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Abstract

The current airspace configuration is highly structured, fixed and is less responsive
to changes causing the overall system to lack the flexibility, adaptability, and
responsibility needed to handle the increasing air traffic demands in the near future.
The work presented in this thesis aims at improving the flexibility and adaptability
of today’s airspace management in Europe in a pre-tactical context. We focus
on the development of a method to support a process of automatic generation
of a sequence of sector configurations composed of predefined sectors. Airspace
configurations should be dynamically adjusted to provide maximum efficiency and
flexibility in response to demand fluctuations. We dynamically build configurations
by combining existing elementary sectors. In this step, any sector combination
which forms controllable airspace blocks is eligible and may be used during the day
of operation. In this work, we developed efficient methods to solve DAC problem.
We formulated and study the sectorization problem from an algorithmic point of
view. We proposed methods based on a mathematical modeling and heuristic
optimization techniques. We also introduced here an approach to evaluate the
workload inside sectors.

Keywords: airspace blocks, opening schemas, optimization, sector regroup-
ments, column generation
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Resumé

Au cours de ces derniéres décennies, au fur et à mesure de l’augmentation du
trafic, l’espace aérien a été divisé en secteurs de plus en plus petits afin d’éviter la
saturation de ces derniers. Ce principe de sectorisation présente une limite dans la
mesure où l’on doit ménager un temps suffisant au contrôleur pour gérer son trafic
et donc générer des secteurs dont la taille permet de satisfaire cette contrainte.
De plus, le contrôleur ne connâıt que le trafic lié à son secteur et lorsqu’un avion
passe d’un secteur à un autre, il s’opère un dialogue entre les contrôleurs et les
pilotes qui induit une charge de travail supplémentaire (coordination). Au cours
d’une journée de trafic ordinaire, la charge de contrôle fluctue dans le temps en
fonction des demandes de trafic entre les diverses paires origine-destination. Dans
le système opérationnel actuel, le nombre de contrôleurs varie en fonction des
fluctuations de trafic. La nuit par exemple, le nombre d’équipes de contôrle est
réduit car il y a beaucoup moins de trafic. Les secteurs sont alors regroupés en
groupe de trois à quatre avant attribution à une équipe de contrôleurs.

Il est donc nécessaire d’optimiser la planification sur une journée du schéma
de regroupement et de dégroupement des secteurs: resectorisation dynamique de
l’espace aérien. Un des objectifs est de fournir des groupes de secteurs présentant
un minimum de coordinations et équilibrés en terme de charge de contròle afin
que chaque équipe de contrôleurs travaille de la mème façon. Les instants de com-
mutation entre configurations de secteurs en fonction des fluctuations de trafic
doivent être déterminés, et les distances entre configurations successives doivent
Ãłtre prises en compte afin d’éviter des changements brusques au sein d’un es-
pace aérien donné. Le développement d’un algorithme efficace pour résoudre le
problème dynamique résultant est d’autant plus important que le trafic aérien est
amené évoluer de manière significative au cours des années qui viennent.

Mots-clefs: bloc d’espace aérien, schèmas d’ouverture, optimisation, regroupe-
ments secteurs, génération de colonnes.
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Chapter 1

Introduction and Problem
Definition

1.1 Air Traffic Services

In terms of the services provided, airspace can be fundamentally divided into
controlled and uncontrolled airspace. According to the portion of airspace where
services are provided, the Air Traffic Services (ATS) in controlled airspace are
divided into three groups: airport control service, approach control service and
area control service. These three groups are further associated with the typical
phases of flight for airspace users. Airport control service ATS are provided to
aircraft on the airport surface or in the vicinity of the airport up to the boundary
to approach control service or area control service. Airport control service is
responsible for the taxi and take-off phases of flight.The airport control service is
typically located in the airport towers. Airport control in busy airports is usually
divided into start-up control, taxi control and departure and arrival control in
relation to the different phases of the aircraft activity on the airport ground. The
flights controlled within the approach control are in the arrival/departure phase.
When many airports converge in the same area, the approach controls for the
different airports are merged into a single TMA. Approach control is typically
located in towers whilst TMA controls are located in separate control centers.
Approach control service is responsible for the early stages of climb, late stages of
descent and approach phases of flight. Approach control is usually divided into
smaller airspace partitions in such a way that different units control the departure
or the arrivals of air traffic from/to the airports. The area control service comprises
all the controlled areas outside the two above (airport and approach control). Area
control service is responsible for the cruise, late stages of climb and early stages
of descent of flights. The area control service is usually referred to as en-route

17



control and is typically located in Area Control Centers (ACCs), which are in
charge of a certain portion of airspace. When the control service is located over
the seas and oceans where there is no radar coverage the center is referred to as
Oceanic Area Control Center (OACC). The OACC controlling procedures differ
significantly from the ones operating located over land. In fact, the control in the
OACC is of a procedural type not based on radar positioning but on estimated
positioning made by pilot reports. The rules and separation distances differ from
those used in ACCs. In areas of procedural control the separation standards are
larger than in other areas due to the lack of positive positioning with radar systems.

The airspace under the control of ACCs is structured into a network of routes
and smaller portions of airspace volume . These smaller portions have the main
objective of easing the air traffic control (ATC) function with a subsequent increase
in safety and capacity. The specific manner in which the airspace is divided and
configured is called airspace configuration or sectorization. Each of the indivisible
airspace portions resulting from the airspace sectorization is referred to as a basic
sector or an elementary sector in this thesis. Depending on operational conditions,
such as weather or traffic flows, basic sectors can be combined differently resulting
in different airspace volumes known as operational sectors, which are controlled by
a team of air traffic controller (ATCOs), each of the teams occupying an operational
position inside the ATC centers (ATCC) operations room. An operational sector
or controlled sector can therefore be either one basic sector or a combination of
sectors. Each of the different combinations of basic sectors resulting in operational
sectors corresponds to a unique sector configuration.

Airspace Management (ASM) measures are major contributors to the demand
and capacity balancing task, applied through the ATFCM measures : the ASM
function designs optimum airspace configurations, in terms of routes and sector-
izations aiming to satisfy airspace users requirements at the same time as ATC
centers requirements. During the execution phase, the ASM management function
directly assists the ATFCM function optimizing capacity resources and avoiding
over-deliveries by means of providing the optimum sector configuration. Configu-
ration management selects the optimum sector configuration based on:

• Traffic pattern predictions

• Weather predictions

• Available sector configurations

• Staff availability

• Event predictions

• Military activity

18



Splitting operational sectors is a measure that increases capacity, whereas com-
bining operational sectors reduces the capacity. This procedure is typically used
to ensure an airspace configuration which is tailored to the traffic demand and
operational needs. Splitting airspace volumes into smaller operational sectors has
been the main enabler for increasing airspace capacity, which does not involve
any substantial technological change. Even though the absolute traffic levels for
smaller airspace sectors are reduced compared to larger sectors, the former can
handle more traffic density, hence releasing capacity enhancements.

1.2 Air Traffic Management
The world of air transport is changing, not only through the technological evolution
and economy, but also as an interaction of society demands, in term of future
strategies. European ATM is undergoing a process of change in many of its aspects
and the infrastructure side of ATM needs improvement and modernization. Air
traffic flows increased by 33% since 1989 and they are expected to nearly double
over the next 20 years (see Figure 1.1).

Figure 1.1: Air traffic flows in 1989 (on the left) and in 2015 (on the right)

The current airspace configuration is highly structured, fixed and is less re-
sponsive to changes causing the overall system to lack the flexibility, adaptability,
and responsibility needed to handle the increasing air traffic demands in the near
future. Meanwhile, the air traffic is managed by ground based air traffic controllers
(ATCO) who are responsible for safe and efficient air traffic management within a
given airspace partition known as a sector. As a human, an ATCO has cognitive
limitations restricting the number of aircraft that one ATCO can safely handle.
In ATM, these cognitive limitations are measured by ATC workload which include
the workload of monitoring, aircraft handover between sectors, conflict detection
and resolution, and others. Moreover the air traffic is not evenly distributed in the
airspace, which causes congestion in sectors sitting between the major airports, or
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the sectors around major airways. This situation induces potential safety, efficiency
issues, and other problems in busy sectors.

Although the ATM system evolved along with the advances in technologies,
the cognitive limitations of ATC and the fixed airspace configuration induces sub-
optimal efficient and safe airspace usage. Therefore, fundamental changes on the
present airspace configuration, especially sectors, are required. A major European
program for modernization of the air traffic management infrastructure has been
launch (Single European Sky initiatives :SESAR project). A similar initiative has
also been launch in UA (NextGen project). SESAR aims to define and implement
new air traffic management concept of operations to overcome current capacity,
environment and safety issues. SESAR has set the definition for the 2025 per-
formance targets, which covers a broad spectrum. European Airspace Measures
towards a more Sustainable ATM SESAR program aims at bringing the point of
readiness for deployment of new trajectory management procedures and technolo-
gies for the European ATM system.

1.3 Airspace Sectorization
Air traffic flow and capacity management is at the core of air traffic management
network operations. Its objective is to optimize traffic flows according to air traffic
control capacity while enabling airlines to operate safe and efficient flights. The
balance between the airspace capacity and the traffic load is monitored perma-
nently by the Network Manager Operations Center (NMOC1). Sectorization is a
fundamental architectural feature of the Air Traffic Control system. Airspace is
usually divided into several sectors, each of them assigned to a team of controllers.
The air traffic flow has been increasingly rising and is expected to rise even further.
The forecasts predict the demand to be 11% higher than the supply in terms of
airspace capacity in 20 years. As a consequence, the number of aircraft in each con-
trol sector will also rising, and the associated workload will exceed the controller’s
capability, inducing unacceptable delays.

1.3.1 Air Traffic Controller
Air Traffic Control (ATC) is the function of providing a safe, expeditious and
orderly flow of traffic in the designated portion of airspace. The ATC function
ensures that no loss of separation occur while maintaining at the same time an
efficient traffic flow. For this purpose, equipment, procedures and personnel in-
teract in a complex manner to enable traffic separation and synchronization and
communication. Aircraft are controlled according to their phase of flight by the

1https://www.eurocontrol.int/network-manager
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relevant facility: aerodrome, approach and area centers. Irrespective of the facility
being considered, the process carried out by a controller team can be generalized
as follows:

• Aircraft enter a sector;

• ATC estimates future positions of the aircraft and detects conflicts between
them;

• ATC intervenes if necessary to separate aircraft;

• Aircraft exit the sector.

At present in Europe, the elementary control sectors, which are the smallest
subdivisions of the airspace for a controller, are grouped into qualification areas.
Each air traffic controller is trained to work on all the elementary sectors of a
qualification area, as well as groups of them, but cannot change the qualification
area without undergoing a long and specific training. This mean that Elementary
sector can only be grouped together inside a qualification area. Currently, there
are seven qualification areas in France, grouped together in the five control centers.
Figure1.2 shows the list of control centers and their qualification areas of several
European countries which constitute the core area.

Figure 1.2: This figure shows the European airspace structure based on the new
Functional Airspace Blocks concept. Such blocks are shown with thick solid lines
In this figure, the French airspace belongs to the core area called FABEC. In this
airspace, control center areas are represented by light shaded lines.

The Single European Sky project, developed by the European Union, plans
to create the Functional Airspace Blocks which will subdivide the European sky
according to the traffic flows and no longer according to the national borders, as
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followed these days. This project plans to set up FABs in the core areas, which is
defined as the European airspace region with the dense traffic.

The airspace is divided into qualification areas that are, themselves a part of
en-route control centers. This means that there are already several divisions of the
airspace in Europe, depending on whether we are talking about the division into
sectors, areas, or centers. For practical reasons, en route control differentiates the
upper airspace from the lower airspace. The division level between the upper and
lower airspaces is fixed at a flight level 195 (5944 m). This operational differen-
tiation is based on the cruising flight level of commercial aircraft. The resulting
air traffic control and the related problems are therefore different in the lower and
upper airspaces.

From European sky’s point of view, the current study concerns the reorganiza-
tion of the control sectors into the qualification areas in the future. For example,
this is the case of the airspace area controlled by the Eurocontrol center in Maas-
tricht.

A sector is controlled by pair of controllers who ensure safety of flights by
separating aircraft from each other according to the separation standard. The
larger the number of aircraft in a sector, the more the control workload increases
in a non-linear way. There is a limitation where the controller can no longer accept
aircraft, which have to fly through less loaded neighbor sectors. In this case, the
sector is said to be saturated. This critical situation must be avoided as it provokes
a cumulative phenomenon of overload on the sectors upstream, and may even go
as far as the departure airports.

In the controller’s workload, three main components are usually distinguish-
able, which are as follows:

• Monitoring workload: in a sector, apart from any actions taken on the tra-
jectory, the controller must check that flight plans are followed correctly on
the radar image, and determine the potential risk of collision (conflict) with
the surrounding aircraft. Monitoring is the controllers’ basic task, but it is
a major source of stress for them. This workload is directly linked to the
number of aircraft in the sector.

• Resolution workload: when a risk of conflict is detected, the controller can
change the aircraft trajectory in order to maintain the minimal separation
standard.

• Coordination workload: when an aircraft changes of sector, the controller
who in charge of it makes control transfer and therefore the aircraft must
change its radio frequency. Earlier, the transfer must have been accepted by
the controller, who is receiving the aircraft. An agreement is made between
the two controllers, the one receiving and the one transferring, in order to
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ensure that the aircraft can be accepted and to define the transfer proce-
dures such as the flight level, heading, speed. The coordination workload is
proportional to the flow cut by the sector borders.

There are two different types of controllers:terminal controllers and en-route
controllers.

Terminal controllers manage the coming and going of aircraft into an airport.
First a plane is given a flight plan which the controllers put into a sequence. They
then guide the aircraft on the ground to the active take off runway and give the
pilot clearance to take off as soon as they are sure of the safety of the departure.
Terminal controllers are broken up into two main sections: tower local controllers
and terminal radar controllers. Tower local controllers use visual observation to
manage arriving and departing aircraft at runways. They may also provide guid-
ance for aircraft on taxiways. Terminal radar controllers monitor the arriving and
departing aircraft in the terminal area by using radar image of the traffic. Using
the radar they can determine if the distances between planes are safe and can also
keep an eye on weather conditions.

En route controllers manage traffic between TMAs. There are twenty air route
traffic control centers in Europe, all assigned to different sections of airspace. The
aircraft is passed to different controllers within the center and then in between
centers as it moves through its designated flight plan. If a problem arises and two
planes are heading towards one another, it is up to the en route controllers to
switch one of the planes onto a different path or altitude, making sure that this
change does not interfere with any other aircraft. About fifty miles away from
the destination airport, en route controllers organize the aircraft in a sequence for
arrivals and transfer them to terminal controllers.

The training of terminal controllers and en route controllers are identical, but
their duties vary significantly. Terminal controllers manage arrivals and depar-
tures, and taxiing of aircraft, and en route controllers monitor aircraft through
airspace. Their responsibilities, however, are the same. They both are responsible
for keeping aircraft safe.

Sector design has to satisfy several constraints: workload constraint, convexity
constraint, boundary constraint and connectivity constraint.

• Workload constraint The workload constraint limits the capacity of a
sector below a maximum threshold that is called sector capacity. This value
specifies the maximum number of allowable aircraft in any sector at a given
time.

• Convexity constraint or minimum dwell time and no reentry con-
straint The convexity constraint ensure that an aircraft stays in the sector
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Figure 1.3: Convexity constraints. Sector has to be convex according to the airways
directions. In this figure, aircraft have to cross four time the boundaries of sector
S1 which is fully forbidden in operational airspace

for a minimum amount of time and does not re-enter the sector again (see
figures 1.31.4).

• Boundary constraint or safety constraint The boundary constraint en-
sure a distance between sector boundaries and possible conflict points so that
the controller has sufficient time to resolve the conflicts (see figure 1.5).

• Connectivity constraint The connectivity constraint avoids sector frag-
mentation (see figure 1.6).

1.4 Air Traffic Planning Periods
The ATC provides the flights with clearances ensuring that separation minima
requirements are met. Separation minima standards are set and regulated by each
country and are based on ICAO’s standards. Typically in an European en-route
ACC this separation standard is 5 Nautical miles (Nm) longitudinally and 1000
feet (ft) vertically. ATM operational planning goes through an iterative refinement
process, in which different layered measures are applied to optimize the operations
as more accurate information becomes available. Therefore, the different tasks are
individually associated with a certain temporal layer or time-frame. The time-
frames are defined as periods of time relative to the absolute execution time of the
flight:

• Long-term: More than 6 months before flight execution day.

• Strategic: 6 months to one day before the flight execution day.

24



S1

S2

S3

Figure 1.4: Min stay time constraint. This constraint is also linked to the shape of
sectors. One must avoid design like sector S2 on this figure for which aircraft stay
to short time in this sector and induce only coordination workload. Controllers in
charge of S2 have not possibilities to manage this traffic because aircraft do not
stay enough time in the sector.

• Pre-Tactical: one day before to approximately 20 minutes before departure.

• Tactical: from approximately 20 minutes before to the actual flight trajectory
instant.

• Execution: relative zero time.

• Post-execution: after flight execution.

The long-term planning function, encompasses all the strategic planning pro-
cesses of the ATM system. This includes demand prediction, planning activities at
network and local (ATC center and airport) levels. In addition, ATC centers need
to estimate and develop the long-term operational requirements in terms of future
technologies, procedures and operations. The network planning process gathers
the plans and predictions from ATC centers and airlines in order to build a holis-
tic prediction of the network, aiming to detect possible imbalances and support as
well the local planning processes.

The strategic phase takes place seven days, or more before the day of oper-
ations. During this phase the NMOC helps the air navigation service providers
(ANSPs) to predict what capacity they will need to provide in each of their air
traffic control centers. A routing scheme is prepared. This also includes avoiding
imbalances between capacity and demand for events taking place a week or more
in the future.
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Figure 1.5: Boundary constraint. In this figure, controllers in charge of sector S1
are not able to manage conflicts at the crossing point due to the lack of space
between such point and the boundary with sector S2. In order to avoid such
problem, crossing points have to be located in the central area of sectors.

The pre-tactical phase takes place one day to six days before the day of oper-
ations. During this phase the NMOC coordinates the definition of a daily plan,
the initial network plan and informs air traffic control (ATC) units and aircraft
operators about the air traffic flow and capacity management (ATFCM) measures
that will be applied in European airspace on the following day by publishing the
agreed plan for the day of operations.

The tactical phase takes place on the day of operations. During this phase the
NMOC monitors and updates the daily plan based on the current situation and
continuous capacity optimization according to real time traffic demand. When air-
craft are affected by a regulation, the center offers alternative solutions to minimize
delays.

The post-operational phase takes place after the day of operations. During
this phase an analysis is carried out in order to measure, investigate and report
on operational processes and activities throughout all domains and external units
relevant to an ATFCM service. This phase compares the anticipated outcome with
the actual measured outcome, generally in terms of delay and route extension,
while taking into account performance targets. This allows operators to develop
best practices and/or lessons learned to improve those operational processes and
activities.
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Figure 1.6: Connectivity constraints. In this case, sector S1 is split into two not
connected components which is a situation fully forbidden in operational airspace.

1.5 Dynamic airspace configuration
During the course of a day, the ATC workload fluctuates based on traffic demands
between various origin-destination pairings. As the traffic in the airspace is chang-
ing with time, it is necessary to consider dynamic reconfiguration of the airspace
for which the number of controlled sectors and their shape will be adapted to the
current traffic situation. Initial elementary sectors can be temporarily combined
with each others in order to improve efficiency of the airspace configuration. This
process is called Dynamic Airspace Configuration (DAC).

Current airspace consists of static sectors. The purpose of the current airspace
management is to ensure that controllers are not overloaded throughout the day
of operation. Configuration process consists in combining and de-combining ele-
mentary sectors into controlled sectors for example during shift change operations
when the traffic demand is low. The idea is to find the optimal combination of
elementary sectors that will provide the maximum capacity to a given input traffic,
and balance the controller’s workload as much as possible between the controlled
sectors.

The process of creation of configurations and opening schemes is done in the
pre-tactical phase. Opening scheme specifies which controlled sectors should be
opened during the day of operation, taking into account flight plans and the num-
ber of available controllers. Any decision of adding some changes in the airspace
configuration is based on operational experience. Currently, almost no automation
is used to determine the best airspace configurations.

Because of the huge number of possible combinations of elementary sectors,
the determination of sector configurations and opening schemes requires the use
of automated support tools. Given the organizational framework of the concerned
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airspace, the challenge is to organize, plan and manage airspace configurations to
meet User Preferred Routing, in a Free Route environment with enough flexibility
to respond to changes in traffic demand, to unexpected events including weather,
and to any update in airspace in the optimum way, while maintaining the safety
targets.

1.6 Objectives, scope and contribution of this
study

The work presented in this thesis aims at improving the flexibility and adaptability
of today’s airspace management in Europe in a pre-tactical context.

We focus on the development of a method to support a process of automatic
generation of a sequence of sector configurations composed of predefined sectors.
Airspace configurations should be dynamically adjusted to provide maximum ef-
ficiency and flexibility in response to demand fluctuations. We dynamically build
configurations by combining existing elementary sectors. In this step, any sector
combination which forms controllable airspace blocks is eligible and may be used
during the day of operation.

In this work, we develop efficient methods to solve DAC problem. We formulate
and study the sectorization problem from an algorithmic point of view. We propose
methods based on a mathematical modeling and heuristic optimization techniques.
We also introduce here an approach to evaluate the workload inside sectors.

