 

22 97.00 97.32 0.32  44 95.00 95.44 0.44 

23 95.40 95.48 0.08  45 95.00 95.19 0.19 
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When the validation set was predicted by applying the model, RMSEP is 0.3552 and 

R2 is 0.765, that is lower than R2 for the calibration set. For the calibration set, RMSEC 

and R2 are 0.1986 and 0.7654, correspondingly.  

 

 
 

 
 

 

Figure 6.10: PCR-RON: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.4.2 MON – Motor Octane Number 

 As seen in Fig 6.11 a) and b), after the 5th PC, there is no more significant contribution 

to the variance from PC 6, 7 etc. 5 PCs are good enough to cover 94.93% of X data 

variance. Furthermore, the RMSECV (cross-validation error) values start to increase 

beyond 5 PCs. 

 

 

Figure 6.11: PCR-MON: a) PC vs. RMSEC-RMSECV, b) PC vs. X 
Cumulative variance. 

The reproducibility of TS EN ISO 5163 analysis is given as 0.9 in. There is not any 

sample has residual higher than this reproducibility value. The residuals for the all 

sample set are plotted in Figure 6.12. 

In parallel to this, the residuals for the validation set are larger than residuals of 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.2 for both the calibration and validation data sets.  



83 
 

 

Figure 6.12: PCR-MON : Residuals vs. All Sample Set. 

The measured values are plotted against the predicted values for the all sample set, 

calibration set and validation set in Figure 6.13 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.5668. 

Table 6.2: PCR-MON : Measured, Predicted results and Residuals. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 86.00 86.02 0.02  24 86.20 86.33 0.13 

2 86.20 85.94 -0.26  25 85.60 85.33 -0.27 

3 86.20 85.85 -0.35  26 86.20 85.84 -0.36 

4 85.50 85.62 0.12  27 85.70 85.53 -0.17 

5 86.00 86.06 0.06  28 85.80 85.64 -0.16 

6 86.10 86.14 0.04  29 85.90 85.76 -0.14 

7 86.10 86.12 0.02  30 85.90 85.99 0.09 

8 85.30 85.69 0.39  31 85.90 85.73 -0.17 

9 85.10 85.39 0.29  Validation Set (32-45)  

10 86.80 86.60 -0.20  32 85.80 85.89 0.09 

11 85.30 85.44 0.14  33 86.90 86.68 -0.22 

12 85.30 85.72 0.42  34 86.40 85.87 -0.53 

13 85.90 85.95 0.05  35 86.20 85.93 -0.27 

14 85.80 86.00 0.20  36 85.80 85.17 -0.63 

15 86.30 86.32 0.02  37 85.60 85.50 -0.10 

16 85.60 85.83 0.23  38 86.10 85.75 -0.35 

17 86.30 86.13 -0.17  39 85.70 85.50 -0.20 

18 86.10 85.43 -0.67  40 85.60 85.69 0.09 

19 86.30 86.19 -0.11  41 85.50 85.52 0.02 

20 86.00 86.02 0.02  42 86.20 86.34 0.14 

21 85.20 85.61 0.41  43 85.60 85.85 0.25 

22 86.00 86.08 0.08  44 85.30 85.62 0.32 

23 85.60 85.75 0.15  45 85.60 85.87 0.27 
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When the validation set was predicted by applying the model, RMSEP is 0.29 and R2 

is 0.5267, that is lower than R2 for the calibration set. For the calibration set, RMSEC 

and R2 are 0.2436 and 0.6040, correspondingly.  

 

 

 

Figure 6.13: PCR-MON: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.4.3 Aromatics 

As seen in Fig 6.14 a) and b), after the 6th PC, there is no more significant contribution 

to the variance from PC 7, 8 etc. 6 PCs are good enough to cover 96.18% of X data 

variance. Furthermore, the RMSECV (cross-validation error) values start to increase 

beyond 6 PCs.  

 

 

Figure 6.14: PCR-Aromatics a) PC vs. RMSEC-RMSECV, b) PC vs. X 
Cumulative variance. 

The reproducibility, R, formula for Aromatics given in TS EN ISO 22854 is described 

by the below equation.  

0.045 0.1384R X                       (6.6) 

All samples have residuals smaller than calculated reproducibility value for test results. 

The residuals for the all sample set are plotted in Figure 6.15. 
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Figure 6.15: PCR-Aromatics: Residuals vs. All Sample Set. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set. The measured, predicted and residual values are given in Table 6.3 for 

both the calibration and validation data sets.  

Table 6.3: PCR-Aromatics: Measured, Predicted and Residuals, % v/v. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 33.20 33.54 0.34  24 33.30 33.05 -0.25 

2 29.70 29.83 0.13  25 35.90 36.00 0.10 

3 34.80 34.98 0.18  26 30.00 30.38 0.38 

4 38.30 37.72 -0.58  27 37.00 36.95 -0.05 

5 33.60 33.37 -0.23  28 37.20 37.17 -0.03 

6 33.70 33.47 -0.23  29 30.90 31.07 0.17 

7 33.50 33.68 0.18  30 30.90 30.94 0.04 

8 31.90 31.42 -0.48  31 31.70 32.79 1.09 

9 37.90 37.66 -0.24  Validation Set (32-45)  

10 34.20 34.45 0.25  32 31.00 32.29 1.29 

11 34.50 34.18 -0.32  33 33.60 33.48 -0.12 

12 34.40 33.44 -0.96  34 32.10 32.44 0.34 

13 34.00 33.93 -0.07  35 31.00 30.96 -0.04 

14 33.60 33.69 0.09  36 35.30 36.16 0.86 

15 34.30 34.53 0.23  37 37.20 37.78 0.58 

16 33.00 34.17 1.17  38 39.90 40.19 0.29 

17 33.80 34.03 0.23  39 39.20 39.00 -0.20 

18 33.60 34.51 0.91  40 32.70 32.56 -0.14 

19 32.70 32.22 -0.48  41 34.20 35.22 1.02 

20 30.40 30.02 -0.38  42 33.30 34.31 1.01 

21 32.90 33.07 0.17  43 33.00 32.65 -0.35 

22 33.80 33.42 -0.38  44 33.10 33.05 -0.05 

23 34.90 35.02 0.12  45 33.80 33.36 -0.44 
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The measured values are plotted against the predicted values for the all sample set, 

calibration set and validation set in Figure 6.16 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.9538.  

When the validation set was predicted by applying the model, RMSEP is 0.67 and R2 

is 0.9543, that is lower than R2 for the calibration set. For the calibration set, RMSEC 

and R2 are 0.4138 and 0.9615, correspondingly.  

