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Abstract. By viewing the nonuniform discrete Fourier transform (NUDFT) as a perturbed
version of a uniform discrete Fourier transform, we propose a fast, stable, and simple algorithm
for computing the NUDFT that costs O(N logN log(1/ε)/ loglog(1/ε)) operations based on the fast
Fourier transform, where N is the size of the transform and 0 < ε < 1 is a working precision. Our key
observation is that a NUDFT and DFT matrix divided entry-by-entry is often well-approximated
by a low rank matrix, allowing us to express a NUDFT matrix as a sum of diagonally-scaled DFT
matrices. Our algorithm is simple to implement, automatically adapts to any working precision, and
is competitive with state-of-the-art algorithms. In the fully uniform case, our algorithm is essentially
the FFT. We also describe quasi-optimal algorithms for the inverse NUDFT and two-dimensional
NUDFTs.
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1. Introduction. The nonuniform discrete Fourier transform (NUDFT) is an
important task in computational mathematics that appears in signal processing [4],
the numerical solution of partial differential equations [20], and in magnetic resonance
imaging [12]. Quasi-optimal algorithms for computing the NUDFT are referred to
as nonuniform fast Fourier transforms (NUFFTs), and state-of-the-art NUFFTs are
usually based on oversampling, discrete convolutions, and the fast Fourier transform
(FFT) on an oversampled grid [10, 15, 23, 28]. In this paper, we propose a NUFFT
that is embarrassingly parallelizable. It is numerically stable without the need for
oversampling, and costs K FFTs, where K is a carefully selected integer. Our central
idea is to exploit a low rank observation (see (3)).

Let N ≥ 1 be an integer and c = (c0, . . . , cN−1)
ᵀ

be an N×1 vector with complex
entries. The one-dimensional NUDFT computes the vector f = (f0, . . . , fN−1)

ᵀ
,

defined by the following sums:

fj =

N−1∑
k=0

cke
−2πixjωk , 0 ≤ j ≤ N − 1, (1)

where x0, . . . , xN−1 ∈ [0, 1] are samples and ω0, . . . , ωN−1 ∈ [0, N ] are frequencies.
Since (1) involves N sums with each sum containing N terms, computing the vector
f naively costs O(N2) operations. If the samples are equispaced, i.e., xj = j/N ,
and the frequencies are integer, i.e., ωk = k, then the transform is fully uniform
and (1) can be computed by the FFT in O(N logN) operations by exploiting algebraic
redundancies [8]. Unfortunately, these algebraic redundancies are “brittle” [5] and
the ideas behind the FFT are not immediately useful when either the samples are
nonequispaced or the frequencies are noninteger. To develop a NUFFT, one has to
exploit a nonzero working precision of 0 < ε < 1 and make careful approximations.

There are three types of NUDFTs [15]:
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Departamento de Matemáticas, Estad́ıstica y Computación Universidad de Cantabria, Av. de

los Castros 48 E-39005 Santander, Spain. (diego.ruizantolin@unican.es)
†
Department of Mathematics, Cornell University, Ithaca, NY 14853. (townsend@cornell.edu)

This work is supported by National Science Foundation grant No. 1522577.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/158329029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• NUDFT-I (Uniform samples and noninteger frequencies): In (1) the samples are
equispaced, i.e., xj = j/N , and the frequencies ω0, . . . , ωN−1 are noninteger. This
corresponds to evaluating a generalized Fourier series at equispaced points. In
Section 3.1, we describe a quasi-optimal algorithm for computing the NUDFT-I
referred to as a NUFFT-I.

• NUDFT-II (Nonuniform samples and integer frequencies): In (1) the frequencies
are integers and the samples x0, . . . , xN−1 are nonequispaced points in [0, 1]. This
NUDFT corresponds to evaluating a Fourier series at nonequispaced points. In
Section 2, we describe an O(N logN log(1/ε)/ loglog(1/ε)) algorithm, referred to
hereafter as the NUFFT-II, for computing the NUDFT-II with a working precision
of ε. Note that this transform also goes by the acronym NFFT [22].

• NUDFT-III (Nonuniform samples and nonuniform frequencies): In (1) the samples
x0, . . . , xN−1 are nonequispaced and the frequencies ω0, . . . , ωN−1 are noninteger.
This is the fully nonuniform transform and corresponds to evaluating a generalized
Fourier series at nonequispaced points. The NUDFT-III and its applications in
image processing and the numerical solution of partial differential equations are
discussed in [20]. In Section 3.2, we derive an O(N logN log(1/ε)/ loglog(1/ε))
complexity algorithm for computing the NUDFT-III by combining our NUFFT-I
and NUFFT-II. We refer to this as a NUFFT-III [20], but others use the acronym
NNFFT [22].

Initially, we focus on computing the NUDFT-II. This is perhaps the easiest to
think about as it corresponds to evaluating a Fourier series at nonequispaced points.
A convenient and compact way to write the NUDFT-II in (1) is as a matrix-vector

product: Given Fourier coefficients c ∈ CN×1, compute values f ∈ CN×1 such that

f = F̃2c, (F̃2)jk = e−2πixjk, 0 ≤ j, k ≤ N − 1, (2)

where x0, . . . , xN−1 are sample points. Therefore, a NUFFT-II is simply a quasi-

optimal complexity algorithm for computing the matrix-vector product F̃2c. In the
fully uniform case when xj = j/N and ωk = k, we use the notation Fjk = e−2πijk/N

for the DFT matrix and note that the FFT algorithm computes Fc in O(N logN)
operations [8].

Our NUFFT-II algorithm is based on the simple observation that if the samples
are near-equispaced, then F̃2 � F can be well-approximated by a low rank matrix.1

That is, for a small integer K (see Table 1), we find that

F̃2 � F ≈ u0v
ᵀ
0 + · · ·+ uK−1v

ᵀ
K−1, u0, . . . , uK−1, v0, . . . , vK−1 ∈ CN×1, (3)

where ‘�’ denotes the Hadamard division, i.e., C = A�B means that Cjk = Ajk/Bjk.
With (3) in hand, we have

F̃2c ≈
((
u0v

ᵀ
0 + · · ·+ uK−1v

ᵀ
K−1

)
◦ F
)
c =

K−1∑
r=0

Dur
FDvr

c, (4)

where ‘◦’ is the Hadamard product2 and Du is the diagonal matrix with the entries
of u on the diagonal. Therefore, the NUFFT-II can be computed in O(KN logN)

1
A similar observation was made in [19, Sec. 4], but we believe that it has not been developed

into a practical algorithm. A different Hadamard product matrix decomposition was exploited in [26]
to derive a fast Chebyshev-to-Legendre transform.

