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Resumo 

 

À medida que novas linhas novas geneticamente modificadas vão sendo geradas, 

aumenta o desafio de manter este vasto número de peixes-zebra. Desta forma, a 

criopreservação de esperma tem sido considerada uma ótima opção para o armazenamento 

a longo prazo de material genético reduzindo assim custos inerentes à sua manutenção. 

 

Os métodos tradicionais de criopreservação e vitrificação são os mais utilizados 

para criopreservar células. A vitrificação apresenta inúmeras vantagens sobre o método 

tradicional, entre as quais a não formação de cristais de gelo através de elevadas taxas de 

arrefecimento. Desta forma, a concentração de agentes crioprotetores utilizados pode ser 

menor, diminuindo o seu efeito tóxico nas células. 

 

 A falta de padronização e resultados coesos em estudos anteriores foram as 

principais razões para o desenvolvimento de um método simples e consistente na 

Plataforma de Peixes da Fundação Champalimaud. Desta forma, o objetivo principal desta 

tese foi o desenvolvimento de um protocolo fácil, económico e coerente, designado por 

congelamento ultra-rápido. Este método otimizado para a criopreservação de esperma de 

peixe-zebra terá um impacto muito importante na comunidade científica. 

De 23 protocolos testados (n = 201), foram escolhidos para criopreservação de esperma de 

peixe-zebra os que apresentaram melhores resultados tendo em conta a percentagem de 

recuperação de linhas, a taxa média de fertilização, a taxa média de sobrevivência das 

larvas e a taxa média de malformações. Desta forma, foram selecionados dois protocolos 

com combinações de extender e crioprotector distintas.  

 

 Em relação aos métodos complementares utilizados na otimização do protocolo de 

criopreservação, a estimulação hormonal das fêmeas com 17α,20β-DHP traduziu-se 

claramente numa melhoria na qualidade e quantidade dos oócitos, sendo um passo muito 

importante na otimização deste protocolo; a quantificação da concentração de esperma é útil 

apenas com amostras translúcidas, no entanto indicou que a concentração de esperma não 

pode ser correlacionada com a taxa de fertilização; o protocolo otimizado de FIV (fertilização 

in vitro) é, no momento, um serviço prestado pela Plataforma de Peixes da Fundação 

Champalimaud. 

 

 Paralelamente à otimização da criopreservação de esperma, foi otimizado um 

protocolo de transgénese usando o sistema de transposão Tol2 com microinjeção in vitro de 
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oócitos seguido pela técnica de FIV otimizada anteriormente. Com este método, a 

percentagem de fundadores transgénicos de uma linha transgénica estável foi de 66.67%, 

muito superior à observada em microinjeção no estádio de zigoto. Foi ainda realizada uma 

análise da viabilidade do esperma em peixes alimentados com duas dietas comerciais 

(Skretting Gemma® e SparosZebrafeed®) tendo como conclusão que ambas as dietas são 

semelhantes. 

 

 

Palavras-chave: criopreservação; fertilização in vitro; esperma; peixe-zebra. 
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Summary 

 

As new genetically modified lines are being generated the challenge of maintaining 

this vast number of zebrafish increases. Therefore, cryopreservation of sperm has been 

considered a good option for the long-term storage of genetic material, thus reducing costs 

inherent to its maintenance. 

 

The traditional cryopreservation method and vitrification are the most used methods 

to cryopreserve cells. Vitrification has many primary advantages and benefits over the other 

methods, such as no ice crystal formation through increased cooling rates. This way, the 

concentration of cryoprotectant agents used can be less, decreasing its toxic effect in the 

cells. 

 

The lack of standardization and coherent expectable results in previous studies 

were the major causes for the development of a simple and consistent method at the 

Champalimaud Fish Platform. This way, as the main goal of this thesis, an easy, cheap and 

reliable protocol procedure was developed and optimized, designated by ultra-fast freezing. 

This optimized method for zebrafish sperm cryopreservation will have a very important 

impact in the zebrafish community. 

The best protocols of 23 tested (n=201) were chosen for zebrafish sperm cryopreservation 

according to the percentage of line recovery, mean fertilization rate, mean larvae survival 

rate, and mean malformation rate. This way, two protocols with different combinations of 

extender and cryoprotectant were selected. 

 

Regarding the complementary methods for the ultra-fast freezing method, female 

stimulation with 17α,20β-DHP was clearly an improvement in the oocyte quality and quantity 

and a very important step in the optimization of this protocol; quantification of sperm 

concentration is useful only with transparent samples but indicated that sperm concentration 

can´t be correlated with the fertilization rate; IVF (in vitro fertilization) optimized protocol is at 

the moment a state-of-the-art service in the Champalimaud Fish Facility. 

 

In parallel with sperm cryopreservation optimization, a transgenic protocol was 

optimized using the Tol2 transposon system with oocyte in vitro microinjection followed by 

the optimized IVF technique previously optimized. With this method the percentage of 

germline transgenic founders was 66.67%, a higher percentage than the one observed in 
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one-cell stage microinjection. It was also performed a sperm viability analysis using fish fed 

with two dietary regimens currently commercialized (Skretting Gemma® and 

SparosZebrafeed®), concluding that  both feedings are equal. 

 

 

Keywords: cryopreservation; in vitro fertilization; sperm; zebrafish. 
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I. Introduction 

 

Sperm cryopreservation is a technique involving many steps including sample 

collection, sperm extension, cryoprotectant selection, cooling, storage, thawing, and viability 

detection (Tiersch 2000). Its success can be assessed by in vitro fertilization and production 

of live offspring. Protocols for sperm cryopreservation can vary due to species-specific 

differences in sperm size, shape, and biochemical characteristics. In sperm cryopreservation, 

Cryo Preservation Agents (CPAs) are additives necessary for protection against freezing 

damage due to intracellular ice crystal formation and excessive dehydration (Yang et al. 

2007). 

 

Using genome manipulation techniques, biomedical research has been creating 

thousands of new mutant strains of mice and zebrafish, the two main vertebrate animal 

models. For mice, the number of strains is so big that it has become impossible in terms of 

cost and space to maintain more than a fraction as breeding colonies. Consequently, an 

increasing number and proportion of strains are being maintained by cryopreservation of 

their germplasm (Mazur et al. 2008). Zebrafish is by now the second most used animal 

model in biomedical research and the increasingly fast generation of new transgenic and 

mutant fish lines in recent years (Clark et al. 2011, Howe et al. 2013, Varshney et al. 2013, 

Ata et al. 2016) urges for simple and efficient cryopreservation programs. The development 

of more effective, reproducible, easier and cheaper methods of sperm cryopreservation not 

only guarantees safe preservation of the genotypes but also addresses the inevitable space 

limitation to maintain live strains in fish facilities thus limiting research.  

 

With recent improvements in the methodology, cryopreservation of spermatozoa in 

zebrafish is quickly becoming the favoured method for archiving animal lines, leading to 

much less ‘‘front-end’’ work required for safely storage. One disadvantage of sperm 

cryopreservation is that only one haploid gamete is preserved. However, the gamete 

cryopreservation remains the most used technique for the archiving and shipping of valuable 

animal models (Du et al. 2010). 

 

There are two main cryopreservation techniques used for sperm conservation, the 

slow equilibrium freezing cryopreservation (traditional method) and vitrification. The most 

commonly used cryopreservation method relies in sperm being slowly frozen and then stored 

in liquid nitrogen. However, as in humans and rodents, this technique has drawbacks, 

including loss of motility and vitality, and membrane damage. For zebrafish, published 
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protocols are ponderous, with multiple steps rendering them error-prone. More recent studies 

have demonstrated that the use of French straws can improve this method (Yang et al. 

2009), however a programmable freezer is very expensive which can be a limitation to many 

zebrafish facilities. Vitrification on the other hand involves suspending cells in sufficiently high 

concentrations of mixtures of CPAs that, in combination with sufficiently high cooling and 

warming rates, prevent the cells and the surrounding medium from undergoing ice formation 

during cooling or warming (Mazur et al. 2008). Vitrification is a freezing method with several 

advantages over the traditional cryopreservation method, including a significant increase in 

sperm motility in humans and rodents (Kasai & Mukaida 2004). In the latest tests in 

zebrafish, vitrification consisted of freezing primordial germ cells, however this method had 

very low success rates and entailed quite laborious steps. Simultaneously, there were 

suggestions that cryopreservation of these cells can have negative consequences in 

gametogenesis due to hypermethylation (Riesco & Robles 2013).  
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II. Aims  

 

Due to the inherent problems associated to the slow equilibrium freezing in 

cryopreservation (traditional method) and vitrification, it is thus becoming urgent to have a 

better, easier and functional method for zebrafish sperm cryopreservation. To achieve this 

goal it was decided to develop an ultra-fast freezing method. This is an intermediate freezing 

method that, to the best of our knowledge, had not been adopted yet in zebrafish. This new 

method for zebrafish sperm cryopreservation was developed based on previous murine and 

zebrafish protocols. Therefore, the main goal of this project was to develop and optimize a 

new sperm cryopreservation protocol that would be easily reproducible not requiring 

excessive training nor specific skills, not too laborious and as cheap as possible making this 

procedure accessible for all the zebrafish community. More importantly, we wanted a 

protocol as more independent as possible from individual sperm quality in order to have 

more balanced success rates. 

 

To assess the success of the procedure, fertilization rate was used as a quality 

check. In order to have a reliable fertilization rate, the in vitro fertilization technique itself was 

optimized using several approaches. 
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III. Literature review 

 

1. Gamete production 

In contrast to other vertebrate groups, reproduction in fishes exhibits great diversity 

and many original features. Reproductive strategies are as diverse as the adaptations to 

numerous aquatic environments that are found in fishes. This diversity may concern 

sexuality, spawning, and parental behavior, sensitivity to environmental factors, and specific 

features of gametogenesis (Jalabert, 2005 in Bone & Moore 2008). Knowledge of fish 

reproduction and life history is important. The prospects of breeding fish requires an 

understanding of reproductive physiology, breeding behavior, and genetics (Purdom, 1993 in 

Bone & Moore 2008). Because fish have evolved to live in diverse environments, there are 

substantial differences in fish morphofunctional characteristics. Fish have had to develop 

adaptation mechanisms to survive in diverse environmental conditions, and as a result 

spermatozoa from fish species demonstrate significant differences in their reactions to 

cryopreservation protocols. For example, there is a striking difference in post-thaw survival of 

reproductive cells of marine and freshwater species. Sperm of marine species were 

successfully cryopreserved and reported (Blaxter 1953 in Stoss 1983 and in Agarwal 2011, 

Tsai & Lin 2012) soon after the discovery of the first cryoprotectant, whereas the 

cryopreservation of freshwater fish gametes was more challenging and took longer to 

achieve (Graybill & Horton 1969, Moczarski 1977, Stein & Bayrle 1978 in Stoss 1983, Tsai & 

Lin 2012). 

 

The fish male yields several hundreds of billions of spermatozoa per year per kg of 

body weight, or more than 100x106/g of testis per day, which is 10 times higher than 

production recorded in mammals. Sperm concentration, also very high, is between 10 and 

40x109 spermatozoa/ml of sperm in trout and pike, 7x109 in coregones, 14x109 in carp, and 

10x109 and 30x109 in the perch. However, only a part of these spermatozoa can be collected 

in some species during the reproductive period, the rest remain in the testis where they are 

gradually reabsorbed. Two original features characterize the spermatozoa physiology of 

most of the studied species: immotility in the genital tract and extremely short lifespan after 

motility is triggered. Immotility can be due to the presence of a specific ion in the seminal 

fluid but other factors, such as elevation of osmotic pressure or sucrose may also inhibit 

motility (Bellard 1988 in Alavi & Cosson 2006). Female fecundity is generally high, depending 

on the species and the mode of reproduction. Fecundity or egg size in the same species may 

also depend on the time of reproduction, which, in turn, depends on seasonal differences in 

food availability for the parents (Bagenal 1971 in Demartini & Sikkel 2006). After ovulation, 
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the fertilization ability of the ova remaining in the female genital tract declines more or less 

rapidly (varying from hours to weeks), depending on the species (Bellard 1988 in Alavi & 

Cosson 2006). 

 

2. Biophysics of zebrafish sperm  

Cell cryopreservation cannot be improved without proper basic physiological 

knowledge. Successful cryopreservation of germplasm must consider intrinsic biophysical 

properties (e.g., water and cryoprotectant permeability, osmotic tolerance limits, intracellular 

ice nucleation) to maximize survival (Rall 1993 in Hagedorn et al. 2009). It is important to 

understand and avoid the mechanisms by which sperm is damaged or destroyed during 

cryopreservation. 

 

Zebrafish sperm have small, round heads and a smaller midpiece (Figure III.1) that 

together are approximated as a prolate spheroid with an average major and minor axes of 

the combined head and mid-piece of 2.2± <0.1 µm (SEM) and 1.9 µm ± <0.1 m, respectively, 

an average tail length of 27.6 ± 0.5 µm with an average tail thickness of 0.4 ± <0.1 µm in 

diameter (Hagedorn et al. 2009). 

 

 

Figure III.1: Zebrafish sperm morphology. Zebrafish sperm display a prolate head and mid-piece 
(arrow), and a tail ~30 µm in length. Bar = 4 µm (in Hagedorn et al. 2009). 
 

 
Sperm volume measured in the Coulter electronic particle counter is 12.1 µm3. The 

optimal osmotic range for these cells is from approximately 200 to 600 mOsm/kg (Hagedorn 

et al. 2009). 

 

Zebrafish sperm have a low osmotically-inactive component (Vb) (determines how 

much osmotically-active water is in the cell) compared to that of sperm from most mammals. 

Vb of zebrafish is 0.37 compared to 0.61 for mouse, for example. Water permeability (Lp) for 

zebrafish sperm is low, approximately 30-fold lower than in mammalian sperm, as might be 
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predicted for a cell that must function in a hypotonic environment (e.g., fresh water) when 

fertilizing an egg (Hagedorn et al. 2009). 