1.7 Thesis organization
Chapter two discusses previous works related on dynamic airspace configuration.
Chapter three, introduces air traffic complexity metrics with a focus on a new
approach based on a non linear dynamical systems which has been implemented
on GPU to speed up the computation. In chapter four, the multi-period dynamic
airspace configuration problem is introduced, we propose mathematical formula-
tions and a branch-and-price-based solution method is presented. The approach
has been applied to real French airspace (Reims ATCC) for which results have
been compared to current operational solutions.
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Chapter 2

The State of the Art

Air traffic is currently controlled by air traffic controllers who monitor aircraft tra-
jectories and give instructions to pilots to avoid collisions and dangerous situations.
The airspace is partitioned into air traffic control centers which are partitioned into
elementary sectors. These sectors may be combined together to form bigger air
traffic control sectors, each operated by a team of controllers. The airspace config-
uration, may change during the day, depending on the incoming traffic and work-
load. Sectors may be split when the workload increases and may exceed capacity.
A general statement is that workload depends largely on the number of flights,
but also on the traffic complexity; For instance, aircraft flying parallel tracks at
constant flight levels are less difficult. Dynamic airspace configuration can be ad-
dressed with two approaches. The first approach consists in adapting the sector
boundaries to the current traffic demand. This approach is not currently used in
operations and requires new decision support tools for the controller to be able
to manage sector with dynamic shape. The second approach, which is currently
used in operation combines or splits existing sectors in order to have an optimal
configurations of the airspace. Such a sector combination plan should minimize
controller shifts and satisfy certain operational rules, such as minimizing changes
of control regions over successive periods. Depending on the time of day, certain
areas have high air traffic, while others have low traffic. The traffic intensity across
different regions is also affected by the presence of convective weather, change in
the demand profiles at various airports, military zone activities, etc ...

Airspace sectorization, also known as static airspace sectorization, consists in
dividing an airspace into a number of sectors, each of them being assigned to
a controller, as described in [29]. Static airspace sectorization has been widely
studied and several solution methods were proposed, which can be separated into
two types: freeform or based on airblocks. Airblock-based sectorization assumes
that the airspace is already divided into indivisible elementary airblocks, usually
polygonal shaped, which are grouped to form sectors that can be assigned to a

29



controller. In such cases the problem can be modeled as a particular graph par-
titioning problem where the nodes of the graph represent the airblocks, the edges
of the graph connect the nodes of adjacent airblocks [6]. Freeform sectorization
do not use such hypothesis and aims to divide the airspace into polygonal re-
gions. This is often done by using grids [46], Voronoi diagrams [45] or geometric
algorithms [2]. A classical objective in static airspace sectorization is to ensure
balanced workloads between controllers while respecting capacity constraints as
well as the four sector design constraints described in the introduction: connec-
tivity, convexity, minimum distance, minimum dwell time constraints. Capacity
constraints are often in the objective function, in which case the problem either
becomes a multi-objective problem or is considered as a weighted objective func-
tion combining multiple terms. For a review of models and algorithms for static
airspace sectorization, refer to the survey of [10].

A four-category classification can be done for publications on the topic of dy-
namic airspace configuration.

The first category is composed of papers that explain the challenges and im-
portance of dynamically changing the configuration of the airspace to take into
account the changes of traffic, but do not propose any dedicated solution method.
This is the case of [9, 19, 32]. This category will be called “Type I” in the following
of this chapter.

The second category (called “Type II”) is composed of papers where sector-
izations for multiple periods are computed, but without any link between the
configurations applied during the different periods. In this case, the problem is
equivalent to solving multiple times a classical static sectorization problem with
different data input corresponding to the airspace traffic at different time peri-
ods, generating sectors with desirable geometry for each period. This is the case
of [42, 23, 22, 12, 36, 44]. Such works do not take into account the need for some
stability of design. Indeed, air traffic controllers have to adapt to the configura-
tion changes, therefore, transitions between configurations must allow to maintain
some level of stability over time.

The third category (“Type III”) regroups papers that use elements of the config-
uration of the current period when designing the configuration of the next period.
This is the case of the methods presented in the survey [47]. Seven algorithmic
methods were tested on a representation of current day operations in Kansas City
Center and compared in terms of delay reduction benefits, traffic pattern com-
plexity, and reconfiguration complexity. Compared to the baseline, most airspace
design methods reduced delay but increased the reconfiguration complexity with
similar traffic pattern complexity results. [34] modeled the dynamic airspace
configuration as a multi-periods geometric graph partitioning problem with an
objective-function combining five terms: the overload index, sector load balanc-
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ing index, transfer traffic index, as well as re-entering and short-crossing flights
indexes. The solution method proposed was an evolutionary algorithm (EA). One
key feature of their method compared to previous EA algorithms for airspace sec-
torization ([6, 8]) was the concept of non-sharable blocks (SBBs) which identified
elementary sectors that were not allowed to be merged, with the expectation that
imposing the same SBB from one time period to another would contribute to
obtain solutions with some stability over the time horizon. However, no explicit
measure or evaluation of the resulting stability was proposed.

The fourth and final category (“Type IV”) is composed of papers that solve
the dynamic airspace configuration problem for a planning horizon of multiple
time periods, taking into account the reconfiguration complexity resulting from a
change of configuration between any two consecutive time periods [9, 4, 3].

The approach, which is currently used in operation combines or splits existing
sectors in order to have an optimal configurations of the airspace.

2.1 Major challenges of dynamic sectorization
The airspace design is highly depending on traffic demand and traffic flow, which
is a permanently changing process [9]. Therefore, the airspace design must be
kept dynamic as a whole and must be quickly reactive for change. Instead of a
static airspace layout, a floating airspace baseline is created. The challenge of
operations is to create systems that have the same reactivity. The combinatory
logic for creating sectors from air blocks and configurations from sectors, taking
into account constraints like shapes and division flight levels and their dynamics
is beyond the limit of human capabilities. A mathematical optimization tool is
required to support this process. It is of highest usefulness to iterate through
the airspace design process by applying capacity-simulations. Each iteration still
takes about 3 weeks in the current practice due to the fast-time simulation: even
if this is much better than in the past, this is still too long. It would be nice to
have faster tools with higher reactivity. The high number of simulations and the
corresponding flood of data to be analyzed can only be handled with an add-on
tool to the fast-time simulator. The full validation of the airspace design process is
only possible with real-time simulation, and other operations. Nevertheless it can
already be stated that this process is a milestone in Maastricht airspace design. It
pre-validates a completely new airspace based on new procedures using fast-time
capacity simulations.

The structural elements of current airspace include sectors, routes, and fixes [19].
Current airspace has significant limitations. It is not structured to accommodate
automated separation assurance aircraft, airspace boundaries cannot be changed,
and controller resources are not interchangeable. The goal of future airspace is to
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provide flexibility and structure where it is necessary. The main airspace research
areas are: restructuring airspace, adaptable airspace, and generic airspace. The
airspace organization should support concepts such as automated separation as-
surance. The airspace should change based on demand and weather predictions.
The airspace should be as generic as possible so that controllers and facilities will
be interchangeable. Based on the current understanding, it now appears that new
airspace building blocks may include complex shape (corridors-in-the sky) and it
must be dynamic. The mid-term airspace may be divided into high altitude and
low altitude airspace. The low altitude airspace can be further divided into struc-
tured, and metroplex and super density airspace. The far-term airspace may be
divided into four primary regions: airspace for automated separation assurance op-
erations, high altitude airspace, super density and metroplex operations airspace,
and remaining airspace. When all aircraft become capable of automated separa-
tion and spacing assurance, either via ground based or airborne based technologies,
the airspace design can be further simplified. In such a case, only arrival-departure
corridors may be necessary and the rest of the airspace can be generic and may
not need much structure. However, there are a number of research issues that
need to be addressed to test the feasibility of mid-term and long-term airspace
configuration concepts.

2.2 Dynamic sectorization algorithms (Type I)
The anticipated flight demand increase in the future inspires the research of Dy-
namical Airspace Configuration [42]. In [42], a graph-based DAC algorithm was
developed aiming at balancing the workload among all sectors and minimizing the
coordination workload between adjacent sectors. An experiment is set up to ex-
plore how the DAC algorithm handles future traffic expansions. The ASDI data
(Aircraft Situation Display to Industry data) of the Kansas center (ZKC) for a
good weather day with high traffic volume is used for the current scenario, while
the AvDemand tool correspondingly generates double traffic data to simulate the
future scenario. Their DAC algorithm generates three different configurations for
both the current and future scenarios taking into account of traffic variations.
The current configuration in ZKC serves as the baseline. Moreover, the Welch
method [43] is used to estimate the traffic capacity for each sector. Results in-
dicate that the DAC algorithm is robust when dealing with traffic demand of
different scales. In both scenarios, the traffic load for each sector is more balanced
in comparison with the baseline. Also, the numbers of capacity violations and
boundary crossings are reduced significantly. In the future scenario, the DAC al-
gorithm shows more improvement in safety and efficiency, which is in accordance
with the motivation of DAC.
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A method for partitioning airspace into smaller regions based on a peak traffic-
counts metric is described [23]. The three setup steps of this approach consist
of creating a flow network flow and creating an occupancy grid composed of grid
cells of specified size for discretizing assignment of grid cells to the nodes of the
flow network. Both the occupancy grid and the grid cell assignment to nodes are
computationally realized using matrices. During the run phase of the method, the
flow network is partitioned into two sub-graphs and these two sub-graphs and then
partitioned again into two sub-graphs, and so on till a termination criterion is met.
Weights of the sub-graphs are computed by summing the number of aircraft in each
grid cell associated with the nodes of the sub-graphs at each time. This process is
accomplished by using the occupancy and assignment matrices created during the
setup step. The final weight is obtained as the maximum count over a time period.
Spectral bisection is then used to split the sub-graph with the maximum weight
into its two sub-graphs. Recursive application of the spectral bisection method and
weight computation results in the final set of sub-graphs. The grid cells associated
with each sub-graph then represent the geometry of the associated sector. Results
of sectorization of the airspace over the continental United States are provided
to demonstrate the merits and the limitations of the method. The weighted-
graph technique created larger sectors in regions of light-traffic and smaller sectors
in regions of heavy-traffic. Peak traffic-counts in the sectors were found to be
within the range of the Monitor Alert Parameters specified in the Enhanced Traffic
Management System.The algorithm was used for partitioning the airspace over the
United States into 466 sectors, once for each hour of the 24-hour day, using a single
day of air traffic data. Along with these desirable features, some limitations and
opportunities for refinement of the sectorization algorithm were revealed by these
examples. The algorithm generated small sectors that were enclosed within larger
sectors. Elongated sectors were created in some instances. Some of the areas of
possible refinement are: use of hexagonal cells rather than square cells for synthesis
of convex sectors, use of peak traffic-counts rather than the fixed number of sectors
as the termination criteria, and use of alternative flow graph structures such as a
spanning tree connecting the major airports in the United States.

The Dynamic Airspace Configuration (DAC) concept requires strategically or-
ganizing and efficiently allocating airspace [22]. In the current National Airspace
System (NAS), sector boundaries have been developed heuristically over decades
in light of historical data and analysis. In their previous research, authors of [22],
have developped a graph structure based on air route structure to model the
en-route airspace over the U.S., and which was partitioned using a spectral clus-
tering algorithm. This paper [22] addresses how to generate sectors with desirable
geometry using the partitioned graph as an input. The minimum distance con-
straints are considered in their two- step algorithm. Instead of converting these
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constraints into a mathematical programming problem as in most previous re-
searches have done, they treat the constraints satisfaction as a geometric problem.
In correspondence to vertices assignments, an algorithm is first proposed that aims
to compute non-overlapping convex hulls, while satisfying the constraints. They
developed a novel method using the shortest path searching algorithm to create
smooth sector boundaries outside the convex hulls, where the desirable boundary
is mathematically defined and computed. Finally, the performance of the proposed
sectorization algorithm is demonstrated using the Enhanced Traffic Management
System air traffic data. In this paper, they have proposed an airspace sectorization
algorithm based on their graph model which accurately represents the air route
structure in the NAS. The graph model is first partitioned into a set of subgraphs
which satisfy the workload capacity constraint for each sector.Important sector
constraints are also incorporated into the proposed algorithm.They have solved
the minimum distance constraints by adding protection zones to the graph model.
In the two-step sectorization algorithm, they firstly compute non-overlapping con-
vex hulls,each containing only one subgraph.Then,using a shortest path searching
method,they compute desirable sector boundaries in order to check the convexity
of the associated sectors.They have validated the performance of four algorithm
with real air traffic data.

Another approach presented in [12] consists in forecasting air traffic controller
workload and required airspace configuration changes with enough ahead time
and with a good degree of realism. For this purpose, tree search methods were
combined with a neural network. The neural network takes relevant air traffic
complexity metrics as input and provides a workload indication (high, normal, or
low) for any given air traffic control (ATC) sector. It was trained on historical
data, i.e. archived sector operations, considering that ATC sectors made up of
several airspace modules are usually split into several smaller sectors when the
workload is excessive, or merged with other sectors when the workload is low. The
input metrics are computed from the sector geometry and from simulated or real
aircraft trajectories. The tree search methods explore all possible combinations of
elementary airspace modules in order to build an optimal airspace partition where
the workload is balanced as well as possible across the ATC sectors. The results
are compared both to the real airspace configurations and to the forecast made by
flow management operators in a French en-route air traffic control

A key limitation when accommodating the continuing air traffic growth is the
fixed airspace structure including sector boundaries [36]. The geometry of sectors
has stayed relatively constant despite the fact that route structures and demand
have changed dramatically over the past decade. Dynamic Airspace Sectorization
is a concept where the airspace is redesigned dynamically to accommodate chang-
ing traffic demands. Various methods have been proposed to dynamically parti-
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tion the airspace to accommodate the traffic growth while satisfying other sector
constraints and efficiency metrics. However, these approaches suffer from several
operational drawbacks, and their computational complexity increases fast as the
airspace size and traffic volume increase. In [36] authors evaluate and identify the
gaps in existing 3D sectorization methods, and propose an improved Agent Based
Model (iABM) to address these gaps. They also propose three additional models
using KD-Tree, Bisection and Voronoi Diagrams in 3D, to partition the airspace
to satisfy the convexity constraint and to reduce computational cost. They use a
multi-objective optimization approach that uses three objectives: minimizing the
variance of controller workload across the sectors, maximizing the average sec-
tor flight time, and minimizing the distance between sector boundaries and the
traffic flow crossing points. Experimental results show that iABM has the best
performance on workload balancing, but it is restrictive when it comes to the con-
vexity constraint. Bisection- and Voronoi Diagram-based models perform worse
than iABM on workload balancing but better on average sector flight time, and
they can satisfy the convexity constraint. The KD-tree-based model has a lower
computational cost, but with a poor performance on the given objectives

Dynamic resectorization is a promising concept to accommodate the increasing
and fluctuating demands of flight operations in the National Airspace System [44].
At the core of dynamic resectorization is the definition of an optimal sectoriza-
tion. Finding such an optimal sectorization is challenging because it mixes the
graph partition problem and NP-hard optimization problem. They use Voronoi
diagrams and Genetic Algorithms, and proposes a strategy that combines these al-
gorithms with the iterative deepening algorithm. Voronoi diagrams accomplish the
graph partition, which then needs to be optimized. By defining a multi-objective
cost, the combination of the Genetic Algorithm and iterative deepening algorithm
solves the optimization problem. Experimental results show that by setting an
appropriate cost, the design can have a balanced workload and low coordination
between sectors with dominant flow structure captured. If the capacity is de-
fined and incorporated into the cost, the sectorization will lead to a design with
increased capacity. The whole process can be finished within a reasonable time
period without the need for parallel schemes.With the Voronoi Diagram, the con-
vexity requirement is automatically satisfied and the choice of costs is flexible. The
sectorization can be encoded as the generating points. Genetic Algorithm is used
to perform the multi-objective optimization. The Iterative Deepening Algorithm
is applied to expedite the process. Initial results in 2D showed that this strategy
is promising for sectorization. This method balanced the workload satisfactorily
with a small deviation from average workload, and maintained convex shapes for
sectors by the nature of the Voronoi diagram. By lowering the crossing volume
and increasing sector flight time, the method captured the flow structure. The
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case study on maximizing sector residual capacity shows that increasing capac-
ity, which is based on 5/3 sector flight time, has conflicts with the objective of
balancing aircraft counts.

2.3 Dynamic sectorization algorithms (Type II)
In [34], authors introduced a Genetic Algorithm based method for sequencing sec-
tor configurations composed of two airspace component types Sharable Airspace
Modules and Sectors Building Blocks The proposed solution was tested at Ams-
terdam UTA and Northern part of Hanover UIR in a Free Routes Environment.
Their objective functions and constraints were designed in cooperation with EU-
ROCONTROL experts. They included five different parameters in the objective
function: workload imbalance among all controlled sectors, the total number of
overloads in each controlled sector of the configuration, the transfer traffic be-
tween neighboring components, the number of reentry events and the number of
short transits inside each sector.

2.4 Dynamic sectorization algorithms (Type III)
The algorithm presented in [5] combines sectors based on a measure of predicted
excess capacity in sectors. Such a measure has two components. The first one is
a predicted measure of the utilization of a sector. The second one is a measure of
the maximum possible safe utilization of a sector, which is also referred to as the
capacity of a sector. These components share units and so the predicted excess
capacity is the difference between the predicted utilization and the capacity.

There are three main steps in the proposed algorithm:

• Compute the predicted capacity gaps for all possible two-sector combinations
in the center.

• Combine the two sectors whose combination has the largest predicted capac-
ity gap.

• Repeat until the largest predicted capacity gap is smaller than the minimum
capacity gap.

2.5 Dynamic sectorization algorithms (Type IV)
In response to traffic and staffing changes, supervisors dynamically configure airspace
sectors by assigning them to control positions.In [4] finite horizon airspace sector
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configuration problem models this supervisor decision. The problem is to select
an airspace configuration at each time step while considering a workload cost, a
reconfiguration cost, and a constraint on the number of control positions at each
time step. Three algorithms for this problem are proposed and evaluated: a myopic
heuristic, an exact dynamic programming algorithm, and a rollouts approximate
dynamic programming algorithm. On problem instances from current operations
with only dozens of possible configurations, an exact dynamic programming so-
lution gives the optimal cost value. The rollouts algorithm achieves costs within
2% to the optimal solution for these instances, on average. For larger problem
instances that are representative of future operations and have thousands of possi-
ble configurations, excessive computation time prohibits the use of exact dynamic
programming. On such problem instances, the rollouts algorithm reduces the cost
achieved by the heuristic by more than 15% on average with an acceptable com-
putation time.

[3] presents another algorithm for which two versions were developed. The dif-
ference between these versions of the algorithms relates to areas of specialization
within centers. Currently, each sector in a center is part of an area of specializa-
tion. This algorithm considers that neighboring sectors could only be combined
if they are in the same area of specialization. When sector combinations are re-
stricted to sectors within the same area of specialization, the algorithm is referred
to as the restricted algorithm. This restriction may be relaxed as automation en-
ables controllers to control more sectors in a center. There are several strengths
of this algorithm. It produces a new sectorization that utilizes air traffic control
resources at least as effciently as the original sectorization. It only uses informa-
tion currently available in ATC centers. There are several algorithm parameters
that can be changed to increase the safety of the resulting sectorization. These
parameters also enable users to tailor the algorithm to work with existing opera-
tional procedures. In fact, because it combines this configurability with the use of
existing sectors and data, this algorithm allows for a systematically more efficient
utilization of airspace that can be implemented in the near term. In practice the al-
gorithm is executed in less than a second when calculating hour-long combinations
for a center with 20 sectors. This algorithm has several weaknesses as well. Using
existing sectors as the building blocks for a new sectorization allows for short-term
implementation, it restricts the possible airspace configurations and therefore also
restricts the efficiency of the resulting sectorizations. Moreover, while this ap-
proach will yield more efficient air traffic control resource utilization, it does so by
eliminating unused capacity, not by increasing capacity where capacity is lacking.
This algorithm also does not guarantee sector convexity in the resulting sectoriza-
tion. This analysis has shown that a relatively simple greedy heuristic algorithm
can systematically combine airspace sectors to significantly improve the efficiency
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of air traffic control resource utilization.A weakness of this algorithm is that it
is a heuristic with no guarantee of optimality. The problem faced here can be
mapped to a graph theory problem by considering sectors as vertices and each
sector’s set of neighbors as defining edges between vertices. The optimal solutions
for related problems in graph theory can be found in polynomial time.Air traffic
controller supervisors configure available sector, operating position, and worksta-
tion resources to safely and efficiently control air traffic in a region of airspace. An
algorithm for assisting supervisors with this task is described and demonstrated
on two sample problem instances. The algorithm produces configuration schedule
advisories that minimize a cost. The cost is a weighted sum of two competing
costs: one penalizing mismatches between configurations and predicted air traffic
demand and another one penalizing the effort associated with changing configura-
tions. The problem considered by the algorithm is a shortest path problem that is
solved with a dynamic programming value iteration algorithm. The cost function
contains numerous parameters. Default values for most of these are suggested
based on descriptions of air traffic control procedures and subject-matter expert
feedback. The parameter determining the relative importance of the two com-
peting costs is tuned by comparing historical configurations with corresponding
algorithm advisories. Two sample problem instances for which appropriate con-
figuration advisories are obvious were designed to illustrate characteristics of the
algorithm. Results demonstrate how the algorithm suggests advisories that ap-
propriately utilize changes in airspace configurations and changes in the number
of operating positions allocated to each open sector.