 

 

 

Figure 6.16: PCR-Aromatics: Measured vs. predicted results for a) all sample set, 
b) calibration set and c) validation set. 
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6.4.4 Olefins 

As seen in Fig 6.17 a) and b), after the 6th PC, there is no more significant contribution 

to the variance from PC 7, 8 etc. 6 PCs are good enough to cover 96.8% of X data 

variance. Furthermore, there is not more contribution to the RMSECV (cross-

validation error) values beyond 6 PCs. 

 

 

Figure 6.17: PCR-Olefins: a) PC vs. RMSEC-RMSECV, b) PC vs. X 
Cumulative variance. 

The reproducibility, R  formula for Olefins given in TS EN ISO 22854 is described by 

the below equation.  

0.1176 0.5118R X                       (6.7)

where X is measured test result. Samples having residuals higher than calculated 

reproducibility value are 1, 8, 12, 14, 18, 19, 21, 30, 35, 43 and 45. The residuals for 

the all sample set are plotted in Figure 6.18. 
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Figure 6.18: PCR-Olefins: Residuals vs. All Sample Set. 

The measured, predicted and residual values are given in Table 6.4 for both the 

calibration and validation data sets.  

Table 6.4: PCR-Olefins: Measured, Predicted and Residuals, % v/v. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 2.00 2.79 0.79  24 5.40 6.19 0.79 

2 5.70 6.35 0.65  25 7.10 6.94 -0.16 

3 8.30 8.11 -0.19  26 4.50 5.27 0.77 

4 3.80 4.22 0.42  27 5.30 4.26 -1.04 

5 4.20 4.18 -0.02  28 3.60 3.74 0.14 

6 2.80 3.51 0.71  29 5.80 5.74 -0.06 

7 3.10 2.90 -0.20  30 7.60 5.82 -1.78 

8 6.00 7.37 1.37  31 6.20 5.87 -0.33 

9 4.80 5.65 0.85  Validation Set (32-45)  

10 2.80 2.94 0.14  32 6.30 5.32 -0.98 

11 8.10 7.88 -0.22  33 3.10 2.52 -0.58 

12 9.00 5.50 -3.50  34 5.10 4.52 -0.58 

13 5.80 4.81 -0.99  35 7.40 4.74 -2.66 

14 5.90 4.69 -1.21  36 7.90 7.59 -0.31 

15 5.40 5.65 0.25  37 3.90 3.86 -0.04 

16 5.60 5.43 -0.17  38 1.20 1.69 0.49 

17 5.70 6.80 1.10  39 4.90 4.50 -0.40 

18 3.90 7.49 3.59  40 6.40 6.95 0.55 

19 2.90 3.90 1.00  41 8.40 7.20 -1.20 

20 6.10 6.53 0.43  42 5.40 6.00 0.60 

21 9.60 7.70 -1.90  43 4.20 5.59 1.39 

22 9.80 8.45 -1.35  44 7.20 7.36 0.16 

23 5.10 4.89 -0.21  45 3.70 4.84 1.14 
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The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.19 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.6602.  

When the validation set was predicted by applying the model, RMSEP is 0.99 and R2 

is 0.7409, that is higher than R2 for the calibration set that is unusual. For the 

calibration set, RMSEC and R2 are 1.23 and 0.6264, correspondingly. 

 

 

 

Figure 6.19: PCR-Olefins: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.4.5 Benzene 

As seen in Fig 6.20 a) and b), after the 6th PC, there is no more significant 

contribution to the variance from PC 7, 8 etc. 6 PCs are good enough to cover 

96.18% of X data variance. Furthermore, the RMSECV (cross-validation error) 

values start to increase beyond 6 PCs.

 

 

Figure 6.20: PCR-Benzene: a) PC vs. RMSEC-RMSECV, b) PC vs. X 
Cumulative variance. 

The Reproducibility, R formula for Benzene given in TS EN ISO 22854 is described 

by the below equation.  

0.0777 0.025R X                       (6.8) 

where X is measured test result. Samples having residuals higher than calculated 

reproducibility value are 1, 8, 9, 11, 12, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 30, 31, 

32, 34, 35, 38, 39, 41, 43, 44 and 45. The residuals for the all sample set are plotted in 

Figure 6.21. 
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Figure 6.21: PCR-Benzene: Residuals vs. All Sample Set. 

The measured, predicted and residual values are given in Table 6.5 for both the 

calibration and validation data sets. 

Table 6.5: PCR-Benzene: Measured, Predicted and Residuals, % v/v. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 0.76 0.78 0.02  24 0.70 0.69 -0.01 

2 0.81 0.77 -0.04  25 0.82 0.76 -0.06 

3 0.74 0.71 -0.03  26 0.71 0.75 0.04 

4 0.87 0.83 -0.04  27 0.84 0.81 -0.03 

5 0.80 0.84 0.04  28 0.83 0.85 0.02 

6 0.80 0.82 0.02  29 0.72 0.74 0.02 

7 0.84 0.81 -0.03  30 0.72 0.77 0.05 

8 0.73 0.77 0.04  31 0.75 0.80 0.05 

9 0.75 0.80 0.05  Validation Set (32-45)  

10 0.77 0.79 0.02  32 0.72 0.79 0.07 

11 0.75 0.79 0.04  33 0.77 0.77 0.00 

12 0.92 0.79 -0.13  34 0.73 0.84 0.11 

13 0.86 0.84 -0.02  35 0.70 0.77 0.07 

14 0.86 0.85 -0.01  36 0.82 0.80 -0.02 

15 0.57 0.70 0.13  37 0.88 0.85 -0.03 

16 0.57 0.77 0.20  38 0.94 0.88 -0.06 

17 0.69 0.69 0.00  39 0.92 0.83 -0.09 

18 0.72 0.85 0.13  40 0.77 0.75 -0.02 

19 0.95 0.78 -0.17  41 0.64 0.77 0.13 

20 0.70 0.74 0.04  42 0.70 0.68 -0.02 

21 0.94 0.80 -0.14  43 0.69 0.75 0.06 

22 0.77 0.68 -0.09  44 0.79 0.73 -0.06 

23 0.87 0.81 -0.06  45 0.73 0.79 0.06 
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The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.22 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.3238.  

When the validation set was predicted by applying the model, RMSEP is 0.067 and R2 

is 0.4156, that is higher than R2 for the calibration set that is unusual. For the 

calibration set, RMSEC and R2 are 0.076 and 0.2967, correspondingly. 

 

 

 

Figure 6.22: PCR-Benzene: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.4.6 Density 

As seen in Fig 6.23 a) and b), after the 5th PC, there is no more significant contribution 

to the variance from PC 6, 7 etc. 5 PCs are good enough to cover 94.93% of X data 

variance. Furthermore, the RMSECV (cross-validation error) values start to increase 

beyond 5 PCs. 