 

3. Cryopreservation 

The preservation of biological material in a stable state is a fundamental 

requirement in biological/medical science, agriculture, and biotechnology. It has enabled 

standardization of experimental work over time, has secured lifesaving banks of cells and 

tissue ready for transplantation and transfusion at the time of need, and has assured the 

survival of critical germ plasm in support of programs for the conservation of species. 

Cryopreservation is one of the widely accepted and preferred techniques for achieving long-

term storage, and has been applied to an increasingly diverse range of biological materials. 

(Day & Stacey 2007). Advantage of cryopreserving the fish semen is well established. It is 

not only a useful management tool, it offers several benefits such as stock protection due to 

outbreak of diseases, natural disaster, or over exploitation. Other application of 

cryopreservation includes stable supply of sperm for optimal utilization in hatchery 

production, and easy stock transportation among hatcheries, with stocks being maintained 

more economically and effectively, and for laboratory experiments providing experimental 

material for advanced studies such as gene transfer (Agarwal 2011). 

Although the basis for many methodologies is common, many laboratories lack expertise in 

applying correct preservation and storage procedures and many apply out-dated or 

inappropriate protocols for storing samples or cultures (Day & Stacey 2007). 

Cryopreservation is the use of very low temperatures to preserve structurally intact 

living cells and tissues (Agarwal 2011, Pegg 2007). This technique allows virtually indefinite 

storage of biological material without deterioration over a time scale of at least several 

thousands of years (Agarwal 2011, Mazur 1985 in Hiemstra et al. 2005), but probably much 

longer. Important progress in cryobiology was achieved in the second half of the previous 

century (Hiemstra et al. 2005). 

In cryopreservation, cells are suspended in a suitable solution, cooled, stored in 

liquid nitrogen, warmed to room temperature, and returned to a physiological solution. During 

each step of this process, cells are at risk for various types of damage. The primary injury is 

that caused by the formation of intracellular ice during cooling and warming (Kasai & 

Mukaida 2004). The biological effects of cooling are dominated by the freezing of water, 

which results in the concentration of the solutes that are dissolved in the remaining liquid 

phase. Rival theories of freezing injury have envisaged either that ice crystals pierce or tease 

apart the cells, destroying them by direct mechanical action, or that damage is from 

secondary effects via changes in the composition of the liquid phase. Cryoprotectants, simply 
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by increasing the total concentration of all solutes in the system, reduce the amount of ice 

formed at any given temperature, but to be biologically acceptable they must be able to 

penetrate into the cells and have low toxicity. Both damaging mechanisms are important, 

their relative contributions depending on the cell type, cooling rate, and warming rate (Pegg 

2007). 

Whether freezing is permitted (conventional cryopreservation) or prevented 

(vitrification), the cryoprotectant has to gain access to all parts of the system. However, there 

are numerous barriers to the free diffusion of solutes (e.g., membranes), and these can result 

in transient, and sometimes equilibrium, changes in compartment volumes, which can be 

damaging. Hence, the processes of diffusion and osmosis have important effects during the 

introduction of cryoprotectants, the removal of cryoprotectants, the freezing process, and 

during thawing (Pegg 2007). 

It was not until 1948 that a general method was discovered allowing for the freezing 

of many types of animal cells with subsequent restoration of structure and function (Agarwal 

2011). In 1949, Polge et al. published their landmark paper in which they showed that the 

inclusion of 10–20% of glycerol enabled the spermatozoa of the cock to survive prolonged 

freezing at –80°C. Regarding fish, several different approaches were initially tested including 

storage of fish sperm in medium saturated with different gases (Holtz et al 1976), 

preservation of sperm at temperatures above zero (Ginzburg 1968), as well as in the frozen 

state (Blaxter 1953) and drying (Zell 1978). However, to date, low-temperature preservation 

has proven to be the most effective approach, with the first successful cryopreservation of 

fish sperm being reported by Blaxter in 1953 (Agarwal 2011). 

 

3.1. Embryo, oocyte and primordial germ cell cryopreservation 

Teleost primordial germ cells (PGCs), as the embryonic precursors of gametes, 

have tremendous importance in the fields of developmental biology and aquaculture. They 

are an optimal cell type to be cryopreserved because they conserve both paternal and 

maternal genomes. Moreover, recent studies have demonstrated the competence and 

suitability of these cells for surrogate production. The implementation of these technologies 

provides precise control over many relevant reproductive aspects, for example, PGCs or 

spermatogonias (SGs) xenotransplantation that could offer a solution for the management of 

species with reproductive failures, or for those species with long maturation periods (Robles 

et al. 2017). 

 

In zebrafish, PGCs have been cultured and marked by using a transgenic line that 

expresses red fluorescent protein (RFP) under the PGC-specific vasa promoter (optimizing 
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the culture conditions by counting the number of fluorescent cells) (Fan et al. 2008). The 

possibility of generating PGCs in vitro would represent a powerful tool in biotechnological 

research and aquaculture. The number of PGCs is limited in embryos and cell proliferation is 

difficult to achieve once they are cultured in vitro. Generation of these cells in vitro would 

provide the means to increase the number of cells per embryo which could be important for 

germplasm banking purposes, it would be a source of cells for surrogate production and it 

would increase the possibility to genetically manipulate embryonic cells (easier to transfer 

than PGCs) in teleosts (Robles et al. 2017). 

 

Both embryo and oocyte cryopreservation have not been successful in fish yet. Most 

of the cryopreservation protocols have been developed for sperm, which disregards the 

female genome (Robles et al. 2017). Teleost oocytes and embryos have intrinsic biophysical 

properties that make their cryopreservation difficult.  To minimize cryodamage and maximize 

survival rates, water exchange and cryoprotectant influx have to be studied and tested, 

taking into account that both these factors are influenced by membrane permeability, osmotic 

tolerance limits, surface-volume ratio, and yolk amount. (Hagedorn et al 1997). All previous 

attempts to cryopreserve fish embryos have been unsuccessful so far. The analysis of the 

permeability parameters of the zebrafish embryo predicted that a major site for lethal 

cryodamage would occur within the yolk compartment (Robles et al. 2017). Presumably, 

without sufficient cryoprotectant entering the yolk, damaging ice-crystals will form (Hagedorn 

et al 1997 in Robles et al. 2017). Therefore, protocols for fish embryo vitrification with 

removal of some yolk have been studied (Higaki et al. 2013). Regarding oocytes, after 

cryopreservation, these cells require post-thaw in vitro maturation and fertilization, thus a 

functional protocol for germ cell survival would not necessarily guarantee successful 

production of zygotes. Therefore, cryopreservation of PGCs and spermotogonia represent an 

important tool in gene banking until fish embryo cryopreservation is successfully achieved 

(Robles et al. 2017). 

 

Besides the cryoprotectant exposure time (Higaki et al. 2009), combination of 

external and internal CPAs at lower doses (Robles et al. 2007), microencapsulation with 

dissociated cells (Kasai & Mukaida 2004), or incorporation of antifreeze protein effects, other 

strategies, such as yolk removal (Higaki et al. 2013) have been used to examine the effects 

of this partial removal and cryoprotectant mixtures on the viability and the differentiation 

ability of cryopreserved zebrafish PGCs. All of these studies have provided important 

advancements for PGC cryobanking and have established a basis for future improvements. 
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3.2. Sperm cryopreservation 

The low-temperature preservation method has been applied widely and has become 

not only a routine tool in aquaculture for fish hybridization and selective breeding, but also an 

important tool in programs of biodiversity and preservation of endangered species. Gamete 

banks of rare or almost extinct species were created (Harvey et al. 1998) with the objective 

of protecting endangered species. The technique has also found applications in research 

programs for maintaining laboratory animals and sperm of more than 200 species of fish 

have been successfully cryopreserved (Agarwal 2011, Blesbois & Labbé 2003 in Hiemstra et 

al. 2005, Rana & Gilmour 1996). However, despite the extensive number of studies that have 

been undertaken there is still ambiguity (great variability and poor reproducibility) in the data 

reported in the literature, primarily because of lack/poor standardization of methodology and 

data analysis. Zebrafish sperm cryopreservation protocols are far from optimized and further 

improvement is necessary. 

Because oocyte or embryo cryopreservation has not yet been successful in 

zebrafish (Guan et al. 2010, Lin et al. 2009, Robles et al. 2017), sperm freezing is currently 

the best option for genetic resource banking. Although there are many protocols available for 

low-temperature storage of sperm of freshwater fish (Agarwal 2011, Kopeika & Novikov 

1983, Tiersch & Mazik 2003) there is much work still to be done to improve this technology.  

Most of the events associated with freezing are a result of the osmotic properties of cells. 

The cellular damage during the freezing process is all due to the osmotic shock, intracellular 

ice formation, increased intracellular concentration of solutes and solution effects (Agarwal 

2011). In general, approximately 40–90% of spermatozoa from freshwater species are 

usually damaged after cryopreservation, whereas only 10–20% of spermatozoa are 

damaged in marine species (Tiersch & Mazik 2003). Post-thaw survival of fish sperm is 

strongly predetermined by their sensitivity to osmotic changes in extracellular media (Tiersch 

& Mazik 2003), leading to a generally low (0–30%) average post-thaw motility (Morris et al. 

2003, Yang et al. 2007). Decrystallization is pointed out as the main cause for cryodamage, 

and rewarming is the critical step for post-thaw survival (Mohammad et al. 1997, Medrano et 

al. 2002). 

 

To develop reliable protocols of cryopreservation for fish spermatozoa, individual 

fish and species-specific properties must be taken into consideration (Agarwal 2011). A 

cryopreservation protocol needs to have several optimized steps such as gamete collection, 

stimulation of maturation (used in specific cases), gamete storage and equilibration, freezing, 

storage in liquid nitrogen, thawing, and fertilization. Due to the multiple steps and their 
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interactions, errors at each step can accumulate and lead to considerable losses of viable 

cells. Thus, careful attention should be given to the numerous details at each step, and care 

should be taken to reduce or eliminate sources of uncontrolled variation (Leibo, 2000). 

 

3.2.1. Cryopreservation solutions 

The solutions used for sperm cryopreservation include: 

(1) Extender to storage the gametes and retain the functional capability and fertilizing 

ability of sperm by controlling pH, osmolality, ion concentration, and in some cases, the 

supply of energy (Stoss & Holtz 1981 in Yang & Tiersch 2009). The choice of appropriate 

extender depends on the species. The osmolality of the extender solution is one of the most 

important factors in preparation of an appropriate extender (Kopeika et al. 2007). Specifically, 

for zebrafish the most common extenders are Ginsburg Ringer’s fish solution with skim milk 

powder, Hanks’ balanced salt solution (HBSS300) and buffered sperm motility inhibiting 

solution (BSMIS) and all of them generally function well to retain fertility of post-thaw sperm 

(Harvey et al. 1982, Morris et al. 2003, Draper et al. 2004, Yang et al. 2007). 

(2) Cryoprotectant solution. The absence of an ideal cryoprotectant, makes selection of a 

common single cryoprotectant difficult for different species. However, the optimal 

cryoprotectant can be determined empirically. The addition of cryoprotectants interacts with 

the membranes to make them more flexible and thus reduces damage due to solution 

effects. Thus, the basic principle of cryopreservation is to cause cell dehydration and 

eventually concentrate the cytosol with minimum injury so that ice crystallization in the 

cytosol is minimized during cooling in liquid nitrogen (Agarwal 2011). The concentration of 

cryoprotectant usually varies in the range between 5 and 12% (v/v) (Kopeika et al. 2007). 

Better cell protection can be achieved by employing higher concentrations, but this has to be 

balanced with toxicity effects of the cryoprotectant (Yang & Tiersch 2009). The addition of 

non-penetrating agents, such as sucrose, is generally considered to be beneficial. However, 

direct mixing of fish sperm with cryoprotectants inevitably leads to the death of all cells (Scott 

& Baynes 1980 in Gwo et al. 2009). The level of dilution of the cryoprotectant medium is 

equally important and it is species sensitive (Agarwal 2011, Lahnsteiner 2000). The most 

commonly used cryoprotectants for fish sperm cryopreservation are permeating ones, such 

as dimethyl sulfoxide (DMSO), ethylene glycol, methanol, ethanol, glycerol, and N,N-

dimethylacetamide (DMA) and non-permeating ones, such as egg yolk, milk, and proteins 

(Kopeika et al. 2007, Yang & Tiersch 2009). For zebrafish, the toxicity of DMSO, N,N-

dimethyl acetamide, methanol, and glycerol at concentrations of 5, 10, and 15% have been 

evaluated with sperm cells. Glycerol was the most toxic, and was eliminated for sperm 

cryopreservation. The other three chemicals have been used for sperm cryopreservation, 
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and analysis of post-thaw motility have shown that methanol at a concentration of 8% was 

the best choice (Yang et al. 2007). This was also the choice in two earlier studies (Harvey et 

al. 1982, Draper et al. 2004). In addition, DMA (10%) was used as a cryoprotectant for 

zebrafish sperm (Morris et al 2003), but the fertilization level after thawing (9–14%) was 

lower than that observed (28–51%) when methanol was used (Harvey et al. 1982, Draper et 

al. 2004, Yang et al. 2007). Cryoprotectant permeabilities are in the range expected for most 

sperm (~10-4 cm/min). Sperm suffers changes in cell volume caused by dimethylsulfoxide, 

however 10% methanol and 10% N,N-dimethylformamide do not cause any changes in cell 

volume as they enter and exit the cell (Hagedorn et al. 2009). 

 

Hagedorn et al. 2009 analysed sperm membranes with Fourier transform infrared 

spectroscopy (FTIR), which is an established tool for biophysical characterization of cell 

membranes (Crowe et al. 1989) extremely sensitive to changes in lipid conformational order, 

and allows for measurement of membrane fluidity and lipid organization in intact cell 

membranes. The FTIR data suggest that freezing zebrafish sperm without cryoprotectant 

causes membrane damage and large-scale lipid reorganization.  