2.6 Conclusion
Current state-of-the-art in dynamic sectorization literature shows the importance
of flexible airspaces. The airspace design algorithms must take into account two
important objectives. They must adapt sectorization according to traffic demand
and there must be stability between consecutive configurations. There exist some
methods that solve the DAC problems for multiple periods but they don’t maxi-
mize similarity between configurations. They may find solutions that are not ap-
plicable in real life because of big changes in different configurations. The second
issue is that methods don’t take into account geometry of sectors. They compare
consecutive solutions by number of aircraft that has passed from one controller to
another if the configuration change is made. Those algorithms may give solutions
that have very different shapes of sectors for consecutive periods. If sectors are
different then it takes more time until controllers understand the current situation
in the airspace. The third problem is that such algorithms can solve only small
problems. If we want to solve bigger problems then existing algorithms could be
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too slow. We propose a method that solves those three issues.
Before introducing our DAC algorithm, the next chapter describe the complex-

ity metrics which have been used for our experiment.
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Chapter 3

Airspace Complexity Metrics

In this chapter, air traffic complexity principles are introduced. This chapter is
divided into fourth sections. In the first section general introduction of complexity
is given. In the second section some previous related works on air traffic complexity
metrics are presented. The third section presents the three metrics which has been
tested for our evaluation. The fourth section presents the development and the
implementation on GPU of the metric based on non linear dynamical system.

3.1 Introduction
In a control sector, the higher the number of aircraft, the more the control workload
increases (in a non-linear manner). A limit exists after which the controllers in
charge of a control sector are unable to accept additional aircraft, obliging these
new aircraft to travel around the sector, moving through less charged neighboring
sectors. In this case, the sector is said to be saturated. This critical state should be
avoided, as it provokes a cumulative overloading phenomenon in preceding sectors
which can back up as far as the departure airport. The saturation threshold is
very difficult to estimate, as it depends on the geometry of routes traversing a
sector, the geometry of the sector itself, the distribution of aircraft along routes,
the performances of the control team, etc. One widely accepted threshold is fixed
at 3 conflicts and 15 aircraft for a given sector. This maximum load should not last
for more than ten minutes as it places the controllers under considerable stress,
with the risk that they will no longer be able to manage traffic in optimal safety
conditions.

The control workload measurement is critical in many domains of ATM as it
is at the heart of optimization processes. Examples include the following applica-
tions:
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• Airspace comparison (US/Europe).

• Validation of future concepts (SESAR,NEXTGEN,etc.).

• Analysis of traffic control action modes (situation before and after control).

• Optimization of sectorization.

• Optimization of sector grouping and de-grouping (pre-tactical alert: antic-
ipation of an increase in congestion in a group of sectors in order to carry
out degrouping in an optimal manner).

• Optimization of traffic assignment.

• Determination of congestion pricing zones.

• Organic control assistance tools.

• Generation of 4D trajectories.

• Prediction of congested zones.

• etc.

The operational capacity of a control sector is currently measured by the max-
imum number of aircraft able to traverse the sector in a given time period. This
measurement does not take account of the orientation of traffic and considers geo-
metrically structured and disordered traffic in the same manner. Thus, in certain
situations, a controller may continue to accept traffic even if operational capac-
ity has been exceeded (structured traffic); in other situations, controllers may be
obliged to refuse additional traffic even though operational capacity has not yet
been reached (disordered traffic). Thus, a measurement in terms of the number of
aircraft per unit of time constitutes an insufficient metric for the representation of
the difficulty level associated with a particular traffic situation.

In the context of operational control, the ideal would be to find a metric which
precisely measures the level of mental effort needed to manage a set of aircraft.
Without going quite so far, it is possible to find complexity metrics which go be-
yond a simple measurement of the number of aircraft. We shall begin by clarifying
two essential notions for use in the rest of this chapter:
• Control workload: measurement of the difficulty for the traffic control

system of treating a situation. This system may be a human operator or
an automatic process. In the context of operational control, this workload
is linked to the cognitive process of traffic situation management (conflict
prediction and resolution, trajectory monitoring, etc.).
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• Traffic complexity: intrinsic measurement of the complexity associated
with a traffic situation. This measurement is independent of the system in
charge of the traffic and is solely dependent on the geometry of trajecto-
ries. It is linked to sensitivity to initial conditions and to the interdepen-
dency of conflicts. Incertitude with respect to positions and speeds increases
the difficulty of predicting future trajectories. In certain situations, this in-
certitude regarding future positions can increase exponentially, making the
system extremely complex in that it is virtually impossible to reliably ex-
trapolate a future situation. When a future conflict is detected, a resolution
process is launched which, in certain situations, may generate new conflicts.
This inter-dependency between conflicts is linked to the level of mixing be-
tween trajectories. As an example, figure 3.1 presents three traffic situations
classed according to increasing level of difficulty as a function of the level of
predictability and of inter-dependency between trajectories.

Low sensitivity

No conflict

Easy situation

High sensitivity

 
Conflicts with no interaction  

between solutions

Average situation

High sensitivity

 
Potential conflicts with 

interaction between solutions

Difficult situation

Figure 3.1: Workload imbalance between sectors

One way of interpreting these notions is to imagine oneself to be in charge of
each situation in a context where the radar imaging equipment has ceased to work.
Naturally, our attention is immediately focused on the situation on the right, as
it is difficult to predict (in terms of the appearance of conflicts) and presents a
high level of interdependency between trajectories. The middle solution, which
presents a significant risk of conflict, is easy to manage as the same direction order
must simply be given to all of the aircraft (+90 or -90 degrees) in order to place
them into safe roundabout trajectories. Finally, in the situation on the left, the
trajectories do not present any difficulties and the relative distance between the
aircraft will be maintained, at least for the immediate future.

Research into air traffic complexity metrics has attracted considerable attention
in recent years, particularly in the United States and in Europe. The first projects
were launched in Germany in the 1970s, and since then the subject has continued
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to develop. Currently, NASA, MIT and Georgia Tech are involved in work on the
subject within the framework of the NextGen project. In Europe, the DSNA, the
DLR and the NLR are involved in similar activities linked to SESAR.

The objective of most of this work is to model the control workload associated
with given traffic situations. The main approaches are given in the next section.

3.2 Previous related works
The airspace complexity is related to both the structure of the traffic and the
geometry of the airspace. Different efforts are underway to measure the whole
complexity of the airspace.

Significant research interest in the concept of ATC complexity was generated
by the “Free Flight” operational concept. Integral to Free Flight was the notion of
dynamic density. Conceptually, dynamic density is a measure of ATC complexity
that would be used to define situations that were so complex that centralized
control was required [31].

Approach based on Queuing theory [24]. In this case, a control sector is mod-
eled as a system receiving an input (airplanes) and providing a service, allowing
the aircraft to traverse the sector in safety. The sector may then be modeled as
a service center including one or more servers and an airplane queue. By apply-
ing queuing theory, this approach allows us to determine a maximum acceptable
arrival rate for a sector.

In [33], workload is modeled based on traffic level. This approach defines the
workload as the proportion of control time over an hour, taking account of the
average duration of routine control tasks for an aircraft, the average time taken to
resolve conflicts per aircraft, the average rate of arrivals in a sector per hour and
the average rate of conflicts in a sector per hour.

Wyndemere inc. [16] proposed a measure of the perceived complexity of an
air traffic situation.This measure is related with the cognitive workload of the
controller with or without knowledge of the intents of the aircraft. The metric is
human oriented and is then very subjective.

Laudeman et al. from NASA [20] have developed a metric called “Dynamic
Density” which is more quantitative than the previous ones and is based on the flow
characteristics of the airspace. The “Dynamic Density” is a weighted sum of the
traffic density (number of aircraft), the number of heading changes (> 15 degrees),
the number of speed changes (>0.02 Mach), the number of altitude changes (>750
ft), the number of aircraft with 3-D Euclidean distance between 0-25 nautical
miles, the number of conflicts predicted in 25-40 nautical miles. The parameters
of the sums have been adjusted by showing different situations of traffic to several
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controllers. B.Sridhar from NASA [35], has developed a model to predict the
evolution of such a metric in the near future. Efforts to define “Dynamic Density”
have identified the importance of a wide range of potential complexity factors,
including structural considerations. This model of control workload presents the
two following drawbacks:

1. incapacity for generalization to new sectors

2. modeling is highly dependent on the controllers used to infer the model.

The traffic itself is not enough to describe the complexity associated with an
airspace. A few previous studies have attempted to include structural consider-
ation in complexity metrics, but have done so only to a restricted degree. For
example, the Wyndemere Corporation proposed a metric that included a term
based on the relationship between aircraft headings and dominant geometric axis
in a sector [16]. The importance of including structural consideration has been ex-
plicitly identified in recent work at Eurocontrol. In a study to identify complexity
factors using judgment analysis, “Airspace Design” was identified as the second
most important factor behind traffic volume [18].The impact of the structure on
the controller workload can be found on the paper [14, 15, 17]. Those papers show
how strong the structure of the traffic (airways, sectors, etc...) is related with the
control workload.

The previous models do not take into account the intrinsic traffic disorder which
is related to the complexity. The first efforts related with disorder can be found
in [7]. This paper introduces two classes of metrics which measure the disorder of
a traffic pattern. The first class is based on geometrical properties and proposed
new metrics which are able to extract features on the traffic complexity such as
proximity (measures the level of aggregation of aircraft in the airspace), conver-
gence (for close aircraft, this metric measures how strongly aircraft are closer to
each other) and sensitivity (this metric measure how the relative distance between
aircraft is sensible to the control maneuver). The second class is based on a dy-
namic system modeling of the air traffic and uses the topological entropy as a
measure of disorder of the traffic pattern. Those approaches will be detailed in the
next section.

G.Aigoin has extended and refined the geometrical class by using a cluster
based analysis [1]. Two aircraft are said to be in the same cluster if the product of
their relative speed and their proximity (a function of the inverse of the relative
distance) is above a threshold. For each cluster, a metric of relative dependence
between aircraft is computed and the whole complexity of the cluster is then given
by a weighted sum of the matrix norm. Those norms give an aggregated measure
of the level of proximity of aircraft in clusters and the associated convergence.
From the cluster matrix, it is also possible to compute the difficulty of a cluster
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(it measures how hard it is to solve a cluster). Multiple clusters can exist within
a sector, and their interactions must also be taken into account. A measure of
this interaction has been proposed by G.Aigoin [1]. This technique allows multiple
metrics of complexity to be developed such as average complexity, maximum and
minimum cluster complexities, and complexity speeds.

Another approach based on fractal dimension has been proposed by S.Mondoloni
and D, Liang in [26]. Fractal dimension is a metric comparing traffic configurations
resulting from various operational concepts. It allows in particular to separate the
complexity due to sectorization from the complexity due to traffic flow features.
The dimension of geometrical figures is well-known: a line is of dimension 1, a
rectangle of dimension 2, and so on. Fractal dimension is simply the extension of
this concept to more complicated figures, whose dimension may not be an integer.
The block count approach is a practical way of computing fractal dimensions: it
consists in describing a given geometrical entity in a volume divided into blocks
of linear dimension d and counting the number of blocks contained in the entity
N .The fractal dimension D0 of the entity is thus :

D0 = lim
d→0

logN
log d (3.1)

The application of this concept to air route analysis consists in computing the
fractal dimension of the geometrical figure composed of existing air routes. An
analogy of air traffic with gas dynamics then shows a relation between fractal
dimension and conflict rate (number of conflicts per hour for a given aircraft).
Fractal dimension also provides information on the number of degrees of freedom
used in the airspace: a higher fractal dimension indicates more degrees of freedom.
This information is independent of sectorization and does not scale with traffic
volume. Therefore, fractal dimension is a measure of the geometrical complexity
of a traffic pattern.

Other approaches [13, 21] model the complexity of a traffic situation using
automatic conflict resolution algorithms, for which we measure the number of
trajectory modifications required in processing a given situation. In the same
way as before, these methods are highly dependent on the type of algorithm used
to resolve conflicts. These considerations have led us to develop intrinsic traffic
complexity metrics which are only linked to trajectory structure, and not to the
system used to process them.

In the rest of this chapter, we shall focus on the following three approaches:

• flow-based metrics

• metrics based on the geometric distribution of speed vectors in the airspace

• metrics using a dynamic system (linear or non-linear) to model air traffic.
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Figure 3.2: Crossing of two routes

Those approaches have been tested but the third ones based on non linear
dynamical system has produced the best results. Unfortunately, this approach
request a lot of CPU and one result on this chapter is the development and imple-
mentation of such algorithm on the GPU.

3.3 Metrics proposed for the DAC problem

3.3.1 Flow-based approach
This control workload model is adapted for use with an air traffic model based
on a transportation network, where nodes represent beacons or airports and the
links represent airways. Flows of traffic circulate along these links and cross over
at nodes. The model proposed is thus a macroscopic model which is suitable for
quantifying the workload across large zones of airspace. Finally, this model is
designed for use with En-route traffic.

Through questioning controllers, we were able to see that the control workload
is principally connected with the following quantitative criteria:

• conflict workload

• coordination workload

• monitoring workload.

Conflict workload In a control sector, the conflict resolution workload is
linked to the crossing of flows at nodes in the network. A simple geometric model
allows us to crudely quantify the number of conflicts at the crossing point (j) of
two airways fed by Poisson flows of average fij,flj with a crossing angle of θijl (see
figure 3.2):
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Nc =
2Ns

√
V 2
lj − 2.Vlj.Vij. cos θijl + V 2

ij

Vlj.Vij. sin θijl
.fij.flj

where Ns is the standard separation norm, fij, flj are convergent flows associated
with links (i, j) and (l, j), Vij, Vlj the average speed of the aircraft along links (i, j)
and (l, j) and θijl represents the angle formed by links (i, j) and (l, j).

Supposing that the control workload for the crossing is proportional to the
number of generated conflicts, we obtain Ccf = α(θijl)fijflj in the case of a two-
route crossing, where α(θijl) is a weighting coefficient dependent on the angle of
the crossing between the routes. When a crossing involves more than two incident
routes, the conflict workload is the sum of the workloads induced by the links
taken two by two. This gives us an expression for the conflict resolution workload
for the node j:

Ccf (j) = 1
2

∑
i ∈ N
i 6= j

∑
l ∈ N

l 6= i; l 6= j

αijlfijflj

If we only consider conflicts at the node j, we may take:

αijl =
2Ns

√
V 2
lj − 2.Vlj.Vij. cos θijl + V 2

ij

Vlj.Vij. sin θijl
⇒ NC = αijl.fij.flj

The conflict workload in a sector Sk is therefore the sum of the workloads for
each node contained within the sector:

Ccf (Sk) = 1
2
∑
j∈Nk

∑
i ∈ N
i 6= j

∑
l ∈ N

l 6= i; l 6= j

αijj.fij.flj,

where Nk represents the set of nodes located in sector Sk.
Coordination workload All the aircraft in the same sector use the same

frequency to communicate with the controller in charge of a sector. When they
change sector, they must change frequency, and a transfer of control takes place.
This transfer is the subject of prior negotiations between the transferring and
receiving controllers to ensure that the latter is able to accept the airplane and to
define the modes (flight level, etc.) of the transfer. A transfer requires a significant
amount of work on the part of the two controllers; moreover, misunderstandings
and errors can occur in the course of the process, causing accidental losses of
separation. The workload induced by these transfers is known as coordination.
In a sectorized transportation network, the coordination workload is proportional
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Figure 3.3: Network showing three possible coordination situations

to the flows cut across sector boundaries. By studying the coordination workload
generated by the link of a route (i, j), some or all of which belongs to a sector Sk,
we can identify three possible cases:

1. The two extremities of the link belong to sector Sk ⇒ i ∈ Nk and j ∈ Nk;
the whole link is thus in sector Sk (as in the case of link (2,3) in the network
shown in figure 3.3).

⇒ Cco = 0, (no intersection with the edge of the sector)

2. Only one extremity of the link belongs to sector Sk ⇒ i ∈ Nk or (exclusive)
j ∈ Nk; there is therefore an intersection between link (i, j) and the edge
of sector Sk, as in the case of link (3,4) in the network shown in figure 3.3.
We can represent the coordination workload of this link using the following
expression:

⇒ Cco = βijfij, (one intersection with the sector edge)

where βij is a proportionality coefficient used to weight the influence of co-
ordination in relation to the other aspects of the control workload.

3. The two extremities of the link are located outside sector Sk⇒ i /∈ Nk and j /∈
Nk but (i, j) ∈ Ak where Ak is the set of links with a segment in sector Sk;
in this case the flow is cut twice, as shown in link (1,4) in the network in
figure 3.3. We can model the coordination workload of this link using the
following expression:

⇒ Cco = 2βijfij, (two intersections with the edge of the sector)
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Grouping these three cases together and considering all links intersection with
sector Sk, we obtain the overall coordination workload associated with the sector
Sk:

Cco(Sk) =
∑

i⊕ j ∈ Nk
βijfij +

∑
i /∈ Nk
j /∈ Nk

(i, j) ∈ Ak

2βijfij

where ⊕ represents the “exclusive or” logic function.
In the example shown in figure 3.3: Cco(S1) = β12f12+β62f62+β35f35+β34f34+

2β14f14

Monitoring workload In a control sector, airplanes which are not in conflict
or involved in transfers require surveillance by the controller, who verifies the
course of flight plans using a radar image and attempts to determine the risk of
future conflicts involving these aircraft. Monitoring is the basic task carried out by
controllers and represents a significant source of stress. The monitoring workload
is directly linked to the number of airplanes present in the control sector. For a
sector Sk, this may be modeled by:

Cmo(Sk) = η
∑

(i,j)∈Lk

lij
Vij

fij;

with:

• Lk: set of network links with a non-empty intersection with sector Sk

• lij: length of the link (i, j) contained within sector Sk (in NM)

• Vij: average flow speed along link (i, j) (in knots)

• η: proportionality coefficient.

Mathematical modeling of the control workload

The control workload in a sector is thus the sum of the conflict, coordination and
monitoring workloads:

C(Sk) = Ccf (Sk) + Cco(Sk) + Cmo(Sk)

This control workload model is well suited to describing the air traffic system
at microscopic level, where the notion of flow has meaning (large time scale). This
type of representation is therefore used in sectorization and assignment of traffic
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flows. For cases where the notion of flow is no longer appropriate, we have devel-
oped a set of geometric and trajectory based metrics (based on dynamic systems)
which allow us to take account of microscopic events (at individual aircraft level).

3.3.2 Geometrical approaches
These metrics are calculated at a given instant using the positions and speed vec-
tors of airplanes present in the chosen geographical zone. Each of these geometrical
metrics exhibits a particular characteristic associated with the complexity of the
situation.

Before presenting these metrics, we should highlight a specific property of the
separation distance between aircraft. Separation constraints are not the same in
the horizontal and vertical planes, and consequently classical Euclidian notions of
distances are not suitable for the measurement of relative distances between pairs
of aircraft. In these cases we use an “elliptical” or “reduced” distance of the
type:

da,hij = ‖ →pi −
→
pj ‖a,h =

√
(xi − xj)2 + (yi − yj)2

a2 + (zi − zj)2

h2 (3.2)

where−→pi and−→pj are the positions of two airplanes i and j in a local earth referential,
a is the horizontal separation distance and h is the vertical separation distance.
Values generally admitted for En-route sectors are a = 5 NM and h = 1000 ft.
The use of this new distance allows us to give as much importance to a horizontal
separation of 5 NM as to a vertical separation of 1000 ft.

Proximity metric

Observation of the positions of airplanes in a volume of airspace allows us to
determine a level of aggregation known as proximity which is used to characterize
the geographical distribution of aircraft. Proximity allows us to identify spatial
zones with high levels of aggregation in relation to their volume. Thus, for a
constant number of airplanes in a sector, proximity is used to distinguish whether
these aircraft are distributed homogeneously or in the form of clusters. We can
then distinguish in a quantitative manner between the two situations shown in
figure 3.4.

For each airplane under consideration, we open a spatial weighting window
centered on that aircraft, making it the reference airplane. We then calculate
the relative distances of the other aircraft from the reference aircraft in order to
calculate weighting coefficients using a spatial window:

f(dij) = e−αd
2
ij
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Sector

Figure 3.4: On the left, we have five airplanes which are well distributed across
the sector. In the situation represented on the right, the same five airplanes are
aggregated in a reduced spatial zone.

where α is a parameter fixed by the user and dij is the normalized distance sepa-
rating aircraft j from aircraft i. In this way, distant aircraft are of less importance
than nearby airplanes. These factors are then added together in order to compute
the proximity factor linked to the reference airplane P (i):

P (i) =
N∑
j=1

e−αd
2
ij

where N is the number of aircraft for consideration.
The proximity of a spatial zone is then calculated using the sum of the prox-

imities of the aircraft present in that zone.
Furthermore, each airplane can be classified according to a proximity scale (see

figure 3.5). Depending on the distribution of airplanes in a sector, the value of
this metric varies from N when traffic is uniformly distributed to N2 when all of
the airplanes are aggregated at the same point (where N represents the number
of airplanes present in the sector at instant t).

N ≤ P ≤ N2

For identical operational workloads, this indicator identifies sectors in which
traffic distribution is not balanced across the space (sector with zones of dense
traffic).

We calculated the evolution of this indicator for a day of traffic in France (see
figure 3.6). Using this curve, it is easy to identify moments of low traffic density
(the night) and moments of clustering.

The graph of the relationship between these two metrics (Proximity/Number
of airplanes; see figure 3.7) allows us to directly quantify the level of clustering as
a function of time.
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Proximityy

Figure 3.5: Example of construction of a proximity scale

Figure 3.6: Evolution of the number of airplanes and of proximity as a function of
time

Figure 3.7: Evolution of the (proximity)/(number of airplanes) relationship over
time

53



Figure 3.8: This figure presents an artificial traffic situation with 4 groups of 8
aircraft placed on a square. For each point in the space, we calculate the average
level of proximity, considering the airplanes in the vicinity of the point.

