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ABSTRACT ��

Postsynaptic 5-HT1A receptors (5-HT1AR) play an important role in anxiety and stress, ��

although their contribution is still controversial. Previous studies report that mice ��

overexpressing postsynaptic 5-HT1ARs show no changes in basal anxiety, though the ��

influence of stress conditions has not been addressed yet. In this study, we used this ��

animal model to evaluate the role of 5-HT1ARs in anxiety response after pre-exposure ��

to an acute stressor. Under basal conditions, 5-HT1AR overexpressing animals ��

presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid 	�

receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like 
�

response, associated to a blunted increase in corticosterone levels and higher c-Fos ���

activation in the prefrontal cortex. Moreover, these mice also presented a lack of ���

downregulation of hippocampal long-term potentiation after stress exposure. Therefore, ���

higher postsynaptic 5-HT1AR activation might predispose to a high anxious phenotype ���

and an impaired stress coping behavior. ���

 ���

 ���

 ���

KEYWORDS: postsynaptic 5-HT1A receptor; anxiety; behavior; HPA axis; c-Fos; long-�	�

term potentiation. �
�

  ���
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INTRODUCTION ��

The serotonergic system is one of the key neurotransmitter systems in the body, ��

implicated in the neurobiology of anxiety, depression and impulsive behavior, as well ��

as in the control of other physiological functions as food intake, temperature control, ��

sexual behavior, and the modulation of learning and memory (1). The 5-HT1A receptor ��

(5-HT1AR) subtype is one of the most relevant, with a dual localization as an ��

autoreceptor in the soma of the serotonergic neurons located in the raphe nuclei, and ��

as a heteroreceptor in postsynaptic areas as hippocampus and cortex (2). This 	�

receptor subtype is implicated in psychiatric pathologies as bipolar disorder (3), panic 
�

disorder (4), anxiety (5), and depression (6). The involvement of the 5-HT1AR in ���

dysfunctional forms of anxiety has been studied in a wide range of preclinical research ���

and clinical trials, including drug treatment studies, genetic research, and neuroimaging ���

data (7). Studies in transgenic mice also demonstrate the important role of forebrain 5-���

HT1A receptors regulating both anxious (8) and depressive (6) behaviors. ���

Increased circulating corticosterone levels induced by stress, have been associated to ���

a downregulation of postsynaptic 5-HT1A receptor expression and functionality in ���

hippocampus (9, 10). Moreover, a dysregulated HPA function is associated with ���

anxious/depressive-like behavior (11, 12). Corticosterone binds to two different �	�

receptors: mineralocorticoid receptors (MRs), present in limbic areas, and �
�

glucocorticoid receptors (GRs), more ubiquitous (13). The high-affinity MRs are ���

saturated under basal corticosterone levels, whereas the low-affinity GRs are recruited ���

by stress-induced high corticosteroid levels, playing a role in the negative feedback ���

inhibition of the HPA axis (13). HPA hyperactivity leads to a downregulation of GRs ���

and, consequently, to an impaired negative feedback inhibition (14). The subsequent ���

glucocorticoid hypersecretion together with high serotonin release in postsynaptic ���

areas involved in the response to stress results in the 5-HT1AR downregulation in areas ���

as the hippocampus, a neurochemical finding associated to stress-related disorders ���

(6). In humans, a blunted cortisol variation is associated to greater scores in depressive �	�

symptoms (15). �
�

High corticosterone levels impair long-term potentiation (LTP) in the dorsal CA1 region ���

of the hippocampus (16), particularly, the LTP mediated by N-methyl-D-aspartate ���

(NMDA) receptors (NMDA receptor-dependent LTP) (17). Elevated levels of ���

corticosteroid hormones occupying both GRs and MRs (13, 18) impair the acquisition ���

of hippocampal-dependent memories. These MRs and GRs produce opposite effects ���
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on LTP in CA1, either facilitating or suppressing the LTP activation, respectively, ��

leading to the induction of long-term depression (18). In fact, MR activity seems to ��

maintain the excitability and stability of networks, while GR activation is involved in the ��

suppression and normalization of network activity (13). Under low corticosterone levels, ��

there is a predominant activation of MR that results in small Ca2+ currents that preserve ��

the LTP (19). The exposure to high corticosterone levels promotes an additional GR ��

activation, increasing the intracellular Ca2+ concentrations (20), and blocking the NMDA ��

receptors, leading to an impaired hippocampal LTP (20). 	�

Recently, a transgenic mouse line with a permanent 5-HT1AR overexpression (OE 
�

mice) was generated (21, 22, 23). These OE mice overexpress 5-HT1AR in cortex, ���

hippocampus and other limbic areas, whereas their expression was not altered in the ���

raphe nucleus. Previous studies using ethological- and conflict-based behavioral tests, ���

demonstrated that the permanent postsynaptic 5-HT1AR overexpression in mice does ���

