Local Spectral Theory for Operators *R* **and** *S* **Satisfying** $RSR = R^2$

PIETRO AIENA, MANUEL GONZÁLEZ

Dipartimento di Metodi e Modelli Matematici, Facolt`a di Ingegneria, Universit`a di Palermo (Italia), paiena@unipa.it

*Departamento de Matem´aticas, Facultad de Ciencias, Universidad de Cantabria, E-*39071 *Santander (Spain), manuel.gonzalez@unican.es*

Received February 5, 2016

Abstract: We study some local spectral properties for bounded operators *R*, *S*, *RS* and *SR* in the case that *R* and *S* satisfy the operator equation $RSR = R^2$. Among other results, we prove that *S*, *R*, *SR* and *RS* share Dunford's property (*C*) when $RSR = \overline{R}^2$ and $SRS = S^2$.

Key words: Local spectral subspace, Dunford's property (*C*), operator equation. AMS *Subject Class.* (2010): 47A10, 47A11, 47A53, 47A55.

1. Introduction and preliminaries

The equivalence of Dunford's property (*C*) for products *RS* and *SR* of operators $R \in L(Y, X)$ and $S \in L(X, Y)$, *X* and *Y* Banach spaces, has been studied in [2]. As noted in [13] the proof of Theorem 2.5 in [2] contains a gap which was filled up in [13, Theorem 2.7]. In [2] it was also studied property (*C*) for operators $R, S \in L(X)$ which satisfy the operator equations

$$
RSR = R^2 \quad \text{and} \quad SRS = S^2. \tag{1}
$$

A similar gap exists in the proof of Theorem 3.3 in [2], which states the equivalence of property (C) for R , S , RS and SR , when R , S satisfy (1) .

In this paper we give a correct proof of this result and we prove further results concerning the local spectral theory of *R*, *S*, *RS* and *SR*, in particular we show several results concerning the quasi-nilpotent parts and the analytic cores of these operators. It should be noted that these results are established in a more general framework, assuming that only one of the operator equations in (1) holds.

Supported in part by MICINN (Spain), Grant MTM2013-45643.

³⁷

We shall denote by *X* a complex infinite dimensional Banach space. Given a bounded linear operator $T \in L(X)$, the *local resolvent set* of T at a point $x \in X$ is defined as the union of all open subsets *U* of $\mathbb C$ such that there exists an analytic function $f: \mathcal{U} \to X$ satisfying

$$
(\lambda I - T) f(\lambda) = x \quad \text{for all} \quad \lambda \in \mathcal{U} . \tag{2}
$$

The local spectrum $\sigma_T(x)$ of *T* at *x* is the set defined by $\sigma_T(x) := \mathbb{C} \setminus \rho_T(x)$. Obviously, $\sigma_T(x) \subseteq \sigma(T)$, where $\sigma(T)$ denotes the spectrum of *T*.

The following result shows that $\sigma_T(Tx)$ and $\sigma_T(x)$ may differ only at 0. It was proved in [7] for operators satisfying the SVEP.

LEMMA 1.1. *For every* $T \in L(X)$ *and* $x \in X$ *we have*

$$
\sigma_T(Tx) \subseteq \sigma_T(x) \subseteq \sigma_T(Tx) \cup \{0\}.\tag{3}
$$

Moreover, if T is injective then $\sigma_T(Tx) = \sigma_T(x)$ for all $x \in X$.

Proof. Take $S = T$ and $R = I$ in [6, Proposition 3.1].

For every subset $\mathcal F$ of $\mathbb C$, the *local spectral subspace* of T at $\mathcal F$ is the set

$$
X_T(\mathcal{F}) := \{ x \in X : \sigma_T(x) \subseteq \mathcal{F} \}.
$$

It is easily seen from the definition that $X_T(\mathcal{F})$ is a linear subspace *T*-invariant of *X*. Furthermore, for every closed $\mathcal{F} \subseteq \mathbb{C}$ we have

$$
(\lambda I - T)X_T(\mathcal{F}) = X_T(\mathcal{F}) \quad \text{for all } \lambda \in \mathbb{C} \setminus \mathcal{F}.
$$
 (4)

See [9, Proposition 1.2.16].