2
If C = A ◦B, then Cjk = AjkBjk.
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operations via K diagonally-scaled FFTs. The approximation in (4) is the main idea
in this paper. All that remains is to select the integer K and compute the vectors
u0, . . . , uK−1, v0, . . . , vK−1. The observation will lead to a NUFFT-II algorithm that
is quasi-optimal for any set of samples and frequencies (see Section 2) and similar
observations lead to our NUFFT-I and NUFFT-III algorithms.

The major computational cost of our NUFFTs is K FFTs that can be performed
in parallel, where K is an adaptively selected integer that depends on the working
precision 0 < ε < 1 and the distribution of the samples and frequencies. This allows us
to reduce the cost of our NUFFTs — by reducing K — when the working precision
is loosened, the samples are near-equispaced, or the frequencies are close to being
integers. In particular, if any of our NUFFT codes are given equispaced samples and
integer frequencies, then K = 1, and our implementation reduces to a single FFT.
By always computing the NUDFT via K FFTs, we are able to leverage the efficient
FFTW library that has an implementation of the FFT that adapts to individual
computer architectures [13]. Our algorithm relies on FFTs that are of the same size
as the original NUFFT and we automatically exploit the distribution of the samples
and frequencies if they happen to be quasi-uniform for extra computational speed.

There are many other NUFFTs in the literature based on various ideas such
as discrete convolutions and oversampling [10, 15, 23], min-max interpolation [12],
oversampling and interpolation [7], and a Taylor-based approach [1]. The Taylor-based
approach results in an easily implementable algorithm, which is avoided in practice
because it is numerically unstable [18, Ex. 3.10]. For the last two decades, discrete
convolutions and oversampling has been preferred. The transforms that we develop
here are convenient and simple while being numerically stable. We benchmark our
algorithms against the Julia implementation of the NFFT software [22] to demonstrate
that our proposed algorithm is competitive with existing state-of-the-art approaches.

The paper is structured as follows. In Section 2, we derive the NUFFT-II algo-
rithm by first assuming that the nonuniform samples are a perturbed equispaced grid
(see Section 2.1) before generalizing to any distribution of samples (see Section 2.2).
In Section 3 we extend the algorithm to derive an NUFFT-I, NUFFT-III, and inverse
transforms. In Section 4, we describe the two-dimensional analogue of our NUFFT-II.

2. The nonuniform fast Fourier transform of type II. In this section, we
describe an O(N logN log(1/ε)/ loglog(1/ε)) algorithm to compute the NUDFT-II of
size N (see (2)) with a working precision of 0 < ε < 1. We begin by making the
simplifying assumption that the samples x0, . . . , xN−1 are nearly equispaced before
describing the general algorithm.

2.1. Samples are a perturbed equispaced grid. Suppose that the samples
x0, . . . , xN−1 are distributed such that there exists a parameter 0 ≤ γ ≤ 1/2 satisfying∣∣∣∣xj − j

N

∣∣∣∣ ≤ γ

N
, 0 ≤ j ≤ N − 1. (5)

This assumption guarantees that the closest equispaced point to xj is j/N , which
simplifies the description of our algorithm.

Using the fact that ωk = k for 0 ≤ k ≤ N − 1 and properties of the exponential
function, we can factor the entries of F̃2 as

(F̃2)jk = e−2πixjk = e−2πi(xj−j/N)ke−2πijk/N , 0 ≤ j, k ≤ N − 1, (6)

which shows that the (j, k) entry of F̃2 can be written as a complex number multiplied
by the (j, k) entry of the DFT matrix. The expression in (6) gives us the following
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matrix decomposition:

F̃2 = A ◦ F, Ajk = e−2πi(xj−j/N)k, (7)

where ‘◦’ is the Hadamard product. The observation in (3) is equivalent to the matrix
A being well-approximated by a low rank matrix so that A ≈ AK = u0v

ᵀ
0 + · · · +

uK−1v
ᵀ
K−1. Since (u vᵀ) ◦ F = DuFDv, we conclude that

F̃2c = (A ◦ F )c ≈ (AK ◦ F )c =

K−1∑
r=0

Dur
FDvr

c, Dur
= diag((ur)1, . . . , (ur)N ).

(8)
Therefore, an approximation to F̃2c can be computed in O(KN logN) operations via
the FFT as each term in the sum in (8) involves diagonal matrices and the DFT
matrix. Moreover, each matrix-vector product in the sum can be computed indepen-
dently and the resulting vectors added together afterwards.

All that remains is to show that A can in fact be well-approximated by a low
rank matrix, or equivalently, that K is relatively small, and to construct a low rank
approximation AK for A. We cannot use the singular value decomposition for this3

because that costs O(N3) operations and would dominate the algorithmic complexity
of the NUFFT-II. Instead, we note that A can be viewed as a matrix obtained by
sampling e−ixy at points in [−γ, γ]×[0, 2π] and we construct a low rank approximation
via an approximation of the function e−ixy.

2.1.1. Low rank approximation via Taylor expansions. A natural way to
construct a low rank approximation to A is via Taylor expansion by exploiting the
fact that (xj − j/N)k is relatively small for 0 ≤ j, k ≤ N − 1. The NUFFT developed
here is equivalent to [1] (without oversampling) and is numerically unstable. In this
direction, consider the Taylor expansion of e−x = 1 − x + x2/2 − x3/6 + · · · about
x = 0. Applying this Taylor series to each entry of A, we find that for 0 ≤ j, k ≤ N−1

Ajk = e−2πi(xj−j/N)k =

∞∑
r=0

(−2πi(xj − j/N)k)r

r!
≈
K−1∑
r=0

(−2πi(xj − j/N)k)r

r!
, (9)

where the expansion is truncated after K terms to deliver an approximation. Now, if
we let x = (x0, . . . , xN−1)

ᵀ
, e = (0, 1/N, . . . , (N − 1)/N)

ᵀ
, and ω = (0, 1, . . . , N−1)ᵀ,

then (9) can be applied to each entry of A to find that

A = exp(−2πi(x− e)ωᵀ) ≈
K−1∑
r=0

(−i)r

r!
(2π(x− e)ωᵀ)r = AK .

