
Noname manuscript No.
(will be inserted by the editor)

Energy efficiency of load balancing for data-parallel
applications in heterogeneous systems

Borja Pérez · Esteban Stafford · José
Luis Bosque · Ramón Beivide

Received: date / Accepted: date

Abstract The use of heterogeneous systems in supercomputing is on the rise
as they improve both performance and energy efficiency. However, the pro-
gramming of these machines requires considerable effort to get the best results
in massively data-parallel applications. Maat is a library that enables OpenCL
programmers to efficiently execute single data-parallel kernels using all the
available devices on a heterogeneous system. It offers a set of load balanc-
ing methods, which perform the data partitioning and distribution among the
devices, exploiting more of the performance of the system and consequently re-
ducing execution time. Until now, however, a study of the implications of these
on the energy consumption has not been made. Therefore, this paper analyses
the energy efficiency of the different load balancing methods compared to a
baseline system that uses just a single GPU. To evaluate the impact of the
heterogeneity of the system, the GPUs were set to different frequencies. The
obtained results show that in all the studied cases there is at least one load
balancing method that improves energy efficiency.

Keywords Heterogeneous systems · load balancing · energy efficiency ·
OpenCL

1 Introduction

One of the current efforts towards increasing the computing power of high
performance computers is to include GPUs alongside general purpose proces-
sors. Such heterogeneous systems are used for a wide spectrum of scientific
applications [1–3]. This is a solution adopted by desingers facing the challenge
of the Exa-scale computing milestone, as the high processing power of GPUs

Borja Pérez · Esteban Stafford · José Luis Bosque · Ramón Beivide
Department of Ingenieŕıa Informática y Electrónica
University de Cantabria
E-mail: perezpavonb@unican.es,stafforde@unican.es,bosquejl@unican.es,beividej@unican.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/158328932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Borja Pérez et al.

allows these systems to increase the FLOPs per Watt ratio. Recently Nvidia
has announced its DGX-1 HPC server, which includes two Haswell processors
with 32 cores and 8 NVIDIA Tesla P100 GPUs. The combined computing
power of the DGX-1 is 85 TFlops. Only four of these systems put together
would grant a place in the Top500 list of supercomputers (June 2016).

Harnessing the computing power of these systems is a considerable chal-
lenge by itself. The most common programming model, being used by CUDA
and OpenCL is the host-device model. It dictates that the host processor starts
the execution of an application, and offloads highly parallel parts to the GPU.
In general, the host waits for the completion of these code sections. Conse-
quently, this model does not exploit the computing power of the host, as it
remains idle while the GPU is in operation. Interestingly, the CPUs are still
consuming a noticeable amount of power during these periods, significantly
reducing the energy efficiency of the system as a whole. This model does not
exploit the computing power of several GPUs by default either, as load distri-
bution to the different GPUs is in the hands of the programmer.

Maat is an OpenCL library that hides from the developers all the dif-
ferent computing elements of a heterogeneous system. This guarantees code
portability and improves productivity [4]. With Maat, massively data-parallel
applications can be programmed using the host-device model, by using a load
balancing algorithm it distributes the workload among all the available com-
puting elements. Maat offers a set of load balancing algorithms that can be
used for applications of different nature. Choosing and adequately configuring
the algorithm is fairly simple and can considerably improve the performance
of the system. This is because all devices perform useful work all the time,
and none remains idle waiting for another.

However, using all devices simultaneously to solve a single problem affects
the energy consumption in two ways. First it increases the power drawn by
all the devices. And second, it reduces the execution time of the application.
Since energy is calculated as the product of power and time, these two facts
alone do not determine if there is an overall energy saving or not. Therefore,
it is necessary to carry out an analysis of the impact of the load balancing
algorithms on real systems. To the best of the authors’ knowledge, such an
analysis has not been yet performed.

To better understand the implications of different load-balancing strategies,
this paper proposes a study of the energy efficiency of a whole heterogeneous
system composed by several CPUs and GPUs. In order to widen the study,
the GPUs are operated at different frequencies, thus varying their apparent
performance. To evaluate the energy efficiency, the execution time of several
benchmarks and the energy consumed by the system are measured. The exe-
cution of each benchmark is repeated with different load balancing algorithms
and GPU frequencies. These results are compared with the baseline scenario
that consists of a heterogeneous system in which only one GPU is used.