An operator $T \in L(X)$ is said to have the single valued extension property at $\lambda_o \in \mathbb{C}$ (abbreviated SVEP at λ_o), if for every open disc \mathbf{D}_{λ_o} centered at *λ*^{*o*} the only analytic function *f* : **D**_{*λ*}^{*o*} → *X* which satisfies the equation

$$
(\lambda I - T) f(\lambda) = 0 \tag{5}
$$

is the function $f \equiv 0$. An operator $T \in L(X)$ is said to have the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$. Clearly, the SVEP is inherited by the restrictions to invariant subspaces.

A variant of $X_T(\mathcal{F})$ which is more useful for operators without SVEP is the glocal spectral subspace $\mathcal{X}_T(\mathcal{F})$. For an operator $T \in L(X)$ and a closed subset *F* of \mathbb{C} , we define $\mathcal{X}_T(\mathcal{F})$ as the set of all $x \in X$ for which there exists an analytic function $f: \mathbb{C} \setminus \mathcal{F} \to X$ which satisfies

$$
(\lambda I - T) f(\lambda) = x \quad \text{for all} \ \lambda \in \mathbb{C} \setminus \mathcal{F}.
$$

Clearly $\mathcal{X}_T(\mathcal{F}) \subseteq X_T(\mathcal{F})$ for every closed $\mathcal{F} \subseteq \mathbb{C}$. Moreover *T* has SVEP if and only if

$$
\mathcal{X}_T(\mathcal{F}) = X_T(\mathcal{F})
$$
 for all closed subsets $\mathcal{F} \subseteq \mathbb{C}$.

See [9, Proposition 3.3.2]. Note that $\mathcal{X}_T(\mathcal{F})$ and $X_T(\mathcal{F})$ are not closed in general.

Given a closed subspace *Z* of *X* and $T \in L(X)$, we denote by $T|Z$ the restriction of *T* to *Z*.

LEMMA 1.2. [2, Lemmas 2.3 and 2.4] Let $\mathcal F$ be a closed subset of $\mathbb C$ and $T \in L(X)$.

- (1) *If* $0 \in \mathcal{F}$ *and* $Tx \in X_T(\mathcal{F})$ *then* $x \in X_T(\mathcal{F})$ *.*
- (2) *Suppose T* has *SVEP*, $Z := X_T(\mathcal{F})$ *is closed, and* $A := T|X_T(\mathcal{F})$ *. Then* $X_T(\mathcal{K}) = Z_A(\mathcal{K})$ for all closed $\mathcal{K} \subseteq \mathcal{F}$.

LEMMA 1.3. Suppose that T has SVEP and $\mathcal F$ is a closed subset of $\mathbb C$ *such that* $0 \notin \mathcal{F}$ *. If* $X_T(F \cup \{0\})$ *is closed then* $X_T(\mathcal{F})$ *is closed.*

Proof. Set $Z := X_T(\mathcal{F} \cup \{0\})$ and $S := T|Z$. By [9, Proposition 1.2.20] we have $\sigma(S) \subseteq \mathcal{F} \cup \{0\}$. We suppose first that $0 \notin \sigma(S)$. Then $\sigma(S) \subseteq \mathcal{F}$, hence $Z = Z_S(\mathcal{F})$. By Lemma 1.2 we have $Z_S(\mathcal{F}) = X_T(\mathcal{F})$, so $X_T(\mathcal{F})$ is closed. For the case $0 \in \sigma(S)$, we set $\mathcal{F}_0 := \sigma(S) \cap \mathcal{F}$. Then $\sigma(S) = \mathcal{F}_0 \cup \{0\}$. Since $0 \in \sigma(S)$, by Lemma 1.2 we have $Z = Z_S(\mathcal{F}_0) \oplus Z_S(\{0\})$ and

$$
Z_S(\mathcal{F}_0) = Z_S(\sigma(S) \cap \mathcal{F}) = Z_S(\mathcal{F}) = X_T(\mathcal{F}),
$$

hence $X_T(\mathcal{F})$ is closed.

