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ABSTRACT

Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including

those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This

issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave con-

ditions, which are often multimodal in large ocean basins (e.g., PacificOcean). Swell may be generated in vastly

different wave generation regions, yielding complex wave spectra that are inadequately represented by a single

set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave

conditions is complicated by variations in arrival time ofwave groups fromdifferent parts of the basin.Here, this

study addresses these two challenges by improving upon the spatiotemporal definition of the atmospheric

predictor used in the statistical downscaling of local wave climate. The improved methodology separates the

local wave spectrum into ‘‘wave families,’’ defined by spectral peaks and discrete generation regions, and relates

atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel

times computed from effective energy flux across the ocean basin. When applied to locations with multimodal

wave spectra, including SouthernCalifornia and Trujillo, Peru, the newmethodology improves the ability of the

statistical model to project significant wave height, peak period, and direction for each wave family, retaining

more information from the full wave spectrum. This work is the base of statistical downscaling byweather types,

which has recently been applied to coastal flooding and morphodynamic applications.

1. Introduction

At a given time, the wave state of the ocean surface

is a composite of wind seas and swell. Wind seas are

generated by and strongly coupled with local winds,

whereas swell is generated remotely and might have

propagated over large distances. Though multiple defi-

nitions exist, swell can be distinguished from wind seas

when the wave phase speed exceeds the overlaying wind

speed by 20% (Semedo et al. 2011). Swells and seas are

functions of both the intensity and frequency of atmo-

spheric systems (Young et al. 2011). The wave state of

the ocean surface represents a multitude of wind seas

and swell trains, which each have a particular set of bulk

wave statistics (significant wave height Hs, peak wave
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period Tp, mean wave direction Dm, and directional

spreading s). Often, the wave spectrum exhibits multi-

ple wave energy peaks (e.g., California deep-water wave

climate; Crosby et al. 2016), with contributions of energy

generated locally and energy propagated from distant

regions. However, using the full wave spectrum from

numerical wave models or wave buoys produces large

volumes of data that pose management and analysis

challenges. As a result, many studies examine bulk wave

parameters of the largest energy peak of a spectrum

while virtually eliminating secondary spectral peaks,

which leads to incomplete and potentially misleading

results. Recent advances allow for simple statistical

representation of multimodal wave spectra but have yet

to be widely applied (Portilla-Yandún et al. 2015).

Statistical downscaling methods for projecting local

wave climate exploit the relationship between wave

conditions and the magnitude and frequency of atmo-

spheric systems. Statistical downscaling defines a linear

(Wang et al. 2010) or nonlinear (this study) relationship

between atmospheric variables, such as sea level pres-

sure or wind speed, and wave parameters. These

methods can be compared to dynamical downscaling,

where a numerical wave model is forced by spatiotem-

porally varying winds (Erikson et al. 2015). Though

statistical downscaling methods have been applied ex-

tensively with success in the Atlantic Ocean and Medi-

terranean Sea (Wang et al. 2012; Laugel et al. 2014;

Camus et al. 2014a; Rueda et al. 2016a), the ability to use

these methods in larger ocean basins (e.g., Pacific

Ocean) is still being explored (Graham et al. 2013;

Camus et al. 2014a; Rueda et al. 2017). Statistical

downscaling relies on the quality of the definitions of the

predictor (e.g., regional sea level pressure) and pre-

dictand (e.g., local wave conditions). One commonly

used method for defining these fields is presented in

Camus et al. (2014a). In that work, daily regional sea

level pressure (SLP) fields averaged over an optimal

number of days defined the predictor for daily total bulk

wave parameters at a particular location (predictand).

The spatial range of the predictor encompassed the

primary areas of wave generation for the location,

identified using Evaluating the Source and Travel Time

of the Wave Energy Reaching a Local Area (ESTELA;

Perez et al. 2014). The temporal range of the predictor

was the average travel time of wave energy generated

inside the wave generation region to the location, also

identified using ESTELA.

In smaller ocean basins, such as the North Atlantic

Ocean and Mediterranean Sea, the region of wave

generation is relatively small. Thus, the travel times of

wave energy generated within the basin (i.e., far from

the location versus close to the location) differ by only a

few days, usually less than 5 days. Additionally, wave

spectra are often unimodal, with swell arriving from one

discrete generation region. In these cases, the definition

of the predictor and predictand following Camus et al.