 

 

Figure 6.23: PCR-Density: a) PC vs. RMSEC-RMSECV, b) PC vs. X 
Cumulative variance. 

The Reproducibility, R, formula for Density given in ASTM D 4052 is described by 

the below equation.  

0.00195 0.0315 ( 0.75)R X                        (6.9)

where X is measured test result. Samples having residuals higher than calculated 

reproducibility values are 1, 3, 8, 12, 18, 31, 32, 36, 40, 42 and 45. The residuals for 

the all sample set are plotted in Figure 6.24. 
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Figure 6.24: PCR-Density: Residuals vs. All Sample Set. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set. The measured, predicted and residual values are given in Table 6.6 for 

both the calibration and validation data sets. 

Table 6.6: PCR-Density: Measured, Predicted and Residuals, kg/l. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 0.7336 0.7351 0.0015  24 0.7455 0.7440 -0.0015 

2 0.7311 0.7320 0.0009  25 0.7428 0.7432 0.0004 

3 0.7466 0.7490 0.0024  26 0.7291 0.7310 0.0019 

4 0.7462 0.7459 -0.0003  27 0.7439 0.7429 -0.0010 

5 0.7387 0.7376 -0.0011  28 0.7428 0.7434 0.0006 

6 0.7391 0.7379 -0.0012  29 0.7307 0.7327 0.0020 

7 0.7372 0.7369 -0.0003  30 0.7323 0.7331 0.0008 

8 0.7395 0.7360 -0.0035  31 0.7332 0.7372 0.0040 

9 0.7473 0.7461 -0.0012  Validation Set (32-45)  

10 0.7405 0.7424 0.0019  32 0.7310 0.7352 0.0042 

11 0.7420 0.7423 0.0003  33 0.7382 0.7399 0.0017 

12 0.7419 0.7387 -0.0032  34 0.7327 0.7348 0.0021 

13 0.7398 0.7392 -0.0006  35 0.7308 0.7316 0.0008 

14 0.7394 0.7395 0.0001  36 0.7421 0.7448 0.0027 

15 0.7462 0.7470 0.0008  37 0.7432 0.7447 0.0015 

16 0.7386 0.7404 0.0018  38 0.7483 0.7489 0.0006 

17 0.7465 0.7462 -0.0003  39 0.7491 0.7487 -0.0004 

18 0.7396 0.7421 0.0025  40 0.7407 0.7383 -0.0024 

19 0.7360 0.7345 -0.0015  41 0.7430 0.7441 0.0011 

20 0.7337 0.7330 -0.0007  42 0.7455 0.7478 0.0023 

21 0.7398 0.7399 0.0001  43 0.7392 0.7371 -0.0021 

22 0.7481 0.7470 -0.0011  44 0.7399 0.7396 -0.0003 

23 0.7429 0.7424 -0.0005  45 0.7400 0.7374 -0.0026 
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The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.25 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.8940.  

When the validation set was predicted by applying the model, RMSEP is 0.0023 and 

R2 is 0.8674, that is lower than R2 for the calibration set, as expected. For the 

calibration set, RMSEC and R2 are 0.00147 and 0.9193 correspondingly.  

 

 

 

Figure 6.25: PCR-Density: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.4.7 E150 – Evaporated at 150 oC 

As seen in Fig 6.26 a) and b), after the 6th PC, there is no more significant contribution 

to the variance from PC 7, 8 etc. 6 PCs are good enough to cover 96.18% of X data 

variance. Furthermore, there is not significant contribution to the RMSECV (cross-

validation error) values beyond 6 PCs. 

 

 

Figure 6.26: PCR-E150: a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The reproducibility, R formula for E150 – Evaporated at 150 oC given in ASTM D 86 

is described by the below equation.  

0.02 (150 )R X                       (6.10) 

where X is measured test result. Samples having residuals higher than calculated 

reproducibility values are 12, 18, 34, 36 and 37. The residuals for the all sample set 

are plotted in Figure 6.27. 
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Figure 6.27: PCR-E150: Residuals vs. All Sample Set. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.7 for both the calibration and validation data sets.  

Table 6.7: PCR-E150: Measured, Predicted and Residuals, oC. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 92.70 92.31 -0.39  24 91.20 91.00 -0.20 

2 92.30 91.79 -0.51  25 91.20 90.73 -0.47 

3 90.50 90.00 -0.50  26 92.70 91.95 -0.75 

4 89.60 90.50 0.90  27 91.40 91.35 -0.05 

5 91.10 91.04 -0.06  28 91.50 90.81 -0.69 

6 91.20 91.41 0.21  29 92.10 92.08 -0.02 

7 91.40 91.33 -0.07  30 92.10 92.07 -0.03 

8 91.30 91.44 0.14  Validation Set (32-45) 

9 89.90 90.45 0.55  31 92.00 91.12 -0.88 

10 91.90 92.08 0.18  32 92.30 92.12 -0.18 

11 89.30 90.05 0.75  33 92.50 92.21 -0.29 

12 89.70 90.92 1.22  34 92.60 91.17 -1.43 

13 91.10 90.69 -0.41  35 92.90 92.11 -0.79 

14 90.50 90.78 0.28  36 91.40 89.86 -1.54 

15 91.10 90.67 -0.43  37 91.50 90.27 -1.23 

16 91.70 91.31 -0.39  38 90.80 90.33 -0.47 

17 90.90 90.50 -0.40  39 89.70 90.12 0.42 

18 91.00 89.73 -1.27  40 91.00 91.08 0.08 

19 92.00 92.26 0.26  41 90.70 90.25 -0.45 

20 90.40 91.50 1.10  42 91.20 90.59 -0.61 

21 90.10 90.28 0.18  43 91.10 91.62 0.52 

22 89.80 90.41 0.61  44 89.90 90.73 0.83 

23 90.30 90.57 0.27  45 90.90 91.50 0.60 
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The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.28 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.5146.  

When the validation set was predicted by applying the model, RMSEP is 0.81 and R2 

is 0.4121, that is lower than R2 for the calibration set, as expected. For the calibration 

set, RMSEC and R2 are 0.56 and 0.6130 correspondingly. 

 

 

 

Figure 6.28: PCR-E150: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.5 Partial Least Squares - PLS 

After pre-processing raw NIR spectra, Partial Least Squares (PLS) was applied to 

establish prediction models (using the PLS_Toolbox GUI given in Figure 6.29) for 

RON, MON, aromatics, olefins, benzene, density, and E150, individually. 

 

Figure 6.29: PLS Toolbox GUI for PLS method. 

In order to determine the optimum number of principal components to retain in the 

model, cross-validation with method of leave-one-out was followed, cross-validation 

is applied by using tools in the PLS Toolbox GUI.  

