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Abstract 

Prediction of weld bead geometry is always an interesting and challenging research topic as it 

involves understanding of complex multi input and multi output system. The weld bead geometry 

has a profound impact on the load bearing capability of a weld joint, which in-turn decides the 

performance in real time service conditions. The present study introduces a novel approach of 

detecting a relationship between weld bead geometry and mechanical properties (e.g. tensile load) 

for the purpose of catering the best the process could offer. The significance of the proposed 

approach is demonstrated by a case of dissimilar aluminium alloy (AA2219 and AA5083) electron 

beam welds. A mathematical model of tensile braking load as a function of geometrical attributes 

of weld bead geometry is presented.  The results of investigation suggests the effective thickness 

of weld – a geometric parameter of weld bead has the most significant influence on tensile breaking 

load of dissimilar weld joint. The observations on bead geometry and the mechanical properties 

(microhardness, ultimate tensile load and face bend angle) are correlated with detaild metallurgical 

analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate 

evaporation and segregation of alloying elements magnesium and copper respectively. The 

mechanical properties of weld joint are contrlloed by optimum bead geometry and HAZ softening 

in weaker AA5083 Al alloy.    
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Abbreviations:  

EBW  : Electron Beam Welding 

HAZ  : Heat Affected Zone 

T  : Thickness (mm) 

TW  : Top Width 

TD  : Top Depression 

BP  : Bead Penetration 

BW  : Bead Width 

Te  : Effective Thickness (mm) 

V  : Accelerating gun Voltage (kV) 

I  : Beam Current (mA) 

s  : Welding Speed (mm/min) 

T  : Thickness of Plate (mm) 

R-sq, R2 : Coefficient of Determination  

SE  : Standard Error 

ANOVA : Analysis of Variance 
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1. Introduction 

Electron beam welding (EBW), an autogenous and high power density fusion welding process, is 

extensively employed in aerospace and defence applications as it offers ample advantages over 

other conventional arc welding processes. EBW produces welds beads with high depth-to-width 

ratios, thus, minimizing heat input associated detrimental effects on weld performance [1,2]. As 

the EBW process is performed in vacuum conditions, fusion related weld defects are, in general, 

less in electron beam welds as compared to arc welding processes. As reported by Metzer and 

Lison [3], the electron beam welding has certain unique characteristics such as ability to produce 

narrow fusion zone with minimum dilution of base materials, ease of precisely locating weld joint 

etc. make this process as the better choice for fusion welding of dissimilar metals. The 

serviceability of welded joints mainly depends on shape and size of weld bead and constituent 

microstructures. By adopting the aforeentioned special charectaristics of the EBW process, it is 

extensively explored in fusion welding of wide variety of dissimilar metals and alloys[Sun and 

Karppi,4]. 

Overview of reported research/State-of-the-art:  

In genral, the weld bead geomtry in thick EBW is peculiar- kind of a ‘nail headed’, as shown in 

Fig. 1. It is difficult to envisage that geometric parameters widely used to define weld bead 

geometry in other autogenous process like Tungsten inert gas (TIG) welding - top bead width 

(TW), top depression (TD), bottom penetration (BP), and bottom bead width (BW) [Sharma et 

al.,5]  would  effectively explain the behavior of EBW welds. The top and bottom portions of the 

‘nail headed’ weld bead are due to different phenomena at surface and inside the body of the 

workpiecewhich need to be modelled as a two heat source problem [Klykov et al.,6]. 

 

Fig.1. Schematic sketch showing the weld bead geometry of electron beam weld joint 
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Table 1.  Summary of previous investigations on statistical modelling of weld bead geometry 

S.No Researchers, 

Year 

Material, 

thickness 

Design of 

Experiments  

Input 

parameters 

Output 

parameters 

1 Kumar et 

al.2017 [7] 

Ti6Al4V, 

5mm 

Central 

composite 

rotatable 

design(CCRD) 

Laser power, 

welding speed, 

de-focused 

position 

Width of fusion 

zone, width of HAZ 

and fusion zone 

area 

2 Siddaiah et 

al.2016 [8]  

AISI 304 

stainless steel, 

2mm 

Full factorial 

design  

Accelerating 

voltage, beam 

current, welding 

speed, focus 

Weld bead 

geometry 

3 Olshanskaya et 

al. 2016 [9] 

AlMg6 alloy, 

20mm 

Six-factor three-

level nine- run 

design 

Beam current, 

travel speed, 

distance between 

each split beam, 

impact  time of 

each split beam 

at each point 

Geometric 

characteristics of 

weld beads  

4 Kanigalpula et 

al. 2015 [10] 

Cu-Cr-Zr 

alloy,10mm 

Central 

composite 

design(CCD) 