Cold shock damage has been directly linked to lipid phase transitions that cause the sperm 

membrane to become transiently leaky, thereby compromising membrane integrity (Agca et 

al. 2005, Arav et al. 2000, Drobnis et al. 1993 in Hagedorn et al. 2009). Ice formation and 

changes in osmotic pressure are the major causes of spermatozoa damage during 

cryopreservation, and the ability of sperm plasma membrane to resist structural damage 

during cryopreservation may be related to the type of fatty acids in the spermatozoa plasma 

membrane and the strength of the bonds between membrane components (Agarwal 2011) 

causing irreversible phase separation (clustering) and rearrangement of membrane 

components in sperm (DeLeew et al 1990, Hotl & North 1984 in Hagedorn et al. 2009). 

During chilling, the key is to minimize the number and cooperativity, or sharpness, of lipid 

phase transitions, thus keeping the membrane fluid and structurally intact (Hagedorn et al. 

2009). 

3.2.2. Freezing  

The freezing step can be achieved using different methods: 

(1) Freezing in vapour-phase liquid nitrogen, which implies placing vials or straws above 

the liquid nitrogen horizontally on a rack at a predetermined position. The position of the 

sample and the time of exposure at that position depend on the sample volume, type of 

container, and temperature at that position; 

(2) Freezing in alcohol baths. Similar results can be obtained by freezing sperm in cold 

baths that are capable of maintaining a set temperature; 
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(3) Freezing in dry-ice using Falcon type tubes as a support placed deep in dry ice; 

(4) Controlled-rate cooling using programmable freezers. 

Freezing in liquid nitrogen vapour or in dry ice are more practical methods compared to a 

controlled-rate freezer and are also the closest easily achieved approximation to an 

exponential cooling regime (Agarwal 2011, Harvey et al. 1982, Kopeika et al. 2007).  

 

Cooling rate is a crucial factor in sperm cryopreservation because it affects the 

osmotic and pH balance of intracellular and extracellular solutions during freezing. 

Theoretically, with an excessively slow cooling rate, osmotic equilibrium is maintained, and 

much of the freezable water leaves the cell resulting in excessive dehydration; with an 

excessively fast cooling rate, little or no freezable water leaves the cell, and thus large 

intracellular crystals can form, causing damage to the cell. Ideally, a balanced situation 

allows survival when the cooling rate is fast enough to minimize the time of exposure to 

concentrated solutions and yet is slow enough to minimize the amount of intracellular ice 

formation. Optimum cooling rates vary with different cryoprotectants and the physiology of 

sperm cells from different species (Yang & Tiersch 2009). 

 

The packaging of samples for freezing and storage is also important to standardize 

the cooling rate, and to assure proper sample identification. Currently, several different kinds 

of containers have been used, such as plastic cryovials, glass tubes and ampules, and 

plastic straws. The different materials and shapes of these containers result in different heat 

transfer properties during freezing and thawing. Even for the same style of container, 

differences can exist with products from different manufacturers, which can result in variation 

of cooling or thawing rates (Yang & Tiersch 2009). 

 

Currently, reported sperm cryopreservation protocols on zebrafish include:  

(1) Freezing in glass capillary tubes on dry ice using methanol and powdered skim milk 

as cryoprotectants (Harvey et al. 1982) and various adaptations of this method (Westerfield 

1995, Ransom & Zon 1999, Brand et al. 2002, Draper et al. 2004) (Agarwal 2011). Morris et 

al. 2003 were unable to reproduce the results reported by Harvey et al. 1982 and its updated 

protocols; 

(2) Freezing in 1.5 mL cryotubes on dry ice using N,N-dimethylacetamide as 

cryoprotectant (Morris et al. 2003, Berghmans  et al. 2004) or methanol (Draper & Moens 

2009); 

(3) Freezing in 0.25 mL French straws with a programmable freezer using methanol as 

cryoprotectant (Yang et al. 2007). Bai et al. 2013 were unable to repeat the success with 
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methanol when samples were frozen in 0.25 mL French straws with a programmable freezer. 

DMA was found to be worse than methanol in the straw freezing method (Yang et al. 2007). 

(4) Cryomicroscopy which allows real time observation of the entire freezing and thawing 

process, tracking throughout all temperature regions events such as cell motility, membrane 

integrity, and ice formation status. Cryomicroscopy yields a two-step freezing protocol that 

employs a faster cooling rate of 25°C/min initially from 4 to 30°C, and then a slower cooling 

rate of 5°C/min from 30 to 80°C before plunging into liquid nitrogen for permanent storage. 

For freezing, the equipment is a controlled-rate freezer and sperm is suspended in 8% 

DMSO in 0.25 ml French straws (Bai et al. 2013). Bai et al. 2013 tested the efficiency of this 

method through sperm motility observation. 

 

3.2.3. Thawing and activation 

By the time sperm is thawed and ready to be used for fertilization, it has gone 

through a series of stresses. Therefore, special care has to be taken during handling of 

sperm after thawing and pure water should not be used as an activator for cryopreserved-

thawed sperm during fertilization (it affects functional activity of weak sperm cells post-thaw). 

Improved activation will be attained in activation media that have higher osmolality than pure 

water. However, the increase in osmolality in the activating medium has to be within the 

range that is safe for the eggs (Kopeika et al. 2007). In zebrafish, once activated by 

hypotonic osmolality, sperm have a short burst of motility (30 s to 5 min) (Yang et al. 2007). 

 

Theoretically, the process of thawing is the reverse of freezing, and thus the 

damage that can occur during cooling can also occur during warming, primarily through 

formation of ice crystallization between −40 and 0°C (Leung 1991, Til et al. 2016). Therefore, 

it is usually desirable to rapidly thaw cryopreserved samples to minimize the period of crystal 

propagation (termed “recrystallization”) (Yang & Tiersch 2009). Studies on optimization of the 

thawing regime have demonstrated that the best thawing regime for 1–2 mL vials is using a 

water bath between 33 and 40°C (Kopeika et al. 2007, Draper & Moens 2009). 

 

3.2.4. In vitro fertilization 

In vitro fertilization (the collection of spermatozoa and ova and their mixing together 

in various media that keep spermatozoa motile) is commonly carried out in several 

freshwater species, such as salmonids, cyprinids and acipenserids. The eggs of most 

teleosts are fertilized externally, which means that after passing through the micropyle, the 

spermatozoon penetrates the cytoplasm. Traditionally, fresh water (or sea water for marine 

species) is used as the medium in which the male and female gametes are mixed. However, 
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fresh water is not a very favourable medium because hypotonic shock causes the sperm 

structure to deteriorate in several minutes and the egg is activated quickly. These problems 

can be avoided by using as media various saline solutions of different composition, 

depending on the species. These media prevent sperm deterioration, prolong slightly the 

duration of motility or limit it, and prevent or defer the cortical reaction. The length of gamete 

survival is an important factor to consider in carrying out artificial reproduction (Agarwal 

2011, Bellard 1988 in Alavi & Cosson 2006). 

 

For zebrafish, artificial fertilization protocols have been established with fresh sperm, 

and can be directly modified to provide fertilization analysis of cryopreserved sperm 

(Westerfield 1995 in Yang & Tiersch 2009). Eggs can be collected by squeezing of females, 

held in isotonic buffer to retain fertility, and then be mixed with a sperm suspension for 

fertilization. After mixing of sperm and eggs, fresh water needs to be added to activate 

gametes for fertilization. Fertilization and hatching are determined by assessing the 

percentage of developing embryos or hatched fry (Yang & Tiersch 2009). 
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IV. Methods  

 

1. Zebrafish and husbandry procedures 

Several strains of zebrafish that are widely used in biomedical research: wild-type 

AB and TU, the Nacre (mitfa-/-) mutant and several transgenic lines were used. Housing and 

husbandry of all animals were performed according to Martins et al. 2016. Fish were housed 

in 3.5L tanks at a maximum density of 10 fish per liter or housed in 3.5L tanks with a divider 

dividing males and females at a maximum density of 4 fish per liter (depending on the 

purpose).  Fish did not stay divided for more than two consecutive weeks. 

 

The feeding regimen implemented consisted of feeding the fish 3 times per day (one 

time with live Artemia nauplius and two times with powder Skretting® Gemma Micro 500). 

 

2. Techniques directly involved in sperm cryopreservation 

2.1. In vitro fertilization 

Spawning trials are necessary to test the fertility of cryopreserved sperm. This 

process includes a series of steps: egg collection, holding of eggs prior to fertilization, 

thawing of cryopreserved sperm, mixing of the sperm and eggs, gamete activation, 

fertilization confirmation, hatching of fertilized eggs, and offspring harvest (Yang & Tiersch 

2009). 

 

Large numbers of synchronously developing embryos can be obtained by in vitro 

fertilization (IVF). IVF can be performed when experiments depend on synchronized 

embryos, when natural mating doesn´t occur or for line recovery of a cryopreserved sperm 

sample. Fertilization with cryopreserved sperm requires slightly more time and equipment 

that fertilizion using fresh sperm. 

 

Gametes were collected from breeding adults by gentle pressure and stored in 

commercial solutions (Aquaboost® Ovacoat for oocytes and Aquaboost® Spermcoat for 

sperm) in order to retain fertility (figure IV.1). These commercial solutions can maintain 

sperm inactive for 24 hours on ice and oocytes for 30 minutes at room temperature (CUG 

11/13 2015), allowing for the collection of several or pooled samples and the time 

optimization of the procedure. 

Briefly, after collection, the gametes were mixed together in a petri dish, fish water was 

added to the egg-sperm mixture and fertilization took place very rapidly in 20 to 60 seconds 

(figure IV.1). After 1 minute, the sperm is no longer active. Embryos were then placed in the 
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incubator at 28°C with a photoperiod of 14h:10h/light:dark. Between 15 and 24hpf the 

success of fertilization was checked by observing on the stereoscope the development of the 

embryos (figures IV.2 and IV.3, appendix A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure IV.1: Zebrafish in vitro fertilization main steps. Procedure currently in use at the Champalimaud 
Fish Facility. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure IV.2: Zebrafish embryo development at 6hpf, 80x magnification. F – fertilized embryo; NF – egg 
not fertilized; NA – egg not activated. 

 

 

 

 

 

 

 

Figure IV.3: Zebrafish embryo development at 24hpf, 40x magnification. NF – eggs not fertilized; NA – 
eggs not activated. 
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The Champalimaud IVF protocol was optimized based on several established 

protocols (ZFIN, ZIRC, UCL and Cryogenetics). The standard operations procedure (SOP) is 

described in appendix B. 

For the IVF tests, good breeders were selected. Four month-old females and males were 

incrossed at least three times in a weekly basis and housed in pairs in 1.1L tanks. The 

couples that produced, during the three mating episodes, at least 50 to 200 fertilized 

embryos were considered good breeders and transferred to a 3.5L tank with a divider 

dividing males and females at a maximum density of 4 fish per liter. 

Males were squeezed every two weeks, females were squeezed every two/three weeks. Fish 

were used in a rotating system as being separated for too long reduces their productivity and 

can trigger inflammation caused by egg accumulation. 

IVF was performed in the first three hours after the room lights turn on. Alternatively, when 

female hormonal stimulation was used, IVF was performed approximately 6-7 hours after the 

room lights turn on. 

 

2.2. Female hormonal stimulation (adapted from Tokumoto et al. 2009). 

Female egg quality is an important factor in successful IVF but it can sometimes be 

a challenge to obtain good usable eggs. Not all females are fecund but 1/3 of squeezed 

females can have good quality eggs (whereas males will give sperm >90% of the times) 

(Pegg 2007). 

After the first trials, in vitro fertilization started to be hampered by the quantity and quality of 

oocytes. In a first attempt to understand how many females were needed to guarantee 

enough oocytes to perform IVF and to reduce costs and human resources, the percentage of 

high quality oocyte clutches (yellow oocytes, with no white debris indicative of degradation, 

dry and sticking together) within two wild type strains was determined for four months. For 

this study, only data from wildtype AB and TU females was collected. 

 

In order to trigger zebrafish oocyte maturation and ovulation, to make sure the 

female population has higher quality clutches, the natural teleost maturation-inducing 

hormone, 17alpha,20beta-dihydroxy-4-pregnen-3-one (17α,20β-DHP) was used as a tool for 

artificially inducing ovulation in zebrafish (adapted from Tokumoto et al. 2009). 100nM 

17α,20β-DHP was administered directly to the water where zebrafish were housed. This 

direct administration allows the steroid hormone to penetrate the fish body, causing an effect 

upon oocyte maturation. Besides being an enhancer of good egg clutches, this technique 

allows IVF procedures to have an extra daily working window of 2-3 hours, as fertilizable 
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oocytes can be obtained up to 4-5 hours upon addition of 17α,20β-DHP. The respective SOP 

is described in appendix C. 

 

2.3. Sperm ultra-fast freezing 

For testing and optimization of cryopreservation protocols, sperm from four to eleven 

month-old males was collected using a glass capillary attached to a mouthpiece and flat 

forceps. Sperm was collected in the first three hours after the room light turns on (Engeszer 

et al. 2007 in Lawrence 2012). Sperm was then added to an extender that was previously 

stored in a cryovial on ice, and freezing medium comprised of a mixture of extender and 

cryoprotectant was immediately added. Forthwith, the cryovial without cap was transferred 

into the upper rack on the Styrofoam box for fifteen minutes. After this period the cryovial 

was capped and transferred into liquid nitrogen (figures IV.4 and IV.5). 