The experimental results show some interesting conclusions. The first is
that for all the benchmarks and all the frequencies analysed, there is a load
balancing algorithm that improves the baseline results, both in execution time



Title Suppressed Due to Excessive Length 3

and energy consumption. Second, the higher frequency on the GPU, greatly
reduces the total energy consumption for all benchmarks analysed. The higher
power consumption throughout the execution is compensated by the reduction
in execution time, thereby reducing the total energy and thus duplicating
energy efficiency.

The rest of the paper is organised as follows. A description of the differ-
ent load balancing methods implemented in Maat is presented in Section 2.
Followed by Section 3 that describes the experimental environment and mea-
surement tools employed, and Section 4 presents the obtained results. Section
5 presents some previous works related to this paper. Finally, Section 6 shows
the most interesting conclusions of this study and proposes future work.

2 Load Balancing Algorithms

The goal of a load balancing algorithm is to distribute the workload among
the devices proportionally to their computational capabilities. This is spe-
cially challenging in heterogeneous systems and with irregular applications,
as it makes coming with a proportional workload division harder. As a con-
sequence, a single load balancing algorithm will not deliver the best results
for every possible system and workload. Therefore Maat provides three algo-
rithms, each of them more suited to a different set of benchmarks [4]. All three
algorithms focus on the balancing of data-parallel workloads, in which every
device performs the same computation on a disjoint partition of the data.

2.1 Static Balancing

This algorithm is based on dividing the load in as many portions as devices
are available in the system. Then, it assigns a single portion to each of them.
To obtain good performance, the work-package assigned to each device has
to have a size proportional to its computational speed. This is defined as the
amount of work that each device can complete in a time unit, including the
necessary communication overhead.

Let there be a heterogeneous system H = {D,P}, where D = {d1, · · · dn}
is the set of devices and S = {S1, · · ·Sn} are their computational speeds. Ad-
ditionally, consider a work-load that needs to process W work-items grouped
in G work-groups. In OpenCL, work-groups can be executed concurrently. For
this reason they should be considered as the atomic distribution unit. All the
work-groups have the same size, called local work size.

The response time of the heterogeneous system is that of the last device
to finish its work. Therefore, the goal of the static method is to find a tuple
{α1, · · ·αn}, where αi is the number of work-groups assigned to the device
di, such that all the devices finish their work at the same time, and then the
system response time is minimized:



4 Borja Pérez et al.

TH = Td1 = · · · = Tdn ⇒
α1

S1
= · · · = αn

Sn

Following the optimal algorithm proposed by O. Beaumont in [5] this can
be done with complexity O(n2) in two steps:

– First, αi is calculated so that αi

Si
is almost constant ∀ i ∈ [1, · · ·n], and

α1 + α2 + · · ·+ αn ≤ G:

αi =

⌊
Si∑n
i=1 Si

·G
⌋

– Second, if
∑n
i=1 αi < G, then the remaining work-groups are assigned to

the most powerful device. This amount of work is practically negligible,
and does not disturb the load distribution.

This algorithm guarantees that the number of synchronization points is
minimized, and performs well when facing regular loads, provided that the
computational powers of the devices are accurately known. However, it is not
adaptable, so performance is not so good for irregular loads.

2.2 Dynamic Balancing

This algorithm divides the load in small, equally-sized packages, many more
than the amount of available devices. The runtime orchestration is carried out
by a master thread that follows the next algorithm:

1. The master splits the number of work-groups G, in a set of p packages, all
of them with the same size and launches one package on each device.

2. The master waits for the completion of any package.
3. When device di completes the execution of a package:

(a) The master stores results returned by the device.
(b) If there are outstanding packages the next package is assigned to di.
(c) Else, if di is a GPU and there is a busy CPU, di steals the package from

the CPU.
(d) If none of this conditions is met, the master proceeds to step 4.
(e) The master returns to step 2.

4. The master ends when all the packages have been processed and their
results are stored in the host.

The dynamic approach can adapt to different hardware and workload sce-
narios where the static can not, but it increases the communication overhead,
with respect to the static approach.



Title Suppressed Due to Excessive Length 5

2.3 H-guided Balancing

The guided algorithm is designed to reduce the amount of synchronization
points inherent to the dynamic scheme. Therefore, it revolves about the same
basic algorithm, but instead of equal-sized packages, the size diminishes with
the number remaining work-groups. Let Gr be the number of pending work-
groups and n the number of available devices, the package size si computed as
Package size =

⌊
Gr

n

⌋
. This effectively reduces the number of synchronization

points, while maintaining adaptability. However, for heterogeneous systems, a
big package may be assigned to a slow device, delaying the whole program.