Accelerating 

voltage, beam 

current, welding 

speed, focus 

Weld bead 

geometry 

5 Kar et al. 2015  

[11] 

AISI 304 

stainless steel, 

15mm 

DOE is not 

followed 

Accelerating 

voltage, beam 

current, welding 

speed 

Weld bead 

geometry, HAZ 

size 

6 Dey et al. 2010  

[12] 

Aluminium 

1100,  12mm  

Central 

composite 

design(CCD) 

Accelerating 

voltage, beam 

current, welding 

speed 

Weld bead 

geometry 

 

Therefore very limited investigations are reported for prediction of weld bead geometry shape of 

EB welds, as shown in Table 1.Most of these works have concentrated on regression analysis or 

statistical modelling of weld bead geometry, heat affected zone (HAZ) width or in few studies, 

and joint strength of similar material combinations. Welding of dissimilar alloys deserve more care 
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and attention as compared to that of similar materials. More so, the weld bead geometry of 

dissimilar alloys depend on physical and thermal properties of dissimilar base materials and joint 

strength is also affected by bead geometry as well as the welding parameters. 

The present work assumes special significance since no research article is found, to the best of  

authors’ knowledge, in the open literature in which weld bead geometry and its effect on 

weldmechanical properties pertaining to dissimilar aluminium alloy electron beam weldsare 

investigated. The alloy combination considered in this investigation is a prominent in aerospace 

and defence applications. AA2219 aluminium alloy is widely used in manufacturing of airframes, 

fuel tanks due to its high strength while AA5083 aluminium alloy is employed in pipe lines, 

external walls of naval sub systems because of its corrosion resistance properties. However in 

certain applications where some part of subsystem require high strength while the other component 

may demand for better corrosion resistance, the dissimilar welding between AA2219 and AA5083 

aluminium alloys is highly useful. The present work focuses on developing relationship between 

the weld bead geometry and tensile breaking load of dissimilar aluminium alloy (AA2219 and 

AA5083) electron beam weld joint. A regression model is developed wherein breaking load is 

mapped as a function of weld bead geometry. The developed equations are validated through test 

experiments and further the weld joint strength is correlated to microstructures and distribution of 

alloying elements in fusion and heat affected zones. 

2.  Experimental work 

The base materials employed in the present research were AA2219-T6 Al-Cu alloy and AA5083-

H116 Al–Mg alloy. The analyzed chemical compositions and mechanical properties of base 

materials are listed in Table.2. The width of weld coupon was maintained along the rolling 

direction. Electron beam welding of 75 mm width x 125 mm length x 5 mm thickness plates was 

carried out in square butt joint configuration after positioning and firmly clamping the plates on a 

CNC work table. The selected welding process parameters that are considered in this study are 

accelerating voltage(V) in kV, beam current(I) in mA, welding speed(s) in mm/min. Remaining 

welding conditions such as vacuum level in welding chamber (1x10-4mbar), electron gun to work 

piece distance, focus position and pre-weld cleaning procedures are maintained as constant 

throughout the experimentation.  

Table 2. Chemical composition (%Wt) and mechanical properties of base materials 

 

 

 

 

 

Base Material 

Chemical composition (in % w/w) Tensile properties 
Micro 

hardness (VHN) Cu Si Mn Mg V Zn Ti Cr Fe 
UTS 

(MPa) 

0.2%YS 

(MPa) 
%El. 

AA2219-T6 5.83 0.03 0.3 --- 0.08 0.054 0.04 --- 0.1 443 338 10 139 

AA5083-H116 -- 0.13 0.66 4.2 --- 0.01 0.01 0.01 0.3 306 146 20 80 
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Table 3.  L25 orthogonal array along with its experimental results  

 Process parameters Process outcomes 

S.No Voltage 

(kV) 

Current 

(mA) 

Travel 

Speed 

(mm/min) 

TD 

 