Here, the notation x yᵀ denotes a rank 1 matrix, exp(x yᵀ) is the matrix formed by
applying the exponential function entry-by-entry to x yᵀ, and (x yᵀ)r is the entry-by-
entry rth power of x yᵀ.

Since |2πi(xj − j/N)k| ≤ 2πγ for 0 ≤ j, k ≤ N − 1, error estimates for the trun-

cated Taylor expansion of e−x for x ∈ [0, 2πγ] shows that ‖A−AK‖max ≤ ε for K =
O(log(1/ε)) [1], where ‖ · ‖max is the absolute maximum matrix entry. To avoid over-
flow issues, one should take the vectors ur = (N(x− e))r and vr = (−i)r(2πω/N)r/r!

3
Recall that the truncated singular value decomposition of A, formed by taking the first K

singular vectors and values, leads to the best rank K approximation to A in the spectral norm [11].
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for 1 ≤ r ≤ K in (8). Unfortunately, we observe that the Taylor-based approach
is numerically unstable (even with modest oversampling) in agreement with the ex-
periments in [18, Ex. 3.10]. This is because for moderate K (≥ 7) the matrix AK is
constructed by evaluating high-degree monomial powers. For this reason, the NUFFT-
II described in [1] is seldom used. We must construct the matrix AK in a different
way.

2.1.2. Low rank approximation via Chebyshev expansions. One can often
stabilize high-degree Taylor expansions by replacing them with Chebyshev expansions.
We do that now.

For an integer p ≥ 0, the Chebyshev polynomial of degree p is given by Tp(x) =

cos(p cos−1 x) on x ∈ [−1, 1] and the set {T0, T1, . . . , TK−1} is an orthogonal basis for
the space of polynomials of degree at most K− 1, with respect to the weight function

(1 − x2)−1/2 on [−1, 1]. We can use a Chebyshev series to represent nonperiodic
functions, in the same way that a Fourier series can represent periodic functions [27].

In the Appendix in Theorem 2, we derive a low rank approximation for A by
using Chebyshev expansions. If γ = 0, then A is the matrix of all ones and the low
rank approximation is trivial. If γ > 0, then for 0 < ε < 1 we find an integer K
(see (11)) and a matrix AK such that ‖A−AK‖max ≤ ε, where ‖ · ‖max denotes the
absolute maximum matrix entry. The matrix AK is defined by (see Theorem 2)

AK =

K−1∑
r=0

′
[
K−1∑
p=0

′

apr

(
exp (−iπN(x− e)) ◦ Tp(

N(x−e)
γ )

)]
︸ ︷︷ ︸

=ur

Tr(
2ω

ᵀ

N − 1ᵀ)︸ ︷︷ ︸
=

{
v
ᵀ
r r ≥ 1

2v
ᵀ
0 r = 0

, (10)

where 1 is the N × 1 vector of ones and the primes on the summands indicate that
the first term is halved. The coefficients apr for 0 ≤ p, r ≤ K− 1 are known explicitly
as

apr =

{
4irJ(p+r)/2(−γπ/2)J(r−p)/2(−γπ/2), mod(|p− r|, 2) = 0,

0, otherwise,

where Jν(z) is the Bessel function of parameter ν at z [21, Chap. 10]. Here in (10),
exp(x) and Ts(x) denote the exponential and Chebyshev polynomial evaluated at each
entry of x to form another vector, respectively.

The expansion in (10) provides us with a rank K matrix that approximates A as
A = limK→∞AK . From the convergence properties of Chebyshev expansions, for each
fixed K, an explicit upper bound is known for ‖A− AK‖max (see Appendix A). The
vectors u0, . . . , uK−1, v0, . . . , vK−1 in (10) are evaluated via computing the Chebyshev
polynomials using a three-term recurrence relation [21, Tab. 18.9.1]. This requires
a total of O(K2N) operations. This cost should strictly be included in the final
complexity of the NUFFT-II, but we will not include it because this is part of the
“planning stage” (see Section 2.3).

In (10) for γ > 0, the integer K is given by the expression (see Theorem 2)

K = max
{

3,
⌈
5γeW(log(140/ε)/(5γ))

⌉}
= O

(
log(1/ε)

loglog(1/ε)

)
, (11)

where W (x) is the Lambert-W function [21, (4.13.1)], 0 ≤ γ ≤ 1/2 is the per-
turbation parameter from (5), and dxe is the nearest integer above or equal to
x ≥ 0. By asymptotic approximations of W (x) as x → ∞, we find that K =
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γ = 0 0 < γ ≤ 1
32

1
32 < γ ≤ 1

16
1
16 < γ ≤ 1

8
1
8 < γ ≤ 1

4
1
4 < γ ≤ 1

2

double 1 8 9 11 13 16

single 1 5 6 7 8 10

half 1 3 3 4 5 7

Table 1: When the samples x0, . . . , xN−1 are perturbed equispaced samples with
respect to a parameter 0 ≤ γ ≤ 1/2 (see (5)) the NUDFT-II can be decomposed as
F̃2 = A ◦ F , where F is the DFT matrix and A can be approximated by a rank K
matrix, up to a working accuracy of 0 < ε < 1. We give the values of K that we use
in (10) for various values of γ (see (5)) and working accuracies: 1st row ε ≈ 2.2×10−16,
2nd row ε ≈ 1.2 × 10−7, and last row ε ≈ 9.8 × 10−4. Our NUFFT-II roughly costs
K FFTs of size N , though these can be performed in parallel.

O(log(1/ε)/ loglog(1/ε)) as ε → 0 [21, (4.13.10)] and hence, F̃2c can be computed
in a total of O(N logN log(1/ε)/ loglog(1/ε)) operations using (8).