To avoid this, Maat includes the h-guided algorithm that is a refinement for
heterogeneous systems. This algorithm takes into account the computational
power of the device. Then, considering Si as the computational power of device
di, the size of the packages is calculated as:

Package size =

⌊
Si∑n
i=1 Si

· Gr
n

⌋

3 Methodology

To assess the energy efficiency of the different algorithms presented above, a
combination of experimental investigation and comparative analysis was em-
ployed. First a set of representative applications were selected, and while these
were run on a real heterogeneous system, their execution time and power con-
sumption were measured. Second, the enregy efficiency was computed for the
different applications and algorithms in order to develop a series of conclusions.

3.1 Experimental Setup

The heterogeneous system is composed of two CPUs, two GPUs and 16 GBs
of DDR3 memory. The CPUs are Intel Xeon E5-2620, with six cores that can
run two threads each at 2.0 GHz. The CPUs are connected via QPI, which
results in OpenCL detecting them as a single device. Therefore, throughout
the remainder of this document, any reference to the CPU includes both Xeon
E5-2620 processors. The GPUs are NVIDIA K20m with 13 SIMD lanes, 2496
cores and 5 GBytes of VRAM each. These are connected to the system using
independent PCI 2.0 slots.

All the experiments have been performed with all the frecuencies supported
by the GPU: 324, 614, 640, 666, 705 and 758 MHz. Increasing the frequency
naturally escalates the power consumption and reduces the execution times,
all having an impact in the energy efficiency of the system. At the lowest
frequency, the computing speed of GPU is comparable to that of the CPU,
thus making the system less heterogeneous.

For the comparative analysis, a baseline configuration was used, that con-
sists of the same heterogeneous system but using only one GPU.



6 Borja Pérez et al.

3.2 Benchmarks

Five applications have been chosen for the experiments. Three of them are
part of the AMD APP SDK[6]. MatMul, NBody, Binomial, are well-known and
regular applications in which different, equal-sized work units have the same
running times. The other two applications, which are in-house implementations
of known algorithms, are examples of irregular workloads in which different,
equal-sized work units may have different running times. First, RAP is an
implementation of the Resource Allocation Problem. It must be noted that
there is a certain pattern in the irregularity of RAP, as each successive package
represents a bigger amount of work than the previous. Second, a raytracing
algorithm (RAY) was implemeted as an example of a truly irregular workload.
This computes a realistic rendering of a scene by following light rays with
independent threads. Thus, each of them represents an unpredictable amount
of work, as the number of ray bounces depends on the objects of the scene.

Each application has been run using a problem size big enough to justify
its distribution among all the available devices. For MatMul 12800 by 12800
matrices were used. For NBody 51200 elements were considered for simulation.
Binomial uses 20480000 options. In RAP, the input was a matrix of 1024
by 1024 resources. Finally, for RAY, a 12000 by 12000 image was generated
from a scene with 12 different spheres. Local work size has been set so the
performance of the fastest device, namely the GPU, is maximised. Moreover,
almost no performance difference was detected when varying local work size
for the CPU. The selected values are: 16 by 32 for MatMul, 128 for NBody,
256 for Binomial and 64 for both RAP and RAY.

3.3 Performance, Power and Energy Measurements

The performance has been measured as the speedup with respect to the base-
line execution time for each frequency, using OpenCL and a single GPU. Un-
like homogeneous systems, in which the maximum speedup is the number of
computing devices, for heterogeneous systems this peak performance value de-
pends on the relative computing power of the different devices as well as their
number. Table 1 shows the maximum speedups that can be obtained by each
bechmark at the different frequencies considered.

Table 1 Maximum speedup for different benchmarks and frequencies.

