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THE COMPARISON OF EFFECTS OF TORREFACTION AND 
CARBONIZATION TREATMENTS ON BIOMASS 

SUMMARY 

The sources of fossil fuels have been gradually consumed; therefore, biomass which 
has a great potential has been used as a renewable energy source in the world.  The 
biomass sources can be classified as agricultural, forestry, municipal solid waste, 
energy crops and biological waste. The total primary use of biomass energy was 
around 10% of total primary energy in the world. The biomass is an important 
renewable energy source due to the largest energy source in the world, having great 
potential, low ash content and zero CO2 effect. In contrast, biomass has some 
drawbacks compared to fossil fuels such as low calorific value and density, high 
moisture and volatile matter contents, high oxygen to carbon ratio. Some pretreatments 
are carried out to biomass to produce higher quality fuels by minimizing these 
undesirable properties. Performed treatments are generally thermal such as 
torrefaction, pyrolysis and carbonization. As a consequence of these treatments, there 
is a decrease in the moisture and volatile matter contents of biomass, a considerable 
fall in oxygen to carbon ratio and an increase in the calorific value of biomass.  

Turkey depends on outside sources in spite of having a great unused biomass potential. 
In this study, sunflower seed shells and hazelnut shells in which grown our country 
were evaluated as a waste biomass source. The purpose of this study is improvement 
of their physical and chemical properties to produce higher quality solid fuels. From 
this point of view, each biomass sample was subjected to thermal decomposition in a 
horizontal tube furnace at 300 ºC and 600 ºC under nitrogen atmosphere to perform 
torrefaction and carbonization thermal treatments, respectively. The thermal 
decomposition of biomass was happened during these experiments due to the nitrogen 
atmosphere condition. After these treatments, produced biochars were compared with 
untreated biomass samples in different ways. The changes of biomass properties of 
interest were determined with regard to both of thermal treatments. In this study, the 
effects of torrefaction and carbonization treatments on physical and chemical 
characteristics of fuel were investigated with regard to proximate analysis (moisture, 
volatile matter, ash and fixed carbon content), ultimate analysis (C, H, N, S, O), higher 
heating value, macromolecular component analysis (holocellulose, lignin and 
extractive-free substance), functional group analysis via FTIR technique, electron 
microscope images via SEM technique, mineralogical structure via XRD technique. 
In addition, particle size analysis was carried out to determine physical structures of 
samples. The effect of thermal treatments on the burning mechanism of torrefied and 
carbonized samples as compared with original samples.  From this point of view, the 
kinetic study was done with regard to TGA and DTG profiles which obtained from dry 
air and pure oxygen burning conditions in the thermal analysis system.   
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TORREFAKSİYON VE KARBONİZASYON İŞLEMLERİNİN 
BİYOKÜTLEYE ETKİLERİNİN KARŞILAŞTIRILMASI 

ÖZET 

Dünyadaki enerji kaynakları yenilenebilir (güneş ışığı, hidrolik güç, jeotermal, dalga 
enerjisi ve biyokütle) ve yenilenemez (kömür, petrol, doğalgaz ve nükleer enerji) 
olmaz üzere ikiye ayrılır. Dünyadaki toplam enerji tüketiminin yaklaşık %80’inin 
2040 yılına kadar fosil yakıtlardan sağlanacağı tahmin edilmektedir. Bu nedenle 
dünyada fosil enerji kaynakları hızla tükenmektedir. Gelişmiş ülkeler, büyük bir 
potansiyele sahip olan biyokütleye yönelerek, alternatif yenilenebilir enerji kaynağı 
olarak kullanmaya başlamışlardır. Bundan dolayı biyokütle günümüzde giderek artan 
bir öneme sahiptir. 
Biyokütle kaynakları; tarımsal, ormansal ve kentsel atıklar, endüstriyel atıklar, enerji 
bitkileri ve biyolojik atıklar olmak üzere sınıflandırılabilir. Dünyada toplam kullanılan 
birincil enerjinin %10’u biyokütleden sağlanmaktadır. Biyokütle; her yerde kolayca 
bulunabilmesi, büyük bir potansiyele sahip olması, karbondioksit emisyonu açısından 
nötral bir yakıt olması, kömüre göre daha düşük kül, kükürt ve azot içeriğine sahip 
olması, atık biyokütlenin kullanılabilmesinden dolayı ucuz enerji kaynağı gibi 
özelliklerinden ötürü önemli bir yenilenebilir enerji kaynağı durumundadır. Ancak, 
biyokütlenin düşük ısıl değer, yüksek nem ve uçucu madde içerikleri, düşük 
yoğunluğu ve yüksek oksijen/karbon oranı nedeniyle kömür gibi fosil yakıtlara göre 
dezavantajları söz konusudur. Bu olumsuzlukları en aza indirmek amacıyla 
biyokütleye bir takım işlemler uygulanarak daha kaliteli yakıtların elde edilmesine 
çalışılmaktadır. Uygulanan yöntemler genellikle torrefaksiyon, piroliz veya 
karbonizasyon gibi termal yöntemlerdir. Bu yöntemlerin uygulanması sonucunda 
biyokütlenin nem ve uçucu madde içerikleri azalmakta, oksijen/karbon oranı önemli 
ölçüde düşmekte ve ısıl değeri yükselmektedir. Ayrıca biyokütlenin temel bileşenleri 
hemiselüloz, selüloz ve lignindir. Bu nedenle uygulanan termal işlemlerin çalışma 
sıcaklığı aralığı bu bileşenlerin bozunma sıcaklıkları göz önünde bulundurularak 
seçilmelidir. 
Torrefaksiyon, biyokütleden daha yüksek kaliteli yakıt üretilmesini sağlayan termal 
bir ön işlemdir. Temel amacı; biyokütledeki oksijeni uzaklaştırarak içeriğindeki 
karbon oranını arttırmaktır. Bu işlem 200-300 ºC sıcaklıkları arasında düşük ısıtma 
hızında ve inert gaz atmosferi altında uygulanmaktadır. Torrefaksiyon işlemi 
sonucunda ana kütlenin %70’i katı ürün olarak geriye kalırken %90’nından fazla 
başlangıçtaki enerjiyi içerir. Torrefaksiyon işlemi biyokütlenin bazı özelliklerini 
geliştirdiği için termal işlemler arasında giderek önemi artmaktadır. Geliştirilen 
özellikler arasında sabit karbon oranının artması, daha yüksek ısıl değere sahip ürün 
elde edilmesi, hidrofilik özelliğinin azalması, göreceli olarak daha homojen karakterli 
yakıt olması, oksijen ve uçucu bileşen içeriklerinin azalmasından dolayı yakma işlemi 
sırasında daha az emisyon üretmesi, daha kolay öğütülebilmesi (torrefaksiyon işlemi 
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sırasında lifli yapıların giderek bozunması) ve düşük nem içeriğinden dolayı 
biyobozunmaya uğramaması gibi özellikler yer almaktadır. 
Karbonizasyon ise katı yakıttan uçucu bileşenleri (CO, CO2), hafif hidrokarbonları ve 
hidrojeni reaksiyona girmeyen bir gaz atmosferi altında uzaklaştırarak içeriğindeki 
karbon oranını arttıran bir termal işlemdir. Elde edilen ürüne yarı kok denilir. Düşük 
ısıtma hızları, uzun bekletme süresi ve düşük son sıcaklık elde edilen yarı kok 
miktarını arttırmaktadır. Karbonizasyon sürecinde biyokütlenin ana yapısını oluşturan 
hemiselüloz, selüloz ve lignin yapısı sırasıyla bozunmaya uğrar. Üretilen yarı kok 
temel olarak ligninin bozunmasından meydana gelmektedir. Bu nedenle uygulanacak 
karbonizasyon işleminde ligninin bozunma özelliklerine dikkat edilmelidir. 
Türkiye’de yenilenebilir enerji kaynağı olarak rüzgar gücü, hidrolik güç ve biyokütle 
kullanılmaktadır. Ülkemiz enerjide dışa bağımlı olup, kullanılmayan çok büyük bir 
biyokütle potansiyeline sahiptir. Biyokütle atıkları arasında ormansal, endüstriyel ve 
tarımsal atıklar genel olarak kullanılmaktadır. Ülkemizde ayçekirdeği, pamuk, fındık, 
muz ve zeytin atığı tarımsal atıklar arasında çok büyük bir potansiyele sahiptir. Fındık 
yaygın olarak Doğu Karadeniz Bölgesi’nde üretilmektedir. Bunun dışında, 
ayçekirdeği tarımı daha çok Trakya-Marmara Bölgesi’nde yapılmaktadır. Bu nedenle, 
çalışmada ülkemizde yetiştirilen ayçekirdeği ve fındık kabuklarının atık biyokütle 
kaynağı olarak değerlendirilmesi planlanmıştır. Bu çalışmanın amacı söz konusu 
biyokütlelerin fiziksel ve kimyasal özelliklerinin geliştirilerek yüksek kaliteli katı 
yakıt üretmektir. Bu amaçla, her bir biyokütle örneğine yatay boru fırında, azot gazı 
atmosferi altında 300 ºC’de torrefaksiyon ve 600 ºC’de karbonizasyon işlemleri 
uygulandı. Bu deneyler azot atmosferi altında yapıldığı için biyokütlelerde termal 
bozunma meydana gelmektedir. Bu işlemler sonunda ele geçen yarı koklar (char 
yapıları) işlem görmemiş biyokütle ile çeşitli açılardan karşılaştırılmıştır. Uygulanan 
her iki termal işlemin biyokütle özelliklerinde meydana getireceği değişimler 
belirlenmiştir. 

Bu çalışmada, her bir ana numuneye ve yarı koka kısa analiz uygulanmıştır. Bunun 
sonucunda, nem, uçucu madde, kül ve sabit karbon içerikleri hesaplanarak uygulanan 
termal işlemlerle ilgili karşılaştırmalar yapılmıştır. Bu işlemler sonucunda elde edilen 
yarı kokların sabit karbon/uçucu bileşen oranı arttırılarak kömürün özelliklerine 
yaklaştığı görülmüştür. Ana biyokütle örneklerinin ve yarıkokların bozunma 
özelliklerini belirleyebilmek için termal işlemler uygulanmıştır. Termal analiz 
sisteminde her bir örnek kuru hava ve saf oksijen ortamlarında ayrı ayrı yakılmıştır. 
Elde edilen TGA, DTG, DTA ve DSC profillerine göre yanma özelliklerine karar 
verilmiştir. TGA profiline bakılarak her bir örneğin stokiyometrik bozunması ve 
reaksiyonun gerçekleştiği sıcaklık aralığı belirlenmiştir. DTG profilinden maksimum 
bozunma hızı ve buna bağlı olarak gerçekleştiği sıcaklık bulunmuştur. DTA 
grafiklerindeki pik alanlarından meydana gelen entalpi değişimlerine bakılmıştır. DSC 
profillerinden ise faz geçişlerine bağlı olarak ısı akışlarına bakılarak endotermik ya da 
ekzotermik karakter gösteren bölgeler belirlenmiştir. Bundan dolayı, ana biyokütle 
örnekleri ile yarı kokların kuru hava ve oksijen gazları altında yanma özelliklerine 
karar verilmiştir. 

Her bir işlem görmemiş ana numuneye ve üretilen yarı koka elementel analiz 
uygulanmıştır. Bu analiz sonuçlarına göre C, H, N, S ve O içerikleri belirlenmiştir. 
Böylece, orijinal numune ve yarı koklar yakıldıklarında çevreye verecekleri 
emisyonların içeriği belirlenebilmektedir. Bunun dışında, üst ısıl değer analizi 
yapılarak elde edilen sonuçlardan içerdikleri enerjinin ne kadar arttırıldığı 
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incelenmiştir. ASTM standartları göz önünde bulundurularak yapılan makromoleküler 
bileşen analizleriyle işlem görmemiş biyokütlelerin holoselüloz (toplam hemiselüloz 
ve selüloz içeriği), lignin ve ekstraktif madde oranları belirlenmiştir. Holoselüloz 
içerdiği zayıf eter bağları nedeniyle lignine göre daha reaktif bir karaktere sahiptir. 
Bunun sonucunda daha yüksek holoselüloz/lignin oranına sahip olan ayçekirdeğinin 
daha reaktif özellik gösterdiğine karar verilmiştir.  
Yapılan termal analiz işlemlerinden elde edilen TGA ve DTG grafikleri de bu sonucu 
desteklemektedir. Her bir ana numune, yarı kok ve makromoleküler bileşenine 
fonksiyonel grup analizi FTIR tekniği kullanılarak yapılmıştır. Böylece, yapılarındaki 
kimyasal bağlara karar verilmiştir. Bunun dışında, elektron mikroskop görüntüleri, 
SEM tekniği ile elde edilerek her bir numunenin fiziksel özelliklerinin nasıl olduğuna 
karar verilmiştir. Bu analiz sonucuna göre torrefaksiyon ve karbonizasyon işlemleri 
sonucunda elde edilen yarı koklarda daha fazla parlak bölgeler bulunmuştur. Bunun 
nedeni, termal işlemler sırasında uçucu bileşenlerin giderek azalarak inorganik bileşen 
içeren külün oranının artmasıdır. Ayrıca, mineralojik yapıları XRD tekniği ile 
belirlenmiştir. Literatür araştırmasına göre biyokütle temel olarak silisyum 
bileşenlerinden oluşmaktadır. Yapılan XRD analizine göre termal işlem görmemiş 
ayçekirdeği ve fındık kabuklarının silisyum içerdiği belirlenerek literatür verisi ile 
uygunluk gösterdiği belirlenmiştir. Ayrıca fındık kabuğu ana numunesi potasyum 
bileşenlerini içermektedir. Literatürde potasyum bileşenlerinin külün ergime 
sıcaklığını düşürerek termal işlemler sırasında cüruf oluşturma ve çeşitli kirlenmelere 
sebep olacağı bilgisi yer almaktadır. Bu nedenle, fındık kabuğu biyokütle kaynağı 
olarak kullanıldığı zaman uygulanacak termal işlemler bu özelliğine dikkat edilerek 
yapılmalıdır. Her bir numuneye partikül boyut analizleri uygulanarak özgül yüzey 
alanları ve ortalama çapları bulunarak fiziksel yapısına karar verilmiştir. 
Holoselülozun en yüksek özgül yüzey alanına ve en küçük ortalama çapa sahip olduğu 
görülmüştür. Ligninin ise bunun tersi bir fiziksel yapıya sahip olduğu belirlenmiştir. 
Böylece yapılan boyut analizleri holoselülozun lignine göre daha reaktif bir karaktere 
sahip olması bilgisini desteklemektedir.  

Biyokütlelerin ve elde edilen yarı kokların yanma kinetiği analizi TGA ve DTG 
profilleri kullanılarak yapılmıştır. Bu amaçla reaksiyon mertebe, difüzyon, faz sınır 
kontrolü tepkimesi ve çekirdeklenme olmak üzere dört farklı reaksiyon modeli 
uygulanmıştır. DTG profillerine göre ayçekirdeği kabuğu ve fındık kabuğu ana 
numuneleri ile torrefaksiyon sonucu elde edilen yarı koklarda iki farklı yanma bölgesi 
görülmüştür. Bunlardan birinci bölge, pirolitik bozunma ve ardından uçucu 
bileşenlerin homojen yanma reaksiyonunu göstermektedir. İkinci bölge ise, uçucu 
bileşenlerin yanmasından sonra geriye kalan gözenekli katının heterojen fazda 
yanmasını belirtmektedir. Bu nedenle, kinetik çalışma sırasında bu iki bölge ayrı ayrı 
göz önünde bulundurularak gerekli hesaplamalar yapılmıştır. Yapılan kinetik 
çalışmadan her bir ana biyokütle ve yarıkok örnekleri için kinetik değişkenler 
(aktivasyon enerjisi (Ea) ve frekans çarpanı (A)), Coats-Redfern integrasyon 
yöntemiyle hesaplanmıştır. Elde edilen grafikler sonucunda, birinci mertebe reaksiyon 
kinetiği, 3-D Ginstling-Brounshtein difüzyon modeli ve faz sınır kontrolü tepkimesi 
(etkileşim geometrisi küresel simetride) reaksiyon modellerinin en uygun olduğuna 
karar verilmiştir. En yüksek aktivasyon enerjisi 3-D Ginstling-Brounshtein difüzyon 
modeli kullanılarak hesaplanmıştır. Bunun nedeni oksijen gözenekli yapıya doğru 
transfer olurken difüzyon ve kütle transferi gibi sorunlarla karşılaşmasıdır. Literatürde 
birinci mertebe reaksiyon modelinin genel olarak biyokütlelerin yanma kinetiğine 
uygunluğu yer almaktadır. Bu çalışma aynı zamanda bu bilgiyi de desteklemektedir.  
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1. INTRODUCTION 

1.1 Energy Resources in the World 

According to World Energy Council, the energy resources are divided into renewable 

(hydro power, wind, solar power, geothermal, marine energies, bioenergy and wastes) 

and nonrenewable (coal, oil, natural gas, nuclear and peat) [1]. The world energy 

consumption will gradually increase by 56% between 2010 and 2040. That is to say; 

the total world energy consumption increases from 524 quadrillion Btu in 2010 to 820 

quadrillion Btu in 2040. The world energy use by various fuel types is shown in Figure 

1.1 [2]. 

 

Figure 1.1 : The world energy consumption between 1990 and 2040 [2]. 

Renewable energy and nuclear energy have been grown 2.5% per year, making them 

the fastest growing energy sources. On the other hand, fossil fuels will be supplied 

about 80% of world total energy consumption by 2040. The energy-related carbon 

dioxide emissions are predicted to increase considerably at 40 billion metric tons in 

2040; in other words, it has grown 46% by 2040 [2]. As a consequence, renewable 

energy sources such as biomass are preferred in order to mitigate CO2 emissions. 
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According to IEA, the total primary use of biomass energy was 52 EJ which was 

around 10% of total primary energy in the world in 2009 [3]. Approximately two thirds 

of energy of biomass was used in residential area such as heating and cooking in 

developing countries. Moreover, the remaining biomass was used in industrial 

applications such as heating, power production and transportation [3].  