 

 

 

 

 

 

 

 
 

Figure IV.4: Ultra-fast freezing set up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.5: Zebrafish sperm ultra-fast freezing main steps currently in use at the Champalimaud Fish 
Facility. 1 - Extender storage on ice; 2 - Styrofoam box with LN2; 3 – Sperm collection; 4 – Sperm 
addition to extender; 5 – Freezing medium addition; 6 – Cryovial transfer without cap; 15 minutes in 
N2 vapour; 7 – Capping of cryovial and transfer to LN2; 8 – Storage in N2 chamber at ~-180°C. 
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The container used in the cryopreservation procedure was not, as in classical 

protocols, an expensive metal container. A Styrofoam box filled with 5000 to 6500cm3 of 

liquid nitrogen was used as the cryopreservation main set up. The ultra-fast freezing set up 

was comprised of the Styrofoam box and two centrifuge tube racks - one placed at the 

bottom of the box completely immersed with liquid nitrogen and the other one for cryovials 

placed on the top of the other rack. In general, the total volume of solutions and sperm 

cryopreserved was 23µL per cryovial. The respective SOP is described in appendix D. 

 

All tested cryopreservation solutions (extender and cryoprotectant) are schematized 

in figure IV.6. The freezing medium was a mixture of extender and cryoprotectant. 

 

 

 

 

 

 

 

 

 

 

Figure IV.6: Tested combinations of extenders and cryoprotectants used in the sperm ultra-fast 
freezing tests. Symbols *, **, ***, ^, ^^, ^^^, ~ and ~~ identify each combination. 

  

2.4. Sperm thawing and reconstitution 

Examination of sperm viability generally includes evaluation of morphology, 

membrane integrity, motility, ability to bind oocytes, and fertilization. Motility is the most 

widely used assay, but fertilization is considered to be the most informative (Yang & Tiersch 

2009). Fertilization rate was achieved by performing in vitro fertilization and was determined 

by assessing the percentage of developing embryos or hatched fries at 24hpf. Survival and 

malformations rates (defined as larvae viability rate) were evaluated between 6 and 7dpf.  

 

A water bath was set at 33°C in order to pre-heat the extender and to use this 

temperature to thaw the sperm samples. Meanwhile, oocytes were collected from selected 
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females into petri dishes and stabilized in the extender Aquaboost® Ovacoat in order to 

prevent their activation. 

Each cryovial was removed from liquid nitrogen, the cap opened, the liquid nitrogen 

tipped out and quickly immersed ~1/2 way into 33°C water bath for 15 seconds. 70µL of pre-

heated extender was immediately added and mixed by gently pipetting up and down 2-3 

times. A 200µL pipette tip was used with the tip cut off to prevent spermatozoa damage 

(figure IV.7). Before adding the sperm to the oocytes, Aquaboost® Ovacoat had to be gently 

removed from the oocytes to ensure proper contact between the two gametes. Immediately, 

750μL of fish water was added and incubated 5 minutes at room temperature. After 

incubation, the petri dishes were filled with fish water and transferred to an incubator at 28°C 

with a photoperiod of 14h:10h/light:dark. The respective SOP is described in appendix D. 

 

 

 

 

 

 

 

 

Figure IV.7: Sperm thawing main steps. 1. Cryovial removal from N2; 2 – Immersion of ~1/2 cryovial 
into a 33°C water bath; 3 – Addition of pre-heated extender and mix. 

 

2.5. Determination of sperm concentration  

A sperm suspension for analysis was obtained sampling 2 to 3μL of sperm with 

extender. Sperm concentration was estimated with a microspectrophotometer (NanoDrop®, 

Thermo Scientific, Wilmington, DE). The protocol for microspectrophotometry analysis was 

previously established by Tan et al. 2010. The standard equation used was: 

Y = (3x108) X - 3x107  

with “X” being defined as the absorbance measured at 400nm. Briefly, 1μL sample of sperm 

suspension was loaded onto the lower pedestal of the NanoDrop, and absorbance was 

measured at 400 nm. 

 

3. Technological procedures performed in parallel with sperm cryopreservation optimization 

Despite sperm cryopreservation being the main goal of this study, other zebrafish 

procedures that needed optimization of the IVF technique were performed, showing the 

general importance of this technique. Therefore, those methods and results were included as 

part of this project. 

1 3 2 
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3.1. In vitro oocyte injection 

This subchapter is part of an on-going collaboration for the development of new 

transgenic procedures between the Fish Facility and CR researchers, in this particular case, 

the Orger Lab. A newly developed method involving reproduction techniques, namely IVF, 

was tested. 

 

3.1.1. Microinjection 

 In vitro oocyte injection to improve transgenesis was performed based on the 

protocol described by Xie et al. 2016. Low efficiencies of genome editing and germline 

transmission result in time-intensive and laborious screening work, thus the optimization of 

strategies to minimize screening is crucial. 

The standard method of introducing foreign genomic material into zebrafish is by 

microinjecting it in fish embryos immediately after fertilization, at one-cell stage. This new 

method consists on injecting oocytes instead of embryos (figure IV.8) and incubating them in 

a specific oocyte storage medium to significantly improve efficiencies of genome editing and 

germline transmission. According to Xie et al. 2016, micro-injecting zebrafish oocytes 

substantially improved genome editing efficiency, especially for sgRNAs with low targeting 

efficiency, providing an efficient alternative to decrease the time frame of generating heritable 

mutants in zebrafish by using the CRISPR/Cas9 system. 

Figure IV.8: Comparison between oocyte injection (OI), 20x magnification, and one-cell stage injection 
(OCSI), 60x magnification. 
 

The method developed in this study had slight differences to the original published 

method (Xie et al. 2016), namely the type of construct injected (the Tol2 system was used to 

generate random insertions of a transgene as opposed of using the CRISPR/Cas9 system to 

generate gene-specific mutants) and some variations in the storage medium. Usually, the 

agarose plates used for embryo injections are prepared with E3 medium but for oocyte 

injection this this would cause the oocytes to be activated immediately which is not 
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compatible with the procedure. Therefore, the medium in which the agarose is melted needs 

to be an extender, in this case Ginsburg Ringers Solution (also used in the sperm 

cryopreservation process described in subchapter 2.3.) or 90% Leibovitz’s L-15 medium with 

L-glutamine and 0.5mg mL−1 bovine serum albumin, pH 9.0 (Xie et al. 2016). 

The constructs injected - HuC:GFF 10xUAS:GCaMP6sEF05 and HuC:GCaMP6sEF05 - 

were chosen by the Orger Lab. 

 The SOP is described in appendix F. Injection was done in a TU zebrafish strain with 

Nacre (mitfa+/-) background. At 24hpf plates were cleaned off of dead embryos and the 

medium was replaced with fresh E3. 

 

3.1.2. Transient expression 

At 48hpf all injected larvae were screened for pan-neuronal transgenic transient 

expression on a PentaFluor-equipped V8 stereoscope (Zeiss) using a blue filter with a 

spectrum range from 400–460nm. 

Positive transgenic larvae (stringently selected: enough labelled cells and expected 

panneuronal expression pattern for the HuC/elav3 promoter) were raised according to the 

conditions published by Martins et al. 2016. 

 

3.1.3. Screening for stable expression 

Fish were raised until adulthood (~3 months or when sexual maturity was observed). 

Fish were then individually crossed with the driver line Isl3:Gal4(+/+) and the offspring was 

screened on a PentaFluor-equipped V8 stereoscope (Zeiss) using a blue filter with a 

spectrum range from 400–460nm. Animals with positive progeny were kept. From the 

positive progeny (F0, founders), stable transgenic lines (F1) were established. 

 

3.1.4. Establishment of stable transgenic lines 

F1 stable lines were generated crossing each Tg(10xUAS:GCaMP6sEF05) F0 

(founder) fish with the driver line HuC:GFF. At 48-72hpf the expression pattern was checked 

(strong fluorescence in the brain tectum) and the positive larvae raised. 

 

3.2. Sperm viability analysis taking into account two dietary regimens 

This subchapter is part of a parallel study performed by the Champalimaud Fish 

Facility in which the impact of different feeding regimens on zebrafish survival, growth and 

reproductive performance was studied. Two feeding regimens were created using 

combinations of two commercial dry feeds - Skretting® Gemma Micro and Sparos® 
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Zebrafeed - and one live feed (rotifers). Results from this study were submitted for 

publication. 

 

3.2.1. Sperm viability  

To evaluate the influence of the dietary regimen on reproduction, both embryo 

development and sperm viability were studied. 

In order to have more information to analyse, fertilization rate assays were performed. 

Thus fertilization was achieved by performing in vitro fertilization and was determined by 

assessing the percentage of developing embryos or hatched fries 24hpf. Oocytes from 5-10 

month-old wild type fish (AB and TU strains) were collected by female squeezing. Clutches 

from each female were divided in two petri dishes and held in an extender Aquaboost® 

Ovacoat to retain fertility. In order to calculate the fertilization rate depending on the diet on 

which each male had been fed, sperm from two individual regimens (dietary groups 2 and 5; 

Table IV.1) was mixed to the half clutch for in vitro fertilization. After mixing, fresh fish water 

was added to activate gametes in order for fertilization to occur. Males were squeezed during 

four months every two weeks (6-10 month-old fish). Survival and malformation rates (defined 

as larvae viability rate) were evaluated between 6 and 7dpf.  

 

3.2.2. Statistical analysis 

All data was analysed with the IBM SPSS Statistics software (v. 23, IBM Corp., 

Chicago, IL). As assumptions were not verified  

(normality and homoscedasticity), the Wilcoxon-Mann-Whitney test was used followed by 

pairwise comparison. Results were considered statistically significant for p-values <0.05. 

 

3.2.3. Feeding Regimens 

Skretting® Gemma®Micro 150, 300 or 500 was provided to animals with <30 dpf, 30-

90 dpf, and >90 dpf, respectively. Similarly, Sparos® Zebrafeed® 200-400 and 400-600 was 

used to feed fish with ages 30-90 dpf, and >90 dpf, respectively. Regardless of the dietary 

regimen, all fish were fed 4x/day between 8 dpf and 60 dpf, 3x/day from 60 to 90 dpf and 

2x/day from 90 dpf onwards. On weekends and holidays, they were fed 1x/day with the dry 

feed of the corresponding experimental group. All tanks were given a similar volume of rotifer 

solution and a similar amount of dry feed. The density of each tank was readjusted at 30 dpf, 

to ensure uniformity and reduce the influence of density on the results. Two experimental 

dietary groups were designed using different combinations of dry feeds (Skretting® Gemma® 

Micro or Sparos® Zebrafeed®) and a live feed (type “L” saltwater rotifers) (table IV.1). 
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Table IV.1: Feeding regimens for dietary groups 2 and 5 
 

 
Dietary 
Group 

6 - 30dpf 30 - 60dpf 60dpf - end of study 

Live Feeding Dry Feeding Live Feeding Dry Feeding Dry Feeding 

2 2x Rotifers 2x Gemma Micro 150 1x Rotifers 2x Gemma Micro 300 2x Gemma Micro 500 

5 2x Rotifers 2x Gemma Micro 150 1x Rotifers 2x Gemma Micro 300 2x Zebrafeed 400-600 
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V. Results 

 

1. Techniques directly involved in sperm cryopreservation 

1.1. In vitro fertilization (IVF) 

The first IVF test was performed using two strains of wild type zebrafish, AB and TU, 

one mutant strain, Nacre (mitfa -/-), and one transgenic strain, Tg(Isl3:Gal4). AB, TU and 

Nacre fish had been previously selected as good breeders and were four to six months old. 

The transgenic fish were nine months old and were randomly selected. Before using the 

gametes for IVF, a quality assessment was done. Only yellow, with no white debris indicative 

of degradation, dry and sticking together oocytes and bright white sperm were used. 

The mean fertilization rate at 24hpf was 69.58±22.42%, 70.72±27.30% and 38.66±8.10% for 

wild type, Nacre and Isl3:Gal4, respectively (figure V.1). 

 

Figure V.1: Mean fertilization rate ± standard error at 24hpf using the IVF technique, according to the 
strain. x̄(WT)=69.58±22.42%, n=17; x̄(Nacre)=70.72±27.30%, n=14; x̄(Tg)=38.66±8.10%, n=5. WT is a 
pool of AB and TU lines. 
 

Eight IVF trials were performed using oocytes in phase I and II of maturation and 

with some percentage of white debris or using sperm that had low motility (<50% of 

spermatozoa without motility observed after activating the gametes with fish water). All the 

experiments resulted in no fertilized embryos (data not shown), further emphasizing that 

samples with these characteristics should never be used. Indispensable characteristics for 

success in IVF are oocytes with a transparent to yellow colour, a firm and rounded chorion 

and clutches should form an aggregation of cells within a transparent fluid. Sperm should be 

opaque white and present at least with 80% of motility. 
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Some of the fish lines existing at the Champalimaud Fish Facility lost their natural 

mating behaviour due to either inbreeding through many generations (a requirement for the 

particular type of behavioural research for which they are used) or to aging. Therefore, in 

these circumstances, IVF has to be performed to maintain the line. One extra step in the 

initial optimized IVF procedure was added, in which the natural teleost maturation-inducing 

hormone (17α,20β-DHP) was used. Figure V.2 demonstrates that IVFs performed with 

oocytes collected from females stimulated with the hormone 17α,20β-DHP have higher 

fertilization rates. 

 

Figure V.2: Percentages of fertilization success for every IVF performed due to loss of natural mating 
behaviour. Wik lines lost the natural mating behaviour due to inbreeding; Tg line (HuC:GFF 
UAS:mCherry) lost the natural mating behaviour due to fish aging. * refers to IVFs performed with 
oocytes from females stimulated with the hormone 17α,20β-DHP.  
 

1.2. Female hormonal stimulation 

In order to understand how many females would be sufficient to have always 

enough oocytes to perform IVF, a study with a total number of 473 females was performed. 