The results of this indicator clearly confirm its suitability to detect dense traffic
structures. Finally, a cartographic version of proximity has been developed, an
example of which is shown in figure 3.8.

As we see from figure 3.8, the proximity indicator is able to identify areas where
airplanes aggregate, but is unable to distinguish between situations using speed
vectors. The two situations at the bottom of the figure are represented in the same
manner, despite the fact that the situation on the right is much more difficult to
manage. This consideration has led us to develop a convergence indicator, which
takes account of the orientation of the speed vectors of the aircraft.

Convergence

The convergence indicator is used to quantify the geometric structure of the speed
vectors of airplanes present in a sector. Thus, for identical proximity values, the
convergence indicator allows us to distinguish between converging and diverging
aircraft.

When a dense zone has been identified, the zone may be characterized using
the rate of convergence of the aircraft present in this area. This indicator is
higher the closer the aircraft and the faster the convergence. Thus, in the example
shown in figure 3.9, the convergence indicator is used to provide an unambiguous
classification of the eight situations. Each situation corresponds to two aircraft,
for which the relative distance is constant (higher in the top four cases) and the
relative speed varies from strong divergence to strong convergence. In the case of
divergence, the indicator will be null, and for convergences, it will be increasingly
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Figure 3.9: The speed distributions are identical in the top 4 situations and the
bottom 4 situations; however, the relative distance is smaller in the bottom 4
situations. The most critical situation is located at the bottom right (strong
convergence and low relative distance).

high as the relative distance diminishes and the relative speed increases.
Let us take two moving points i and j (see figure 3.10); the level of variation

of their relative distance is:

rij = ∂

∂t
(dij) (3.3)

where dij is their reduced relative distance. Thus, a pair of airplanes converges if,
and only if, this level of variation is negative; convergence becomes increasingly
rapid as the absolute value of this level increases.

Let −→pij be the reduced relative position vector and −→vij the reduced relative speed
vector:

−→pij =

∣∣∣∣∣∣∣
xj−xi
a

yj−yi
a

zj−zi
h

−→vij =

∣∣∣∣∣∣∣
vxj−vxi

a
vyj−vyi

a
vzj−vzi

h

rij is thus given by:

rij = ∂

∂t
‖~pij‖2 = ∂

∂t

√
~pij · ~pij = ~pij · ~vij

dij
(3.4)

In reality, the risk associated with the convergence of a pair of
aircraft also depends on the relative distance between airplanes. We
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Figure 3.10: The variation of the relative distance between two airplanes (dij)
indicates whether or not they are converging, and at what speed.

must therefore simultaneously account for the speeds and relative distances of each
pair of aircraft. One possible form of a convergence indicator associated with an
airplane i is given below:

Cv(i) = λc
∑

j/rij≤0
−rij.e−

1
2 (αc.dij)2

(3.5)

where λc and αc are weighting coefficients.
Thus, for each airplane i, it is possible to calculate a proximity value P (i) and

a local convergence level Cv(i) in order to locate it in a referential of which the
axes are the proximity and the convergence level (see figure 3.11).

We tested this indicator using the same simulation files as before. For all of
the traffic in French airspace in the course of a day and for each time step, each
airplane present in the space is represented by a cross. The whole set of crosses
is forming a cloud (see figure 3.12) in which we are able to easily identify critical
aircraft (top right).

As in the case of proximity, the convergence indicator can be mapped. The
map associated with the artificial situation involving four groups of eight aircraft
(as before) is shown in figure 3.13.

From this figure, we show that only the two non-organized situations (pure
conflict and random situation) are identified by the indicator.

The two indicators discussed above (proximity and convergence) are calculated
by the aggregation of local influences between pairs of aircraft. This approach can
prove limiting in certain situations, and in consequence we have developed an
extension of these principles to the level of airplane clusters.
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Divergence

Convergence

Proximity

Figure 3.11: In this figure, two airplanes are represented in a proxim-
ity/convergence referential. The airplanes located in the top right zone are the
most critical (strong convergence with high proximity).

Figure 3.12: Convergence and proximity calculated for a day of French air traffic.

Figure 3.13: Convergence map for four groups of eight airplanes
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Clusters

This indicator allows us to directly account for multiple interactions between air-
craft. Thus, if airplane A is in interaction with airplane B and airplane B with
airplane C, we consider the cluster A,B,C using a pseudo-transitivity relation.
It is possible to characterize a cluster using its construction in terms of relative
distances and/or relative speeds.

“Clusters” are small groups of neighboring aircraft which appear when the
airspace is heavily congested. In a cluster situation, the resolution of a conflict
between two aircraft A1 and A2 must take account of the other individuals in the
cluster:

• either because A1 or A2 is also involved in a conflict with other airplanes in
the cluster,

• or because the possibilities for maneuver of A1 or A2 are limited by the
presence of the other airplanes in the cluster.

To construct clusters, we calculate a clustering coefficient cij for each pair of
aircraft present in the sector:

cij = aij · bij

where aij is the spatial aggregation factor aij = e−
1
2 (αp.dij)2 and bij the associated

convergence level:

bij =
{
rij = −d(dij)

dt
if d(dij)

dt
≤ 0 (convergence)

0 otherwise (divergence)

where rij is the level of variation of the reduced relative distance dij. Two airplanes
i and j belong to the same cluster C if cij ≥ S (S clustering threshold).

Clusters are noted CLlk (l ∈ {1, 2, ...Nk}) when Nk is the number of clus-
ters at instant tk. Clk is the intrinsic complexity value of the cluster CLlk
which is evaluated by the norm of the coefficient matrix cij:

Clk = αc‖CLlk‖T + βc‖CLlk‖1 (3.6)

with αc > 0 βc > 0 and for a matrix C the matrix norms ‖C‖T and ‖C‖1 are
defined in the following manner:

The “norm-trace” section indicates an average risk factor for all the airplanes
in the cluster, whereas the section “norm l1” indicates the risk of the most heavily
penalized airplane.
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Figure 3.14: This figure presents two extreme traffic situations. On the left, the
airplanes are completely structured in terms of speed and the situation presents
no difficulties. On the right, however, the situation is extremely disordered and
will consequently be harder to manage.

Another way to account for speed vectors is to calculate a pseudo-measurement
of disorder by constructing the Grassmannian matrix 1 [4] associated with the
relative speed vectors between pairs of airplanes.

Grassmannian indicator

When we observe a field of speed vectors, it is natural to imagine a measurement of
the disorder of the speed vectors in order to differentiate between the two situation
shsown in figure 3.14.

We also need to take account of the relative distances between the aircraft
in order to characterize only those situations which are disordered in a limited
space. Thus, the larger the zone considered, the less the notion of complexity is
relevant in relation to the associated complexity. The objective of this new metric
is to provide a local measurement of disorder in the field of speed vectors, taking
account of relative distances.

We begin by calculating all of the relative speeds associated with possible pairs
of aircraft. These vector pairings are then weighted using a factor linked to rel-
ative distance. We then construct the Grassmannian matrix of this new vector,
for which we theoretically need to calculate the determinant representing the as-
sociated expansion rate. However, when airplanes are in cruise mode, the third
dimension of the speed vectors cancels out, systematically cancealing the deter-
minant of the associated Grassmannian matrix. To avoid this problem, we begin
by computing the Singular Values Decomposition of the Grassmannian matrix,
then we calculate the product of all singular values greater than one. This allows
us to avoid problems associated with dimensions. The aggregated metric is then
constructed by calculating the sum of the products of the singular values of the
weighted Grassmannian matrices associated with each pair of aircraft.

1The Grassmannian matrix associated with vector ~V is constructed in the following manner:
~V .~V T
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We obtain the following mathematical formulation:

~Vij = ~Vj − ~Vi =

 dvx
dvy
dvz


Let Gij be the Grassmannian matrix associated with Ãă ~Vij:

Gij = ~Vij.~V
T
ij

The decomposition of the weighted Grassmannian matrix into singular values
is thus written:

αij.Gij = Lij.Sij.U
T
ij

where αij is the weighting coefficient associated with the relative distance of
airplanes i and j (αij = exp(−αp.‖~dij‖)) and Sij is a diagonal matrix containing
the singular values.

The disparity factor of the relative speeds, cij, associated with the airplane pair
i, j is the product of the singular values greater than one:

cij =
∏

k,Skk>1
Skk

The overall factor is thus constructed by considering all pairs of airplanes:

Ccov =
∑
i

∑
j,j 6=i

cij

A mapped version of this indicator was also developed, and an example is
shown in figure 3.15.

As we see from the figure, this indicator clearly identifies zones where the
speed vectors are not structured. For the situation in the top right, however, the
indicator is unable to identify a rotation organization (situations which are rare
in ATC). This consideration leads us to look for an indicator which would be able
to show this type of organization while detecting the level of disorder of the speed
vectors. More specifically, we have developed a metric based on Koenig’s theorems
of solid mechanics which enables us to identify situations where traffic is organized
in rotation. Other geometrical metrics are discussed in [9].

When a traffic situation is organized following any trajectory, these geometric
metrics are unable to identify them. Moreover, they are only valid for a given
instant, and are therefore unsuited to measuring the complexity of a set of trajec-
tories over a given time period. These limitations naturally lead us to look at the
theory of dynamic systems to infer a complexity metric suited to trajectories and
not just to a set of speed vectors.
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Figure 3.15: Mapped Grassmannian indicator

3.3.3 Approach based on dynamic systems
These metrics are used to quantify the level of disorder and interaction of a set of
trajectories in a given zone of airspace.

Linear dynamic systems

This approach consists of modeling a set of trajectories using a linear dynamic
system with the following equation:

~̇X = A · ~X + ~B (3.7)

where ~X represents the state vector of the system.

~X =

 x
y
z

 (3.8)

This equation associates a speed vector ~̇X with each point in the state space ~X.
The coefficients of matrix A determine the mode of evolution of the system

in relation to its dynamics. More precisely, the eigenvalues of this matrix will
determine the behavior of the system. Thus, the real part of the eigenvalues
indicates whether the system is convergent or divergent in each of the eigenvectors.
An eigenvalue with a positive real part produces a divergence, and an eigenvalue
of which the real part is negative produces convergence. The absolute value of
these real parts is proportional to the level of contraction or expansion of the
system. The imaginary part of the eigenvalues shows the tendency of the system
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Figure 3.16: Location of the eigenvalues of matrix A. The central rectangle corre-
sponds to organized traffic situations (in pure rotation or in translation).

to organize itself following a global rotation movement associated with each of the
eigen axes.

In the complex plane, it is then possible to identify the locus of the eigenvalues
of matrix A associated with organized traffic situations (see figure 3.16).

Our problem therefore consists of determining the dynamic model which is
closest to the observations we have available at a given instant. The least squares
method is applied in order to adjust the model to the observations.

Let N be the number of observations at a given instant (number of airplanes
present in a sector at a given instant).

For each of these observations, we have a position measurement (see figure 3.17):

Xi =

 xi
yi
zi


and a speed measurement:

Vi =

 vxi
vyi
vzi


We thus wish to find the vector field described by a linear equation ( ~̇X =

A. ~X + ~B) which is best fitted to our observations. To illustrate this aspect, we
construct a grid over the airspace (see figure 3.18) on which we carry out regression

62



1V

V2

V3

X1

X3

X2

Figure 3.17: Radar captures associated with three aircraft

Figure 3.18: Vector field produced by the linear dynamic system

of a vector field in such a way as to minimize the error between the model and the
observation.

We then construct an error criterion E based on a norm (Euclidian, in our case)
which should be minimized in relation to matrix A and vector ~B, which represent
the parameters of the model:

E =

√√√√i=N∑
i=1

∥∥∥~Vi − (A. ~Xi + ~B
)∥∥∥2

We then insert the following matrices:

X =


x1 x2 x3 ... xN
y1 y2 y3 ... yN
z1 z2 z3 ... zN
1 1 1 ... 1


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V =

 vx1 vx2 vx3 ... vxN
vy1 vy2 vy3 ... vyN
vz1 vz2 vz3 ... vzN



C =

 a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3


Criterion E may then be written in the following form:

E = ‖V − C.X‖F

where ‖‖F represents the Frobenius norm2.
Minimizing E is equivalent to minimizing E2 = ‖V − C.X‖2. To do this, we

calculate the gradient of E2 in relation to matrix C :

∇CE
2 = −2.(V − C.X).XT

By canceling the above, we obtain:∇CE
2 = 0 ⇔ C.X.XT = V XT , which then

allows us to calculate Copt:

Copt = V.XT .(X.XT )−1

The expression XT .(X.XT )−1 is the pseudo-inverse of matrix X for which the
singular values decomposition is given by :

XT .(X.XT )−1 = LT .S−1.R

where S is the diagonal matrix of the singular values. This decomposition allows
us to control conditioning by only inversing singular values which are sufficiently
distant from zero. Matrix C is thus given by:

C = V.LT .S−1.R

We then extract matrix A, for which we calculate the associated eigenvalues:

A = L.D.UT

.
As an example (see figure 3.19), the eigenvalues of matrix A have been calcu-

lated for a situation with three airplanes located on a circle, for which only the
orientation of the speed vectors is modified in order to create four traffic situations
(organized traffic, convergence, divergence and rotation).

2The Frobenius norm of a matrix A is equal to the sum of the squares of its elements:‖A‖F =∑
i

∑
j A2

ij
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Figure 3.19: Representation of the eigenvalues of matrix A associated with 4 traffic
situations.

As we see in figure 3.19, the two organized traffic situations have eigenvalues
in the central band.

This approach, based on linear dynamic systems, thus produces a global mea-
surement of the level of organization of a set of trajectories. As the number of
degrees of freedom of the linear model is reduced, an error remains between the
model and the observation when we increase the number of measurements. To
increase the precision of this type of indicator, we have developed a spatial exten-
sion of the approach which allows us to create complexity maps associated with a
given airspace.

Spatial extension using non-linear dynamic systems

The previous metric can be improved by considering a non-linear model of the
associated dynamic system. The main difference between this and the previous
approach is that a non-linear system is located in a space. Thus, its value changes
from one point to another in this space, whereas a linear system remains constant.

The non-linear model takes the following form:

~̇X = ~f( ~X)

where f is a spatial evolution function of the dynamic model. We therefore

65



wish to find a function ~f which minimizes the interpolation criterion E1:

E1 =
i=N∑
i=1
‖~Vi − ~f( ~Xi)‖2

Note that it is always possible to determine a non-linear dynamic system in-
terpolating a set of data. In fact, an infinite number of functions ~f exist which
allow us to minimize the criterion E1 (with min(E1) = 0).

To obtain a unique solution, we need to introduce an additional regularity
criterion E2:

E2 =
∫
R3

{
α ‖∇div ~f( ~X) ‖2 + β ‖∇rot ~f( ~X) ‖2

}
.d ~X

The joint minimization of E1 and E2 induces a unique function ~f [14]:

~f( ~X) =
N∑
i=1

Φ(‖ ~X − ~Xi‖).~ai + A. ~X + ~B

where ~ai is the parameter vector. Matrix Φ (associated vector spline) is given by:

Φ(‖ ~X − ~Xi‖) = Q(‖ ~X − ~Xi‖3)

where Q is the matrix operator:

Q =


1
α
∂2
xx + 1

β
(∂2
yy + ∂2

zz) ( 1
α
− 1

β
)∂2
xy ( 1

α
− 1

β
)∂2
xz

( 1
α
− 1

β
)∂2
xy

1
α
∂2
yy + 1

β
(∂2
xx + ∂2

zz) ( 1
α
− 1

β
)∂2
yz

( 1
α
− 1

β
)∂2
xz ( 1

α
− 1

β
)∂2
yz

1
α
∂2
zz + 1

β
(∂2
xx + ∂2

yy)


In the same way as in the linear context, regression of the non-linear dynamic

system is carried out using the least squares method, with the difference that the
number of parameters to determine is much higher (⇒ A, ~B, ~ai (i ∈ {1, .., N})
i.e. a total of 3N+12 parameters).

This model thus allows us to construct a regular field which is perfectly fitted to
the observations (min(E1) = 0). Using this model, we can then apply Lyapunov’s
exponent theory in order to quantify the local level of organization of the vector
field. The principle of Lyapunov exponents consists of measuring the sensitivity of
the reconstituted vector field to initial conditions. To do this, we consider a point
in the state space ( ~x0) and we observe its trajectory (γ) when it is transported by
the field (like a dust mote in a wind field). We thus obtain:

γ(t, ~x0) = ~x0 +
∫ t

0
~f(u, γ(u, ~x0))du
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Figure 3.20: Temporal evolution of the reference trajectory and a trajectory taken
from the vicinity in ~x0.

We then consider a small disturbance (~ε) of the initial position ~x0 for which we
characterize the trajectory:

γ(t, ~x0 + ~ε) = γ(t, ~x0) +∇~x ~f(γ(t, ~x)) · ~ε+ o(‖~ε‖)

where ∇~x ~f(t, γ(t, ~x)) is the gradient of the field ~f at point ~x. Next, we measure the
distance between this new trajectory (taken from ~x) and the reference trajectory
in ~x0 (see figure 3.20):

‖γ(t, ~x0)− γ(t, ~x)‖ = D(t, ~x)

As γ(t, ~x) is controlled by the vector field ~f , we have:

∂γ(t, ~x)
∂t

= ~f(t, γ(t, ~x)) γ(0, ~x) = ~x

It is thus possible to demonstrate that the distance D(t) is also governed by a
differential equation:

∂D(t, ~x)
∂t

= ∇~x(t, γ(t, ~x)).D(t, ~x) D(0, ~x) = ‖~x− ~x0‖

As the previous equation is linear when considering the three dimensions of the
space (x, y, z), it is possible to carry out a matrix extension (variational field
equation):

dM(t)
dt

= ∇~x(t, γ(t, ~x)) ·M(t) M(0) = Id
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This equation represents a linear dynamic system which forms a “tangent” to
the initial system (at the point under consideration). We th en calculate the
decomposition of the matrix M(t) = U t(t)Σ(t)V (t) into singular values. The
Lyapunov exponents are calculated by averaging the logarithms of these singular
values over time (diagonal of matrix Σ(t)):

κ(~x) = − 1
T

∫ T

0
log(Σii(t))dt ∀Σii(t) ≤ 1 (3.9)

When an exponent has a high value, it shows a high sensitivity to initial condi-
tions (deviation ~ε). In this case, the two trajectories γ(t, ~x0) and γ(t, ~x0 +~ε) taken
by two particles in ~x0 and in ~x0 +~ε are very different. The future situation is thus
very difficult to predict in the zone of calculation of this exponent. On the other
hand, a Lyapunov exponent with a low value shows a well-organized situation
which is easy to predict. The map of the Lyapunov exponents allows us to identify
zones of the airspace where traffic is well organized (requires little monitoring)
and zones of disordered traffic. In organized zones, the relative distances between
aircraft remain stable over time, giving a stable situation with no modifications in
the near future.

The following stages are involved in calculating a map of Lyapunov exponents:

1. Regression of the non-linear dynamic system using the N radar observations
(position Xi and speed Vi). This allows us to fix the N coefficients ~ai, along
with the matrix A and the vector ~B.

2. Calculation of the gradient of the vector field for each point of a 3D grid:
∇~x ~f .

3. Calculation of the Lyapunov exponents for each point of the grid using a
Runge-Kutta integration:

κ(~x) = 1
L

i=L∑
i=1
‖∇~x(γ(t, ~x))‖2 '

(
1
L

L∑
l=1

log {max (Sing Value (∇~x(γ(t, ~x))))}
)

(3.10)
where L represents the number of integration time steps.

The critical stage of this calculation is linked to the regression of the non-linear
dynamic system, of complexity O[(3 ∗ (N + 4))3]. Taking α = β, we see that the
differential matrix operator is considerably simplified:

Φ(r) = Q(D)r3 =

 ∂2
xx + ∂2

yy + ∂2
zz 0 0

0 ∂2
xx + ∂2

yy + ∂2
zz 0

0 0 ∂2
xx + ∂2

yy + ∂2
zz


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The problem thus becomes:

min E1 =
i=N∑
i=1
‖~Vi − ~f( ~Xi)‖2

and

min E2

∫
R3
‖∆~f(~x)‖2d~x with ∆~f =


∂2fx
∂x2 + ∂2fx

∂y2 + ∂2fx
∂z2

∂2fy
∂x2 + ∂2fy

∂y2 + ∂2fy
∂z2

∂2fz
∂x2 + ∂2fz

∂y2 + ∂2fz
∂z2


where ∆~f represents the Laplacian of the vector field. From this, we deduce that

Φ(r) = 12

 r 0 0
0 r 0
0 0 r


Under this form, the complexity is reduced to O[3∗(N+4)3] and is thus divided

by 9. Furthermore, it is possible to determine a closed form of the spatial gradient
of the field:

∇ ~X
~f( ~X)


∂fx
∂x

∂fx
∂y

∂fx
∂z

∂fy
∂x

∂Φy
∂y

∂Φy
∂z

∂fz
∂x

∂fz
∂y

∂fz
∂z

 =

A +
N∑
i=1

 aix
aiy
aiz

 . [ ∂Φ(r−ri)
∂x

∂Φ(r−r−i)
∂y

∂Φ(r−ri)
∂z

]

(Φ(r) scalar function dependent on r =
√
x2 + y2 + z2)

∂Φ(r − ri)
∂x

= 12. x− xi
‖ ~X − ~Xi‖

∂Φ(r − ri)
∂y

= 12. y − yi
‖ ~X − ~Xi‖

∂Φ(r − ri)
∂z

= 12. z − zi
‖ ~X − ~Xi‖

.