BP TW BW Te=T-D+BP Breaking 

Load  in 

kN 

1 40 35 800 0.24 0.04 0.47 0.39 4.8 8.50 

2 40 40 900 0.94 0.36 0.81 0.64 4.42 8.95 

3 40 45 1000 0.48 0.3 1.4 1.04 4.82 9.16 

4 40 50 1100 0.48 0.42 1.53 1.03 4.94 8.46 

5 40 55 1200 0.28 0.23 1.3 0.98 4.95 9.04 

6 45 35 900 0.46 0.2 1.4 0.86 4.74 8.01 

7 45 40 1000 0.3 0.2 0.5 0.38 4.9 8.31 

8 45 45 1100 0.4 0.29 1.06 0.76 4.89 8.64 

9 45 50 1200 0.5 0.23 1.16 0.90 4.73 8.56 

10 45 55 800 0.63 0.45 1.16 1.22 4.82 8.35 

11 50 35 1000 0.65 0.66 1.65 0.82 5.01 8.47 

12 50 40 1100 0.64 0.63 1.54 0.93 4.99 8.79 

13 50 45 1200 0.73 0.12 1.17 0.87 4.39 8.20 

14 50 50 800 0.68 0.59 1.35 1.13 4.91 7.91 

15 50 55 900 0.87 0.40 1.81 1.35 4.53 7.68 

16 55 35 1100 0.57 0.80 2.54 1.01 5.23 9.49 

17 55 40 1200 0.83 0.34 1.67 1.14 4.51 9.03 

18 55 45 800 1.02 0.81 1.84 1.38 4.79 6.97 

19 55 50 900 1.17 0.36 1.58 1.23 4.19 7.47 

20 55 55 1000 1.2 0.62 1.76 1.42 4.42 8.06 

21 60 35 1200 0.83 0.89 1.70 0.88 5.06 8.02 

22 60 40 800 0.95 0.75 2.08 1.47 4.8 7.77 

23 60 45 900 1.03 0.56 1.88 1.26 4.53 8.56 

24 60 50 1000 0.94 0.41 1.54 1.27 4.47 8.29 

25 60 55 1100 1.07 0.25 1.85 1.48 4.18 9.03 
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Electron beam welding trials were carried out in a CNC controlled low kV electron beam welding 

machine of M/s.TECHMETA make. The experiments were planned and conducted as per Taguchi 

method using a L25 orthogonal array with three-factors and each factor with five-levels. The gun 

to work distance is kept constant at 240mm.The minimum and maximum operating levels of each 

welding parameter were decided based upon prior experience and after conducting certain pilot 

experimental bead on trials. Feasible limits of the each parameter was selected in such a way that 

the resulting electron beam welded joints would have uniform thread-like bottom penetration. The 

Table.3 shows the number of welding experimental runs and corresponding welding parameters 

as per L25 orthogonal array. 

The weld joints were initially visually inspected and further subjected to X-ray radiography to 

inspect for the presence of various internal and surface defects. The weld macrostructures of 

transverse section were examined under optical metallurgical microscope, after standard 

metallographic sample preparation using modified Keller’s reagent.The weld macrostructures 

were analyzed to measure different weld bead geometrical features such as top bead width (TW), 

Top depression(TD), bottom penetration (BP) and bottom bead width(BW). The welding 

parameters and measured weld bead geometry features are given in Table.3.  

The tensile test specimens were extracted along the transverse direction of the weld joint such that 

the specimen geometry conforms to the standard ASTM E8. The room temperature tensile 

properties of three specimens for each experiment were evaluated in as-welded condition, without 

machining top depression or penetration, on a universal tensile testing machine of INSTRON make 

at a crosshead speed of 1 mm/min. A mathematical model was developed using regression analysis 

- as explained later - for prediction of  tensile breaking load of weld joint as a function of weld 

bead geometrical features.The microhardness was measured using Vickers microhardness tester at 

100 gf load. The micro hardness indentations were spaced with 0.25 mm intervals covering various 

zones of weldments and base materials across the mid thickness of the transverse weld cross 

section. Face bend testing of weld joint was carried out as per standard ASTM E190. The fractured 

surfaces of tensile test specimens are examined under ZEISS make scanning electron microscope 

at an accelerating voltage of 20 kV in order to understand the mode of failure and for the presence 

of any inter-metallic compound particles on these fracture surfaces. 

3.  Development of Regression Model 

3.1  Regression model 

The breakingstrength of a weld bead joint depends on the weld bead geometry and the 

microstructure of the weld metal and head affected zone. The relation between shape and size of 

the weld and breaking strength, which is not more often reported, is an important step to understand 

the weld bead formation and its influence on weld strength. The response parameter representing 

the tensile breaking load (TBL) of dissimilar electron beam weld joints as a function of weld bead 

geometrical parameters may be expressed as :  
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𝑇𝐵𝐿 = 𝑓(𝑇𝑒, 𝑇𝐷, 𝑇𝑊, 𝐵𝑃, 𝐵𝑊)        (1) 

The effective weld thickness Teis as  

𝑇𝑒 = 𝑇 − 𝑇𝐷 + 𝐵𝑃          (2) 

A regression equation  is developed using stepwise regression method using MINITAB version 

17. Detail of this method can be elsewhere [13].The deduced second order polynomial regression 

equation after incorporating all the values of the regression coefficients is as follows:   

𝑇𝐵𝐿 = 1.7988𝑇𝑒 + 0.724(𝑇𝐷)2 + 0.263(𝑇𝑊)2 − 2.621(𝐵𝑃)(𝐵𝑊)   (3) 

For the present case T=5 mm, thus the Eq. (3) can be rewritten using Eq.(2) as follows: 

𝑇𝐵𝐿 = 1.7988 (5 − 𝑇𝐷 + 𝐵𝑃) + 0.724(𝑇𝐷)2 + 0.263(𝑇𝑊)2 − 2.621(𝐵𝑃)(𝐵𝑊) (4) 

The adequacy of the regression model is judged by the analysis of variance (ANOVA), as shown 

in Table.4. It is observed that the calculated F- ratio is higher than the tabulated F-ratio at 

confidence level more than the 95%. So, the developed model is considered to be adequate and 

predicts the response without appreciable error.  