(2014a) is successful in reproducing historical or pro-

jecting future wave climates. However, in large ocean

basins, such as the Pacific Ocean, the spatial and tem-

poral definitions of the predictor and total bulk param-

eter definition of the predictand yield less successful

statistical downscaling results. The reasons are twofold.

First, waves may be generated in multiple discrete

generation regions, yielding mixed sea states of local

seas and multiple swell trains. Total bulk parameters

and a single wave generation region do not adequately

represent the wave climate. Second, travel times of wave

energy generated in different parts of the region may

differ by a few weeks. As a result, sea level pressure

fields averaged over a time period do not physically re-

late to waves arriving on a particular day. In this work,

we seek to improve the definitions of the predictor and

predictand of Camus et al. (2014a) by 1) introducing

‘‘wave families’’ to better model multimodal spectra and

multiple wave generation regions and 2) using iso-

chrones of travel time to account for the vastness of

wave generation regions.

The improved methodology is presented by defining

the predictor and predictand for a location offshore of

Southern California. Local wave conditions along Pa-

cific coastlines are influenced by waves generated and

propagated over very large distances, often the entire

extent of the Pacific basin (Adams et al. 2008). Waves

generated by distant storms in the central and western

North Pacific and those generated in the South Pacific

and Southern Ocean contribute to the bimodal wave

spectrum of California (Crosby et al. 2016), making it

difficult to form statistical relationships between atmo-

spheric conditions and waves using existing methodol-

ogies for the reasons identified above (Espejo et al.

2014). The success of statistical downscaling for use in

large ocean basins would allow for a more rapid pro-

liferation of regional projections using numerous global

climate models and forcing scenarios, creating an en-

semble that would better estimate future wave condi-

tions (Perez et al. 2015). Additionally, recent advances

in statistical downscaling allow for simulation and pro-

jection of extreme bulk parameters, such as daily max-

imum significant wave height (Rueda et al. 2016a),

coastal flooding (Rueda et al. 2016b), and coastal mor-

phodynamics (Antolinez et al. 2016).

In this work, an improved methodology for defining

the optimal predictor for statistical downscaling of

multivariate (Hs, Tp, and Dm), multimodal wave clima-

tology is presented, built on the methodology defined in
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Camus et al. (2014a). Wind speed, SLP, and fetch are

common variables used in predictor definitions for

waves (Wang et al. 2010). Though near-surface winds

are the drivers of wave growth, SLP and squared gra-

dients of SLP fields contain information of both wind

direction and magnitude, with spacing of isobars de-

scribing wind speed and orientation of isobars de-

scribing wind direction (Espejo et al. 2014). The

methodology presented here utilizes the relationship

between SLP and wave parameters while improving the

ability to represent multimodal wave climates through

wave families and incorporating physical intuition into

the temporal and spatial definition of the predictor by

using isochrones of travel time. The paper is structured

as follows: Data and methods are presented in sections

2–5 through an application to Southern California, fol-

lowed by an additional application to Trujillo, Peru, in

section 6. This work concludes with brief comments in

section 7.

2. Methodology and data

Statistical downscaling defines a relationship between a

predictor, here daily sea level pressure and the spatial

gradients of sea level pressure, and a predictand, here

daily multivariate wave parameters for multiple wave

families at a particular location. This work seeks to im-

prove the ability to statistically model multimodal wave

climate. The methodology (Fig. 1) can be separated into

three broad steps: step A, parameterization of spectral

data; step B, spatiotemporal definition of the predictor;

and, step C, a multiple multivariate linear regression

model to assess the relationship between the variables.

These steps are subdivided as follows.

A1: Identify wave generation areas using ESTELA

(Perez et al. 2014).

A2: Partition the wave spectral data into sea and swell

components.

B1: Define the temporal range of the predictor using

isochrones.

B2: Identify wave families using wave generation

areas and sea and swell partitions.

B3: Construct a daily predictor of SLP for each wave

family using the isochrones to create a temporal

relationship between atmospheric fields and waves.

C1: Use multiple multivariate linear regression

analysis to assess the skill of the predictor to

reproduce the predictand (daily wave conditions

for each family).

The methodology is applied to a location in deep water

off the coast of Southern California, United States

(338N, 1208W), as a demonstrative tool.