The overall complexity of the algorithm is therefore:

• Regression: 3 ∗ (N + 4)3 (most critical point)

• Reconstruction N ∗M with M number of grid points.
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Figure 3.21: Map of Lyapunov exponents for four artificial traffic situations.

• Estimation of the gradient M

• Calculation of the Lyapunov exponents M ∗ L with L the number of time
steps used.

Note that the vector spline to solve this problem (Φ(r)) is not located in space.
Thus, the contribution of distant observations is more important than that of close
observations. In the context of our application, and as an example, this means
that to compute the vector field above New York, we need to take account of
distant traffic located over San Francisco, for example. The number of observations
to take into consideration in the least squares regression cannot be reduced by
considerations of spatial proximity.

Results using examples
The map (2D) of Lyapunov exponents associated with our four different traffic

situations is shown in figure 3.21. From this figure, we see that the Lyapunov
exponents are close for the pure conflict situation and the rotation situation. This
phenomenon is entirely logical. When we do the summation of the Lyapunov
exponents into a zone of the state space, the obtained value corresponds to the
minimum quantity of information (in the Shannon sense) to provide to the system
in order to configure it into a completely organized state (unidirectional field, null
relative speeds). In the same way, the deviation of the sums of the Lyapunov
exponents associated with two space state zones of the same volume corresponds
to the minimum quantity of information to provide to one situation in order to
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Figure 3.22: The Lyapunov exponents have low values at the level of the “Miles
In Trail” organized traffic, and high values in zones of disordered traffic

transform it into the other. Thus, the pure conflict situation and the rotation
situation are relatively close, in that we simply need to give the same direction
change order to all aircraft to move from one situation to the other (a heading
change of plus or minus 90 degrees); this constitutes a relatively small quantity of
information.

Lyapunov exponents can be used to identify any organizational structure. Fig-
ure 3.22, shows a simulation of “Miles In Trail” traffic (airplanes regularly spaced,
flying at the same speed from the South-West to the North-East) traversing two
zones of disordered traffic. As we see from the figure, a valley appears in the relief
of the Lyapunov exponents where the organized traffic is located.

Generally, Lyapunov exponents are able to identify all types of trajectory orga-
nization and not just structures following a straight line. A simple spatial extension
allows us to account for trajectories over a limited time period in a reasonable man-
ner. If the temporal horizon is extended to the whole of the trajectory (several
hours, in the case of air traffic), certain situations can generate results which have
no real meaning in operational terms. Thus, if we consider an artificial situation
where an airplane travels in a loop in the horizontal plane (see figure 3.23), the
spatial model may detect a conflict between the airplane and itself due to the fact
that observations are taken into account in the same manner with no consideration
for time differences.
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Figure 3.23: Looped trajectory in the horizontal plane

3.3.4 Spatiotemporal extension using non-linear dynamic
systems

The purpose of this extension is to allow temporal localization of the regression
carried out from our observations. A spatiotemporal dynamic system is governed
by an equation with the form:

~̇X = ~f( ~X, t)

We thus seek the vectorial function ~f( ~X, t) which ensures the precise interpolation
of our observations:

minE1 =
i=N∑
i=1

k=K∑
k=1
‖~Vi(tk)− ~f( ~Xi, tk)‖2

where ~Vi(tk) represents the observation of airplane i at instant tk. As in the purely
spatial case, an infinite number of functions ~f exist to ensure the minimization of
E. In order to obtain a unique solution, we add a criterion of regularity in space
and time:

minE2

∫
R3

∫
t
‖∆~f(~x)‖2 + ‖∂

~f

∂t
‖2d~xdt

Using a spectral approach, we are able to identify a closed form solution to the
problem:

~f( ~X, t) =
N∑
i=1

K∑
k=1

Φ(‖ ~X(t)− ~Xi(tk)‖, |t− tk|).~ai,k + A. ~X + ~B

with

Φ(r, t) = diag

 σ√
π.r

.erf
 r

σ.
√

2 + θ.|t|


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and
erf(x) = 2√

π

∫ x

0
e−t

2
dt

When the term in function “erf” is small, we use the following approximation:

Φ(r, t) = diag

 1
π.
√

2 + θ.|t|


We are also able to identify a closed form of the spatial gradient of ~f :

∇ ~X
~f( ~X, t) = A+

N∑
i=1

K∑
k=1

 aikx
aiky
aikz

 . [ ∂Φ(‖ ~X(t)− ~Xi(tk)‖,(t−tik))
∂x

∂Φ(‖ ~X(t)− ~Xi(tk)‖,(t−tik))
∂y

∂Φ(‖ ~X(t)− ~Xi(tk)‖,(t−tik))
∂z

]

∂Φ(∆r,∆t)
∂x

= µx− ηx

∂Φ(∆r,∆t)
∂y

= µy − ηy

∂Φ(∆r,∆t)
∂z

= µz − ηz

with
µ = Φ(∆r,∆t)

∆2
r

η = 2σ
π
.

1√
2 + θ.|t|

.e
− ∆2

r
σ2.(2+θ.|t|)

This computation is computationally expensive and a parallel implementation
of the Lyapunov exponents computation algorithm has been developed in this
thesis which is presented in the section. This way many Lyapunov exponents can
be computed on the GPU simultaneously.

3.4 Implementation of the Complexity algorithm
on GPU

Before presenting the implementation of the algorithm on the GPU, we propose
to remind some principles of the parallel computing.
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3.4.1 Sequential and Parallel Programming
Parallel computing is the simultaneous use of multiple computation resources to
solve a computational problem. It works only if problem can be broken into discrete
parts that can be solved concurrently, each part is further broken down into a series
of instructions which are executed simultaneously on different processors. Parallel
programming involves the concurrent computation or simultaneous execution of
processes or threads at the same time. Sequential programming involves ordered
execution of processes one after another. In contrast to sequential computation,
parallel programming processes can be executed concurrently. Some examples of
parallel and sequential programs are shown on figure 3.24. A serial program with
no parallelism simply performs tasks A, B, C, D in sequence. The time is shown in
our diagrams as going from top to bottom. A system with two parallel processors
might divide up work so one processor performs tasks A and B and the other
performs tasks C and D. Likewise, a four-way system may perform tasks A,B,C,D,
each using separate resources. Multiple processors can reduce the computing time
but sometimes there are many challenges. Subdividing tasks into subtasks requires
extra work and there are tasks that cannot be subdivided (see figure 3.25). The
first example of figure 3.25(a) shows that tasks B and C cannot be started before
A has finished. The second example on the figure 3.25(b) has one process A longer
than other processes. There linear speed up cannot be achieved.

In the next part, two problems are solved in parallel and sequentially. The first
example compares adding two vectors in two ways and the second one finds the
minimum value of set.

Figure 3.24: Independent software tasks can be run in parallel on multiple proces-
sors. In theory this can give linear speed up.

If two vectors, ~A = [a1a2 . . . an] and ~B = [b1b2 . . . bn], have the same number
of components, their sum, ~C = ~A + ~B = [a1 + b1a2 + b2 . . . an + bn], is the vector
obtained by adding the corresponding components from ~A and ~B. If the sequential
computing is used then elements of vectors are added one by one (see figure 3.26).
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Figure 3.25: (a) Tasks can be arranged to run in parallel as long as dependencies
are honored. (b) Tasks may take different amounts of time to be executed. Both
of these issues may reduce scalability.

If there are N elements in the vector then it takes N steps to find the sum of two
vectors. In this example there are four elements in the vector and it takes four
time steps to find the sum. If the same problem is solved in parallel then it may
take only one step (see figure 3.27). All instructions are executed in parallel. This
way it could be N times faster than the sequential version and is lower than the
number of available processors. where N is equal to vector size. This is not so in
practice because there are always some extra costs. For example, the data must
be copied between CPU and parallel processor and it takes additional time.

Figure 3.26: Vectors addition computed on a CPU
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Figure 3.27: Vector addition computed on a GPU

The next example shows the process of finding the minimum value of a set with
a parallel algorithm. If we consider a set of integers (S) for which the minimum of
this set must be found, then all the elements are compared with the current mini-
mum value.(see figure 3.28). For example, if S = {10; 22; 8; 12; 7; 24; 18; 6} then at
each step the minimum value is updated. This process needs seven comparisons
and it takes seven steps. The same computation could be done in parallel (see
figure 3.29). We consider the same eight integers but this time those integers are
compared pairwise. All those comparisons can be done simultaneously. At the
first step four comparisons are done on the first level of the tree. Next on the
second level, two comparisons are done and on the third level one comparisons is
executed. All the comparisons that are on the same level are computed at the
same time. So, one level of this tree is equal to one time step of computation on
parallel processors. The amount of computation is the same as for the sequential
computation because the number of comparisons are equal to seven for both cases
but because comparisons are independent of each other, it takes only three time
steps instead of seven for sequential case. All these computations can be done on
the graphics processing units that are developed for using thousands of threads
simultaneously.

76



Figure 3.28: Computing sequentially the minimum value of a set of elements

Figure 3.29: Computing the minimum value of a set of elements in parallel
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The Lyapunov exponents computation algorithm has been extended on the
GPU. Before presenting such implementation, the next section introduces the ba-
sics of the GPU.

3.4.2 Graphics Processing Units
Graphics processing units (GPUs) have, for many years, powered the display of im-
ages and motion on computer displays. GPUs are now powerful enough to do more
than just move images across the screen. They are capable of performing high-end
computations that are the staple of many engineering activities. Graphics pro-
cessors provide a vast number of simple, data-parallel, deeply multithreaded cores
and very high memory bandwidths. GPU architectures are becoming increasingly
programmable, offering the potential for dramatic speedups for a variety of gen-
eral purpose applications compared to contemporary general-purpose processors
(CPUs). The reason behind the discrepancy in floating-point capability between
the CPU and the GPU is that the GPU is specialized for compute-intensive, highly
parallel computation - exactly what graphics rendering is about - and therefore
designed such that about 80 per cent of transistors are devoted to data processing
rather than data caching and flow control. Because the same function is executed
on each element of data with high arithmetic intensity as schematically illustrated
by figure 3.30. GPU promises speedup that can reach an order of magnitude over
current CPU (Multicore) architectures. Previously these processing units were
dedicated to 2D/3D rendering and some specifically wired video acceleration. 3D
rendering standard specifications included new features at each new version, espe-
cially about shaders capabilities, thus GPU became suitable for general purpose
stream processing.

Memory accesses are among the slowest operations of a processor, due to the
fact that Moore’s law has increased instruction performance at a much greater
rate than it has increased memory performance. This difference in performance
increase rate means that memory operations have been getting expensive compared
to simple register-to-register instructions. Modern CPUs support large caches in
order to reduce the overhead of these expensive memory accesses. GPUs use
another strategy so as to cope with this issue. Massive parallelism can feed the
GPU with enough computational operations while waiting for pending memory
operations to finish. This different execution strategy implies to look for new
implementation ideas. The GPU is especially well-suited to address problems
that can be expressed as data-parallel computation (the same program is executed
on many data elements in parallel) with high arithmetic intensity (the ratio of
arithmetic operation to memory operations). This architecture was designed for
image rendering and processing but data-parallel processing can be also found
in physics simulation, signal processing, computational finance or biology. Those

78



Figure 3.30: GPU has more transistors for data processing

algorithms can be accelerated radically using GPU.
While GPU has many benefits such as more computing power, larger memory

bandwidth, and low power consumption regarding the high computing ability,
there are some constraints to fully utilize its processing power. These constraints
make performance optimization more difficult and also its debugging environment
is not as powerful as in general CPU. Therefore, developing a code with GPU can
takes more time and need more sophisticated work. In addition, GPU code runs
in parallel so that data partition and synchronization technique are needed. In
some cases of algorithm, there are often no algorithms which can be fit into GPU
so that a new parallel algorithm for GPU needs to be developed. GPUs has been
by many different companies. There exists also many languages for programming
those processors. NVIDIA that is famous GPU producers has developed language
CUDA for programming GPUS.

CUDA stands for Compute Unified Device Architecture, and is an extension
of the C programming language and was created by NVIDIA. Using CUDA allows
the programmer to take advantage of the massive parallel computing power of an
NVIDIA graphics card in order to do general purpose computation.

CPUs like Intel and AMD are good at doing one or two tasks at a time, and
doing those tasks very quickly. Graphics cards, on the other hand, are good at
doing a massive number tasks at the same time, and doing those tasks relatively
quickly.. An NVIDIA graphics card has the computational ability to calculate
the color of 2,304,000 different pixels for a monitor with a standard resolution of
1,920 x 1200, many times a second. In order to accomplish this feature, graphics
cards use dozens, even hundreds of ALUs. An arithmetic logic unit (ALU) is
a combinational digital electronic circuit that performs arithmetic and bitwise
operations on integer binary numbers. NVIDIA’s ALUs are fully programmable,
which enables us to harness an unprecedented amount of computational power
into the programs that we write.

As stated previously, CUDA lets the programmer take advantage of the hun-
dreds of ALUs inside a graphics processor, which is much more powerful than the
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handful of ALUs available in any CPU. This does put a limit on the types of
applications that are well suited to CUDA.

In order to run efficiently on a GPU, there must be many hundreds of threads.
Generally, the more threads you have, the better. If there is an algorithm that is
mostly serial, then it does not make sense to use CUDA. Many serial algorithms
do have parallel equivalents, but many do not. If you the problem can’t be divided
into at least a thousand threads, then CUDA probably is not the best solution.

The GPU is fully capable of doing 32-bit integer and floating point operations.
In fact, it GPUs are more suited for floating point computations Some of the higher
end graphics cards do have double floating point units, however there is only one
64-bit floating point unit for every 16 32-bit floating point units. So using double
floating point numbers with CUDA should be avoided if they aren’t absolutely
necessary .

Most modern CPUs have a couple megabytes of L2 cache because most pro-
grams have high data coherency. However, when working quickly across a large
dataset, say 500 megabytes, the L2 cache may not be as helpful. The memory
interface for GPUs is very different from the memory interface of CPUs. GPUs
use massive parallel interfaces in order to connect with it’s memory. This type of
interface is approximately 10 times faster than a typical CPU to memory inter-
face, which is great. It is worth noting that most NVIDIA graphics cards do not
have more than 1 gigabyte of memory. NVIDIA does offer special CUDA compute
cards which have up to four gigabytes of RAM on board, but these cards are more
expensive than cards originally intended for gaming.

In the next section Lyapunov computation on a GPU is introduced.

3.4.3 Sequential implementation
Software for Lyapunov exponent computation is divided into three main parts:
the least mean squares (LMS) algorithm, the computation of gradients and the
Runge-Kutta method (see figure 3.31).

The LMS Algorithm

The first part of our software finds a dynamical system that represents the traf-
fic situation in the airspace. This dynamical system is defined by the following
equation:

~̇X = ~f( ~X, t) =
K∑
i=1

N∑
i=1

Φ(‖ ~X − ~Xi‖) · ~aik + A · ~X + ~B (3.11)

This non-linear model helps to describe the complexity in the airspace more
precisely (compared to linear version). Those three variables ~A, ~B and ~aik can be
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Figure 3.31: The figure shows the sequential structure of the proposed method.
Only one Lyapunov exponent value is computed at a time.

found by solving following minimization problem:

min
N∑
i=1

K∑
i=1
‖~Vi(tk)− ~f(Xi, tk)‖ (3.12)

where ~Vi(tk) corresponds to the speed of aircraft i at the time tk and ~f(Xi, tk)
represents the associated model of the speed at the same time where the aircraft
is located ~X.

The Intel MKL library is used to solve this minimization problem. The dgels
function solves this minimization problem by using the least squares method (im-
plemented with a QR decomposition).

Those three different variables that are output by the dgels function are used
for computing gradients in the next section.

Gradient Computation

This part of our software computes gradients at the points where we have to find
complexity values. Coefficients ~aik and the matrix ~A and the vector ~B are used
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to compute gradients ∇ ~Xf( ~X, t) at the point ~X. As gradients changes with time
then t is used also as an input variable.

The spatial gradient can be computed with the following function:

∇ ~Xf( ~X, t) =


∂fx
∂x

∂fx
∂y

∂fx
∂z

∂fy
∂x

∂fy
∂y

∂fy
∂z

∂fy
∂x

∂fy
∂y

∂fy
∂z

 =

A+
N∑
i=1

K∑
i=1

~ai ·
[
∂φ(( ~X−Xi),(t−tik))

∂x
∂φ(( ~X−Xi),(t−tik))

∂y
∂φ(( ~X−Xi),(t−tik))

∂z

] (3.13)

Those gradient values are needed to understand the evolution of trajectories.
Figure 3.32 shows two consecutive traffic samples. On the right figure all aircraft
has moved one step further. This gradient computation process is repeated for
each point where we compute complexity values. So, if complexity is computed
on trajectories then gradient values are computed for each point on the trajectory.
In order to predict the future evolution of the dynamical system to compute the
Lyapunov exponent with formula 3.9, several gradients are also computed for fu-
ture time steps. At each point, gradients are computed for several time steps in
order to prepare the Runge-Kutta integration (eq. 3.9) used for computing Lya-
punov exponents(see figure 3.33). If we are interested in longer behaviour then
this number can be increased.

In the next section those gradient values are used for computing with a Runge-
Kutta method.

Runge-Kutta method

The third step computes Lyapunov exponent values that are used for estimating
the air traffic complexity. The Runge-Kutta method is used to integrate numeri-
cally with time evolution. We use gradients ∇if( ~X, t) that were at the previous
step for computing constructing a differential equation system:

dM(t)
dt = ∇ ~Xf( ~X, t) (3.14)

M(0) = Id (3.15)

This equation system is solved by the Runge-Kutta method. At each time step
t the divergence of the trajectory is computed. Finally, all those divergences are
added. This gives the Lyapunov exponent at the gridpoint.
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Figure 3.32: Two consecutive traffic situations in the airspace. Gradients are
computed at the points that aircraft pass. Those points are marked by circles.

Figure 3.33: Gradient values are computed multiple times for the same grid point.

3.4.4 Parallel implementation on GPU
The sequential implementation that was introduced in the previous section, was
not fast enough for applying it in operation. If a large airspace is used then
computation time depends on the number of gridpoints and the number of aircraft
in the airspace. The proposed parrallel implemntation reduces computation time
significantly (see figure 3.31).

The LMS Algorithm

This computation is done as in the sequential case due to the fact such algorithm
is not able to be parallelized.

Gradient Computation+Runge-Kutta method on GPU

Gradients ∇ ~X have to be computed thousand of times for analysing the air traffic
complexity. In the our previous section gradients were computed one by one (see
figure 3.35).
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Figure 3.34: The figure shows the sequential structure of the proposed method.
Only one thread is used for computing.

One step of this sequential algorithm (see figure 3.35) consists of coping in-
put data from memory to CPU. After computation the gradient values ∇ ~X values
are copied back to memory. This way only one gradient value is computed and
copied back to memory at each time step. This sequential implementation can be
improved by computing multiple gradient values simultaneously. It is possible be-
cause those computations are independent of each other because all the input val-
ues are known at the beginning of gradient computation (see figure 3.36). Aircraft
positions are also known already at the beginning of computation. Coefficients ~A
and ~aik have been computed at the previous step (LMS).

The third step consists of computing Lyapunov exponents. Those Lyapunov
exponent values are computed for each grid (see figure 3.32). In the sequential
version of the algorithm, only one Lyapunov exponent was computed at one time
step (see figure 3.37).

Gradient values ∇ ~X for one grid point were copied to CPU. The Runge-Kutta
method was applied at this step and the function returns a Lyapunov exponent
value ∇ ~X for the trajectory point ~X. We can see that only one ∇ ~X value is
returned at one time step t. There exists thousands of points where we have
to compute the complexity value κ. Also for one point the process is repeated
thousands of times. There is not dependency between Lyapunov exponent values
at neighbouring trajectory points. It means we could compute complexity values
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Figure 3.35: For a given grid point, only one gradient value is computed at one
timestep t. The same function is called sequentially.

in random order without influencing the final result κ(see figure 3.38). We have
implemented our software on the GPU that cannot have more than 1024 threads.

It is time consuming to compute data between the GPU and the external
memory. The gradient computation on the figure 3.38 and the Lyapunov exponent
computation on the figure 3.36 copy the input data to the GPU and results back to
memory at each step. The computation time could be reduced by combining both
algorithms (see figure 3.39). If this strategy is used then gradients values are never
copied to the memory before being used for computing Lyapunov exponent values.
Those gradient values are not needed after the Lyapunov exponent computing
process. It is very important to reduce the time needed for coping data because
it may take even more time than computing process itself. If this solution is used
then gradient values are never copied between the GPU and the external memory.

The next section presents the results produced by those algorithms in the
operational context.
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Figure 3.36: Multiple input values are copied simultaneously to the GPU. This
way multiple gradient values are computed simultaneously.

3.4.5 Results
Our algorithm has been evaluated on three different datasets:

1. French airspace (see figure 3.41)

2. Reims ACC (pink airspace on figure 3.41)

3. European airspace(see figure 3.40)

Radar data set, corresponding to controlled traffic, has been used to compute
air traffic complexity in such airspaces. The problem with controlled traffic is
linked to the complexity which has been removed. As a matter of fact, after
action of controllers, fortunately, there is no more conflict between aircraft and in
order to recover the initial traffic complexity (with conflicts), a pre-processing on
radar tracks has been applied. This processing try to reproduce the traffic as it
has been seen by the controllers before acting on it(see figure 3.42).

A GeForce GTX 660 GPU Ti was used for computation. The radar data was
used for computing Lyapunov Exponents. The parallel computation of Lyapunov
exponents provided strong speed up of computation (see table 3.2).
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Figure 3.37: Lypaunov exponents are computed sequentially. Only one complexity
value is returned at each time step.