It is relatively common in practice to have perturbed equispaced samples so we
always compute the parameter 0 ≤ γ ≤ 1/2 in (5) in order to select the smallest
possible integer K with ‖A−AK‖max ≤ ε. In our implementation of the NUFFT-II,
we do not use the formula for K in (11) because it is only asymptotically sharp and
the constants are not tight. Instead, in (10) we use the values of K given in Table 1,
which are selected from empirical observations. In particular, in double precision we
use at most K = 16, corresponding to the cost of an NUFFT-II being approximately
16 FFTs of size N .

In practice, it is also common to not always need a working precision of ε ≈
2.2 × 10−16 so we adaptively select the integer K based on that parameter too. For
example, with a working precision of 9.8 × 10−4 the NUFFT-II costs at most seven
FFTs of size N .

2.2. Arbitrarily distributed samples. Suppose that the samples x0, . . . , xN−1
in (2) are arbitrarily distributed real numbers. The properties of the complex expo-

nential, x 7→ e−2πixk for 0 ≤ k ≤ N − 1, allow us to assume, without loss of gen-
erality, that the samples are in the interval [0, 1); otherwise, they can be translated
to that interval using periodicity. For convenience, in this section we assume that
x0, . . . , xN−1 ∈ [0, 1), though our implementation does not have this restriction. In
this general setting, the observation in (3) is no longer valid because the samples are
arbitrarily distributed.

Instead, define a sequence s0, . . . , sN−1 that takes values from {0, . . . , N} and is
defined so that sj/N is the closest node to xj from an equispaced grid of size N + 1
(ties can be broken arbitrarily). Since each xj is a distance of at most 1/(2N) from
these equispaced nodes, we have∣∣∣xj − sj

N

∣∣∣ ≤ 1

2N
, 0 ≤ j ≤ N − 1. (12)

Figure 1 illustrates this process when N = 8. The sequence can be easily computed
via the relationship s = round(Nx), where round(Nx) returns the nearest integer to
each entry of the vector Nx.

If sj = N then we must reassign xj because the uniform DFT does not contain
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x0x1x2 x3 x4 x5 x6 x7

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

Fig. 1: An illustration of how nonuniform samples on [0, 1] are assigned to the closest
equispaced grid point for N = 8. In this example, the sequence s0, . . . , sN−1 takes
the values s0 = s1 = s2 = 0, s3 = 3, s4 = s5 = 5, s6 = 6, and s7 = 8. Here
0 ≤ x0 ≤ x1 ≤ · · · ≤ xN−1 < 1, but the samples do not necessarily need to be
ordered. Since s7 = 8, the sample x7 is later assigned to the equispaced point at 0
(see (13)).

a sample at sj/N = 1. Using the periodicity of the complex exponential, we use the
identity e−2πisjk/N = e−2πi0k/N = 1 to assign xj to the equispaced node at 0. This
can be done simply by defining another sequence t0, . . . , tN−1, which takes values from
{0, . . . , N − 1}, and is given by

tj =

{
sj , 0 ≤ sj ≤ N − 1,

0, sj = N.
(13)

In practice, one can easily compute the vector t directly from x since

t = mod(round(Nx), N),

where mod(a,N) is the modulo-N operation on each entry of a.
From the properties of the exponential function and the definition of t0, . . . , tN−1,

we find that

(F̃2)jk = e−2πixjk = e−2πi(xj−sj/N)ke−2πisjk/N = e−2πi(xj−sj/N)ke−2πitjk/N . (14)

This means that the (j, k) entry of F̃2 can be expressed as a product of e−2πi(xj−sj/N)k

and the (tj , k) entry of F for 0 ≤ j, k ≤ N − 1. Equivalently, by setting Ajk =
e−2πi(xj−sj/N)k for 0 ≤ j, k ≤ N − 1, we can write (14) as the following matrix
decomposition:

F̃2 = A ◦ F (t, :), (F (t, :))jk = e−2πitjk/N , 0 ≤ j, k ≤ N − 1,

where t = (t0, . . . , tN−1)ᵀ. Note that F (t, :) denotes the matrix formed by extracting
the rows indexed by (t0, . . . , tN−1) from the DFT matrix.

Since N(xj − sj/N) ∈ [−1/2, 1/2] and k/N ∈ [0, 1], we find that A can be well-
approximated by a low rank matrix using the same idea as in Section 2.1.2. This
leads to the rank K approximation AK to A, given by

AK =

K−1∑
r=0

′
[
K−1∑
p=0

′

apr
(
exp (−iπN(x− s/N)) ◦ Tp(2N(x− s/N))

)]
︸ ︷︷ ︸

=ur

Tr(
2ω

ᵀ

N − 1ᵀ)︸ ︷︷ ︸
=

{
v
ᵀ
r r ≥ 1

2v
ᵀ
0 r = 0

,
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where s = (s0, . . . , sN−1)ᵀ. Here, ‖A− AK‖max ≤ ε for some 0 < ε < 1 and K is the
value in (11) with γ = 1/2.

In summary, we find that the matrix-vector product, F̃2c, can be approximately
computed with a working accuracy of 0 < ε < 1 via the approximation

F̃2c = (A ◦ F (t, :)) c ≈ (AK ◦ F (t, :)) c =

K−1∑
r=0

Dur
F (t, :)Dvr

c. (15)

This leads to an O(N logN log(1/ε)/ loglog(1/ε)) complexity NUFFT-II because: (1)
The matrix-vector products with the diagonal matrices Dur

and Dvr
can be performed

in O(N) operations, and (2) The matrix-vector product F (t, :)c can be computed in
O(N logN) operations via the FFT and the relationship F (t, :)c = IN (t, :)Fc, where
IN is the N×N identity matrix and IN (t, :) denotes the matrix obtained by extracting
the (t0, . . . , tN−1) rows of the identity matrix. Again, each term in the sum in (15)
can be computed in parallel and the resulting vectors added together afterwards.

2.3. Algorithmic details. There are a handful of algorithmic details.
• Oversampling: In Section 2.2, we assign N samples x0, . . . , xN−1 to an equispaced

grid of size N . The process of oversampling, which occurs in many other NUFFTs,
translates N samples to an equispaced grid of size M , where M > N . In our setting,
this results in FFTs of size M in (15) with potentially a smaller integer K because
|xj − sj/M | ≤ 1/(2M) < 1/(2N). Naively, since our algorithm is numerically
stable without oversampling, it would seem that oversampling is never beneficial
for us. For example, in double precision if M = 2N , then 13 FFTs of size 2N
are required (see Table 1) instead of 16 FFTs of size N . In practice, it is a little
more complicated as one may benefit from selecting an integer N ≤M < 2N that
has a convenient prime factorization for the FFT [8]. We have not explored this
possibility yet.