The PC vs RMSEC plot is helpful to determine the number of PCs. Samples 1 – 30 are 

used as calibration data set and samples 31 – 45 are used as validation data set, after 

removing the outlier from complete data set. 

Some useful plots and a few critical parameters (RMSEC, RMSEP, R2-calibration, and 

R2-validation) will be shown in order to evaluate the performance of each prediction 

model. RMSEC and RMSEP values are compared with reproducibility, R, values of 

standard test methods. In addition, the predicted and reference values are given in 

corresponding tables for each property. 
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6.5.1 RON – Research Octane Number 

According to Figure 6.30, the optimum number of principal components for 30 

gasoline sample NIR spectra, that is X matrix in vector notation given in section 

4.1.2.4, was determined as 6 PCs. As seen in Fig 6.30 a) and b), after the 6th PC, there 

is no more significant contribution to the variance from PC 7, 8 etc. 6 PCs are good 

enough to cover 95.41% of X data variance. Furthermore, the RMSECV (cross-

validation error) values start to increase beyond 6 PCs. 

 

 

Figure 6.30: PLS-RON: a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The reproducibility of TS EN ISO 5164 analysis is given as 0.7. None of the samples 

has residual value higher than this reproducibility value. The residuals for the all 

sample set are plotted in Figure 6.31. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.8 for both the calibration and validation data sets.  
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Figure 6.31: PLS-RON: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.32 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.9354.  

Table 6.8: PLS-RON: Measured, Predicted results and Residuals. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 95.10 94.97 -0.13  24 97.20 97.28 0.08 

2 95.20 95.08 -0.12  25 95.20 95.26 0.06 

3 97.20 96.99 -0.21  26 95.00 94.85 -0.15 

4 95.20 95.05 -0.15  27 95.10 95.10 0.00 

5 95.20 95.26 0.06  28 95.20 95.09 -0.11 

6 95.00 95.24 0.24  29 95.10 94.96 -0.14 

7 95.10 95.13 0.03  30 95.30 95.39 0.09 

8 95.10 95.22 0.12  31 95.10 95.23 0.13 

9 95.10 95.27 0.17  Validation Set (32-45)  

10 97.00 96.94 -0.06  32 95.10 95.11 0.01 

11 95.30 95.18 -0.12  33 97.20 96.72 -0.48 

12 95.10 95.21 0.11  34 95.50 95.11 -0.39 

13 95.20 95.16 -0.04  35 95.10 94.93 -0.17 

14 95.20 95.15 -0.05  36 95.30 95.21 -0.09 

15 97.40 97.28 -0.12  37 94.90 95.11 0.21 

16 95.00 95.30 0.30  38 95.30 95.39 0.09 

17 97.20 97.10 -0.10  39 95.20 95.39 0.19 

18 95.20 95.03 -0.17  40 95.20 95.45 0.25 

19 95.10 95.23 0.13  41 95.10 95.70 0.60 

20 95.20 95.22 0.02  42 97.20 97.66 0.46 

21 95.20 95.21 0.01  43 95.40 95.39 -0.01 

22 97.00 97.23 0.23  44 95.00 95.32 0.32 

23 95.40 95.41 0.01  45 95.00 95.22 0.22 
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When the validation set was predicted by applying the model, RMSEP is 0.29 and R2 

is 0.8475, that is lower than R2 for the calibration set, as expected. For the calibration 

set, RMSEC and R2 are 0.13 and 0.9736 correspondingly. 

 

 

 

Figure 6.32: PLS-RON: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.5.2 MON – Motor Octane Number 

As seen in Fig 6.33 a) and b), after the 5th PC, there is no more significant contribution 

to the variance from PC 6, 7 etc. 5 PCs are good enough to cover 90.49% of X data 

variance. Furthermore, the RMSECV (cross-validation error) values start to increase 

beyond 5 PCs. 

 

 

Figure 6.33: PLS-MON a) PC vs. RMSEC-RMSECV, b) PC vs. Cumulative 
variance. 

The reproducibility of TS EN ISO 5163 analysis is given as 0.9. There is not any 

sample has residual higher than this reproducibility value. The residuals for the all 

sample set are plotted in Figure 6.34. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.9 for both the calibration and validation data sets.  
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Figure 6.34: PLS-MON: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.35 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.7366.  

Table 6.9: PLS-MON: Measured, Predicted results and Residuals. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 86.00 86.12 0.12  24 86.20 86.51 0.31 

2 86.20 86.00 -0.20  25 85.60 85.67 0.07 

3 86.20 86.10 -0.10  26 86.20 86.03 -0.17 

4 85.50 85.30 -0.20  27 85.70 85.66 -0.04 

5 86.00 86.18 0.18  28 85.80 85.65 -0.15 

6 86.10 86.13 0.03  29 85.90 85.81 -0.09 

7 86.10 86.09 -0.01  30 85.90 86.15 0.25 

8 85.30 85.58 0.28  31 85.90 86.03 0.13 

9 85.10 85.37 0.27  Validation Set (32-45)  

10 86.80 86.68 -0.12  32 85.80 86.11 0.31 

11 85.30 85.40 0.10  33 86.90 86.94 0.04 

12 85.30 85.50 0.20  34 86.40 86.03 -0.37 

13 85.90 85.92 0.02  35 86.20 86.07 -0.13 

14 85.80 85.75 -0.05  36 85.80 85.46 -0.34 

15 86.30 86.19 -0.11  37 85.60 85.85 0.25 

16 85.60 85.55 -0.05  38 86.10 85.80 -0.30 

17 86.30 86.20 -0.10  39 85.70 85.80 0.10 

18 86.10 85.56 -0.54  40 85.60 85.70 0.10 

19 86.30 86.12 -0.18  41 85.50 85.40 -0.10 

20 86.00 85.83 -0.17  42 86.20 86.32 0.12 

21 85.20 85.43 0.23  43 85.60 85.97 0.37 

22 86.00 86.12 0.12  44 85.30 85.45 0.15 

23 85.60 85.71 0.11  45 85.60 85.84 0.24 
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When the validation set was predicted by applying the model, RMSEP is 0.23 and R2 

is 0.6862, that is lower than R2 for the calibration set as expected. For the calibration 

set, RMSEC and R2 are 0.19 and 0.7958 correspondingly. 

 

 

 

Figure 6.35: PLS-MON: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.5.3 Aromatics 

As seen in Fig 6.36 a) and b), after the 6th PC, there is no more significant contribution 

to the variance from PC 7, 8 etc. 6 PCs are good enough to cover 95.74% of X data 

variance. Furthermore, the RMSECV (cross-validation error) values start to increase 

beyond 6 PCs. 