Number of Computation time Computation time
gridpoints on CPU [s] on GPU [s]

50000 11,0 0,15
100000 23,0 0,31
300000 68,0 0,73

Table 3.1: Lyapunov exponent computation comparison on the French airspace.
Each line correspond to different grid size.

The first column gives the number of grid points where Lyapunov exponents
were computed. The second column gives information about Lyapunov exponents
computation with CPU. The third column describes the computation time with
GPU.

The complexity of air traffic can be used to build a map of workload. On the
following figure 3.43, red color indicates the higher complexity of air traffic and
higher workload for air traffic controllers. If the complexity of the air traffic in a
given area is low (blue color) then air traffic controller could accept more aircraft
in such area where the traffic is organized (see figure 3.43b).

In another experiment, we propose to use our metric to predict the number of
control position needed in a control center (for the Reims ACC for which airspace
structure is shown on figure 3.44). By aggregated the Lyapunov exponents, one
can summarize a given traffic situation by a scalar number (real number) which
could be roughly compared to the number of controller which are working in the
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Figure 3.38: Multiple complexity values κ are computed simultaneously on the
GPU. It computes complexities at the same time for many grid points.

control center (integer number).
The figure3.45 shows two curves which correspond to the evolution, with time,

of the number of controllers (red curve) and the aggregated complexity number
(blue curve).One can notice a good correlation between the two curves. When the
complexity of the ACC is increasing then the number of air traffic controllers who
are working is increasing also. If the complexity is not high then the number of
controllers who work is also decreasing (see figure 3.45).

Finally, we have compared the accuracy of the complexity computation for the
three airspace by comparing performances between CPU and GPU. Again, such
comparison has been done for the three previous data sets : Reims ACC, French
airspace, European airspace. Results for the French airspace are given on table 3.3.

Number of Computation time Computation time
gridpoints on CPU [s] on GPU [s]

50000 11,0 0,15
100000 23,0 0,31
300000 68,0 0,73

Table 3.2: Lyapunov exponent computation comparison on the French airspace.
Each line correspond to different grid size.
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Figure 3.39: The gradient computation and the Lyapunov exponent computation
are combined. It reduces the computation time because less data coping operations
are needed.

Ten traffic situations have been evaluation in terms of aggregated complexity,
for which the maximum relative error is 0.87% at maximum.

Similar results for the Reims ACC airspace and the European airspace are
shown of table 3.5 and table 3.6.

Again error was always smaller than 1 percent. This error comes from different
codings used for real number implementation used by the CPU and the GPU. For
example, in the CPU real numbers are coded by “double” but such number are
coded with “float” in the GPU in order to improve the associated performance.

3.5 Conclusion
The number of aircraft that are in the airspace will increase in the future. We have
evaluate how many aircraft can be controlled by one controller. If the complexity
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Figure 3.40: European Airspace

is estimated only as a number of aircraft in the sector then it may not describe
the situation precisely. Air traffic controllers may sometimes accept more aircraft
because the structure of traffic is different. So, if we know geometric features of
traffic then air traffic controllers may accept more aircraft.

A method based on dynamical systems based complexity computation has
been developed for measuring air traffic complexity. An efficient implementa-
tion of this algorithm on GPU has been proposed in order to strongly speed-up
the performance of the computation. We implemented GPU parallel method for
the Lyapunov exponent computation because the traditional CPU program was
time-consuming.

Three different airspaces were used for testing the proposed method. Our
algorithm was tested with three airspaces: the Reims ATC, the French airspace
and the European airspace.

Complexity values that were computed on the GPU were compared to values
that were computed sequentially on the CPU. The GPU computation is hundred
faster than CPU computation allowing real time computation of complexity for
large traffic samples.

In the next chapter dynamical system based complexity metric is used for
computing sectorization of the French Airspace.

.
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Figure 3.41: French Airspace

Figure 3.42: Aircraft trajectory projection. This figure shows on the left the initial
traffic seen by the controller. The center correspond to the radar extraction with
maneuver. On the right, one can see the traffic rebuilt by the prepossessing step.
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(a) French airspace with more
complex situation

(b) French airspace with less
complex situations

Figure 3.43: Those figures present two traffic situations for which complexity map
have been computed. The left figure shows a complex traffic situation and the
right one correspond to an easy one..

Figure 3.44: Sectors in the Reims ACC

92



Figure 3.45: Workload and complexity comparison

Case CPU vs GPU
result error (%)

1 0.09
2 0.87
3 0.84
4 0.81
5 0.77
6 0.77
7 0.75
8 0.74
9 0.72
10 0.72

Table 3.3: French airspace computation error. In this table, ten cases have been
evaluated. Each case correspond to a given traffic situation for which complexity
metric has been computed by the CPU and also by the GPU. The associated
relative error between the two methods are given in the right column.
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Table 3.4: Reims ACC computation error

Case CPU vs GPU
result error (%)

1 0.78
2 0.77
3 0.75
4 0.75
5 0.74
6 0.73
7 0.73
8 0.70
9 0.66
10 0.64

Table 3.5: French airspace computation error. In this table, ten cases have been
evaluated. Each case correspond to a given traffic situation for which complexity
metric has been computed by the CPU and also by the GPU. The associated
relative error between the two methods are given in the right column.

Case CPU vs GPU
result error (%)

1 0.92
2 0.91
3 0.88
4 0.84
5 0.80
6 0.79
7 0.77
8 0.73
9 0.71
10 0.70

Table 3.6: European airspace computation error
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Chapter 4

Mixed integer linear
programming for dynamic
airspace configuration

This chapter introduces Mixed Integer Linear Programming (MILP) mathematical
formulations of the multi-period dynamic Airspace Configuration problem (MP-
DAC) and the solution method proposed, based on a branch-and-price algorithm
for an extended formulation.

The MPDAC consists in designing the airspace configuration of each time pe-
riod of a given discretized time horizon. The problem takes into account explicitly
both the need to adapt the airspace according to the dynamic of the traffic and
the need to use similar airspace configurations over consecutive time periods since
the air traffic controllers have to adapt to the configuration changes (see chapter
1).

Input data are the (i) number of air traffic controllers available at each time
period and (ii) the state and evolution of the air traffic during the time horizon.
The later are given in the form of multiple weighted graphs, one graph per time
period. For details about the use of weighted graphs to model the state of air traffic
at a given time, please refer to chapter 2. Expected output are configurations per
time period. The new solution methods proposed are MILP-based because this
can allow for the computation of optimal solutions to the problem, contrary to
classical (meta-)heuristic-based solution methods from the literature (see chapter
2).

The chapter is organized as follows: section 4.1 presents a brief overview of
MILP classical models and solution methods, section 4.2 details four MILP formu-
lations proposed for the dynamic sectorization problem, section 4.3 focuses on the
solution method proposed based a branch-and-price algorithm applied on an ex-
tended formulation, finally section 4.4 presents the computational results obtained
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in comparison to the existing solution at a real-world air traffic control center and
state-of-the-art algorithms.

4.1 Fundamentals of (Mixed) Integer Linear Pro-
gramming

4.1.1 Linear Programming basic concepts
A mathematical program is a constrained optimization problem, meaning that it
consists in minimizing (or maximizing) a function under a set of constraints. It
can be written in the form:

(P ) min f(x) (4.1)

subject to (s.t.)

gi(x) ≤ 0, i = 1, ...,m (4.2)
x ∈ X (4.3)

Here, vector x ∈ X is composed of x1, ...xn which are the variables of the problem.
Function f is called objective-function or cost-function. Conditions (4.2)-(4.3) are
the constraints of problem (P).

A feasible solution (simply denoted “solution”) of problem (P) is a vector that
satisfies all of the constraints. The cost of a solution is the corresponding value of
objective-function f(x). An optimal solution of (P) is a solution that minimizes
f(x) among the set of all (feasible) solutions. It is also refered to as (global)
optimum.

A mathematical program is a linear program (LP) if the objective-function and
the constraints are all linear. It is called an Integer program (IP) if all variables
can only take integer values, whereas a mixed integer linear program (MILP) is
obtained if some variables must be integer while others must not.

Modeling a problem such as the MPDAC as an IP or a MILP therefore consists
in defining:

• the set of variables, representing the decisions or choices to be made

• the objective-function expressed as a linear combination of the variables,
representing the objective(s) to fulfill in terms of expressions to minimize

• the set of constraints expressed as linear combinations of the variables, rep-
resenting the conditions or limitations (e.g. sector design constraints such
as connectivity constraints, ...) to take into account when designing feasible
solutions
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Relaxation
Relaxing an IP or a MILP consists in general in suppressing some of its constraints,
or replacing them with weaker constraints. The resulting problem is often easier
to solve than the original one. A good relaxation has an optimal solution that may
either be feasible for the original problem which means also optimal for it, or not
be feasible but have a cost close to the optimum of the original problem. On the
other hand, a poor relaxation produces solutions whose cost are very far from the
optimum of the original problem.

Linear relaxation consists in the suppression of the constraints of integrity
of the variables of the IP or MILP, so as to obtain an LP, which is equivalent
to authorizing non-integer solutions, called fractional solutions. Other types of
relaxations such as Lagrangian relaxation modify the objective-function

Duality
Duality is a fundamental concept in linear programming. Let (P) be a linear
problem where A is the constraint matrix, x is the vector of variables, b is the
vector of right-hand-sides (r.h.s.) and c is the vector of costs. We can associate
(P) to its dual problem (D), defined as a linear program with constraint matrix
AT , vector of variables u, vector of r.h.s. c and vector of cost b, in accordance to
the Table 4.1. In such case, (P) is referred to as the primal problem and (D) as
its dual.

(P) Primal Dual (D)
min z = cx Objective-function (min) r.h.s. maxw = ub

r.h.s. Objective-function (max)
s.t. A constraint matrix AT constraint matrix s.t.

constraint i of type ≥ variable ui ≥ 0
Ax ≤ b constraint i of type = variable ui ∈ R uAT ≤ c

variable xj ≥ 0 constraint j of type ≤
x ≥ 0 variable xj ∈ R constraint j fo type = u ≤ 0

Table 4.1: Primal-Dual relations between linear programs

There are special relationships between the two problems, among which :

• the dual of (D) is (P)

• if x is a solution of (P) and u a solution of D, therefore z = cx ≥ w = ub

• if two solutions x∗ of (P) and u∗ of (D) have the same cost, then that cost is
optimal for both problems
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• the reduced cost c̃j of the variable xj is

c̃j = cj − uAj (4.4)

Therefore in minimization, the cost of a solution of (D) is a lower bound for the
optimum whereas the cost of a solution of (P) is an upper bound for the optimum.
The reduced cost of a variable corresponds to the impact on the objective-function
of a unitary increment of its current value. At the optimum, the reduced cost of all
variables is greater or equal to 0 (the existence of variables with negative reduced
cost would mean that the objective-function could be reduced by increasing the
value of these variables).

4.1.2 (Classical) Solution Methods
A problem modeled as an LP can be easily solved with the simplex algorithm for
exemple. It is also the case of the LP resulting from the linear relaxation of an IP or
MILP. However, rounding up or down the continous solution to obtain an integer
solution is not sufficient and often leads to unsatisfactory results. It is in addition
not very difficult to build tests cases where the continuous optimum is very far from
the integer optimum. Solving an IP or MILP therefore requires dedicated exact
solution methods such as branch-and-bound algorithms, cutting planes, column
generation, dynamic programming, ... These methods are designed to find the
optimal solution of the problem, contrary to heuristics/localsearch/metaheuristics
which aim at producing good quality solutions within a short computing time but
without the guarantee of optimality. The remainder of this section focusses on the
three exact methods relevant for solving the mathematical formulations that will
be introduced in section 4.2 to model our MPDAC problem.

Branch-and-Bound Approach
Branch-and-bound is a general-purpose approach capable of solving pure IP, mixed
IP, and binary IP problems ([25]). For ease of exposition, sometimes we shall
assume that the given problem is a pure IP problem because the algorithms can
be easily adapted to mixed or binary IP problems. Theoretically, any pure IP
problem with finite bounds on integer variables can be solved by enumerating all
possible combinations of integer values and determining the best feasible solution.
Unfortunately, the number of all possible combinations is prohibitively large to
be evaluated even for a small problem. For example, a computer able to evaluate
109 solutions in a second (which would already be a great performance) would
require more than 30 years to evaluate the full set of 2n potential solutions of an

98



IP with n = 60 binary variables and more than 30000 years for n = 70. Therefore,
complete enumeration is practically intractable.

As a better alternative, the branching procedure divides the problem in a given
number of subproblems, each having its own set of feasible solutions, so that all
these sets form a set covering (ideally a partition) of the initial set S. In this
way, solving all subproblems and selecting the best found solution is equivalent to
solving the initial problem. This branching principle can be applied recursively
to each of the subsets of solutions found, as long as there are subsets containing
multiple solutions. The set of the solutions (and related subproblems) built in
this manner can be assimilated to vertices with natural tree-based hierarchy called
search-tree or decision-tree.

The bounding procedure aims at reducing the size of the search tree by elimi-
nating vertices that do not contain the optimum. To that end, at each iteration of
the branching procedure, an under-estimator also called lower bound (in the case
of minimization) of the cost of the best solution at each vertices is computed. This
lower bound is often obtained by solving a relaxation (linear, Lagrangian, ...) of
the problem corresponding to the vertex of the tree. If one of these bounds exceeds
the cost of the best current known feasible solution, then we can be certain that
the corresponding vertex does not contain the optimum. It is useless to continue
to explore such a vertex, it can be eliminated. If the vertex is not eliminated there
are two possible situations that can occur:

• either the solution of the relaxed problem is feasible for the un-relaxed prob-
lem at that vertex. Then the solution found is feasible for the original MILP
and no branching should be applied on this vertex anymore. The solution
found replaces the best known feasible solution if its cost is better.

• or the solution of the relaxed problem is not feasible for the un-relaxed
problem at that vertex. Then the branching procedure can be applied to the
vertex.

Having good bounding procedures and a good initial feasible solution therefore
allows to eliminate vertices faster, which accelerates the search of the optimum.

Classically, the exploration of the search tree is done Depth-first or Best-bound-
first. The dept-first strategy operates with a priority rule LIFO (Last In First Out),
meaning that priority is given to the most recent vertices. The goal is to quickly
obtain a feasible solution and to limit the memory usage. On the other hand, the
best-bound-first strategy prioritizes the vertex with the best bound. The goal is
to quickly improve the solutions values and consequently reduce the solution time,
but this usually requires more memory ressources since many active vertices need
to be kept in memory in parallel.
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Cutting Plane Approach
Cutting plane solution method as introduced by [30] are based on the idea of
simplifying the solution of a problem by relaxing some of its constraints, usually
integrity constraints. If the optimal solution of the relaxed problem is feasible for
the original problem, then it is the optimum searched for. If not, then there exists
constraints of the original problem that are not satisfied by the current solution.
Therefore it is necessary to find a subset of these violated constraints, then called
“cuts” and add them to the relaxation before solving it again. The procedure
continues until either the solution obtained is feasible for the original problem or
the procedures for identifying cuts are not able to find anymore violated inequality.
In the latter case, the cost of the last solution is a lower bound of the optimum
cost if it is the minimization problem, or an upper bound if it is a maximization
problem.

The efficiency of a cutting plane solution method lies upon the (i) the quality
of the relaxation, meaning the gap between the cost of optimal solutions of the
original and relaxed problem, and (ii) the efficiency of the methods that identify
violated inequalities for a given relaxation solution.

When cutting plane is used to compute good lower bounds at each node of a
branch-and-bound method, the resulting algorithm is a branch-and-cut algorithm
([27]).

Column generation
Column generation is an efficient solution method for problems where the number
of variables is too large to be represented explicitely. The idea is to solve such
problem taking into account a reduced set of variables at a time. This is possible
because in the optimal solution the majority of variables take a nil value, meaning
that only a small subset of non-nil variables is mandatory to solve the problem, in
the worse case equal to the number of constraints. A column generation method
therefore initializes the linear program with a small subset of columns, called the
master problem, solved to obtained a solution. One of two situations can therefore
occur:

• either all neglected columns have a positive or nil reduced cost: that means
that the solution obtained is feasible for the linear relaxation of the original
problem and its cost is its optimum. Indeed, even if the neglected columns
were taken into account the impact on the objective-function would be nil
and the solution would remain the same

• or there exist columns with negative reduced costs among the neglected ones:
this means that taking them into account would lead to a different solution
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of lower cost than the current one, which is therefore not optimal for the
original problem. Columns with negative reduced costs must be inserted
into the master problem and the latter must be solved again

The efficiency of a column generation method lies upon the efficiency of its two
procedures: (i) the solution of each master problem, which must be fast because
it will be relaunched at each iteration, and (ii) the procedure to detect or generate
columns with negative reduced cost, which must operate without enumerating
explicitly all neglected columns. Reduced costs are computed with equation (4.4)
using the dual variables values derived from the current solution of the master
problem.

When column generation is combined with a branch-and-bound procedure, the
resulting algorithm is a branch-and-price. When the latter is also combined with
a cutting plane, the resulting method is a branch-and-cut-and-price ([11]).

4.2 MILP formulations for the MPDAC problem
This section presents the problem statement and four mathematical formulations
for the MPDAC problem. The formulations present different characteristics in
terms of number of variables and constraints, and therefore are suitable for different
solution methods.

4.2.1 Problem statement
Let T = 1, ..., |T | represent the discretized time horizon and let nt,∀t ∈ T be
the number of airtraffic controllers available at time t. The airspace is modeled
with a time-dependent weighted graph G = (V,E,W t, t ∈ T ) where V is the set
of vertices, E is the set of edges and W t is the set of edge weights and vertices
weights at time period t ∈ T . Each vertex v ∈ V represents an elementary sector
(e-sector) sv of the airspace and its weight wtv corresponds to the e-sector workload
at time t which reflects the monitoring and the complexity workload at time t.
Each edge (e = (ie, je) ) represents the frontier between two adjacent e-sectors
(sie and sje). Its weight wte corresponds to the coordination workload from the
planes crossing the border if the two e-sectors belong to two different controllers
at time t. The goal is to define a valid airspace configuration for each time period
t ∈ T . A solution of MPDAC is therefore a graph partitioning of G for each
time period t, where vertices belonging to the same separated component at time
period t correspond to e-sectors grouped together to form a valid controlled sector
(c-sector) assigned to a controller at time period t. Two variants of the MPDAC
can be obtained, depending on whether the number of components at each time
period is predefined or not, i.e if nt is an input data or a variable. In this work we
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Figure 4.1: Example of solution with T = 4

focus on the case where nt is an input data. An example of solution with |T = 4|
is provided on figure 4.1. It can be seen that the airspace configuration and even
the number of c-sectors vary over time (11 at time period 1 but 9 at time period
4).

Recall that any grouping of e-sectors already satisfy safety constraints and
minimum dwell time constraints, but valid c-sectors must also satisfy route con-
vexity constraints and connectivity constraints. The route constraints are defined
with regards to a given set of routes R which can represent airways of airplanes
trajectories. For any pair of vertices (v′, v′′) ∈ V 2 and for any route r ∈ R, the
subset V r

v′,v′′ ⊂ V is the subset of vertices such that their corresponding sectors
are crossed by route r ∈ R after sv′ and before sv′′ . In this case V r

v′,v′′ = ∅ if sv′

and sv′′ are visited consecutively by route r or if at least one of the two e-sectors is
not traversed by route r. In practice, to ensure that a configuration could remain
feasible for other new airways, route convexity constraints are often replaced with
shape compactness constraints for the c-sectors designed.

Three main objectives are considered for minimization: (a) the air traffic con-
trollers workload, (b) the workload difference between controllers, and (c) the
changes between consecutive configurations. Therefore, the static cost of a solu-
tion is covered by the first two objectives and measures the quality of the sector
grouping of each time period. The dynamic cost of a solution is covered by the
third objective and measures the change rate between consecutive configurations.
The user can therefore define his unique objective-function as a weighted sum of
the three objectives α(a) + β(b) + γ(c) using γ to increase or decrease the rel-
ative importance of stability, i.e. the higher γ, the less changes will be favored
among consecutive airspace configurations. The air traffic controllers workload is
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restricted to the coordination workload ( from airplanes changing c-sectors). This
is done because the two other components of air traffic controllers workload, which
are traffic monitoring and conflict management, do not depend on the airspace con-
figuration: all valid airspace configurations of the same time period have the exact
same total traffic monitoring workload and total conflict management workload,
but can have very different coordination workload.

The next sub-sections introduce mixed integer linear formulation of the MP-
DAC.

4.2.2 Center-based mathematical model

Principle
This model takes advantage of the fact that 2D coordinates of e-sectors are known.
The idea is that each c-sector will have one central e-sector. Using this central
e-sector, the connectivity and compactness constraints can be replaced with co-
herence constraints, which are stronger and state that if an e-sector si belongs
to c-sector g, then all e-sectors geometrically between si and the central e-sector
of c-sector g will also belong to c-sector g. The subset of e-sectors geometrically
between any pair of e-sectors si and sj is precomputed using the e-sectors coor-
dinates and is denoted B(i, j). The strength of the resulting model is that it has
polynomial number of variables and constraints.

