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We present a novel approach to texture 3D tubular objects reconstructed from partial views. Starting

from few images of the object, we rely on a 3D reconstruction approach that provides a representa- 

tion of the object based on a composition of several parametric surfaces, more specifically canal sur- 

faces . Such representation enables a complete reconstruction of the object even for the parts that are

hidden or not visible by the input images. The proposed texturing method maps the input images

on the parametric surface of the object and complete parts of the surface not visible in any image

through an inpainting process. In particular, we first propose a method to select, for each 3D canal

surface, the most suitable images and fuse them together for texturing the surface. This process is

regulated by a confidence criterion that selects images based on their position and orientation w.r.t.

the surface. We also introduce a global method to fuse the images taking into account their exposure

difference. Finally, we propose two methods to complete or inpaint the texture in the hidden parts of the

surface according to the type of the texture.
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1. Introduction

In the last decade many methods and approaches have been

proposed to generate a 3D model of an object from a set of images.

Most approaches are based on Structure-from-Motion and Multi-

iew Stereo (MVS) [1] , which enables the reconstruction of the ob-

ject from an unordered set of images [2] . These methods perform

well if the object is sufficiently textured, so that anchors (interest

points) can be found for creating correspondences among the im-

ages. The geometric model generated by these classic reconstruc-

tion methods is generally a 3D point cloud, which is then triangu-

lated to generate a triangle mesh. The final stage, texturing , aims

at providing a consistent texture for the mesh from the multiple

source images, and, in particular, at insuring a consistent textur-

ing across neighbor triangles of the mesh [3] . Note that, in order

to obtain a good quality model the whole object needs to be cov-

ered by sufficiently many images taken under different points of

view. 

In this work, we deal with the reconstruction of a specific fam-

ily of objects that can be represented by a set of canal surfaces

(branches) [4] . In particular, we build upon the geometric recon-
∗ Corresponding author.

E-mail address: simone.gasparini@irit.fr (S. Gasparini).
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truction method for tubular objects recently proposed by Durix

t al. [5,6] (see Fig. 1 ): from a limited number (usually, from two

o five) of calibrated images ( Fig. 1 a) they generate a geometric

odel of the object that is composed by a set of parametric canal

urfaces ( Fig. 1 b), i.e. a piecewise canal surface model. One of the

dvantages of this reconstruction method is that a full reconstruc-

ion of the object can be obtained with few images, not necessar-

ly covering the whole space around the object. Moreover, it does

ot require good quality images nor elaborate calibration, and it

s able to reconstruct objects, even if they have a uniform texture

 c.f. Fig. 1 ). We propose to extend and complete their pipeline by

exturing the reconstructed geometric model . The major problem to

ddress is the completion of the texture for the parts of the ob-

ect that are not covered by the input images or that are hidden

ecause of occlusions. We propose a texturing method that maps

he input images on the parametric surface of the object and com-

lete parts of the surface not visible in any input image through an

npainting process. Similarly to the classic texturing technique, we

ropose a novel method to select, for each 3D canal surface, the

ost suitable images and fuse them together for texturing the sur-

ace. This process is regulated by a confidence criterion that selects

mages based on their position and orientation w.r.t. the surface

 Fig. 1 c). We then propose two methods to complete the texture in

he hidden parts of the surface according to the type of the tex-

ure ( Fig. 1 d). Our method is based on a global optimization pro-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.05.012&domain=pdf
mailto:simone.gasparini@irit.fr


Fig. 1. Illustration of the textured reconstruction pipeline. (a) Calibrated acquisitions of the object to reconstruct. (b) The object is reconstructed with its skeleton. (c)

Apparent textures are extracted from the images for each branch of the model. (d) As those textures are partial (for example, we can not see the back of the plush here),

they are completed. (e) The completed textures are applied to the object, that can be easily animated.