The mean of females with good clutches (yellow, with no white debris indicative of 

degradation, dry and sticking together oocytes) after squeezing was 33.23±27.51% and 

19.50±24.29% for AB and TU, respectively (figure V.3A). Similar data from females 

stimulated with 17α,20β-DHP, shows a much higher number of females producing good 

quality clutches, 66.34±32.53% and 50.82±26.54% for AB and TU, respectively (figure V.3B). 
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Figure V.3: Mean ± standard error of females providing good quality clutches; A - According to the wild 
type strain without hormonal stimulation: x̄(AB)= 33.23±27.51%, n=158; x̄(TU)=19.50±24.29%, n=315. 
B – According to the strain after stimulation with 17α,20β-DHP: x̄(AB)= 66.34±32.53%, n=56; x̄(TU)=, 
50.82±26.54%, n=121; x̄(Tg)=58.33±38.19%, n=15. Tg is a pool of several transgenic lines (Isl3:Gal4; 
10xUAS:GCaMP6SEF05; HuC:GFF UAS:mCherry). 

 

1.3. Sperm ultra-fast freezing 

As the choice of the extender and/or the CPA is very important, different extenders 

and cryoprotectants previously mentioned in literature were tested.  

In order to overcome the high sperm variability, a collection of sperm from different males in 

the same cryovial was performed. Seconds after the sperm was collected and before its 

freezing, cells of some samples were observed in the stereoscope showing that sperm 

stored in different extenders is activated within different timeframes and in some extenders 

quicker than expected. 

 

A total of 201 samples with sperm mean concentration of 4,82x106±3,34x106 

cells/µL were cryopreserved. 23 protocols were tested, which differed in: type and volume of 

extender (and if it was stored frozen or not), type and volume of freezing medium 

(percentage of cryoprotectant), sperm collected from several numbers of males, quantity of 

vials cryopreserved per sample, type of vials used in the cryopreservation process and 

exposure time to nitrogen vapour (appendix E). For each protocol the fertilization rate with 

thawed sperm was determined at 24hpf (figure V.4). Data showed a high variability in 

fertilization rates even within the same protocol. Of the 23 tested protocols, two can be 

highlighted as having 100% of line recovery (protocols 11 and 21 - Ginsburg Ringers 

Solution + Skim Milk Powder + Methanol) and two protocols had the higher fertilization rates 

(protocol 1 - Ginsburg Ringers Solution + Skim Milk Powder + Methanol; and protocol 17 – 

B A 
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Spermcoat + Skim Milk Powder + Methanol) (figure V.4). Three protocols were chosen as the 

best ones to analyse embryo survival and viability (protocols 1, 11 and 17).  

 
Figure V.4: Fertilization rate at 24hpf for 23 protocols tested. All samples cryopreserved by ultra-fast 
freezing (n = 201). Protocols organized by combination of extender and freezing medium (*, **, ***, ^, 
^^, ^^^, ~and ~~). 

 

In the analysis of the mean fertilization rate was observed that protocol 1, despite 

having high fertilization rates per sample, had the lowest mean fertilization rate 

(9.37±16.55%) as compared to protocol 11 and 17 (13.90±14.09% and 17.91±17.65%, 

respectively) (figure V.5, appendix E). 
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Figure V.5: Mean fertilization rate ± standard error at 24hpf for the three best protocols for ultra-fast 
freezing. x̄(Protocol 1*)= 9.37±16.55%, n=36; x̄(Protocol 11*)=13.90±14.09%, n=15; x̄(Protocol 
17^^)=17.91±17.65%, n=11. Protocols organized by combination of extender and freezing medium (*, 
^^). 

 

Therefore, protocol 11 and 17 were selected. In protocol 11, the extender was 

comprised of 0,15g/mL skim milk powder solubilized in Ginsburg Ringers Solution and the 

freezing medium was comprised of 0,15g/mL skim milk powder solubilized in Ginsburg 

Ringers Solution with 0,11mL/mL methanol. To perform protocol 11, sperm from one male 

was collected and added to 6,6µL of extender one ice to which was immediately added 40µL 

of freezing medium. The final sperm solution was divided in two cryovials from Nunc 

(CryoTube internal thread 1mL, Thermo Scientific) and transferred to nitrogen vapour for 15 

minutes. Sperm was ultra-fast frozen in 8,7% cryoprotectant. In protocol 17 the extender was 

comprised of 0,15g/mL skim milk powder solubilized in Aquaboost® Spermcoat and the 

freezing medium was comprised of 0,15g/mL skim milk powder solubilized in Aquaboost® 

Spermcoat with 0,11mL/mL methanol. To perform protocol 17, sperm from one male was 

collected and added to 6µL of extender in a cryovial from Nunc (CryoTube internal thread 

1mL, Thermo Scientific) stored on ice, to which was immediately added 20µL of freezing 

medium and transferred to nitrogen vapour for 15 minutes. Sperm was ultra-fast frozen in 

7,65% cryoprotectant. As shown in figures V.6 and V.7, larvae survival rate was higher and 

the percentage of malformations was lower using the protocol where sperm was 

cryopreserved with a lower percentage of cryoprotectant (protocol 17), confirming the toxic 

effect of cryoprotectants. 
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Regarding the mean larvae survival rate at 7dpf (figure V.6), results were 

87.25±18.7%, 89.44±9.79%, and 96.97±4.79% for protocol 1, 11 and 17, respectively, with 

no significant differences between the three methods. Malformations were also evaluated at 

7dpf (figure V.7), the mean larvae malformation being 2.88±9.11%, 1.06±2.08%, and 

0.42±1.18% for protocol 1, 11 and 17, respectively. 

 

Figure V.6: Mean survival rate ± standard error of larvae at 7dpf of the three best protocols. x̄(Protocol 
1*)=87.25±18.7%, n=13; x̄(Protocol 11*)=89.44±9.79%, n=15; x̄(Protocol 17^^)=96.97±4.79%, n=10. 
Protocols organized by combination of extender and freezing medium (*, ^^). 

 

Figure V.7: Mean malformations ± standard error of larvae at 7dpf for the three best protocols. 
x̄(Protocol 1*)=2.88±9.11%, n=13; x̄(Protocol 11*)=1.06±2.08%, n=15; x̄(Protocol 17^^)=0.42±1.18%, 
n=10. Protocols organized by combination of extender and freezing medium (*, ^^). 
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 Other extender used was Ginsburg Ringers Solution with skim milk powder 

combined with methanol (protocols 1, 3, 10, 11, and 21), based on procedures published 

previously (Draper & Moens 2009).  

HBSS300 has proven to be a very difficult reagent to prepare due to its osmolality. 

When measured in a osmometer the osmolality was always different from 300mOsmol/kg 

(+/- 70mOsmol/kg) which could activate the sperm during the storage step before the 

addition of the freezing medium. In general, it was observed that sperm was activated very 

quickly (within 2-3 seconds) when using this extender. Another problem with this extender is 

that bicarbonate in HBSS has a low buffering capacity and is unstable over time because the 

release of CO2 causes the pH to rise (Freshney 2000 in Mathews et al. 2018). 

The procedures tested using this extender when combined with methanol (protocols 4, and 

5) did not result in fertilized embryos. HBSS combined with DMA (protocols 6, 7, 8, and 9) 

resulted only in 0 to 2.17% mean fertilization rates (figure V.4, appendix E). 

 

Figure V.8 demonstrates an attempt to establish a relation between the sperm 

concentration and the fertilization rate of thawed sperm that underwent cryopreservation. As 

observed there isn´t a direct relation between sperm concentration and fertilization using 

cryopreserved sperm to perform IVF. 

 

Figure V.8: Fertilization rate with thawed sperm versus concentration of fresh sperm (n=28). In vitro 
fertilization after thawing was performed with the same sperm sample in which the concentration was 
measured. Sperm concentration was estimated in Nanodrop® (absorbance measured at 400nm). 
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2. Technological procedures performed in parallel with sperm cryopreservation optimization 

2.1. In vitro oocyte injection 

2.1.1. Microinjection 

The oocyte microinjection was performed in collaboration with A. Raquel Tomás 

from the Orger Lab at the Champalimaud Foundation. The parameters used in each 

experiment are reported in Table V.1. 

Transfection, the process of introducing genetic material into a eukaryotic cell, for 

example by microinjection, is a way of getting nucleic acids of interest — whether plasmid 

DNA or various types of RNA (messenger, short interfering or micro) - into a cell without 

destroying it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

Table V.1: Summary of parameters tested and rates associated with survival, fluorescence 
expression and germline transmission for each experiment testing Tol2 system in oocytes injection. 

 
Experiment A B C D 

Construct 

concentrations 

HuC:GFF: 12ng/µL* 

10xUAS:GCaMP6sEF05: 

8ng/µL 

HuC:GFF: 12ng/µL* 

10xUAS:GCaMP6sEF05: 

8ng/µL 

HuC:GCaMP6fEF05: 

100ng/µL 

HuC:GCaMP6fEF05: 

18 and 180ng/µL 

Tol2 mRNA 

concentration 
100ng/µL 100ng/µL 1µg/µL 1µg/µL 

Agarose plate 

- 1% agarose 

in: 

Ginsburg Ringers Solution 
Leibovitz medium with 

glutamine + BSA, pH 9.0 

Ginsburg Ringers 

Solution 

Leibovitz medium with 

glutamine + BSA, pH 

9.0 

# Injected 

oocytes  
1500 1200 1200 2400 

Injection + IVF 

strains 
♂ Nacre; ♀ TU ♂ Nacre; ♀ TU and AB ♂ Nacre; ♀ TU ♂ Nacre; ♀ TU 

Survival rate 

(%) – 24hpf 
10 5.25 2 0 

Primary Screen 

Larvae with 

positive 

expression – 

48-72hpf (%) 

33.33 15.87 0 - 

Malformation 

rate  of 

positive larvae 

(%) 

40 10 - - 

Line name 10xUAS:GCaMP6sEF05 10xUAS:GcaMP6sEF05 - - 

# Fish raised 3 5 - - 

Survival rate 

(%) – 90dpf 
33.33 60 - - 

# Fish 

survived – 

90dpf 

1 3   

Germline Transmission Screen 

# Founders 0 2   

Progeny with 

positive 

expression (%) 

- 
11.94 

10.62 
- - 

*transient expression; # number of 

 

2.1.2. Primary screen  

The Gal4/UAS transactivation system is frequently used in zebrafish to easily obtain 

transgene expression in a cellular population of choice, since it allows for flexible 
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combination of driver lines with reporter lines. The Gal4 protein binds as a dimer to short 

DNA sequences upstream of target genes, Upstream Activating Sequence (UAS), and 

recruits transcriptional machinery to adjacent promoters. Gal4 can also bind cooperatively to 

UAS tandem repeats, enhancing gene expression. The Gal4/UAS system allows for 

combination of a promoter sequence with a gene of interest (GOI), by crossing a 

promoter:Gal4 driver line with a UAS:GOI reporter line (figure V.9) (Halpern et al. 2008, 

Asakawa & Kawakami 2008). Orger Lab works with a wide range of promoter:Gal4 driver 

lines because the cloning of tissue-specific promoters allows labeling of specific embryonic 

structures in live embryos using fluorescent reporter transgenes (Kwan et al. 2007). For 

Orger Lab it is important to have stable lines of UAS:GOI reporter lines allowing several 

combinations using this Gal4/UAS system.  

 

 
Figure V.9: Gal4/UAS transactivation system in zebrafish. A Gal4 driver line crossed with a 
UAS:reporter line results in double transgenic embryos expressing the reporter protein in Gal4 
expressing cells. Adapted from Asakawa & Kawakami 2008. 
 

In the first experiments (A and B) the material injected consisted of two plasmids 

plus the Tol2 transposase mRNA (Kawakami 2007). One plasmid had DNA for HuC:GFF with 

transient expression and the other DNA for 10xUAS:GCaMP6sEF05 (table V.1). The 

HuC:GFF expression was transient because it did not integrate into the cell´s genome due to 

the lack of Tol2 transposase recognition flanking sequences in the plasmid, leading to a 

transiently transfected construct for a finite period of time in the cells. This system leads to 
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the necessity of using the Gal4/UAS system in progeny screens, in order to check for the 

presence of the UAS:GOI reporter line. 

In the primary screen, larvae were checked for transfected cells that expressed both 

the HuC:GFF and the 10xUAS:GCaMP6sEF05 expressions (figure V.10A). Very few 

embryos survived the microinjection (5.25 to 10% for experiment B and A, respectively, table 

V.1) due to the complexity of the method. The percentage of embryos with positive 

expression varied between 15.87 and 33.33% (experiment B and A, respectively) with some 

malformations observed (figure V.10B, table V.1) that resulted in the euthanasia of those 

larvae (10 and 40% of malformations for experiment B and A, respectively). 

 

In experiments C and D the material injected consisted of Tol2 transposase mRNA 

(Kawakami 2007) and a plasmid DNA construct containing HuC:GCaMP6fEF05. The embryo 

survival rate was lower than in experiments A and B probably due to higher concentration of 

material injected compared to experiments A and B, introducing the parameter toxicity. The 

embryos that survived were all negative for HuC:GCaMP6Fef05 expression (table V.1) 

probably due to the size of the plasmid (~11KB, against ~4.5Kb) diminishing the probability 

of insertion in the oocyte genome. 

 

 

 

 

 

 

 

 
Figure V.10: Transient expression of HuC:GFF 10xUAS:GCaMP6sEF05; A -  Healthy larvae, B – 
Deformed larvae. 
 

2.1.3. Germline transmission 

Germline transmission of the construct can be selected in the F0 generation 

(founders), by outcrossing the injected fish with the promoter:Gal4 driver line Isl3:Gal4(+/+). 

The presence of an Isl3-driven fluorescent pattern was checked (figure V.11). If the progeny 

had fluorescence in the trigerminal nerve, eye and specific brain regions it meant that the 

founder had a stable transfection in the germline and the next generations resulted in a 

stably transfected zebrafish line. A minimun of 100 embryos were screend for each fish 

raised as positive transgenics in the primary screen. 