The historical SLP data used for statistical downscal-

ing in this work were extracted from the National Cen-

ters for Environmental Prediction’s Climate Forecast

System Reanalysis (CFSR) dataset (Saha et al. 2010).

CFSR SLP data are available at 6-hourly resolution

from 1979 to 2009 on a 0.58 global grid. A global ocean

wave reanalysis provided hourly directional wave spec-

tra for the period 1979–2009 on a 1.58 longitude 3
18 latitude global grid (Perez et al. 2015). To generate

this reanalysis, the third-generation spectral wavemodel

WAVEWATCH III (WW3; Tolman 2009) was forced

at a global scale by CFSR near-surface winds. Bathym-

etry and shoreline data were populated with ETOPO1

(Amante and Eakins 2009) and National Geophysical

Data Center Global Self-Consistent, Hierarchical,

High-Resolution Shoreline (Wessel and Smith 1996).

Wave spectra were computed with 158 directional res-
olution and 32 frequency bins ranging nonlinearly from

0.0372 to 0.714Hz with a factor of 1.1.

3. Parameterization of spectral data

a. Wave generation areas

Wave climate along the California coast is a function

of locally generated seas and swell generated in the

North and South Pacific (Wingfield and Storlazzi

2007). To minimize the study area, a method de-

veloped by Perez et al. (2014) is used to identify the

areas of wave generation contributing to local wave

conditions at the particular location of interest. The

method is referred to as ESTELA and uses geographic

FIG. 1. Flowchart of the general methodology to define the op-

timal predictor for statistical downscaling of multimodal wave cli-

mate. Improvements to the Camus et al. (2014a) definition of the

predictor are highlighted.
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criteria and two-dimensional wave spectra to map

areas of wave generation for a target point.

ESTELA reduces computational expenses by elimi-

nating global grid cells that are blocked from the target

point by landmasses, assuming that swell waves propa-

gate along great circle paths (Snodgrass et al. 1966). A

full discussion of the methodology and limitations can

be found in Perez et al. (2014). Most importantly,

ESTELA provides an estimate of the average effective

energy flux toward the target point and the average

travel time.

The ESTELA effective wave energy flux map for the

location offshore of Southern California reveals two

discrete wave energy generation regions: the North Pa-

cific and an area in the western South Pacific near

Australia and New Zealand (Fig. 2). These wave gen-

eration regions will contribute to the definition of the

wave families. The travel times of wave energy reveal

the time scales of wave propagation in the Pacific basin.

Maximum travel time for swell generated in the North

Pacific is 18 days, while the maximum travel time for

swell generated in the South Pacific is 21 days (Fig. 2).

Large differences in energy travel times across the basin

(e.g., North Pacific swell arriving in 3 days generated in

the eastern North Pacific and North Pacific swell arriv-

ing in 12 days generated in the western North Pacific)

inspired improvements to the temporal definition of the

predictor of Camus et al. (2014a).

b. Wave spectral partitions

Camus et al. (2014a) defined the statistical pre-

dictand as daily bulk wave parameters (e.g., Hs), but

the information of the full, directional wave spectrum

is critical for areas affected by multimodal wave cli-

mates. To efficiently represent multimodal wave con-

ditions, energy of the full directional wave spectra is

split into three partitions. Spectral partitions were

defined using an algorithm adapted from terrestrial

watershed delineation (Hanson and Jensen 2004).

Local seas (zeroth partition) were identified as energy

FIG. 2. ESTELA effective wave energy flux (color bar) for the location (large red dot) off-

shore of Southern California. The gray shading over the ocean, outlined generally in white

dashed lines, denotes a threshold of 2 kWm21 821 imposed to define important wave genera-

tion regions. The isochrones of travel time are gray and black lines, with every third isochrone

labeled in days. The red dotted line emanating from the location shows the demarcation of 2408
for North and South Pacific swell families. The shaded area above the red dotted line is the

spatial definition of the North Pacific swell family predictor (NH). The shaded area below

the red dotted line is the spatial definition of the South Pacific swell family predictor (SH). The

shaded area inside of the 1-day isochrone (black dashed line) is the SEA.
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traveling in directions consistent with concurrent wind

directions with a wave speed less than 1.5 times that of

the wind speed, and two swell partitions were identi-

fied by condensing the energy surrounding spectral

peaks. The first and second partitions compose wave

energy from the dominant and secondary swell bands,

respectively. Bulk wave parameters for each of these

three spectral partitions were saved hourly on a global

scale, such that wave conditions at a location are de-

fined by (Hs0,Tp0,Dm0,Hs1,Tp1,Dm1,Hs2,Tp2,Dm2). It

is important to note that this partitioning algorithm

does not use a cutoff frequency to differentiate be-

tween seas and swell but instead characterizes seas and

swell based on the ratio of wave and wind speeds.