2. OPERATOR EQUATION $RSR = R^2$

Operators *S*, $R \in L(X)$ satisfying the operator equations $RSR = R^2$ and $SRS = S²$ were studied first in [12], and more recently in [10], [11], [8], and other papers. An easy example of operators for which these equations hold is given in the case that $R = PQ$ and $S = QP$, where $P, Q \in L(X)$ are idempotents. A remarkable result of Vidav [12, Theorem 2] shows that if *R, S* are self-ajoint operators on a Hilbert space then the equations (1) hold if and only if there exists an (uniquely determined) idempotent *P* such that $R = PP^*$ and $S = P^*P$, where P^* is the adjoint of P.

The operators *R*, *S*, *SR* and *RS* for which the equations (1) hold share many spectral properties ([10], [11]), and local spectral properties as decomposability, property (β) and SVEP ([8]). In this section we consider the permanence of property (C) , property (Q) in this context.

It is easily seen that if $0 \notin \sigma(R) \cap \sigma(S)$ then $R = S = I$, so this case is trivial. Thus we shall assume that $0 \in \sigma(R) \cap \sigma(S)$. Evidently, the operator equation $RSR = R^2$ implies

$$
(SR)^2 = SR^2 \quad \text{and} \quad (RS)^2 = R^2S.
$$

LEMMA 2.1. *Suppose that* $R, S \in L(X)$ *satisfy* $RSR = R^2$. Then for *every* $x \in X$ *we have*

$$
\sigma_R(Rx) \subseteq \sigma_{SR}(x) \quad \text{and} \quad \sigma_{SR}(SRx) \subseteq \sigma_R(x). \tag{6}
$$

Proof. For the first inclusion, suppose that $\lambda_0 \notin \sigma_{SR}(x)$. Then there exists an open neighborhood U_0 of λ_0 and an analytic function $f: U_0 \to X$ such that

$$
(\lambda I - SR)f(\lambda) = x \quad \text{for all} \ \lambda \in \mathcal{U}_0.
$$

From this it follows that

$$
Rx = R(\lambda I - SR)f(\lambda) = (\lambda R - RSR)f(\lambda)
$$

= (\lambda R - R²)f(\lambda) = (\lambda I - R)(Rf)(\lambda),

for all $\lambda \in \mathcal{U}_0$. Since $Rf : \mathcal{U}_0 \to X$ is analytic we get $\lambda_0 \notin \sigma_R(Rx)$.

For the second inclusion, let $\lambda_0 \notin \sigma_R(x)$. Then there exists an open neighborhood U_0 of λ_0 and an analytic function $f: U_0 \to X$ such that

$$
(\lambda I - R)f(\lambda) = x \quad \text{for all} \ \lambda \in \mathcal{U}_0.
$$

Consequently,

$$
SRx = SR(\lambda I - R)f(\lambda) = (\lambda SR - SR^2)f(\lambda)
$$

= (\lambda SR - (SR)^2)f(\lambda) = (\lambda I - SR)(SRf)(\lambda),

for all $\lambda \in \mathcal{U}_0$, and since $(SR)f$ is analytic we obtain $\lambda_0 \notin \sigma_{SR}(SRx)$.