 

 

Figure 6.36: PLS-Aromatics a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The reproducibility, R, formula for Aromatics is given in Equation 6.6. All samples 

have residuals smaller than calculated reproducibility value for test results. The 

residuals for the all sample set are plotted in Figure 6.37. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.10 for both the calibration and validation data sets.  
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Figure 6.37: PLS-Aromatics: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.38 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.9571.  

Table 6.10: PLS-Aromatics: Measured, Predicted results and Residuals, % v/v. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 33.20 33.72 0.52  24 33.30 33.21 -0.09 

2 29.70 29.76 0.06  25 35.90 36.22 0.32 

3 34.80 34.91 0.11  26 30.00 30.37 0.37 

4 38.30 37.69 -0.61  27 37.00 36.93 -0.07 

5 33.60 33.39 -0.21  28 37.20 37.12 -0.08 

6 33.70 33.41 -0.29  29 30.90 31.09 0.19 

7 33.50 33.79 0.29  30 30.90 30.96 0.06 

8 31.90 31.25 -0.65  31 31.70 32.61 0.91 

9 37.90 37.82 -0.08  Validation Set (32-45)  

10 34.20 34.46 0.26  32 31.00 32.24 1.24 

11 34.50 34.08 -0.42  33 33.60 33.59 -0.01 

12 34.40 33.39 -1.01  34 32.10 32.24 0.14 

13 34.00 33.88 -0.12  35 31.00 31.07 0.07 

14 33.60 33.43 -0.17  36 35.30 36.09 0.79 

15 34.30 34.68 0.38  37 37.20 37.70 0.50 

16 33.00 34.18 1.18  38 39.90 40.07 0.17 

17 33.80 34.18 0.38  39 39.20 39.00 -0.20 

18 33.60 34.17 0.57  40 32.70 32.52 -0.18 

19 32.70 32.51 -0.19  41 34.20 35.21 1.01 

20 30.40 30.21 -0.19  42 33.30 34.33 1.03 

21 32.90 32.91 0.01  43 33.00 32.71 -0.29 

22 33.80 33.42 -0.38  44 33.10 33.16 0.06 

23 34.90 34.76 -0.14  45 33.80 33.43 -0.37 
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When the validation set was predicted by applying the model, RMSEP is 0.63 and R2 

is 0.9611, that is lower than R2 for the calibration set as expected. For the calibration 

set, RMSEC and R2 are 0.33 and 0.9614 correspondingly. 

 

 

 

Figure 6.38: PLS-Aromatics: Measured vs. predicted results for a) all sample set, 
b) calibration set and c) validation set. 
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6.5.4 Olefins 

As seen in Fig 6.39 a) and b), after the 3rd PC, there is some contribution to the variance 

from PC 4, 5 but for this component when PCs get higher RMSEP gets also higher. 

Thus 3 PCs are taken for further calculations. 3 PCs are enough to cover 78.15% of X 

data variance. Furthermore, the RMSECV (cross-validation error) values start to 

increase beyond 3 PCs. 

 

 

Figure 6.39: PLS-Olefins: a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The Reproducibility given in Equation 6.7. Samples having the residuals higher than 

calculated reproducibility values are 12, 18, 27, 30 and 35. The residuals for the all 

sample set are plotted in Figure 6.40. 

The measured, predicted and residual values are given in Table 6.11 for both the 

calibration and validation data sets. 



111 
 

 

Figure 6.40: PLS-Olefins: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.41 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.6665.  

Table 6.11: PLS-Olefins: Measured, Predicted results and Residuals, % v/v. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 2.00 2.43 0.43  24 5.40 6.08 0.68 

2 5.70 6.29 0.59  25 7.10 6.48 -0.62 

3 8.30 8.04 -0.26  26 4.50 4.96 0.46 

4 3.80 4.37 0.57  27 5.30 3.96 -1.34 

5 4.20 4.45 0.25  28 3.60 3.76 0.16 

6 2.80 3.57 0.77  29 5.80 5.49 -0.31 

7 3.10 3.10 0.00  30 7.60 5.89 -1.71 

8 6.00 7.02 1.02  31 6.20 5.80 -0.40 

9 4.80 5.25 0.45  Validation Set (32-45)  

10 2.80 2.92 0.12  32 6.30 5.09 -1.21 

11 8.10 7.94 -0.16  33 3.10 2.66 -0.44 

12 9.00 5.52 -3.48  34 5.10 4.79 -0.31 

13 5.80 5.18 -0.62  35 7.40 4.37 -3.03 

14 5.90 5.21 -0.69  36 7.90 7.46 -0.44 

15 5.40 5.83 0.43  37 3.90 3.75 -0.15 

16 5.60 5.38 -0.22  38 1.20 1.77 0.57 

17 5.70 6.69 0.99  39 4.90 4.35 -0.55 

18 3.90 7.87 3.97  40 6.40 6.72 0.32 

19 2.90 3.76 0.86  41 8.40 7.10 -1.30 

20 6.10 6.60 0.50  42 5.40 6.06 0.66 

21 9.60 8.16 -1.44  43 4.20 5.17 0.97 

22 9.80 8.53 -1.27  44 7.20 7.31 0.11 

23 5.10 4.98 -0.12  45 3.70 4.65 0.95 
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When the validation set was predicted by applying the model, RMSEP is 1.03 and R2 

is 0.7196 that is higher than R2 for the calibration set as unusual. For the calibration 

set, RMSEC and R2 are 1.20 and 0.6444 correspondingly. 

 

 

 

Figure 6.41: PLS-Olefins: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.5.5 Benzene 

As seen in Fig 6.42 a) and b), after the 11th PC, there is no more significant 

contribution to the variance from PC 12, 13 etc. 11 PCs are good enough to cover 

98.45% of X data variance. Furthermore, the RMSECV (cross-validation error) values 

start to increase beyond 11 PCs. 

 

 

Figure 6.42: PLS-Benzene: a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The reproducibility, R  is given in Equation 6.8. Samples having the residuals higher 

than calculated reproducibility values are 3, 12, 15, 17, 18, 24, 33, 34, 35, 36, 38, 39, 

40, 41, 42 and 45. The residuals for the all sample set are plotted in Figure 6.43. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.12 for both the calibration and validation data sets.  
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Figure 6.43: PLS-Benzene: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.44 a), b) and c). The R2 value for the 

measured versus the predicted regression line for complete sample set is 0.7461.  