Portilla-Yandún et al. (2015) argue that partitioning

based on spectral peaks is more physically accurate

than use of a cutoff frequency. However, this results in

energy associated with potentially improper partitions

(swell with wave periods ,7 s). Improvements to the

partitioning are not within the scope of this work.

4. Spatiotemporal definition of the predictor

Statistical downscaling efforts link a multivariate

predictor to a multivariate predictand through a func-

tion that assumes stationarity of patterns and relation-

ships in time. Here, atmospheric conditions were related

to deep-water wave parameters. The predictor field was

composed of daily standardized SLP anomalies and

squared gradients of SLP anomalies (SLPG) at 28 spatial
resolution (Wang et al. 2004; Camus et al. 2014a; Perez

et al. 2015; Rueda et al. 2016a). ThoughCFSR SLP fields

are available at 0.58 spatial resolution, comparable re-

sults and higher computational efficiency without a loss

FIG. 3. This method of defining the optimal predictor requires

a priori knowledge of the wave climate at the location. The mean

directional wave spectrum from 1979 to 2009 for a location offshore

of Southern California exhibits bimodality. Evidence for both

North and South Pacific swell wave families is present in the sec-

ondary peak of the directional wave spectrum. The red line in-

dicates the division of wave energy at 2408 between the North and

South Pacific swell wave families.

FIG. 4. Empirical orthogonal functions of the (top) NH predictor, (middle) SH predictor, and (bottom) SEA predictor for the location

offshore of Southern California (red dot). The SLP anomalies are represented by the shading. Positive anomalies are red and negative

anomalies are blue. The anomalies of the squared SLP gradients are represented by the contour lines.
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of accuracy were found when upscaling SLP fields to

28 resolution. Similar to themethodology of Camus et al.

(2014a), the temporal and spatial parameters of the

predictor are defined by the ESTELA effective wave

energy and travel time maps.

a. Temporal range of the predictor

Camus et al. (2014a) assumed that SLP patterns of the

last n days contribute to swell waves that reach the loca-

tion. According to their methodology, the predictor field

for waves on day i was the mean SLP and SLPG over the

last n days. Stated differently, waves arriving at the loca-

tion on day i were statistically linked to the mean atmo-

spheric conditions over days i through (i 2 n). However,

as stated above, wave energy arriving on day i could

have been generated by atmospheric conditions over the

Western North Pacific on day i 2 12 and/or by

atmospheric conditions over the eastern North Pacific on

day i2 3 (Fig. 2). FollowingCamus et al. (2014a) and using

n 5 5 for the case of Southern California has the dual ef-

fects of averaging out atmospheric conditions associated

with storms (cyclogenesis over 3–4 days) and potentially

missing the link between atmospheric conditions and wave

energy separated in time by several days to weeks.

We attempt to improve upon the temporal definition

to account for the vastness of large ocean basins by

building a physically meaningful and intuitive predictor.

Here, we assemble the predictor for waves arriving at

the location on day i as atmospheric conditions over the

area within the 1-day isochrone, atmospheric conditions

from day i 2 1 over the area between the 1- and 2-day

isochrones, atmospheric conditions from day i 2 2 over

the area between the 2- and 3-day isochrones, and so on

(Fig. 2). For the predictor field Pi,

FIG. 5. Multiple multivariate regressions for the location offshore of Southern California of NH significant wave

heightHs, peak wave period Tp, and mean wave direction Dir over a validation period (2000–09), where reanalysis

parameters are gray and estimated parameters are black. Scatterplots and error statistics are shown for each

parameter.
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P
i
5 f . . . , SLP

i2t11,Vt
, SLPG

i2t11,Vt
, . . . . g, and

t5 f1, . . . ,Tg,

whereVt is the area between isochrones t2 1 and t, and

T is the maximum number of isochrones (e.g., 18 days

for the North Pacific and 21 days for the South Pacific).