THEOREM 2.2. Let $S, R \in L(X)$ satisfy $RSR = R^2$, and let $\mathcal F$ be a closed *subset of* $\mathbb C$ *with* $0 \in \mathcal F$ *. Then* $X_R(\mathcal F)$ *is closed if and only if so is* $X_{SR}(\mathcal F)$ *.*

Proof. Suppose that $X_R(\mathcal{F})$ is closed and let (x_n) be a sequence of $X_{SR}(\mathcal{F})$ which converges to $x \in X$. We need to show that $x \in X_{SR}(\mathcal{F})$. For every $n \in \mathbb{N}$ we have $\sigma_{SR}(x_n) \subseteq \mathcal{F}$ and hence, by Lemma 2.1, we have $\sigma_R(Rx_n) \subseteq \mathcal{F}$, i.e. $Rx_n \in X_R(\mathcal{F})$. Since $0 \in \mathcal{F}$, by Lemma 1.2 we have $x_n \in X_R(\mathcal{F})$, and since $X_R(\mathcal{F})$ is closed, $x \in X_R(\mathcal{F})$, i.e. $\sigma_R(x) \subseteq \mathcal{F}$. Now from Lemma 2.1 we derive $\sigma_{SR}(SRx) \subseteq \mathcal{F}$, and this implies $SRx \in X_{SR}(\mathcal{F})$. Again by Lemma 1.2, we obtain $x \in X_{SR}(\mathcal{F})$, thus $X_{SR}(\mathcal{F})$ is closed.

Conversely, suppose that $X_{SR}(\mathcal{F})$ is closed and let (x_n) be a sequence of $X_R(\mathcal{F})$ which converges to $x \in X$. Then $\sigma_R(x_n) \subseteq \mathcal{F}$ for every $n \in \mathbb{N}$, hence $\sigma_{SR}(SRx_n) \subseteq \mathcal{F}$, i.e. $SRx_n \in X_{SR}(\mathcal{F})$ by Lemma 2.1. But $0 \in \mathcal{F}$, so, by Lemma 1.2, $x_n \in X_{SR}(\mathcal{F})$. Since $X_{SR}(\mathcal{F})$ is closed, $x \in X_{SR}(\mathcal{F})$, hence $\sigma_{SR}(x) \subseteq \mathcal{F}$. Now from Lemma 2.1 we obtain $\sigma_R(Rx) \subseteq \mathcal{F}$, i.e. $Rx \in X_R(\mathcal{F})$, and the condition $0 \in \mathcal{F}$ implies $x \in X_R(\mathcal{F})$. ■

The following result is inspired by [8, Theorem 2.1].

LEMMA 2.3. Let $S, R \in L(X)$ be such that $RSR = R^2$ and one of the *operators R, SR, RS has SVEP. Then all of them have SVEP. Additionally, if SRS* = *S* ² *and one of R, S, SR, RS has SVEP then all of them have SVEP.*

Proof. By [6, Proposition 2.1], *SR* has SVEP if and only if *RS* has SVEP. So it is enough to prove that *R* has SVEP at λ_0 if an only if so has *RS*.

Suppose that *R* has SVEP at λ_0 and let $f : \mathcal{U}_0 \to X$ be an analytic function on an open neighborhood U_0 of λ_0 for which $(\lambda I - RS)f(\lambda) \equiv 0$ on U_0 . Then $RSf(\lambda) = \lambda f(\lambda)$ and

$$
0 = RS(\lambda I - RS)f(\lambda) = (\lambda RS - (RS)^2)f(\lambda) = (\lambda RS - (R^2S)f(\lambda)
$$

= (\lambda I - R)RSf(\lambda).

The SVEP of *R* at λ_0 implies that

$$
RSf(\lambda) = \lambda f(\lambda) = 0 \quad \text{for all} \ \lambda \in \mathcal{U}_0.
$$

Hence $f \equiv 0$ on U_0 , and we conclude that RS has SVEP at λ_0 .