A        B 
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The only founders resulted from experiment B, with 11.94% and 10.62% of progeny with 

positive expression for the UAS:GOI reporter line 10xUAS:GCaMP6sEF05 (table V.1).  

 

 

 

 

 

Figure V.11: Progeny (with different fluorescence intensity) from a founder 10xUAS:GCaMP6sEF05 
crossed with the promoter:Gal4 driver line Isl3:Gal4(+/+). Fluorescence in trigerminal nerve (TG) and 
eye (E) typical of the promotor Isl3:Gal4. 
 

2.2. Sperm viability analysis taking into account two dietary regimens 

It has been previously reported by Diogo et al. 2015 that Zebrafeed® increments 

sperm quality, revealed by a higher total and progressive motility and higher velocities of the 

spermatozoa as compared to other commercial feedings. Dietary group 5 was created to test 

if the replacement of Gemma® by Zebrafeed® at 60 dpf would show any difference when 

compared with group 2 (fish fed with Gemma® after 60 dpf). 

For the analysis of sperm viability, embryo development and viability analysis were 

performed. It was verified that there are no statistically significant differences between the 

two dietary groups (groups 2 for Gemma® and group 5 for Zebrafeed® after 60dpf) for both 

fertilization rate (figure V.12A) and larvae survival rate (figure V.12B).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure V.12: Comparison of two dietary regimens (diet 2 and 5) to test the replacement of Gemma® 
by Zebrafeed® at 60dpf. A - Median of fertilization rate at 24hpf with minimum and maximum 

percentages using the IVF technique: (diet 2)=73.85% (19.83 to 87.27%) , n=26; (diet 5)=71.43% 
(10.06 to 95.12%) , n=26. B – Median of larvae survival rate at 7dpf with minimum and maximum 

percentages: (diet 2)=97.38% (89.15 to 100%) , n=26; (diet 5)=97.58% (86.96 to 100%), n=26. 
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VI. Discussion and conclusions 

 

1. In vitro oocyte injection 

 

A transgenic protocol based on in vitro oocyte microinjection was tested based on a 

novel technique developed and optimized by Xie et al. 2016 to improve efficiencies of 

CRISPR/Cas9 genome editing and germline transmission in zebrafish. The new protocol we 

developed focused on the Tol2 transposon system. The Tol2 system has a high insertion 

frequency (Kawakami 2005), when used in one-cell stage microinjection, but has low 

transgenesis efficiency, leading to mosaicism in transient transgenics and infrequent 

germline incorporation (Kwan et al. 2007). In order to overcome the low germline 

transmission, the transgenesis can be applied in the haploid gametes (oocytes or sperm) 

mediating the genetic transmission to the next generation. In zebrafish it is much easier to 

manipulate oocytes. 

The Tol2 element, identified in medaka fish, is an autonomously-active transposon of 4.7kb 

encoding a transposase protein. The transposase is capable of catalysing transposition of a 

non-autonomous Tol2 construct, i.e., a construct that contains only the Tol2 arms (200bp and 

150bp sequences) flanking a region where a DNA of interest (up to 10kb) can be cloned. 

Stable transposition is achieved when the Tol2 construct is co-injected with transposase 

mRNA: the transposase mRNA is translated and the protein catalyses the excision of the 

flanked DNA, which integrates into the genome. When both mRNA and protein degrade, 

transposase activity is lost and the insertion gets stabilized (Kawakami 2007).  

 

From the four experiments, only experiments A and B resulted in positive fish in the 

primary screen (3 and 5 fish, respectively). In both experiments, the material injected 

consisted of two plasmids, one encoding for transient transgenesis of HuC:GFF and the 

other one for stable transgenesis of 10xUAS). The difference between stable and transient 

transgenesis is the presence or absence of the Tol2 transposase recognition flanking 

sequences flanking the sequence of the gene of interest.  

The absence of positive fish in the primary screen for experiments C and D could be due to 

the a high concentration of the injection mix (resulting in toxicity) leading to a high mortality 

rate or due to the large size of the insertion HuC:GCaMP6fEF05 decreasing the probability of 

insertion and consequently of having positive transgenic fish.  

Regarding germline transmission, it was only possible to have a F1 generation in 

experiment B. The number of putative positive fish raised in both experiments A and B was 

very low due to the high mortality observed in the first 24hpf.  
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The goal of the Tol2 system is to generate stable transgenic fish lines. However, the rates of 

germline transgenesis using injection in one-cell stage embryos are low with plasmid-based 

transgenesis, requiring the injection, raising, and screening of hundreds of potential founders 

to ensure recovery of a stable line (Kwan et al. 2007). Usually the injection of supercoiled or 

linear DNA yields 1-30% germline transgenic founders (Balciunas et al. 2006, Kwan et al. 

2007, Stuart et al. 1988, 1990, Urasaki et al. 2006). With this method the percentage of 

founders was 66.67% (2 of the 5 fish considered positive in the primary screen were 

founders), a very high percentage due to the injection of the gene of interest being performed 

in gametes (oocytes in this case). For both founders, the percentage of F1 offspring 

expressing fluorescence (germline transmission) was around 11% which can be considered 

an efficient result.  

 

The survival rate at 24hpf was very low in all experiments. After observing the cells 

in the stereoscope most of the oocytes didn´t undergo the activation step not allowing 

fertilization to occur. One possible cause is that the injection of a strange body in those cells 

may inhibit the development of the cavity between the shell and vitelline membrane due to 

the break of the natural reproduction machinery. In Xie et al. 2016, the choices of effective 

storage media and appropriate storage time were critical factors affecting the probability of 

successful oocyte storage in vitro. However, relatively longer storage time resulted in higher 

oocyte deformity rates. This is still a time point that needs to be studied, especially when 

using the Tol2 system. 

In order to have higher survival rates at 24hpf and subsequently increase the number of 

founders, there are multiple steps that can still be changed, such as the number of trials, 

alternative setups for the oocyte injection (use of other kind of physical support instead of 

agarose plates to minimize damage to the oocytes when removing them from agarose), test 

different concentrations of plasmids, perform controls of the same construct using one-cell 

stage injection to determine if the mortality is due to the toxicity of the plasmid or to the 

technique itself, or test other incubation times. 

If the mortality observed in the 24hpf could be overhaul, the number of founders would be 

higher and the effort required to create stable lines could be drastically reduced. There are 

no doubts that this method has a real potential and needs to be further optimized.  

 

2. Sperm viability taking into account different dietary regimens  

 

Zebrafish facilities need to make important decisions on how to invest resources 

among apparent competing processes such as growth and reproduction and to have always 
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several commercial alternatives regarding feeds and reagents. This way it is important to 

have an active role in testing and choosing the best feeding regimens. To evaluate the 

influence of the dietary regimen on reproduction, embryo development and viability, and 

sperm viability were studied. 

 

Different fish populations may respond differently to dietary regimes depending on 

their original facility conditions. An increased resource availability can improve breeding 

success and egg production in females and fertilization rates in males (Newman et al. 2016). 

Different and higher embryo viability rates, depending on the dry feed offered to breeders, is 

correlated with the type of nutrients present in the diet (Rainuzzo et al. 1997 in Izquierdo et 

al. 2001). Experiments performed by Nowosad et al. 2017 revealed that feeding spawners 

with feed enriched with polyunsaturated fatty acids increased fertility, survival rate, and the 

post hatching size of larvae, compared to the control group. Other nutrients such as vitamins 

should also be present in the diet (Miller et al. 2012). 

 

As shown in figure V.12, there were no significant differences between the two 

dietary feeding regimens, when analysing the fertilization rate at 24hpf and the viability of 

larvae with 7dpf. Using these two parameters as markers, the conclusion is that both 

feedings are equal and suitable for zebrafish maintenance. Besides fertilization rate and 

viability of larvae, other parameters that can be analysed are growth (dry weight and fork 

length), sexual maturity, sex ratio, and fecundity. 

 

3. Importance of complementary procedures for sperm cryopreservation optimization 

 

The method performed for quantification of sperm concentration using the Nanodrop 

was not considered a sensitive method to be applied as such when the samples measured 

were diluted in solutions containing skim milk powder. Several samples had a negative 

absorbance, maybe due to the interference of the extender added to sperm before the 

absorbance measurement in order to maintain the sperm inactivation. In this situation it was 

not possible to have a blank control and these samples were not included in the results and 

analysis. 

The sperm concentration couldn´t be correlated with the fertilization rate (figure V.8). 

In samples where the concentration of sperm collected in the cryovials was very high, the 

volume of extender and freezing medium was not enough to retain proper storage and 

freezing conditions of all spermatozoa, thereby not resulting in higher fertilization rates. 
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Regarding female hormonal stimulation with 17α,20β-DHP, it was clearly an 

improvement in the oocyte quality and quantity of zebrafish (figure V.3) so, whenever 

possible, it is a method that can be adopted. This stimulation decreases the number of 

females needed to perform IVF, following the 3Rs guidelines (Reduce, Reuse, and Recycle), 

which are very important ethical guidelines in animal research. The 3Rs tenet is followed by 

scientists in the design of their animal-based research projects and by animal ethic 

committees and welfare bodies during their ethical review of the projects. Use of the 3Rs 

tenet assists in improving the welfare of animals used in science in several ways: it 

addresses a range of concerns about scientific animal use; it places a focus on individual 

animals; it adapts and responds to new information; it balances the needs of research and 

the needs of the animals; and it unites disparate groups with an interest in the welfare of 

animals used in science (European Agency Medicines 2016, Fenwick et al. 2009). 

 

The optimized IVF procedure had very good results, as mentioned previously (figure 

V.1), the use of Cryogenetics reagents (Aquaboost® Ovacoat for oocytes and Aquaboost® 

Spermcoat for sperm) improved gamete storage time resulting in higher fertilization rates, 

compared with other published protocols. The procedure (appendix B) is currently in use at 

the Champalimaud Fish Platform providing a state-of-the-art service. The plus of having 

female hormonal stimulation with 17α,20β-DHP further improved fertilization rates. 

 

4. Sperm ultra-fast freezing 

 

From the two most used cryopreservation methods (slow freezing cryopreservation 

and vitrification), vitrification has many advantages over the traditional method such as no ice 

crystal formation (less chilling injuries) because the water content is lowered before cooling 

by adding high concentrations of CPAs. Increased speed of temperature conduction, which 

allows for a significant increase in cooling rates in this technique, prevents the risk of 

intracellular ice formation. This permits the use of less concentrated cryoprotectants causing 

less toxic effects (Isachenko et al. 2004, Kattera & Chen 2009). 

The survival rates of vitrified cells are dependent on the type and concentration of 

the cryoprotectant (virtually all cryoprotectants are toxic), the temperature of the vitrification 

solution at exposure, and the type of device that is used for vitrification (Kattera & Chen 

2009). Up to now, vitrification has been tested in zebrafish PGCs but with very low success 

rates (Higaki et al. 2013), urging for the development of other viable methods for 

cryopreservation of zebrafish sperm. Regarding the traditional cryopreservation method, 

many studies have shown that it is very difficult to replicate reported results in different 
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facilities and many protocols suffer from great variability and poor reproducibility (Bai et al. 

2013, Mathews et al. 2018, Morris et al. 2003). Slow progress can be due partly to the lack of 

a proper extender to maintain the viability of spermatozoa and to the general use of toxic 

cryoprotectants.  

 

The lack of standardization and coherent expectable results in previous studies (Bai 

et al. 2013, Mathews et al. 2018, Morris et al. 2003) were the major causes for the 

development of a simple and reliable method at the Champalimaud Fish Facility. This way, a 

new procedure was developed and optimized, designated by ultra-fast freezing since it is an 

intermediate method between cryopreservation and vitrification. At the end of each 

procedure, both cells are storaged at the same temperature (~196°C, liquid nitrogen 

temperature) (Agarwal 2011) but the difference between these two methods is in the cell 

freezing rate and in the cryoprotectant solutions. In vitrication the freezing is much faster 

(within seconds) than in the traditional cryopreservation (~30 minutes) and the type of 

cryoprotectants used allows no ice formation at all and consequently less damage. In this 

ultra-fast freezing process there weren´t used any specific CPAs usually used in vitrification 

(resulting in less steps) but the cooling rate was higher than in slow freezing 

cryopreservation. 

 

In general, sperm quality had high variability within each tested protocol, when using 

fertilization rate as a sperm quality marker (figure IV.5), even when the sperm collection was 

made from the same male but in different trials. In other studies performed with teleost 

species, like the redside dace or the northern pike, showed also very high variation in the 

ability of sperm to endure freezing. It was also shown that spermatozoa with higher motility 

could not sustain it after thawing and high variability in sperm cryoresistance between 

individual males was observed (Babiak et al. 1997, Butts et al. 2013). This male-to-male 

variation poses a problem in the cryopreservation optimization. However, in the particular 

case of zebrafish there are no reports of such variation. There was variability when vials from 

the same sample were frozen at the same time point. This high variability can be due to 

several parameters.  

 

Health status, besides animal age and holding density, is also expected to affect 

animal and sperm cell quality (Castranova et al. 2011, Hu et al. 2013, Murray et al. 2016, 

Torres et al. 2016, Watts et al. 2012). Food availability can also improve breeding success 

and egg production in females and fertilization rates in males (Newman et al. 2016). 
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Common parasites of zebrafish, such as Pseudoloma neurophilia, can infect nearly every 

tissue in the body. It has an overwhelming preference for neural tissue, particularly the nerve 

roots, spinal cord, and hindbrain (Sanders et al. 2014). This Pseudoloma infection has a very 

high prevalence; from 2000 to 2013 ZIRC has diagnosed five hundred and fifty-nine infected 

zebrafish from 86 laboratories. High numbers of Parasite clusters within brain and spinal cord 

structures mediating startle responses and anxiety suggests that related behaviours could be 

altered by neural microsporidiosis (Spagnoli et al. 2015). Reprodutive behaviour can be also 

altered as serotonin is involved in a wide range of reproductive functions (Prasad et al. 2015) 

and is mostly synthesized in the serotonergic cell bodies that are present in the hindbrain 

(Dahlbom et al. 2012). Some genes that are responsible for sex steroids are also highly 

expressed in this preferred Pseudoloma infected region of the brain (Pradhan & Olsson 

2015). This way, health status is a very important factor to take into account when collecting 

sperm, as infected animals will probably have lower sperm cell quality. 