 

Table 4.  Results of analysis of variance for the regression model  

Source Degrees of 

freedom 

Adj Sum 

Square 

Adj Mean 

Sum square 

F-Value P-Value 

Regression 4 1442.67 360.666 1574.27 0.000 

  Te 1 272.40 272.398 1188.99 0.000 

  TD*TD 1 1.47 1.472 6.43 0.021 

  TW*TW 1 1.32 1.323 5.77 0.028 

  BP*BW 1 4.85 4.853 21.18 0.000 

Error 17 3.89 0.229   

Total 21 1446.56    

 

The  model was developed using 21 out of 25 observations and rest four were used to confirm the 

model. The predicted error for both the development and confirmation  data is found within ± 10% 

band asshown in Fig.2.The coefficients of determination for the mode (R2, R2(adj), and  

R2(pred)for the observed results are 99.73%,  99.67%, and 99.58%, respectively that shows that 

the developed model is adequate and can predict the response without appreciable error. 
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Fig.2. Plot of actual breaking load versus predicted breaking load 

The model is further simulated to understand the relationship in between the weld bead geometry 

and weld strength as presented next. Subsequently the results are corroborated with microstructural 

observations. 

4.  Results and discussion 

4.1  Weld appearance and bead geometry  

The appearance of top and bottom side of a typical weld bead joint and the corresponding X-ray 

radiograph is shown in Fig.3.The weld joints are noticed to have a depression in fusion zone on 

top side and a positive penetration at bottom side. X-ray radiograph of weld joints reveals presence 

of no significant defect. 

The appearance of all the dissimilar aluminium alloy electron beam weld cross sections produced 

with different process parameters is presented in Fig.4. It can be deduced that it is possible to 

produce defect free weld joints with accelerating voltage 40 to 60kV, beam current 35 to 55mA 

and welding speed 800 to 1200mm/min. All the weld joints are noticed to be free from bulk 

porosity but there exists varied weld bead geometries with changes in welding parameters. The 

weld bead width and top depression is observed to increasing with increase in welding heat input. 

Overall view of all the weld cross sections reveal presence of certain amount of depression of weld 

bead zone from top surface and positive penetration is noticed in almost all the weld joints.  
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Fig.3 Visual appearance of weld joint (a) top side (b) bottom side (c) X-ray radiograph 

(accelerating voltage 55kV, beam current 35mA and welding speed of 1100mm/min, gun to work 

distance of 240mm.) 

 

Fig.4  Optical macrographs of the EB weld joints at different welding parameters  
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4.2  Relationship in between weld bead geometry and weld strength 

The weld bead geometrical parameters are interdependent. The interdependence is shown in Fig.5. 

The change in process conditions that enhance the heat input the volume of molten metal increases, 

in turn the weld width widens along with deepening of top depression, increase of bottom 

penetration, and increase in bottom width. However, excess widening of weld width spreads the 

heat over larger area that reduces the top depression and bottom weld width, as observed in Fig.5. 

However the molten metal along the center core of the beam increases due to increase in heat input 

responsible for increasing the weld width. 

 

Fig.5 Plots depicting interdependence between weld bead geometrical parameters 

The bead geometry influences the weld strength. The relationship between weld bead geometry 

and breaking load is obtained using simulation of the functional relation in Eq. 4 and shown in 

Fig.6. It can be seen that with increase in top depression, bottom penetration, and bottom weld 

width, the breaking load decreases while the process parameters responsible for wider top weld 

width increases the breaking load. The widening of weld width reduces the top depression at the 

same time helps to improve bottom penetration. This helps in increase in the total effective weld 

thickness Te. The increase in Te increase the weld strength that also corroborates from positive 

coefficient of Te in Eq.3. Along with the bead the microstructure - that itself may be affected by 

weld geometry due to change in heating and cooling rates- also impacts the weld strength as 

described next.  
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Fig.6. Dependence of breaking load on weld bead geometrical parameters 

The macrostructures of two typical weld joints are shown in Fig.7 The macrostructure in Fig.7(a) 

depicts a weld bead geometry with certain degree of uniformity with minimum amount of top 

depression and bottom penetration is noticed. Whereas the macrostructure of weld joint shown in 

Fig.7(b) has relatively highest amount of top depression with an uneven weld bead geometry.   