Bench./Freq. 324 614 640 666 705 758
MatMul 2.27 2.11 2.10 2.10 2.09 2.09
Nbody 2.33 2.16 2.15 2.14 2.14 2.13
Binomial 2.30 2.16 2.15 2.14 2.14 2.13
RAP 2.65 2.27 2.26 2.25 2.23 2.22
RAY 2.27 2.12 2.12 2.11 2.11 2.10



Title Suppressed Due to Excessive Length 7

To measure the energy consumption of the system it is necessary to take
into account the power drawn by each of the devices. Modern computing de-
vices include Performance Management Units (PMU) that allow applications
to measure the current power consumption. This power is associated to the
device and not the kernel or process in execution. Together with the fact that
it is impractical to add measurement code to applications, this led to the de-
velopment of a power monitoring application. This tool, named Sauna takes a
program as its parameter, and is able to configure the different PMUs, run the
program and perform periodic power measurements on the different devices.
During the execution, it shows the instant power of each device. By default
Sauna’s measurement is active throughout the execution, but it can also be
restricted to a Region Of Interest(ROI) as determined by the program itself
by special strings written to standard output.

During the measurement Sauna executes calls to the different devices APIs
in order to access the PMU data. For the Intel CPUs, recent versions of the
Linux kernel provides access to the Running Average Power Limit (RAPL) reg-
isters [7], which provide accumulative energy readings. On contrast, NVIDIA
provides a library to access their PMUs, this NVIDIA Management Library
(NVML) [8] gives instant power measurements. Naturally, Sauna is able to
convert between the two magnitudes.

However it is important to notice that the precision of the power to energy
conversion is dependent on the sampling rate. To determine the most adequate
sampling rate, a series of test measurements were performed. On one hand, it
was observed that the use of the NVML hinders the communication with the
GPU, and therefore, with high sampling rates the execution time of the appli-
cation under test grew significantly. On the other hand, a low sampling rate
might miss power consumption bursts and, consequently, reduce the precision
of the measurement. Empirically it was decided that for the test system, the
best sampling period was 30ms.

The performance and the energy consumption can be combined in a single
metric representing the energy efficiency of the system. This paper uses the
Energy-Delay-Product (EDP) [9] for this purpose.

4 Experimental Evaluation

This section describes the experimental results obtained and dicusses the most
interesting conclusions, extracted from them.

Figure 1 presents the speedup of each load balancing algorithm, benchmark
and frequency, referred to the performance of a single GPU using the corre-
sponding frequency. Note that the maximum achievable speedups are shown
in Table 1 and that speedup comparisons between frequencies may not be
meaningful, as each frequency uses a different baseline and the relative com-
puting power among devices varies. It is important to highlight that for any
of the analysed cases, there is always a load balancing algorithm that greatly



8 Borja Pérez et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

sta dyn h-g sta dyn h-g sta dyn h-g sta dyn h-g sta dyn h-g

S
p
e
e
d
u
p

 
Binomial MatMul NBody RAP RAY

324MHz 614MHz 640MHz 666MHz 705MHz 758MHz

Fig. 1 Speedup for each algorithm relative to a single GPU.

improves the performance of the baseline scenario, getting close to the ideal
speedup.

The speedup of the regular applications (Binomial, MatMul and NBody)
is limited by both the sensitivity to the number of packages and the perfor-
mance differences between devices. Regarding the algorithms, observe that
the behaviour of these benchmarks is very similar in all frequencies, and that
the best algorithms are the static and h-guided with very similar speedups.
As a result, we can conclude that for regular applications, in which different
work items have equal running times, the main performance limiting factor is
overhead. The dynamic algorithm also manages to deliver good performance
excluding the case of NBody, which is very sensitive to the number of packages.
From the frequency point of view, all the speedups are close to the correspond-
ing maximum speedup values. The execution times of all benchmarks are best
with the highest frequency.

The analysis of the irregular applications (RAP and RAY) is very sim-
ilar for all frequencies, from which the h-guided method obtains the best re-
sults. This is because the size of the packages assigned is proportional to the
computing power of the device and inversely proportional to the number of
devices, which results in reduced overheads while maintaining adaptability.
Thus, the CPUs can contribute processing small packages, while the majority
of the computation is carried out by the GPUs. For the lowest frequency, it
can be observed that the dynamic algorithm obtains good results, this is a
consequence of the machine becoming less heterogeneous and the CPU con-
tributing a significant amount of work. The static algorithm does not deliver
good results for this applications. Consequently, the key performance limiting
factor for irregular applications is adaptability, although overhead also plays
a role, as shown by the speedup of the dynamic algorithm.



Title Suppressed Due to Excessive Length 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

sta dyn h-g sta dyn h-g sta dyn h-g sta dyn h-g sta dyn h-g

N
o
rm

a
lis

e
d
 E

n
e
rg

y

 
Binomial MatMul NBody RAP RAY

324MHz 614MHz 640MHz 666MHz 705MHz 758MHz

Fig. 2 Energy consumption for each algorithm normalised to the baseline configuration.

