
 

 

 

 
 

 

 

 

 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İSTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF 

SCIENCE ENGINEERING AND TECHNOLOGY 
 

EUTECTIC FREEZE CRYSTALLIZATION OF BORON COMPOUNDS 

 

M.Sc. THESIS 

 

Bolormaa BAYARKHUU 

 

JUNE 2016 

Department of Chemical Engineering 

Chemical Engineering Programme 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/158330495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

    

 

 

 
 



 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İSTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF 

SCIENCE ENGINEERING AND TECHNOLOGY 

 

EUTECTIC FREEZE CRYSTALLIZATION OF BORON COMPOUNDS 

 

M.Sc. THESIS 

 

Bolormaa BAYARKHUU 

(506121031) 

JUNE 2016 

Department of Chemical Engineering 

Chemical Engineering Programme 

 

 

 

 

 

 

 

 

 

 

Thesis Advisor: Doç. Dr. F. Elif Genceli GÜNER 



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BOR BİRLEŞİKLERİN ÖTEKTİK DONDURMA KRİSTALİZASYONU 

 

YÜKSEK LİSANS TEZİ 

 

Bolormaa BAYARKHUU 

(506121031) 

HAZIRAN 2016 

Kimya Mühendisliği Anabilim Dalı 

Kimya Mühendisliği Programı 

 

 

 

 

 

 

 

 

 

 

Tez Danışmanı: Doç. Dr. F. Elif Genceli GÜNER 

İSTANBUL TEKNIK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Thesis Advisor:  Doç. Dr. F. Elif Genceli GÜNER                 ............................ 

 Istanbul Technical University  

 

Jury Members:  Prof. Dr. Hale Gürbüz                          ............................. 

  Istanbul Technical University 

 

   Doç. Dr. Didem Saloğlu Dertli                   .............................. 

Yalova University 

 

Bolormaa BAYARKHUU, a M.Sc. student of ITU Institute of Science and 

Technology student ID 506121031, successfully defended the thesis entitled 

“EUTECTIC FREEZE CRYSTALLIZATION OF BORON COMPOUNDS”, 

which she prepared after fulfilling the requirements specified in the associated 

legislations, before the jury whose signatures are below.  

 

 

Date of Submission: 02 May 2016  

Date of Defense:  28 June 2016 



vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

 

 

 

 

 

 

 

 

 

To my dear family, 

 



viii 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

FOREWORD 

First, I particularly thank to honourable my thesis advisor Doç. Dr. F.Elif Genceli 

GÜNER for her guidance and giving chance to me perform my master thesis and 

also thank to Prof. Dr. A. Nusret BULUTÇU for his laboratory stuff for performing 

the whole experiments.  

In addition, I would like to thank my laboratory partners Ece ENGIZEK, Ayşenur 

ERALP, and Ferhan CİNALİ for contributions to carry out my laboratory studies. I 

special thanks to Melike ERGUVAN for her friendly atmosphere during the 

laboratory studies. 

Finally, I thank very much to my dear family and close friends, especially Batchimeg 

DASHDORJ for their motivation, support, helps through the project. 

 

 

 

 

May 2016 

 

Bolormaa BAYARKHUU 

 (Chemical Engineer) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 



xi 

 

TABLE OF CONTENTS 

 

   Page  

FOREWORD ............................................................................................................. ix 

TABLE OF CONTENTS ......................................................................................... xi 

LIST OF TABLES .................................................................................................. xiii 

LIST OF FIGURES ................................................................................................. xv 

SUMMARY ............................................................................................................ xvii 

ÖZET ....................................................................................................................... xix 

1. INTRODUCTION .................................................................................................. 1 

1.1 Background ........................................................................................................ 1 

    1.2 Outline of Thesis ................................................................................................ 2 

2. LITERATURE REVIEW ..................................................................................... 3 

    2.1 Boron and Boron Chemicals .............................................................................. 3 

       2.1.1 Global and Turkish boron reserves .............................................................. 3 

       2.1.2 Applications of borax and boric acid ........................................................... 5 

       2.1.3 Demand of borax and boric acid .................................................................. 5 

       2.1.4 Production processes of borax and boric acid .............................................. 6 

       2.1.5 Borax and boric acid waste disposal burdens .............................................. 7 

2.2 Theory ................................................................................................................ 9 

       2.2.1 Physical and chemical properties ................................................................. 9  

          2.2.1.1 Physical and chemical properties of borax. ........................................... 9 

          2.2.1.2 Physical and chemical properties of boric acid .................................... 10 

       2.2.2 Fundamentals of crystallization process .................................................... 11 

       2.2.3 Mechanisms of crystallization process ...................................................... 12 

          2.2.3.1 Nucleation ............................................................................................ 12 

          2.2.3.2 Crystal growth ...................................................................................... 13 

       2.2.4 Product characteristics ............................................................................... 13 

    2.3 Eutectic Freeze Crystallization (EFC) ............................................................. 14 

       2.3.1 Definition and separation principle ............................................................ 14 

       2.3.2 EFC process and its advantageous ............................................................. 15 

3. MATERIALS AND METHODS ........................................................................ 17 

    3.1 Materials .......................................................................................................... 17 

    3.2 Experiments ..................................................................................................... 18 

       3.2.1 1 liter crystallizer set-up ............................................................................. 18 

       3.2.2 Experimental procedure ............................................................................. 19 

    3.3 Methods ............................................................................................................ 21 

       3.3.1 Concentration measurement ....................................................................... 21 

       3.3.2 Supersaturation .......................................................................................... 21 

       3.3.3 Measurement procedure of crystal size ...................................................... 21 

4. RESULTS AND DISCUSSION .......................................................................... 23 

    4.1 Investigation for Borax-Water (Na2B4O7-H2O) System .................................. 23 

    4.2 Investigation for Boric Acid-Water (H3BO3-H2O) System ............................. 31 

5. CONCLUSIONS .................................................................................................. 37 

6. RECOMMENDATIONS ..................................................................................... 39 

REFERENCES ......................................................................................................... 41 



xii 

 

APPENDICES .......................................................................................................... 45 

CURRICULUM VITAE .......................................................................................... 61 

 

 

 

 

 



xiii 

 

 

LIST OF TABLES 

               Page 

 

Table 2.1  :  Global boron reserves ............................................................................. 4 

Table 2.2  :  Capasities of boron products from reserve in Turkey ............................. 5 

Table 2.3  :  Borate and boric acid sollubility in water ............................................... 9 

Table 3.1  :  Maximum impurity limits ..................................................................... 17 

Table 3.2  :  Maximum impurity limits ..................................................................... 18 

Table 4.1  :  Crystal size measurement and calculation results ................................. 29 

Table A.1 :  Water-Ethylene Glycol concentration and freezing point relations ...... 47 

Table A.2 :  Concentration differences. .................................................................... 48 

Table B.1 :  Mass and component balance . .............................................................. 51 

 

 



xiv 

 



xv 

 

LIST OF FIGURES  

               

 

 Page 

 

Figure 2.1    :   Main borax and boric acid manufacturing plants ............................... 4 

Figure 2.2    :   Demand of refined borates between 2014 and 2019 .......................... 6 

Figure 2.3    :   Production process of borax ............................................................... 6 

Figure 2.4    :   Production process of boric acid ........................................................ 7 

Figure 2.5    :   Kırka plant tailings dam ..................................................................... 8 

Figure 2.6    :   Solubility versus temperature curves for borates and boric acid ..... 10 

Figure 2.7    :   Solubility diagram showing stable, labile and metastable zones ..... 11 

Figure 2.8    :   Kinetics in general phase diagram for binary aqueous solutions ..... 14 

Figure 2.9    :   Schematic representation of EFC process ........................................ 15 

Figure 3.1    :   Schematic diagram (a) and experimental set-up photo (b)............... 20 

Figure 3.2    :   Automatic titrator (Schott Titronic Universal). ................................ 21 

Figure 3.3    :   Microscope instrumentation ............................................................. 22 

Figure 4.1    :   Experimental investigations outline ................................................. 23 

Figure 4.2    :   Temperature-Time diagram of borax ............................................... 24 

Figure 4.3    :   Concentration-Temperature diagram for borax ................................ 25 

Figure 4.4    :   Na2B4O7∙10H2O salt- ice and Na2B4O7 aqueous solution  

                          separation  ........................................................................................ 26 

Figure 4.5   :    Na2B4O7 % amounts in solution and ice, after filtration and  

                          washing steps ................................................................................... 27 

Figure 4.6    :   (a) Na2B4O7 salt, (b) ice crystal images ........................................... 27 

Figure 4.7    :   The salt crystal (Na2B4O7) captures in the ice  ................................. 28 

Figure 4.8    :   Time versus Characteristic Radius Graph for T=4.94 ºC .............. 30 

Figure 4.9    :   Time versus Characteristic Radius Graph for T=5.26 ºC .............. 30 

Figure 4.10  :   Time versus Characteristic Radius Graph for T=6.46 ºC. ............. 31 

Figure 4.11  :   Supersaturation (T)-Growth Rate Graph for Na2B4O7∙10H2O   

crystals .............................................................................................. 31 

Figure 4.12  :   Temperature-Time diagram of boric acid ........................................ 32 

Figure 4.13  :   Concentration-Temperature diagram for boric acid. ........................ 33 

Figure 4.14  :   Boric acid salt-ice and solution at the eutectic point. ....................... 34 

Figure 4.15  :   H3BO3 % amounts in solution and ice after filtration and washing 

steps .................................................................................................. 35 

Figure 4.16  :  (a) H3BO3 salt, (b) ice crystal image ................................................. 35 

Figure A.1   :   Differences between initial concentration and titration   

measurements ................................................................................... 49 

Figure B.1   :   Experimental steps before filtration.................................................. 50 

 

                   

 



xvi 

 

 

 

 

 

 

 

 

 

 



xvii 

 

 

EUTECTIC FREEZE CRYSTALLIZATION OF BORON COMPOUNDS 

SUMMARY 

Boron compounds, especially borax and boric acid, are desired and important raw 

material in various industries. They have numerous applications from agriculture to 

nuclear reactors. Major usage of borax and boric acid includes borosilicate glass, 

ceramic glazes and detergent. Generally, borax and boric acid production is 

manufactured from tincal and colemanite minerals. Turkey is the world leader of 

tinkal (35.5% B2O3) and colemanite (50.8% B2O3) minerals. In Turkey, 803 million 

ton boron reserve exists, and every day several hundred to thousand tons boron waste 

is discharged in industrial processes.  