In spite of the fact that biomass supply scenarios point out that potential of biomass 

would be between 200 and 500 EJ/yr, and forestry and agricultural residues and 

organic wastes would supply between 50 and 150 EJ/yr, the technical potential for 

biomass is forecasted as 1500 EJ/yr by 2050 [1]. The consumption of biomass is 

estimated to increase from 825 Mtoe in 1995 to 1071 Mtoe in 2020 [4]. 

Most of the developing countries tend to use biomass as a renewable energy source to 

produce power due to the having low carbon emission to the atmosphere. For instance; 

in Sweden, the carbon tax had been risen from 30 EUR/ton CO2 in the early 1990s to 

101 EUR/ton CO2 in 2007 resulted in a shift away from fossil fuels to biomass. 

Furthermore, before the 1990s, heat was mainly generated from coal or oil in Swedish 

cities. On the other hand, commercial heat was produced from biomass, renewable 

MSW (municipal solid waste), and solar thermal and heat pumps with 44%, 9% and 

2%, respectively in 2007 [4].  

1.2 Biomass 

Biomass is any plant- or animal- derived material that originates from carbohydrates 

formed from CO2, water and sunlight via photosynthesis reaction. As a result of this, 

in case of burning biomass does not contribute to total CO2 in the atmosphere; in other 

words, it plays an important role in decline of greenhouse gas emissions [5]. According 

to the United Nations Framework Convention on Climate Change (UNFCCC), 

biomass is defined as: 

“non-fossilized and biodegradable organic material originating from plants, animals 

and micro-organisms. This shall also include products, by-products, residues and 

waste from agriculture, forestry and related industries as well as the non-fossilized 

and biodegradable organic fractions of industrial and municipal wastes” [6]. 
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Photosynthesis is a process to synthesize carbohydrates and oxygen from carbon 

dioxide and water via chlorophyll cells in plants in the presence of sun light. The 

overall equation of photosynthesis could be written as Equation 1.1 [7].     

 

                      6CO2 + 6H2O                                                C6H12O6 + 6O2            (1.1)            

 

The value of 673 kcal is required for synthesis of 1 mole of glucose. On the other hand, 

the energy necessity is almost the same for per CH2O group such as any synthesis of 

hexose or disaccharide, polysaccharide derived from hexoses [7].  

The organic constituents in biomass are formed during the dark reactions of 

photosynthesis. The biochemical pathways of dark reactions mainly divided into the 

Calvin-Benson pathway, C4 cycle and Crassulacean Acid Metabolism (CAM), which 

play an important role for reduction of CO2 to sugars. That is to say; the molecular 

events in plant growth and differentiation between different plants species can be 

clarified [8].       

The Calvin or Calvin-Benson cycle contains three carbon intermediate 3-

phosphoglyceric acid. Plant biomass species which use this cycle called as C3 plants. 

The C3 plants show lower rates of photosynthesis at light saturation, low light 

saturation points, sensitivity to oxygen concentration, rapid photorespiration and high 

CO2 compensation points such as around 50 ppm. In case of environmental CO2 

concentration below this compensation point, the plant respires more CO2 to 

atmosphere compared to fixed CO2 via photosynthesis. The typical C3 plants are 

alfalfa, barley, cotton, Eucalyptus, peas, potato, rice, soybean, spinach, sugar beet, 

sunflower, tobacco, and wheat [8]. 

In the C4 cycle, the four carbon dicarboxylic acids, malic or aspartic acids are formed 

from CO2. The C4 plants exhibit higher rates of photosynthesis at high light saturation 

points, insensitivity to atmospheric oxygen concentrations less than 21 mol%, low 

levels of respiration, low CO2 compensation points and higher efficiency of water 

usage. The typical C4 plants are corn, sugarcane, sorghum, tropical grasses etc. [8]. 

The other pathway is the crassulacean acid metabolism (CAM) which synthesizes free 

malic acid from fixing CO2 via phosphoenolpyruvate carboxylase in dark reactions. 

The CAM plants can live in arid environments, and they have low photosynthesis rates 

673 kg.-cal of radiant energy 

Chlorophyll cells 



4 
 

and high efficiency of water usage. The less water losses during the initial CO2 fixation 

in dark reactions in CAM compared to C3 and C4 pathways. Furthermore, the optimum 

temperature is between 12 and 17 ºC for CO2 fixation in the dark. The stomates in 

CAM plants just open at night to minimize water loss; therefore, CO2 passes through 

the stomates at night. The sugars are formed from carboxylic acids in the presence of 

daylight. The CAM plant species are cactus and succulents such as pineapple [8]. 

The plant biomass growth depends on CO2 fixation. The type of plant affects the rate 

of photosynthesis. For instance, C3 and C4 plants respond photosynthesis in different 

ways which affect plant growth. The percentage of plant growth for various C3 and C4 

plant species at different CO2 concentrations for 28 days is shown in Table 1.1 [9]. 

Table 1.1 : The changes in various types of plant weight for two CO2 concentrations 
                  [9]. 
 

Species 

Biomass increase in % 

600 ppm 1200 ppm 

C3 plants   

Datura stramonium (1) (Jimson weed or thorn apple) 74 115 

Datura stramonium (2) 60 107 

Chenopodium album (lamb’s quarters) 76 140 

Polygonum pensylvanicum 48 100 

Abutilon theophrasti (Velvetleaf) 38 65 

Ambrosia artemisiifolia (Common ragweed) 68 112 

Acer saccharium 32 63 

Populus deltoides (Eastern cottonwood) 29 20 

Platanus occidentalis (American sycamore) 33 33 

Glycine max (Soybean) 47 100 

Helianthus annuus (Sunflower) 40 55 

C4 plants   

Setaria faberi (the Giant foxtail) 42 106 

Setaria lutescens (yellow foxtail) 70 45 

Amaranthus retroflexus (1) (redroot pigweed) 36 49 

Amaranthus retroflexus (2) 29 48 

Zea mays (corn or maize) 21 10 
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With respect to Table 1.1, it can be said that C3 plants grow considerably higher than 

C4 plants under great CO2 concentrations. For instance, the growth of Glycine max has 

increased more than double to 100%; whereas, the growth of Zea mays has declined 

significantly to 10 % at 1200 ppm CO2 concentration [9]. 

The common biomass sources are divided into agricultural, forestry, municipal, energy 

crops and biological which are shown in Table 1.2 [10]. 

Table 1.2 : The biomass sources [10]. 

Biomass Source Examples 

Agricultural Food grain, bagasse, corn stalks, straw, seed hulls, 

nutshells, manure from cattle, poultry and hogs 

Forestry Trees, wood waste, bark, sawdust (SW), timber slashi 

and mill scrap 

Municipal Sewage sludge, refuse-derived fuel (RDF), food waste, 

waste paper and yard clippings 

Energy Crops Poplars, willows, switchgrass, alfalfa, prairie bluestem, 

corn, soybean, canola and other plant oil 

Biological Animal waste, aquatic species and biological waste 

The properties of ideal energy crop are; 

 High yield 

 Low cost 

 Low energy input to produce  

 Composition with the least waste product 

 Low nutrient necessities [5]. 

There are four main products obtained from biomass which are electrical and heat 

energy, transport fuel and chemical feedstock [5].  

There are five approaches to generate energy from biomass which are; 

 Yielding crops such as starch, sugar, cellulose and oil 

 Burning solid waste 

 Producing biogas using anaerobic digesters 

 Producing methane from landfill 
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 Generating biofuel such as ethanol, methanol, biodiesel and their derivatives 

[11]. 

1.2.1 Biomass types 

The types of biomass are classified as woody plants, herbaceous plants/grasses, aquatic 

plants and manures [5].  

There are two main groups of biomass with respect to their sources that are shown in 

Table 1.3 [10].  

Table 1.3 : The biomass groups [10]. 

Biomass Groups Subclassification Examples 

Virgin Biomass  Terrestrial biomass Forest biomass 

  Grasses 

  Energy crops 

  Cultivated crops 

 Aquatic Biomass Algae 

  Water plant 

Waste Biomass Municipal waste MSW 

  Biosolids, sewage 

  Landfill gas 

 Agricultural solid waste Livestock and manures 

  Agricultural crop waste 

 Forestry residues Bark, leaves, floor residues 

 Industrial residues Demolition wood, sawdust 

  Waste oil/fat 

 

1.2.2 Biomass advantages and disadvantages 

There are diverse advantages of using biomass as energy source: 

 Biomass has large potential as renewable energy source. It is the fourth largest 

energy source which contributes around 14% of the world’s primary energy 

supply.  
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 In spite of the fact that its potential varies with respect to country, it is a widely 

abundant energy source through the world.   

 It can be used directly to provide different energy necessities such as heat, 

electricity and transport fuel. 

 Biomass is permanently renewable energy source. That is to say, it is capable 

of releasing its energy every time.  

 The conventional or new conversion technologies of solid fuels can be carried 

out to biomass in order to generate heat and power [12].   

 It has zero CO2 effect; in other words, it takes part in a decline of global 

warming.  

 It has low ash, sulfur and nitrogen contents and low amount of mineral matter, 

making it one of the most attractive energy sources through the world.  

 Waste of biomass is also used as energy source. That is to say, it is a cheap 

energy source [13]. 

Besides, there are several drawbacks of using biomass: 

 It has low density, low calorific value, high moisture content, and high oxygen 

to carbon ratio. 

 It is difficult to mill and crush because of its fibrous structure.  

 Excessive usage of biomass might cause deforestation. That is to say, it might 

contribute indirectly to global warming. 

 It causes emission of particles. 

 The transportation price of biomass is high since its density very low [13]. 

 High moisture content of biomass makes it likely to be decayed during storage. 

1.2.3 Biomass properties 

With regard to conversion process of biomass, the fundamental material properties of 

interest are; 

 Moisture content  

 Calorific value 

 Proportions of fixed carbon and volatiles 

 Ash content 

 Alkaline metal content  
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 Ratio of cellulose to lignin 

First five properties are significant parameter for dry biomass conversion process; 

while, the first and the last properties should be taken into consideration for wet 

biomass conversion processes [5].  

The properties of biomass and fossil fuels can be compared with respect to their O:C 

and H:C ratios, which are shown in Van Krevelen diagram in Figure 1.2. The lower 

ratios show the higher energy content of material. That is to say; energy content 

depends on the carbon proportion in substance [14].  

 

Figure 1.2 : Van Krevelen diagram for various solid fuels [14]. 

According to Van Krevelen diagram, the H:C and O:C ratios of raw biomass is in a 

ranges with 1.4-1.6 and 0.55-0.75, respectively. During thermal treatment technique 

such as torrefaction, the composition of biomass approaches to coal [15]. 

Biomass is composed of high amount of oxygen compared to fossil fuels; this is mainly 

due to the carbohydrate structure. Biomass generally contains 30-40 wt% of oxygen 

in dry matter basis. Moreover, the fundamental component of biomass is carbon which 

is between 30 wt% and 60 wt% of dry basis depending on ash content. The third 

principal constituent is hydrogen which is generally 5-6 wt% of biomass on dry basis. 

Furthermore, biomass is comprised of low amount of nitrogen, sulfur and chlorine 

which are around 1% of dry basis of matter [16].  

The calorific value of dry ash free basis biomass is around 20 GJ/t, which has lower 

than those for the fossil fuels. This is mainly due to the high content of oxygen. The 
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fundamental substances of biomass, various sorts of biomass and fossil fuels are shown 

with their heat of combustion values in Table 1.4 [17]. 

Table 1.4 : The heats of combustion of different substances [17]. 

Substance Heat of Combustion (MJ/kg) 

Biomass components  

Cellulose 18.8 

Starch 18.8 

Fats 38.9 

Protein 23.4 

Lignin 25.5 

Biomass types (on dry basis)  

Grass 18.5 

Wheat straw 17.6 

Peanuts, rapeseed 29.5 

Wood 17.6 

Meat 24.3 

Fossil fuels  

Oil 44.0 

Bituminous coal 33.5 

Anthracite 36.4 

The proportion of inorganic elements affects the formation of pollutant emissions. 

Besides, ash reactions occur in case of Si, K, Na, S, Cl, P, Ca, Mg and Fe content 

which resulted in fouling and slagging. In addition, nitrogen and potassium are 

essential macronutrients for plants’ growth [16].  

In the presence of high amount of alkali metals in biomass leads to ash slagging, 

fouling and agglomeration. This is because; alkali silicates are formed by the reaction 

of alkali metals with silica which causes melting or softening at low temperatures such 

as lower than 700 ºC with respect to the composition. Furthermore, the reaction of 

alkali metals with sulfur produces alkali sulfates on heat transfer surfaces of the 

combustor. The main source of alkali is potassium in biomass. As a consequence, the 

elemental composition of ash is taken into consideration in order to describe possible 

operational problems [18]. 
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According to Du et al., the melting temperature of ash gradually decreases with respect 

to following components in biomass;  

Al2O3 > MgO > CaO > P2O5 > Na2O > K2O. 

That is to say; Al2O3 rich ashes do not lead the agglomeration of ash. On the other 

hand, the melting point of ash decreases in the presence of sodium, potassium and 

phosphorous [19].   

1.2.4 Structure of biomass 

Biomass contains organic substances such as carbohydrates, fats and proteins, small 

amounts of minerals such as sodium, phosphorous, calcium and iron [10]. 

Triglycerides, alkaloids, pigments, resins, sterols, terpenes, terpenoids and waxes are 

also minor constituents in biomass [20]. Furthermore, structure of biomass is 

comprised of extractives, fiber or cell wall component and ash [10]. 

Extractives: They contain protein, oil, starch and sugar which present in vegetable or 

animal tissue [10]. They can be dissolved in hot and cold water, ethers or methanol 

[20]. 

Cell wall: It generally contains carbohydrates and lignin. Carbohydrates are mostly 

cellulose or hemicellulose fibers that provide structural strength to the plant; whereas, 

lignin colligate the fibers together. Furthermore, some of cell walls contain starch and 

fat depending on plant type origin [10].   

Ash: It is the inorganic constituents of the biomass [10]. 

Biomass is generally composed of hemicellulose, cellulose and lignin constituents.   

Cellulose 

Cellulose is the most abundant organic compound in nature [21]. The molecular weight 

of cellulose is around 32 MDa with respect to its glucose residue chain [22]. The 

elemental composition of cellulose is composed of 44-45% carbon (C), 6.0-6.5% 

hydrogen (H) and remaining oxygen (O) [23]. Consequently, the chemical formula of 

cellulose is (C6H10O5)n  [21]. The structure of cellulose is formed from β-1,4-glycosidic 

linkage that is shown in Figure 1.3 [24]. 
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Figure 1.3: The structure of cellulose [24]. 

Hydrogen linkages between chains provide chemical stability and insolubility to plant 

structure. Furthermore, cellulose can be either amorphous or crystalline form [24]. In 

the presence of partial acid hydrolysis, cellulose is broken into cellobiose, cellotriose 

and cellotetrose which are glucose dimer, trimer and tetramer, respectively. On the 

other hand, it can be broken down into glucose under complete acid hydrolysis 

conditions [20].  

Hemicellulose 

Hemicellulose is other constituent of cell wall. It is formed from arabinose and xylose 

(pentoses), glucose, galactose, and mannose (hexoses), rhamnose and fucose (6-

deoxyhexoses), and galacturonic, glucuronic, and 4-O-methylglucuronic acids (uronic 

acids) components [25]. The structure of hemicellulose is shown in Figure 1.4 [26]. 

 

Figure 1.4 : Hemicellulose structure [26]. 
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Hemicellulose has amorphous form in nature; therefore, it is more reactive than 

cellulose. Furthermore, extensive branching chain in hemicellulose structure leads it 

to more soluble in water [27]. The chemical formula of hemicellulose is (C5H8O4)n. 

Moreover, it produces more gases and less tar than cellulose. Hemicellulose can 

dissolve in the presence of weak alkaline solutions, and dilute acid or base can easily 

hydrolyze it [10]. 

Lignin 

Lignin is a three dimensional phenolic polymer, and also the most abundant 

biopolymer in nature subsequent to cellulose. It is one of the important constituents in 

plant cell wall. Lignin is synthesized in case of dehydrogenation of the 

hydroxycinnamyl alcohols, the monolignols p-coumaryl, coniferyl, and sinapyl 

alcohols. Lignin structure is composed of each of these monolignols which generate 

one subunit type such as p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) [28]. 

Each of these monolignols and monomers are shown in Figure 1.5 [29]. 

 

Figure 1.5 : The structure of monolignols and subunits of lignin [29]. 

The monomer composition of lignin depends on species, cell types of species and 

developmental stages of a cell [29]. For instance; hardwood lignin structure is mainly 

composed of G and S subunits with traces of H subunits; while, softwood lignin 
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generally contains G and low amounts of H subunits [30]. The structure of lignin is 

shown in Figure 1.6 [26].  

 

Figure 1.6 : The structure of lignin [26]. 

Lignin provides rigidity, compressive strength and hydrophobic properties to cell wall 

structure [29]. The lignin proportion is 20-25% of the biomass weight [13]. 

1.2.5 Biomass potential in Turkey 

The total electricity generation is 239.497 GWh in Turkey in 2012, and its 3.1% was 

supplied from renewable energy and waste sources including geothermal, wind, solid 

biomass, biogas and waste. Furthermore, the hydropower shares 24.3% of total 

electricity generation in 2012 [31]. 

The total installed capacity reached to 64,268 MW in 2014 in Turkey [32]. It is 

estimated that at least 40,000 MW of new capacity will be required until 2020 [33]. 

Turkey tends to generate electricity from fossil fuels, and its primary energy is supplied 

from oil, lignite coal, natural gas, geothermal and hydroelectric resources [34]. 
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Turkey’s total primary energy production and consumption was 32.2 and 114.48 Mtoe, 

respectively [35].  

Renewable energy is mainly hydropower, wind and biomass in Turkey. The biomass 

use has declined particularly in residential heating because of environmental and 

scarcity of supply concerns. The primary energy supply from renewable sources and 

estimations in Turkey are shown in Table 1.5 [34].   

Table 1.5: The renewable energy supply in Turkey [34]. 