Model
Six sets of decision variables can be used to model the MPDAC: binary variables
X t
v,g,∀t ∈ T,∀v ∈ V, ∀g ∈ Gt, binary variables W t

v,g,∀t ∈ T,∀v ∈ V, ∀g ∈ Gt,
binary variables Y t

e,g,∀t ∈ T,∀e ∈ E,∀g ∈ Gt, binary variables Zt
v,∀t ∈ T,∀v ∈ V ,

continuous variables ltg,∀t ∈ T,∀g ∈ Gt and continuous variables loaddiff t, ∀t ∈ T .
Variable X t

v,g is equal to 1 if vertex v (i.e e-sector sv) belongs to component g (i.e
c-sector g) at time t and 0 otherwise. Variable W t

v,g is equal to 1 if e-sector sv
is central for the c-sector g at time t and 0 otherwise. Variable Y t

e,g is equal to
1 if edge e is a frontier of c-sector g at time t (i.e. if its extremities belong to
different c-sectors, one of them being g) and 0 otherwise. Variable Zt

v is equal to
1 if e-sector sv has changed c-sectors between time periods t− 1 and t. Variable ltg
is the load of c-sector g at time t. Variable loaddiff tis the maximal load difference
between any pair of c-sectors at time t.

The MPDAC problem can be formulated as follows:

(PCB) min f = α
∑

t∈T\{1}

∑
e∈E

∑
g∈Gt

wteY
t
e,g + β

∑
t∈T

loaddiff t + γ
∑

t∈T\{1}

∑
e∈E

Zt
e (4.5)
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s.t. ∑
g∈Gt

X t
v,g = 1, ∀t ∈ T,∀v ∈ V (4.6)

∑
v∈V

W t
v,g = 1, ∀t ∈ T,∀g ∈ Gt (4.7)

X t
v,g −W t

v,g ≥ 0, ∀t ∈ T,∀v ∈ V ,∀g ∈ Gt (4.8)

∑
k∈B(v1,v2)

Xt
k,g − |B(v1, v2)|(Xt

v1,g + Xt
v2,g + W t

v1,g + W t
v2,g) ≥ −2|B(v1, v2)|, ∀t ∈ T, ∀(v1, v2) ∈ V,∀g ∈ Gt

(4.9)

Zt
e − Y t

e,g + Y t−1
e,g >= 0, ∀t ∈ T \ {1}, ∀g ∈ Gt (4.10)

Zt
e − Y t−1

e,g + Y t
e,g >= 0, ∀t ∈ T \ {1}, ∀g ∈ Gt (4.11)

Y t
e=(v1,v2),g +X t

v1,g +X t
v2,g ≤ 2, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.12)

Y t
e=(v1,v2),g −X t

v1,g −X
t
v2,g ≤ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.13)

Y t
e=(v1,v2),g −X t

v1,g +X t
v2,g ≥ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.14)

Y t
e=(v1,v2),g +X t

v1,g −X
t
v2,g ≥ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.15)

ltg −
∑
v∈V

wtvX
t
v,g −

∑
e∈E

wteY
t
e,g = 0, ∀t ∈ T,∀g ∈ Gt (4.16)

loaddiff t − ltg1 + ltg2 ≥ 0, ∀t ∈ T,∀g1 ∈ Gt,∀g2 ∈ Gt (4.17)
X t
v ∈ {0, 1}, ∀t ∈ T,∀v ∈ V (4.18)

Y t
e,g ∈ {0, 1}, ∀t ∈ T \ {1}, ∀g ∈ Gt, ∀e ∈ E (4.19)

W t
e,g ∈ {0, 1}, ∀t ∈ T \ {1}, ∀g ∈ Gt,∀e ∈ E (4.20)
Zt
e ∈ {0, 1}, ∀t ∈ T \ {1}, ∀e ∈ E (4.21)

where α, β and γ are predefined weighting parameters.
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The objective-function (4.5) minimizes the sum of the static and dynamic costs.
The static cost is given by the maximum load difference between c-sectors in use
at each instant whereas the dynamic cost is given by the number of edges that
change status normalized by γ. Constraints (4.6) ensure that each e-sector belongs
to exactly one c-sector per time period. Constraints (4.7) ensure that one central e-
sector is chosen for each c-sector. Constraints (4.8) state that an e-sector can only
be central for a c-sector it belongs to. Constraints (4.9) are coherence constraints,
used to replace connectivity and compactness constraints. Constraints (4.10) and
(4.11) ensure that the status changes between consecutive instants are correctly
computed for each vertex. Constraints (4.12), (4.13), (4.14) and (4.15) enforce
Y t
e=(v1,v2),g == 1 iff X t

v1,g 6= X t
v2,g. Constraints (4.16) compute the load of each c-

sector. Constraints (4.17) ensure the computation of the maximum load difference
between c-sectors.

Solution method: generic MILP solver

The coherence-based model (CB) has a polynomial number of variables and a
polynomial number of constraints, therefore it can be formulated and solved by
any MILP solver. Preliminary results showed that only small instances could be
solved to optimality, therefore other models were investigated.

4.2.3 Tree-based mathematical model

Principle

The tree-based mathematical model consists in enforcing the connectivity con-
straints within any group of e-sectors that form a c-sector by ensuring that it is
possible to form a tree using some of the edges that connect vertices of the same
group. Such tree is obtained by imposing (i) a number of edges used equal to
the number of vertices of the group minus one, and (ii) the interdiction of cycles
among the chosen edges. Route convexity constraints state that if two e-sectors
si and sj are crossed by route R non consecutively, and if both e-sectors belong
to the same c-sector g, then all e-sectors crossed by route R in between those two
must also belong to g. The subset of e-sectors crossed by route R between any
pair of e-sectors si and sj is denoted BR(i, j). The set if empty if both e-sectors
are not traversed by the same route. The strength of the resulting model is that it
has polynomial number of variables and constraints. Its weakness is based on the
high number of routes that leads to a high number of route convexity constraints.
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Model
Six sets of decision variables are required to reformulate the MPDAC: binary
variables X t

v,g,∀t ∈ T,∀v ∈ V, ∀g ∈ Gt, binary variables W t
e,g,∀t ∈ T,∀e ∈ E,∀g ∈

Gt, binary variables Y t
e,g, ∀t ∈ T,∀e ∈ E,∀g ∈ Gt, binary variables Zt

e,∀t ∈ T,∀v ∈
V , continuous variables ltg,∀t ∈ T,∀g ∈ Gt and continuous variables loaddiff t,∀t ∈
T . Variable X t

v,g is equal to 1 if vertex v (i.e e-sector sv) belongs to c-sector g at
time t, and 0 otherwise. Variable W t

e,g is equal to 1 if edge e is chosen to form a
tree in c-sector g at time t and 0 otherwise. Variable Y t

e,g is equal to 1 if edge e
is a frontier of c-sector g at time t and 0 otherwise. Variable Zt

e is equal to 1 if
edge e was not frontier at time t − 1 but became frontier at time t, or if edge e
was frontier at time t− 1 and is not frontier at time t. The variable is = 0 if the
edge status (frontier or not) has not changed from t− 1 to t. Variable ltg is equal
to the load of c-sector g at time t. Variable loaddiff t is equal to the maximal load
difference between any pair of c-sectors at time period t.

The MPDAC can be reformulated as:

(PTB) min f = α
∑
t∈T

∑
e∈E

∑
g∈Gt

wteY
t
e,g + β

∑
t∈T

loaddiff t + γ
∑
t∈T

∑
e∈E

Zt
e (4.22)

s.t. ∑
g∈G

X t
v,g = 1, ∀t ∈ T,∀v ∈ V (4.23)

Y t
e=(v1,v2),g +X t

v1,g +X t
v2,g ≤ 2, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.24)

Y t
e=(v1,v2),g −X t

v1,g −X
t
v2,g ≤ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.25)

Y t
e=(v1,v2),g −X t

v1,g +X t
v2,g ≥ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.26)

Y t
e=(v1,v2),g +X t

v1,g −X
t
v2,g ≥ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.27)

W t
e=(v1,v2),g −Xv1,g ≤ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.28)

W t
e=(v1,v2),g −X t

v2,g ≤ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.29)

∑
e∈E

W t
e,g −

∑
v∈V

X t
v,g = −1, ∀t ∈ T,∀g ∈ Gt (4.30)
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∑
v1∈V

W t
e=(v1,v),g +

∑
v1∈V

W t
e=(v,v1),g −X t

v,g ≥ 0, ∀t ∈ T,∀g ∈ Gt,∀e ∈ E (4.31)

∑
k∈BR(v1,v2)

Xt
k,g − |BR(v1, v2)|(Xt

v1,g + Xt
v2,g) ≥ −|B

R(v1, v2)|, ∀t ∈ T, ∀(v1, v2) ∈ V, ∀g ∈ Gt, ,∀r ∈ R

(4.32)

Zt
e − Y t

e,g + Y t−1
e,g >= 0, ∀t ∈ T \ {1}, ∀g ∈ Gt (4.33)

Zt
e − Y t−1

e,g + Y t
e,g >= 0, ∀t ∈ T \ {1}, ∀g ∈ Gt (4.34)

ltg − α
∑
v∈V

wtvX
t
v,g − β

∑
e∈E

wteY
t
e,g = 0, ∀t ∈ T,∀g ∈ Gt (4.35)

loaddiff t − ltg1 + ltg2 ≥ 0, ∀t ∈ T,∀g1 ∈ Gt,∀g2 ∈ Gt (4.36)

X t
g ∈ {0, 1}, ∀t ∈ T,∀g ∈ Gt (4.37)

Y t
e,g ∈ {0, 1}, ∀t ∈ T \ {1}, ∀g ∈ Gt,∀e ∈ E (4.38)

W t
e,g ∈ {0, 1}, ∀t ∈ T \ {1}, ∀g ∈ Gt,∀e ∈ E (4.39)

Zt
e ∈ {0, 1}, ∀t ∈ T \ {1}, ∀e ∈ E (4.40)

where α, β and γ are predefined weighting parameters.
The objective-function (4.22) minimizes the sum of the static and dynamic

costs. Constraints (4.23) ensure that each e-sector belongs to exactly one c-sector
at each time period. Constraints (4.24)-(4.27) enforce Y t

e=(v1,v2),g == 1 iff X t
v1,g 6=

X t
v2,g. Constraints (4.28)-(4.29) enforce W t

e=(v1,v2),g = 0 if v1 or v2 do not belong
to c-sector g. Note that we do not impose W t

e=(v1,v2),g = 1 in the case where v1
and v2 belong to c-sector g, because only a subset of these inside edges must be
chosen to form the tree. Constraints (4.30) impose a number of inside edges of
each c-sector to be equal to the number of vertices in the c-sector minus one.
Constraints (4.31) impose that each e-sector is connected to an edge belonging to
the tree within the c-sector it belongs to. Constraints (4.32) are route convexity
constraints. Constraints (4.33) and (4.34) ensure that the status changes between
consecutive instants are correctly computed for each edge. Constraints (4.35)
compute the load of any c-sector. Constraints (4.36) ensure the computation of
the maximum load difference between c-sectors.
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Solution method: generic MILP solver

The coherence-based model (CB) has a polynomial number of variables and a
polynomial number of constraints, therefore it can be formulated and solved by
any MILP solver. Preliminary results showed that only small instances could be
solved to optimality, therefore other models were investigated.

4.2.4 Group-based mathematical model

Principle

The master problem focuses on choosing the best c-sectors to compose each pe-
riod, among a restricted list of feasible c-sectors (groups of e-sectors) taking into
consideration the static and dynamic costs. One advantage of this model, is that is
allows to input predesigned c-sectors in case that controllers strongly prefer to be
assigned c-sectors they are already familiar with or have been specifically trained
for.

Model

Let G̃ be the set of predesigned feasible c-sectors and let G̃t ⊆ G̃ be the subset
of c-sectors applicable to time period t. Recall that it is important to distinguish
between periods because the variation of the load means that a c-sector may be
feasible for a period but unfeasible for the next one.

Five sets of decision variables are required to model the MPDAC. binary vari-
ables X t

g,∀t ∈ T,∀g ∈ Gt, binary variables Y t
e ,∀t ∈ T,∀e ∈ E, binary variables

Zt
e,∀t ∈ T,∀v ∈ V , continuous variables ltg,∀t ∈ T,∀g ∈ G̃t and continuous vari-

ables loaddiff t,∀t ∈ T . Variable X t
g is equal to 1 if c-sector g is used at time t

and 0 otherwise. Variable Y t
e is equal to 1 if edge e is frontier at time t and 0

otherwise. Variable Zt
e is equal to 1 if edge e was not frontier at time t − 1 but

became frontier at time t, or if edge e was frontier at time t− 1 and is not frontier
at time t. The variable is = 0 if the edge status (frontier or not) has not changed
from t − 1 to t. Variable ltg is equal to the load of c-sector g at time t. Variable
loaddiff t is the maximal load difference between any pair of c-sectors at time t.

The MPDAC problem can be reformulated as follows:

(PGB) min f = α
∑
t∈T

∑
e∈E

∑
g∈Gt

wteY
t
e,g + β

∑
t∈T

loaddiff t + γ
∑
t∈T

∑
e∈E

Zt
e (4.41)
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s.t.
∑

g∈G̃t(v)

X t
g = 1, ∀t ∈ T,∀v ∈ V (4.42)

∑
g∈G̃t

X t
g = nt, ∀t ∈ T (4.43)

Y t
e −

∑
g∈G̃t(e)

X t
g = 0, ∀t ∈ T,∀e ∈ E (4.44)

Zt
e − Y t

e + Y t−1
e >= 0, ∀t ∈ T \ {1} (4.45)

Zt
e − Y t−1

e + Y t
e >= 0, ∀t ∈ T \ {1} (4.46)

loaddiff t − |ltg − ltg′|(X t
g +X t

g′ − 1) ≥ 0, ∀t ∈ T,∀g ∈ G̃t,∀g′ ∈ G̃t \ {g}
(4.47)

X t
g ∈ {0, 1}, ∀t ∈ T,∀g ∈ G̃t (4.48)

Zt
e ∈ {0, 1}, ∀t ∈ T \ {1}, ∀e ∈ E (4.49)

where γ is a predefined weighting factor.
The objective-function (4.41) minimizes the sum of the static and dynamic

costs. Constraints (4.42) ensure that each e-sector is belongs to exactly one c-
sector at each time period. Constraints (4.43) impose the selection of a number
of c-sectors equal to nt at each instant. Constraints (4.44) link the status of each
edge (frontier or not) with the set of c-sectors (G̃(e)) in which the edge is a frontier.
Constraints (4.45) and (4.46) ensure that the status changes between consecutive
instants are correctly computed for each edge. Constraints (4.47) compute the
maximum load difference between any pair of c-sectors. Note that connectivity
and compactness constraints do not need to be expressed in the model because they
are already taken care of during the design of the feasible c-sectors that compose
G̃t.
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Solution Method
The group-based model (GB) has a polynomial number of constraints. If feasible
sets Gt are enumerated beforehand, then the resulting model can be formulated
and solved by any MILP solver. Otherwise, a branch-and-cut-and-price solution
method would be required, starting from a restricted set of feasible sets Gt. Two
keys components of such algorithm would be (i) a column generation-based method
to identify among the missing feasible configurations which ones should be added
to the restricted set, and (ii) a separator method to verify among the corresponding
missing constraints (4.47) which ones should be added to the resulting relaxation.

4.2.5 Configuration-based mathematical model

Principle
The Configuration-based mathematical model proposed is based on the definition
of the set of feasible airspace configurations C to choose from at each time period t.
These sets are of course exponential in size, hence the Dantzig-Wolfe decomposition
and column-generation-based solution method. Each configuration i is assigned a
cost denoted cti which reflects its static cost (coordination and workload difference)
if it is applied at time period t.

Model
Three sets of variables are required to model the MPDAC problem using an ex-
tended formulation: continuous variables X t

i ,∀t ∈ T,∀i ∈ C, binary variables
Y t
e ,∀t ∈ T,∀e ∈ E and continuous variables Zt

e,∀t ∈ T \ {1}, ∀e ∈ E. Variable X t
i

is equal to 1 if configuration is applied at time period t and 0 otherwise. Variable
Y t
e is equal to 1 if edge is a frontier at time t and 0 otherwise. Variable Zt

e. is
equal to 1 if edge was not frontier at time t− 1 but became frontier at time t, or if
edge e was frontier at time t− 1 and is no longer frontier at time t. This variable
is equal to 0 if the edge status (frontier or not) has not changed from t− 1 to t.

Let C be the set of feasible configurations applicable to any time period, let cti
be the static cost of a configuration i ∈ C at time t, the MPDAC problem can be
reformulated as follows:

(EF) min f =
∑
t∈T

∑
i∈C

ctiX
t
i + γ

∑
t∈T

∑
e∈E

Zt
e (4.50)

s.t. ∑
i∈C

X t
i = 1, ∀t ∈ T (4.51)
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Y t
e −

∑
i∈C(e)

X t
i = 0, ∀t ∈ T,∀e ∈ E (4.52)

Zt
e − Y t

e + Y t−1
e >= 0, ∀t ∈ T \ {1} (4.53)

Zt
e − Y t−1

e + Y t
e >= 0, ∀t ∈ T \ {1} (4.54)

Y t
e ∈ {0, 1}, ∀t ∈ T,∀e ∈ E (4.55)

0 ≤ X t
i ≤ 1, ∀t ∈ T,∀i ∈ C (4.56)

0 ≤ Zt
e ≤ 1, ∀t ∈ T \ {1}, ∀e ∈ E (4.57)

where γ is a predefined weighting factor and C(e) ⊂ C is the subset of configurations
that use edge e as a frontier.

The objective-function (4.50) minimizes the sum of the static and dynamic
costs. The static cost is given by the configurations in use at each instant (for
which cti will quantify the weighted sum of the total load, load difference, ...)
whereas the dynamic cost is given by the number of edges that change status
normalized by γ. Constraints (4.51) ensure that one configuration is chosen per
time period. Constraints (4.52) link the status of each edge (frontier or not)
with the set of configurations (C(e)) in which the edge is a frontier. Constraints
(4.53) and (4.54) ensure that the status changes between consecutive instants are
correctly computed for each edge.

Theorem 4.2.1 An optimal solution (X, Y, Z) of MILP (EF) provides an optimal
solution for problem (MPDAC).

Proof Proving that an optimal solution (X,Y,Z) of MILP (EF) verifying X ∈
{0, 1}|C||T |, Z ∈ {0, 1}(|T |−1)|E| is also an optimal solution for problem (P) is straight-
forward. It is also obvious that because of constraints (4.53)-(4.54) combined with
objective-function (4.50), then having Y ∈ {0, 1}(|T |−1)|E| and 0(|T |−1)|E| ≤ Z ≤
1(|T |−1)|E| also implies Z ∈ {0, 1}(|T |−1)|E|. It remains to be shown, however, that
relaxing constraints X ∈ {0, 1}|C||T | into constraints (4.56) still yields an optimal
solution for the original problem. The proof of validity of Theorem 4.2.1 follows
the approach of [28] and consists in proving that although decision variables X t

i

are continuous, the model ensures that their values are always binary in feasible
solutions, equal to 1 if and only if configuration i is being executed at time t.

Let S̃ be a feasible solution of MILP (EF): Ỹ t
e ∈ {0, 1}|A||T |, Z̃t

e ∈ [0, 1](|T |−1)|E|

and X̃ t
i ∈ R|C||T |. Given an instant t∗ ∈ T , let us denote:

111



• C>0 the subset of configurations used at instant t∗. In other words C>0 =
{i : X̃ t∗

i > 0,∀i ∈ C}.

• EC>0 the subset of edges that are frontier in at least one configuration i of
C>0. In other words EC>0 = {e : ∃i ∈ C>0 that verifies aei = 1}.

• C>0(e) the subset of configurations from C>0 that contain edge e as a frontier.

Since X̃ t∗
i > 0,∀i ∈ C>0 (by definition) and ∑

i∈C>0 X̃ t∗
i = 1 (from constraints

(4.51)), we deduce proposition 4.2.2 which is necessary to continue the proof.

Proposition 4.2.2 ∀C̃ ⊆ C>0, if ∑i∈C̃ X̃
t∗
i = 1 then C̃ = C>0.

Since by definition ∀e ∈ EC>0
, Ỹ t∗

e = 1, we can deduce from constraints (4.52)
that: ∑

i∈C>0(e)
X̃ t∗
i = 1 (4.58)

where C>0(e) ⊆ C>0.
Finally, combining Proposition 4.2.2 and constraint (4.58) we can deduce:

C>0(e) = C>0,∀e ∈ EC>0
. (4.59)

Constraints (4.59) imply that:

• either |C>0| = 1 and therefore all X̃ t∗
i are integer

• or |C>0| > 1 but all activity sets from C>0 are identical.

The latter assertion is impossible because the model does not authorize multiple
identical columns. Therefore X̃ t∗

i are integer. Combined with constraints (4.51),
this proves that X̃ ∈ {0, 1}|C||T |. Thus, solving (EF) produces optimal solutions
for the original problem (P).

Formulation (EF) has a polynomial number of constraints, a polynomial num-
ber of variables Y t

e , Z
t
e, but an exponential number of variables X t

i therefore solving
its linear relaxation requires a column-generation-based solution method and solv-
ing (EF) requires a branch-and-price-based solution method. The linear relaxation
of (EF) serves as the master problem (MP) of the Dantzig-Wolfe decomposition.
At each iteration k of a column generation we solve a restricted master problem
(RMPk) obtained by restricting C to a subset of configurations Ck ⊂ C, then dur-
ing a procedure called pricing or subproblem solution, we generate one or several
configurations of negative reduced cost using the dual variables values of the so-
lution found. If no such configuration can be generated, then the current solution
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is optimal for the linear relaxation (MP). Otherwise, the best configurations with
negative reduced cost are added to Ck to obtain Ck+1 and the new restricted master
problem (RMPk+1) is solved.