Before getting environmental awareness and consciousness, those wastes were 

disposed directly to the environment. Nowadays industrial wastes are enriched to 

reuse or wastes are discharged in appropriate way due to the negative environmental 

and ecological impacts. Three major options are available for the management of 

boron containing wastes:  

 recovery of boron minerals from tailings,  

 safe disposal of boron tailings without harming the environment,  

 utilization of boron tailings as raw materials in ceramics and cement industry. 

The continuous demand and consumption of raw materials and water in the world 

has increased significantly in the past decades. This leads to the necessity for 

sustainable processes and technologies in the development of raw material and for 

optimization of processes as regards recycling of wastewater, recovery of waste 

stream, and energy efficiency. This characterize the commonly known “Eutectic 

Freeze Crystallization” (EFC) technology in recent.  

This technology is in particular suited for the treatment of aqueous waste streams. 

The basis of eutectic freeze crystallization is the existence of eutectic point. The 

eutectic point refers to a characteristic point in the phase diagram of a salt-water 

mixture. At this temperature an equilibrium exits between ice, salt and a solution 

with a specific concentration. Thus, eutectic freeze crystallization process converts 

an invaluable and/or hazardous waste stream into clean water and valuable solid salt 

products. Besides, EFC has the biggest potential to treat aqueous streams at low cost 

and high yields. 

In this thesis, the primary purpose is to investigate eutectic points of borax-water 

(Na2B4O7-H2O) and boric acid-water (H3BO3-H2O) systems.  

The first stream, synthetic borax stream, was used for investigating the eutectic point 

in a 1 liter EFC experimental set-up. After crystallization process was conducted, ice 

product purity was detected. In addition, salt crystal size measurement was 

conducted for evaluating the salt crystal growth at different supersaturation process 

and different batch times. This aims to calculate the borax growth rates at different 

supersaturations under EFC conditions. In this experiment, microscopic studies were 

conducted by using Olympus BX51 microscope. 
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The second stream, synthetic boric acid stream, was used for investigating the 

eutectic point in a 1 liter EFC experimental set-up. Similar to borax case, after 

crystallization process was conducted, the ice product pruty was detected. 

All experiments were done using starting compositions of 2 wt% borax aqueous, and 

2.5 wt% boric acid aqueous solutions. The experimental investigations and feasibility 

of EFC applications for boron systems were discussed in result and discussion part. 

Detailed calculation of the processes and additional microscopic images were given 

in Appendices.  
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BOR BİRLEŞİKLERİN ÖTEKTİK DONDURMA KRİSTALİZASYONU 

ÖZET 

Boron birleşikleri, özelikle boraks ve borik asit, çeşitli endüstriler için istenilen 

önemli hammaddelerdir. Tarımdan nükleer reaktörlere kadar çok sayıda 

uygulamaları bulunmaktadır. Boraks ve borik asidin ana kullanım alanları borosilikat 

cam, seramik sır ve deterjan üretimidir. Genel olarak boraks ve borik asit ürünleri, 

tinkal ve kolemanit minerallerinden üretilmektedir. Türkiye tinkal (35.5% B2O3) ve 

kolemanit (50.8% B2O3) kaynaklarıyla dünya lideridir. Türkiye’de 803 milyon ton 

bor rezervi bulunmakta ve günde tonlarca bor atığı endüstriyel süreçlerde 

oluşmaktadır. 

Bor üretim tesislerinden çıkan atıklar genellikle ince boyutlu katı veya pülp 

halindedir. Çevre duyarlılığı ve bilinci gelişmeden önce, bu atıklar direkt çevreye 

atılıyordu. Günümüzde endüstriyel atıklar, yeniden kullanılmak üzere 

zenginleştirmekte veya kullanılmayan kısımları çevresel ve ekolojik etkilerinden 

dolayı uygun şekilde imha edilmektedir. Gelişmiş ülkeler başta olmak üzere, 

Dünya'nın birçok ülkesinde araştırmacılar ve işletmeler bu konuda yoğun çaba 

harcamaktadır. Başta çevresel ve ekonomik koşullar göz önüne alındığında, bor 

atıklarının değerlendirilmesi konusunda yeni bir yönteme ihtiyaç duyulmaktadır. Bor 

içeren atıkların yönetiminde üç temel seçenek mevcuttur:  

 bor minerallerinin atıktan geri dönüştürülmesi,   

 bor atıklarının çevreye zarar vermeden imha edilmesi,  

 bor atıklarının seramik ve inşaat sektöründe hammadde olarak 

kullanılmasıdır. 

Bu durum, sürdürülebilir proses ve teknolojileri, hammadde gelişimi, -atık su geri 

kazanılımı ve enerji verimi gibi- proses optimizasyonlarına yönlendirmiştir. 

Günümüzde bu amaca “Ötektik Dondurma Kristalizasyon” (ÖDK) teknolojisi hizmet 

etmektedir. 

Bu teknoloji özellikle atık suyunun arıtılması için uygundur. Ötektik dondurma 

kristalizasyonun temeli ötektik noktanın bulunmasına dayanır. Ötektik nokta, tuz-su 

karışımı faz diyagramında karakteristik bir noktayı ifade eder. Bu sıcaklıkta buz, tuz 

ve çözelti arasında belirli bir konsantrasyonda denge oluşmaktadır. Böylece, ötektik 

dondurma kristalizasyonu prosesi değersiz ve/veya tehlikeli atık çözeltilerini temiz 

su ve değerli katı tuz ürünlerine dönüştürülmektedir. Ayrıca, ÖDK teknolojisi saf 

buz ve tuzu son derece düşük maliyet ve yüksek verimde üretmektedir 

Bu tezde, temel amaç boraks-su (Na2B4O7-H2O) ve borik asit-su (H3BO3-H2O) 

sistemlerinin ötektik noktalarının araştırılmasıdır.  

Birinci atık çözelti, sentetik boraks sistemi, 1 litrelik ÖDK deneysel düzeneğinde 

ötektik noktanın araştırması için kullanılmıştır. Bu çalışmada, tüm deneyler 

başlangıçta ağırlıkça 2% boraks sulu çözeltisi kullanılarak yapılmıştır. Karıştırcı 200 

rpm devire ve soğutma makinası -10 ºC’ye ayarlanarak kesikli uygulama 
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süreçlerinde ötektik noktası bulunmuştur. Şekil 4.3’te boraks-su çözünürlük grafiği 

verilmiştir. Yapılan 11 tane deney sonucunda ötektik nokta 1.06% Na2B4O7 ve -0.74 

⁰C olarak tayin edilmiştir. 

Ötektik Dondurma Kristalizasyon prosesi uygulandıktan sonra, buz ürün saflığı tespit 

edilmiştir. Bu çalışmadan elde edilmek istenilen bir diğer veri ise ötektik noktaya 

ulaştıktan sonra buzun safsızlık içeriğidir. Ötektik noktada, ΔT= 6 ºC’lik sürücü güç 

(soğutucu akışkan -etilen glikol- ve boraks çözeltisi arasındaki sıcak farkı) altında 60 

dakika buz ve Na2B4O7∙10H2O tuz kristallerinin büyümesi ve yoğunluk farkıyla 

birbirinden ayrılması sağlanmış (Şekil 4.4); ardından süzme ve yıkama işlemleri 

yapılmıştır. Süzme işlemi cam filtre yardımıyla vakum filtrasyonu ile 

gerçekleştirilmiştir. Süzülen buz için toplamda iki yıkama gerçekleştirilmiş ve her 

yıkama sonrası buzun ve alttaki çözeltinin ağırlıkları ölçülerek analiz için numuneler 

alınmıştır. Her birinden alınan numuneler titrasyon yöntemi ile analiz edilmiş. 

Sonucu olarak Şekil 4.5’de ötektik noktadaki tuz, buz, çözelti miktarları ve 

yıkamalar sonucu buzdaki safsızlık gösterilmiştir. 

Alınan tüm numuneler Schott Titronic Universal otomatik büret ile analiz edilmiştir. 

Ötektik noktaya ulaşmış çözeltiden alınan 10 ml’lik numunenin boraks 

konsantrasyonu 0.1 N’lık NaOH çözeltisi ile yapılan titrasyonla belirlenmektedir. 

Ayrıca farklı ÖDK koşullarında süper-doygunluk ve değişik kesikli uygulama 

süreçlerinde (10 dakika, 30 dakika, 1 saat ve 5 saat), tuz kristal boyutunun ölçümü 

yapılmış ve büyüme hızı araştırılmıştır. Bu deneysel çalışmada, tuz ve buz kristalleri 

boyut ve görünüm özellikleri açısından Olympus BX51 marka mikroskop altında 

incelenmiştir. Mikroskop ile gözlemlenen kristallerin fotoğrafları optik mikroskopun 

5X büyütme özelliği ile çekilmiş ve Image-Pro Plus programı yardımıyla 

boyutlandırılmıştır.  

Deney sonrası, tuz kristalinin kaydedilen görüntüleri, Image J programı yardımıyla  

boyutlandırılmış ve meydana gelen değişimler hesaplanmıştır.  

Deneysel sonuçlar kısmında, boraks kristallerinin büyüme hızı ΔT ile düeğişimi 

grafiği ile ifade edilmiş ve Şekil 4.11’te gösterilmiştir. Sonucu olarak 3x10-9 m/s 

bulunmuştu. 

İkinci atık çözelti, sentetik borik asit sistemi, 1 litrelik ÖDK deneysel düzeneğinde 

ötektik noktanın araştırması için kullanılmıştır. Bu çalışmada, tüm deneyler 

başlangıçta ağırlıkça 2.5% borik asit sulu çözeltisi kullanılarak yapılmıştır. Karıştırcı 

200 rpm devire ve soğutma makinası -10 ºC’ye ayarlanarak kesikli uygulama 

süreçlerinde ötektik noktası bulunmuştur. Şekil 4.3’te boraks-su çözünürlük grafiği 

verilmiştir. Ötektik nokta 2.57% H3BO3 ve -0.75 ⁰C olarak tayin edilmiştir. 