Attending to energy considerations, Figure 2 shows the normalised energy
consumption of the system for each benchmark, load balancing algorithm and
GPU frequency. The absolute energy values were normalised to the baseline
configuration for each frequency. The bars on the graph are divided to sepa-
rately show the energy corresponding to the twelve CPU cores and the two
GPUs.

The first conclusion to highlight is that, despite using two GPUs and two
CPUs, the total energy consumption of the heterogeneous system is less than
that of the baseline. Therefore, there is at least one load balancing algorithm
that improves the baseline energy consumption. Again, the most suitable al-
gorithms for regular benchmarks are the static and h-guided, and for irregular
ones it is clearly h-guided. This comes as a consequence of two improvements:
the reduction in the execution time of the benchmarks, and that all the devices
are contributing useful work instead of being idle, improving the energy effi-
ciency of the system. This behaviour is exacerbated with the minimum GPU
frequency, because the CPU can contribute a more significant amount of work
with respect to the energy it consumes. However, the energy consumption is
relatively less with the maximum frequency.

Finally, Figure 3 shows the results of the energy efficiency in terms of the
Energy-Delay Product, again normalised to that of the baseline configuration.
This metric combines the performance and energy in a single value, and its
reduction is the ultimate goal of the load balancing algorithms. Therefore
this graphs shows a combination of the two previous ones, and most of the
observations made above are confirmed by the results plotted in this graph.

In general, it can be said that there is always a load-balancing algorithm
that halves the EDP of the baseline, meaning that the energy efficiency of the
heterogeneous system is doubled. However, failing to choose an adequate load
balancing algorithm might only not save energy but also be inefficient. This



10 Borja Pérez et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

sta dyn h-g sta dyn h-g sta dyn h-g sta dyn h-g sta dyn h-g

N
o
rm

a
lis

e
d
 E

D
P

 
Binomial MatMul NBody RAP RAY

324MHz 614MHz 640MHz 666MHz 705MHz 758MHz

Fig. 3 EDP for each algorithm normalised to the baseline configuration.

can be seen in the static algorithm with irregular benchmarks or the dynamic
for NBody, where the normalised EDP is larger than 1. Another aspect to
note is that for some cases, the combination of both energy and time results
in a reduction of EDP even though the energy for that case is higher than the
baseline. This means that the reduction of execution time makes up for the
increase in energy. This can be seen in RAY when using the dynamic approach.

Finally regarding the frequencies, an in-depth analysis of the absolute en-
ergy and EDP values has shown that the best results are yield with the highest
frequencies. This once again implies that the reduced running time overcomes
the increased energy consumption, of the highest frequency.

5 Related Work

To the problem of load balancing in heterogeneous environments two main
approaches are found in the literature: static and dynamic algorithms, which
differ in the time in which the allocation decisions are taken.

Some examples of static load balancing algorithms are [10] and [11]. The
first one proposes a library that implements static load balancing by encap-
sulating standard OpenCL API calls. On the other hand, [11] approaches the
problem by automatically modifying OpenCL code, so the load is balanced
and each of the available devices works on a subset of the data.

In the dynamic approach, Binotto et al. [12] introduce a load balancer that
establishes an initial scheduling guess based on different estimation costs and
then analyses changes in runtime conditions. On contrast, the aproaches of
Boyer et al. [13] and Kaleem et al. in [14] get information about the execution
time of the first portions of the workload, and take the load distributions
decisions based on this information.



Title Suppressed Due to Excessive Length 11

Power consumption is a hot topic on heterogeneous systems, and there-
fore several authors have taken it into account. Hong and Kim develop an
integrated power and performance prediction model, to estimate the optimal
number of active processors for a given application [15]. Abe et al. present
power and performance characterization and modelling of GPU-accelerated
systems [16], while [17] studies how the performance-per-watt of GPUs is af-
fected by temperature, core clock frequency and voltage. Some authors have
proposed methods to accurately compute the instant power and the energy
consumption of GPUs using NVIDIAs Management Library (NVML) [18] or
experimentally study the impacts of Dynamic Voltage and Frequency Scaling
(DVFS) on application performance and energy efficiency for GPU computing
and compare them with those of DVFS for CPU computing [19].