Conversely, suppose that *RS* has SVEP at λ_0 and let $f : \mathcal{U}_0 \to X$ be an

analytic function on an open neighborhood U_0 of λ_0 such that $(\lambda I - R) f(\lambda) \equiv 0$ on U_0 . Then $R^2 f(\lambda) = \lambda R f(\lambda) = \lambda^2 f(\lambda)$ for all $\lambda \in \mathcal{U}_0$. Moreover,

$$
0 = RS(\lambda I - R)f(\lambda) = \lambda RSf(\lambda) - R^2f(\lambda) = \lambda RSf(\lambda) - \lambda^2f(\lambda)
$$

= (\lambda I - RS)(-\lambda f(\lambda)),

and since *RS* has SVEP at λ_0 we have $\lambda f(\lambda) \equiv 0$, hence $f(\lambda) \equiv 0$, so *R* has SVEP at λ_0 .

The second assertion is clear, if $SRS = S^2$, just interchanging *R* and *S* in the argument above, the SVEP fo *S* holds if and only if *SR*, or equivalently *RS*, has SVEP.

We now consider the result of Theorem 2.2 when $0 \notin \mathcal{F}$.

THEOREM 2.4. Let $\mathcal F$ be a closed subset of $\mathbb C$ such that $0 \notin \mathcal F$. Suppose *that* $R, S \in L(X)$ *satisfy* $RSR = R^2$ *and* R *has SVEP. Then we have*

- (1) *If* $X_R(\mathcal{F} \cup \{0\})$ *is closed then* $X_{SR}(\mathcal{F})$ *is closed.*
- (2) *If* $X_{SR}(\mathcal{F} \cup \{0\})$ *is closed then* $X_R(\mathcal{F})$ *is closed.*

Proof. (1) Let us denote $\mathcal{F}_1 := \mathcal{F} \cup \{0\}$. The set \mathcal{F}_1 is closed, and by assumption $X_R(\mathcal{F}_1)$ is closed. Since $0 \in F_1$ then $X_{SR}(\mathcal{F}_1)$ is closed, by Theorem 2.2. Moreover, the SVEP for *R* is equivalent to the SVEP for *SR* by Lemma 2.3. Then $X_{SR}(\mathcal{F})$ is closed by Lemma 1.3.

(2) The argument is similar: if $X_{SR}(\mathcal{F} \cup \{0\})$ is closed then $X_R(\mathcal{F} \cup \{0\})$ by Theorem 2.2, and since *R* has SVEP, $X_R(\mathcal{F})$ is closed by Lemma 1.3.

DEFINITION 2.5. An operator $T \in L(X)$ is said to have *Dunford's property* (*C*) (abbreviated *property* (*C*)) if $\mathcal{X}_T(F)$ is closed for every closed set $F \subseteq \mathbb{C}$.

It should be noted that Dunford property (*C*) implies SVEP.

THEOREM 2.6. *Suppose that* $S, R \in L(X)$ *satisfy* $RSR = R^2$ *, and any one of the operators R, SR, RS, has property* (*C*)*.Then all of them have property* (*C*). If, additionally, $SRS = S^2$ and one of *R*, *S*, *RS*, *SR* has property (*C*), *then all of them have property* (C) *.*

Proof. Since property (*C*) implies SVEP, all the operators have SVEP by Lemma 2.3. Moreover the equivalence of property (*C*) for *SR* and *RS* has been proved in $[2]$ (see also $[13]$). So it is enough to prove that *R* has property (C) if an only if so has *RS*.

Suppose that *R* has property (*C*) and let *F* be a closed set. If $0 \in \mathcal{F}$ then $X_{SR}(\mathcal{F})$ is closed, by Theorem 2.2, while in the case where $0 \notin \mathcal{F}$ we have that $X_R(\mathcal{F} \cup \{0\})$ is closed, and hence, by part (1) of Theorem 2.4, the SVEP for *R* ensures that also in this case $X_{SR}(\mathcal{F})$ is closed. Therefore, *SR* has property (C) .

Conversely, suppose that *SR* has property (C) . For every closed subset $\mathcal F$ containing 0, $X_R(\mathcal{F})$ is closed by Theorem 2.2. If $0 \notin \mathcal{F}$ then $X_{SR}(\mathcal{F} \cup \{0\})$ is closed, hence $X_R(\mathcal{F})$ is closed by part (2) of Theorem 2.4 and we conclude that *R* has property (C) .