Renewable sources 

(ktoe) 

2000 2005 2010 2015 2020 

Hydropower  2656 4067 4903 7060 9219 

Geothermal, solar and 
wind  

978 1683 2896 4242 6397 

Biomass and waste  6457 5325 4416 4001 3925 

Renewable energy 
production 

10,091 11,074 12,215 15,303 19,741 

The essential source of biomass energy in Turkey is composed of agricultural residues 

such as grain dust, wheat straw and hazelnut shells, and municipal solid waste.  

Moreover, fuel wood has an important part among biomass energy resources in rural 

areas. The total forest potential is approximately 940 million m3 with around 25 million 

m3/year growth in Turkey [34]. The total biomass energy potential is approximately 

32 Mtoe; whereas, the amount of usable biomass potential is around 17 Mtoe in Turkey 

[36].  

In accordance with Renewable Energy Sources legislation No. 5346 in Turkey, the 

electricity generated from biomass energy sources fetches a price for 14 Euro 

cent/kWh. The agricultural residues of sunflower, cotton, hazelnut, banana and olive 

milling residue can be used as potential fuel sources in Turkey that are shown in Table 

1.6 [37, 38]. 
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Table 1.6 : The potential agricultural plantation and residues in Turkey [37, 38] 

 Plantation (decare) Agricultural waste (ton/year) 
Sunflower 4,854,425 1,400,000 
Cotton 6,300,000 1,102,500 
Hazelnut 3,900,000 390,000 
Banana 30,000 108,000 
Olive milling residue - 215,000 

According to EPDK, the total installed capacity of biomass, biogas and landfill gas 

plants which have license in Turkey are 16.43 MWm, 22.34 MWm and 120.02 MWm, 

respectively [39].  By 2012, the total installed capacity of power plants based on biogas 

and biomass are 93 MW and 12.8 MW, respectively in Turkey [40].   

1.3 Physical Processes 

1.3.1 Pelletizing and briquetting 

Biomass cannot be treated, transported and stored easily because of its high moisture 

content, low density, high dust level and unspecified form and size. In order to 

overcome this problem, biomass is densified in a pellet or briquette form [41, 42]. The 

main difference between pellet and briquette is in size. That is to say; the diameter of 

pellet is 5-12 mm; while, briquette’s diameter is above 50 mm depending on its 

application area [42]. 

In case of pelletization, its density soars from 40-150 kg/m3 for grass type biomass, 

and 320–720 kg/m3 for most types of dried hard and softwoods to 1000-1400 kg/m3 

with enhanced fuel quality and energy density. Furthermore, bulk densities are 

approximately 700 kg/m3 for typical biomass pellets, and 5.0 MWh energy can be 

generated from 1 ton of pellets which is same as 0.5 m3 oil. As a consequence, the 

price of transportation, handling and storage of biomass could be decreased [43, 44]. 

The compression force and temperature, particle size and chemical composition of 

biomass affect the mechanical durability of pellets. In case of pelletization, biomass 

has high tensile strength and low moisture content. On the other hand, biomass pellet 

could not tackle the ash related challenges of biomass feedstock. Therefore, 

pretreatment is required in order to improve its combustion characteristics. Take 

hydrothermal carbonization (HTC) technique as an example. In this technique, natural 

coalification is simulated; in other words, biomass feedstock is decomposed and 
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carbonized in the presence of water at desired temperature and autogenous pressure 

conditions [45]. 

Torrefaction is a thermal pretreatment technique to decrease moisture content along 

with the unstable constituents in biomass feedstock in a temperature range of 200-300 

ºC with heating rate <50 ºC/min pellets in the absence of oxygen [46, 47]. The trace 

amount of moisture in pellet reduces the mechanical degradation, and prevents fungal 

and bacterial growth. As a consequence, torrefied pellets are stronger and more 

hydrophobic than untreated pellets [46]. According to Pirraglia et al., the energy bulk 

density of torrefied pellets could be twice as much as wood pellets. Furthermore, there 

are three potential application areas for torrefied pellets which are entrained flow 

gasification, small scale combustion using pellets and co-firing in pulverized coal fired 

power stations [48]. 

1.3.2 Dewatering and drying 

The raw biomass often contains moisture in the range of 60-70 wt%, which obstructs 

direct combustion, pyrolysis and gasification. The high moisture content leads to the 

enhancement of energy consumption for dewatering and promoting endothermic water 

gas shift reaction in gasification or pyrolysis processes. Furthermore, the moisture 

content in biomass reduces the combustion efficiency and lowers the heating value 

(LHV) of fuel. As a consequence, dewatering or drying is preferred as the first step in 

a biomass combustion [49].  

Dewatering processes are applied to decrease the moisture content in biomass. The 

moisture content could be reduced to around 80 wt% on wet basis, which is not 

sufficient to obtain low moisture content [50]. The equipment of dewatering process 

is filters, centrifuges, hydrocyclones, extrusion and expression presses, and water 

extractors etc. [8]. 

Drying process is employed to reduce high moisture content in biomass. It could 

decrease moisture content down to 15 wt% wet basis [51]. In case of gasification and 

pyrolysis processes, moisture content of biomass should be lower than 15 wt% and 10 

wt%, respectively [52]. There are various types of dryers which are direct and indirect 

fired rotary dryers, conveyor dryers, cascade dryers, flash or pneumatic dryers, 

superheated steam dryers and microwave dryers. The suitable dryer is chosen with 

regard to size and characteristics of feedstock, capital cost, maintenance requirements, 
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environmental emissions, energy efficiency, and waste heat sources available and 

potential fire hazard [53].    

According to Arlabosse et al., the thermally assisted mechanical dewatering (TAMD) 

process is a quite innovative dewatering process for mechanical fractionation of 

herbaceous biomass such as alfalfa. With regard to this study, the dry solid content of 

nature wet biomass such as spinach leaves and alfalfa stems and leaves was increased 

from 2 to 5% at 300 kPa. Moreover, the TAMD process is more effective process to 

remove water from alfalfa under mild conditions compared to conventional dewatering 

process with 69% and 55%, respectively [54]. 

1.4 Thermal Pretreatment Processes 

1.4.1 Torrefaction 

Torrefaction is a thermal pretreatment technique which produces a higher quality of 

biofuel from ligno-cellulosic biomass. The fundamental principle of torrefaction is that 

oxygen is removed in order to produce lower O/C ratio in a final product. That is to 

say; the calorific value of final product is higher than original biomass. Furthermore, 

torrefaction destroys the fibrous structure and tenacity, and increases hydrophobic 

properties of biomass [55].  

The process is carried out in a temperature range of 200-300 ºC in case of inert 

atmosphere and low heating rates. The high amount of CO (~20%) and CO2 (~80%) 

and low amount of volatile organic matters are removed during torrefaction [56]. After 

torrefaction process, about 70% of the mass is remained as a solid product, which 

contains over 90% of its initial energy content [57]. Some biomass properties and 

improvements through torrefaction process are shown in Table 1.7 [58]. 
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Table 1.7 : The biomass characteristics and improvements through torrefaction [58]. 

Biomass Properties Improvements through torrefaction 

Low calorific value because of low fixed 

carbon and high moisture content 

Enhanced fixed carbon content 

Lower energy density compared to fossil 

fuels (the energy density of wood chips 

and coal is around 2-4 GJ/m3, 25-40 

GJ/m3, respectively) 

Higher energy density (about 18-20 

GJ/m3) 

Hydrophilic and hygroscopic Higher hydrophobicity (the equilibrium 

moisture content of torrefied biomass is 

in a range of 1-3%) 

Heterogeneous characteristics 

(broad spectrum of shapes, sizes 

and types) and quality 

Produced a solid uniform product 

removing volatiles and moisture 

The particle size distributions, 

sphericity, and particle surface areas 

simulate to coal after grinding 

Low combustion efficiency and high 

smoke during combustion 

Reduced oxygen content and produced 

less smoke with higher combustion rate 

Difficult to pulverize due to the tough 

and fibrous structure 

Developed grinding ability 

Biodegradable Stable due to low moisture content 

The partial decomposition of cellulose, hemicellulose and lignin is stimulated through 

torrefaction process which leads to decline of fibers length and mechanical stability. 

That is to say, the grindability characteristics of biomass are improved [59]. 

Consequently, it provides more efficient co-firing property to coal-fired power stations 

or entrained-flow gasification applications in order to produce chemicals and 

transportation fuels [60]. 

The thermal decomposition temperatures of hemicellulose, cellulose and lignin are in 

the ranges of 150-300 ºC, 275-350 ºC and 250-500 ºC, respectively [61]. Furthermore, 

low calorific value gases such as CO2, CO, CH4 and H2O and several types of organic 

acids such as formic, acetic and lactic acid are released during decomposition [62]. 

CO2 is formed from up to 30% carbon depending on sort of biomass and torrefaction 

conditions such as temperature and treatment time during torrefaction [59]. 
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The water absorbing capacity of fuel decreases considerably during torrefaction due 

to the replacement of OH-groups by unsaturated non-polar groups. As a consequence, 

degradation, self-heating and moisture uptake properties are reduced depending on 

torrefaction conditions [63].    

In case of combination with densification such as pelletization or briquetting 

processes, the energy density of biomass is soared to 20-25 GJ/ton. In addition, 

homogeneous structure is produced preventing design problems, and providing better 

operational conditions [60] 

The properties of various types of biomass fuel and their comparison with coal are 

given in Table 1.8. Torrefaction increases obviously calorific value of biomass due to 

the removal of moisture and organic compounds from original biomass [63]. 

Table 1.8 : The properties of various kinds of solid fuels [63]. 

 Wood Wood 
pellets 

Torrefaction 
pellets 

Charcoal Coal 

Moisture content 
(% wt) 

30-45 7-10 1-5 1-5 10-15 

Lower heating 
value (MJ/kg) 

9-12 15-18 20-24 30-32 23-28 

Volatile matter 
(% db) 

70-75 70-75 55-65 10-12 25-30 

Fixed carbon 
(% db) 

20-25 20-25 28-35 85-87 50-55 

Density (kg/I) 
Bulk 

0.2-0.25 0.55-0.75 0.75-0.85 ~0.20 0.8-0.85 

Energy density 
(GJ/m3) (bulk) 

2.0-3.0 7.5-10.4 15.0-18.7 6-6.4 18.4-23.8 

Dust Average Limited  Limited  High Limited 
Hydroscopic 
properties 

Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic 

Biological 
degradation 

Yes Yes No No No 

Grindability Poor Poor Good Good Good 
Handling Special Special Good Good Good 
Quality variability High Limited Limited Limited Limited 

The torrefied fuel contains less ash compared to coal in a range of 0.7-5% db and       

10-20% db, respectively. On the other hand, it has higher reactive characteristics than 

coal because of higher amounts of volatile matter [63]. 

There are three types of torrefaction processes which are dry torrefaction, ionic-liquid 

assisted torrefaction and wet torrefaction. The dry torrefaction is carried out in a 

temperature range of 200-300 ºC with slow heating rate in an inert atmosphere 

condition. During dry torrefaction, hemicellulose, cellulose and lignin are decomposed 
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at different rates. That is to say, cellulose decomposition is the rate limiting step; while, 

hemicellulose undergoes the highest amount of degradation. After 300 ºC, biomass 

energy density can be decreased because of heavy tars formation. Although, ionic-

liquid assisted torrefaction provides increasing decomposition rate of cellulose below 

300 ºC, energy yield is lower compared to the dry torrefaction. Furthermore, wet 

torrefaction is carried out in case of pressurized liquid water up to 5 MPa and 260 ºC 

conditions. Although, its energy yield is higher than dry torrefaction, the operational 

cost is also higher due to the high pressure conditions [64].     

1.4.2 Pyrolysis 

The pyrolysis is a thermal degradation process to produce carbon based materials from 

biomass in the absence of oxygen condition. Pyrolysis reactions and products are 

shown in Figure 1.7. First of all, gas and solid char are formed during primary 

decomposition reactions. Secondly, the condensable gases may collapsed to the non-

condensable gases such as CO, CO2, H2 and CH4, liquid and char [10]. 

 

Figure 1.7 : Pyrolysis in a biomass particle [10]. 

The generic reaction of pyrolysis is indicated in Equation 1.2. It can be said that liquid, 

gas, char and H2O are produced during reaction [10]. 

CnHmOp (Biomass)                 Σliquid CcHyOz + Σgas CaHbOc + H2O + C (char)       (1.2) 

The pyrolysis products can be divided into solid form known as char (~18 MJ/kg), 

liquid form known as bio-oil (~22 GJ/m3 or 17 MJ/kg) and gas form known as syngas 

(~6 MJ/kg) depending on the pyrolysis conditions [65]. The syngas is composed of H2, 

Heat 
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CO, CH4, CO2, H2O and various low molecular weight volatile organic compounds. 

The heat energy can be generated from burning of syngas in order to use in several 

application areas such as drying and electricity generation. Furthermore, the bio-oil is 

produced from cellulosic feedstock by fast pyrolysis, which contains ~20% w/w 

emulsion of water and numerous oxygenated organic compounds such as organic 

acids, aldehydes, alcohols, phenols, carbohydrates and lignin-derived oligomers. The 

bio-oil is not only used in industrial boilers, but also upgraded into synthetic 

transportation fuels. Moreover, high amount of heat is generated from burning of 

biochar. The activated carbon can be produced from biochar, and used as adsorbent to 

remove pollutants from air and waste water streams [65].   

The pyrolysis is typically classified as slow, fast and flash pyrolysis. In slow pyrolysis 

(carbonization), high amount of charcoal is produced; while, liquid biofuels and other 

chemical materials are produced by fast pyrolysis. The slow pyrolysis is performed at 

low temperatures and long residence time [43]. The various types of pyrolysis and 

their process conditions are show in Table 1.9 [66]. 

Table 1.9 : Different types of pyrolysis and conditions [66]. 

 Residence 
time 

Heating 
rate 

Maximum 
temperature (°C) 

Main 
product 

Carbonization Hours-days Very low 400 Charcoal 
Conventional 5-30 min Low 600 Bio-oil, 

charcoal  
and gas 

Fast 0.5-5s Fairly 
high 

650 Bio-oil 

Flash     
     Liquid <1s High <650 Bio-oil 
     Gas <1s High <650 Chemicals  

and fuel gas  
Ultra <0.5s Very high 1000 Chemicals and 

fuel gas 
Vacuum 2-30s Medium 400 Bio-oil  
Hydropyrolysis <10s High <500 Bio-oil and 

chemicals  
Methanopyrolysis <10s High >700 Chemicals  

Fast pyrolysis is carried out in a temperature range of 500-700 ºC with high heating 

rate such as 300 ºC/min for a short residence time. Moreover, flash pyrolysis happens 

with high heating rate, and its reaction time is more or less a second leaded particle 

size of biomass to quite small between 105 µm and 250 µm [43]. 
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1.4.3 Gasification 

Gasification is a thermo-chemical process which produces combustible gas mixtures, 

called as syngas, from carbonaceous materials such as biomass. The syngas containing 

high amount of hydrogen is produced during gasification; therefore, it can be used for 

large scale hydrogen manufacture [67]  

The main chemical reactions of gasification can be classified as combustion reactions, 

the Boudouard reaction, water gas reaction, methanation reaction, methane reforming, 

tar reforming and hydrocarbon reforming reactions which are shown in Eq. 1.3-1.13 

[68, 69]; 

 Combustion reactions; 

                     C + ½ O2 = CO                 ΔH= -110.6 kJ/mol                       (1.3) 

                     CO + ½ O2 = CO2             ΔH= -283 kJ/mol                          (1.4) 

                     H2 + ½ O2 = H2O              ΔH= -241.9 kJ/mol                       (1.5) 

 The Boudouard reaction;  

                                 C + CO2 ↔ 2CO               ΔH= +172.5 kJ/mol                      (1.6) 

 The water gas reaction: 

  Primary reaction : C + H2O ↔ CO + H2              ΔH= 131.3 kJ/mol       (1.7) 

  Secondary reaction: C + 2H2O ↔ CO2 + 2H2      ΔH= 90.2 kJ/mol         (1.8) 

 Water gas shift reaction:  

                    CO + H2O ↔ CO2 + H2               ΔH= -41.2 kJ/mol               (1.9) 

 The methanation reaction 

                    C + 2H2 ↔ CH4                              ΔH= -74.9 kJ/mol                            (1.10) 

 Methane reforming: 

                    CH4 + H2O ↔ CO + 3H2                ΔH= 206.2 kJ/mol            (1.11) 

 Tars reforming: 

                   Tars + H2O → H2 + CO2 + CO + hydrocarbons                    (1.12) 

 Hydrocarbon reforming reaction: 

                   Hydrocarbons + H2O → H2 + CO2 + CO                                            (1.13) 

With respect to the combustion reactions, it can be said that gasification not only 

provides easier handling compared to a solid fuel, but also produces heat which 
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contains generally in range of 75-88% heat of original fuel, making it the commercial 

process [68].  

Air, pure oxygen, steam, CO2 or their mixtures can be used as gasifying agent in 

gasification which is a significant factor for syngas composition as showed in Table 

1.10 [70].  

Table 1.10 : The syngas composition under different gasifying agents [70]. 

 
Oxidant 

Composition (vol. %) 
H2 CO CO2 CH4 N2 LHV 

(MJ/Nm3) 
Air 9-10 12-15 14-17 2-4 56-59 3-6 
Oxygen 30-34 30-37 25-29 4-6 - 10-15 
Steam/CO2 24-50 30-45 10-19 5-12 - 12-20 

It is obvious from Table 1.10 that air is the most common agent because of zero cost 

and the highest availability. On the other hand, it also involves high amount of N2 

which increases equipment sizes and reduces the calorific value of syngas. 

Furthermore, not only the calorific value but also H2 composition in syngas is 

increased under pure oxygen and steam oxidant agents [70].  