Some papers propose algorithms to distribute workload between CPU and
GPU taking performance and power into account. For instance, GreenGPU
dynamically distributes workloads to GPU and CPU, minimizing the energy
wasted on idling and waiting for the slower side to finish [20]. Moreover, to
maximize energy savings while allowing marginal performance degradation, it
dynamically throttles the frequencies of CPU, GPU cores and memory, based
on their utilizations. Wang and Ren [21] propose a power-efficient workload
distribution method for single applications on CPU-GPU systems. The method
can coordinate inter-processor work distribution and frequency scaling to min-
imize energy consumption under a given scheduling length constraint.

E-ADITHE is an approach for improving energy efficiency for iterative
computation on integrated GPU-CPU systems [22]. It describes an heuristic
scheme for processing device selection according to the estimation of energy
efficiency to balance the heterogeneous system. In [23], the authors present an
Integer Linear Programming (ILP) based framework that maps a given task-
set onto an Heterogeneous Multiprocessor System-on-Chip architecture. They
use Dynamic Voltage Scaling (DVS) to reduce energy consumption while em-
ploying task duplication to maximize reliability. [24] performs an experimental
study of the interactions between performance, power and energy in low-power
ARM and GPU architectures when executing the RX algorithm.

All these approaches fail to address irregular applications, focus on a cer-
tain type or number of devices or schedule different kernels but not a single
and massive data-parallel kernel. To the extent of the authors knowledge, this
is the first paper that presents a study of the performance and energy efficiency
of a set of load balancing methods for data parallel and irregular applications
in heterogeneous systems.

6 Conclusions

This paper presents an evaluation of the energy consumption of a set of load
balancing algorithms for massively data-parallel applications in heterogeneous
systems. By harnessing the computing capability of the whole heterogeneous
system, these algorithms not only shorten the execution time of the applica-



12 Borja Pérez et al.

tions, but also reduce their energy consumption, thus obtaining an improve-
ment of the energy efficiency of the whole system.

The experimental results presented in this paper show that for both, regular
and irregular applications, there is always a load balancing algorithm that re-
duces the execution time as well as the energy consumption. As a consequence,
the EDP is also reduced, showing a duplication in the energy efficiency of the
whole heterogeneous system. As is expectable, the best results are obtained
with the highest GPU frequencies.

These results allows answering the question as to whether there is an energy
saving when using all the devices in the heterogeneous machine simultaneously.
The fact that the machine is running during less time overcomes the greater
power drawn by the devices, which would still consume a significant amount of
energy to no avail if left idle. Thus, a machine with a greater amount of GPU
devices should, not only give an enormous computing capability, but it would
do so in an energy efficient manner. Nevertheless, this is only achievable with
the use of an adequate load balancing algorithm.

The best overall results are obtained with the h-guided algorithm, yet the
dynamic also gives very good results in irregular applications. Furthermore,
dynamic does not require prior knowledge of the power of the computing
devices, thus making it a good first approach to an unknown system. The
static algorithm is appropriate for homogeneous environments and regular
applications.

Future work will afford the study of more benchmarks in order to confirm
the conclusions obtained in this paper. The study could also be broadened
by extending the tests to other hardware accelerators, like Systems-On-Chip
(SOC) with integrated GPUs. Additionally, new load balancing methods that
take into account energy efficiency together with performance will be included
in Maat library.

References

1. Peter Benner, Alfredo Remón, Ernesto Dufrechou, Pablo Ezzatti, and Enrique S.
Quintana-Ort́ı. Extending lyapack for the solution of band lyapunov equations on hybrid
cpu–gpu platforms. The Journal of Supercomputing, 71(2):740–750, 2015.

2. Xianggao Cai, Guoming Lai, and Xiaola Lin. Forecasting large scale conditional volatil-
ity and covariance using neural network on gpu. The Journal of Supercomputing,
63(2):490–507, 2013.

3. Kyle E. Niemeyer and Chih-Jen Sung. Recent progress and challenges in exploiting
graphics processors in computational fluid dynamics. The Journal of Supercomputing,
67(2):528–564, 2014.

4. Borja Pérez, José Luis Bosque, and Ramón Beivide. Simplifying programming and load
balancing of data parallel applications on heterogeneous systems. In Proc. of the 9th
Workshop on General Purpose Processing using GPU, pages 42–51, 2016.