If additionally, $SRS = S^2$ then, by interchanging *S* with *R*, the same argument above proves the second assertion, so the proof is complete.

Next we consider the case when *F* is a singleton set, say $\mathcal{F} := {\lambda}.$ The glocal spectral subspace $\mathcal{X}_T({\{\lambda\}})$ coincides with the *quasi-nilpotent part* $H_0(\lambda I - T)$ of $\lambda I - T$ defined by

$$
H_0(\lambda I - T) := \{ x \in X : \limsup_{n \to \infty} ||(\lambda I - T)^n x||^{1/n} = 0 \}.
$$

See [1, Theorem 2.20]. In general $H_0(\lambda I - T)$ is not closed, but it coincides with the kernel of a power of $\lambda I - T$ in some cases [3, Theorem 2.2].

DEFINITION 2.7. An operator $T \in L(X)$ is said to have the *property* (Q) if $H_0(\lambda I - T)$ is closed for every $\lambda \in \mathbb{C}$.

It is known that if $H_0(\lambda I - T)$ is closed then *T* has SVEP at λ ([4]), thus,

property $(C) \Rightarrow$ property $(Q) \Rightarrow$ SVEP.

Therefore, for operators *T* having property (*Q*) we have $H_0(\lambda I - T) = X_T(\{\lambda\})$.

In [13, Corollary 3.8] it was observed that if $R \in L(Y, X)$ and $S \in L(X, Y)$ are both injective then *RS* has property (*Q*) precisely when *SR* has property (*Q*).

Recall that $T \in L(X)$ is said to be *upper semi-Fredholm*, $T \in \Phi_+(X)$, if $T(X)$ is closed and the kernel ker *T* is finite-dimensional, and *T* is said to be *lower semi-Fredholm*, $T \in \Phi_-(X)$, if the range $T(X)$ has finite codimension.

THEOREM 2.8. Let $R, S \in L(X)$ satisfying $RSR = R^2$, and $R, S \in \Phi_+(X)$ *or* $R, S \in \Phi_-(X)$ *. Then R has property* (*Q*) *if and only if so has SR.*

Proof. Suppose that $R, S \in \Phi_+(X)$ and R has property (Q). Then R has SVEP and, by Lemma 2.3, also *SR* has SVEP. Consequently, the local and glocal spectral subspaces relative to the a closed set coincide for *R* and *SR.* By assumption $H_0(\lambda I - R) = X_R(\{\lambda\})$ is closed for every $\lambda \in \mathbb{C}$, and $H_0(SR) = X_{SR}(\{0\})$ is closed by Theorem 2.2. Let $0 \neq \lambda \in \mathbb{C}$. By [9, Proposition 3.3.1, part (f)]

$$
X_R(\{\lambda\} \cup \{0\}) = X_R(\{\lambda\}) + X_R(\{0\}) = H_0(\lambda I - R) + H_0(R).
$$

Since $R \in \Phi_+(X)$ the SVEP at 0 implies that $H_0(R)$ is finite-dimensional, see [1, Theorem 3.18], so $X_R(\{\lambda\} \cup \{0\})$ is closed. Then part (1) of Theorem 2.4 implies that $H_0(\lambda I - SR) = X_{SR}(\{\lambda\})$ is closed, hence *SR* has property (*Q*).

Conversely, suppose that *SR* has property (*Q*). If $\lambda = 0$ then $H_0(SR) =$ $X_{RS}(\{0\})$ is closed by assumption, and $H_0(R) = X_R(\{0\})$ is closed by Theorem 2.2. In the case $\lambda \neq 0$ we have

$$
X_{SR}(\{\lambda\} \cup \{0\}) = X_{SR}(\{\lambda\}) + X_{SR}(\{0\}) = H_0(\lambda I - SR) + H_0(SR).
$$

Since *SR* has SVEP and $SR \in \Phi_+(X)$, $H_0(SR)$ is finite dimensional by [1, Theorem 3.18]. So $X_{SR}(\{\lambda\} \cup \{0\})$ is closed. By part (2) of Theorem 2.4, $X_R(\{\lambda\}) = H_0(\lambda I - R)$ is closed. Therefore *R* has property (*Q*).