Travel times computed with ESTELA are the average

travel times for waves generated in a particular region.

As such, this temporal delineation of the predictor is

subject to uncertainty. However, in ocean basins as large

as the Pacific, our improvement of the predictor is

substantial.

b. Wave families

For locations experiencing multimodal wave climate,

it is important to split both the wave climate and pre-

dictor into components defined by wave families. In this

work, complexity is added to unimodal bulk wave pa-

rameters by accounting for multimodal spectra through

redistribution of wave energy from spectral partitions

(Hs0, Tp0, Dm0, Hs1, Tp1, Dm1, Hs2, Tp2, Dm2) into wave

families. Based on a priori knowledge of the wave cli-

mate at the location (Fig. 3), wave energy is redis-

tributed into local seas (SEA), swell generated in the

Northern Hemisphere (NH), and swell generated in the

Southern Hemisphere (SH):

S( f , u)5 S
SEA

( f , u)1 S
NH

( f , u)1 S
SH
( f , u),

where S( f, u) is the full directional spectrum, with f as

the frequency and u as the direction. Wave information

for each family (SEA, NH, and SH) was restricted to

three commonly used descriptive statistics: Hs, Tp, and

Dm (e.g.,HNH
s ). Wave energy in the zeroth partition was

local seas. Wave energy in the first and second partitions

was split between Northern and Southern Hemisphere

swell using Dm (Fig. 3) and wave generation regions

defined with ESTELA (Fig. 2).

FIG. 6. As in Fig. 5, but for SH.

FEBRUARY 2017 HEGERM ILLER ET AL . 381



We associated the wave generation area in the North

Pacific with NH swell and the area in the South Pacific

with SH swell (Fig. 2). Mean wave directions ap-

proaching from angles between 2408 and 3608 were

considered approaching from the Northern Hemi-

sphere. Mean wave directions approaching from angles

between 1408 and 2408 were considered approaching

from the Southern Hemisphere. Though wave family

parameters are available hourly, daily means are cal-

culated for this statistical downscaling method.

Substantial improvements could be made to more accu-

rately define seas and different swells. We suspect incon-

sistencies exist due to both the partitioning algorithm and

the lack ofTp as a criterion for identifying eitherNHor SH.

c. Construction of the predictor

A predictor was defined for each wave family (SEA,

NH, and SH). The generation region for SEA encom-

passed the area over which wave energy reaches the

location in 1 day (Fig. 2). The 2- and 3-day generation

regions were also tested, with comparable results. To

identify generation regions for swell wave families, a

threshold was placed on the ESTELA effective wave

energy maps, limiting generation regions to areas where

energy flux .2kWm21 821 (Fig. 2). The generation re-

gion for NH encompassed the area defined in the

ESTELA map in the North Pacific (Fig. 2). The gener-

ation region for SH encompassed the area defined in the

ESTELAmap in the South Pacific (Fig. 2). This division

coincided nicely with the previous choice to split NH

and SH swell at an incident wave direction of 2408
(Fig. 2). SLP and SLPG over these identified areas were

compiled using isochrones to incorporate the improve-

ments to the temporal definition of the predictor.

5. Multiple multivariate linear regression

At this point in the methodology, we have defined

a predictor (PNH, PSH, and PSEA) and predictand

(HNH
s , TNH

p , DNH
m , HSH

s , TSH
p , DSH

m , HSEA
s , TSEA

p , and

FIG. 7. As in Fig. 5, but for SEA.
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DSEA
m ) for each wave family. To define a functional re-

lationship between each wave family’s multivariate

predictor and multivariate predictand, principle com-

ponent (PC) analysis is first performed on the predictor

to reduce the number of dimensions of the problem. We

preserve the minimum number of PCs that explain 95%

of variance of each wave family. The first four empirical

orthogonal functions (EOFs) of the predictors for each

wave family are displayed in Fig. 4. The first EOF of the

NH predictor describes variation within the strength of

the Aleutian low, while the remaining EOFs describe

dipolar and tripolar variation over the North Pacific

(Trenberth and Paolino 1981). These EOFs are likely

correlated to large-scale atmospheric patterns or tele-

connections, such as El Niño–Southern Oscillation, Pa-

cific decadal oscillation, or the Pacific–North American

pattern, though those correlations were not investigated

in this study.