 

Fig.7 Macrostructures of typical weld joints produced with parameters (a)Accelerating voltage 

55kV, beam current 35mA and welding speed 1100mm/min (b)Accelerating voltage 55kV, beam 

current 45mA and welding speed 800mm/min. 
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4.3  Microstructural analysis 

The optical microstructures of the base materials, AA2219-T6and AA5083-H116 aluminum alloys 

are shown in Fig.8. The AA2219 base material consists of typical coarse grains measuring 

approximately to1.5 to 2.0 millimeters with presence θ (CuAl2) particles spread across the whole 

matrix both at grain boundaries and at interior to the grains. 

Precipitation sequence, as mentioned by Li and Schen [14], in a supersaturated solid solution of 

AA2219 aluminum alloy is as mentioned below. 

𝛼 → 𝛼 + 𝐺𝑃𝑧𝑜𝑛𝑒𝑠 → 𝛼 + 𝜃" → 𝛼 + 𝜃′ → 𝛼 + 𝜃 

where,  α isa solid solution of Cu in Al matrix, GP zones are Guinier-Preston  zones.After 

precipitation hardening or ageing, the alloy attains higher strength due to the impediment of 

dislocations by 𝜃"  and 𝜃′  precipitates. However, the 𝜃 -particle is aninter-metallic compound 

(CuAl2) which stays incoherent to the α-matrix.The microstructure (Fig.8(b)) of AA5083 base 

material contains uniformly distributed fine grain size with slightly elongated grains in the 

direction of rolling. It is further observed from Fig.13(a) that the maximum population of grains 

in AA5083 base material found to be varying from ASTM grain size number from 10 to 12. 

 

Fig.8Typical optical micrographs of base materials (A) AA2219 (b) AA5083 aluminium alloys 
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Fig.9Optical microstructures of electron beam weld joint produced with welding parameters 

(accelerating voltage 55kV, beam current 35mA, welding speed 1100mm/min) (a) macrostructure 

(b) AA2219 alloy base metal (c)& (d) fusion zone interface at AA2219 alloy side at low and high 

magnifications respectively (e) & (f) fusion zone at top and mid thickness of cross section (g) &(h) 

fusion zone interface at AA5083 alloy side at low and high magnifications respectively (i) AA5083 

alloy base metal 

 

The microstructures of different zones of a typical electron beam welded joint are shown in Fig.9. 

The different zones of weld cross-section are marked from b-i. The base metal of AA2219 alloy 

has coarse as-forged grains as it is seen from Fig.9(b).The microstructures close to AA 2219 

interface is shown in Fig.9(c). The interface near AA 2219 alloy side is very clear and distinct, 

from which the fusion zone grains are noticed to be originated. The grain size in the fusion zone 

(Fig.9(e)&(f)) is observed to be very fine and is typically smaller by few orders as compared to 

that of AA 2219 alloy base material. The fine grain size in fusion zone is the result of faster cooling 

rates prevailing in the key hole mode welding that happens during electron beam welding process. 

Similar observations on grain size in fusion zone are made by Yan-bin et. al.,[15] and Nair et. 

al.,[16].The optical microstructures near the both fusion interfaces andfusion zone at higher 
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magnifications are shown in Fig.10. The fusion zone is found to have primarily very fine columnar 

dendrites originating from the fusion interface (See Fig.10(a)). The central part of fusion zone 

consists of equiaxed fine grains (as shown in Fig.10(b)) which are formed due to faster cooling 

rate that exist during welding.The interface of fusion zone towards AA5083 alloy side is shown in 

Fig.10(c) and (d). The fusion interface near AA5083 alloy is found to be more diffused over a wide 

area while the interface at AA2219 alloy side is found to be a sharp line (Fig.10(a)) that is clearly 

distinct. This phenomenon is due to the fact that the thermal diffusivity of AA 5083 alloy 

(0.45cm2/s) is smaller than that of AA2219 alloy (0.5cm2/s) which causes major portion of welding 

heat gets accumulated at the fusion interface of AA5083 alloy instead of getting transferred to the 

heat affected zone or base material.   