Table 6.12: PLS-Benzene: Measured, Predicted results and Residuals, %v/v. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 0.76 0.78 0.02  24 0.70 0.74 0.04 

2 0.81 0.82 0.01  25 0.82 0.81 -0.01 

3 0.74 0.70 -0.04  26 0.71 0.71 0.00 

4 0.87 0.89 0.02  27 0.84 0.83 -0.01 

5 0.80 0.77 -0.03  28 0.83 0.82 -0.01 

6 0.80 0.81 0.01  29 0.72 0.74 0.02 

7 0.84 0.84 0.00  30 0.72 0.70 -0.02 

8 0.73 0.74 0.01  31 0.75 0.72 -0.03 

9 0.75 0.78 0.03  Validation Set (32-45)  

10 0.77 0.74 -0.03  32 0.72 0.69 -0.03 

11 0.75 0.73 -0.02  33 0.77 0.81 0.04 

12 0.92 0.86 -0.06  34 0.73 0.78 0.05 

13 0.86 0.82 -0.04  35 0.70 0.85 0.15 

14 0.86 0.88 0.02  36 0.82 0.92 0.10 

15 0.57 0.63 0.06  37 0.88 0.87 -0.01 

16 0.57 0.57 0.00  38 0.94 0.89 -0.05 

17 0.69 0.65 -0.04  39 0.92 0.80 -0.12 

18 0.72 0.80 0.08  40 0.77 0.83 0.06 

19 0.95 0.96 0.01  41 0.64 0.69 0.05 

20 0.70 0.70 0.00  42 0.70 0.75 0.05 

21 0.94 0.93 -0.01  43 0.69 0.69 0.00 

22 0.77 0.77 0.00  44 0.79 0.76 -0.03 

23 0.87 0.85 -0.02  45 0.73 0.79 0.06 
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When the validation set was predicted by applying the model, RMSEP is 0.07 and R2 

is 0.4511, that is lower than R2 for the calibration set, as expected. For the calibration 

set, RMSEC and R2 are 0.03 and 0.8949 correspondingly. 

 

 

 

Figure 6.44: PLS-Benzene: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.5.6 Density 

As seen in Fig 6.45 a) and b), after the 4th PC, there is no more significant contribution 

to the variance from PC 5, 6 etc. 4 PCs are good enough to cover 86.03% of X data 

variance. Furthermore, the RMSECV (cross-validation error) values start to increase 

beyond 4 PCs. 

 

 

Figure 6.45: PLS-Density a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The reproducibility is given in below Equation 6.7. Samples having residuals higher 

than this reproducibility are 3, 8, 12, 18, 31, 32, 36  and 42. The residuals for all sample 

set are plotted in Figure 6.46. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.13 for both the calibration and validation data sets.  
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Figure 6.46: PLS-Density: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.47 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.9077.  

Table 6.13: PLS-Density: Measured, Predicted results and Residuals, kg/l. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 0.7336 0.7349 0.0013  24 0.7455 0.7443 -0.0012 

2 0.7311 0.7319 0.0008  25 0.7428 0.7435 0.0007 

3 0.7466 0.7488 0.0022  26 0.7291 0.7310 0.0019 

4 0.7462 0.7459 -0.0003  27 0.7439 0.7427 -0.0012 

5 0.7387 0.7381 -0.0006  28 0.7428 0.7434 0.0006 

6 0.7391 0.7379 -0.0012  29 0.7307 0.7324 0.0017 

7 0.7372 0.7372 0.0000  30 0.7323 0.7322 -0.0001 

8 0.7395 0.7360 -0.0035  31 0.7332 0.7370 0.0038 

9 0.7473 0.7470 -0.0003  Validation Set (32-45)  

10 0.7405 0.7415 0.0010  32 0.7310 0.7345 0.0035 

11 0.7420 0.7427 0.0007  33 0.7382 0.7390 0.0008 

12 0.7419 0.7393 -0.0026  34 0.7327 0.7347 0.0020 

13 0.7398 0.7394 -0.0004  35 0.7308 0.7320 0.0012 

14 0.7394 0.7392 -0.0002  36 0.7421 0.7453 0.0032 

15 0.7462 0.7469 0.0007  37 0.7432 0.7452 0.0020 

16 0.7386 0.7400 0.0014  38 0.7483 0.7491 0.0008 

17 0.7465 0.7466 0.0001  39 0.7491 0.7489 -0.0002 

18 0.7396 0.7421 0.0025  40 0.7407 0.7385 -0.0022 

19 0.7360 0.7348 -0.0012  41 0.7430 0.7446 0.0016 

20 0.7337 0.7333 -0.0004  42 0.7455 0.7478 0.0023 

21 0.7398 0.7397 -0.0001  43 0.7392 0.7371 -0.0021 

22 0.7481 0.7465 -0.0016  44 0.7399 0.7398 -0.0001 

23 0.7429 0.7421 -0.0008  45 0.7400 0.7378 -0.0022 
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When the validation set was predicted by applying the model, RMSEP is 0.0022 and 

R2 is 0.8833 that is lower than R2 for the calibration set as expected. For the calibration 

set, RMSEC and R2 are 0.0013 and 0.9333 correspondingly. 

 

 

 

Figure 6.47: PLS-Density: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.5.7 E150 –Evaporated at 150 oC 

As seen in Fig 6.48 a) and b), after the 6th PC, there is no more significant contribution 

to the variance from PC 7, 8 etc. 6 PCs are good enough to cover 95.62% of X data 

variance. Furthermore, the RMSECV (cross-validation error) values start to increase 

beyond 6 PCs. 

 

 

Figure 6.48: PLS-E150 a) PC vs. RMSEC-RMSECV, b) PC vs. X Cumulative 
variance. 

The reproducibility is given in Equation 6.10. Sample having residual higher than this 

reproducibility is 36. The residuals for the all sample set are plotted in Figure 6.49. 

In parallel to this, the residuals for the validation set are larger than the residuals of the 

calibration set, as expected. The measured, predicted and residual values are given in 

Table 6.14 for both the calibration and validation data sets.  
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Figure 6.49: PLS-E150: Residuals vs All Sample Set. 

The measured values are plotted against the predicted values are for the all sample set, 

calibration set and validation set in Figure 6.50 a), b) and c). The R2 value for the 

measured versus predicted regression line for complete sample set is 0.7226.  

Table 6.14: PLS-E150: Measured, Predicted results and Residuals, oC. 