• Vectorization: One can vectorize the FFTs in (15) by computing F̃2c in two steps:

(Step 1) X = IN (t, :)F
[
Dv0

c | · · · |DvK−1
c
]
,

(Step 2) F̃2c =
[
Du0

X0 | · · · |DuK−1
XK−1

]1
...
1

 ,
where Xk denotes the kth column of X. In the programming language Julia [6] this
can be implemented in the one-liner:

nufft2(c) = (U.*(fft(Diagonal(c)*V,1)[t+1,:]))*ones(K),

where U =
[
u0 | · · · |uK−1

]
, V =

[
v0 | · · · | vK−1

]
, and the variable t is the vector t.

• Planning the transform: Most implementations of fast transforms these days
have a planning stage [13], where ancillary quantities are computed that do not
depend on the entries of c. This stage may also involve memory allocation and
the finalization of recursion details [13]. For our NUFFT-II, the planning stage
consists of computing γ, t, and K, planning the FFTs [13], as well as computing
the vectors u0, . . . , uN−1, v0, . . . , vN−1 for the low rank approximation AK . These
quantities and data structures are then stored in memory so that the NUFFT-II
is computationally faster. After the planning stage of our NUFFT-II, there is an
online stage, where the transform is essentially the one-liner for the nufft2(c) call
above. It is particularly important to plan a NUFFT-II when the matrix-vector
product with F̃2 is desired for many vectors.
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Fig. 2: Left: The computational cost of planning our NUFFT-II transform for ε ≈
2.2 × 10−16, ε ≈ 1.2 × 10−7, and ε ≈ 9.8 × 10−4 as well as the planning cost of the
Julia implementation of the NFFT transform [22, 17]. Right: The computational cost
of computing our NUFFT-II after planning for ε ≈ 2.2 × 10−16, ε ≈ 1.2 × 10−7, and
ε ≈ 9.8× 10−4. For comparison we have include the cost of the Julia implementation
of the NFFT transform after planning [17] and the cost of 16 FFTs after planning.

2.4. Numerical results. We have two different implementations of the trans-
forms in this paper: (1) A MATLAB implementation, where the NUFFT-II trans-
form is assessable via the chebfun.nufft command in Chebfun [9],4 and (2) A
Julia implementation, which is publicly available via the nufft2 command in the
FastTransforms.jl package [24]. Since the dominating computational cost of our
transforms are FFTs, and these are computed via the FFTW library [13], the cost of
our algorithms are approximately the same in MATLAB and Julia.5

Recall that there are two stages of the transform: (1) A planning stage in which
ancillary quantities are computed (see Section 2.3) and (2) An online stage, where the
transform needs knowledge of the vector c in (2) and the desired vector f is computed.
When the same NUFFT-II transform is applied to multiple vectors, the planning stage
is only performed once while the online stage is executed for every new vector.

Figure 2 (left) shows the execution times6 of the NUFFT-II transform in both the
planning stage and the online stage the NUFFT-II (right). The online stage of the
NUFFT-II is approximately 16 FFTs in double precision, as expected from Table 1,
and takes approximately 8 seconds to compute the transform when N is 16 million.
Figure 2 shows that our NUFFT-II is competitive to the Julia implementation of the
NFFT software [17].

Figure 3 (left) demonstrates the execution times of the online stage of our NUFFT-
II for samples that are perturbed equispaced grids with γ = 1/2, γ = 1/8, γ = 1/32,
and γ = 0 (see (5)). For definitiveness, we chose the samples to be the so-called worst

4
Note to reviewer: The code is currently publicly available through GitHub, but is still under

code review. It will hopefully appear in the next release of Chebfun.
5
By default the fft command in MATLAB has multithreading capabilities. To see a similar

performance in Julia, one must execute the command FFTW.set num threads(n), where n is an
appropriate number of threads.

6
Computational results were performed on an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz in

Julia v0.5.0.
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Fig. 3: Left: The computational cost of our NUFFT-II transform with ε = 2.2×10−16

for γ = 1/2, γ = 1/8, γ = 1/32, and γ = 0 after planning (see (5)). When γ = 0, our
NUFFT-II is essentially one FFT. Right: The accuracy of the NUFFT-II transform
for working accuracies of ε ≈ 2.2 × 10−16, ε ≈ 1.2 × 10−7, and ε ≈ 9.8 × 10−4.
Here, the vector of Fourier coefficients c are realizations of standard Gaussian random
variables, f exact = F̃2c is the vector computed using the naive O(N2) algorithm in
high precision (using BigFloat in Julia), and f approx is the vector obtained from our
NUFFT-II transform with the stated working accuracies.

grid for each γ in the NUFFT-II (see [2, Sec. 3.3.1]), i.e.,

xj =

{
(j + γ)/N, 0 ≤ j ≤ bN/2c,
(j − γ)/N, otherwise.

We see that the NUFFT-II is more computationally efficient when the samples are
closer to an equispaced grid, as expected from the values of K in Table 1.

Our NUFFT-II relies on a matrix approximation; namely, the approximation of
the matrix A in (7) by a low rank approximation AK . Therefore, if f exact is the

vector calculated from f exact = F̃2c = (A ◦ F )c, then our algorithm calculates the
approximation f approx = (AK ◦ F )c. The incurred error can be simply bounded as
follows:

‖f exact − f approx‖2 = ‖((A−AK) ◦ F )c‖2
≤ ‖((A−AK) ◦ F )‖2‖c‖2
≤ ‖((A−AK) ◦ F )‖F‖c‖2
≤ ‖A−AK‖max‖F‖F‖c‖2
≤ Nε‖c‖2,

where ‖ · ‖F denotes the matrix Frobenius norm and the last inequality follows from
the fact that ‖A−AK‖max ≤ ε and ‖F‖F = N . In Figure 3 (right) we observe that the

relative error ‖f exact− f approx‖2/‖c‖2 grows like O(N3/2), where the extra O(N1/2) is

probably due to the fact that a sum of N Gaussian random variable is of size O(N1/2).
When we repeat the experiment with a random vector c with O(n−2) decay, i.e., c
= randn(N)./(1:N).^2 in Julia, the relative error ‖f exact − f approx‖2/‖c‖2 grows like
O(N). More often than not, Fourier coefficients do decay as the coefficients are derived
from expanding a smooth periodic function.