Ötektik Dondurma kristalizasyon prosesi uygulandıktan sonra, borakstaki gibi buz 

ürün saflığı tespit edilmiş ve sonucu Şekil 4.5’de gösterilmiştir. Ötektik noktada, 

ΔT= 4 ºC’lik sürücü güç altında 20 dakika büyümesi sağlanmış, ve H3BO3 tuz 

kristallerinin yoğunluk farkıyla birbirinden ayrılması sağlanmıştır (Şekil 4.14).  

Tuz ve buz kristalleri bir cam filtre yardımıyla vakum filtrasyonu yapılarak 

ayırmıştır. Daha sonra alınan çözelti numunesinin analizi aynı şekilde titrasyon ile 

yapılarak tuz, buz, çözelti miktarları ve yıkamalar sonucu buzdaki konsantrasyon 

belirtirilmişti (Şekil 4.15). 

Bu deneysel çalışmada, tuz ve buz kristalleri boyut ve görünüm özellikleri açısından 

da Olympus BX51 marka mikroskop altında incelenmiştir. Mikroskop ile 

gözlemlenen kristallerin fotoğrafları optik mikroskopun 5X büyütme özelliğinde  

çekilmiştir. 
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Ayrıca vakum filtrasyonu yapılarak tuz ve buz ayrıldıktan sonra kütle dengesi 

kurularak ötektik noktadaki tuz, buz, çözelti miktarları ve yıkamalar sonucu 

dengesini sağlatmıştır. Detayli hesaplama Ek B’de gösterilmiştir. 

Bor içeren çözeltilerde deneysel araştırmalar ve ÖDK uygulama fizibilitesi, sonuç ve 

tartışmalar kısmında ele alınmıştır. Prosesin ayrıntılı hesabı ve mikroskobik 

görüntüleri Ekler kısmında verilmiştir. 
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1. INTRODUCTION 

1.1 Background 

Boron is the 51st most common element and occurs in borates and borosilicate in the 

earth’s crust [1]. Boron minerals are located in eight different countries all around 

the world and 72% of known boron reserves are found in Turkey. Boron and its 

compounds have a wide field of applications including glass products, cleaning 

products, flame proofing and corrosion [2]. 

With development of technology, the areas where boron is used are increasing. It 

becomes obvious that the total boron compound demand in the industry is growing 

each year. The manufacturing of boron products results in significant amount of 

different types of boron wastes [3]. At present, these waste streams are discharged in 

tailings dams. However, this raises substantial environmental concern in fear of 

leaching, and thus groundwater and soil pollutions. In order to address these 

problems, many processes have been suggested concerning boron waste utilization. 

For recovering boron waste, the potential way is to use them as an additive material 

in clay mixtures for the production of ceramics and cements [3-5]. 

Environmental protection and energy saving are considered to be crucial matters in 

industries. Therefore, in addition to finding alternative raw materials, recycling 

wastes as possible replacement has gained considerable interest within last years [5]. 

‘Nearly Zero Liquid Discharge (ZLD)’ concept has recently been investigated by 

various groups, and was the focus of several reviews [6-9]. Nowadays, one 

alternative for treating waste/process streams and recovering raw materials and water 

aiming to reach ZLD is achieved by using Eutectic Freeze Crystallization technology 

[10].  

In this thesis we apply novel Eutectic Freeze Crystallization (EFC) technology to 

treat boron containing waste streams. For this particular study, borax and boric acid 

solutions were chosen. The following actions were investigated in the context of this 

study. 
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 Eutectic temperatures and compositions (i.e. eutectic points) of borax-water 

and boric acid-water systems were detected,  

 Qualities and purities of recovered ice (water) were investigated both for 

eutectic borax and eutectic boric acid systems, 

 Salt crystal growth for borax crystals were investigated at different 

supersaturations and different batch times. 

1.2 Outline of Thesis 

EFC is a recently developed technology to treat aqueous solutions from chemical and 

metallurgical industries. This thesis focuses on the feasibility of EFC on the 

treatment of borax and boric minerals in batch operation.  

Chapter 2 provides an overview based on literature review: boron chemicals, borax 

and boric acid industrial production processes, main applications and demands of 

borax and boric acid. Moreover, definition of Eutectic Freeze Crystallization process 

and its advantageous is presented in this chapter. In addition, basics of crystallization 

phenomena is discussed.  

Chapter 3 focuses on the materials used in experimental operation and detailed 

experimental set-up and methods used for investigations of this thesis.  

Chapter 4 covers the discussions on results of experiments, and Chapter 5 carries the 

conclusion, respectively.  
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2. LITERATURE REVIEW  

2.1 Boron and Boron Chemicals 

Boron, chemical symbol B and atomic number 5, is the only non-metallic Group III 

A element in the periodic table. It was discovered by British chemist Sir Humphry 

Davy and independently French chemists Joseph Gay-Lussac and Louis Thenard in 

1808 [11].  

Boron is a widely occurring element and estimated to constitute approximately 

0.001% of the earth’s crust [12]. Besides, the boron content occurs in fresh water, 

seawater, soil and rocks. Although it is widespread in nature, the presence of boron 

occurs only in very small amounts in nature [13] and boron does not occur in nature 

as a free element. There are more than 230 naturally occurring boron containing 

minerals in all around World [14]. The most commercially important minerals are 

borax decahydrate (Na2B4O7∙10H2O), boric acid (H3BO3), kernite (Na2B4O7∙4H2O), 

colemanite (Ca2B6O11∙5H2O) and ulexite (NaCaB5O9∙8H2O) which are considered as 

minerals that provide the source for the world’s production [15].   

2.1.1 Global and Turkish boron reserves 

The main reserves of boron minerals in the World are available in Turkey and USA. 

Further mining and production facilities exist in Argentina, Bolivia, China, Chile, 

Peru, and Russia [16]. Around 25% of global boron production, mainly in the form 

of borax and kernite was produced from Boron Mine in USA in 2012, whereas 72% 

of global boron production was manufactured from Eti Mine in Turkey. The balance 

of production was dominated from China, Argentina and Chile [17]. In Table 2.1, 

global boron reserves are shown as boric oxide (B2O3) [18]. 
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Table 2.1 : Global boron reserves.  

Location Total reserve  

(B2O3 thousand tons) 

(%) 

Turkey 955.300 72.8 

USA 80.000 6.1 

Russia 100.000 7.6 

China 47.000 3.6 

Argentina 9.000 0.7 

Bolivia 19.000 1.4 

Chile 41.000 3.2 

Peru 22.000 1.7 

Kazakhstan 15.000 1.2 

Serbia 24.000 1.7 

TOTAL 1.312.300 100 

 

Turkish boron deposits are located in western side at five main districts: Bigadiç, 

Sultançayır, Kestelek, Emet and Kırka [19]. In order to utilize mining resources more 

effectively, boron operation in Turkey was transferred to Eti Mine in 1935. The high 

added value products of boron such as borax decahydrate, borax pentahydrate, boric 

acid, and boric oxides are produced in Eti Mines and most of them are exported. 

According to Eti Mine, total capacity for boron products are 2.13 million tons/year. 

Boron products manufactured in Turkey by Eti Mine are listed in Table 2.2 [18]. Eti 

Bor operates plants at Emet (capacity 100.000 tons/year), Bandırma (capacity 85.000 

tons/year), and Kırka (840.000 tons/year) (Figure 2.1) that produce main borax and 

boric acid products in Turkey [20]. 

 

Emet plant 

 

Bandırma plant 

 

Kırka plant 

Figure 2.1 : Main borax and boric acid manufacturing plants [20]. 
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Table 2.2 : Capacities of boron products from reserve in Turkey [18]. 

Products Thousand tons/year 

Borax decahydrate (Bandırma) 115 

Boric acid (Bandırma) 95 

Anhydrous borax  5 

Sodium perborate (Bandırma) 35 

Boron oxide (Bandırma) 2 

Boric acid (Emet) 240 

Borax pentahydrate (Kırka) 840 

Borax decahydrate (Kırka) 80 

Colemanite ( Bigadiç) 700 

Calcined tincal (Kırka) 5 

Agriculture Boron (Bandırma) 8 

Glassy Boron Oxide (Bandırma) 6 

TOTAL 2.131 

 

2.1.2 Applications of borax and boric acid 

Borax and boric acid are essential raw materials with great potential in various 

applications. Borax has a wide application and used in areas such as borosilicate 

glasses, glass wool, ceramics, detergents, cement and fire proof materials [2]. Borax 

is also frequently used to provide corrosion inhibition for ferrous metals and 

traditionally used in steel and stainless steel wire in metallurgical industry [11], [21]. 

Boric acid is also a crucial raw material for several industries. It is one of the 

important component for fiber-glass and borosilicate glass production, which is a 

heat-resistant product also named as Pyrex. Pyrex has wide uses such as laboratory 

equipment, cookware, TV screen, computer monitors (CRT and LCD) as well as in a 

wide range of optical instruments from microscope slides to observatory mirrors 

[11], [21]. 

2.1.3 Demand of borax and boric acid 

Due to increasing economies and industries, the demand for boron products are 

expected to grow. Growing population is the driving force for borates demand in 
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urbanization, food supply and energy. This demand is expected to increase 

continuously as shown in Figure 2.2 [22]. 

 

 

 

 

 

 

Figure 2.2 :  

 

Figure 2.2 : Demand of refined borates between 2014 and 2019 [22]. 

2.1.4 Production process of borax and boric acid 

Boron ores are used in production of various boron derivatives. Colemanite and 

tincal are crucial ores for production of borax and boric acid.  

Borax: Borax is generally prepared from the tincal ore which is dried from lakes. 

The production of borax process is proceeded by dissolving, precipitation, filtration, 

crystallization and drying as shown in Figure 2.3. Borax decahydrate product can be 

obtained with a minimum 36.5% B2O3 grade [23]. 

  

  

Figure 2.3 : Production process of borax [18]. 