Solving (MP) requires a column generation algorithm, therefore solving (EF)
requires a branch-and-price algorithm to ensure the integrity of binary variables
Y t
e . Note that it is possible to explicitly impose variables X t

i to be binary, but
doing so would force the resulting branch-and-price algorithm to branch on the
same variables X t

i that are being generated, which means that the resulting pricing
procedures (or subproblems solution methods) would vary in function of the node
of the branch-and-price. Instead, keeping variables X t

i continuous ensures that the
optimal solution can be obtained (see Theorem 4.2.1) without ever branching on
variables X t

i . As a consequence, the same subproblem must be solved at each node
of the branch-and-price, which means that only one pricing procedure needs to be
designed and implemented.

Solution method: Branch-and-Price
Model PCFB has a polynomial number of constraints but an exponential number
of variables, therefore a branch-and-price solution method is appropriate. The
algorithm proposed in this thesis to solve the MPDAC problem is based on this
formulation and is described in the next section.

4.3 Branch-and-price-based solution method

4.3.1 Principle
Let (DMP) be the dual of (MP) and let ut, vte be the dual variables associated to the
linear relaxations of primal constraints (4.51)-(4.54), respectively. The constraint
of (DMP) associated to the primal variable X t

i can be expressed with equation
(4.60).

ut +
∑
e∈E

aeiw
t
e ≤ cti (4.60)

Let j ∈ Ct be a feasible configuration missing from the restricted subset Ck,
then the corresponding variableX t

j does not exist in (RMPk) and the corresponding
dual constraint (4.60)j does not exist in the dual (DRMPk). Let (SDRMPk) be the
optimal solution of (DRMPk). Only one of two different scenarios can be realized:
either constraint (4.60)j is satisfied by (SDRMPk), or it is not. If the constraint is
satisfied, then adding it would not change the optimum dual solution, which means
that adding primal variable X t

j would not change the optimal primal solution.
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There is therefore no need to add configuration j in Ck. If the constraint is
not satisfied, then adding it would change the optimal dual solution, meaning
that the corresponding variable X t

i should be added to the master problem, the
configuration j should be added to Ct to obtain the new set Ct+1 and a new
optimal primal solution. Consequently, our pricing procedure searches for missing
and violated constraints (4.60), which is equivalent to searching for configurations
of negative reduced cost where the reduced cost of a configuration i is computed
with expression (4.61).

cti − ut −
∑
e∈E

aiev
t
e (4.61)

4.3.2 Pricing procedure
Given a weighted graph Gt = (V,E,W t) representing the airspace at time period
t, there exists different graph partitioning-based algorithms for static airspace
configuration that can be used to find the best airspace configuration for that
specific time period, refer to Chapter 2. Our pricing method modifies the graph
weights before applying a partitioning algorithm for static airspace configuration
to ensure that the configurations generated are the ones with the best reduced
costs. Recall that the reduced cost of a configuration is given by expression (4.61).

For a given time period t, ut is constant and has the same value for all configu-
rations, therefore finding the configuration that has the best reduced cost at time
t is equivalent to finding the configuration i with the best cti −

∑
e∈E aiev

t
e value,

and then substracting ut. Since cti = α
∑
v∈V wv + α

∑
e∈E aiew

t
e + β∆t

i where ∆t
i

is the partitions workload difference, then cti −
∑
e∈E aiev

t
e = β∆t

i + α
∑
v∈V wv +

α
∑
e∈E aiew

t
e −

∑
e∈E aiev

t
e = β∆t

i + α
∑
v∈V wv + α

∑
e∈E aie(wte −

vte
β

). As a conse-
quence, the pricing procedure implemented assumed that finding the configuration
that has the best reduced cost on the graph G with edge costs wte is equivalent
to finding the configuration that has the minimum total cost on graph G

t with
modified edge costs wte = wte − vte/β and then subtracting ut from that total
cost. Therefore, it suffices to apply a graph partitioning-based algorithm for static
airspace sectorization on the graph with modified edge costs wte and then subtract-
ing ut from the total cost (on the modified graph) of the configuration obtained. If
a negative value is obtained then a configuration of negative reduced cost has been
found and should be added to the restricted set; otherwise, the current solution
is optimal and the column generation stops. Note that such solution method is
heuristic, since it assumes that the term ∆t

i is independent from the edge costs,
which is not the case.

The fact that any graph partitioning-based algorithm for static airspace sec-
torization can be used is a major advantage of the method proposed, because any
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additional restriction or regulation in airspace design could be simply integrated
in this pricing. The branch-and-price approach allows to solve in an integrated
fashion the design and the grouping/degrouping schedule of sectors over a time
horizon, yet the user is only required to provide a static airspace configuration
algorithm for the pricing, delegating to any MILP solver the choice of the config-
uration to be applied at each time period. When applying the user’ algorithm,
both the static and the dynamic impact of the addition of the configuration at
time period t will be taken into account, thanks to the dual variables ut and vte.

For the proof of concept in this thesis the graph-partitioning heuristic imple-
mented simply consists in a randomized two phase method based on the coherence-
based formulation:

1. For the considered time period t, randomly select nt vertices. Each of the
vertices selected will be the central nodes of the partition

2. Solve the coherence-based model with fixed variables W related to the nt
vertices previously chosen

Each call to the pricing procedure triggers the call to the heuristic a predefined
number of times (in this case the value was 5). And since the resulting pricing
procedure is a randomized heuristic, multiple attempts of pricing are made before
considering that no configuration of negative reduced cost could be found (in this
case, also a value of 5).

4.3.3 Branch-and-price scheme
Solving (MP) requires a column generation, therefore solving (EF) requires a
branch-and-price to ensure the integrity of binary variables Y t

e . As explained
in Subsection 4.2.5 because of the decomposition scheme chosen the same sub-
problem is solved at each node of the branch-and-price, which means that only
one pricing procedure needs to be designed and implemented. The branching pro-
cedure of the branch-and-price can therefore be handled by any MILP solver. The
restricted master problem is initialized with columns obtained by generating for
each time period the configuration of minimum static cost. An initial upper bound
is obtained by computing the cost of the resulting solution.

4.4 Computational results

4.4.1 Instances and implementation
The French airspace is composed of 6 Air Traffic Control Centers (ATCC). Cur-
rently, the 6 ATCC are handled separately, and e-sectors from different ATCCs
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are not allowed to be grouped. The ATCC in Reims is the most complex among
the 6, from the air traffic controllers viewpoint. It consist of 16 e-sectors that
can be grouped or not in function of the evolution of the air traffic. The group-
ing/degrouping has to be computed for the next 2 hours with a possible update
every 15 min. This means that T = 8. Historical data for (February 14th, 2013)
from 6 AM to 1 PM was used and the number of controllers who worked in the
real situation was also known. The information available allowed to derive a set
of 25 real-world instances from the Reims ATCC, each characterized by its start-
ing time, |T | = 8 time periods, and the number of controllers who worked in the
real situation was also known. The characteristics of the resulting instances are
provided in tables

Time
6h00 6h15 6h30 6h45 7h00 7h15 7h30 7h45

Opened sectors 8 8 8 8 8 4 4 4
Total vertices weights 0.54 0.5 0.44 0.65 0.63 0.42 0.39 0.37

Vertex weights σ 0.06 0.05 0.04 0.07 0.06 0.04 0.03 0.02
Total edge weights 0.14 0.06 0.14 0.16 0.12 0.13 0.16 0.16

Edge weights σ 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
Total number of aircraft 30 28 25 36 36 23 22 20

Table 4.2: Sector traffic between 6h00 and 8h00

Time
8h00 8h15 8h30 8h45 9h00 9h15 9h30 9h45

Opened sectors 4 4 4 4 4 4 4 4
Total vertices weights 0.62 1.02 0.7 1.6 1.99 1.91 2.01 1.81

Vertex weights σ 0.08 0.12 0.11 0.19 0.24 0.24 0.23 0.2
Total edge weights 0.19 0.39 0.13 0.7 0.5 0.86 0.9 0.52

Edge weights σ 0.02 0.06 0.01 0.07 0.04 0.1 0.09 0.05
Total number of aircraft 35 58 49 91 113 108 114 102

Table 4.3: Sector traffic between 8h00 and 10h00

The algorithm proposed, denoted BP, was coded mainly in C++ and with
the framework SCIP 3.1.0 on an Intel Core i5-4210U CPU and 6 GB of RAM.
Each master problem was solved with IBM CPLEX 12.6 whereas each pricing was
done with the Multi-Level heuristic. The previously existing genetic algorithm
(GA) of Delahaye et al was made available by the authors, implemented in Java.
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Time
10h00 10h15 10h30 10h45 11h00 11h15 11h30 11h45

Opened sectors 8 8 8 8 8 8 8 8
Total vertices weights 2.2 1.83 1.63 1.09 1.07 1.53 1.48 1.65

Vertex weights σ 0.24 0.24 0.22 0.18 0.12 0.17 0.15 0.17
Edge weights 0.98 0.54 0.18 0.17 0.18 0.58 0.32 0.45

Edge weights σ 0.08 0.04 0.01 0.01 0.01 0.06 0.03 0.04
Total number of aircraft 124 104 92 62 60 86 84 93

Table 4.4: Sector traffic between 10h00 and 12h00

Time
12h00 12h15 12h30 12h45 13h00 13h15 13h30 13h45

Opened sectors 8 8 4 6 6 6 6 6
Total vertices weights 1.43 2.02 1.73 2.02 1.95 1.67 1.95 1.98

Vertex weights σ 0.19 0.25 0.18 0.2 0.19 0.17 0.2 0.22
Total edge weights 0.29 0.52 0.36 0.44 0.64 0.78 0.54 0.81

Edge weights σ 0.02 0.04 0.03 0.03 0.05 0.08 0.05 0.01
Total number of aircraft 81 114 98 114 110 94 110 112

Table 4.5: Sector traffic between 12h00 and 14h00

The current situation (CS) was also used for comparison/evaluation. The hetero-
geneity of programming languages and software did not allow for computing time
comparisons, therefore we focused on the comparison of solution quality.

4.4.2 Results and analysis
The comparison of solutions values in terms of total cost illustrated in table 4.6
show that the solution proposed by the branch-and-price heuristic method is com-
petitive against the current situation and the genetic algorithm, with an average
improvement of 13% and 3%, despite the use of a mostly random pricing procedure
to generate configurations of negative reduced cost. This shows the applicability
of branch-and-price for the MPDAC problem, and these preliminary results are
expected to be outperformed with the use of an improved configuration generation
procedure currently under development.

Table 4.7 illustrates the solution values obtained using different values of pa-
rameters α, β and γ for the three terms of the objective-function: workload differ-
ence among controllers (WD), coordination workload (CW) and frontier changes
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Instance CS GA BP gap(BP,CS) gap(BP,GA)
1 344.8 352.3 280.3 -18.71 % -20.45 %
2 467.5 393.6 340.3 -27.20 % -13.53 %
3 244.4 260.3 230.8 -5.54 % -11.33 %
4 223.6 258.8 224.6 0.47 % -13.22 %
5 536.1 485.5 295.8 -44.84 % -39.09 %
6 243.5 306.9 327.4 34.48 % 6.70 %
7 218.9 271.2 174.4 -20.31 % -35.68 %
8 192.5 268.9 255.9 32.95 % -4.83 %
9 479.7 531.6 537.9 12.13 % 1.17 %

10 370.3 361.6 338.0 -8.72 % -6.52 %
11 384.3 322.7 285.4 -25.72 % -11.55 %
12 460.1 326.5 354.6 -22.93 % 8.62 %
13 510.5 443.2 469.9 -7.95 % 6.02 %
14 240.9 285.8 214.5 -10.94 % -24.95 %
15 301.7 363.6 262.5 -12.97 % -27.80 %
16 343.3 273.0 323.8 -5.67 % 18.62 %
17 803.0 639.8 525.3 -34.58 % -17.89 %
18 522.9 287.0 423.5 -19.01 % 47.55 %
19 471.1 351.7 373.5 -20.73 % 6.20 %
20 427.0 363.8 309.4 -27.56 % -14.97 %
21 496.8 394.4 416.9 -16.09 % 5.69 %
22 930.3 557.1 678.5 -27.06 % 21.80 %
23 496.4 287.1 334.8 -32.56 % 16.61 %
24 337.9 282.6 323.8 -4.16 % 14.61 %
25 402.7 315.7 345.8 -14.13 % 9.55 %

avg -13.09 % -3.15 %

Table 4.6: Comparison of solutions values from CS, GA and BP

between time periods (FC). Recall that the first two terms correspond to the static
cost whereas the third component is the dynamic cost. The results show that on
average, increasing the weight of the static cost leads to a significant reduction
of the workload difference among controllers with an increase of the amount of
changes in configurations, whereas increasing the weight of the dynamic cost does
not on average lead to a significant reduction of the amount of changes in con-
figuration. Of course, these results vary significantly when analyzed instance per
instance.

Figures 4.2,4.3 and 4.4 illustrate the solutions obtained for instance 9 that
starts at 8am, for which BP performed better than GA but both algorithms did
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BP(1,1,1) BP(0.8,0.8,0.2) vs BP(1,1,1) BP(0.2,0.2,0.8) vs BP(1,1,1)
WD CW FC WD CW FC WD CW FC

1 0.94 209 70 0.58 -62 % 204 -2 % 67.8 -3.59 % 1.08 15 % 230 10 % 52 -26 %
2 0.64 248 92 0.16 -300 % 282 14 % 89.7 -2.15 % 0.44 -31 % 401 62 % 43 -53 %
3 0.82 180 50 0.43 -91 % 170 -6 % 98.1 96.28 % 0.68 -17 % 249 38 % 52 4 %
4 0.63 153 71 0.16 -294 % 133 -13 % 106.7 50.28 % 0.44 -30 % 157 3 % 90 27 %
5 1.75 227 67 1.15 -52 % 383 69 % 81.4 21.56 % 1.98 13 % 457 101 % 67 - %
6 0.44 248 79 0.08 -450 % 237 -4 % 98.5 24.69 % 0.27 -39 % 343 38 % 94 19 %
7 1.43 146 27 0.78 -83 % 171 17 % 60.2 122.80 % 2.11 48 % 200 37 % 77 185 %
8 0.91 217 38 0.08 -1038 % 176 -19 % 136.2 258.37 % 0.65 -29 % 217 0 % 77 103 %
9 0.86 488 49 0.45 -91 % 597 22 % 143.6 193.15 % 1.09 27 % 744 52 % 78 59 %

10 1.00 275 62 0.08 -1150 % 238 -13 % 100.5 62.03 % 0.26 -74 % 402 46 % 94 52 %
11 1.44 233 51 1.25 -15 % 124 -47 % 67.5 32.36 % 1.98 38 % 293 26 % 60 18 %
12 0.62 286 68 0.53 -17 % 338 18 % 115.7 70.08 % 0.34 -45 % 380 33 % 62 -9 %
13 0.87 416 53 0.28 -211 % 385 -7 % 92.8 75.00 % 0.93 7 % 507 22 % 57 8 %
14 1.53 156 57 0.57 -168 % 86 -45 % 88.0 54.46 % 1.20 -22 % 192 23 % 53 -7 %
15 1.52 198 63 0.97 -57 % 160 -19 % 68.7 9.06 % 1.32 -13 % 249 26 % 42 -33 %
16 0.83 261 62 0.17 -388 % 162 -38 % 105.7 70.42 % 0.99 19 % 291 11 % 55 -11 %
17 1.33 437 87 0.32 -316 % 572 31 % 114.7 31.88 % 1.29 -3 % 740 69 % 30 -66 %
18 0.49 329 94 0.48 -2 % 338 3 % 114.2 21.48 % 0.60 22 % 395 20 % 63 -33 %
19 1.45 288 84 0.77 -88 % 306 6 % 59.7 -28.88 % 1.93 33 % 421 46 % 53 -37 %
20 1.36 207 101 0.32 -325 % 228 10 % 77.4 -23.41 % 1.42 4 % 289 40 % 64 -37 %
21 0.87 297 119 0.08 -988 % 315 6 % 101.3 -14.91 % 0.50 -43 % 381 28 % 79 -34 %
22 1.54 551 126 0.88 -75 % 704 28 % 137.8 9.40 % 1.36 -12 % 818 48 % 91 -28 %
23 1.75 221 112 0.96 -82 % 234 6 % 103.6 -7.53 % 2.23 27 % 283 28 % 74 -34 %
24 1.84 209 113 1.36 -35 % 146 -30 % 135.5 19.92 % 2.06 12 % 247 18 % 90 -20 %
25 0.80 217 128 0.08 -900 % 330 52 % 107.0 -16.41 % 1.11 39 % 350 61 % 60 -53 %

-291 % 2 % 45.05 % -2 % 36 % -0 %

Table 4.7: Comparison of solutions per instance from BP(α, β, γ) with different
α, β, γ parameters values: WD = workload difference, CW = coordination work-
load, FC = frontier changes

not improve the current solution.

4.5 Conclusion
This chapter presented four mixed integer linear formulations to model the problem
of dynamic airspace configuration. The configuration-based formulation is based
on the use of a restricted set of feasible configurations. It has been used to design
a branch-and-price heuristic where the pricing (generation of new configurations)
is done via a heuristic. The result solution method is competitive against existing
genetic algorithms and the current solution applied at Reims ATCC. Future work
includes the design of an exact branch-and-price algorithm via the exact solution
of the pricing problem.
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Figure 4.2: CS solution for instance 9 (starting at 8h00, T = 8)
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Figure 4.3: GA solution for instance 9 (starting at 8h00, T = 8)
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Figure 4.4: BP solution for instance 9 (starting at 8h00, T = 8)
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Chapter 5

Conclusion

In this thesis, a method for solving the Dynamic Airspace Configuration problem
is proposed. It consists of two main parts: the complexity computation and the
sectorization computation. The objective of this method is to design an efficient
and flexible airspace.

The main challenge of DAC is to address the issue of making dynamic adjust-
ments in the airspace to meet daily fluctuations in traffic triggered by factors such
as high demand. The current operational system manage this issue by grouping
or de-grouping sectors in order to adjust the capacity to the actual demand.

Contributions
The objective of this research work was to provide an automated support to
airspace , based on predicted air traffic. More precisely, we have proposed and
developed the following model, algorithms and overall methodology:

Mathematical model for air traffic complexity. The operational capacity
of a control sector is currently measured by the maximum number of aircraft able
to traverse the sector in a given time period. This measurement does not take
account of the orientation of traffic and considers geometrically structured and
disordered traffic in the same manner.

We have developped a new air traffic complexity metric based on dynamical
systems. Based on a set of radar observations (position and speed) a vector field
interpolating these data is constructed. Once the field has been obtained, the
Lyapunov spectrum of the associated dynamical system is computed on points
evenly spaced on a spatial grid. The results of the computations are summarized
on complexity maps, with high values indicating areas to avoid or to carefully
monitor. A first approach based on linear dynamical system enable to compute an
aggregate complexity metric. In order to produce complexity maps, two extensions
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of the previous approach have been developed (one in space and another in space
and time).

A nice correlation of this metric with the current number of controllers in the
Reims ACC has been established , showing the efficiency of this new approach for
predicting the future congestion in sectors.

Overall methodology for dynamic airspace configuration
We have introduced concepts of dynamic airspace configuration, based on ex-

pertise of air traffic control specialists. The overall methodology is based on the
initial representation of the airspace structure by a graph. In the proposed graph,
each node represents a sector and each link represents the relation ”is neighbor
with” between two sectors. Then, the weight of each node represents the monitor-
ing and conflict workloads and the weight of each link represents the coordination
workload.

In the multi-period dynamic airspace configuration problem (MPDAC) con-
sidered, for each given time period, we search for an optimal grouping of sectors
that satisfies all constraints. Thus, based on the proposed weighted graph, our
problem consists in finding an optimal multi-period graph partitioning. The num-
ber of criteria and constraints included in the process of generation of airspace
configurations, highly increases the complexity of this problem.

Mathematical models and branch-and-price algorithm to solve the
multi-period dynamic airspace configuration problem

We have introduced four mathematical models to design operationally airspace
sector configurations, yielding to discrete optimization problems. Two models use
a polynomial number of variables and constraints. Two models both use an expo-
nential number of variables, one of them has an exponential number of constraints
while the other has a polynomial number of constraints.

The solution method proposed is based on the solution of the last model, a
configuration-based model with a polynomial number of constraints but an ex-
ponential number of variables, which therefore requires a branch-and-price-based
algorithm to be solved. A key component of the algorithm is the configuration
generator required by the pricing procedure to generate configurations of negative
reduced cost. This was done with a randomized heuristic for the proof of concept.
Preliminary computational experimentation on real-world data from the air traffic
control center (ATCC) of Reims showed that the algorithm proposed is already
competitive against the current state-of-the-art and the current situation.

Publications
The work presented in this thesis led to the following publications:
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• two international conferences with proceedings and reviewing process ([39],
[40])

• one working paper currently being finalized for submission to an international
journal

• A talk in an international conference ([38]) and two talks in national confer-
ences without proceedings ([41], [37])

Perspectives
This research could be extended in the following directions :

• The method could be evaluated on some others centers (Bordeaux, Brest,
Aix, etc) and at a larger scale corresponding to France or even Europe.

• The complexity metric based on Non Linear Dynamical System uses de-
terministic trajectory samples and does not take into account the intrinsic
uncertainties linked to stochastic events like wind, temperature, etc. This
metric could be extended in this direction.

• It would nice also to compare the results by using some other complexity
metrics.

• The current algorithm do not take into account the third dimension and
could be adapted to manage 3D constraints.

• Currently, the times for potential changes in the configuration are fixed (ev-
ery 15 minutes) and it could be interesting to include such transition times
as decision variables in the state space.

• The configuration changes have been evaluated based only on the geometrical
changes and other measures could be identified in collaboration with Human
Factor researchers.
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