not result in significant changes in basal anxiety-related responses (22). However, we ���

postulate that the high post/presynaptic 5-HT1A receptor ratio must be influencing their ���

vulnerability to stress. Therefore, we have evaluated the behavioral response of mice ���

overexpressing postsynaptic 5-HT1ARs in anxiety tests following a forced swimming ���

session used as an acute stressor. In addition, we measured the associated serum �	�

corticosterone and corticosteroid receptors levels to analyze the HPA axis functionality. �
�

c-Fos activation in the prefrontal cortex and hippocampal LTP were also evaluated in ���

these animals under basal conditions, and following acute stress. ���

 ���

RESULTS AND DISCUSSION ���

In the present study, we demonstrate the enhanced anxiety response of mice ���

overexpressing 5-HT1AR in postsynaptic areas (5-HT1A OE mice) when they are pre-���

exposed to a single forced swimming session used as a stressor factor, associated ���

with an altered HPA axis response, prefrontal cortex activation and a sustained ���

hippocampal LTP. �	�

 �
�

[35S]GTPγγγγS autoradiography: hyperfunctionality of postsynaptic 5-HT1A receptors ���
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In this study, we used a transgenic mouse line that overexpresses 5-HT1A receptors in ��

postsynaptic areas (i.e. hippocampus and cerebral cortex) (21, 23). To evaluate the 5-��

HT1A receptor functionality, we performed a functional autoradiography using the ��

selective 5-HT1A receptor agonist 8-OH-DPAT. The agonist-mediated [35S]GTPγS ��

stimulation was significantly higher in postsynaptic areas as the medial prefrontal ��

cortex (p<0.01), the CA1 area of the hippocampus (p<0.05) and the CA3 area of the ��

dorsal hippocampus (p<0.05) in 5-HT1AR OE mice. No significant differences were ��

observed in 5-HT1AR functionality in the dentate gyrus, paraventricular nucleus of the 	�

hypothalamus, and the dorsal raphe nucleus (Figure 1). Basal [35S]GTPγS binding 
�

values were similar in both WT and OE animals in the different areas studied (Table ���

S1, Supporting Information). ���

 ���

 ���

Figure 1. Autoradiographic 8-OH-DPAT-stimulated [35S]GTPγS binding in WT and OE ���

mice. Data are expressed as the mean±SEM. Student t-test analysis comparing OE ���

and WT values in each brain area; *p<0.05 and **p<0.01. mPFCx (medial prefrontal ���

cortex), CA1 (CA1 field of the hippocampus), CA3 (CA3 field of the hippocampus), DG ���

(dentate gyrus of the hippocampus), PVN (paraventricular nucleus of the �	�

hypothalamus) and DRN (dorsal raphe nucleus). n=5-6 animals per group. �
�

 ���

These data confirm the increased functionality of postsynaptic 5-HT1ARs ���

overexpressed in these transgenic mice compared to their WT counterparts, with no ���

differences in presynaptic 5-HT1ARs functionality (dorsal raphe nucleus). This higher ���
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receptor functionality is in good agreement with the elevated receptor density observed ��

in studies using [3H]8-OH-DPAT (23). Although postsynaptic 5-HT1AR OE mice do not ��

present changes in 5-HT levels in projection areas compared to WT animals (22), the ��

higher density/functionality of postsynaptic 5-HT1A receptors may lead to a region-��

dependent serotonin imbalance that could determine the behavioral outcome ��

depending on which brain areas are engaged in different environmental challenges. ��

 ��

Anxiety-like responses are enhanced after acute stress in 5-HT1A OE mice 	�

Taken into account the importance of the 5-HT1ARs in the vulnerability to stress (24, 
�

25), we assessed the anxiety-like response of the 5-HT1A OE mice after the pre-���

exposure to an acute stressor (5 minutes forced swimming session). In the light/dark ���

box test, non-stressed OE animals spent more time in the lit compartment than their ���

WT counterparts (p<0.05). The exposure to an acute stressor immediately before ���

behavioral testing, induced no changes in WT animals, but elicited an anxious ���

response in OE animals, evidenced by a lower ratio light/dark time compared to the ���

naïve OE mice (p<0.001) (Figure 2A). A two-way ANOVA analysis of the ratio light/dark ���

time showed a significant effect of the stress [F(1,31)=20.51, p<0.001], and the ���

interaction genotype x stress [F(1,31)=18.58, p<0.001]. Bonferroni posthoc analysis �	�

showed differences between WT and OE mice (p<0.05) and OE naïve and stressed �
�

animals (p<0.001), and between WT stress and OE stress mice (p<0.05). No changes ���

in locomotion were observed in OE mice under basal and stress conditions (Figure S1, ���

Supporting Information). ���

In the novelty suppressed feeding (NSF) non-stressed WT and 5-HT1AR OE animals ���

presented a similar delay to approach and eat the food pellet, whereas the pre-���

exposure to stress produced a higher increase in the latency to feed in OE animals ���

(p<0.001) (Figure 2B). A two-way ANOVA analysis of the latency to feed showed a ���

significant effect of the genotype [F(1,31)=7.57, p<0.01], the stress [F(1,31)=21.99, ���

p<0.001], and the interaction genotype x stress [F(1,31)=6.73, p<0.05]. The 5-HT1A OE �	�

group presented lower food consumption in the post-test compared to the WT animals �
�

(Figure S2, Supporting Information), though no differences in their daily homecage ���

consumption were detected (data not shown). ���

 ���
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 ��

Figure 2. Anxiety- and depression-related behaviors in WT and 5-HT1AR OE mice. (A) ��

Ratio of time spent in the lit compartment vs the dark one in the light/dark box test. (B) ��

Latency to feeding in the novelty suppressed feeding test in OE mice and WT ��

counterparts under basal and acute stress conditions. Two-way ANOVA followed by ��

Bonferroni post-hoc test; *p<0.05, **p<0.01, ***p<0.001. (C) Survival analysis and ��

statistical differences between the latencies determined by the Kaplan–Meier product-��

limit method; **p<0.01 WT stress vs WT naïve, ###p<0.001 OE stress vs OE naïve, 	�

$p<0.05 OE stress vs WT stress. Note the higher anxiogenic response of OE mice 
�

when pre-exposed to stress. Data expressed as the mean±SEM. n=6-10 animals per ���

group. ���

 ���

Our results demonstrate that mice overexpressing postsynaptic 5-HT1ARs exhibit ���

different anxiety-like responses in non-stressed animals depending on the behavioral ���

test. Both postsynaptic 5-HT1AR OE mice and their WT counterparts showed a similar ���

anxiety-like response under non-stressing conditions in the novelty suppressed feeding ���

test, in line with previous findings in the elevated plus maze (22), though postsynaptic ���

5-HT1AR OE mice displayed less anxiety-like behavior in the light/dark paradigm. It is �	�

noteworthy that postsynaptic 5-HT1AR overexpressing mice used in this work are �
�

constitutive, which can result in compensatory changes associated with an abnormal ���

serotonergic system functioning. In this sense, it is well known that second and third ���

weeks of life are linked to the development of conflict-based anxiety, and that a normal ���

5-HT1A function is required to have a normal anxious phenotype (8, 25). In fact, a lower ���

anxiety-like phenotype is observed in mice overexpressing postsynaptic 5-HT1A ���

receptors during early postnatal development (21), or after postsynaptic 5-HT1AR gain-���

of-function in KO animals (8). However, no changes in anxiety-like responses in no ���
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previously stressed animals are found in 5-HT1A heteroreceptor knock-out animals (25, ��

26). ��

One of the major findings of our study is the enhanced anxiety-like response (novelty ��

suppressed feeding and light/dark box tests) in these 5-HT1AR OE mice when pre-��

exposed to an acute stressor (forced swimming). Indeed, it is well known that the acute ��

swim stress activates the serotonergic system (27), leading to a subsequent stress-��

induced increase in serotonin (28, 29). However, other factors as corticosterone play ��

an important role in stress (30), and especially in our OE mice under acute stress 	�

conditions, as discussed below. Regarding the stress-induced increase in the latency 
�

to feed in the NSF, we cannot discard the influence of an appetite/motivational factor ���

associated to 5-HT1A receptor activation (31), since a lower drive to feed was confirmed ���

in the post-NSF consumption test. However, the lower food consumption appears to be ���

highly influenced by the high anxiety following the acute stressor elicited by these 5-���

HT1A OE mice, since the food consumed daily in their homecage was similar to their ���

WT counterparts. ���

 ���

Blunted HPA in OE mice in response to stress ���

Bearing in mind the increased anxiety-like response elicited in acutely stressed 5-�	�

HT1AR OE mice, we decided to check the status of the hypothalamic-pituitary-adrenal �
�

(HPA) axis. In non-stressed animals, corticosterone levels were higher in OE than in ���

WT mice (p<0.01). The exposure to acute stress induced an increase in serum ���

corticosterone levels in WT animals (p<0.001), but no changes in OE animals (Figure ���

3A). A two-way ANOVA analysis of serum corticosterone levels showed a significant ���

effect of the stress [F(1,33)=7.65, p<0.01], and the interaction genotype x stress ���

[F(1,33)=15.95, p<0.001]. Moreover, the effects of the circadian rhythm on the ���

corticosterone levels differed between both groups, leading to a lower corticosterone ���

peak in 5-HT1A OE animals (p<0.001) (Figure S3, Supporting Information). ���

We also evaluated the mRNA expression of MR and GR using qPCR (Figure 3B). MR �	�

mRNA expression was lower in OE mice compared to their WT counterparts (two-tailed �
�

t-test, t14=2.49; p<0.05), while GR mRNA expression was significantly higher in OE ���

mice compared to WT animals (two-tailed t-test, t14=2.22; p<0.05). The ratio MR/GR ���

expression was significantly lower in OE mice compared to WT animals (two-tailed t-���

test, t14=4.37; p<0.001). ���
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 ��

 ��

Figure 3. HPA response to stress in WT and OE 5-HT1AR mice. A) Serum ��

corticosterone levels in WT and 5-HT1AR OE mice under basal conditions and after ��

acute stress. Serum corticosterone levels are expressed as ng/ml. Data are expressed ��

as the mean±SEM. Two-way ANOVA test followed by Bonferroni post-hoc test; ��

**p<0.01 and ***p<0.001. n=7-9 animals per group. B) Corticosteroid mRNA receptor ��

expression in the hippocampus of WT and 5-HT1AR OE mice; MR expression, GR 	�

expression and MR/GR expression ratio. Data are expressed as the mean±SEM. 
�

Student’s t-test, two-tailed; *p<0.05, ***p<0.001. n=6-8 animals per group. ���

 ���

The enhanced anxious response to acute stress in postsynaptic 5-HT1AR OE mice is ���

associated with elevated basal corticosterone, without modifications of corticosterone ���

levels following stress (blunted HPA axis response) compared to their WT ���

counterparts, in line with previous findings (30). These elevated basal corticosterone ���

levels are in good agreement with that observed in animal models of stress (9, 32). ���

Furthermore, our 5-HT1AR OE mice present a lower diurnal variation of corticosterone ���

levels (32). This reduced corticosterone peak in 5-HT1A OE mice parallels the findings �	�

reported in patients suffering from post-traumatic stress disorder (33, 34). Postsynaptic �
�

5-HT1ARs, especially those localized in the paraventricular nucleus, are involved in ���

stress regulation since their activation leads to increased corticosterone levels (35). ���

The 5-HT1AR density is increased in the hypothalamus of these animals (23). However, ���

we were not able to detect a significant change in the 5-HT1AR functionality probably ���
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due to the high basal [35S]GTPγS binding levels in this area. Therefore, it is difficult to ��

draw a conclusion about the role of 5-HT1A hypothalamic receptors in the modulation of ��

corticosterone levels. ��

In the postsynaptic 5-HT1AR overexpressing mice, high basal corticosterone levels are ��

associated with lower levels of MR mRNA expression in the hippocampus, in good ��

accordance with previous studies (9, 10). The lower MR/GR mRNA expression ratio ��

observed in OE animals is also observed in animal models of stress (36), and contrast ��

with the higher ratio in animals with low-anxiety phenotype (37). This unbalanced 	�

corticoid receptor expression is also present in rats with low 5-HT1AR expression in 
�

DRN (38), mirroring the high post/presynaptic 5-HT1AR ratio present in our animals. ���

Interestingly, mice overexpressing MR in forebrain areas show an opposite behavior ���

with a less anxious phenotype induced by subsequent behavioral exposures (37). ���

Postsynaptic 5-HT1AR OE mice also presented high levels of GR mRNA expression ���

similarly to animals with a high anxiety profile (39, 40), and a blunted HPA response ���

(40). It could be speculated that the high GR mRNA expression in OE animals may ���

result in a hyperactive negative feedback, and the subsequent impaired HPA response ���

following acute stress (41), though it requires further investigation (i.e.: dexamethasone ���

suppression test). A blunted response to stress has been reported after corticosterone �	�

infusion in mPFCx (42), an area associated with stress habituation, suggesting that the �
�

high basal corticosterone levels diminish the HPA stress response. Moreover, ���

increased activity in mPFCx, induced by the local administration of picrotoxin, is ���

associated with a lower stress-induced corticosterone secretion (43). ���

 ���

c-Fos activation in mPFCx induced by stress ���

Taking in consideration the role of the mPFCx in stress-related responses, we next ���

analyzed the neural activation level by means of c-Fos immunohistochemistry. Our ���

results demonstrate that the c-Fos expression in mPFCx was increased in OE stressed ���

animals (p<0.001), while no changes were observed in the WT animals (Figure 4). A �	�

two-way ANOVA analysis of the c-Fos expression showed a significant effect of the �
�

genotype [F(1,21)=8.90, p<0.01], the stress [F(1,21)=39.39, p<0.001], and the ���

interaction genotype x stress [F(1,21)=11.33, p<0.01]. ���

 ���
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 ��

Figure 4. Activation of c-Fos in the medial prefrontal cortex of the WT and 5-HT1A OE ��

mice under basal conditions and after acute stress. Two-way ANOVA followed by ��

Bonferroni post-hoc test; *p<0.05. Data expressed as the mean±SEM. n=5-6 animals ��

per group. Representative microphotographs are shown for c-Fos expression in: A) WT ��

naïve, B) WT stress, C) OE naïve, and D) OE stress. c-Fos positive cells are marked ��

with arrows. Bar: 100 µm. ��

 	�

In our study, the higher mPFCx c-Fos activation after stress may account for the 
�

absence of corticosterone secretion boost following stress (43). Moreover, the ���

prefrontal cortex is involved in the regulation of stress as an area integrating ���

cognitive/affective information with HPA axis functioning (44, 45). Indeed, activation of ���

the prefrontal cortex, measured by increased c-Fos expression, is reported following ���

stress-inducing procedures (i.e.: FST, immobilization) (46, 47, 48), in line with our ���

findings. However, other authors indicate that the 5-HT1AR-mediated inhibition of c-Fos ���

expression in mPFCx is associated with a higher anxiety (49). It has been reported that ���

high anxious phenotype is associated to predominant 5-HT1A activation on GABA ���

interneurons, leading to an increased pyramidal hyperactivity (50, 51). In good �	�
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agreement, studies in GAD65 knock-out animals indicate increased fear and anxiety ��

behavior similar to models of posttraumatic stress disorder (52). Further experiments ��

are needed to clarify whether the overexpression of postsynaptic 5-HT1AR OE in these ��

mice leads to disturbances in the tone of GABAergic inhibition, and consequently, ��

increased pyramidal neuron activation, responsible for a higher level of anxiety. ��

 ��

Lack of long-term potentiation (LTP) impairment in OE mice after acute stress ��

Finally, taking into consideration the importance of LTP in stress response, we studied 	�

the effect of stress on dorsal hippocampal CA1 LTP. To assess the effect of 5-HT1AR 
�

overexpression on the hippocampal synaptic transmission and plasticity, we recorded ���

fEPSPs from hippocampal slices of WT and OE mice in non-stressed animals, and ���

after acute exposure to a stressing event. A theta burst stimulus was used to induce ���

LTP at the Schaffer collateral-CA1 pathway. No significant differences were found in ���

fEPSP amplitudes in the baseline of WT and OE mice. Comparison of LTP induction in ���

hippocampal slices of non-stressed WT and OE animals showed no differences in the ���

total LTP between both genotypes. As expected, LTP impairment was observed in ���

stressed WT mice (p<0.01) (Figure 5A). By contrast, LTP measured in hippocampal ���

slices of stressed OE mice did not show significant differences compared to those not �	�

subjected to a stressor (Figure 5B). �
�

 ���

Page 14 of 36

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Fuencisla Pilar-Cuéllar et al. 

�

���

�

 ��

Figure 5. Lack of changes in hippocampal LTP after acute stress in 5-HT1AR OE mice. ��

Time courses of the initial slope of fEPSPs recorded from the apical dendritic layer of ��

the CA1 region in hippocampal slices after stimulation of the Schaffer collateral-��

commissural pathway at 30 s intervals. After 20 min of stable baseline recording, a ��

theta burst stimulus induced a robust and similar LTP in hippocampal slices of WT and ��

5-HT1AR OE mice. The stress resulted in the significant down-regulation of the LTP in ��

WT animals (p<0.01) (A), but not in OE mice (B). Data are presented as mean±SEM 	�

from one slice per animal n=5-7 per group. 
�

 ���

These results demonstrate that the higher density and functionality of 5-HT1ARs in the ���

dorsal hippocampus of OE mice does not affect LTP in basal conditions. Acute stress ���

exposure in WT animals induces a downregulation on the LTP in dorsal hippocampus, ���

as previously reported (16, 17, 53, 54), while does not induce changes in 5-HT1AR OE ���

mice. The LTP downregulation in dorsal hippocampus is associated to increased ���
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corticosterone levels (16, 54) after uncontrollable stress (54), acting through GR ��

receptors (55). Thus, our results strongly suggest that the absence of a stress-induced ��

increase in corticosterone levels in 5-HT1A OE mice is underlying the lack of LTP ��

downregulation following an acute stressing event in these animals.  ��

 ��

Overall, mice overexpressing 5-HT1AR in postsynaptic areas showed exacerbated ��

anxious response to acute stress, a behavioral outcome associated with the inability to ��

modulate the HPA axis in response to stressors, increased prefrontal cortex activation, 	�

and the lack of hippocampal LTP downregulation. A similar impaired stress response is 
�

present in mice with high anxiety-related behavior and in some pathologies as in post-���

traumatic stress disorder (PSTD) (56), and depression (40, 57). Therefore, a higher 5-���

HT1AR post/presynaptic ratio results in an impaired stress coping behavior that may ���

increase the susceptibility to develop stress-related emotional disorders. ���

 ���

METHODS ���

Animals ���

Permanent postsynaptic 5-HT1A-receptor overexpressing (OE) mice strain and their ���

wild-type (WT) counterparts were generated as previously indicated (21, 22). These �	�

mice strain was created on an out-bred NMRI genetic background. They exhibit a �
�

higher 5-HT1A receptor density in hippocampus, cortex, amygdala, and hypothalamus, ���

areas in which these receptors are located at the postsynaptic level. However, no ���

changes are found in the density of 5-HT1A autoreceptors in the raphe nuclei (22, 23). ���

Male mice (10-14 weeks) were grouped housed (n=4-5) under controlled conditions ���

(22±1ºC; 12 h light/dark cycle) with food and water ad libitum. All procedures were ���

carried out with the previous approval of the Animal Care Committee of the University ���

of Cantabria and according to the Spanish legislation (RD 53/2013) and the European ���

Communities Council Directive (2010/63/UE) on “Protection of Animals Used in ���

Experimental and Other Scientific Purposes”. �	�

Two different types of studies were designed. First, different sets of WT and OE �
�

animals were used in autoradiography (n=5-6 per group) and qPCR assays (n=6-8 per ���

group). Second, four experimental groups (WT naïve, WT stress, OE naïve, and OE ���
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stress mice) were used to assess the effect of acute stress in the following ��

experimental procedures: behavioral testing (n=6-10 per group), serum corticosterone ��

measurement (n=5-9 per group), c-Fos immunohistochemistry (n=5-6 per group), and ��

electrophysiology studies (n=5-7 per group). A different set of animals was used for ��

each experimental technique. ��

Acute stress protocol: a single forced swimming session was used as acute stressor. ��

Mice were placed in swimming tanks 12 cm in diameter and 24 cm tall. The tank was ��

filled with enough water at 25-27°C so that the mice could not touch the bottom. Each 	�

mouse was placed individually in the swimming tank for a single 5 min session, gently 
�

dried up using a paper towel, and immediately used in the different experimental ���

procedures. ���

Experimental design for “stress” studies (see chronogram in Figure 6): naïve and ���

stressed animals were subjected to a battery of behavioral and neurochemical ���

analyses. A) light/dark box and novelty suppressed feeding tests, with a one-week ���

delay between both; B) blood extraction for serum corticosterone determination; C) ���

animal perfusion 2 hours after the stressor for c-Fos immunohistochemistry studies; ���

and D) in vivo recording of long-term potentiation in hippocampal slices. ���

 �	�

Figure 6. Experimental timeline for the acute stressing procedure (5 min forced �
�

swimming session), in the stressed groups. A) Light/dark box (LDB) and novelty ���

suppressed feeding (NSF) tests; B) blood sampling immediately after the acute stress; ���

C) perfusion 2 h after the stressing event in the c-Fos immunohistochemical assays; ���

Page 17 of 36

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Fuencisla Pilar-Cuéllar et al. 

�

���

�

and D) hippocampal sectioning immediately after the 5 min swim session for the long ��

term potentiation experiments. ��

 ��

Autoradiography for 5-HT1A receptor function ��

Experiments were performed following a previously described protocol (58). Sections ��

were pre-incubated for 30 min at 25°C in a buffer containing 50 mM Tris-HCl, 0.2 mM ��

EGTA, 3 mM MgCl2, 100 mM NaCl, 1 mM DTT and 2 mM GDP (pH 7.7), and ��

subsequently incubated for 2 h at 25°C in the same buffer containing 3 mU/ml 	�

adenosine deaminase and 0.04 nM [35S]guanosine-5-O-(3-thio) triphosphate (GTPγS; 
�

PerkinElmer Inc., Waltham, MA, USA). Consecutive sections were incubated with 10 ���

µM of the selective 5-HT1AR agonist (±)-8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-���

DPAT; Sigma-Aldrich, Spain) alone or in the presence of 10 µM of the selective 5-���

HT1AR antagonist WAY100635. Non-specific binding was determined in the presence ���

of 10 µM GTPγS. After the incubation, the sections were washed twice for 15 min in 50 ���

mM Tris-HCl buffer (pH 7.4) at 4°C, rinsed in distilled cold water and cold air dried. ���

Sections were exposed to radiation-sensitive films (BioMax® MR film, Sigma-Aldrich, ���

San Luis, MI, USA) together with 14C-polymer standards (Amersham, UK) for 2 days at ���

4°C. 8-OH-DPAT stimulated values are represented as percentage versus basal �	�

(100%). �
�

 ���

Behavioral tests ���

Light/dark box test: The light/dark box test was performed in an arena formed ���

by two equally sized compartments (15 cm wide × 30 cm long × 20 cm high) separated ���

by an opening located centrally at floor level (6 cm wide x 6 cm high) (59). A dark ���

compartment had black walls covered with a lid. The other compartment (not covered) ���

had see-through walls and was lit by a light bulb (400 lux). Mice were placed in one ���

corner of the light compartment. The latency of the first entry, time spent, number of ���

entries into the brightly lit compartment, and total distance traveled in both �	�

compartments, were recorded during 5 min testing session using Any-maze Video-�
�

Tracking software (Stoelting Co., Wood Dale, IL, USA). The anxiety level was ���

represented as the ratio of the time spent in the light vs the dark compartment. ���

Page 18 of 36

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Fuencisla Pilar-Cuéllar et al. 