TFG: Textile 
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film 
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Boric acid: Boric acid is generally produced from colemanite or tincal reacting with 

H2SO4. The production process of boric acid from concentrated colemanite is 

proceeded by crushing, grinding, reaction with sulfuric acid, filtration, and 

crystallization. In Figure 2.4, production processes of boric acid is demonstrated 

[18]. Boric acid product can be obtained with a minimum 56% B2O3 grade. The 

reaction is shown in equation 2.1 [24]. 

             Ca2B6O11.5H2O  +  4H2SO4  + 6H2O  →  6H3BO3  +  2CaSO4.2H2O       (2.1) 

As reported in literature, boric acid is produced from tincal concentrate by several 

methods. One of them is dissolving tincal concentrate with nitric acid or hydrochloric 

acid. Another method is electrolysis of aqueous tincal concentrate at 80 °C. In 

general, boric acid is produced with sulfuric acid from tincal. In this production of 

boric acid is conducted with the reaction shown in equation 2.2 [24].           

               Na2B4O7∙10H2O + H2SO4 → Na2SO4 + 4H3BO3 + 5H2O                        (2.2) 

 

Figure 2.4 : Production process of boric acid  [18]. 

2.1.5 Borax and boric acid waste disposal burdens 

Mining operation for obtaining of boron products is open pit, and underground 

processes. Concentrations of boron minerals are either directly marketed or treated to 

produce refined products as a borax decahydrate, penthahydrate, perborate, and boric 

acid [4]. 
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Over 1.5 million tons of boron products were produced in 2001 in all around the 

World. Turkey and USA share about 33.4% and 42% of total boron production, 

respectively. Ediz and Özdemir stated that during the production processes in Turkey 

annually almost 600.000 tons of boron wastes, and particularly only in tincal plants 

approximately 400.000 tons of borax wastes are generated [25], [26]. Convential 

disposal way of aqueous boron wastes is to store in tailings dams. However, it is not 

sustainable. The largest borax processing plant, Kırka, where tailings are pumped to 

13.000.000 m3 capacity tailings ponds that are almost filled up. The shortage of 

waste ponds (Figure 2.5) creates a serious problems including occupation of large 

areas of land and environmental pollutions. It is known that the tailings ponds 

contain around 12.000.000 m3 of materials of which 6.500.000 m3 is waste water 

containing boron. Another fatal problem faced in storing boron waste in tailing pond 

is storing wastes in leakage free ponds. Although boron is necessary compound for 

living organism and the habitat, higher concentrations of boron become 

environmentally hazardous [27].  

 

Figure 2.5 : Kırka tailings dam [28]. 

Thus, the most suitable strategy appears to be the recovery of boron tailings followed 

by its industrial utilization. The recycling boron wastes are intended to provide the 

following benefits [25]: 

 Environmental pollution will be reduced,  

 Waste storing problems and storing costs will be reduced, 

 Groundwater and surface water contaminants will be prevented, 

 Additional boron waste based products will be produced. 

Due to environmental issues related to industrial waste, recovery of salts and water 

from those waste streams is an essential matter. It is expected in 2007 by the United 
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Nations that, water consumption of the World will increase very steep in the coming 

20 years up to 6x106 m3 [29]. Using the waste streams, the recovered water can be 

used as process water; and the crystallized salt can be a commercial product. In other 

words, these streams could easily be turned into valuable products once an affordable 

treatment technology is available. The new waste-to-products paradigm which treats 

waste streams as raw materials is environmentally crucial for recycling and 

protecting the world’s natural resources, and also economically favorable by 

decreasing the production cost [30]. 

In this study, for treatment of boric acid-water and borax-water systems, the novel 

Eutectic Freeze Crystallization technology is applied.  

2.2 Theory  

2.2.1 Physical and chemical properties  

2.2.1.1 Physical and chemical properties for borax  

Borax or borax decahydrate, Na2B4O7∙10H2O or Na2O∙2B2O3∙10H2O, is most known 

name of the disodium tetraborate decahydrate. Borax decahydrate is odorless, white, 

monoclinic prisms with density 1.711-1.715 g/cm3. The molecular weight of borax is 

381.36 g/mol and its specific heat is 1.611 kJ/ (kg K) at 25-50 °C as well as a heat of 

formation is -6.264 MJ/mol. It crystallizes from aqueous solution below 60.8 °C. The 

solubility-temperature curves for the Na2O∙2B2O3∙10H2O system and solubility of 

borax solution are given in Table 2.3 and Figure 2.6, respectively [31], [32]. 

Table 2.3 : Borate and boric acid solubility in water [1]. 

Compound 
Solubility in wt% anhydrous salt at T (°C) 

0 10 20 30 40 50 60 70 80 90 100 

NaBO2∙4H2O 14.5 17 20 23.6 27.9 34.1      

NaBO2∙2H2O       38.3 40.9 43.7 47.4 52.4 

Na2B4O7∙10H2O 1.0 1.6 2.5 3.8 5.9 9.5 16.0     

Na2B4O7∙5H2O       16.4 19.5 23.4 28.1 34.6 

Na2B4O7∙4H2O      14.2 14.7 17.0 19.7 23.0 27.2 

B(OH)3 2.4 3.5 4.7 6.2 8.8 10.3 13.0 15.8 19.1 23.3 27.5 
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Figure 2.6 : Solubility versus temperature curves for borates and boric acid [32]. 

2.2.1.2 Physical and chemical properties for boric acid 

Boric acid, H3BO3 (B2O3∙3H2O), exist as the trihydrate, and orthoboric acid. 

Orthoboric acid is referred as boric acid in general. Boric acid, B(OH3), crystallizes 

from aqueous solutions and appearance of the acid is white, waxy platelets with a 

density of 1.51 g/cm3 (20 °C). The weight of boric acid is 61.83g/mol, and its heat of 

formation is -1089 kJ/mol [1]. 

The boric acid acts as a weak acid in aqueous solutions and its acidity rise with 

temperature. Solubility data in water is shown in Table 2.3 and solubility curve 

illustrated in Figure 2.6. Solubility of boric acid in water is increased by adding salts 

such KCl, KNO3, RbCl, K2SO4 and NaSO4, whereas addition of LiCl, NaCl, and 

CaCl2 decrease its solubility [31].  
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2.2.2 Fundamentals of crystallization process 

Crystallization is a common unit operation which is used for purification, separation, 

production step, yielding quality crystals in chemical industry. Crystallization has 

become a technique in wide range areas such as biotechnology, mineral processing, 

waste treatment, pollution abatement, energy storage, new construction materials, 

and electronic chemicals. The process is applied as a separation technique in 

inorganic chemical industry in order to recover salts from aqueous solutions [33].  

Supersaturation in a solution is the driving force of the crystallization processes. 

Level of supersaturation is an important factor for nucleation and growth of the 

crystal. Supersaturation can be achieved by different ways. Most commonly used 

method is cooling the solution. This is preferred when the solubility of solute is 

sharply dependent on temperature [34]. Another widely applied method in order to 

generate the supersaturation is evaporation. The method is mostly used when the 

solubility slightly relies on temperature. By adding an extra substance, 

supersaturation can also be created in a solution [35]. 

As described in Figure 2.7, there are two important curves, namely solubility 

(saturation) and nucleation (supersaturation) curves and three main regions, 

including stable (unsaturated), metastable and labile (saturated) zones [36]. 

 

Figure 2.7 : Solubility diagram showing stable, labile and metastable 

 zones [36]. 
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 Lable or unstable zone is the saturated region where nuclei grow 

spontaneously.  

 Metastable zone is the important region among these three zones and is a 

supersaturated region where crystals grow. The thickness of this region is 

said metastable zone width. The metastable zone width is measured by 

determining the point at which first crystal nuclei are detectable. This can be 

achieved by several ways, such as optical methods, including turbidity 

measurements or ATR-FTIR (attenuated total reflectance Fourier transform 

infrared spectrodcopy), by calorimetry and image analysis. And information 

based on the metastable zone width is used for estimation for nucleation 

kinetics.  

 Unsaturated or stable zone is the undersaturated region where crystals 

dissolve [37]. 

2.2.3 Mechanisms of crystallization process 

2.2.3.1 Nucleation 

Nucleation is the formation of embryos/seeds in a supersaturated solution. 

Nucleation can be classified into primary nucleation and secondary nucleation. 

Primary nucleation does not involve crystals in the solution, whereas secondary 

nucleation includes the crystal of solute or crystals are intentionally added to the 

solution. Primary nucleation is further divided into homogeneous nucleation and 

heterogeneous nucleation [38]. 

Homogeneous nucleation occurs in the absence of foreign particles, and it can be 

proceeded away from interface like crystallizer wall or impeller as well as impurities.  

Heterogeneous nucleation occurs by inducing foreign particles; thus, in practice, 

primary heterogeneous nucleation is encountered in common [38]. 

Secondary nucleation can occur in presence of crystals of the materials being 

crystallized. And another possibility of the secondary nucleation causes mostly by 

collisions with crystallizer, impeller and mixer [33]. This nucleation is divided into 

three main categories in which apparent, true and contact nucleation. Apparent 

nucleation refers to a small fragments washed from the surface of seeds when they 

are introduced into crystallizer. True nucleation occurs simply due to the presence of 
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the solute particles in solution. Contact nucleation occurs when the growing crystals 

contact with wall, impeller, or other particles which can produce new nuclei [38]. 

2.2.3.2 Crystal growth  

Once stable nuclei are formed, nuclei begin to grow into visible size, this process is 

crystal growth [38].  

The mechanism of crystal growth from a solution requires the solute to be 

transported on to the crystal surface and then oriented into the crystal lattice. The rate 

of crystal growth is the mechanism which is expressed with following equation [33]: 

                                                           G=dL/dt                                                        (2.3) 

Where L is characteristic length. 

Crystal growth is a two-step mechanism: (i) diffusion in which mass transfer of 

solute molecules from solution to the crystal surface by diffusion and (ii) surface 

reaction in which incorporation of the material into the crystal lattice through surface 

adsorption [34]. 

The solute molecules reach the growing faces of the crystal by diffusion from the 

bulk of the liquid phase. When the solute molecules orient themselves into crystal 

lattice by reaction, there three different attachment exit such as kinks, ledges and 

terraces attachments on crystal surfaces. The attachment at kinks is the most 

favorable and followed by the attachment at ledges and the attachment at terraces 

[34]. 