 

As the success of cryopreservation strongly depends on the initial quality of the 

sperm, the period in which the sperm is collected is very important. Higher quality sperm can 

be obtained from matured breeders in the middle of a breeding season (Billard et al. 1977 in 

Kopeika et al. 2007, Bulostovich 1979) and the quality of sperm drops substantially by the 

end of the spawning period in trout, herring, and others species (Turdakov 1972 in Kopeika 

et al. 2007). In other teleost fish it is well known for many years that the sperm fertilizing 

ability decreases or not during the spawning period depending of the species (Bellard 1988 

in Kopeika et al. 2007).  

Zebrafish natural history and physiology influences mating and spawning behaviour 

with daily and seasonal variations in the natural environment. Zebrafish reproduction takes 

place primarily during the rainy months, a period of resource abundance (Talwar & Jhingran 

1991 in Lawrence 2012), in the early morning and along the margins of flooded water bodies, 

often in shallow, still, and heavily vegetated areas (Engeszer et al. 2007 in Lawrence 2012). 

Zebrafish raised in captivity such as in a fish facility have the same environmental conditions 

during the whole year, mimicking the best conditions for the spawning and for the production 

of good quality gametes and stimulation and/or releasing of reproductive pheromones. On 

the other hand, can this controlled and invariable conditions “confuse” the intrinsic cycle 

regulated by the variations in the natural environment and uncontrol the reproductive 

behaviour? The circadian rhythmicity is the adaptation to the regular changes in the 

environment, defined mostly by the 24‐hour period of earth’s rotation relative to the sun. 

Anticipating illumination, temperature, or food availability changes allows organisms to adjust 

all of their metabolic and behavioural processes in advance and to do everything ‘‘on time’’. 
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These intrinsic clocks are affected by environmental temperature, food availability, and 

predation risk and, in some species, may even play a more important role than light. 

However, biological clocks have evolved, and even in the absence of any environmental 

cues (like a facility with controlled physical-chemical parameters, for example) they 

autonomously oscillate with a circadian period (Zhdanova & Reebs 2006). It remains unknow 

if circadian cycle, besides depending on environmental inputs, can also be influenced by 

genetic factors consequence of inbreeding or low variability among generations. 

To understand if there is still happening a circadian cycle in the zebrafish raised in 

research facilities can be a very useful study. If the circadian cycle is still present in these 

animals, having more information about the periods in which fish could have higher quality in 

gametes (independently of the constant and controlled conditions they are raised in) would 

be very important for the zebrafish community. 

 

When developing a protocol for fish sperm manipulation it is very important to keep 

in mind its immobility in the genital tract and the extremely short lifespan after motility. In 

zebrafish, the spermatozoa lifespan is one-two minutes in natural medium (spawning/fish 

water) (Bai et al. 2013). This short period of activity time addresses two extremely important 

points: the speed of the operator and the efficiency of the extender. Intrinsic biophysical 

properties such as water and cryoprotectant permeability, osmotic tolerance limits, and 

intracellular ice nucleation must be considered for both extender and cryoprotectant. In vivo 

gamete survival (after the release of sperm) in controlled conditions varies among species, 

from one to several weeks for sperm (under oxygen and with antibiotics) (Bellard 1988 in 

Yang & Tiersch 2009) but for zebrafish there is only one commercial extender available - 

Aquaboost® Spermcoat. Procedures tested with Spermcoat in addition with skim milk powder 

had some of the best fertilization rates (figures V.4 and V.5) but regarding larvae survival and 

viability this extender combined with methanol resulted in the best combination (figures V.6 

and V.7). Milk is a complex physiologic medium and its mechanism of action during 

cryopreservation is not well understood (Mathews et al. 2018). Lactose present in skim milk 

powder played a very important role in these cryopreservation protocols. Lactose is a 

saccharide and these molecules occur in the cells of plants, insects and fish that are 

exposed to freezing temperatures (Bachmann et al. 1944, Koster & Lynch 1992, Storey 

1981, Yancey et al. 1982 in Hino et al. 2007). Lactose was found to possess some CPA 

activity and it can be significant in avoidance of chemical toxicity to cells of the diol CPAs 

(Fuller 2004). Saccharides limit intracellular dehydration during freezing and protect proteins 

against denaturation (Storey 1981a, Storey 1981b, Yancey et al. 1982 in Hino et al. 2007). 

Moreover, some saccharides stabilize bilayers and preserve membrane function and 
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structure (Rdolph & Crowe 1985 in Hino et al. 2007). Several studies indicate that casein 

micelles are the active components in milk that protect sperm by preventing cholesterol and 

lipid loss from sperm cell membranes (Bergeron & Manjunath 2006, Bergeron et al. 2007, 

Garcia & Graham 1987 in Mathews et al. 2018, Manjunath 2012). The addition of skim milk 

powder originated, in general, a minimum raise of 5% in fertilization rate success. The 

procedures tested without skim milk powder had only a maximum mean fertilization rate of 

6.14%. 

Samples comprised of pooled samples of sperm (protocols 8, 10,15, 16, and 23) 

didn´t show promising line recovery rates (figure V.4). Analysing all data can be concluded 

that there is still a lack of proper extenders to maintain the viability of spermatozoa and for 

now sperm cryopreservation has better results when cryopreserving one sperm sample at a 

time. Despite this hindrance, one key step in all procedures is to always make sure the 

freezing medium is well mixed in the sample without formation of bubbles. 

 

In order to have less steps each time the procedure was performed, the freezing of 

some extenders was tested - any extender with skim milk powder cannot be frozen; after 

thawing the milk proteins sediment and do not regain the ability to solubilize. For example, 

the Ginsburg Ringers Solution can be frozen and the skim milk powder added after thawing. 

 

The best protocols were chosen according to the percentage of line recovery 

(percentage of samples with fertilized embryos), mean fertilization rate (to analyse sperm 

viability), mean larvae survival rate, and mean malformation rate (for embryo survival and 

viability) (figures V.5, V.6 and V.7) - protocols 1 and 11 (Ginsburg Ringers Solution + Skim 

Milk Powder + Methanol), and 17 (Spermcoat + Skim Milk Powder + Methanol). 

 

At the Champalimaud Fish Facility, the fertilization rate after performing the 

optimized in vitro fertilization protocol (appendix B) using fresh sperm and Spermcoat is very 

high (figures V.1 and V.2). These results depend of the strain but, for example, for wild-type 

strains the average is around 70%. Considering these results using the extender Spermcoat 

and the fact that sperm can be stored for 24 hours in Spermcoat (CUG 11/13, 2015), freezing 

samples using this extender were tested. Mainly three combinations were tested: Spermcoat 

with skim milk powder (protocols 13, 17, 22, and 23 with the best fertilization rates); 

Spermcoat without skim milk powder (protocols 2, 12, 15, and 16, without successful 

fertilization rates, between 0 and 6.14% mean fertilization rates) and Spermcoat with 

catalase (protocols 18 and 19, without successful fertilization rates, 0%) (figure V.4). The use 

of Spermcoat could have been a good choice for pooled samples, however the fertilization 
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rates weren´t as expected (0%, 6.14% and 0.38% mean fertilization rate for protocols 15, 16, 

and 23, respectively) maybe due to inappropriate proportion of extender in the freezing 

medium resulting in cell death during the freezing process. 

 

Catalase was added as an alternative to skim milk powder in order to work as an 

antioxidant. This choice was based in Hagedorn et al. 2012 who reported that catalase as 

well as the cryoprotectant DMF did not decrease the sperm post thaw motility. However, the 

tested protocols in which catalase was used (protocols 18, 19, and 20) as an addition to the 

extender and DMF as cryoprotectant (protocol 24) did not have satisfactory fertilization rates 

(always 0% of fertilized embryos) (figure V.4). In the study made by Hagedorn et al. 2012, 

these two reagents were tested through the observation of spermatozoa motility, however in 

salmonids, for example, the length and intensity of spermatozoa on motility are not invariably 

correlated with fertilizing ability, especially when involving sperm stored in vitro for several 

days or deep frozen (Bellard 1988 in Yang & Tiersch 2009). The probable absence of 

correlation between these two parameters can be due to the weakened spermatozoa not 

having enough strength to disrupt the oocyte membrane and this lack of vitality can be the 

answer for the failure of the protocols using catalase and DMF. When performing in vitro 

fertilization it is necessary to use more spermatozoa per egg than with fresh sperm due to 

the loss of spermatozoa viability during the cryopreservation process. 

 

It is important to emphasize that not providing the same conditions (water physical-

chemical parameters, type of feeding and even infectious agents) to the models studied can 

deeply influence their general and natural performance. These differences in results can 

happen not only regarding reproductive performance but can also affect behaviour, 

regeneration or cancer research data.  

 

There are no cryopreservation processes that can reproduce the fresh sperm 

quality, and establish stable success rates and reproducibility in sperm cryopreservation 

methods are the most important aspects in a protocol so there is still a wide range of factors 

to be deeply studied. The design of new extenders and cryoprotectants is a path that must 

be taken. The latest publication in zebrafish cryopreservation (Matthews et al. 2018) 

describes an average motility of 13%–20% and an average post-thaw fertilization rate of 

16%–68% using a new hypertonic extender (E400) and a cryoprotective medium containing 

raffinose, skim milk, methanol, and a bicine buffer. Unfortunately, the set up and method 

continues to be the same laborious one, using cryovials and 15mL falcon type tubes 

immersed in dry ice.  This study focused on sperm cell density and motility assessment to 
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develop the cryopreservation protocol. The use of advanced technology like the computer-

assisted sperm analysis (CASA) System helps to monitor the sperm motility. Previous to 

Mathews et al. 2018, the validation of sperm cryopreservation methods did not include cell-

density or motility measurements usually because it needs a costly equipment. The only 

options were to count cells with a hemocytometer and observe motility under a microscope. 

Although these methods are useful for establishing reference densities and to calibrate 

equipment such as spectrophotometers, they are relatively time consuming and, thus, 

impractical for routine use (Mathews et al. 2018). 

The results from the ultra-fast freezing method optimized are nevertheless more 

than adequate for preserving genetic diversity via sperm banks and for in vitro fertilization. 

The main goal of this project was achieved: an easy, cheap and reliable protocol was 

obtained. 

The results acquired and the optimized protocol are now being prepared for 

publication. It has made an impact in the zebrafish community and the Champalimaud Fish 

Platform will start providing cryopreservation services to the entire national community as 

part of the CONGENTO. 
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Appendix A: Zebrafish embryo development time lapse 

 

Fresh or cryopreserved sperm is added to oocytes. Fertilization occurs upon gamete 

activation, by adding fish water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Embryo development after IVF, 80x magnification. Minutes post fertilization;           

  sperm 
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Appendix B: In vitro fertilization SOP 

Zebrafish In vitro Fertilization 

Materials 

 

 0.5 mL Eppendorf tubes 

 1 L Breeding tank for anaesthesia (0,16 g/L MS-222) 

 1 L Breeding tank for recovery (system water) 

 1 L Breeding tank for rinse (PBS pH7.4) 

 500 mL Beaker with system water 

 12 cm long Capillaries 

 Flat forceps 

 Ice in a Styrofoam small box 

 Kimwipes 

 Lamp for direct illumination 

 Permanent marker 

 Mouth piece, capillary adaptor and hose with a syringe filter in the middle 

 Nets - one to collect fish from Tricaine (MS-222) and another to collect fish from the 

recovery breeding tank 

 210mm Polypropylene spatula  

 Paper towels 

 Petri dishes 

 Pipettes - P20 and P200 

 Pipette tips - 20 µl and 200 µl 

 Plastic spoon 

 Stereoscope 

 Sponge fish holder 

 Timers 

 

Solutions 

 

 0,16 g/L MS-222 for anaesthesia 

 Fish water in beaker 

 Aquaboost® Ovacoat at room temperature 

 Aquaboost® Spermcoat on ice 
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Fish Preparation  

 

 Keep fish at a low density (4 fish/L) 

 Separate males from females in a 3,5 L tank with a divider 

 Feed 3 times/day (1x artemia; 2x dry powder) 

 Use fish with 5-11 months old 

 Use females that have been laying eggs every 2 weeks or being squeezed every 

month since 4 months old 

 Males have to be conditioned (separated from females in a 3,5 L tank with a divider) 

for a minimum of 2-4 weeks prior to sperm collection 

 

The day before 

 

Set up crosses using 2 L breeding tanks with divider. Place 3 females and 2 males in each 

tank. 

 

Before the collection of gametes 

 

 Attach the capillary to the hose with the mouthpiece. Introduce a pipette tip in the 

mouthpiece in order to replace it every time the IVF is performed. 

 Place 100 µl of Aquaboost® Ovacoat in a petri dish for the eggs of each female. 

 Pipette 10 µl of Aquaboost® Spermcoat to 0.5 mL Eppendorf tubes. 

 

Sperm collection 

 

1. Anesthetize males with 0,16 g/L MS-222 until gill movement slows down. 

2. Remove one male from Tricaine and rinse the fish in PBS. Remove very quickly the 

male from this tank with the spoon and place it in the paper towel. 

3. Dry the male by rolling gently front to back on a paper towel using the spoon. If the 

ventral side is still moist use a Kimwipe and gently dry by blotting. Water activates 

sperm so it is important to thoroughly dry the skin around the cloaca. 