The proof in the case where $R, S \in \Phi$ [−](*X*) is analogous. ■

COROLLARY 2.9. Let $S, R \in L(X)$ satisfy the operator equations (1). If *one of the operators R, S, RS and SR is bounded below and has property* (*Q*)*, then all of them have property* (*Q*)*.*

Proof. Note that all the operators *R*, *S*, *RS*, and *SR* are injective when one of them is injective [8, Lemma 2.3], and the same is true for being upper semi-Fredholm [8, Theorem 2.5]. Hence, if one of the operators is bounded below, then all of them are bounded below.

By Theorem 2.8 property (*Q*) for *R* and for *SR* are equivalent. So the same is true for *S* and *RS*, and also for *RS* and *SR* since *R* and *S* are injective.

The *analytical core* $K(T)$ of $T \in L(X)$ is defined [1, Definition 1.20] as the set of all $\lambda \in \mathbb{C}$ for which there exists a constant $\delta > 0$ and a sequence (u_n) in *X* such that $x = u_0$, and $Tu_{n+1} = u_n$ and $||u_n|| \leq \delta^n ||x||$ for each $n \in \mathbb{N}$. The following characterization can be found in [1, Theorem 2.18]:

$$
K(T) = X_T(\mathbb{C} \setminus \{0\}) = \{x \in X : 0 \notin \sigma_T(x)\}.
$$

The analytical core of *T* is an invariant subspace and, in general, is not closed.

THEOREM 2.10. *Suppose that* $R, S \in L(X)$ *satisfy* $RSR = R^2$ *.*

- (1) *If* $0 \neq \lambda \in \mathbb{C}$, then $K(\lambda I R)$ is closed if and only $K(\lambda I SR)$ is closed, *or equivalently* $K(\lambda I - RS)$ *is closed.*
- (2) *If R is injective, then K*(*R*) *is closed if and only K*(*SR*) *is closed, or equivalently K*(*RS*) *is closed.*

Proof. (1) Suppose $\lambda \neq 0$ and $K(\lambda I - R)$ closed. Let (x_n) be a sequence of $K(\lambda I - SR)$ which converges to $x \in X$. Then $\lambda \notin \sigma_{SR}(x_n)$ and hence, by Lemma 2.1, $\lambda \notin \sigma_R(Rx_n)$, thus $Rx_n \in K(\lambda I - R)$. Since $Rx_n \to Rx$ and *K*($\lambda I - R$) is closed, it then follows that $Rx \in K(\lambda I - R)$, i.e., $\lambda \notin \sigma_R(Rx)$. Since $\lambda \neq 0$, by Lemma 1.1 we have $\lambda \notin \sigma_R(x)$, hence $\lambda \notin \sigma_{SR}(SRx)$ again by Lemma 2.1. By Lemma 1.1 this implies $\lambda \notin \sigma_{SB}(x)$. Therefore $x \in$ $K(\lambda I - SR)$, and consequently, $K(\lambda I - SR)$ is closed.

Conversely, suppose that $\lambda \neq 0$ and $K(\lambda I - SR)$ is closed. Let (x_n) be a sequence of $K(\lambda I - R)$ which converges to $x \in X$. Then $\lambda \notin \sigma_R(x_n)$ and, by Lemma 2.1, we have $\lambda \notin \sigma_{SR}(SRx_n)$. By Lemma 1.1 then we have $\lambda \notin \sigma_{SR}(x_n)$, so $x_n \in K(\lambda I - SR)$, and hence $x \in K(\lambda I - SR)$, since the last set is closed. This implies that $\lambda \notin \sigma_{SR}(x)$, and hence $\lambda \notin \sigma_R(Rx)$, again by Lemma 2.1. By Lemma 1.1 we have $\lambda \notin \sigma_R(x)$, so $x \in K(\lambda I - R)$. Therefore, $K(\lambda I - R)$ is closed. The equivalence $K(\lambda I - SR)$ is closed if and only if $K(\lambda I - RS)$ is closed was proved in [13, Corollary 3.3].