2.2.4 Product characteristics length 

The main characteristics of a salt product is its crystal size, shape and purity. Only 

crystal size was considered in this work and brief descriptions is given in following 

section.  

The crystal size distribution is influenced on many aspects of crystal processing and 

properties, including appearance, solid-separation, purity, reactions, and other 

properties. The dominant properties of a product is usually defined by the average 

crystal size and the width distribution. For batch operation, defining a characteristic 

length for an operation is a bit tricky since with the batch time change, 

supersaturation variates [34]. In our calculation for each batch time, supersaturation 
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is measures and an arithmetic mean crystal size was defined. The details of this 

procedure will be elaborated in the next section.  

2.3 Eutectic Freeze Crystallization (EFC) 

2.3.1 Definition and separation principle 

Crystallization is a recovery process for a dissolved compound forming a crystalline 

phase. This process is closely associated with the thermodynamics of the system 

expressed by the phase diagram, which represent the stable state of the solid and 

liquid phases in the range of temperature, pressure and composition [41].  

Figure 2.8 shows the solubility for a binary phase diagram for a eutectic system. 

Each point of the solubility lines represents the temperature and the concentration 

where the solid is in equilibrium with the solution. Eutectic point is the intersection 

of the ice and salt equilibrium lines (point E). The composition of the feed solution 

can be at either side of the eutectic point. Eutectic freeze crystallization is the 

combination of cooling and freeze crystallization [42]. 

 

Figure 2.8 : General phase diagram for binary aqueous solutions [42]. 

Starting for example with a crystal free solution of composition A in a batch process, 

cooling first leads to the crystallization of the salt. Upon crossing the solubility line, 
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the solution becomes supersaturated. Within the metastable zone width no nucleation 

and growth of crystals into measurable sizes will occur within a pre-set time period 

and only beyond this region the crystallization of the salt noticeable sets in at e.g. 

point B. The temperature then increases because of the release of heat of 

crystallization, and the salt concentration in solution decreases. The operational 

conditions remain close to the solubility line until the metastable region for ice 

formation is crossed, and ice starts to form at point C. Ice and salt are then produced 

at supersaturated conditions D just below the eutectic point E, and if we let the 

system of ice, salt and solution equilibrate at the end of the solution composition will 

go to point E. For a continuous process the operating conditions within the 

crystallizer are those reflected by point D for a feed of composition and temperature 

given by point A. For a feed with a crystal free composition at the left side of the 

eutectic point first ice will be formed in a batch process, and then a mixture of ice 

and salt [42]. 

2.3.2 EFC process and its advantageous 

The basic representation of the continuous EFC process is described in Figure 2.9. 

The process is generally consisted of four unit operations: ice and salt crystallization; 

separation of the ice and salt, pure water delivery and salt crystals delivery. Ice and 

salt nucleate and grow in the crystallizer at eutectic point. Ice and salt are then 

separated due to their density difference in the solid/solid separator from which ice 

reaches to the wash column (or belt filter) and salt is sent to another belt filter. Pure 

water and solid salt are the products of EFC process. Eventually, mother liquor 

(recycled brine) is sent into the crystallizer [43]. 

 

Figure 2.9 : Schematic representation of EFC process [43]. 
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Eutectic Freeze Crystallization [10], [39], [40], [41], [42] is a strong future 

technology candidate for separation of the dissolved salts and process water from 

industrial or waste streams. EFC, offers a technologically and economically 

attractive alternative to conventional separation techniques by recovering pure salt 

and water product from process or waste streams, thus saving energy or turning 

waste into raw materials in an energetically favorable way. Besides, EFC is an 

entirely new type of unit operation which allows completely new, more efficient flow 

sheets to be designed. EFC operates around the eutectic temperature of aqueous 

solutions and can treat a wide variety of feed solutions without adding any further 

solvents or chemicals. EFC is complementary to reverse osmosis for concentrated 

streams and dissolved inorganic and organic mixtures. With a theoretical yield of 

100% and an energy cost saving of up to 90% compared to evaporative 

crystallization, EFC delivers two products simultaneously: pure salt and pure ice 

crystals. Separating those products is easily accomplished on account of their density 

differences [30]. 

 

 

 

 

 

 

 

 

 



17 

 

 

3. MATERIAL AND METHODS 

3.1 Materials 

Experiments were conducted for two different aqueous solutions; borax solution and 

boric acid solution. Although the opportunity of treating industrial borax and boric 

acid solutions are aimed, as a start synthetic solutions were prepared and EFC 

experiments were performed.     

 Borax decahydrate (Na2B4O7∙10H2O) (Merck, impurity content is given in 

Table 3.1) was used to prepare 2 wt% Na2B4O7 aqueous solution for 

determination of the eutectic point of borax-water system. Same starting 

borax solution composition was used for crystal growth experiments.  

Table 3.1: Maximum impurity limits [45]. 

Impurity % Composition 

Undissolved compound 0.003 

Ammonium (NH4) 0.001 

Carbonate (CO3) 0.05 

Chlorine (Cl) 0.0005 

Phosphate (PO4) 0.001 

Sulphate (SO4) 0.0025 

Arsenic (As) 0.0002 

Calcium (Ca) 0.005 

Heavy Metals (Pb) 0.002 

Magnesium (Mg) 0.002 

Iron (Fe) 0.0005 

 

 Boric acid, H3BO3, (Merck, impurity content is given in Table 3.2) was used 

to prepare 2.5 wt% H3BO3 aqueous solution for determination of the eutectic 

point of boric acid-water system.  
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Table 3.2: Maximum impurity limits [45]. 

Impurity % Composition 

Undissolved compound 0.003 

Ammonium (NH4) 0.001 

Carbonate (CO3) 0.05 

Chlorine (Cl) 0.0005 

Phosphate (PO4) 0.001 

Sulphate (SO4) 0.0025 

Arsenic (As) 0.0002 

Calcium (Ca) 0.005 

Heavy Metals (Pb) 0.002 

Magnesium (Mg) 0.002 

Iron (Fe) 0.0005 

 

 Ethylene glycol was used as an indirect coolant in experiments due to its low 

freezing point. Appendix Table.A1 illustrates the freezing points dependence 

on water-ethylene glycol concentrations [43]. In this thesis, 40% volumetric 

ethylene glycol solution was used having a freezing point of -23.3 ºC. 

 In all experiments de-ionized water with a conductivity of 0.067 µs/cm was 

used. 

3.2 Experiments 

3.2.1 1 liter crystallizer set-up 

A schematic diagram of the experimental setup is shown in Figure 3.1. The EFC 

experiments were performed in a 1 liter plastic beaker. The crystallizer was placed in 

a double walled glass vessel and was cooled indirectly with ethylene glycol solution 

between the crystallizer and the double walled vessel described in Figure 3.1. An 

ethylene glycol solution was cooled with a Julabo circulator FP40 cooling machine 

with a 2.3 kW heating capacity at a range of temperature -40 °C and 200 °C. The 

temperature was measured with two temperature sensors (T1 and T2) and recorded in 

a computer. The temperatures were sampled and recorded in a 10 seconds interval 

with an Agilent multimeter (model LXI 349772A) connected to Temo-Control 

thermistors (model NTC-8315) with an accuracy of ±0.01 °C and resistances at 0 °C 

as 32.7 kΩ [44]. The first sensor (T1) was immersed in the solution and second one 

(T2) was immersed in the coolant between the crystallizer and the double walled 
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vessel. In this experiment, Ika Rw 20 agitator -working with 220 V, 50Hz- was used 

to stir the solution in a range of 60-2000 rpm.  

3.2.2 Experimental procedure 

The crystallizer was filled with 1 liter of 2 wt% borax solution (or 2.5 wt% boric acid 

solution). The agitator was started at 200 rpm. Cooling machine was started with a 

temperature set point of -10 °C. Predictions from Seidell’s solubility data [45] 

indicated approximately 6-7 °C below the eutectic points of borax and boric-acid 

aqueous solutions. When crystallization of ice and salt had occurred and after 

crystals have appropriate time for growing (this time variates in each experiment), 

the stirrer was stopped. The salt crystals were settled at the bottom of the crystallizer 

and ice crystals were floated at the top due to their density differences. Salt and ice 

were separated by vacuum filtration over a glass filter. The ice crystal was washed 

twice with 50 ml pure water which was pre-cooled till 0 °C. The crystallization 

process was followed by analyzing ice and salt samples from crystallizer under the 

microscope and by measuring the solution concentration by titration. All experiments 

were followed by the same procedure.  
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(a) 

 

(b) 

Figure 3.1: (a) Schematic diagram (b) Experimental set-up photo 
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3.3 Methods 

3.3.1 Concentration measurement 

Solubility (or phase) diagram is a function of both temperature and concentration. 

Therefore for defining the state of the solution at a particular temperature on a phase 

diagram, concentration value has to be measured.  

One of the common ways to measure the concentration of the solution is titration 

method. In our experiments, the concentration of samples were measured with the 

automatic titrator (Schott Titronic Universal) as illustrated in Figure 3.2. In titration 

method, 10 mL solution sample was filtered and used to determine the concentration. 

Using 0.1 N NaOH, titration was conducted [48]. The details of titration method is 

elaborated in Appendix A. 

 

Figure 3.2 : Automatic titrator (Schott Titronic Universal).  

3.3.2 Supersaturation 

Supersaturations is the driving force of the system. For our system, we defined it by 

the temperature difference between the coolant and the bulk temperature within the 

beaker (∆Tsup.sat = Tbulk–Tcoolant). Due to fact that size, shape and solid state of product 

crystals depends on supersaturation profile, crystal size distribution is measured 

under the control of supersaturation.  