 

Fig.10 Optical microstructures of (a) fusion interface close to AA2219 alloy side (b) centre of 

fusion zone (c) &(d) fusion interface close to AA5083 alloy side at two different high 

magnifications 

 

The optical microstructures given in Fig.11(a) depicts presence of eutectic phase (θ-particles)  

spread along the grain boundaries of super saturated Al-Cu solid solution in AA2219 aluminium 

alloy. Upon exposure to the severe welding thermal cycles, re-melting of this prior existing eutectic 

phase occurs as it is the last to solidify. The grain boundaries close to the fusion interface 

experience higher degree of temperatures during welding time and these zones are generally very 

narrow in high energy density welds, mostly  covering width of one or two grains. Fig.11(b) clearly 

indicate eutectic re-melting at the fusion interface near AA2219 alloy side. 
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Fig.11 Optical microstructures of (a) AA 2219 alloy base metal showing eutectic phase (θ) (b) 

fusion interface close to AA2219 alloy showing re-melting of eutectic phase at grain boundaries 

 

 

Fig.12 Optical microstructures of (a) AA5083 alloy base material (b) heat affected zone of 

AA5083 alloy side 

 

High magnification microstructures of AA5083 base material and its corresponding heat affected 

zone are shown in Fig.12(a)&(b) respectively. The distribution of grain size in base material and 

HAZ of AA5083 alloy are also measured and plotted (Fig13.(a)&(b)) using planimetric method It 

is clearly evident from these microstructures and plots that there is very little variation in the grain 

size of the HAZ as compared to that of base material of AA5083 alloy. This could be primarily 

due to the prevailing lower welding heat inputs, faster cooling rates and lesser thermal diffusivity 

of AA5083 alloy.  
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Fig.13 Grain size distribution in (a) AA5083 alloy base metal (b) HAZ of AA2219 alloy (c) &(d) 

bar chart depicting variation of grain size in AA 5083 base metal and HAZ of AA5083 alloy 

respectively  

 

Many researchers [15,17 and 18] have reported that the evaporation of major alloying elements 

during high energy density welding of aluminium alloys. In particular, during laser /electron beam 

welding of 5xxx aluminium alloys, earlier studies have reported evaporation losses of %Mg even 

to the extent of 10 to 20%. [19].  In order to understand the composition of existing alloying 

elements in fusion zone of this dissimilar electron beam weld, EDAX analysis is carried out and 

the results of area and point analysis are given in Fig.14 and Fig.15. It is noticed from the results 

of EDAX area analysis given in Fig. that the magnesium is evaporated from the top of fusion zone 

by 20.2% due to the keyhole mode welding because Mg has low vaporization temperature. In this 

zone, in addition to 3.35 wt% of magnesium,  presence of copper is measured as 3.21wt% which 

indicates that the sufficient dilution of AA2219 alloy and AA5083 alloy in fusion zone. The wt% 

of measured copper in this zone is lower than that of AA2219 base material which could be due to 

the fact that copper segregation in fusion zone. However the EDAX point analysis (Fig.15) in the 

fusion zone indicates that iron is segregated in fusion zone. Presence of iron along with copper and 

magnesium in aluminium matrix may lead to formation of fine inter-metallic compounds or 

precipitates like Al2CuMg, Al15Fe3Si etc. 
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Fig.14 EDAX area analysis of prevailing alloying elements near top of fusion zone  

 

Fig.15 EDAX point analysis of prevailing alloying elements at a particle in fusion zone  
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4.4  Microhardness survey 

The typical variation of microhardness along the mid thickness of transverse cross section across 

the dissimilar electron beam weld  is shown in Fig.16. The hardness of AA2219 base material was 

substantially higher than that of AA5083 base material. As can be seen, there was a drop in the 

hardness in the HAZ close to AA2219 alloy as compared to the un-affected AA2219 base material. 

A similar trend was observed in HAZ towards AA5083 alloy side as compared to the unaffected 

AA5083 alloy base material. The hardness of fusion zone was found to be significantly lower than 

that of AA2219 base material and slightly higher than the AA5083 base material. The reduction 

in hardness in HAZ of AA2219 alloy side could be due to dissolution or coarsening of Al2Cu 

precipitates due to the exposure to welding heat input. Fusion zone hardness is less than that of 

AA2219 alloy base material due to complete dissolution strengthening precipitates in fusion zone. 

Similarly the drop in hardness of HAZ of AA 5083 alloy side can be correlated to the loss of cold 

working / softening due to decreased dislocation density during EB welding process.Yan-bin et al 

[15], Cam et al [19], Cam et al [20] and Mastanaiah et al [21]have reported reduction of hardness 

in HAZ of different types 5xxx aluminum alloys.  

 

Fig.16 Variation of microhardness across the weld joint at mid thickness 

4.5  Tensile test results 

The tensile test is conducted with a goal to estimate the load bearing capacity of weld joint in as-

welded condition without any post weld machining operations. As the test specimens are not 

machined or ground after welding, the thickness of the flat transverse tensile test was noticed to 

be varying beyond acceptable limits as specified by widely practiced standard of tensile testing i.e, 
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ASTM E8. So testing of tensile specimens, without machining top depression and penetration of 

the weld joint, has prompted localizing the tensile fracture in fusion zone. So, it was considered to 

evaluate tensile breaking load and displacement in 25mm gauge length for weld joints instead of 

usual tensile strength, yield strength and elongations which are dependent of cross sectional area 

of test specimen.The transverse tensile properties of EB weld joints and the corresponding 

AA2219 and AA5083 alloy base materials are mentioned in Table.5.Load versus displacement 

curves for both base materials and weld joint are presented in Fig.17. 