Calibration Set (1-31)        

Sample Measured Predicted Residual  Sample   Measured Predicted Residual 

1 92.70 92.73 0.03  24 91.20 91.28 0.08 

2 92.30 91.71 -0.59  25 91.20 91.25 0.05 

3 90.50 90.43 -0.07  26 92.70 92.40 -0.30 

4 89.60 89.88 0.28  27 91.40 91.46 0.06 

5 91.10 90.90 -0.20  28 91.50 91.27 -0.23 

6 91.20 91.40 0.20  29 92.10 92.10 0.00 

7 91.40 91.28 -0.12  30 92.10 92.61 0.51 

8 91.30 91.54 0.24  31 92.00 91.82 -0.18 

9 89.90 90.34 0.44  Validation Set (32-45)  

10 91.90 91.91 0.01  32 92.30 92.38 0.08 

11 89.30 89.67 0.37  33 92.50 92.51 0.01 

12 89.70 90.71 1.01  34 92.60 91.81 -0.79 

13 91.10 90.53 -0.57  35 92.90 92.38 -0.52 

14 90.50 90.40 -0.10  36 91.40 90.21 -1.19 

15 91.10 90.62 -0.48  37 91.50 91.06 -0.44 

16 91.70 91.16 -0.54  38 90.80 90.76 -0.04 

17 90.90 90.75 -0.15  39 89.70 90.59 0.89 

18 91.00 89.92 -1.08  40 91.00 91.36 0.36 

19 92.00 91.85 -0.15  41 90.70 90.46 -0.24 

20 90.40 91.00 0.60  42 91.20 90.89 -0.31 

21 90.10 90.02 -0.08  43 91.10 92.15 1.05 

22 89.80 90.35 0.55  44 89.90 90.38 0.48 

23 90.30 90.53 0.23  45 90.90 91.54 0.64 
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When the validation set was predicted by applying the model, RMSEP is 0.60 and R2 

is 0.5801, that is lower than R2 for the calibration set as expected. For the calibration 

set, RMSEC and R2 are 0.41 and 0.7886 correspondingly. 

 

 

 

Figure 6.50: PLS-E150: Measured vs. predicted results for a) all sample set, b) 
calibration set and c) validation set. 
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6.6 Results and Summary 

As a result of the predicted values, according to PCR and PLS algorithms, for all the 

components, given in the previous sections, it is very clear that the chemometric 

models are very powerful tools in getting the expected results. By combining the 

spectroscopic information and the chemometric modelling techniques, it is possible to 

avoid the reference analyses in the laboratory which requires more time and cost. A 

summary of the results and precision data calculated for PCR and PLS are given in 

Table 6.15 and 6.16 correspondingly. 

The residuals calculated by using PLS for RON, MON and Aromatics components  are 

smaller than the reproducibility precision value given in corresponding reference test 

method. For E150, there is only one sample that has higher residual than the 

reproducibility. More than 90% of residuals are even smaller than half of the 

reproducibility (R/2) for RON, MON, Aromatics and E150, which means the 

prediction model and reference test methods are almost similar.  

The residuals calculated by using PCR for MON and Aromatics components are 

smaller than the reproducibility precision value given in corresponding reference test 

method. For RON, there is only one sample has higher residual than the 

reproducibility. The PCR model is also very good at predicting the RON, MON, 

Aromatics values. 

It is also observed that PLS is more powerful than PCR for RON, MON, Aromatics, 

Benzene, Density and E150. The residuals are smaller for samples predicted by PLS 

than that of PCR. Only for olefins, PCR has better precision values than PLS.  

Both PCR and PLS techniques are not very good in prediction for benzene 

concentration in gasoline samples. All samples have benzene concentration lower than 

1% and this is obviously a reason for having high residuals. 

For density and olefins properties, the RMSEP values are higher than reference values. 

A further study would be helpful to see the real performance of two (PCR and PLS) 

techniques by varying the number of calibration sample set, by changing the pre-

processing methods, by utilizing a variable selection algorithm. 
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Table 6.15: Summary of values for PCR. 

 RON MON Aromatics Olefins Benzene Density E150 

number of PC 6 5 6 6 6 5 6 

X variance, cumulative % 96.18 94.93 96.18 96.18 96.18 94.93 96.18 

RMSEC 0.1986 0.2436 0.4138 1.2323 0.0762 0.0015 0.5591 

RMSECV 0.2669 0.3127 0.519 1.5841 0.0939 0.002 0.3717 

RMSEP 0.3552 0.2912 0.6608 0.9898 0.0668 0.0022 0.8071 

R2-all 0.889 0.5668 0.9528 0.6602 0.3238 0.894 0.5146 

R2-cal 0.9399 0.604 0.9615 0.6264 0.2967 0.9193 0.613 

R2-val 0.7654 0.5267 0.9543 0.7409 0.4156 0.8674 0.4121 
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Table 6.16: Summary of values for PLS. 

 RON MON Aromatics Olefins Benzene Density E150 

number of PC 6 5 6 3 11 4 6 

X variance, cumulative % 95.41 90.49 95.74 78.15 98.45 86.03 95.62 

y variance, cumulative % 97.36 77 97.52 64.44 89.49 93.33 78.86 

RMSEC 0.1316 0.1856 0.3317 1.2023 0.02943 0.0013 0.4132 

RMSECV 0.2232 0.3785 0.5738 1.5768 0.09111 0.002 0.7006 

RMSEP 0.2934 0.2312 0.6304 1.0334 0.06668 0.0022 0.5979 

R2-all 0.9354 0.7366 0.9571 0.6665 0.7402 0.9056 0.7226 

R2-cal 0.9736 0.7958 0.9614 0.6444 0.8949 0.9333 0.7886 

R2-val 0.8475 0.6861 0.9611 0.7296 0.4511 0.8833 0.5801 
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7.  CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 

In this study, the multivariate calibration models were developed by combining the 

Near Infrared Spectroscopy data and the calibration techniques for 45 gasoline samples 

collected at Tupras Izmit Refinery. The gasoline samples were analyzed at the Tupras 

Izmit Refinery Quality Control Laboratory (accredited from ISO/IEC 17025:2005) by 

the reference test methods and modelled for RON, MON, Aromatics, Olefins, 

Benzene, Density and E150 distillation components. Same samples were analyzed by 

NIR Spectroscopy. PCR and PLS (SIMPLS algorithm) techniques were used to obtain 

calibration models by using a calibration sample set (30 samples), then a validation 

sample set (15 samples) was used for prediction. The RMSEP values were calculated 

and compared with the R value of reference test method.  

According to the results, all the residuals calculated for MON and Aromatics by using 

PCR and for RON, MON and Aromatics by using PLS are smaller than reproducibility 

of reference test method. This means that PCR and PLS are successful to predict given 

properties. The RMSEP values for these components are smaller than half of the 

reproducibility (R/2), that is accepted as a performance indicator to compare measured 

and predicted results [65]. 

In addition, the PLS model results indicated that more than 90% of residuals and the 

RMSEP values are even smaller than half of the reproducibility (R/2) for RON, MON, 

Aromatics and E150. This means that PLS model can be safely used as a replacement 

for the reference test methods for RON, MON, Aromatics and E150 with the condition 

of remaining in studied range and with the condition of using samples of similar 

molecular structure. 