3.3.3 Measurement procedure of crystal size   

After crystallization, crystal sample was taken directly from the crystallizer to the 

lamella promptly for crystal size measurement. Solution sample was filtered and its 
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concentration was measured via titration. In each experiment, temperature of solution 

was recorded during sampling and crystal size measurement. The size of salt crystals 

was studied with the Olympus BX51 microscope (Figure 3.3). Photographs of salt 

crystals were taken by objective of optical microscope with 5X magnification and 

collected with Image-Pro Plus software in computer. By Image Pro Plus, all 

microscopic photos were visualized and using Image J software area of the crystals 

were measured [46]. The size parameter is usually estimated as the circle equivalent 

diameter estimated from measured area, diameter of a sphere of the same volume or 

from the mass of the crystal using shape factors and density [40]. In this work 

assuming the crystal shape to be a circle, the circle radius was calculated and by 

averaging all the radiuses per measurement, a representative crystal size was found. 

The details of this calculation is presented in results and discussion part. 

 

Figure 3.3 : Microscope instrumentation. 

 

 

Olympus BX51 
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3. RESULTS AND DISCUSSION 

In this section results of the experiments are presented. Two different aqueous 

solutions, i.e. borax-water (Na2B4O7-H2O) and boric acid-water (H3BO3-H2O) 

systems were employed. The outline of the experimental investigations are presented 

in Figure 4.1. 

Figure 4.1 : Experimental invesitigations outline. 

4.1 Investigations for Borax-water (Na2B4O7-H2O) System 

EFC→ EP determination: 2 wt% borax solution was employed for investigation of 

eutectic point. The temperature inside the crystallizer (T1) and the temperature 

between the crystallizer and the double walled vessel (T2) were recorded as a 

function of time as shown in Figure 4.2. Starting from room temperature, the borax 

solution temperature (blue line) decreased due to the decline in coolant temperature 

(orange line). As seen in the Figure 4.2, the salt nucleation was not obtained in the 

temperature profile, also not observed during the experiment. However, the ice 

nucleation moment was obtained in temperature profile. When ice nucleation 

occurred, the temperature increased due to the released heat of crystallization. Upon 
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cooling, it reached to the eutectic point, which was recorded as -0.74 °C. Hence, 

eutectic point is the lowest temperature that the ice, salt and solution can 

thermodynamically exist all together, the crystallizer temperature is kept constant 

until all the system solidifies. This is also confirmed in Figure 4.2. As eutectic point 

is reached, the system temperature is kept constant. At the eutectic point the 

temperature difference between the coolant and solution temperature (ΔT= ≈6 °C) is 

the driving force for the nucleation and growth of ice and salt crystals. 

 

Figure 4.2 : Temperature-Time diagram of borax. 

Borax-water solubility curve was plotted from Seidell’s solubility data [45] and 

presented in Figure 4.3. Blue and orange lines represent the borax equilibrium, and 

ice equilibrium lines respectively. The gray spot on the figure represents the starting 

solution’s composition (2 wt% borax) and temperature (at room temperature).  

11 experiments were conducted in total following the procedure presented in Section 

3.2.2. Determining the temperature via the temperature measurements and the 

concentration via the titration analysis, the eutectic point of Na2B4O7-H2O system 

(which is the intersect of ice-borax equilibrium lines) was detected to be 1.06% 

Na2B4O7 and -0.74 °C.  
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According to Seidell data [45], the salt which is crystallized under eutectic conditions 

is in borax decahydrate (Na2B4O7∙10H2O) form. We could not confirm this 

information due to the lack of cryo-single crystal XRD analysis facility at our 

laboratory.   

 

Figure 4.3 : Concentration-Temperature diagram for borax. 

Ice purity determination: To undestand the quality of ice product under eutectic 

conditions, we checked the purity of ice via vacuum filtration and washing 

experiments. We could also have checked the salt purities under EFC. However, 

since these experiments aimed to evaluate the applicability of EFC technology for 

the boron component systems, these first set of experiments were performed only by 

using pure borax and boric acid raw materials instead of industrial streams with high 

impurities. Thus the purity determination of salt crystals were not investigated both 

for borax and boric acid systems.     

After reaching eutectic point, the system was operated under batch eutectic 

conditions for about 1 hour at a temperature difference (between the coolant and 

solution) of ΔT=≈ 6 °C. Ice and salt crystals nucleated and grew in the crystallizer 

during this time. After 1 hour, stirrer was stopped, and ice and Na2B4O7∙10H2O salt 

crystals were separated due to their density differences as shown in Figure 4.4. This 

Salt 

(Na2B4O7∙10H2O) 

equilibrium line 
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is also confirmed by their densities from the literature; ice (0.92 g/cm3), 

Na2B4O7∙10H2O salt crystals (1.73 g/cm3) [45], [47]. Na2B4O7 solution (1.06 g/cm3) 

density at eutectic point which was measured during the context of this thesis with 

Density Meter DMA 35. Its accuracy of density was 0.001 g/cm3. It can be seen that 

salt crystals settle at the bottom of the crystallizer and ice crystals float at the top. 

The crystallization process was followed by vacuum filtration of ice. Sample from 

the ice cake on the filter and filtrated solution were collected and weighted. Then the 

ice crystals were washed with pre-cooled till 0 °C 50 ml de-ionized water. After each 

washing step, samples of the ice on the filter and the filtered solutions were collected 

and weighted. 2 washing steps were performed in total both for borax-water and 

boric acid-water systems. All the collected samples were titrated for composition 

determination. Salt amount was confirmed after each washing step via the mass 

balance analysis.   

 

Figure 4.4 : Na2B4O7∙10H2O salt-ice and Na2B4O7                                                                        

aqueous solution separation. 

In Figure 4.5, the result of vacuum filtration and washing process is given as a graph. 

It can be seen that the amount of Na2B4O7 in the un-washed solution from the 

crystallizer is at eutectic composition. Ice directly filtrated from the crystallizer (un-

washed) had a significant amount of Na2B4O7 composition. This can either originate 

from the mother liquor surrounding the ice crystals or the salt crystals captured in 

(due to crystal defect) or within the ice crystals (due to inefficient settling in the 

crystallizer). To improve the ice product quality and understand the origin of 
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Na2B4O7 composition, as we said washing steps were conducted. It can be seen in 

Figure 4.5 that, after each washing step the Na2B4O7 composition of ice and filtrate 

decreased. After 2nd washing step, the ice crystals (i.e. water) reached to 0.06% 

impurity. This decreasing trend in Na2B4O7 composition shows that, salt crystals 

were not captured within the ice crystals but rather surrounding mother liquor was 

the reason. 

 

Figure 4.5 : Na2B4O7% amounts in solution and ice,                                               

after filtration and washing steps. 

Crystals: As seen in Figure 4.6 the shape and size of Na2B4O7∙10H2O salt crystals 

were rectangular (or elongated prisms) and small approximately 20 µm. The shape of 

salt crystals matches well with the literature data [35]. Ice crystal seemed to be 

roughly circular shaped with a size range around 80-100 µm. During the 

experiments, it was observed that the salt crystal was incorporated in ice. 

 
 

(a) (b) 

Figure 4.6 : (a) Na2B4O7∙10H2O salt (b) ice crystal image. 

20 µm 20 µm 
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During the experiments due to small sizes of the salt crystals, the inefficient 

separation from ice was observed. This was the biggest obstacle in all performed 

experiments. The salt crystals captured in the ice as seen in Figure 4.7, caused 

several more difficulties such as salt remain in the suspense without settling. This 

creates a difficulty for solution collection from the crystallizer for concentration 

determination, as well. 

  

Figure 4.7 : The salt (Na2B4O7∙10H2O) captured in the ice photos. 

Therefore, kinetic information from the Na2B4O7∙10H2O salt growth rate was 

investigated further under different batch eutectic conditions for different 

supersaturations.  

Salt crystal growth: For unseeded-crystal size measurement experiments 

microscopic photos taken at different range of time and at different coolant set 

temperatures are shown in Table 4.1. 

After measuring each crystal area taken under microscope, using Image J program, a 

characteristic radius for each T (supersaturation) was calculated. For different batch 

times, characteristic radiuses were defined and their relations are presented in 

Figures 4.8-4.9-4.10.  

For doing these, the following assumptions were made.  

 The supersaturation (∆T) is defined as follows:  

∆T = (Teuttectic inside the crystallizer ) – (Tcoolant in between crystallizer and double walled vessel)  

 Crystal agglomeration and breakage are absent, 

 Crystals are born in the lowest particle class as secondary nucleation,  
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 Growth rate is size-independent, 

 Homogenous stirring in the crystallizer, 

 System is not operated continous but batch. Thus system is operating under 

unsteady state conditions; number of crystals are increasing over time. In our 

calculations, the error one can make in the growth rate calculations due to 

batch operation is neglected. 

Table 4.1 : Crystal size measurement and calculation results. 

TCM  

(°C)  

∆T 

(°C) 
Batch time 

(s) 

# counted 

crystals 

Aavg 

(m) 

r 

(m) 

GR 

(m/s) 

-7 

4.94 

600 350 542 16.05 

0.003 
-7 1800 400 1390 10.08 

-7 3600 340 579 19.48 

-7 18000 200 397 63.13 

-8.5 

5.26 

600 350 46.2 7.36 

0.0032 
-8.5 1800 400 466 12.14 

-8.5 3600 300 147 23.47 

-8.5 18000 300 407 64.86 

-10 

6.46 

600 300 52.9 8.43 

0.0033 
-10 1800 300 61.6 9.81 

-10 3600 300 131 20.81 

-10 18000 300 410 65.24 

TCM = Cooling machine set temperature 

∆T = Tcoolant in between crystallizer and double walled vessel -Teut 

Aavg: Average area 

r: Characteristic radius 

 

Using Figure 4.8-4.10, by linearizing the characteristic radius value versus time, a 

growth rate (m/s) was defined for each supersaturation. Growth rate was defined as 

the slope of the linearized experimental data. These values are shown both on the 

related Figures and in Table 4.1. The defined growth rates of borax decahydrate 

crystals were then presented as a function of supersaturations in Figure 4.11. In our 

defined supersaturation (T≈5-6 ºC) range, the growth rate of Na2B4O7∙10H2O 

crystals were found to be around 3x10-9 m/s. Compared to other hydrated inorganic 

salts, this value is a bit slow [35]. As seen in Figure 4.11, the relation between the 

supersaturation and growth rate is detected to be linear. This investigation is in 

parallel with the results of Suharso, where he detected a linear growth rate relation of 

borax crystals from bulk experiments above a critical relative supersaturation      

(1/(S-1)) of 0.3 [49]. T has to be noted that in Suharso’s work, the definition of 
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supersaturation is different from our work. He indicated that above the relative 

supersaturation of 0.3, birth and spread mechanism is dominating the crystal growth.  