The sorts of gasifiers are divided into moving-bed, fluid-bed and entrained-flow 

gasifiers. The principle of moving-bed (or fixed-bed) gasifiers is that the counter 

current blast is carried out to the carbonaceous materials such as coal. The downward 

flowing coal is preheated and pyrolyzed by hot syngas produced from gasification 

zone. Furthermore, the oxygen consumption is very low during gasification, but 

syngas contains pyrolysis products. The fluid-bed gasifiers provide a good mixing 

between feed and oxidant that improves heat and mass transfers. On the other hand, 

components are distributed in the bed which leaded to removal of partially reacted fuel 

with ash. Moreover, the operation temperature should be below the softening point of 

the ash due to the prevention of distribution of ash slagging in fluidization of bed.  In 

addition, too fine particles are generally in the syngas that can be addressed using a 

cyclone to return back to the bed. Furthermore, the feed and blast are carried out in a 

co-current flow in entrained-flow gasification. The process is operated at high 

temperatures with short residence times in order to provide a good conversion. The 

size of feed should be under 100 µm to enhance mass transfer in the gas. The main 

drawback of entrained-flow gasification is that a high amount of oxygen is required 
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due to the high operation temperature that causes high cost. Nevertheless, there are no 

specific technical limitations for feedstocks such as coal [68]. 

According to Nzihou et al., biomass gasification is generally performed at temperature 

between 800 and 900 ºC with steam to carbon ratios of 0.8-1.5:1. The fluidized bed is 

the most suitable gasifier for large scale operations; whereas, moving-bed gasifiers are 

generally used in smaller units. Furthermore, the process is generally carried out under 

atmospheric pressures, and steam is added as gasifying agent in order to increase 

hydrogen composition in syngas. The composed carbon dioxide during reaction can 

also acts as a gasifying agent [71].    

1.4.4 Carbonization 

Carbonization is a thermal degradation process to enrich carbon composition in solid 

fuels such as biomass by removing volatile matters in the form of carbon oxides (CO, 

CO2), light hydrocarbons and hydrogen in the presence of inert gas, and the obtained 

product is referred as charcoal. Furthermore, slow heating rates, long residence time 

and low final temperature lead to increase in the yield of char [13]. The charcoal is 

generally used as activated carbon in adsorbent applications, as a material for 

electrodes and carbon nanotubes, and as renewable fertilizer in agriculture [72]. The 

char is also used as a fuel in the ferroalloy, aluminum, copper, tobacco and cement 

industries [73]. 

The carbonization process contains several physical and chemical steps. The first step 

is that raw material is dried at temperatures up to 170 ºC. Secondly, the initial volatiles, 

which comprise CO, CO2, methanol and acetic acid, are mainly formed from 

hemicellulose and lignin in a temperature range of 170-270 ºC. The process is self-

sustaining, and exothermic reactions outweigh beyond 270 ºC. The final step is that 

charcoal is yielded containing about 84 mass% of carbon at 500 ºC. This charcoal has 

lower ash content compared to coke [74].   

The hydrothermal carbonization is a type of carbonization in which biomass is heated 

with water and a catalyst such as citric acid in a temperature range between 180 and 

250 ºC under saturated pressures between 2 and 10 MPa for several hours, and the 

product obtained in this way is called as hydrochars [75, 76]. According to Xiao et al., 

the carbonized products contain water soluble components and solid residues. The 

aqueous phase is composed of sugar and lignin derived constituents which can be 
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attractive material for biodiesel and chemical manufacture. The calorific value of 

hydrochar was reported to be higher compared to original material [75].      

In a study of Katyal et al., the sugar cane bagasse was used as a feedstock in order to 

examine effects of different parameters such as temperature and heating rate on 

carbonization process. Experiments were carried out in a temperature range of 250-

700 ºC with heating rates between 5 ºC/min and 30 ºC/min under nitrogen sweep gas 

with flow rate of 350 mL/min conditions. The results are shown in Table 1.11 [73]. 

Table 1.11 : Proximate analysis of char produced from bagasse (moisture free basis) 
                    [73]. 

Heating rate  
(ºC/min) 

Temperature (ºC) 
250 300 400 500 600 700 

5 °C/min       
Volatile Matter (%) 75.10 63.40 32.00 22.65 15.95 11.40 
Ash (%) 5.05 6.30 10.75 14.50 18.10 20.60 
Fixed Carbon (%) 19.85 30.30 57.25 62.85 65.95 68.00 
20 °C/min       
Volatile Matter (%) 77.30 65.20 35.20 26.05 18.05 12.95 
Ash (%) 4.95 6.10 10.25 13.75 18.10 19.95 
Fixed Carbon (%) 17.75 28.70 54.55 60.20 63.85 67.10 
30 °C/min       
Volatile Matter (%) 76.40 64.75 36.15 25.50 18.50 13.55 
Ash (%) 4.80 5.95 9.95 14.10 18.50 20.50 
Fixed Carbon (%) 18.80 29.30 53.90 60.40 63.00 65.95 

With regard to this study, it can be said that there was a considerable amount of volatile 

matter below 400 ºC for any heating rates due to limited decomposition of volatile 

extractive components and hemicellulose. The yield of fixed carbon increased 

significantly at higher temperatures because of removal of volatile matter from the 

biomass. Furthermore, the fixed carbon and ash forming inorganic components were 

remained in the biomass. The lower heating rates with longer residence times are also 

suitable conditions for high yield of carbon [73].  

According to Liou [77], the valuable ceramic materials can also be produced using rice 

husk in an economic way. The rice husk is mainly composed of cellulose, 

hemicellulose, lignin and around one fifth of weight silica depending on its sort of 

paddy and geography. In case of mixing of carbonized rice husk with carbon/silica 

powder, the surface area was increased significantly. Furthermore, the high purity 

silica powder could be produced via combustion of the rice husk, and it could be used 

as a raw material for manufacture of fine ceramic powder. With regard to this study, 
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the higher specific surface area, pore volume and pore diameter could be obtained in 

case of the low heating rate such as 5 ºC/min. As a consequence, the specific surface 

areas of carbon/silica and pure silica powders were obtained with 262 and 235 m2/g, 

and the mean pore diameters were with 2.2 and 5.4 nm, respectively, making them the 

high quality raw materials for production of ceramic materials [77].  

Park et al. notified that the torrefied and low temperature carbonized (in a temperature 

range of 300-400 ºC) woody biomass was blended with coal in order to investigate 

characteristics of co-combustion. Depending on the operational temperatures, the yield 

energy of torrefied and carbonized woody biomass varied with 80-98% and 45-63%, 

respectively. Nevertheless, the fuel characteristic of carbonized biomass was close to 

coal due to its high fixed carbon and low volatile matter content. Furthermore, the 

activation energy decreased with increase of blending ratio as a result of high reaction 

rate [78].  

The biomass charcoal is mainly composed of lignin; therefore, lignin carbonization 

process should be taken into consideration to enhance the quality of charcoal. Cao et 

al. stated that there were four steps during lignin carbonization which were drying, 

pyrolysis, amorphous carbon formation and carbon structure reforming at temperature 

range from ambient to 1400 ºC. In pyrolysis step in a temperature range between       

200 ºC and 500 ºC, the activation energy was 54 kJ/mol, and volatile matters such as 

CO, CH4, CO2 and propanal were released from the lignin. In amorphous carbon 

formation step, from 500 ºC to 900 ºC, the activation energy was 70 kJ/mol, and 

aromatic structures were formed from benzene rings with emission of CO. The last 

step is carbon reforming which began at 900 ºC with an activation energy of 178 

kJ/mol. It was believed that a phenyl plane structure was formed between the 

amorphous carbon and graphite during cracking of C=C bonds at 1400 ºC [79]. 

1.5 Biomass Pyrolysis Kinetics 

1.5.1 Kinetic expressions for biomass thermal decomposition 

Biomass pyrolysis is a complex process mainly due to the different chemical 

composition of ingredients [80]. The main components of biomass are hemicellulose, 

cellulose and lignin. The pyrolysis kinetics of these substances are generally stated as 

first order reaction kinetics mechanism. Nevertheless, the reaction order of lignin can 
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be considerably fitted higher than first order reaction [81]. With respect to data 

analysis, kinetic data approaches are divided into model-based (model-fitting) and 

isoconversional (model-free) methods. Model-based method is the most common 

methods to determine solid state reaction kinetics, particularly in non-isothermal 

studies. Nonlinear least square fitting is generally used to fit experimental data and 

determine Arrhenius parameters. On the other hand, isoconversional (model-free) 

evaluates kinetic parameters without model-based assumptions such as first order 

reaction [82]. 

The kinetics of biomass decomposition under isothermal conditions can be expressed 

by the following equation: 

																																																	
dα
dt = k(T)f(α)																																																																(૚. ૚૝)	 

where t refers time, α is the degree of conversion, or extent of reaction, dα/dt denotes 

the rate of the isothermal decomposition and f(α) is a conversion function which 

indicates the used reaction model.  

k(T) is the rate constant expressed by Arrhenius equation:  

																																											k(T) = Aexp ൬
−Eୟ
RT ൰																																																												(૚. ૚૞) 

where T is the absolute temperature in K, R is the universal gas constant, k(T) is the 

temperature dependent reaction rate constant, A denotes the frequency factor and Ea 

refers the activation energy of the reaction. 

																																				
dα
dt = k(T)f(α) = Aexp ൬

−Eୟ
RT ൰ f

(α)																																								(૚. ૚૟) 

The degree of conversion, α, can be expressed as: 

																																										α =
w଴ିw
w଴ − w୤

=
v
v୤
																																																																	(૚. ૚ૠ) 

where w, w0 and wf denotes mass of substance present at any time t, initial and final 

mass of substance, respectively. Furthermore, v refers the mass of volatiles present at 

any time t and vf is the total mass of volatiles.  

Non-isothermal reaction rate is a function of temperature at a linear heating rate, β, 

which can be expressed as the following equation: 



28 
 

																																																								
dα
dT =

dα
dt 	

dt
dT																																																													(૚. ૚ૡ) 

Where dt/dT refers the inverse of the heating rate, 1/β, dα/dt is the isothermal reaction 

rate and dα/dT denotes the non-isothermal reaction rate. As a consequence, the rate 

law for non-isothermal conditions can be expressed as: 

																																				
dα
dT =

k(T)
β f(α) =

A
β 	exp ൬

−Eୟ
RT ൰ f

(α)																																						(૚. ૚ૢ) 

The most common reaction mechanisms in solid state reactions are shown in Table 

1.12. The differential or integral approach can be implemented to isoconversional 

models depending on the TGA (Thermogravimetric analysis) data. Furthermore, a 

fourth order Runge-Kutta method is usually performed to kinetic equations in order to 

take integral [82].   

Table 1.12 : The most common reaction models in solid state reactions [82, 83]. 

Reaction Model f(α)=(1/k)(dα/dt) g(α)=kt 
Reaction order   
1st order (n=1) (1-α) -ln(1-α) 
1/3rd order (1-α)1/3 (3/2)[1-(1-α)2/3] 
1/2nd order (1-α)1/2 2[1-(1-α)1/2] 
2/3rd order (1-α)2/3 3[1-(1-α)1/3] 
2nd order (1-α)2 -[1-(1-α)-1] 
Diffusional   
1-D 1/2α α2 
2-D (Valansi Barrer) [-ln(1-α)]-1 α+(1-α)ln(1-α) 
3-D (Jander) (3/2)(1-α)2/3[1-(1-α)1/3]-1 [1-(1-α)1/3]2 
3-D (Ginstling-
Brounshtein) 

(3/2)[(1-α)-1/3-1]-1 1-(2/3)α-(1-α)2/3 

Contracting Geometry   
Contracting area (1-α)1/2 1-(1-α)1/2 
Contracting volume (1-α)1/3 1-(1-α)1/3 
Nucleation   
Avrami-Erofeev; n=2 2(1-α)[-ln(1-α)]1/2 [-ln(1-α)]1/2 
Avrami-Erofeev; n=3 3(1-α)[-ln(1-α)]2/3 [-ln(1-α)]1/3 
Avrami-Erofeev; n=4 4(1-α)[-ln(1-α)]3/4 [-ln(1-α)]1/4 

 

1.5.2 Coats-Redfern method 

The Coats-Redfern method is an integral model-fitting approach for non-isothermal 

reactions. It can be used to calculate frequency factor and activation energy. The rate 

of reaction is expressed as: 
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dα
dT = k(t)(1 − α)୬																																																						(૚. ૛૙) 

Arrangement of Eq. (1.20) becomes: 

																																												
dα

(1 − α)୬ =
A
β exp ൬−

Eୟ
RT൰dT																																												(૚. ૛૚) 

Integration of Eq. (1.21) is: 

																																			
1 − (1 − α)ଵି୬

1 − n =
A
β
න exp ൬−

Eୟ
RT൰ dT

୘

଴
																																	(૚. ૛૛) 

Eq. (1.22) can be simplified by using asymptotic series and ignored higher order terms, 

and integrated it gives: 

																						
1 − (1 − α)ଵି୬

1 − n =
ARTଶ

βEୟ
൤1 −

2RT
Eୟ

exp ൬−
Eୟ
RT൰൨																															 (૚. ૛૜) 

After taking logarithm of Eq. 1.23 gives: 

ln ቈ
1 − (1 − α)ଵି୬

(1 − n)Tଶ
቉ = ln ൥

AR
βEୟ

൤1 −
2RT
Eୟ

൨൩ −
Eୟ
RT 										for	n ≠ 1																								(૚. ૛૝) 

ln ൤
−ln	(1 − α)

Tଶ ൨ = ln ൥
AR
βEୟ

൤1 −
2RT
Eୟ

൨൩ −
Eୟ
RT 																for	n = 1																								(૚. ૛૞) 

After simplification of Eq. (1.25) in case of 2RT≪1 becomes: 

																																							ln ൤
g(α)
Tଶ ൨ = ln൬

AR
βEୟ

൰ −
Eୟ
RT																																																				(૚. ૛૟) 

A straight line can be obtained by plotting ln[g(α)/T2] versus 1/T. The slope gives           

-Ea/R, and the intercept is ln(AR/βEa); therefore, Ea and A values can be derived from 

Eq. (1.26) [80, 83, 85, 86]. 
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2. MATERIALS AND METHODS 

2.1 Experimental Studies 

The flow chart of experimental studies was shown in Figure 2.1. 

 

Figure 2.1 : The flowchart of experimental studies. 
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2.2 Sample Preparation 

In this study, hazelnut shells (HS) and sunflower seed shells (SSS) were used as 

biomass samples. The samples were first dried in laboratory medium, and then in oven 

at 105 ºC. After being drying step, they were milled, and sieved to a powder with a 

particle size of under 0.250 mm. The Retsch AS 200 was used as equipment to sieve 

samples. All analyses carried out to the samples were performed according to ASTM 

standards. 

2.3 Macromolecular Ingredients Analysis 

Extractive analysis was carried out according to ASTM D1105 [87] standard to 

determine macromolecular composition of each sample. Holocellulose content that is 

the sum of cellulose and hemicellulose contents was isolated according to reference 

[88]. Furthermore, van Soest method was performed to isolate lignin from each sample 

[89]. The obtained lignin is referred as ‘Klason Lignin’ which is insoluble in acids.    

2.4 The Thermal Analyses (TGA, DTG, DTA, DSC)  

The thermal analyses were carried out to determine the characterization of 

decomposition by using equipment SDT Q600 model of TA that is shown in Figure 

2.2. The TGA (Thermogravimetric Analysis), DTG (Derivative Thermogravimetric), 

DTA (Differential Thermal Analysis) and DSC (Differential Scanning Calorimetry) 

curves can be obtained via that equipment. The stoichiometry of decomposition and 

the temperature range of reaction can be obtained from the TG curve. The onset of 

decomposition can be determined more sensitively from DTG curve compared to TG 

curve, and the maximum rate of decomposition can also be obtained. Furthermore, the 

temperature difference between the sample and thermally inert reference (alumina) can 

be determined from DTA curve to specify endothermic and exothermic 

transformations. The enthalpies of transition can be obtained from DSC curve. The 

thermal analysis equipment has Pt-Pt/Rh thermocouple, and its operating temperature 

can be set up to 1773 K. 
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Figure 2.2 : TA instruments, model SDT Q600. 

In this study, each of main biomass and bio-char sample was weighted around 10 mg, 

and heated up to 600 ºC with a heating rate 5 ºC/min under dry air and pure oxygen 

(oxy-combustion) atmospheres with a flow rate of 100 mL/min. The samples were 

kept at that temperature for 30 min. The TG, DTG, DTA and DSC profiles were 

obtained. The ignition temperature of each sample was determined from DTA curve, 

and the maximum rate of combustion and the temperature at this rate, combustion time 

and combustion efficiency were obtained from DTG profile.  

2.5 The Torrefaction and Carbonization Experiments in a Horizontal Tube 

Furnace 

The horizontal tube furnace is made from stainless steel, and the size of combustion 

unit is 15cm x 72cm. The inner diameter of ceramic combustion unit (tube) is 5 cm. 

The equipment was shown in Figure 2.3. Each sample was weighted approximately  

10 g. The horizontal tube furnace experiments were carried out at 300 ºC and 600 ºC 

with 10 ºC/min heating rate under a nitrogen atmosphere with a flow rate 100 mL/min. 

Following this step, the samples were kept at these temperatures for 60 min in order to 

produce the torrefied and carbonized biochars by decreasing the content of the volatile 

matter.     
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Figure 2.3 : Horizontal tube furnace. 

2.6 Characterization of Samples 

2.6.1 Proximate analysis 

The proximate analysis was used to determine the volatile matter, fixed carbon, 

moisture and ash contents of each sample. It was carried out by TGA equipment which 

is shown in Figure 2.2. Firstly, each biomass or bio-char sample was weighted 

approximately 10 mg, and then they were first heated to 105 ºC with heating rate          

10 ºC/min under nitrogen atmosphere condition with flow rate 100 mL/min. Samples 

were kept at that temperature for 10 min in order to remove the moisture content. After 

that the sample was heated up to 900 ºC with heating rate 40 ºC/min under nitrogen 

atmosphere condition with flow rate 100 mL/min. Following this stage, the sample 

was kept at this temperature for 7 min in order to eliminate the volatile mater content. 

The temperature was decreased to 600 ºC with cooling rate of 20 ºC/min under nitrogen 

flow of 100 mL/min. Then, the sample was kept at this temperature under dry air with 

flow rate 100 mL/min until the weight of sample was constant. The remaining weight 

showed the ash content.  