For a statistical downscaling of local wave climate, the

predictor in this new PC space can be classified using a

K-means algorithm to nonlinearly relate atmospheric

and wave conditions for SEA, NH, or SH using a

weather-type approach (Camus et al. 2014b). This work

only focuses on improvements to the definition of the

predictor, but applications of a weather-type approach

can be found in Camus et al. (2014b), Perez et al. (2015),

Rueda et al. (2016a), and Rueda et al. (2017). Here, to

assess the ability of the predictor to define daily wave

conditions, a multiple, multivariate, linear regression

model is applied to the daily PC and wave time series

over a calibration period (1979–99). The regression

model is assessed over a validation period (2000–10)

using the correlation coefficient R, root-mean-square

errors (RMSE), and bias:

R5
�
N

i51

(x
mod

2 x
mod

)(x
obs

2 x
obs

)

s
xmod

s
xobs

,

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(x
obs

2 x
mod

)2

N

vuuut
, and

bias5
�
N

i51

(x
obs

2 x
mod

)

N
,

where the subscripts mod and obs refer to parameters x

modeled with the linear regression and ‘‘observed’’ pa-

rameters from the wave reanalysis, respectively; s is the

standard deviation of x, and N is the number of data

points in the time series.

We test improvements to the predictor in two stages:

1) inclusion of isochrones to account for energy travel

time in large ocean basins and 2) splitting of energy into

wave families to more completely represent directional

wave spectra. First, we assess the predictor with the

improvement of the isochrones for total bulk parame-

ters. Second, we incorporate the wave families and iso-

chrones for the fully improved predictor. A summary of

these statistics can be found in Figs. 5–7 and Table 1. The

improved predictors are successful for reproducing Hs

(R 5 0.86, 0.81, and 0.87 for NH, SH, and SEA, re-

spectively) and reasonably successful for Tp and

Dm (R # 0.7); Tp is the most difficult parameter to re-

produce, likely due to the limited skill of the partitioning

algorithm to split local seas and swells in complex sea

states. Particularly, the variance is reduced in modeled

Tp, meaning the regression is unable to reproduce

TABLE 1. Correlation coefficient R, RMSE, and bias for wave parameters significant wave height Hs, peak wave period Tp, and mean

wave directionDm for SouthernCalifornia and Trujillo, Peru, using themethodology defined in Camus et al. (2014a, C2014 below) and the

two improvements of this work: 1) inclusion of isochrones and 2) definition of wave families. In the case of C2014, error statistics are

calculated forHs. In the case of the isochrones improvement, error statistics are calculated for aggregatedHs,Tp, andDm. In the case of the

isochrone and wave family improvement, error statistics are calculated for Hs, Tp, and Dm for each wave family (NH, SH, and SEA).

Southern California (NH, SH, and SEA)

Isochrone Isochrone 1 wave family

C2014 Hs Hs Tp Dm Hs Tp Dm

R 0.80 0.90 0.76 0.98 (0.86, 0.81, 0.87) (0.83, 0.73, 0.76) (0.84, 0.76, 0.86)

RMSE 0.55m 0.35m 2.5 s 148 (0.47, 0.18, 0.50m) (1.7, 1.7, 1.9 s) (58, 118, 348)
BIAS 20.10m 20.07m 20.4 s 08 (20.05, 20.04, 20.09m) (20.2, 20.5, 20.2 s) (208, 218, 08)

Trujillo, Peru (NH, SH, and SEA)

Isochrone Isochrone 1 wave family

C2014 Hs Hs Tp Dm Hs Tp Dm

R 0.80 0.86 0.75 1.00 (0.84, 0.83, 0.84) (0.76, 0.78, 0.74) (0.78, 0.83, 0.70)

RMSE 0.37m 0.23m 1.6 s 68 (0.10, 0.27, 0.24m) (1.8, 1.3 1.9 s) (118, 88, 58)
BIAS 0.04m 20.09m 20.4 s 08 (20.01, 20.08, 20.04m) (0.0, 20.3, 20.0 s) (218, 228, 218)
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extreme events. RMSE in Dm are quite large for SEA,

which can be attributed to the broad range of directions

(really 08–3608) from which local seas can approach the

location. Comparing these results to those using the

methodology employed in Camus et al. (2014a) shows

significant improvement for regions experiencing mul-

timodal wave climates. Camus et al. (2014a) modeled

daily andmonthly aggregatedHs for the point of interest

offshore of Southern California by defining the pre-

dictor as SLP and SLPG over the entire Pacific basin (28
resolution) and using n 5 5 days over which to average

atmospheric conditions. Here, comparison of statistics

for reproducing daily Hs shows that the amended pre-

dictor increases R and decreases RMSE and bias for

each wave family (Table 1).