For all supersaturations, after 5 hours of batch operation, Na2B4O7∙10H2O crystal 

size distribution was around 65 m. This identical average salt size might be due to 

the close supersaturation (T) values in 3 different experiments. The larger the 

crystals, the easier they settle in the crystallizer under EFC conditions. Thus, this 

larger crystal size distribution might improve its separation behaviour from ice. 
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Figure 4.8 : Time versus Characteristic Radius Graph for T=4.94 ºC. 

 

y = 0.0032x + 7.6839

R² = 0.9878

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ra
d

iu
s 

(
m

)

time (s)

T = 5.26 ºC

 

Figure 4.9 :  Time versus Characteristic Radius Graph for T=5.26 ºC. 
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Figure 4.10 :  Time versus Characteristic Radius Graph for T=6.46 ºC. 
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Figure 4.11 : Supersaturation (T)-Growth Rate Graph for Na2B4O7∙10H2O  

crystals. 

4.2 Investigations for Boric Acid-Water (H3BO3-H2O) System 

EFC→ EP determination: An aqueous solution of 2.5 wt% boric acid was 

employed for investigation of eutectic point. For boric acid-water system, same 

experimental design and procedure was used with the borax-water system. In the 

temperature profile presented in Figure 4.12, the temperature jump represents the ice 

nucleation moment. Similar to borax case, during all the performed experiments salt 

nucleation point was not observed in the temperature profile as a jump. This might be 

due to little amount of salt crystallization. So the heat of crystallization of the 

nucleated salts were not enough to effect the solution’s temperature. Salt crystals 

nucleated before ice crystals occurred. As soon as ice crystals nucleated, the system 

reached to eutectic point. Eutectic temperature of boric acid-water solution was 
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detected to be -0.75 °C. This eutectic temperature is close to literature value             

(-0.76 ºC) measured by Nasini and Ageno [45]. In general after reaching eutectic 

point, the crystallizer temperature keeps constant. This fact was also confirmed for 

boric acid-water system as seen in Figure 4.12.  

Both initial and eutectic concentrations of boric acid were measured with titration. In 

a typical experiment the eutectic concentration of the sample was detected to be     

2.5 wt% (25.14 g/L). This value is in good agreement with the literature value which 

is 2.46 wt. % (24.6 g/L) [45].  

According to Seidell data [45], the salt which is crystallized under eutectic conditions 

is in boric acid (H3BO3) form. 

 

Figure 4.12 : Temperature-Time diagram of boric acid. 

Boric acid-water solubility curve was plotted from Seidell’s solubility data [36] and 

presented in Figure 4.13. Blue line represents the boric acid equilibrium line, and 

orange line demonstrates the ice equilibrium line. We drew ice equilibrium line using 

pure water freezing point (Teq@0ºC) and one experimental data for 0.5% H3BO3 (Teq@-

0.28 ºC). The gray spot on the figure represents the starting solution (2.5 wt% boric 

acid) at room temperature. 
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Based on our first experiments detected eutectic point (yellow point) is shown in the 

figure. As seen, our detected point seems to be more accurate compared to the 

literature value and fulfills the diagram better.  

 

Figure 4.13 : Concentration-Temperature diagram for boric acid. 

Ice purity determination: Similar to borax case the quality of ice product under 

eutectic conditions was investigated using vacuum filtration and washing 

experiments. For the same reason discussed above, the salt purities were not studied.  

After reaching to the eutectic point, between the crystallizer and ethylene glycol 

solution temperature was kept constant almost at/around 4 ºC. This temperature 

difference was a driving force (ΔT) for ice and salt crystals nucleation and growth. 

Under eutectic conditions, ice and salt crystals grew for 20 minutes due to the driving 

force (ΔT= 4 ºC). Then the stirrer was stopped; consequently, ice and boric acid salt 

crystals were separated from each other by their density difference (Figure 4.14) 

similar to borax case. Ice crystals float, salt crystals settle. According to literature, 

ice, salt and the solution densities are 0.92 g/cm3, 1.44 g/cm3, and 1.005 g/cm3 

respectively [47], [32]. After separation, boric acid was detected in the ice and 

solution by washing and filtering procedures. 

Ice equilibrium line 

Point from this work 
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Figure 4.14 : Boric acid salt-ice and solution                                                                  

at the eutectic point. 

For a typical experiment, ice (un-washed and 2 times washed) and solution (un-

washed-filtered ice solution, and washing solution after each washing step) results 

are presented in Figure 4.15. The mother liquor contained 2.58 wt% boric acid; 

which is the eutectic composition. The filtered ice had a boric acid composition of 

2.22 wt%. This value shows that the ice crystals either contain or surrounded by the 

mother liquor, and/or salt crystals were captured in between the ice crystals. As for 

the borax case, the origin of this composition can only be understood by the washing 

procedure. Thus the filtered ice was washed twice using 0 ºC pre-cooled pure water. 

As seen in Figure 4.15, boric acid concentration of the ice crystals decreased after 

each washing step. This shows that same as for borax case, mother liquor was not 

captured within the ice crystals, but it covered the surface of the ice. Besides, the salt 

crystals possibly were not settled effectively but instead floated together with the ice 

due to their small size distribution as will be presented in the following lines.   

After 2 times washing, the boric acid composition of the ice crystals was decreased 

to 0.83 wt% which is good enough to be used as a process water. As seen in Figure 

4.15, solution in filtering process also has a decreasing profile. This is another 

indication proving the impurities not building within the ice but instead surrounding 

the ice crystals. If they were to be captured, then the expected profile would be 

constant after each washing step. 
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Compared to borax case, our washing steps were less efficient. The purity of ice 

crystals can further be enhanced by improving the washing procedure, increasing the 

washing steps or performing the washing steps in a cold room.  

 

Figure 4.15 : H3BO3% amounts in solution and ice,                                                

after filtration and washing steps. 

Crystals: Samples of the crystals were observed under the microscope using the 5X 

camera. In Figure 4.16 the results can be seen. Boric acid salt crystals were square 

like with an average size range around 5-10 µm. According to literature, they are 

mostly in needle shape [35]. In our experiments since they were very small, they 

probably did not have a proper habit. According to the Figure 4.16, they were smaller 

crystals.  In terms of the ice crystals, the shape was round and the size was around 

15-30 µm.  

  

(a) (b) 

Figure 4.16 :  (a) H3BO3 salt (b) ice crystal image. 

20 µm 
20 µm 
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Mass balance: Boric acid-water system was operated under eutectic conditions 

at/around 4 °C supersaturation for 20 min. Since there was no efficient separation of 

ice and salt within the crystallizer, the boric acid salt and ice production amounts 

could not be detected exactly at the end of the experiment. Thus the boric acid 

amount in the final filtrated solution (13.7 g) was calculated and this amount was 

subtracted from the initial boric acid amount (20 g) which was used for preparing the 

starting solution. 6.3 grams of boric acid salt was calculated to be crystallized under 

eutectic conditions. In doing that, we assumed all the boric acid ended up in the bulk-

ice, scaled-layer and the solution was in the crystalline form. Details of this 

calculation is given in Appendix B. (The locations of bulk-ice, scaled-layer and the 

solution can be found in Appendix Figure B.1). 
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4. CONCLUSIONS 

In this work, new EFC technology was successfully tested on 2 wt% borax and 2.5 

wt% boric acid aqueous solutions. The experiments were investigated in a 1 liter 

batch crystallizer.  

First set of experiments were conducted for determination of eutectic points for 

borax-water system (Na2B4O7-H2O). The eutectic point was found as 1.06 wt% 

Na2B4O7 and -0.74  ̊C. In literature, eutectic point of borax-water system is not 

documented before.  

Eutectic composition of boric acid-water (H3BO3-H2O) system was also investigated. 

Its eutectic point was detected to be 2.51 wt% (25.14 g/l) H3BO3 at -0.75 °C. This 

value is close to the Siedell data with -0.76 °C and 2.46 wt% (24.6 g/l).  

After reaching eutectic point, borax and boric acid systems were treated under 

eutectic conditions for 60 and 20 minutes, respectively.  

Borax decahydrate salt crystals (Na2B4O7∙10H2O), investigated under microscope, 

had rectangular shapes with an average crystal size of 20 µm. The ice crystals were 

round and had around 80-100 m size. Within the crystallizer not an efficient 

separation was observed due to the small size distribution of the salt crystals. Thus, 

salt crystals mostly ended up in the ice.  

Boric acid crystals (H3BO3), having square like shape, had 5-10 m average crystal 

sizes. This value was smaller compared to borax crystals due to the shorter batch 

time we applied. Ice, crystallized under eutectic boric acid crystallization, was in 

round shape and had around 15-30 µm size. Similar to borax case, the salt crystals 

were not settled in the crystallizer but rather held in the ice crystals due to their small 

sizes. 
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The floated and recovered ice (water), produced via eutectic freeze crystallization, 

has quite significance due to its ecomical and enviromental impacts. Thus its quality 

was further investigated, both for borax and boric acid systems, within the scope of 

this thesis. The crystallized ice under EFC conditions were filtrated via vacuum 

filtration and washed with pre-cooled distillated water in two steps. After second 

washing, ice purities were reached to 0.06% and 0.83% for borax and boric acid 

systems, respectively. These ice (water) qualities are good enough to be used for 

process water. During washing steps, the hold up of salt crystals within the ice was 

also confirmed for both systems.  

Under EFC operation, or improving the seperation efficiency of boron salts from ice 

crystals, investigations were employed for the crystal growth of borax decahydrate 

salts. Under eutectic batch operation conditions, for about 5 ºC of supersaturation 

(defined to be temperature difference between the cooolant and the crystallizer), the 

crystal growth of Na2B4O7∙10H2O were detected to be ≈ 3x10-9 m/s. This value is 

relatively small compared to most to the other inorganic salts. Experimental results 

gave a linear relation between the supersaturation and the growth rate which is in 

parallel with literature. As proposed by Suharso, probably birth and spread 

mechanism is dominating the borax crystal growth. For confirmation of this 

information, further investigation can be done. After 5 hours of batch operation, salt 

crystals reached around 65 m sizes, which is an improvement for its separation 

behaviour from the ice crystals. 