�

�	�

�

Novelty suppressed feeding: This test was performed 7 days after the light/dark ��

box test. It was performed following a previous protocol (60) with minor modifications. ��

Mice were placed into an open field arena (50x50x30 cm; luminance 40-50 lux), from ��

the corner after 24 h food deprivation. The first latency to eat a single food pellet placed ��

in the center during a 10 min session was recorded (defined as the mouse biting the ��

food) using the Any-maze Video-Tracking software (Stoelting Co.). Immediately after ��

this test, the animal was transferred to its home cage, and the food consumption for ��

each mouse was measured during a 5 min period. The animals that did not eat during 	�

the test (but ate in the post-test), were assigned a value of 600 s. The animals that did 
�

not eat during the post-test were discarded from the results analysis. ���

 ���

c-Fos immunohistochemistry ���

Mice were anesthetized with an injection of sodium pentobarbital (100 mg/kg, i.p.) and ���

transcardially perfused with 4% paraformaldehyde in PBS. Brains were post-fixed and ���

cryoprotected with 30% sucrose. Serial coronal sections (40 µm) of the brains were ���

obtained. Sections were treated with 0.3% H2O2 in phosphate-buffered saline (PBS) for ���

10 min and blocked with 0.2% Triton X-100 and 2% normal donkey serum at room ���

temperature for 1 h. Sections were incubated with rabbit anti c-Fos primary antibody �	�

(1:1000; Santa Cruz Biotechnology) in PBS containing 3% normal donkey serum, at �
�

4ºC overnight. Sections were washed in PBS-T, and incubated with a biotinylated ���

donkey anti-rabbit IgG secondary antibody (1:200; Jackson ImmunoResearch ���

Laboratories, Inc., West Grove, PA, USA) and amplified with avidin–biotin complex ���

(Vector Laboratories, Burlingame, CA, USA). c-Fos positive cells were labeled using ���

diaminobenzidine (DAB) + Ni as chromogen (Vector Laboratories). ���

c-Fos-containing cells were counted in the medial prefrontal cortex including prelimbic ���

and infralimbic regions (from 1.98 to 1.70 mm relative to Bregma) (61). Nuclei counting ���

was performed by a blind observer to experimental groups. Data are presented as c-���

Fos positive cells per area (mm2). �	�

Microscope image acquisition �
�

c-Fos immunohistochemistry was visualized using a brightfield microscope Zeiss Axio ���

Scope.A1, using a 10x magnification, and 0.25 numerical aperture of the objective ���

lenses. The image acquisition was performed using a Zeiss AxioCam HRc camera, and ���
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the acquisition software used was Micro-Manager (version 1.4.22) (62). The images ��

were processed using an Adobe Photoshop CC software (version 14.0) (Adobe ��

Systems Software Ireland Ltd., Ireland). ��

 ��

Serum corticosterone levels measurement ��

Blood samples were collected between 9 and 11 a.m. in the different experimental ��

groups (WT and OE, stressed and non-stressed). For the corticosterone variation ��

during the day, blood samples were collected every 4 hours in WT and OE non-	�

stressed animal groups, starting at 10 a.m. Mice were deeply anesthetized with sodium 
�

pentobarbital (40 mg/kg, i.p.) to avoid procedure stress. The mice tails were cut and ���

whole blood was collected in tubes (100 µl volume approximately). The blood was led ���

to clotting during 20-30 minutes and centrifuged twice at 2000 xg for 10 minutes to ���

completely remove the debris. The serum was stored at -20ºC until use. The ���

corticosterone amount present in the serum samples was measured using a ���

corticosterone ELISA Kit (Abcam plc, UK) as indicated by the supplier. Briefly, serum ���

samples were diluted 1:5 and incubated together with biotinylated corticosterone in the ���

plate wells provided in the kit during 2 hours at room temperature. Then, the wells were ���

washed and added streptavidin-peroxidase conjugate and incubated for 30 min. After �	�

that, the plate was washed and incubated for 30 min with the chromogen substrate. �
�

The reaction was stopped and the absorbance was measured at 450 nm. The standard ���

curve data were fitted to a four-parameter logistic nonlinear regression curve. ���

 ���

Quantitative PCR ���

Mice were killed by decapitation, the brains rapidly removed from the skulls, and the ���

hippocampi dissected, immediately frozen and stored at -80ºC until used. Total RNA ���

and whole protein homogenate were extracted using Tripure™ Isolation Reagent ���

(Sigma-Aldrich) according to the manufacturer’s instructions. ���

Once purified, the quality and concentration of the sample were tested measuring the �	�

absorbance (260/280 nm) with the NanoDrop 1000 Spectrophotometer (Thermo Fisher �
�

Scientific, Waltham, MA, USA) and the Agilent 2100 Bioanalyzer (Agilent Technologies, ���

Santa Clara, CA, USA). RNA was reverse transcribed to cDNA using the High Capacity ���
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cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA). Real-time ��

quantitative polymerase chain reaction (qPCR) was performed in triplicate using gene-��

specific primers and SYBR® Green on an ABI PRISM 7500 real-time thermal cycler ��

(Applied Biosystems). Oligonucleotide primers were designed using Primer Express ��

software (Applied Biosystems). The primer sequences and the GenBank accession ��

numbers are given in Table 1. ��

Table 1. Primers used in qPCR studies and GenBank accession numbers. ��

Gene Forward Reverse NCBI reference 

MR 

(Nr3c2) 
5’-GGCTACCACAGTCTCCCTGA-3’ 5’-ACGTTGACAATCTCCATGTAG-3’ NM_001083906.1 

GR 

(Nr3c1) 
5’-TGGGACTGTATATGGGAGAG-3’ 5’-GGTTTGCAATGCTTTCTTCC-3’ NM_008173.3 

GAPDH 5’-ACAGTCCATGCCATCACTGCC-3’ 5’-GCCTGCTTCACCACCTTCTTG-3’ NM_008084 

18S 

(Rn18s) 
5’-CTTAGAGGGACAAGTGGCG-3’ 5’-ACGCTGAGCCAGTCAGTGTA-3’ NR_003278 

Actb 5’-CTCTGGCTCCTAGCACCATGAAGA-3’ 5’-GTAAAACGCAGCTCAGTAACAGTCCG-3’ NM_007393 

 	�

Relative changes in the expression of the target genes were determined using the 
�

following equation: fold change=2−∆∆Ct, where ∆Ct=(Ct target – Ct 18S rRNA) and ���

∆∆Ct=∆Ct (for the experimental condition) – ∆Ct (for the control condition) (63). These ���

experiments were carried out according to the minimum information for publication of ���

quantitative real-time PCR experiments (MIQE) guidelines (64). ���

 ���

Long-term potentiation (LTP) ���

Mice were decapitated and the brains were rapidly removed. The hippocampi were ���

dissected and 400 µm slices were cut with a tissue chopper (65). Slices were allowed ���

to recover for at least 1 h in an interface chamber at room temperature with artificial �	�

CSF containing the following: 120 mM NaCl, 3.5 mM KCl, 2.5 mM CaCl2, 1.3 mM �
�

MgSO4, 1.25 mM NaH2PO4, 26 mM NaHCO3, and 10 mM D-glucose (saturated with ���

95% O2 and 5% CO2). Field EPSPs (fEPSPs) were recorded from the CA1 stratum ���
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radiatum of dorsal hippocampus with a glass micropipette (1–4 MΩ) containing 2 M ��

NaCl and evoked by stimulation of the Schaffer collaterals with insulated bipolar ��

platinum/iridium electrodes >500 µm away from the recording electrode. The stimulus ��

strength was adjusted to evoke fEPSPs equal to 50% of the relative maximum ��

amplitude without superimposed population spike. After stable baseline recordings ��

(100 µs pulse duration, 0.033 Hz), LTP was induced by theta burst stimulation (10 ��

trains of five pulses at 100 Hz and intervals of 200 ms). The duration of the stimulation ��

pulses was doubled during tetanus. fEPSPs were amplified, bandpass filtered (1 Hz to 	�

1 kHz), and stored in a computer using the Spike 2 program (Cambridge Electronic 
�

Design, Cambridge, UK). For the analysis, fEPSP slopes were expressed as a ���

percentage of the baseline values recorded. ���

 ���

Data analysis ���

Results are shown as mean ± standard error of the mean. The statistical analysis of the ���

results was performed using Student’s t-test or two-way ANOVA (genotype and stress ���

as main factors) followed by Student-Newman-Keuls posthoc test. The statistical ���

analysis in the electrophysiological experiments was performed using repeated-���

measures (RM) multivariate ANOVA (MANOVA) (time x stress x genotype). The �	�

statistical analysis test and the number of animals used for each experimental set are �
�

indicated in the results section and figure legends. The level of significance was set at ���

p<0.05. Graphs and the statistical analyses were calculated using the GraphPad Prism ���

5.01 software (GraphPad Software, GraphPad, USA), or SPSS for Windows version ���

18.0. ���

 ���

SUPPORTING INFORMATION ���

Table S1. Absolute values (nCi/g tissue) of basal [35S]GTPγS binding. ���

Figure S1. Total distance traveled in the light/dark box test. ���

Figure S2. Food eaten in the novelty suppressed feeding post-test. �	�

 �
�

ABBREVIATIONS: ���
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5-HT1A receptor (5-HT1AR) overexpressing (OE) mice, forced swimming test (FST), ��

open field (OF), novelty suppressed feeding (NSF) test, mineralocorticoid receptor ��

(MR), glucocorticoid receptor (GR), long-term potentiation (LTP). ��
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