6. Additional application

To further test the new model, the methodology is

applied to a location in deep water offshore of Trujillo,

Peru (88S, 79.58W). Trujillo experiences bimodal wave

conditions, with wave energy contributions from both

the North and South Pacific, making it an ideal location

for the application of this new methodology (Fig. 8).

Similar to the application for Southern California, wave

energy was split into three distinct wave families. SEA

was identified as the first partition. Northern Hemi-

sphere swell and Southern Hemisphere swell were dis-

tinguished by Dm. Mean wave directions approaching

from angles greater than 2708 were considered ap-

proaching from the Northern Hemisphere (Fig. 8).

Mean wave directions approaching from angles less than

2708 were considered approaching from the Southern

Hemisphere (Fig. 8). A predictor was defined for each

wave family using ESTELA and the methodology

described above.

While the methodology is unable to produce corre-

lation coefficients as high as for the Southern California

application, it is successful by RMSE and bias metrics

(Table 1). Similar to the previous application, the pre-

dictors most successfully reproduce Hs (R 5 0.84, 0.83,

and 0.84 for NH, SH, and SEA, respectively). RMSE

FIG. 8. ESTELA effective wave energy flux (color bar) for the location (large red dot) off-

shore of Trujillo, Peru. The gray shading over the ocean, outlined generally in white dashed

lines, denotes a threshold of 2 kWm21 821, imposed to define important wave generation re-

gions. The isochrones of travel time are gray and black lines, with every third isochrone labeled

in days. The red dotted line emanating from the location shows the demarcation of 2708 for
North and South Pacific swell families. The shaded area above the red dotted line is the spatial

definition of NH. The shaded area below the red dotted line is the spatial definition of SH. The

shaded area inside of the 1-day isochrone (black dashed line) is the SEA.
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and bias are small forHs,Tp, andDm. We compare these

results again to those employed in Camus et al. (2014a)

because this location was included in their original

study. Camus et al. (2014a) defined the predictor as the

full extent of the Pacific basin using n 5 12 days. As in

the previous application, the improved predictor defined

here increases R and decreases RMSE and bias for each

wave family (Table 1).

7. Conclusions

An improved method for defining the optimal pre-

dictor for statistical downscaling of themultimodal wave

climate was presented in the context of two applications

where this method yields better results than previous

work. In areas where wave spectra exhibit multiple

modes due to seas and swells approaching from different

generation regions, using a predictor that spatially en-

compasses only the generation region of the dominant

swell mode or describing the wave climate as bulk wave

parameters (Hs, Tp, and Dm) of the dominant peak of

the spectrum is insufficient. Additionally, in large ocean

basins where simultaneously arriving waves may have

been generated several days apart, averaging atmo-

spheric conditions across multiday time scales leads to

errors in the timing of relationships between the pre-

dictor and predictand. By redistributing energy from

spectral partitions into wave families and accounting for

the average travel time of waves generated in different

parts of the basin through isochrones, a unique spatio-

temporal predictor can be defined to successfully re-

produce local multimodal wave conditions.

The improved predictor is tested for locations off-

shore of Southern California and Trujillo, Peru. Both

locations experience multimodal wave spectra, with

energy contributions from local seas and swells gener-

ated in both the Northern and Southern Hemispheres.

For these applications, the methodology is successful,

increasing the ability of the atmospheric conditions to

reproduce daily multivariate wave parameters com-

pared to previous work.

Coastal scientists and engineers are moving toward

representing wave conditions using the full wave spec-

trum, as parameterizing the dominant peak of the wave

spectrum leads to loss of sea and secondary swell energy.

The proposed method is the base of statistical downscal-

ing of local wave climate by weather types, which can be

used to project historical and future wave climatologies,

simulate realizations of time series of wave parameters,

project extremes in wave heights or wave run-up, or

project historical and future coastal response. Applica-

tions of this methodology are as varied as climate change,

coastal flooding hazards, and shoreline change.
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