2.6.2 Calorific value analysis 

The calorific value analysis was carried out to each biomass and produced bio-char 

sample by using IKA C2000 Basic Calorimeter, which has stainless steel calorimeter 

bomb and is shown in Figure 2.4. As a result of this analysis, the higher calorific value 

for each sample was obtained.  
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Figure 2.4 : IKA C2000 Basic Calorimeter Bomb. 

2.6.3 Particle size analysis 

The particle size analysis was carried out to all samples by using Malvern 

InstrumentsTM Mastersizer 2000 particle sizing instrument with Hydro 2000G wet 

sample dispersion unit which is shown in Figure 2.5. This method is based on a laser 

diffraction to measure the size of particles. It measures the intensity of light which is 

scattered a laser beam passing through a dispersed particulate sample. 

 

Figure 2.5 : Malvern InstrumentsTM Mastersizer 2000 particle sizing instrument. 

2.6.4 Scanning electron microscopy (SEM) analyses 

The Scanning Electron Microscope (SEM) is a type of electron microscope which 

produces images of sample with high resolution by focused beam of electrons. In this 

study, the structural differences of all biomass samples, their macromolecular 

components and produced bio-chars were investigated by using Jeol, JSM-6000 

instrument. 
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2.6.5 Ultimate analysis 

The ultimate analysis was performed to all samples by using Leco TruSpec® CHN 

ultimate equipment with Leco TruSpec® S module which is shown in Figure 2.6. 

Firstly, around 0.5 g sample was weighted. There are three phases which are purge, 

combust and analysis during an analysis cycle. In the purge phase, the encapsulated 

sample was placed in the loading head, sealed and purged of helium gas which entered 

during sample loading. In the combust phase, the sample was dropped into a hot 

furnace kept at 950 ºC and flushed with oxygen to complete the combustion rapidly. 

The products of combustion were passed through a secondary furnace called as 

afterburner at 850 ºC to perform secondary oxidation and remove the unburned 

particulates. The combustion gases were then collected in a collection vessel known 

as the ballast. In the analyze phase, oxygen flows into the furnace to combust the 

sample. After that, the produced gases were collected in the ballast. The homogeneous 

combustion gases in the ballast were purged through the CO2 and H2O infrared 

detectors and the 3cc aliquot loop. Carbon was measured as CO2 by CO2 detector; 

while, hydrogen was measured as vapor by H2O detector. The gases in the aliquot loop 

were transferred to the helium carrier flow, swept through hot copper to remove 

oxygen and reduce NOx to N2. After that, they flow through Lecosorb and Anhydrone 

to remove CO2 and H2O, respectively. The nitrogen content was determined by a 

thermal conductivity cell. The sum of carbon, hydrogen, nitrogen, sulfur and ash 

contents on dry basis was subtracted from 100 to calculate elemental oxygen content.          

 

Figure 2.6 : Leco TruSpec® CHN model elemental analysis instrument.                      
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2.6.6 X-ray diffraction (XRD) analysis 

X-Ray Diffraction (XRD) analysis examines crystalline material structure which 

contains atomic arrangement, crystallite size and imperfections. In this experiment, all 

biomass samples, their macromolecular components and produced biochar samples 

were characterized by using Panalytical X’Pert Pro PW 3040/60 model X-Ray 

diffractometer with a Cu X-ray target radiation of wavelength 1,54060 A° under          

40 kV and 40 mA conditions.   

2.6.7 Fourier transform infrared (FTIR) spectroscopy analysis 

Fourier Transform Infrared Spectroscopy (FTIR) is an analytical technique to 

determine mainly organic substances. The main principle is the absorption of infrared 

radiation by chemical bonds; therefore, molecular structure of sample can be 

determined.  

In this experiment, all biomass samples, their macromolecular components and 

produced bio-char samples were ground with KBr (potassium bromide) with a 

proportion of 1:100 w/w in a dry agate mortar. The spectrum of KBr was used for 

background correction in order to remove interfering peaks arising from atmospheric 

water and carbon dioxide. Each sample was pressed between two 13 mm disks under 

8 MPa pressure to produce pellet. FTIR analysis of each sample was carried out by 

using Bruker Alpha FTIR instrument with measurement of frequency interval between 

650 and 4000 cm-1. All functional groups were determined according to literature 

values.  
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3. RESULTS AND DISCUSSION 

3.1 Characterization of Main Samples 

3.1.1 Proximate analysis results 

Proximate analysis results were determined from the TGA profiles obtained through 

the sequential heating process described in section 2.6.1. TGA profiles used for 

proximate analyses result are illustrated in Figures 3.1 and 3.2 for sunflower seed 

shells and hazelnut shells, respectively.     

 

Figure 3.1 : The proximate analysis TGA profile of SSS.  
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Figure 3.2 : The proximate analysis TGA profile of HS.  

Proximate analysis results derived from these curves along with the higher heating 

values (HHV) determined from the bomb calorimeter experiments are given in Table 

3.1.  

Table 3.1: The proximate analysis and HHV results. 

 
Sample 

 

Proximate Analysis  
HHV 
(cal/g) 

Moisture 
(%) 

Volatile 
Matters (%) 

Ash 
(%) 

Fixed 
Carbon (%) 

      
Sunflower seed 
shells 
 

8.44 74.12 1.61 15.83 4357 
 

Hazelnut shells 10.21 69.39 3.13 17.27 4359 
 

Results in Table 3.1 indicate that the moisture, volatile matters, and fixed carbon 

contents of the main samples are comparable with each other, while ash contents differ 

to some extent. Nevertheless, HHV values of the samples are almost the same. Basing 

on data in Table 3.1, it is likely to mention that the ratios of fixed carbon to volatiles 

are rather low in comparison to those in coal samples, and these ratios are 0.21 and 

0.25 for sunflower seed shells and hazelnut shells, respectively.      

 

 

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

W
ei

gh
t (

%
)

Temperature (ºC)



41 
 

3.1.2 Macromolecular analysis results 

The results of the analytical experiments applied to specify the macromolecular 

components of the main biomass samples are shown in Table 3.2. 

Table 3.2 : Macromolecular analysis results of the main samples (on dry basis). 

  Sample 
 

Extractive 
substance (%) 

Holocellulose (%) 
 

Lignin (%) 
 

  Sunflower seed shells 
 

5.27 
 

67.12 27.06 
 

   Hazelnut shells 4.50 56.63 40.03 

Holocellulose that is the sum of cellulose and hemicellulosics accounts for most of the 

organic structure of the biomass samples. Of these, sunflower seed shell is highly rich 

in holocellulose, while lignin is considerably less than holocellulose in this biomass. 

This predicts that sunflower seed shell will be very reactive during any thermal 

conversion process due to its high holocellulose content and relatively low lignin 

content [8]. On the other hand, although the holocellulose content in hazelnut shell is 

also higher than the lignin content, holocellulose to lignin ratio is not comparable with 

that in case of sunflower seed shell. Accordingly, it can be expected that hazelnut shells 

will not as reactive as sunflower seed shells during the thermal conversion processes. 

Besides both biomass species have extractive substances in the range of 4.50-5.27 wt 

% that are resulted from elimination of not only organics but also soluble inorganics 

from biomass over extraction in which ethyl alcohol, benzene, and warm water were 

used. Meszaros et. al. [90] reported that treatment even hot water is capable of 

removing some inorganics as well as some unsteady organic compounds from biomass 

species.                

3.2 Effects of Torrefaction and Carbonization Processes 

3.2.1 Effects on sample characteristics and fuel quality  

Thermally treated biomass samples (chars) in the horizontal furnace at 300 ⁰C and/or       

600 ⁰C as described in section 2.5 were removed from the furnace and kept in tightly 

closed small bottles in a desiccator to avoid moisture uptake. The thermally treated 

samples, namely torrefied at 300 ⁰C or carbonized at 600 ⁰C, were first compared 

according to proximate and ultimate analyses. TGA curves that used for determination 

of the proximate analysis results of the biochar samples are given in Figures 3.3-3.6. 
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Figure 3.3 : The proximate analysis TGA profile of SSS biochar at 300 ºC. 

 

Figure 3.4 : The proximate analysis TGA profile of HS biochar at 300 ºC.  
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Figure 3.5 : The proximate analysis TGA profile of SSS biochar at 600 ºC.  

 

 Figure 3.6 : The proximate analysis TGA profile of HS biochar at 600 ºC. 

Since, the thermal treatments yield fairly dried samples, for a reasonable comparison 

of the changes in the structures of the biomass samples due to thermal treatment, the 

proximate analysis results are tabulated in Table 3.3 on dry basis for the treated 

samples as well as their parent samples.  
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Table 3.3: Proximate analysis and HHV results on dry basis.  

Sample Volatile Matter 
(%) 

Ash  
(%) 

Fixed Carbon 
(%) 

HHV 
(cal/g) 

Sunflower seed shells 80.95 1.76 17.29 4357 
Sunflower seed shells 
biochar at 300 °C 

43.78 3.89 52.34 6579 

Sunflower seed shells 
biochar at 600 °C 

14.29 3.17 82.54 7556 

 
Hazelnut shells 

 
77.28 

 
3.49 

 
19.23 

 
4359 

Hazelnut shells biochar 
at 300 °C 

53.79 2.47 43.74 6356 

Hazelnut shells biochar 
at 600 °C 

40.62 4.01 55.37 6754 

Table 3.3 confirms the fact that the thermal treatments applied in this study led to 

significant variations in biomass samples. Consequently, the ratios of fixed carbon to 

volatiles increased seriously, and this increase was very apparent in case of 

carbonization implemented at 600 ⁰C. Namely, volatile matter content decreased from 

80.95 % to 14.29 % for sunflower seed shells, while its fixed carbon content enhanced 

from 17.29 % to 82.54 % which is nearly five-fold. That’s why the thermal processes 

conducted at medium to ambient temperature intervals under non-oxidizing conditions 

are called as “carbonization”.  Meanwhile, holocellulose-rich nature of this biomass 

facilitated decompositions at 600⁰C to give off volatiles, leaving the fixed carbon as 

the left over the applied process. Besides, the ash content became relatively 

concentrated as a result of such a significant decrease in volatiles.      

The increase in fixed carbon content and the decrease in volatiles content were 

relatively limited in case of hazelnut shell. It is possible to mention that the 

performances of the applied thermal treatments were affected from the distributions of 

the macromolecular compounds found in biomass species. That is, hazelnut shell 

contains a great deal of amount of lignin in its complex structure, and lignin is not as 

thermally reactive as the holocellulose content. Hence, the treatments at either 300 ⁰C 

or 600 ⁰C could not provide high levels of devolatilization. For this reason, in 

proximate analysis, solid fuels are heated up to 900 ⁰C for completely removal of the 

volatiles. Basing on these findings, it can be reported that 600 °C is not so effective to 

provide efficient removal of the volatile matter from hazelnut shell, and exposure to 

higher carbonization temperatures may be suggested for this biomass species.         
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Depending on the improving fuel quality of the biomass species, calorific values also 

increased thanks to the thermal treatments including torrefaction and carbonization. 

The increase in the calorific value was very obvious in case of sunflower seed shell 

due to efficient removal of the volatiles. However, the high content of volatiles even 

in case of carbonized biochar from hazelnut shell led to relatively less improvement in 

the calorific value. Nevertheless, the calorific values of the biochars were in so fairly 

good level that they can be comparable with the calorific values of high quality 

bituminous coals.     

3.2.2 Ultimate analysis results 

Ultimate analysis results can be seen in Table 3.4. These results show that the applied 

processes improved the fuel qualities of the biomass samples by increasing carbon 

contents and lowering oxygen contents. These variations are more evident in case of 

sunflower seed shell. On the other hand, hydrogen contents also decreased due to 

thermal treatments and it is known that the level of the decrease in the hydrogen 

content is a reliable parameter to predict the severity of the applied thermal process 

[91]. Similarly, increase in carbon and decrease oxygen may also be used for this 

purpose since there is reasonable relation between the temperatures of the applied 

processes and the measured contents of these parameters.    

Table 3.4 : Ultimate analysis results (on dry basis)  

Sample C (%) H (%) N (%) S (%) O* (%) 
Sunflower seed shells 45.7 6.4 0.4 0.2 45.5 
Sunflower seed shells 
char at 300 °C 

66.8 5.1 0.5 0.1 23.6 

Sunflower seed shells 
char at 600 °C 

82.6 2.3 0.7 0.1 11.1 

 
Hazelnut shell 

 
46.2 

 
6.4 

 
0.1 

 
0.3 

 
43.6 

Hazelnut shell char  
at 300 °C 

62.8 5.2 0.1 0.1  29.5 

Hazelnut shell char  
at 600 °C 

70.0 4.5 0.1 0.1 21.3 

    * calculated by difference 

These explanations show that the thermal treatments applied in this study gave rise 

obvious improvements in the quality of biomass as fuel with respect to lowering 
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moisture, oxygen and volatile matter contents, and increasing carbon, fixed carbon 

content and calorific value.     

3.2.3 Effects on burning characteristics 

3.2.3.1 Burning of the main samples with dry air  

Figure 3.7 shows the DTG burning profile of sunflower seed shells which presents the 

rates of the mass losses from the sample versus temperature.   

 

Figure 3.7 : The burning DTG profile of SSS main sample under dry air.  

As temperature increases from the room temperature up to 900 ⁰C, a couple of different 

mechanisms governed the mass losses from the sample depending on temperature. 

Namely, moisture content left the structure first at around 100⁰C, and then a region 

was observed in temperature interval of 100-200 ⁰C in which no important 

decomposition occurred. Then, the main decomposition stage started just before       

200 ⁰C, and the rate of the mass losses reached the maximum level (Rmax) of               

5.02 %/min at 293 ⁰C (TRmax) and then slowed down until a second acceleration 

between 350 ⁰C and 400 ⁰C. Finally, mass losses completed at 472 ⁰C and no further 

reduction took place in the mass up to 900⁰C. Although TGA and DTG curves provide 

valuable information on the mass loss characteristics from the sample at given 

temperatures, it is impossible to decide that whether the mass losses resulted from 

burning or devolatilization. In this context, DTA and DSC curves help us to evaluate 

the endothermic and exothermic phenomena taken place throughout the burning 
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process. DTA and DSC curves of sunflower seed shell are given in Figures 3.8 and 

3.9, respectively.   

 

Figure 3.8 : The burning DTA profile of SSS main sample under dry air.  

 

Figure 3.9 : The burning DSC profile of SSS main sample under dry air.  

DTA curve indicates that the previously mentioned mass losses seen in DTG curve 

just before 200 ⁰C did not result from burning of the sample because during which the 

process was not exothermic. This predicts the fact that hemicellulose and some 

unsteady ingredients in biomass began to decompose at these relatively low 

temperatures and their removal was the source of the mass losses. Actually, the onset 

of burning was detected as 261 ⁰C at which ignition of combustible volatiles took place 

and it was homogeneous burning in gaseous phase. Therefore, mass losses suddenly 
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increased and reached the maximum point. During the devolatilization and subsequent 

burning of the volatiles, the biomass turned into sponge-like porous structure through 

which oxygen diffused to burn the remaining solid matrix by heterogeneous burning. 

Therefore, another individual exothermic peak formed at higher temperature region in 

comparison to the previous homogeneous burning region. The end point of burning 

was determined as 408 ⁰C. On the other hand, the endothermic character of the process 

beyond the end point can be interpreted by the heat capacity of the ash forming 

minerals and their phase transitions.   

DSC profile indicates the extent of the heat flows during the endothermic and 

exothermic transitions comparatively. The heat flowing from surrounding to the 

sample is known as endothermic; whereas, from the sample to surrounding is called as 

exothermic. According to Figure 3.9, it can be regarded that the burning of sunflower 

seed shells main sample started after 200 ºC since the heat flow values turned from 

negative to positive ones.         

Burning characteristics of hazelnut shell main sample under dry air atmosphere are 

given in Figures 3.10-3.12.  

 

Figure 3.10 : The burning DTG profile of HS main sample under dry air.  

DTG burning profile of hazelnut shell main sample is basically similar to that for 

sunflower seed shell in terms of the sequence of the stages of moisture evolution, 

volatile matter evolution and its burning, followed by surface oxidation of the 

remaining mass. Rmax and TRmax were detected as 5.1 %/min and 311 ⁰C, respectively. 
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Comparison of these Rmax and TRmax values with those for sunflower seed shell 

revealed the fact that although Rmax values are very close to each other, TRmax value for 

sunflower seed shell was 293 ⁰C that is a bit lower than that for hazelnut shell. This 

indicates that the thermal reactivity of hazelnut shell is lower than sunflower seed shell 

which in good agreement with the high lignin content of hazelnut shell. Likewise, DTA 

and DSC curves of hazelnut shell also indicate that exothermic region shifted to higher 

temperatures. That is, both the onset temperature and the end point of burning were 

found as 290 ⁰C and 449 ⁰C, respectively, which are considerably higher than those 

measured for sunflower seed shell. In addition, the heat flow changed between 8 W/g 

and -6 W/g for burning of hazelnut shells main sample. The negative values can be 

attributed to the energy need of the mineral matter to be decomposed thermally while 

temperature increases. 

 

Figure 3.11 : The burning DTA profile of HS main sample under dry air.  
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Figure 3.12 : The burning DSC profile of HS main sample under dry air. 

Table 3.5 summarizes the results derived from DTG and DTA curves of the main 

samples under dry air.  

Table 3.5 : The results from DTG and DTA of the main samples under dry air. 

 from DTG curves from DTA curves 
Sample Rmax 

(%/min) 
TRmax (°C) Onset Temp. of 

Burning (°C) 
ΔTmax 
(°C/mg) 

End Point of 
Burning (°C) 

Sunflower seed 
shell 
 

5.02 293 261 0.44 408 

Hazelnut shell 5.10 311 290 0.37 449 

3.2.3.2 Burning of the main samples with pure oxygen  

Burning of the main biomass samples in the thermal analyzer using pure oxygen was 

carried out under the conditions that are the same with those of burning with dry air 

except the change in the oxidizing medium from dry air to pure oxygen. DTG burning 

profile of sunflower seed shell main sample under pure oxygen is shown in Figure 

3.13. At the first sight, the most apparent effect of the usage of pure oxygen over dry 

air is that the rates of the mass losses in the volatile matter evolution and homogeneous 

combustion regions increased when pure oxygen was used. Namely, the value of Rmax 

enhanced to 5.97, while it was 5.02 under dry air atmosphere. In addition, this rate was 

measured at 264 ⁰C which is lower than the corresponding temperature of 293 ⁰C in 

case of dry air usage. The parameters of Rmax and TRmax reveal that when pure oxygen 
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was used, decomposition of sunflower seed shell became faster even at low 

temperatures.  