3. Other nonuniform fast Fourier transforms. Many other nonuniform dis-
crete Fourier transforms are related to the NUDFT-II including: (1) The NUDFT-I,
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(2) NUDFT-III, (3) inverse NUDFTs. We describe these transforms in this section.

3.1. The nonuniform fast Fourier transform of Type I. The NUDFT-I
transform computes the vector f , given the vector c ∈ CN×1 and frequencies ω ∈
[0, N ], such that

fj =

N−1∑
k=0

cke
−2πi jN ωk , 0 ≤ j ≤ N − 1.

It is equivalent to evaluating a generalized Fourier series at equispaced points and

computing the matrix-vector product F̃1c, where (F̃1)jk = e−2πi(j/N)ωk for 0 ≤ j, k ≤
N − 1.

For this transform, we immediately find that

(F̃1)jk = e−2πi
j
N ωk = e−2πi

ωk

N j = (F̃2)kj 0 ≤ j, k ≤ N − 1,

where the frequencies ω0/N, . . . , ωN−1/N act as nonequispaced sampled in a NUDFT-
II. Therefore, we see that the NUDFT-I matrix is equivalent to a transposed NUDFT-
II matrix. Since the transpose of a sum of matrices is equal to the sum of the individual
terms transposed, (15) immediately leads to our NUFFT-I:

F̃1c = F̃ ᵀ
2 c ≈

K−1∑
r=0

Dvr
F ᵀ
2 IN (:, t)Dur

c =

K−1∑
r=0

Dvr
F ᵀ
2 IN (:, t)Dur

c.

Therefore, F̃1c, can be computed in O(N logN log(1/ε)/ loglog(1/ε)) operations using
the relationship F ᵀc = NF

−1
c and the inverse FFT.

For implementations of this transform, see the chebfun.nufft command in Cheb-
fun [9] and the nufft1 command in FastTransforms.jl [24].

3.2. The nonuniform fast Fourier transform of Type III. Let x0, . . . , xN−1 ∈
[0, 1) be samples and ω0, . . . , ωN−1 ∈ [0, N) be frequencies. Suppose that we wish to
compute the vector f in (1), given c0, . . . , cN−1. This is equivalent to computing the

matrix-vector product F̃3c, where (F̃3)jk = e−2πixjωk . From the properties of the ex-
ponential function, the sequence s0, . . . , sN−1 in (12), and the sequence t0, . . . , tN−1
in (13), we can write

(F̃3)jk = e−2πixjωk = e−2πi(xj−sj/N)wke−2πi
sj−tj
N ωk e−2πi

tj
N ωk︸ ︷︷ ︸

=(F̃1)(t,:)jk

, 0 ≤ j, k ≤ N − 1.

Applying the product above to every entry of F̃3 leads to the following matrix decom-
position:

F̃3 = A ◦B ◦ F̃1(t, :), Ajk = e−2πi(xj−sj/N)wk , Bjk = e−2πi
sj−tj
N ωk ,

where F̃1(t, :) denotes the NUDFT-I matrix permuted by the sequence t0, . . . , tN−1.
Since |N(xj−sj/N)| ≤ 1/2 for 0 ≤ j ≤ N−1 and ωk/N ∈ [0, 1) for 0 ≤ k ≤ N−1,

we know from Theorem 2 that A can be approximated by a rank K matrix AK such
that ‖A − AK‖max ≤ ε and K = O(log(1/ε)/ loglog(1/ε)), where 0 < ε < 1 is a
working precision. Moreover, the matrix B is of rank at most 2 since

B = (1− (s− t)/N)1ᵀ + (s− t)/N exp(−2πiωᵀ),
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where 1 is the N×1 column vector of ones. Therefore, A◦B can be well-approximated
by a rank O(K) matrix and hence, F̃3c can be computed in O(KN logN) operations.

In double precision, the cost of this NUFFT-III is at most 32(= 16× 2) NUFFT-
I’s or, equivalently, 512(= 32 × 16) FFTs of size N . These FFTs can all still be
performed in parallel. In the case when the sequences s0, . . . , sN−1 and t0, . . . , tN−1
are the same, which often occurs (see (13)), the matrix B is the matrix of all ones. In
this situation, A ◦B = A and the cost of the NUFFT-III is reduced by a factor of 2.

This transform is available in the chebfun.nufft command in Chebfun [9].

3.3. Inverse nonuniform fast Fourier transforms. In the NUFFT-I, -II, and
-III, severely nonequispaced samples or noninteger frequencies were not a numerical
issue and the parameter γ in (5) only mildly affected the computational cost of the
transform. For the inverse transforms, nonuniform samples or frequencies are far more
detrimental in terms of both accuracy and computational cost.

The inverse NUDFT-II requires that the linear system F̃2c = f is solved for the

vector c, where F̃2 is given in (2). Here, we will assume that the samples x0, . . . , xN−1
are perturbed equispaced samples with 0 ≤ γ < 1/2 (see (5)) to ensure that F̃−12 exists.
Since we have a fast matrix-vector product for F̃2 (see Section 2), one naturally tries
a variety of Krylov methods. After trying several of them, we advocate the following
approach based on the conjugate gradient method (CG).

The matrix F̃2 is not a positive definite matrix, i.e., it is not symmetric with
positive eigenvalues, so the conjugate gradient method cannot be immediately applied.
Instead, we use the conjugate gradient method on the normal equations: F̃ ∗2 F̃2c =
F̃ ∗2 f . By considering the (j, k) entry of F̃ ∗2 F̃2, we find that it only depends on the
value of j − k:

(F̃ ∗2 F̃2)jk =

N−1∑
p=0

e2πixp(j−k), 0 ≤ j, k ≤ N − 1.