4. Put the male belly up in the sponge holder and place it in the scope with direct 

lighting. 

5. Use the end of the capillary to spread the pelvic fins apart and expose the urogenital 

pore. 
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6. To extract the sperm place the capillary in the urogenital pore and gently press with 

the flat forceps stroking the sides of the fish. Collect sperm in capillary tube as it is 

expelled using suction. Avoid faeces that may be expelled with sperm. Collect 2-3 µL 

of sperm. Verify the quality of sperm:  a dense concentration and good quality sperm 

will appear bright white.  

7. Expel the sperm into the 0.5 mL Eppendorf tube with 10 µL of Aquaboost® 

Spermcoat. Store on ice (maximum 24 hours) until fertilization. 

8. Recover the fish in fresh system water. 

 

Female squeezing 

 

1. Anesthetize females with 0,16 g/L MS-222 until gill movement slows down. 

2. Remove one female from Tricaine and rinse the fish in PBS. Remove very quickly the 

female from this tank with the spoon and place it in the paper towel. 

3. Dry female by rolling gently front to back on a paper towel using the spoon. If the 

ventral side is still moist use a Kimwipe and gently dry by blotting. Water activates 

eggs so it is important to thoroughly dry the skin around the cloaca. 

4. Place the female belly up between thumb and index finger and squeeze gently to 

expel eggs. Fingers should be damp but not wet. Collect the eggs with the 

polypropylene spatula. Examine the eggs. They should be yellow, with no white 

debris indicative of degradation, dry and sticking together. Any egg lays with turbidity, 

dirt or watery eggs shouldn´t be used. 

5. Immediately dip the polypropylene spatula in the Aquaboost® Ovacoat in the petri 

dish in order to remove the eggs from the spatula. Eggs are very delicate and should 

be handled with extreme care. 

6. Keep eggs in Aquaboost® Ovacoat between 5 and 30 minutes. 

 

Perform IVF 

 

IVF should be performed up to 3 hours after the light cycle begins. 

 

1. Gently remove excess Aquaboost® Ovacoat from eggs using a 100 µL pipette tip to 

ensure proper contact between sperm and eggs. Be careful not to touch the eggs. 

2. Add 10 µL of sperm in Aquaboost® Spermcoat. 

3. Add 200 µL of system water to activate the eggs and sperm. Swirl to mix. Incubate 2-

5 minutes at room temperature. 
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4. Examine the sperm motility. Zebrafish sperm will loose motility 1 minute after 

activation. 

5. Fill the dish with system water and place it for incubation (28ºC, photoperiod 14h 

day/10h night). 

 

24 hours after IVF, check if fertilization was successful. Determine the success rate. 
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Appendix C: Female hormonal stimulation SOP 

Zebrafish Female Hormonal Stimulation 

 

Materials 

 

● Breeding tanks 

● Pipette tips - 200 µl 

 

Solutions 

 

● System water 

 100nM 17α,20β-Dihydroxy-4-pregnen-3-one (Sigma P6285-5MG)  

 

Hormone Preparation  

 

 Dissolve β-DHP (Sigma P6285-5MG) in 100uL absolute ethanol 

 Dilute this solution in 100mL of deionized water 

 Aliquot this stock solution in 1,5mL Eppendorf tubes, keep them on the fridge (stable 

for at least 1 year) 

 

 

Hormonal Stimulation 

 

1. 1 to 2 hours after the lights turn on in the room transfer females from the system tank 

to a breeding tank (no need to use the grid). For each female use 100mL of system 

water. The females can be together with the males in the tank. 

2. For each 100mL of system water add 15uL of β-DHP stock solution. 

3. Incubate the females for 4-5 hours 

 

 

Female squeezing 

 

1. Anesthetize females with 0,16 g/L MS-222 until gill movement slows down. 

2. Remove one female from Tricaine and rinse the fish in PBS. Remove very quickly the 

female from this tank with the spoon and place it in the paper towel. 
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3. Dry female by rolling gently front to back on a paper towel using the spoon. If the 

ventral side is still moist use a Kimwipe and gently dry by blotting. Water activates 

eggs so it is important to thoroughly dry the skin around the cloaca. 

4. Place the female belly up between thumb and index finger and squeeze gently to 

expel eggs. Fingers should be damp but not wet. Collect the eggs with the 

polypropylene spatula. Examine the eggs. They should be yellow, with no white 

debris indicative of degradation, dry and sticking together. Any egg lays with turbidity, 

dirt or watery eggs shouldn´t be used. 

5. Immediately dip the polypropylene spatula in the Aquaboost® Ovacoat in the petri 

dish in order to remove the eggs from the spatula. Eggs are very delicate and should 

be handled with extreme care. 

6. Keep eggs in Aquaboost® Ovacoat between 5 and 30 minutes. 
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Appendix D: Sperm ultra-fast freezing SOP 

Zebrafish Sperm Ultra-Fast Freezing 

 

Controlled rate freezing processes in the presence of cryoprotectants can cryopreserve cells 

in suspended state for indefinite periods. 

 

Labelling 

Cryopreserved samples ID:  eg. SUF00101 

S = sperm 

UF = ultra-fast freezing (method) 

numeric code with 5 numbers  

 

Set up 

Styrofoam box (36x21x30cm or similar) 

2 supports (one for 15mL Falcons - bottom, one for cryovials - top) 

Fill Styrofoam box with liquid nitrogen until the bottom support is completely immersed 

Close the Styrofoam box with the lid for at least 30 minutes 

The sperm in cryovials is going to be frozen in the vapour phase nitrogen. The cryovials are 

positioned in a support above a shallow reservoir of liquid nitrogen. In this phase there is no 

risk of cross-contamination from liquid nitrogen, low temperatures are achieved and is a very 

simple and reliable method, however temperature fluctuations can occur. 

 

 

PROTOCOL A (Sperm from 1 ♂ - 2 cryovials)  

 

Solutions 

Prepare volume of solutions depending on the number of samples being cryopreserved 

Labels printer 
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Ginsburg Fish Ringers Solution (Make fresh and then freeze in aliquots) 

In 450ml sterile ddH2O dissolve: 

NaCl 3.25g 

KCl 0.125g 

CaCl2•2 H2O 0.175g 

Then add NaHCO3 0.10g 

Bring final volume to 500ml with sterile dH2O  

 

Freezing Medium (Make fresh daily, solutions with skim milk powder can´t be frozen) 

WITHOUT Methanol 

Ginsburg Fish Ringers 10mL 

Powdered Skim Milk 1.5g 

WITH Methanol  

Ginsburg Fish Ringers 9mL (room temperature) 

Methanol 1ml 

Powdered Skim Milk 1.5g 

 

Sperm Freezing Protocol 

1. Pipette 6.6μL of freezing medium without methanol to one cryovial and place both 

cryovials on ice (label both cryovials with the same ID) 

2. Collect sperm and add it to the cryovial 

3. Add 40μL of freezing medium with methanol, stir and pipette up/down 2-3 times 

4. Immediately transfer 23.3μL to the other cryovial 

5. Place the cryovials without cap into the upper support on the Styrofoam box for 15 

minutes 

6. Close the Styrofoam box lid every time a cryovial is placed in the support 

7. After 15 minutes cap the cryovial and transfer it to the liquid nitrogen 

 

PROTOCOL B (Sperm from 1 ♂ - 1 cryovial) 

 

Solutions 

Prepare volume of solutions depending on the number of samples being cryopreserved 

 

Freezing Medium (Make fresh daily, solutions with skim milk powder can´t be frozen) 

WITHOUT Methanol 
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Aquaboost® Spermcoat 10mL 

Powdered Skim Milk 1.5g 

WITH Methanol  

Aquaboost® Spermcoat 9mL (room temperature) 

Methanol 1ml 

Powdered Skim Milk 1.5g 

 

Sperm Freezing Protocol 

1. Pipette 6μL of freezing medium without methanol to the cryovial and place it on ice  

2. Collect sperm and add it to the cryovial 

3. Add 20μL of freezing medium with methanol, stir and pipette up/down 2-3 times 

4. Place the cryovial without cap into the upper support on the Styrofoam box for 15 

minutes 

5. Close the Styrofoam box lid every time a cryovial is placed in the support 

6. After 15 minutes cap the cryovial and transfer it to the liquid nitrogen 

 

In Vitro Fertilization Protocol Using Cryopreserved Sperm 

1. Set a water bath to 33°C 

2. Preheat the Ginsburg solution in the water bath 

3. Gently remove excess Aquaboost® Ovacoat from eggs using a 100 μL pipette tip to 

ensure proper contact between sperm and eggs. Be careful not to touch the eggs. 

4. Remove one cryovial containing sperm sample from liquid nitrogen, open the cap, tip 

out liquid nitrogen and quickly immerse vial ~1/2 way into 33°C water bath for 15 

seconds 

5. Fill up immediately with 70µL pre-heated Ginsberg solution and mix by pipetting up 

and down 

6. Immediately add to eggs, activate sperm and eggs by adding 750 μl fish water, swirl 

to mix 

7. Incubate 5 minutes at room temperature. 

8. Fill dish with system water and transfer to incubator (28°C; 14:10h/light:dark). 

9. 15-24hpf remove dead embryos and fill the dish with E3.  
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Appendix E: Protocols summary regarding the main steps in each procedure tested for the 

ultra-fast freezing method of sperm. Mean fertilization rate and standard deviation for each 

protocol. 
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Appendix F: In vitro oocyte injection 

 

Injection of Tol2 constructs in Zebrafish oocytes + IVF 

 

Materials 

 

 0.5 mL Eppendorf tubes 

 1 L Breeding tank for anaesthesia (0,16 g/L MS-222) 

 1 L Breeding tank for recovery (system water) 

 1 L Breeding tank for rinse (PBS pH7.4) 

 500 mL Beaker with system water 

 Capillaries for sperm collection 

 Pulled 12 cm long capillaries for injection 

 Flat forceps 

 Ice in a Styrofoam small box 

 Kimwipes 

 Lamp for direct illumination 

 Permanent marker 

 Mouth piece, capillary adaptor and hose with a syringe filter in the middle 

 Nets - one to collect fish from Tricaine (MS-222) and another to collect fish from the 

recovery breeding tank 

 210mm Polypropylene spatula  

 Paper towels 

 Petri dishes 

 Pipettes - P20 and P200 

 Pipette tips - 20 µl and 200 µl 

 Plastic spoon 

 Stereoscope 

 Sponge fish holder 

 Timers 

 Agarose plates with rows to place eggs for injection (1% agarose in Ginsburg Ringers 

Solution or 90% Leibovitz’s L-15 medium with L-glutamine and 0.5mg mL−1 bovine 

serum albumin, pH 9.0) 
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Solutions 

 

 0,16 g/L MS-222 for anaesthesia 

 Fish water in beaker 

 Aquaboost® Spermcoat on ice 

 Oocyte storage medium (extender): 90% Leibovitz’s L-15 medium with L-glutamine 

and 0.5mg mL−1 bovine serum albumin, pH 9.0 

 

Gamete collection 

 

 Collect the sperm and expel it into the 0.5 mL Eppendorf tube with 10 µL of 

Aquaboost® Spermcoat. Store on ice. 

 Collect the oocytes and transfer them to the agarose plate, use the spatula to divide 

them through the slots in the agarose. Add <5µL of oocyte storage medium to each 

group of oocytes. 

 

Oocyte microinjection and IVF 

 

Use the microinjector PV 820 Pneumatic PicoPump to inject mature oocytes. 

1. Align the oocytes using an autoclaved tricot needle 

2. Carefully insert the capillary needle into the cell and press the injection pedal in order 

to inject the DNA mix 

3. Add oocyte storage medium to the plate and with the help of the tricot needle 

carefully unstick the oocytes from the agarose 

4. Incubate at room temperature (RT), in the dark, for 30 minutes 

5. Transfer the oocytes to a petri dish and withdraw all the medium 

6. Add the sperm and 200µL of fish water. Incubate for 5 minutes at RT.  

7. Fill the petri dish with fish water and transfer it to the incubator (28°C; 

14:10h/light:dark). 
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Appendix G: Preparation of chemicals and solutions 

 

 100nM 17α,20β-Dihydroxy-4-pregnen-3-one (P6285-5MG Sigma Aldrich)  

 Aquaboost® Ovacoat (Cryogenetics) 

 Aquaboost® Spermcoat (Cryogenetics) 

 Catalase (C40-100MG Sigma Aldrich) 

 Embryo medium (E3) prepared as follow: 29,38 g NaCl, 1,26 g KCl, 4,86 g 

CaCl2.2H2O, 8,14 g MgSO4.7H2O, 60 ml 0.01% Methylene Blue Solution (0.05 g 

Methylene Blue powder in 500 ml MQ water). Fill to 18L with fish water. 

 Ginsburg Ringers Solution prepared as follow: in 450ml sterile deionized water 

dissolve NaCl 3.25 g, KCl 0.125 g, CaCl2•2 H2O 0.175 g and NaHCO3 0.10 g. Bring 

final volume to 500 ml with sterile deionized water (all reagents from Sigma Aldrich) 

 Hanks’ balanced salt solution at an osmolality of 300 mOsmol/kg abbreviated as 

HBSS300 prepared as follow: 0.137 M NaCl, 5.4 mM KCl, 1.3 mM CaCl2, 1.0 mM 

MgSO4, 0.25 mM Na2HPO4, 0.44 mM KH2PO4, 4.2 mM NaHCO3, and 5.55 mM 

glucose, pH 7.2 (all reagents from Sigma Aldrich) 

 Methanol (UN1230 Fisher Scientific) 

 N,N-dimethylacetamide 99,55 (38840-1L-F Honeywell) abbreviated as DMA 

 N,N-dimethylformamide 99.8%, Extra Dry, AcroSeal™ (ACROS Organics) 

abbreviated as DMF 

 Skim Milk Powder (70166-500G Fluka Analytical) 

 

 