 

Figure 3.13 : The burning DTG curve of SSS under pure oxygen.  

DTA and DSC profiles of sunflower seed shell main sample are illustrated in Figures 

3.14 and 3.15, respectively.  

 

Figure 3.14 : The burning DTA curve of SSS under pure oxygen condition. 
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Figure 3.15 : The burning DSC curve of SSS under pure oxygen condition. 

DTA and DSC burning profiles of sunflower seed shell supported the outcomes 

obtained from DTG profile that the onset temperature of burning was 247 ⁰C which is 

a bit lower than 261 ⁰C that countered in case of burning of this sample with dry air. 

Besides, the end point of burning also followed this trend that it decreased from         

408 ⁰C to 390 ⁰C as a result of the presence of pure oxygen as the oxidant medium. 

On the other hand, ΔTmax increased from 0.44 ⁰C/mg to 0.69 ⁰C/mg which indicates 

that more intensive heat production is in question when pure oxygen is utilized in 

comparison to the dry air usage. In addition, heat flow values increased to over 10 W/g 

which are higher than those measured in case of burning with dry air. The burning 

DSC profile of sunflower seed shells is also consistent with the burning of DTA 

profile.   

DTG burning profile of hazelnut shell main sample under pure oxygen is shown in 

Figure 3.16. 

 

Figure 3.16 : The burning DTG profile of HS under pure oxygen condition. 
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It is likely to say that the major losses in mass took place in the form of a sharp peak 

at temperatures around 300 °C.  Rmax value was observed as 13.65 (%/min) at 308 °C 

which was nearly three-fold of the Rmax value of dry air condition. This result confirms 

the increasing thermal reactivity not only sunflower seed shell but also hazelnut shell 

during burning with pure oxygen.     

DTA and DSC burning profiles of hazelnut shell main sample under pure oxygen 

condition are given in Figures 3.17 and 3.18. 

 

Figure 3.17 : The burning DTA profile of HS under pure oxygen condition. 

The appearance of both DTA and DSC curves changed seriously if we compare them 

with corresponding curves obtained under dry air. The first decomposition region 

turned into very sharp peak that shows rapid burning of the volatiles. In this context, 

DTA profile revealed that an enormous increase in ΔTmax value formed for pure 

oxygen condition.  That is, this value was only 0.37 °C/mg for dry air condition and 

pure oxygen increased it 1.99 °C/mg, which is the proof of the increasing intensity of 

the heat of combustion. Similarly, maximum point of heat flow from DSC curve 

intensified several times. The maximum heat flow was approximately 28 W/g at        

310 ºC in DSC profile of hazelnut shells which was consistent with the DTA profile.         
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Figure 3.18 : The burning DSC profile of HS under pure oxygen condition. 

The results determined from DTG and DTA profiles of the main samples under pure 

oxygen condition are tabulated in Table 3.6.    

Table 3.6 :  The results from DTG and DTA of the main samples with pure oxygen. 

 from DTG curves from DTA curves 

Sample Rmax 
(%/min) 

TRmax 
(°C) 

Onset Temp. 
of Burning 

(°C) 

ΔTmax 
(°C/mg) 

End Point of 
Burning 

(°C) 

Sunflower seed 
shells 5.97 264 247 0.69 390 

Hazelnut shells 13.65 308 280 1.99 438 

3.2.3.3 Burning of the torrefied biochars with dry air 

DTG burning profile of the torrefied sunflower seed shells at 300 ⁰C in Figure 3.19 

gave so different a shape that we have not seen such a behavior from the previous 

experiments. Since, some of the volatiles had already been eliminated during the 

torrefaction process, the volatiles remaining in biomass started to leave the biomass at 

temperatures which are a bit higher than the temperatures encountered in case of the 

thermally untreated original biomass samples. Notice that the volatile matter contents 

on dry basis were 80.95 % in parent sample, and 43.75 % in torrefied biochar. This 

predicts that a great deal of amount of volatiles still exists in the biochar and it affects 

the burning character of the biochar.   
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Moreover, combustion process lasted relatively in a narrow temperature range. Maybe, 

the most important point is that the extent of Rmax reached 26.38 %/min at 394 ⁰C, 

whereas it was 5.02 %/min at 293 ⁰C for its parent sample (the untreated sunflower 

seed shell) under dry air condition. In addition to significant increase in the rate, there 

exists shift of the relevant temperature to the higher temperature.           

 

Figure 3.19 : The burning DTG curve of the torrefied SSS under dry air.  

DTA and DSC burning profiles of the torrefied sunflower seed shells at 300 ⁰C are 

presented in Figures 3.20 and 3.21, respectively. It is clear from these figures that the 

heterogeneous burning of the remaining solid remnant after partially devolatilization 

is responsible for the exothermic phenomenon. In other words, the contribution of the 

homogeneous combustion of the volatiles is relatively quiet limited. Therefore, the 

burning of this biochar is represented by a sharp peak. Furthermore, endothermic 

region at low temperatures could not be seen in these figures. Additionally, both the 

onset temperature of burning and the end point temperature are lower than the 

corresponding temperatures of the parent biomass samples.     
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Figure 3.20 : The burning DTA curve of the torrefied SSS under dry air.  

 

Figure 3.21 : The burning DSC curve of the torrefied SSS under dry air  

DTG, DTA, and DSC burning profiles of the torrefied hazelnut shell at 300 ⁰C are 

given in Figures 3.22, 3.23, and 3.24, respectively, and the explanations made for 

biochar produced from sunflower seed shell are also valid for the biochar obtained 

from hazelnut shell. The volatile matter content of torrefied biochar was 53.79 % on 

dry basis (Table 3.3). However, this initial decomposition is not exothermic and it 

cannot be regarded as the ignition of the biochar. In fact, the onset temperature of 

burning was determined as 269 °C from DTA profile, and burning lasted up to 435 °C. 

Moreover, the heat flow changed between around 58 W/g and -5 W/g, which means 

higher heat flow in comparison with the untreated samples.    
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Figure 3.22 : The burning DTG curve of the torrefied HS under dry air condition. 

 

Figure 3.23 : The burning DTA curve of the torrefied HS under dry air. 
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Figure 3.24 : The burning DSC profile of the torrefied HS under dry air.  

The summary of these results derived from DTG and DTA burning profiles of the 

torrefied biochars under dry air condition can be seen in Table 3.7.   

Table 3.7 : The results from DTG and DTA of the torrefied biochars with dry air.  

 from DTG curves from DTA curves 

Sample Rmax 
(%/min) 

TRmax 
(ºC) 

Onset Temp. 
of Burning 

(°C) 

ΔTmax 
(°C/mg) 

End Point 
of Burning 

(°C) 

Biochar at 300 ⁰C 
from Sunflower 
seed shells 

26.38 394 237 3.70 388 

Biochar at 300 ⁰C 
from Hazelnut 
shells 

17.02 431 269 2.58 435 

 

3.2.3.4 Burning of the torrefied biochars with pure oxygen 

DTG, DTA, and DSC burning profiles of the 300 ⁰C biochars from sunflower seed 

shells using oxygen are shown in Figures 3.25-3.27, respectively.  DTG profile 

indicates that the rates of the mass losses from the biochar is relatively negligible at 

temperatures lower than approximately 350 ⁰C, and then very large area formed in 

which very high rates of decomposition were available. Accordingly, exothermic 

regions in DTA and DSC profiles were right-handed in shape because of the cooling 

trend of the sample. The real temperature of the sample is considerably higher than the 
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furnace temperature due to the extremely high burning rates, and the sudden increase 

in the sample temperature is generally followed by subsequent heat transfer from 

sample to the medium. Such factors are responsible for the reduction in sample 

temperature.   

Although the most part of the biochar burned at temperatures above 350 °C, the onset 

temperature of burning was under the effect of the volatiles remained after torrefaction 

process. Therefore, the onset temperature of burning was determined as 226 °C.   

 

Figure 3.25 : The burning DTG profile of torrefied SSS under pure oxygen.  

 

Figure 3.26 : The burning DTA profile of torrefied SSS under pure oxygen.  
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Figure 3.27 : The burning DSC profile of torrefied SSS under pure oxygen.  

DTG, DTA, and DSC burning profiles of the 300 ⁰C biochars from hazelnut shells 

using oxygen are shown in Figures 3.28-3.30, respectively. 

 

Figure 3.28 : The burning DTG profile of torrefied HS under pure oxygen.  
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Figure 3.29 : The burning DTA profile of torrefied HS under pure oxygen.  

 

Figure 3.30 : The burning DSC profile of biochar from HS under pure oxygen.  

The burning behavior of the biochar produced from hazelnut shells at 300 ⁰C is 

consistent with the explanation made for the burning characteristics of the biochar 

produced from sunflower seed shell at the same temperature. First of all, the DTG 

profile indicates that there is only one large region in which the weight losses took 

place. As to the temperature range of this region, it happened relatively at high 

temperatures in comparison to the thermally untreated parent biomass material. On the 

other hand, DTA and DSC profiles revealed the fact that the exothermic reaction of 

the biochar realized so rapidly that variations in temperature difference or heat flow 

formed only lines that are right-handed rather than forming large area on these figures.  
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Table 3.8. presents some results derived from DTG and DTA burning profiles of 

torrefied biochars under pure oxygen condition.  

Table 3.8 : The results from DTG and DTA of torrefied biochars under pure oxygen.  

 from DTG curves from DTA curves 

Sample Rmax 
(%/min) 

TRmax 
(°C) 

Onset Temp. 
of Burning 
(°C) 

ΔTmax 
(°C/mg) 

End Point 
of Burning 
(°C) 

Torrefied biochar 
from sunflower 
seed shells 

109 419 226 11.2 473 

Torrefied biochar 
from hazelnut 
shells 

223 360 271 14.2 460  

 

3.2.3.5 Burning of the carbonized biochars with dry air 

Burning behavior of the carbonized biochar from sunflower seed shells under dry air 

condition can be seen from DTG, DTA, and DSC profiles shown in Figures 3.31-3.33. 

Rmax value was determined as 123.61 %/min at 382 °C, and this shows that the rates 

of the mass losses reached very high levels. Moreover, the decomposition took place 

in quite a narrow temperature interval which lies between 275-360 °C, despite some 

negligible mass losses accompanied it until 440 °C.  Interestingly, DTA and DSC 

profiles also gave very similar situations with DTG profile.         

 

Figure 3.31 : The burning DTG profile of carbonized SSS under dry air.  
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Figure 3.32 : The burning DTA profile of carbonized SSS under dry air.  

 

Figure 3.33 : The burning DSC profile of carbonized SSS under dry air.  

The burning characteristics of the carbonized biochar from hazelnut shell can be seen 

from DTG, DTA, and DSC profiles given in Figures 3.34-3.36, respectively.  
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Figure 3.34 : The burning DTG profile of carbonized HS under dry air.  

The shape of the derivative weight versus temperature in DTG curve exhibits that the 

volatile matter that remained after the carbonization process started the initial weight 

losses just after 250 °C. However, the contribution of such initial decomposition to 

either temperature difference on DTA or heat flow on DSC was quite limited. On the 

other hand, after a broad exothermic region between 225-400 °C, very sharp 

exothermic peak appeared that shows the high intensity of burning of the carbonized 

biochar. Furthermore, the maximum heat flow was 33 W/g according to DSC profile 

under dry air which was lower than torrefied hazelnut shell.  

 

Figure 3.35 : The burning DTA profile of carbonized HS under dry air.  
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Figure 3.36 : The burning DSC profile of carbonized HS under dry air.  

Summary of the results derived from DTG and DTA burning profiles of carbonized 

biochars under dry air condition are given in Table 3.9.    

Table 3.9 : The results from  DTG and DTA of carbonized biochars under dry air.  

 from DTG curves from DTA curves 

Sample Rmax 
(%/min) 

TRmax 
(°C) 

 

Onset 
Temp. of 
Burning 
(°C) 

ΔTmax 
(°C/mg) 

End Point 
of Burning 
(°C) 

Biochar at 600⁰C 
from sunflower 
seed shells 

123.61 382 317 4.90 433 

Biochar at 600 ⁰C 
from hazelnut 
shell 

24.14 350 296 2.02 434 

 

3.2.3.6 Burning of the carbonized biochars with pure oxygen 

DTG, DTA, and DSC burning profiles of the carbonized biochars with pure oxygen 

are shown in Figures 3.37-3.39, respectively.    
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Figure 3.37 : The burning DTG curve of carbonized SSS with pure oxygen.  

Carbonized biochar from sunflower seed shell started to burn around 300 °C with a 

Rmax value of 123.61 %/min at 382 °C. A broad burning area formed and at around 

500 °C temperature reduction took place.        

 

Figure 3.38 : The burning DTA curve of carbonized SSS with pure oxygen. 

DTA burning profile of the carbonized biochar from sunflower seed shells gave the 

highest ΔTmax value among all samples investigated in this study, and this is consistent 

with the fact that carbonized sunflower seed shell was the sample that had the highest 

calorific value. In addition, the highest heat flow was obtained from carbonized 

sunflower seed shells biochar under pure oxygen condition among all DSC profiles of 

sunflower seed shells samples.         
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Figure 3.39 : The burning DSC curve of carbonized SSS with pure oxygen.  

Burning profiles of carbonized hazelnut shell are given in Figures 3.40-3.42. The DTG 

burning profile seen in Figure 3.40 reveals that although mass losses started just 

beyond 250 ⁰C due to irremovable volatile contents, the main burning region that have 

remarkable rates of weight losses were approximately in the temperature range of   

400-500 ⁰C. Meanwhile, Rmax was determined as 84.95 %/min at 473°C which is the 

highest value of TRmax measured in this study.     

 

Figure 3.40 : The burning DTG profile of carbonized HS under pure oxygen.  

DTA and DSC burning profiles of the carbonized biochar from hazelnut shells showed 

that both temperature difference and heat flow characteristics in the temperature range 

of 400-500 ⁰C were highly dominant in comparison to the situations observed at lower 
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temperatures. This predicts that the burning of the biochar samples take place at higher 

temperatures and accordingly the main burning regions shift to the right on the 

temperature axis.        

 

Figure 3.41 : The burning DTA profile of carbonized HS under pure oxygen.  

 

Figure 3.42 : The burning DSC profile of carbonized HS under pure oxygen.  

Summary of the results derived from DTG and DTA burning profiles of carbonized 

biochars under pure oxygen condition are given in Table 3.9.    
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Table 3.10 : The DTG and DTA results of carbonized biochars under pure oxygen. 

 from DTG curves from DTA curves 

Sample Rmax 
(%/min) 

TRmax 
(°C) 

Onset Temp. 
of Burning 
(°C) 

ΔTmax 
(°C/mg) 

End Point 
of Burning 
(°C) 

Biochar at 600⁰C 
from sunflower 
seed shells 

123.61 382 314 13.36 502 

Biochar at 600 ⁰C 
from hazelnut 
shells 

84.95 473 407 10.55 501 

 

3.3 Particle Size Analysis Results 

Specific surface area and mean diameter results of the samples are tabulated in       

Table 3.11.  

Table 3.11 : The results of specific surface area and mean diameter. 

Sample Specific Surface 
Area (m2/g) 

Mean Diameter  
(μm) 

Sunflower Seed Shell   
Main Sample 0.0654 189.3 
Extractives-free 0.0320 289.0 
Holocellulose 0.1280 122.5 
Lignin 0.0227 498.8 
Torrefied  0.0439 174.8 
Carbonized 0.0547 308.4 
   
Hazelnut Shell   
Main Sample 0.0913 176.1 
Extractives-free 0.0440 193.2 
Holocellulose 0.2010 105.4 
Lignin 0.0447 259.6 
Torrefied  0.0860 140.6 
Carbonized 0.0950 121.7 

 

The results given in Table 3.11 show that the isolated holocelluloses from both 

biomass species have the largest surface areas with 0.128 and 0.201 m2/g, while lignins 

have the narrowest surface areas with 0.0227 and 0.0447 m2/g. This is consistent with 

the high thermal reactivity of holocellulose and the low thermal reactivity of lignin. 
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On the other hand, the mean diameter results were in good agreement with the surface 

area results. That is, the lowest mean diameters belonged to holocelluloses, while 

lignins had the biggest mean diameters.   

A general trend in specific surface area or mean diameter could not be found out for 

torrefaction or carbonization process.  

3.4 SEM Results 

Figures 3.43 and 3.44 indicate that holocellulose and lignin that account for the 

macromolecular structure of biomass have quite different appearances in the SEM 

images. That is holocellulose has just a cylindrical shape in the micro level size, while 

lignin rather has an amorphous shape which looks like a stronger structure. It is also 

clear that holocellulose structure can be decomposed easily since there are not strong 

connections between the parts in this ingredient. 
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Main Sample Extractives-free 

Holocellulose Lignin 

Torrefied Carbonized 

Figure 3.43 : SEM micrographs of the samples derived from sunflower seed shells. 
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Main Sample Extractives-free 

Holocellulose Lignin 

Torrefied Carbonized 

Figure 3.44 : SEM micrographs of the samples derived from hazelnut shells. 

Torrefaction and carbonization processes led to some changes in the biomass 

structures in several ways. For instance, the bright points resulting from the presence 

of inorganics became more evident due to increasing ash contents in the thermally 

treated samples. This is quite obvious in case of either torrefied or carbonized hazelnut 

shell. On the other hand, formation of some very small new particles can also be 
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noticed from these images. Besides, the removal of volatile matter during the thermal 

treatments changed the structure in such a way that the carbonized residues became 

more fragile and fractal which can be easily seen from the carbonized hazelnut shell.  

3.5 XRD Results 

Mineral phases found by XRD technique are given in Table 3.12.  

  Table 3.12 : The mineral phases. 