Hence, F̃ ∗2 F̃2 is a Toeplitz matrix, i.e., a matrix with constant diagonal entries, as
noted previously in [10]. Therefore, a matrix-vector product with F̃ ∗2 F̃2 can be com-
puted using a fast Toeplitz multiply, costing just one FFT and one inverse FFT of
size 2N [14, Sec. 4.7.7].7

Let the number of conjugate gradient iterations be denoted by Rcg. Since CG
requires one matrix-vector product per iteration, the inverse transform costs the same
as 2Rcg FFTs of size 2N , ignoring O(K) FFTs to compute F̃2f and the calculation
of the eigenvalues of a circulant matrix (see [14, Sec. 4.7.7]). Therefore, this iterative
method leads to an inverse NUFFT-II with a computational cost of O(RcgN logN)
operations, which is quasi-optimal provided that Rcg does not grow too quickly with
N .

Figure 4 shows that empirically Rcg is observed to be small and, perhaps, bounded
with N when 0 < γ < 1/4.8 When the samples are uniformly sampled, F̃2 = F and
Rcg = 1. As the perturbation parameter, γ, is increased from 0 to 1/2, the condition
number of F̃2 — and hence Rcg — can increase without bound. For example, when
γ = 1/2, the samples may not be distinct and so F̃−12 may not exist.

7
Note that the first column and row of F̃

∗
2 F̃2 are the same due to symmetry and the first column

of F̃
∗
2 F̃2 can be obtained via the relation F̃

∗
2 F̃2e1, where e1 is the first canonical vector.

8
The Kadec-1/4 theorem from the literature on the theory of frames [16] (also see [2, Thm 3.1])

makes us believe that Rcg remains bounds as N → ∞ with 0 ≤ γ < 1/4, but grows with N when
1/4 ≤ γ < 1/2.
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Fig. 4: The number of conjugate gradient (CG) iterations required for the inverse
NUFFT-II transform with a convergence tolerance of ε ≈ 2.2× 10−14 and γ = 7/16,
γ = 1/8, γ = 1/32, and γ = 0 (see (5)). When γ = 0, the inverse NUFFT-II is the
inverse FFT and only one CG iteration is required. The inverse NUFFT-II has a cost
that is like an O(N logN) algorithm for all practical N . This paper does not provide
a bound on Rcg.

To fully understand the algorithmic complexity of our inverse NUFFT-II, we need
to bound Rcg. One can do this immediately if a bound on the condition number of
F̃2 is known. The recent theoretical work on the Lebesgue constant for trigonometric
interpolation with nonequispaced points in [2, 3] is potentially helpful for bounding
the condition number of F̃2; however, we have not been able to derive a bound in
terms of γ on this yet.

An analogous idea applies F̃1 to derive an inverse NUFFT-I because F̃−11 =
F̃ ∗(F̃1F̃

∗
1 )−1 and F̃1F̃

∗
1 is a Toeplitz matrix (see, also, [10]). The inverse transforms

are implemented in the chebfun.inufft command in Chebfun [9] and the inufft

commands in FastTransforms.jl [24].

4. The two-dimensional nonuniform fast Fourier transform of type II.
Given an m × n matrix of Fourier coefficients C ∈ Cm×n and nonuniform samples
(x0, y0), . . . , (xN−1, yN−1) ∈ R2, the two-dimensional NUDFT-II is the task of com-
puting the following vector:

fj =

m−1∑
k1=0

n−1∑
k2=0

Ck1k2e
−2πi(k1xj+k2yj), 0 ≤ j ≤ N − 1. (16)

Naively, this requires O(Nmn) operations since there are N sums with each sum
contain mn terms. Here, we describe an algorithm that requires only O(mn(log(n) +
log(m)) +N) operations.

It is helpful to start by reviewing the uniform two-dimensional FFT, which com-
putes the vector f ∈ Cmn×1 (by default N = mn) such that

fj =

m−1∑
k1=0

n−1∑
k2=0

Ck1k2e
−2πi(k1bj/mc/n+k2mod(j,m)/m), 0 ≤ j ≤ mn− 1. (17)

The samples in (17) lie on them×n equispaced tensor grid (s/m, t/n) for 0 ≤ s ≤ m−1
and 0 ≤ t ≤ n − 1. In the Julia language, the vector f in (17) can be computed by
the command fft(C)[:] in O(mn(logm+ log n)) operations.
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Fig. 5: An illustration of how nonuniform samples in [0, 1]× [0, 1] are assigned to their
nearest m × n equispaced grid point. The sequence (sx0 , s

y
0), . . . , (sxN−1, s

y
N−1) ∈ N2

is defined so that (sxj /n, s
y
j/m) is the closest m × n equispaced grid point to (xj , yj)

for 0 ≤ j ≤ N − 1. If (xj , yj) is assigned to one of the grid points denoted by one of
the unfilled black circles, i.e., either sxj = n or syj = m or both, then the sample is
reassigned using the periodicity of the complex exponential function (see (??)).

As in Section 2.2, we first define a sequence (sx0 , s
y
0), . . . , (sxN−1, s

y
N−1) ∈ N2 such

that (sxj /n, s
y
j/m) is the closest point from an m × n equispaced grid to (xj , yj) for

0 ≤ j ≤ N − 1. By definition, we have∣∣∣∣xj − sxj
n

∣∣∣∣ ≤ 1

2n
,

∣∣∣∣∣yj − syj
m

∣∣∣∣∣ ≤ 1

2m
, 0 ≤ j ≤ N − 1.
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Appendix A. Constructing a low rank matrix approximation via a
bivariate Chebyshev expansion. In Section 2.1 we require a low rank ap-
proximation for the matrix A in (7). We first note that we can consider A as the
matrix obtained by sampling the bivariate function (x, y) 7→ e−ixy on the domain
[−γ, γ] × [0, 2π]. If we construct a bivariate polynomial approximation q(x, y) of de-
gree K − 1 in both the x- and y-variable to e−ixy on [−γ, γ]× [0, 2π], then

A = e−2πi(x−e)ω
ᵀ

≈ q
(
N(x− e), ω

ᵀ

N

)
= AK

is a rank K approximation to A [25, Sec. 3.1]. We construct the polynomial q(x, y)
by a truncated bivariate Chebyshev expansion for e−ixy.