These first sets of batch EFC experiments for borax and boric acid systems show 

that, instead of dumping to the ponds, treating via eutectic freeze crystallization, 

valuable products such as water and borax decahydrate/boric acid salts can be 

recovered from the industrial waste streams.  

The quality of produced ice can further be developed by improving the filtration 

procedure. During this study salt crystals’ quality and purity was not investigated 

elaborately. This can further be investigated in a following study. 
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6. RECOMMENDATIONS 

These first set of experiments prove the basic principle of eutectic freeze 

crystallization technology for borax and boric acid waste streams and show its 

potential for treating boron containing streams. 

In further studies, borax and boric acid crystal size distribution enlargements can be 

investigated more elaborately for improving the separation performance and salt 

product qualities of eutectic freeze crystallization. Results can be improved by 

performing the experiment, separation, filtration and washing steps in a cold room. 

This will prevent the disadvantageous that might be caused due to environmental 

effects.   
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APPENDICES 
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Appendix A : Eutectic Freeze Crystallization Determination experiments’ 

measurements.  

Appendix A.1 : Water-Ethylene Glycol concentration and freezing point relations 

was used in experiment. 

Table A.1 : Water-Ethylene Glycol concentration and 

freezing point relations. 

Volumetric Mixture ratio Freezing Point 

100% Water 0 °C 

90% Water+10% Glycol -2.5 °C 

80% Water+20% Glycol -7.7 °C 

70% Water+30% Glycol 13.9 °C 

60% Water+40% Glycol 23.3 °C 

50% Water+50% Glycol 33.9 °C 

 

Appendix A.2 : Determination of Boric Acid Concentration in Solution by Titration. 

Borax or Boric acid contents of each collected ice and solution sample were done by 

titration. 10 mL of samples were taken before the crystallization and after reaching 

the eutectic point for determining the concentration of borax or boric acid. First of 

all, methyl red indicator was dropped into the solutions. 1:1 HCl was added until the 

colour was changed to pink. This stage caused a decrease in the solution’s pH. 

Solution contained CO2; consequently, it had to be removed since boric acid is a 

weak acid and it might affect the result of titration. Therefore, solution was boiled 

and then cooled. Until the colour change, 1 N NaOH was added and a yellow colour 

was observed by addition of 0.1 N NaOH. After this step, three spoons of mannitol 

and four drops of phenolphthalein indicator were added. Afterwards titration was 

done with 0.1 N NaOH. Titration was continued until the pink colour was seen. At 

the end of the titration, the amount of used NaOH was determined. Borax or Boric 

acid concentration of the sample was determined using the following formula.                   

                                                
                                                  

(App.1) 

Where
  

C = Borax or Boric Acid Concentration (g/L) 

N = Normality of NaOH ( N ) 

MA = Molecular weight of Borax or Boric Acid (g/mol) 

V1 = Volume of sample (mL)   

V2 = Used of NaOH (mL) 
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Appendix A-3 : Standardization of NaOH Solution.  

To prepare 0.1 M NaOH, four grams of NaOH was weighed and completed to 1 L 

with addition of distilled water and mixed to dissolve. Potassium hydrogen phthalate 

(C8H5KO4) was used for standardization to find the normality of 0.1 M NaOH. 

Approximately 1 gram of potassium hydrogen phthalate was dissolved in 100 mL of 

distilled water. Besides, 3 drops of phenolphthalein indicator were added to this 

solution. After this, titration was done with 0.1 N NaOH until colour change. Used 

NaOH amount was noted. With this standardization, NaOH normality was 

determined to be used for the calculation of boric acid concentration of the sample. 

Normality of NaOH solution was determined using the following formula. 

                                                       
                                          

(App.2) 

Where 

 

A = Normality of NaOH solution (N) 

B = Amount of C8H5KO4  (g) 

C = Consumed amount of NaOH (mL)  

Appendix A-4 : Concentration differences between actual and experiment 

measuremnts. 

Error (%) =   x 100     (App.3) 

Actual measurement: Prepared boric acid solution by weighting boric acid and water 

on a scale (error of scale ±0.4 gram by Precisa XB 3200C).  

The mean error is calculated as -4.7%. As presented in Table Appendix.A-2., errors 

change between the range of -8.99 and 1.77. Experimental measurements were 

greater than actual measurements; consequently, negative errors were obtained.  

Table A.2 : Concentration differences. 

Initial concentrations 

-actual measurement- (wt%)  

Titration measurements 

-experimental measurement- 

 (wt%) 
Difference* (%) 

2.49 2.49 0.44 

2.50 2.59 -3.76 

2.50 2.73 -8.99 

2.50 2.46 1.77 

2.50 2.69 -7.26 

2.50 2.68 -7.14 

2.50 2.66 -6.12 

2.50 2.62 -4.71 
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*Scale error is not taken in to account 

 

Figure A.1 : Differences between initial concentrations and titration measurements. 

Appendix B : Details of a Mass and Component Balance of Filtration for H3BO3 

In Step-I, 2.49 wt% boric acid solution was prepared and 65.61 gram of sample was 

collected by syringe for concentration determination of the initial solution.  

From Step-I to Step-II, cooling was applied to extract energy from to system to 

initiate nucleation and crystallization. When crystallization of both ice and salt 

occurred in Step-II, 63.01 gram of solution sample was collected for determining the 

eutectic concentration. 

During Step-III, the system was operated in the crystallizer under eutectic conditions 

for 20 minutes. Due to inefficient mixing, some ice and salt crystals grew on the 

beaker surface as a scaling layer. At the end of Step III, samples from bulk ice, 

solution and scaling layer were collected for further analysis.  

Density of boric acid-water system; 

dwater=0.997 g/cm3, 

dboric acid= 1.435 g/cm3 ; 

dmixture= (0.997 x 0.975) + (1.435 x 0.025) = 1.00795 g/cm3 = 1007.95 g
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Figure B.1 : Experimental steps before filtration. 
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Table B.1 : Mass and component balance. 

 

Mass Balance 

Before Filtration 

 Input mass (g) 735,58 

Sample amount (g) 63,01 

Filtrate amount (g) 533,93 

Ice amount on the filter (g) 85,36 

Ice and salt amounts around the crystallizer (g) 53,28 

After 1st washing 

Filtered ice amount before sampling (g) 85,36 

Sample amount (g) 12,3 

Washing water amount (g) 50 

Filtrate amount (g) 65,65 

Amount of ice after washing (g) 57,4 

After 2nd washing 

Filtered ice amount before sampling (g) 57,04 

Sample amount (g) 7,83 

Washing water amount (g) 50 

Filtrate amount (g) 55,04 

Amount of ice after washing (g) 44,53 
 

Before Filtration- Total Mass Balance 

Input mass = Sample amount+Filtrate+Ice amount on the filter+Ice 

and salt amounts around the crystallizer 

735,58 = 63,01+533,93+85,36+53,28  

Mass balance is correct. 

After 1st washing- Total Mass Balance 

Filtered ice amount before sampling = Sample amount+Washing 

water amount+Filtrate amount+Amount of ice after washing 

85,36+50 = 12,3+65,65+57,4 

Mass balance is correct. 

After 2nd washing-  Total Mass Balance 

Filtered ice amount before sampling = Sample amount+Washing 

water amount+Filtrate amount+Amount of ice after washing 

57,04+50 = 7,83+55,04+44,53 

Mass balance is correct. 
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Component Balance –for H3BO3 

Before Filtration 

Input concentration (wt%) 2,54 

Filtrate concentration (wt%) 2,58 

Ice composition on the filter (wt%) 2,22 

Ice and salt concentration around the 

crystallizer (g/l) 27,96 

After 1st washing 

Filtered ice concentration (wt%) 2,2 

Washing water concentration (wt%) 0 

Filtrate concentration (wt%) 0,98 

Concentration of ice after washing (wt%) 1,18 

After 2nd washing 

Filtered ice concentration (wt%) 1,18 

Washing water concentration (wt%) 0 

Filtrate concentration (wt%) 0,37 

Concentrationof ice after washing (wt%) 0,83 

 

Before Filtration 

Input mass x concentration = (Sample amount x concentration)+(Filtrate x 

concentration)+(Ice amount on the filter x concentration) 

+(Ice and salt amounts around the crystallizer x concentration) 

735,58 x (C1) = (63,01 x C1)+(533,93 x 25.89 x 100/1007,95)+(85,36 x 2,22) 

+(53,28 x 27,96 x 100/1007,95);  C1 = 2,54 

No H3BO3 loss 

After 1st washing 

(Filtered ice amount before sampling x concentration)-(Sample amount x concentration) 

+(Washing water amount x concentration) = (Filtrate amount x concentration)+(Amount of 

ice after washing x concentration) 

(85,36 x 0,022)-(12,3 x 0,022)+(50 x 0) ≠ (65,65 x 0,0098)+(57,4 x 0,0118) 

1,62 ≠ 1,32 

Amount of H3BO3 Loss : 1,62-1,32 = 0,3 g H3BO3 

After 2nd washing 

(Filtered ice amount before sampling x concentration)-(Sample amount x 

concentration)+(Washing water amount x concentration) =  

(Filtrate amount x concentration)+(Amount of ice after washing x concentration) 

(57,04 x 0,018)-(7,83 x 0,018)+(50 x 0)  ≠ (55,04 x 0,0037)+(44,53 x 0,0083) 

0,588 ≠ 0,244 

Amount of H3BO3 Loss : 0,588-0,224 = 0,344 g H3BO3 



53 

 

APPENDIX C: Crystal Size Determination experiments’ microscopic images for 

borax decahydrate 

 

Appendix C.1 : Typical crystal microscopic images visualized using Image Pro  Plus 

software at -7 °C temperature and at different set temperatures.  
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Appendix C.2 : Crystal microscopic images visualized using Image Pro software at                                                              

-10 °C temperature and at different set temperatures.  
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APPENDIX D: Crystal Size Determination experiments’ temperature profiles for 

borax decahydrate 
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