Sample 
 

Minerals  

Sunflower Seed 
Shell 

 

Main Sample Silicon Dioxide (SiO2), Zeolite SSZ-24 (SiO2.267), Chabazite 
(SiO2), Sodium Carbonate (Na2CO3) 
 

Extractives-free Cristobalite (SiO2), Silicon Dioxide (SiO2), Disodium 
Calcium Silicate (SiCaNa2O4), Zeolite-X 
(Al92Ca23.2Mg22.4O384Si100), Potassium Sulfide (K2S), Zeolite 
ZSM-48 (SiO2) 
 

Holocellulose Niningerite (MgS), Eitelite (C2MgNa2O6), Aluminum Oxide 
(Al10.7O16), Calcite (CaCO3), Dolomite (CaMgCO3), Zeolite 
(SiO2), Anorthite (Al1.55Ca0.55Na0.45O8Si2.45) 
 

Lignin Haueyne (Al6Ca2.28K0.95Na4.35O32S2Si6) 
Torrefied Sample n/a 

 
Carbonized Sample n/a 

 
  

Hazelnut Shell  
Main Sample Silicon Dioxide (SiO2), Potassium Sulfide (K2S), 

Magnesium Silicate Spinel (Mg2SiO4), Zeolite (SiO2) 
 

Extractives- free Magnesium Silicate (MgSiO3), Potassium Sulfide (K2S), 
Analcime (Al15.26Na14.88O96Si32.74) 
 

Holocellulose Cristobalite (SiO2), Niningerite (MgS), Calcite (CaCO3), 
Sodium Aluminum Silicon Oxide (Al1.65Na1.65O4Si0.35), 
Tridymite (SiO2), Chabazite (Al3.7Ca1.78O24Si8.3) 
 

Torrefied Sample Cristobalite (SiO2), Potassium Oxide (K2O) 
 

Carbonized Sample Calcite (CaCO3), Nyerereite (C2CaK0.36Na1.64O6) 
   n/a : not available 
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These results given in Table 3.12 indicate that both the main biomass samples and their 

derivatives contain considerable amounts of silicon oxides either in the forms of silicon 

dioxide, cristobalite, chbazite or zeolites. Likewise, it is also reported in literature that 

many types of biomass species are very rich in silicon oxides and it is the major form 

of the mineral matter [16, 92]. Furthermore, as in the case of the main hazelnut shell 

sample, silicon may form some other combinations with other elements like 

magnesium to form magnesium silicate spinel.  

In addition, potassium sulfide was determined in the main sample of hazelnut shells. 

In fact, the high potassium content in hazelnut shell is an important concern in the 

utilization of this waste material in energetic purposes since it causes undesirable 

deposits such as slagging and fouling [16].    

In fact, the main challenge in determination of the mineral forms in a carbon containing 

material by XRD is that carbon masks the inorganics and it makes difficult to predict 

the inorganics. Some chemical treatments make it easier to detect the presence of 

inorganics. That why we were able to determine different types of inorganic phases in 

the cases of holocellulose and lignin fractions.  

In contrast to this, the increasing carbon contents in torrefied or carbonized samples 

make it more difficult or even impossible to detect the mineral phases. Consequently, 

nothing could be specified for torrefied or carbonized sunflower seed shells. Similarly, 

only calcite and nyerereite which is the combination of inorganics with the carbon 

matrix could be determined for the carbonized hazelnut shell.     

3.6 FTIR Analysis Results 

The FTIR spectra that show the absorbance levels of the functional groups in the main 

samples and their derivatives are seen in Figures 3.45 and 3.46 for sunflower seed shell 

and hazelnut shell, respectively. It is clear from these figures that the absorbance 

values at certain wavenumbers are highly characteristic and they confirm the presence 

of special functional groups in such complex structures. That is, the evident 

wavenumbers of this study which can be attributed to the bands of the functional 

groups are given in Table 3.13. 
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Table 3.13 : Wavenumbers and corresponding functional groups [93-95]. 

Wavenumber 
(cm-1) 

Possible Functional Groups 

3310 O-H  stretching 
2917 CH3  in aromatic ring 
2849 C-H  stretching 
2374 C=O  stretching  
2348 C=O  stretching  
2312 C=O  stretching 
1648 Olefinic  C=C vibrations   or   N-H  in-plane bending 
1577 Aromatic skeletal  C=C  vibration or C=C  stretching in olefin 

double bonds 
1540 Aromatic skeletal  C=C  vibration 
1500 Aromatic skeletal  C=C  vibration 
1470 Aromatic skeletal  C=C  vibration 
1459 Aromatic skeletal  C=C  vibration 
1420 C=C  absorptions 
1160 Ether type structures 
1116 C-O-C  vibrations   or   P-OC  stretching in polyphosphate esters 
1066 C-O-C  vibrations 
1025 C-O-C  vibrations 
874 C-H  aromatic out-of-plane 
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Figure 3.45 : The FTIR spectra for sunflower seed shell main sample and its derivatives.
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Figure 3.46 : The FTIR spectra for hazelnut seed shell main sample and its derivatives. 
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The results that can be obtained from the FTIR spectrum of sunflower seed shell 

derivatives were summarized as follows:  

1. C-O-C vibrations at around 1022 cm-1 seriously decreased due to thermal 

treatment. This shows the influence of torrefaction and carbonization processes 

to reduce the oxygen content of the sample.  

2. Similarly, some reductions took place in the intensities of C-H stretching bands 

at 2917 and 2849 cm-1 due to the decreasing hydrogen content.  

3. Meanwhile, C=C stretching and C=C vibration bands between 1578-1459     

cm-1 became more apparent after the thermal treatments, and it can explained 

by increasing the carbon content at the expense of oxygen and hydrogen 

contents.  

Evaluation of the bands in FTIR spectra for hazelnut shell derivatives revealed the 

following outcomes: 

1. The most evident C-O-C bands in the range of 1160-1029 cm-1 were seen in 

case of holocellulose fraction that is quite convenient with the fact that 

holocellulose ingredients such as cellulose and hemicellulose are very rich in 

weak ether bonds and therefore holocellulose forms the reactive part of 

biomass. 

2. Similarly, C-H stretching band at 2849 cm-1 is also distinctive in case of 

holocellulose.  

3. The bands below 500 cm-1 are generally regarded as “finger print region” and 

inorganics have significant contribution to the absorbance in this region. 

Actually, this biomass contains relatively high content of ash forming minerals 

and thermal treatments further concentrated them, leading increasing the 

intensities below 500 cm-1 seriously.  

Applied thermal treatments did not cause to increase in the absorbances of C=C 

vibrations at the wavenumbers between 1648-1421 cm-1 because the effectiveness of 

the treatments methods were not so good at increasing the carbon content, and the 

improvements in the biomass structure was quite limited in case of hazelnut sample.   
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3.7 Kinetic Analysis of Burning Profiles 

In this study, Coats-Redfern method was performed to each sample with regard to 

different reaction models, such as reaction order, diffusion, contracting geometry and 

nucleation. The DTG and DTA profiles were used to determine Ea and A values for 

each sample. The pyrolytic decomposition of biomass that is followed by 

homogeneous combustion of combustible volatiles in gaseous phase occurred in 

Region I under both burning conditions started by removal of volatile matters. After 

homogeneous combustion, the biochar that is the remnant from the volatile removal 

stage was burned through the surface oxidation that forms the Region II of the burning 

process. Therefore, each region was taken into account for kinetic approaches, 

individually. The activation energies and frequency factors of sunflower seed shells 

under dry air and pure oxygen burning conditions were shown in Table 3.14. 

With respect to Region I under dry air burning condition, the Ea value was gone up 

slightly from 38.74 to 58.60 kJ/mol in case of increasing reaction order. It can be said 

that the most suitable reaction order mechanism is first order. The highest frequency 

factor was determined in second order reaction model at 441.71 s-1. In addition, 

calculated activation energies from diffusional models were highest among the 

reaction models. The calculated activation energies from each model in Region I were 

lower compared to pure oxygen burning condition.  

As regards Region II under dry air burning condition, the activation energies were 

lower than Region I. For instance, the calculated activation energy from first order 

reaction decreased considerably from 45.93 kJ/mol to 29.52 kJ/mol. Moreover, the 

frequency factors were also lower than Region I. Take 3-D Ginstling-Brounshtein 

model as an example. The A value was plummeted from 1.2x104 s-1 to 0.0230 s-1. In 

addition, it can be said that Avrami-Erofeev, particularly in n=4 reaction model was 

not fitted well for all regions and reaction conditions.  

Concerning pure oxygen burning condition, the most suitable models were first order 

and 3-D Ginstling-Brounshtein for both regions. The calculated activation energy from 

first order in Region I was considerably lower than 3-D Ginstling-Brounshtein model 

with 51.32 kJ/mol and 96.78 kJ/mol, respectively. Furthermore, the frequency factor 

at first order was also far lower than 3-D Ginstling-Brounshtein model at 71.39 s-1 as 

opposed to 1.2 x105 s-1.  
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Table 3.14 : The activation energies and frequency factors of sunflower seed shells. 
 Dry Air Pure Oxygen 
Reaction Model f(α) Region I Region II Region I Region II 
 
 
Reaction order 

 R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) 

1st order (1-α)n 0.9680 45.93 15.54 0.9799 29.52 0.2925 0.9688 51.32 71.36 0.9700 29.94 0.4251 
1/3rd order (1-α)n 0.9635 38.74 2.24 0.8936 7.02 0.0006 0.9606 42.67 7.03 0.9479 7.18 0.0008 
1/2nd order (1-α)n 0.9651 40.45 3.55 0.9514 11.31 0.0025 0.9632 44.70 12.17 0.9663 11.55 0.0032 
2/3rd order (1-α)n 0.9664 42.21 5.72 0.9716 16.44 0.0108 0.9655 46.82 21.50 0.9711 16.75 0.0142 
2nd order (1-α)n 0.9671 58.60 441.71 0.9660 90.82 2.2 x105 0.9709 66.88 4237.17 0.9574 91.34 4.8x105 
 
Diffusional 

             

1-D 1/2α 0.9679 79.99 1.1x104 0.8947 12.23 0.0019 0.9632 86.58 7.5 x104 0.9606 11.93 0.0020 
2-D [-ln(1-α)]-1 0.9704 86.23 2.9x104 0.9583 23.18 0.0204 0.9674 93.93 2.5 x105 0.9808 23.07 0.0258 
3-D (Jander) 3/2(1-α)2/3[1-(1-α)1/3]-1 0.9723 93.38 4.1 x104 0.9840 43.97 0.6931 0.9711 102.52 5.1 x105 0.9827 44.18 1.0769 
3-D (Ginstling-
Brounshtein) 

3/2[(1-α)-1/3-1]-1 
0.9712 88.61 1.2 x104 0.9729 29.66 0.0230 0.9688 96.78 1.2 x105 0.9834 29.67 0.0312 

 
Contracting 
geometry 

             

Contracting area (1-α)(1-1/n) ; n=2 0.9651 40.45 1.78 0.9514 11.31 0.0013 0.9632 44.70 6.09 0.9663 11.55 0.0015 
Contracting 
volume 

(1-α)(1-1/n) ; n=3 
0.9664 42.21 1.91 0.9716 16.44 0.0036 0.9655 46.82 7.17 0.9711 16.75 0.0047 

 
Nucleation 

 
            

Avrami-Erofeev  
n(1-α)[-ln(1-α)](1-1/n) ; n=2 0.9520 18.49 0.023 0.9523 9.22 0.002 0.9549 21.22 0.05 0.9333 9.63 0.002 

Avrami-Erofeev  
n(1-α)[-ln(1-α)](1-1/n) ; n=3 0.9200 9.34 0.002 0.7689 2.45 0.0001 0.9297 11.18 0.003 0.7440 2.86 0.0002 

Avrami-Erofeev  
n(1-α)[-ln(1-α)](1-1/n) ; n=4 0.8427 4.77 0.0004 0.4698 n/a n/a 0.8768 6.16 0.0007 0.1552 n/a n/a 

      n/a :  not available
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The activation energies and frequency factors of torrefied sunflower seed shells 

biochar at 300 ºC under dry air and pure oxygen burning conditions were shown in 

Table 3.15. Regarding dry air and pure oxygen burning conditions, the calculated 

activation energies from reaction order models were lower than diffusional models. 

For instance; the calculated activation energy from first order for Region I under dry 

air burning was considerably lower than 3-D Ginstling-Brounshtein model at 59.28 

kJ/mol compared to 120.60 kJ/mol. Furthermore, the frequency factors under dry air 

burning condition were significantly higher than under pure oxygen. Take first order 

reaction model for Region I as an example. The A value plunged from 90.84 s-1 to 

0.0103 s-1. First order and 3-D Ginstling-Brounshtein models were best fitting models 

for torrefied sunflower seed shells at 300 ºC under both burning conditions. Moreover, 

it can be said that calculated activation energies under dry air burning condition were 

considerably higher than pure oxygen burning condition. It clarifies that reaction rates 

under pure oxygen burning circumstance were faster than dry air. 

The activation energies and frequency factors of carbonized sunflower seed shells 

biochar at 600 ºC under dry air and pure oxygen burning conditions were shown in 

Table 3.16. It can be stated that the most suitable model was 3-D Ginstling-

Brounshtein model for both burning conditions. The highest activation energies and 

frequency factors were calculated from diffusional models. The calculated activation 

energies from first order and 3-D Ginstling-Brounshtein for Region I under dry air 

burning were at 78.16 kJ/mol and 153.55 kJ/mol, respectively. The activation energies 

decreased significantly under pure oxygen burning condition compared to dry air. For 

instance; it decreased from 153.55 kJ/mol to 81.19 kJ/mol using 3-D Ginstling-

Brounshtein reaction model approach. In addition, the frequency factor plummeted 

from 9.8x107 s-1 to 43.86 s-1.  

All in all, it can be obviously stated that carbonization and torrefaction treatments 

increased the activation energy compared to main sample. This is mainly due to the 

high amount of carbon composition of sample; in other words, torrefaction removed 

the volatile matters, and carbonization increased the carbon content of samples. Pure 

oxygen burning condition was more reactive than dry air resulted in a lower activation 

energy for each model [96]. That is to say, reactions are much faster under pure oxygen 

burning condition.
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Table 3.15 : The activation energies and frequency factors of torrefied sunflower seed shells biochar at 300 ºC. 

 Dry Air Pure Oxygen 
Reaction Model f(α) Region I Region II Region I 
 
Reaction order 

 R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) 

1st order (1-α)n 0.9928 59.28 90.84 0.9809 40.50 1.45 0.9513 16.90 0.0103 
1/3rd order (1-α)n 0.9890 54.86 30.73 0.9827 25.53 0.04 0.9232 5.07 0.0002 
1/2nd order (1-α)n 0.9900 55.94 40.09 0.9834 29.23 0.11 0.9410 7.58 0.0006 
2/3rd order (1-α)n 0.9910 57.04 52.48 0.9834 33.20 0.27 0.9479 10.38 0.0015 
2nd order (1-α)n 0.9964 66.37 511.34 0.9753 75.16 2611.57 0.9460 43.77 7.2740 
Diffusional           
1-D 1/2α 0.9890 114.97 3.3x106 0.9870 48.93 3.19 0.9802 13.11 0.0016 
2-D [-ln(1-α)]-1 0,9909 119.14 4.4x106 0.9883 60.40 24.47 0.9807 20.68 0.0070 
3-D (Jander) 3/2(1-α)2/3[1-(1-α)1/3]-1 0.9926 123.54 2.8x106 0.9877 77.44 183.43 0.9759 32.11 0.0286 
3-D (Ginstling-
Brounshtein) 

 
3/2[(1-α)-1/3-1]-1 0.9915 120.60 1.4x106 0.9792 68.89 28.09 0.9792 24.38 0.0041 

Contracting 
geometry 

          

Contracting area (1-α)(1-1/n) ; n=2 0.9900 55.94 20.04 0.9834 29.23 0.05 0.9410 7.58 0.0003 
Contracting 
volume 

 
(1-α)(1-1/n) ; n=3 0.9910 57.04 17.49 0.9834 33.20 0.09 0.9479 10.38 0.0005 

Nucleation           
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; n=2 0.9892 24.90 0.063 0.9682 15.48 0.006 0.6992 2.77 0.0001 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; n=3 0.9825 13.44 0.004 0.9270 6.64 0.0005 0.7400 n/a n/a 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; n=4 0.9687 7.72 0.0008 0.7179 2.22 7.6x10-5 0.9652 n/a n/a 

   n/a : not available
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Table 3.16 : The activation energies and frequency factors of carbonized sunflower seed shells biochar at 600 ºC. 

 Dry Air Pure Oxygen 
Reaction Model f(α) Region I Region I 
Reaction order  R2 EA (kJ/mol) A (s-1) R2 EA (kJ/mol) A (s-1) 
1st order (1-α)n 0.9299 78.16 1317.99 0.9721 43.27 0.83 
1/3rd order (1-α)n 0.9404 70.27 240.87 0.9892 33.44 0.10 
1/2nd order (1-α)n 0.9378 72.19 364.43 0.9866 35.72 0.16 
2/3rd order (1-α)n 0.9352 74.14 555.36 0.9827 38.12 0.27 
2nd order (1-α)n 0.9140 91.11 2.1x104 0.9277 61.57 40.28 
Diffusional        
1-D 1/2α 0.9527 143.63 1.1x108 0.9934 69.90 37.07 
2-D [-ln(1-α)]-1 0.9480 150.93 2.5x108 0.9923 77.96 101.11 
3-D (Jander) 3/2(1-α)2/3[1-(1-α)1/3]-1 0.9428 158.80 2.9x108 0.9864 87.71 168.93 
3-D (Ginstling-
Brounshtein) 

3/2[(1-α)-1/3-1]-1 
0.9462 153.55 9.8x107 0.9907 81.19 43.86 

Contracting 
geometry 

       

Contracting area (1-α)(1-1/n) ; n=2 0.9378 72.19 182.21 0.9866 35.72 0.08 
Contracting 
volume 

(1-α)(1-1/n) ; n=3 
0.9352 74.14 185.12 0.9827 38.12 0.09 

Nucleation        
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=2 0.9091 33.82 0.26 0.9526 15.91 0.004 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=3 0.8779 19.04 0.01 0.8978 6.78 0.0004 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=4 0.8281 11.65 0.002 0.6407 2.22 5.7x10-5 
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The activation energies and frequency factors of hazelnut shells under dry air and pure 

oxygen burning conditions were shown in Table 3.17. The first order and 3-D 

Ginstling-Brounshtein were the best fitting models for under both burning conditions. 