Lemma 1. Let 0 < ε < 1 be a working precision and γ > 0. The following holds:

sup
(x,y)∈[−γ,γ]×[0,2π]

∣∣∣∣∣e−ixy −
K−1∑
r=0

′
K−1∑
p=0

′

apre
−iπxTp(

x
γ )Tr(

y
π − 1)

∣∣∣∣∣ ≤ ε,
where Tp is the degree p Chebyshev polynomial, the apq coefficients are given in (21),
and the primes on the summands indicate that the first term should be halved. Here,
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the integer K satisfies:

K = max
{

3,
⌈
5γeW(log(140/ε)/(5γ))

⌉}
= O

(
log(1/ε)

loglog(1/ε)

)
, ε→ 0,

where W (x) is the Lambert W function [21, (4.13.1)].

Proof. A bivariate Chebyshev expansion of e−ixy on (x, y) ∈ [−γ, γ] × [0, 2π] is
given by [25, Lem. A.3]

e−ixy =

∞∑
p=0

′
∞∑
r=0

′

apre
iπxTp(

x
γ )Tr(

y
π − 1), (x, y) ∈ [−γ, γ]× [0, 2π],

where Tp is the degree p Chebyshev polynomial and the primes on the summands
indicate that the first term should be halved. Moreover, the expansion coefficients
are given by [25, Lem. A.3]

apr =

{
4irJ(p+r)/2(−γπ/2)J(r−p)/2(−γπ/2), mod(|p− r|, 2) = 0,

0, otherwise.
(18)

Pick K ≥ 1 to be an integer. Then, by the triangle inequality, |Tp(x)| ≤ 1 for

x ∈ [−1, 1], and |eiθ| = 1, we have

sup
(x,y)∈[−γ,γ]×[0,2π]

∣∣∣∣∣e−ixy −
K−1∑
p=0

′
K−1∑
r=0

′

apre
iπxTp(

x
γ )Tr(

y
π − 1)

∣∣∣∣∣ ≤
∞∑
p=K

∞∑
r=K

|apr|.

Using [21, (10.14.1) and (10.14.7)], we find that

|apr| ≤ 4

(
eγπ

p+ r

)(p+r)/2

, max(p, r) ≥ 1.

Therefore, by setting s = p+ r, we can bound the error as

∞∑
p=K

∞∑
r=K

|apr| ≤ 4

∞∑
s=0

(s+ 1)

(
eγπ

s+ 2K

)(s+2K)/2

≤ 4(eγπ)

∞∑
s=0

(eγπ
2K

)(s+2K−2)/2
.

Assuming K ≥ 3, we find that
∑∞
s=0 ρ

s/2 = 1/(1 − ρ) ≤ 7 with ρ = (eγπ)/(2K).
Hence, we have

∞∑
p=K

∞∑
r=K

|apr| ≤ 28(eγπ)
(eγπ

2K

)K−1
≤ 140

(
5γ

K − 1

)K−1
,

where the last inequality used eγπ ≤ 5, eπ/2 ≤ 5, and K ≥ K − 1. By solving for
K ≥ 3 such that

∑∞
p=K

∑∞
r=K |apr| ≤ ε, we find that we can take K to be

K = max
{

3,
⌈
5γeW(log(140/ε)/(5γ))

⌉}
= O

(
log(1/ε)

loglog(1/ε)

)
, ε→ 0,

where W (x) is the Lambert W function. The asymptotic approximation for the lower
bound onK as ε→ 0 is derived from the asymptotic expansion forW (x) as x→∞ [21,
(4.13.10)].
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We now evaluate the truncated Chebyshev expansion constructed in Lemma 1
to derive a rank K approximation to the matrix A in (7). We make the additional
restriction that γ ≤ 1/2 in the statement of the theorem below because we do not
construct low rank approximations to A when γ > 1/2 (see Section 2.2).

Theorem 2. Let N ≥ 1 be an integer, 0 < ε < 1, and x0, . . . , xN−1 samples such
that (5) holds with 0 < γ ≤ 1/2. Consider the N ×N matrix

Ajk = e−2πi(xj−j/N)ωk , 0 ≤ j, k ≤ N − 1,

where ω0, . . . , ωN−1 ∈ [0, N ]. Then, there exists a rank K matrix AK such that
‖A−AK‖max ≤ ε, where

K = max
{

3,
⌈
5γeW(log(140/ε)/(5γ))

⌉}
= O

(
log(1/ε)

loglog(1/ε)

)
, ε→ 0

and ‖A‖max is the absolute maximum entry of A.

Proof. Let x = (x0, x1, . . . , xN−1)
ᵀ
, e = (0/N, 1/N, . . . , (N − 1)/N)

ᵀ
and ω =

(ω0, ω1, . . . , ωN−1)
ᵀ
. Then, A = exp(−2πi(x− e)ωᵀ), where the exponential function

is applied entry-by-entry to its matrix input. Since the entries in Nx are in [−γ, γ]
and the entries of 2πω/N are in [0, 2π], we can apply Lemma 1 to each entry of A.

We conclude that for K = max{3, d5γeW(log(140/ε)/(5γ))e} we have

‖A−AK‖max ≤ ε, AK =

K−1∑
p=0

′
K−1∑
r=0

′

apr

(
exp (−iπN(x− e)) ◦ Tp(

N(x−e)
γ )

)
Tr(

2ω
ᵀ

N −1
ᵀ),

(19)
where Tp(x) is the degree p Chebyshev polynomial, the coefficients apr are given
in (21), 1 is the N × 1 column vector of ones, and the prime on the summands
indicate that the first term is halved.

Each term in the double sum in (22) is a rank-1 term so it may look like AK is
of rank at most K2; however, by appropriately grouping the terms as follows:

AK =

K−1∑
r=0

′
(
K−1∑
p=0

′

apr

(
exp (−iπN(x− e)) ◦ Tp(

N(x−e)
γ )

))
Tr(

2ω
ᵀ

N − 1ᵀ)︸ ︷︷ ︸
A rank-1 matrix

,

we conclude that AK is a matrix of rank at most K, as required. The asymptotic order
of K given in the statement of the theorem comes from the asymptotic expansion of
W (x) as x→∞ [21, (4.13.10)].
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