One can easily deduce from Fig.17 that the dissimilar weld joint possess the tensile breaking 

loadmoderately higher than AA5083 alloy base material and less than that of AA2219 alloy base 

material. The weld specimen has demonstrated better ductility than the specimen of AA2219 alloy 

base material and slightly lesser than the AA5083 alloy base material.Optical macrograph of the 

fractured tensile test specimen of weld joints is shown in Fig18. It is clearly evident from the Fig 

that the fracture of weld joint has initiated from centre of top depression and the crack has 

propagated through the fusion interface of AA5083 alloy side which posses minimum hardness 

compared to the other zones of weld joint (Fig.16).  

It is noticed that the weld joint fracture was initiated at top of the fusion zone which could be due 

to stress concentration effect aroused from the profound variations in the weld bead geometry. Top 

depression of the weld joint has lead to the stress concentration and localization of fracture in 

fusion zone. Another reason for initiation of crack at the fusion zone could be due to the depletion 

of major alloying element magnesium from the fusion zone, which was aided by evaporation of 

magnesium during keyhole mode electron beam welding. Punkari et.al.,[18] and Cam et.al.,[19] 

have reported loss of magnesium from power beam welding processed weld zones by around 10 

to 20%.  They also found out that loss of magnesium is one of the major reasons for the fracture 

initiation at fusion zone of high energy density welding joints of 5xxx aluminium alloys. 

However, the dissimilar electron beam weld joint which was welded with parameters 55kV, 35mA 

and 1100mm/min has shown highest breaking load among all the weld joints. This breaking load 

is slightly higher tensile breaking load than that of AA5083 alloy base material.  One reason for 

the higher tensile breaking load of weld joint is due to higher effective thickness (5.23mm, as 

shown in Fig.17) of weld bead which was resulted from the particular welding parameters. In this 

case, bottom penetration is more than top depression, finally resulting in effective thickness of 

5.23mm as against the base material thickness of 5mm. The measured top depression in this 

particular weld bead geometry suggests that the increase in the breaking load of the dissimilar weld 

joint as compared to the AA5083 base material could be due to the presence of localized notch 

like top depression. The presence of notch in a tensile specimen under uni-axial load introduces 

three effects [22]. (i) There is an increase or concentration of stress at the root of the notch (ii) A 

tri-axial state of stress is produced at notch (iii) A stress gradient is setup from the root of the notch 

towards the centre of the specimen. Hence, it is understood that the breaking load of this weld joint 

is slightly more than that of the AA5083 alloy base material.   
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The other dissimilar weld joint which was welded with parameters 55kV, 45mA and 800mm/min 

has demonstrated lowest breaking load among all the weld joints. The ductility of this weld joint 

possesses lower ductility as compared to other welds. So, the weld is observed to have both 

breaking load and displacement lower than those of other weld joints. 

After initiation fracture, the crack has propagated through the fusion interface of AA5083 alloy 

side, as this zone has reportedminimum hardness region as compared to all the other regions of 

dissimilar weldment, which was in turn a resultant of loss of cold working or softening because of 

exposure to high temperatures caused due to welding heat.  A similar observations are reported by 

Yamaguchi et.al.,[17], Cam et.al.,[19] and Oladimeji et.al.,[23]. 

Table 5 . Comparison of tensile properties of both base materials and dissimilar EB weld  

  Tensile breaking load(kN) 
Displacement 

(mm) 
Failure Location 

AA2219 Base Material 11.3 2.0 --- 

AA5083 Base Material 8.1 5.3 --- 

Dissimilar Electron 

Beam Weld (55kV, 

35mA, 1100mm/min) 

9.5 4.6 

Fusion zone or 

interface of 

AA5083 alloy 

side 

Dissimilar Electron 

Beam Weld (55kV, 

45mA, 800mm/min) 

6.9 1.7 Fusion zone 
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Fig.17 The tensile load versus displacement plots of both base materials and dissimilar EB welds 

 