It can be said that contracting geometry models were also suitable to model-fitting 

kinetic approach for hazelnut shells, particularly in Region II. The highest activation 

energy was obtained from diffusional models; in contrast, the lowest one was 

calculated from Avrami-Erofeev model.  

With respect to Region I under dry air burning, the calculated activation energy from 

first order was significantly lower than 3-D Ginstling-Brounshtein model at 44.23 

kJ/mol and 84.52 kJ/mol, respectively. Furthermore, the frequency factors were at 7.85 

s-1 and 3040 s-1, respectively.  

The calculated activation energies under dry air burning condition were not quite as 

high as under pure oxygen for Region I. In contrast, the activation energies under dry 

air were slightly higher than pure oxygen burning conditions for Region II. For 

instance; the calculated activation energy from first order reaction kinetic model under 

dry air and pure oxygen for Region II were 81.87 kJ/mol and 79.86 kJ/mol, 

respectively.  
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Table 3.17 : The activation energies and frequency factors of hazelnut shells.  
 Dry Air Pure Oxygen 
Reaction Model f(α) Region I Region II Region I Region II 
 
Reaction order 

 
 

R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) 

1st order (1-α)n 0.9947 44.23 7.85 0.8602 81.87 5272.21 0.9900 47.59 20.62 0.9379 79.86 5552.83 
1/3rd order (1-α)n 0.9909 36.41 1.03 0.9564 18.96 0.01 0.9904 41.51 4.13 0.9773 16.79 0.008 
1/2nd order (1-α)n 0.9924 38.27 1.67 0.9428 29.19 0.12 0.9905 42.98 6.10 0.9745 27.09 0.097 
2/3rd order (1-α)n 0.9935 40.19 2.76 0.9219 42.62 2.16 0.9904 44.48 9.08 0.9650 40.65 1.89 
2nd order (1-α)n 0.9932 57.89 251.14 0.7489 296.48 1x1021 0.9861 57.77 290.81 0.8834 291.74 1.6x1021 
Diffusional              
1-D 1/2α 0.9903 75.09 2628 0.9818 22.64 0.02 0.9918 86.31 4.6x104 0.9706 18.37 0.0082 
2-D [-ln(1-α)]-1 0.9930 81.93 7214.84 0.9790 44.05 1.15 0.9921 91.85 9.5x104 0.9867 39.22 0.58 
3-D (Jander) 3/2(1-α)2/3[1-(1-α)1/3]-1 0.9949 89.72 1.1x104 0.9380 96.93 1x104 0.992 97.93 9.7x104 0.9725 92.74 7764.73 
3-D (Ginstling-
Brounshtein) 

 
3/2[(1-α)-1/3-1]-1 0.9938 84.52 3040 0.9687 59.44 6.08 0.9921 93.87 3.5x104 0.9857 54.81 3.55 

Contracting 
geometry 

             

Contracting area (1-α)(1-1/n) ; n=2 0.9924 38.27 0.84 0.9428 29.19 0.06 0.9905 42.98 3.05 0.9745 27.09 0.048 
Contracting 
volume 

(1-α)(1-1/n) ; n=3 
0.9935 40.19 0.92 0.9219 42.62 0.72 0.9904 44.48 3.03 0.9650 40.65 0.63 

Nucleation              
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; n=2 0.9913 17.44 0.0152 0.8249 35.10 0.47 0.9854 19.31 0.03 0.9180 34.21 0.48 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; n=3 0.9834 8.52 0.0012 0.7673 19.50 0.02 0.9762 9.89 0.002 0.8869 18.99 0.02 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; n=4 0.9582 4.05 0.0002 0.6802 11.70 0.002 0.9538 5.17 0.0004 0.8350 11.38 0.002 
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The activation energies and frequency factors of torrefied hazelnut shells biochar at 

300 ºC under dry air and pure oxygen burning conditions were shown in Table 3.18. 

It can be said that all reaction models were suitable for Region I under dry air burning 

condition. In contrast, first order and 3-D Ginstling-Brounshtein models were the best 

reaction model approaches to Region II under dry air and Region I under pure oxygen 

conditions.  

As regards dry air burning conditions, the activation energies were decreased 

dramatically from Region I to Region II. Take first order reaction model as an example. 

It decreased from 87.23 kJ/mol to 40.05 kJ/mol. Furthermore, the frequency factor 

declined from 3.6x104 s-1 to 1.04 s-1. With respect to Region I under dry air and pure 

oxygen burning conditions, there was a considerable fall in activation energies, which 

meant reaction rates were slower under dry air than pure oxygen burning condition. 

For instances, the calculated activation energy from 3-D Ginstling-Brounshtein model 

under dry air and pure oxygen were at 176.75 kJ/mol and 67.71 kJ/mol, respectively. 

The activation energies and frequency factors of carbonized hazelnut shells biochar at 

600 ºC under dry air and pure oxygen burning conditions were shown in Table 3.19. 

The first order and 3-D Ginstling-Brounshtein models were suitable kinetic approach 

for carbonized hazelnut shells biochar. The activation energies in Region I were 

significantly higher than Region II under dry air burning condition. For instance; the 

calculated activation energy from first order reaction model for Region I and Region 

II were 66.96 kJ/mol and 51.54, respectively. Furthermore, the frequency factor 

decreased from 283.12 s-1 in Region I to 8.03 s-1 in Region II. The lowest activation 

energies were calculated under pure oxygen burning condition. With respect to Region 

I under both conditions, the calculated activation energy from first order decreased 

from 66.96 kJ/mol to 14.89 kJ/mol.  
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Table 3.18 : The activation energies and frequency factors of torrefied hazelnut shells biochar at 300 ºC. 

 Dry Air Pure Oxygen 
Reaction Model f(α) Region I Region II Region I 
 
Reaction order 

 R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) R2 EA 
(kJ/mol) 

A (s-1) 

1st order (1-α)n 0.9972 87.23 3.6x104 0.9637 40.05 1.04 0.9754 37.30 0.60 
1/3rd order (1-α)n 0.9963 82.95 1.3x104 0.9585 20.64 0.01 0.9626 27.12 0.05 
1/2nd order (1-α)n 0.9966 84.01 1.7x104 0.9611 24.88 0.03 0.9691 29.43 0.09 
2/3rd order (1-α)n 0.9968 85.07 2.1x104 0.9626 29.52 0.10 0.9733 31.90 0.16 
2nd order (1-α)n 0.9981 93.92 1.7x105 0.9620 81.55 5492.66 0.9503 57.21 61.15 
Diffusional           
1-D 1/2α 0.9963 171.20 4x1011 0.9735 38.28 0.30 0.9624 56.49 9.48 
2-D [-ln(1-α)]-1 0.9968 175.33 5.2x1011 0.9745 51.72 2.83 0.9736 64.41 29.89 
3-D (Jander) 3/2(1-α)2/3[1-(1-α)1/3]-1 0.9972 179.59 3x1011 0.9735 70.69 33.53 0.9805 74.44 65.29 
3-D (Ginstling-
Brounshtein) 

 
3/2[(1-α)-1/3-1]-1 0.9969 176.75 1.6x1011 0.9743 57.92 2.34 0.9768 67.71 14.13 

Contracting 
geometry 

          

Contracting area (1-α)(1-1/n) ; n=2 0.9966 84.01 8374.78 0.9611 24.88 0.02 0.9691 29.43 0.04 
Contracting 
volume 

(1-α)(1-1/n) ; n=3 
0.9968 85.07 7166.47 0.9626 29.52 0.03 0.9733 31.90 0.05 

Nucleation           
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=2 0.9964 38.89 1.61 0.9308 14.21 0.004 0.9541 13.33 0.003 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=3 0.9952 22.77 0.04 0.8250 5.59 0.0003 0.8838 5.34 0.0003 
Avrami-Erofeev 
 

n(1-α)[-ln(1-α)](1-1/n) ; 
n=4 0.9934 14.72 0.01 0.3072 1.28 3.5x10-5 0.4612 1.34 3.7x10-5 
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Table 3.19 : The activation energies and frequency factors of carbonized hazelnut shells biochar at 600 ºC. 

 Dry Air Pure Oxygen 
Reaction Model f(α) Region I Region II Region I 
Reaction order  R2 EA 

(kJ/mol) 
A (s-1) R2 EA 

(kJ/mol) 
A (s-1) R2 EA 

(kJ/mol) 
A (s-1) 

1st order (1-α)n 0.9878 66.96 283.12 0.9812 51.54 8.03 0.8678 14.89 0.006 
1/3rd order (1-α)n 0.9851 63.72 130.80 0.9808 31.60 0.11 0.3772 1.88 5x10-5 
1/2nd order (1-α)n 0.9858 64.52 158.31 0.9813 36.08 0.30 0.6889 4.53 0.0002 
2/3rd order (1-α)n 0.9865 65.33 191.88 0.9815 40.89 0.86 0.7975 7.57 0.0007 
2nd order (1-α)n 0.9911 72.03 942.26 0.9782 91.63 2.6x104 0.9017 46.55 10.44 
Diffusional           
1-D 1/2α 0.9861 133.89 6.9x107 0.9859 58.83 2.7x104 0.8457 7.23 0.0003 
2-D [-ln(1-α)]-1 0.9873 137.02 7.1x107 0.9863 73.76 141.28 0.9095 14.74 0.0017 
3-D (Jander) 3/2(1-α)2/3[1-(1-α)1/3]-1 0.9885 140.26 3.3x107 0.9857 93.40 1636.96 0.9247 27.15 0.0093 
3-D (Ginstling-
Brounshtein) 

 
 
3/2[(1-α)-1/3-1]-1 0.9877 138.10 2x107 0.9862 80.22 116.15 0.9177 18.71 0.0011 

Contracting 
geometry 

          

Contracting area (1-α)(1-1/n) ; n=2 0.9858 64.52 79.16 0.9813 36.08 0.15 0.6889 4.53 0.0001 
Contracting 
volume 

(1-α)(1-1/n) ; n=3 
0.9865 65.33 63.96 0.9815 40.89 0.29 0.7975 7.57 0.0002 

Nucleation           
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=2 0.9828 28.68 0.1188 0.9691 19.96 0.01 0.2045 1.44 4.7x10-5 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=3 0.9744 15.92 0.0065 0.9406 9.44 0.001 0.7284 n/a n/a 
Avrami-Erofeev n(1-α)[-ln(1-α)](1-1/n) ; 

n=4 0.9591 9.53 0.0012 0.8467 4.17 0.0002 0.9376 n/a n/a 
 n/a: not available
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All things considered, the first order and 3-D Ginstling-Brounshtein kinetic model 

approaches were the most convenient reaction models for almost all samples. 

According to Hashimato et al. [81], first order reaction model is suitable for most of 

the types of biomass, which also demonstrated in this kinetic study. Moreover, the 

highest activation energy was calculated from 3-D Ginstling-Brounshtein model 

among all reaction models due to the some difficulties during diffusion and mass 

transfers.  

The contracting geometry reaction models were also convenient for torrefied, 

carbonized biochars and untreated biomass samples. Because, the structure shrank due 

to removal of volatile matters, particularly in Region I.  Moreover, burning of biochar 

which started from surface led to smaller size of particle in Region II.     
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4. CONCLUSION AND RECOMMENDATIONS 

 The main ingredients in biomass are hemicellulose, cellulose and lignin that 

have varying ratios depending on the structure of biomass. According to 

macromolecular components analysis, sunflower seed shells had the high 

holocellulose content, which is the sum of hemicellulose and cellulose 

composition in biomass, and relatively low lignin content. On the other hand, 

hazelnut shells had relatively lower content of holocellulose, but higher lignin 

content in comparison to sunflower seed shells.  

 Fixed carbon to volatile matters ratios of both samples were lower than those 

given for typical coal samples in literatures. That is compatible with Van 

Krevelen diagram for various solid fuels in Figure 1.2. 

 The ratio of macromolecular components found in biomass sample affected the 

thermal characteristics of biomass species. That is, holocellulose is more 

reactive compound than lignin; therefore, sunflower seed shells sample showed 

more thermally reactive characteristic under burning conditions.  

 The HHV of produced biochars tended to increase with rising temperature 

applied during biochar production. The increase in calorific value was very 

clearly in case of sunflower seed shells samples due to the efficient removal of 

volatile matters. 

 The fuel quality was increased via thermal treatments which increased carbon 

content and decreased oxygen content in biomass. Furthermore, torrefaction 

and carbonization led to decline in moisture and volatile matters; along with 

considerable increases in carbon, fixed carbon and calorific value of biomass. 

 With respect to DTA and DSC profiles, it can be mentioned that volatile 

matters firstly devolatilized and subsequently burned in first region. After 

burning of volatiles, the biomass turned gradually into porous solid structure 

to which oxygen diffused to burn it by surface oxidation in a temperature range 

of second region. Moreover, after end point there was a small region which 
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meant the decomposition of the ash forming minerals and their phase 

transitions. 

 The rates of the mass losses in the volatile matter transformation and 

homogenous combustion regions increased considerably under pure oxygen 

burning condition in comparison to dry air due to the having more reactive 

characteristics. 

 There was a considerable increase in Rmax and ΔTRmax values of both sunflower 

seed shells and hazelnut shells in case of pure oxygen burning condition. That 

is to say; the more intensive heat was produced under pure oxygen compared 

to dry air. This is mainly due to the increase of thermal reactivity during 

burning with pure oxygen.  

 Regarding main samples, the first decomposition region turned into sharp peak 

under pure oxygen burning which indicates the rapid burning of the volatile 

matters.  

 Some of the volatile matters had been removed during torrefaction; therefore, 

remained volatiles in biomass were eliminated at higher temperatures in 

comparison to untreated biomass samples.  

 Concerning torrefaction process, it can be obviously said that the extent of Rmax 

data increased, and shifted to the higher temperatures. 

 After torrefaction, homogenous reaction was limited due to a dramatic decline 

in volatile matter content, particularly in sunflower seed shells sample. As a 

consequence, the burning of torrefied biochar was represented by a sharp peak, 

and onset and end points shifted to the lower temperatures. 

 The highest Rmax and ΔTRmax data were obtained from carbonized sunflower 

seed shells with pure oxygen burning. In other words; it had the highest 

calorific value.  

 With respect to particle analysis results, holocellulose had the highest specific 

surface area; whereas, lignin had the smallest which is in good agreement with 

the low thermal reactivity characteristics. On the other hand, a general trend 

could not be determined for torrefied and carbonized samples. 

 Regarding SEM analysis results, it can be said that holocellulose had 

cylindrical structure; while, lignin has amorphous shape. Furthermore, some 

bright regions were available in the torrefied and carbonized samples, which 
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resulted from inorganic contents. In other words; thermal treatments make the 

ash forming minerals relatively more concentrated. 

 Concerning XRD analysis results, there was a considerable amount of silicon 

oxides in the forms of silicon dioxide, cristobalite and chbazite in both main 

samples and their derivatives. It demonstrates that mineral matters are mainly 

composed of silicon oxides. Furthermore, carbon masks the inorganic 

substances; therefore, it is difficult to determine mineral phases in torrefied and 

carbonized samples, particularly in sunflower seed shells. 

 The main sample of hazelnut shells contained potassium sulfide leading to 

problematic depositions such as slagging and fouling in commercial biomass 

combustion systems. As a consequence, some precautions should be taken and 

suitable combustion process should be chosen in case of using this material as 

a biomass source.   

 With respect to FTIR analysis results, C-O-C and C-H bond intensities 

decreased considerably due to the thermal treatments, which demonstrates a 

decline in oxygen and hydrogen contents in sunflower seed shells samples. On 

the other hand, intensity of C=C band increased due to the increasing carbon 

content. 

 The holocellulose in hazelnut shells had C-O-C bands due to containing weak 

ether bonds, which have higher thermal reactivity characteristic. Furthermore, 

bands below 500 cm-1 show minerals which became more apparent in hazelnut 

shells in comparison to sunflower seed shells due to high ash content. 

 It can be obviously said that the temperature of torrefaction and carbonization 

did not suffice for hazelnut shells to improve the carbon content. Accordingly, 

the intensity of C=C bands did not increase in torrefied and carbonized 

samples.  

 As regards biomass kinetic analysis result, homogenous burning and pyrolysis 

took place in Region I for all samples. After pyrolysis, char burning and 

heterogeneous reaction accounted for Region II in both burning conditions.  

 It can be said that first order and 3-D Ginstling-Brounshtein were the most 

convenient reaction models for almost all samples. The activation energy was 

calculated higher from 3-D Ginstling-Brounshtein in comparison to first order 
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reaction model. Since, there were some difficulties in diffusion and mass 

transfers resulted in a much more energy requirement. 

 Moreover, contracting geometry models were also fitted well for both biomass 

samples due to shrinking structure in Region I and making into smaller 

particles during burning of biochar in Region II. 

 The activation energy increased in torrefied and carbonized samples in 

comparison to untreated samples due to the high amount of carbon 

composition. 

 As regards sunflower seed shells, calculated activation energy from pure 

oxygen burning condition was higher than dry air. In contrast, the lowest 

activation energies were calculated from pure oxygen burning condition for 

torrefied and carbonized samples. This may be explained by the fact that these 

samples had higher ash content in comparison to main sample resulted in a 

high reactivity characteristic. In other words, inorganics may play catalytic or 

inhibiting role during the thermal processes that affect the activation energy.  

On the other hand, this trend could not be applied to hazelnut shells samples.  

 The performed treatments were not enough for hazelnut shells; therefore, 

higher temperatures should be taken into account during the thermal treatment 

of this material. However, in that case loss of the organic part owing to severe 

conditions will be inevitable. Alternatively, a new reactor configuration that 

provides rapid heating can be tried. In this way, the desired level of 

devolatilization may be provided without causing serious losses in the calorific 

value of biomass.    
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