Mainly the PLS models have smaller RMSEP values than the PCR models, with the 

exception of olefins property. This results is also expected as explained in the text. 

It is also concluded that a detailed study with different parameters needed in order to 

get better results for density and olefins properties.  
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For future studies on this subject, there are mainly three issues to concentrate on. 

Firstly, increasing the number of samples in the calibration and validation sets and 

extending the range for individual properties will be helpful. Secondly, using different 

multivariate calibration techniques both linear and non-linear with alternative pre-

processing and variable selection methods is also worth to study. As given in the 

Literature Review section, multivariate calibration techniques have unique advantages 

and disadvantages. The best technique should be found for each interested property. 

Lastly, in addition to NIR spectroscopy, some other spectroscopic measurement 

methods can be used, i.e. Infrared spectroscopy and Nuclear Magnetic Resonance 

(NMR) spectroscopy. Each measurement system has unique properties and this will 

be helpful to get most form the sample as input to calibration model. Especially, NMR 

spectroscopy is becoming more popular since it gives very important information 

about the chemical structure different than NIR. Another advantage is that dark 

samples can be analyzed by NMR whereas it is not possible to do it by NIR. 
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APPENDIX A: Tables 

Table A.1 : Characterizing wavelengths in the NIR region [16]. 
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Table A.2 : Gasoline samples reference analysis results. 

  

RON MON 
Aromatics
,  %(v/v) 

Olefins
, 
%(v/v) 

Benzene
, %(v/v) 

Density
, kg/l 

Distillatio
n - E70, 
deg C 

Distillation 
E100, deg C 

Distillation 
E150, deg C 

Sample 1 95.1 86 33.2 2 0.76 0.7336 45.2 64.3 92.7 

Sample 2 95.2 85.9 31.5 5.7 0.75 0.7328 45.4 64.5 91.9 

Sample 3 95.2 86.2 29.7 5.7 0.81 0.7311 47.3 66.7 92.3 

Sample 4 97.2 86.2 34.8 8.3 0.74 0.7466 37.7 59.9 90.5 

Sample 5 95.2 85.5 38.3 3.8 0.87 0.7462 34 56.8 89.6 

Sample 6 95.2 86 33.6 4.2 0.8 0.7387 41.7 62.1 91.1 

Sample 7 95 86.1 33.7 2.8 0.8 0.7391 41.3 63 91.2 

Sample 8 95.1 86.1 33.5 3.1 0.84 0.7372 42.3 63.1 91.4 

Sample 9 95.1 85.3 31.9 6 0.73 0.7395 39.6 62.3 91.3 

Sample 10 95.1 85.1 37.9 4.8 0.75 0.7473 34 55.7 89.9 

Sample 11 97 86.8 34.2 2.8 0.77 0.7405 42.9 63 91.9 

Sample 12 95.3 85.3 34.5 8.1 0.75 0.742 38.3 59.2 89.3 

Sample 13 95.1 85.3 34.4 9 0.92 0.7419 37.1 58.8 89.7 

Sample 14 95.2 85.9 34 5.8 0.86 0.7398 39.1 61.3 91.1 

Sample 15 95.2 85.8 33.6 5.9 0.86 0.7394 40.1 61 90.5 

Sample 16 97.4 86.3 34.3 5.4 0.57 0.7462 40.2 61.5 91.1 

Sample 17 95 85.6 33 5.6 0.57 0.7386 40.6 61.8 91.7 

Sample 18 97.2 86.3 33.8 5.7 0.69 0.7465 38.7 61.4 90.9 

Sample 19 95.2 86.1 33.6 3.9 0.72 0.7396 42 62.5 91 

Sample 20 95.1 86.3 32.7 2.9 0.95 0.736 44.8 64.9 92 

Sample 21 95.2 86 30.4 6.1 0.7 0.7337 45.7 64.7 90.4 

Sample 22 95.2 85.2 32.9 9.6 0.94 0.7398 39.5 60.3 90.1 

Sample 23 97 86 33.8 9.8 0.77 0.7481 34.5 58.7 89.8 

Sample 24 95.4 85.6 34.9 5.1 0.87 0.7429 38.3 60.2 90.3 

Sample 25 97.2 86.2 33.3 5.4 0.7 0.7455 39.5 61.6 91.2 

Sample 26 95.2 85.6 35.9 7.1 0.82 0.7428 38.6 58.7 91.2 

Sample 27 95 86.2 30 4.5 0.71 0.7291 48.6 66.8 92.7 

Sample 28 95.1 85.7 37 5.3 0.84 0.7439 37.9 58 91.4 

Sample 29 95.2 85.8 37.2 3.6 0.83 0.7428 39.4 58.6 91.5 

Sample 30 95.1 85.9 30.9 5.8 0.72 0.7307 46.6 65 92.1 

Sample 31 95.3 85.9 30.9 7.6 0.72 0.7323 45.3 64.3 92.1 

Sample 32 95.1 85.9 31.7 6.2 0.75 0.7332 44 63.9 92 

Sample 33 95.1 85.8 31 6.3 0.72 0.731 46.1 65 92.3 

Sample 34 97.2 86.9 33.6 3.1 0.77 0.7382 44.7 63.9 92.5 

Sample 35 95.5 86.4 32.1 5.1 0.73 0.7327 46.1 64.8 92.6 

Sample 36 95.1 86.2 31 7.4 0.7 0.7308 47.6 66.2 92.9 

Sample 37 95.3 85.8 35.3 7.9 0.82 0.7421 38.9 58.8 91.4 

Sample 38 94.9 85.6 37.2 3.9 0.88 0.7432 38.7 58.8 91.5 

Sample 39 95.3 86.1 39.9 1.2 0.94 0.7483 36.5 56.5 90.8 

Sample 40 95.2 85.7 39.2 4.9 0.92 0.7491 33.8 55.3 89.7 

Sample 41 95.2 85.6 32.7 6.4 0.77 0.7407 39.3 61.6 91 
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Table A.2 cont. Gasoline samples reference analysis results. 
Sample 42 95.1 85.5 34.2 8.4 0.64 0.743 37.6 58.5 90.7 

Sample 43 97.2 86.2 33.3 5.4 0.7 0.7455 39.5 61.6 91.2 

Sample 44 95.4 85.6 33 4.2 0.69 0.7392 42.7 62.6 91.1 

Sample 45 95 85.3 33.1 7.2 0.79 0.7399 38.6 60.7 89.9 

Sample 46 95 85.6 33.8 3.7 0.73 0.74 42.6 62.6 90.9 
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APPENDIX B: Figures 

Figure B.1 Flow Diagram [64]. 
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