Fig.18 Optical macrograph of fractured tensile test specimensof (a) weld that has highest breaking 

load (b) weld that has lowest breaking load 

4.6  Fractography 

The scanning electron microscope (SEM) images of fractured surfaces of tensile test specimens of 

weld joint of highest breaking load are shown in Fig.19. The fractographs shown in Fig.19 (b)&(c) 

correspond to the fusion zone and interface on AA5083 alloy side. Fractographs of both the zones 

primarily portray fine elongated dimples which confirm that fracture has predominantly occurred 

in ductile mode. 
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Fig.19 SEM images of fractured surface of tensile test specimen of EB weld with highest breaking 

load (a) whole fracture surface at low magnification (b), (c) and (d) high magnification 

fractographs of zones as indicated in (a) &(b) 

Fine dimples are characteristic feature of ductile material. The weld joint produced with welding 

parameters 55kV, 35mA and 1100mm/min has shown highest tensile breaking load and 

displacement as compared to the welds produced with parameters 55kV, 45mA and 800mm/min 

and to other weld joints. The dimple size exhibits a directly proportional relationship with tensile 

breaking load and displacement i.e., if the dimple size is finer, then the tensile breaking load and 

ductility of the respective weld joint is higher or vice versa.  
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Fig.20.SEM images of fractured surface of tensile test specimen of EB weld with lowest breaking 

load (a) whole fracture surface at low magnification (b), (c) and (d) high magnification 

fractographs of zones as indicated in (a) &(b) 

The scanning electron microscope (SEM) images of fractured surfaces of tensile test specimens of 

weld joint of lowest breaking load are shown in Fig.20. The fractographs presented in Fig.20 

(b),(c)&(d) suggests that occasional cleavage like features are evident in the grain interiors in 

addition to the micro void features. The fracture of this particular weld joint appears to be shear 

dominated phenomenon. The sheared regions were oriented ~450 to the tensile stress axis, 

following a plane of maximum shear stress. This type of shear fracture tends to minimize necking 

and avoids the tri-axial state of stress that occurs in the necked region.  

4.7  Bend test results  

The bend tests for the welds joints were conducted mainly to assess the ductility and toughness of 

weldment. The face bend test samples of dissimilar EB welds before and after bend testing are 

shown in Fig.21(a)&(b).  Fig.21(c)&(d) portrays the bend tested specimens of weld joints that 

possess highest and lowest breaking load respectively. The bend test specimens are prepared by 

machining the top depression and bottom penetration of both the weld joints. Face bend test of 

both the weld joints passed the 900 bend angle without resulting in any crack at the root. It is 

noticed from Fig.21(c)&(d) that the bending has shifted towards AA5083 alloy side as it has 

relatively lower strength and higher ductility as compared to the weld zone and AA2219 alloy base 

material.  
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Fig.21 Three point face bend testing of weld joint (a) before bend test (b) during bend test (c) bend 

tested specimen of weld joint corresponding to highest BL (d) bend tested specimen of weld joint 

corresponding to lowest BL 

 

5.  Conclusions 

In the preset work, an in-depth comprehensive metallurgical characterization and the interaction 

effect of weld bead geometry over performance of electron beam weld joint of dissimilar aluminum 

alloys (AA2219 and AA5083) was studied. The following conclusions are drawn based on the 

results of the entire study. 

1. Electron beam weld joints of good quality without bulk porosities may be produced over a 

wide range of welding parameters for the dissimilar combination of AA2219 and AA5083 

aluminium alloys. All the joints possess certain amount of top depression and positive 

penetration. 
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2. A mathematical model between the weld bead geometry (i.e., top bead width, top depression, 

bottom penetration, and bottom bead width)and the tensile breaking load of weld joint is 

developed.The model can predict the tensile breaking load as a function of weld bead geometry 

as a withinan error of ±10%. 

3. The variation in welding parameters that increase the heat input, results in widening of top 

bead width, deepening of top depression as well as increses in bottom penetration. Weld bead 

geometry has a major influence on joint strength. Increased top bead width with minimum top 

depression and maximum bottom penetration leads to increase in effective thickness that in 

turn results in higher joint strength.  

4. The electron beam welding produces very fine grains in fusion zone and  softening in HAZ of 

AA5083 alloy. The key hole mode electron beam welding results in evaporation of magnesium 

from fusion zone. 

5. Fusion interface close to AA5083 alloy has reduced hardness which can be correlated to the 

loss of cold working / softening due to decreased dislocation density due exposure to severe 

temperatures caused by welding heat input 

6. The dissimilar weld joint possess the tensile breaking load moderately higher than AA5083 

alloy base material and less than that of AA2219 alloy base material. The weld specimen has 

demonstrated better elongation than the specimen of AA2219 alloy base material and slightly 

lesser than the AA5083 alloy base material. The dissimilar electron beam weld has good bend 

ductility with major part of deformation existing in softer AA5083 alloy.  

7. The failure location of dissimilar electron beam weld is affected by the weld bead geometry 

and the softening in fusion interface of AA5083 alloy. 
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