(2) The proof is analogous to that of part (1) applying Lemma 1.1. \blacksquare

COROLLARY 2.11. *Suppose* $RSR = R^2$, $SRS = S^2$ and $\lambda \neq 0$. Then the *following statements are equivalent:*

- (1) $K(\lambda I R)$ *is closed*;
- (2) $K(\lambda I SR)$ *is closed*;
- (3) $K(\lambda I RS)$ is closed;
- (4) $K(\lambda I S)$ is closed.

When R is injective, the equivalence also holds for $\lambda = 0$.

Proof. The equivalence of (3) and (4) follows from Theorem 2.10, interchanging *R* and *S*. Since, as noted in the proof of Corollary 2.9, the injectivity of *R* is equivalent to the injectivity of *S*, the equivalence of (1) and (4) also holds for $\lambda = 0$.

46 P. AIENA, M. GONZÁLEZ

REFERENCES

- [1] P. Aiena, "Fredholm and Local Spectral Theory, with Application to Multipliers", Kluwer Acad. Publishers, Dordrecht, 2004.
- [2] P. AIENA, M. GONZÁLEZ, On the Dunford property (C) for bounded linear operators *RS* and *SR*, *Integral Equations Operator Theory* **70** (4) (2011), $561 - 568.$
- [3] P. AIENA, M. CHO, M. GONZÁLEZ, Polaroid type operators under quasiaffinities, *J. Math. Anal. Appl.* **371** (2) (2010), 485 – 495.
- [4] P. AIENA, M.L. COLASANTE, M. GONZÁLEZ, Operators which have a closed quasi-nilpotent part, *Proc. Amer. Math. Soc.* **130** (9) (2002), 2701 – 2710.
- [5] B. Barnes, Common operator properties of the linear operators *RS* and *SR*, *Proc. Amer. Math. Soc.* **126** (4) (1998), 1055 – 1061.
- [6] C. Benhida, E.H. Zerouali, Local spectral theory of linear operators *RS* and *SR* Integral Equations Operator Theory $54(1)(2006)$, $1-8$.
- $[7]$ T. BERMÚDEZ, M. GONZÁLEZ, A. MARTINÓN, Stability of the local spectrum Proc. Amer. Math. Soc. **125** (2) (1997), 417 – 425.
- [8] B.P. DUGGAL, Operator equations $ABA = A^2$ and $BAB = B^2$, Funct. Anal. *Approx. Comput.* **3** (1) (2011), 9 – 18.
- [9] K.B. Laursen, M.M. Neumann, "An Introduction to Local Spectral Theory", London Mathematical Society Monographs, New Series, 20, The Clarendon Press, New York, 2000.
- [10] C. SCHMOEGER, On the operator equations $ABA = A^2$ and $BAB = B^2$, *Publ. Inst. Math, (Beograd) (N.S.)* **78**(**92**) (2005), 127 – 133.
- [11] C. Schmoeger, Common spectral properties of linear operators *A* and *B* such that $ABA = A^2$ and $BAB = B^2$, *Publ. Inst. Math. (Beograd)* (N.S.) **79**(**93**) (2006), 109 – 114.
- [12] I. VIDAV, On idempotent operators in a Hilbert space, *Publ. Inst. Math. (Beograd) (N.S.)* **4**(**18**), (1964), 157 – 163.
- [13] Q. Zeng, H. Zhong, Common properties of bounded linear operators *AC* and *BA*: Local spectral theory, *J. Math. Anal. Appl.* **414** (2) (2014), 553 – 560.