5. Olivier Beaumont, Vincent Boudet, Antoine Petitet, Fabrice Rastello, and Yves Robert.
A proposal for a heterogeneous cluster ScaLAPACK (dense linear solvers). IEEE Trans.
Computers, 50(10):1052–1070, 2001.

6. Amd accelerated parallel processing software development kit v2.9. Last accesed Novem-
ber 2015.



Title Suppressed Due to Excessive Length 13

7. Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, and Eli Weiss-
mann. Power management architecture of the 2nd generation Intel Core microarchitec-
ture, formerly codenamed Sandy Bridge. In IEEE Int. HotChips Symp. on High-Perf.
Chips (HotChips˜2011), 2011.

8. NVIDIA. NVIDIA Management Library (NVML). Last accesed April 2016.
9. Emilio Castillo, Cristóbal Camarero, Ana Borrego, and Jose Luis Bosque. Financial

applications on multi-cpu and multi-gpu architectures. J. Supercomput., 71(2):729–739,
February 2015.

10. Carlos S. de la Lama, Pablo Toharia, Jose Luis Bosque, and Oscar D. Robles. Static
multi-device load balancing for opencl. In Proc. of ISPA, pages 675–682. IEEE Com-
puter Society, 2012.

11. Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Transparent CPU-
GPU Collaboration for Data-parallel Kernels on Heterogeneous Systems. In Proc. of
PACT, pages 245–256, Piscataway, NJ, USA, 2013. IEEE Press.

12. A.P.D. Binotto, C.E. Pereira, and D.W. Fellner. Towards Dynamic Reconfigurable
Load-balancing for Hybrid Desktop Platforms. In Proc. of IPDPS, pages 1–4. IEEE
Computer Society, April 2010.

13. Michael Boyer, Kevin Skadron, Shuai Che, and Nuwan Jayasena. Load Balancing in a
Changing World: Dealing with Heterogeneity and Performance Variability. In Proc. of
the ACM International Conference on Computing Frontiers, pages 21:1–21:10, 2013.

14. Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis, Chunling Hu,
and Keshav Pingali. Adaptive heterogeneous scheduling for integrated GPUs. In Proc.
of PACT, pages 151–162, New York, NY, USA, 2014. ACM.

15. Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance model.
SIGARCH Comput. Archit. News, 38(3):280–289, June 2010.

16. Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres. Power and performance
characterization and modeling of gpu-accelerated systems. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International, pages 113–122, May 2014.

17. D. C. Price, M. A. Clark, B. R. Barsdell, R. Babich, and L. J. Greenhill. Optimizing
performance-per-watt on gpus in high performance computing. Computer Science -
Research and Development, pages 1–9, 2015.

18. Martin Burtscher, Ivan Zecena, and Ziliang Zong. Measuring gpu power with the k20
built-in sensor. In Proceedings of Workshop on General Purpose Processing Using
GPUs, GPGPU-7, pages 28:28–28:36, New York, NY, USA, 2014. ACM.

19. Rong Ge, Ryan Vogt, Jahangir Majumder, Arif Alam, Martin Burtscher, and Ziliang
Zong. Effects of dynamic voltage and frequency scaling on a k20 gpu. In Proceedings
of the 42 Int. Conference on Parallel Processing, ICPP ’13, pages 826–833, 2013.

20. Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. GreenGPU: A holistic
approach to energy efficiency in GPU-CPU heterogeneous architectures. In 41st Inter-
national Conference on Parallel Processing, ICPP 2012, pages 48–57, 2012.

21. G. Wang and X. Ren. Power-efficient work distribution method for cpu-gpu heteroge-
neous system. In International Symposium on Parallel and Distributed Processing with
Applications, pages 122–129, Sept 2010.

22. E. M. Garzón, J. J. Moreno, and J. A. Mart́ınez. An approach to optimise the energy
efficiency of iterative computation on integrated gpu–cpu systems. The Journal of
Supercomputing, pages 1–12, 2016.

23. Suleyman Tosun. Energy- and reliability-aware task scheduling onto heterogeneous
mpsoc architectures. The Journal of Supercomputing, 62(1):265–289, 2012.

24. G. León, J. M. Molero, E. M. Garzón, I. Garćıa, A. Plaza, and E. S. Quintana-Ort́ı.
Exploring the performance–power–energy balance of low-power multicore and manycore
architectures for anomaly detection in remote sensing. The Journal of Supercomputing,
71(5):1893–1906, 2015.