Fig. 2. A plush with a very uniform texture reconstructed and textured. Here, only

the front texture (a) is visible on the images, and the rear texture (b) is estimated

by the described method. Note that despite the lack of interest points on the initial

model, the whole object is reconstructed.
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ess that fuse the images taking into account their exposure differ-

nce, and correcting misalignment. Once integrated in the original

ipeline, a full textured 3D model can be generated from a few

nput images, possibly not covering the whole object ( Fig. 1 e). 

The advantages of the proposed approach are the generation of

 full textured 3D model from a few input images, possibly not

overing the whole object. The major contributions of this work

re ( i ) the texturing of each branch of the model from the input

mages choosing the most suitable image, ( ii ) the fusion of the tex-

ure from different images with exposure and alignment correc-

ion, and ( iii ) two methods to complete the texture for the parts of

he branches that are not seen by any camera (see Fig. 2 ). 

The paper is organized as follows. Section 2 overviews the state

f the art of texturing reconstructed 3D models; Section 3 presents

he main steps of the proposed pipeline and Section 4 details the

roposed method for adjusting the exposure of the texture and

ompleting the missing parts. Section 5 presents some preliminary

esults and a discussion of the limitations, while Section 6 con-

ludes the paper with future directions and improvements of the

roposed method. ( Fig. 2 ) 
. Related works

In this section we review the state of the art for texturing 3D

odels generated by different approaches, and then we introduce

he most relevant approaches for inpainting. 

.1. Texturing 3D models generated by MVS 

As mentioned in the Section 1 , the 3D reconstruction approach

hat gives more promising results is the Multi-View Stereo (MVS)

1] . Once the 3D mesh model has been generated, the last step of

he pipeline is the texturing of the mesh, i.e. assigning a color to

ach face of the mesh. Often, as pre-processing step, the model is

ecimated before texturing in order to get larger triangles: while

he overall geometry can be maintained with a sufficient accuracy,

he larger patches can make the texturing process more efficient

nd effective [7] . The main problem to address when assigning

 texture to a face is the selection of more suitable source im-

ge. Thus, texturing can be seen as the problem of selecting the

est view(s) for each face, taking into account different parame-

ers, such as the distance of the image w.r.t. the face, the angle

nder which the face is seen by the image and, more generally,

he quality of the image (blur effects, lighting etc. ). Moreover, in

rder to get a photo-realistic 3D model, the texture map applied

o the model should be independent of the light conditions under

hich the original images were taken. The texture map should be

endered properly when the model is shown with a different light-

ng. This requires to normalize and register the original images, for

xample by optimizing their color consistency [8] or maximizing

he mutual information between the projected images [9] . 

Texturing methods can be roughly divided into two main ap-

roaches. Single-view approaches select, for each face, indepen-

ently the best view [10] . This solution is only optimal locally,

s it inevitably generates visible artifacts and discontinuity seams

mong neighbor faces having different associated images with pos-

ibly different exposure or lighting. Blending the images at face

orders may mitigate the problem, otherwise more advanced tech-

iques use labeling [11] or energy minimization that penalizes dis-

ontinuities [3] . Multi-view approaches, instead, blend together a

ubset of the source images in order to get a more uniform and

onsistent image. This global approach may suffer of loss of qual-

ty and of details when blending together images taken at differ-

nt distances from the faces. This requires to adopt a weighted
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1 Note that in the actual implementation we consider a sampled, discrete domain

for A × [0, 2 π ]. 
blending that favors images that are closer to the model [12] . An-

other issue is related to the imperfect estimation of the geometry

and the alignment of the cameras ( e.g. camera calibration), which,

again, may generate artifacts in the blended image. To overcome

this, [13] proposed a patch based synthesis in which a synthetic

view is generated from two or more images, taking into account

misalignments while preserving the photometric consistency. 

2.2. Texturing 3D models generated by other reconstruction methods 

Other reconstruction methods use the silhouette of the object

[14] , but they require a precise calibration (requiring most of the

time a dedicated capturing environment) and a larger number of

images (at least 20). The generated model, the visual hull, is piece-

wise linear, and does not provide any parametrization. Texturing

from a reference image is thus difficult, as no knowledge of the

surface within the silhouette corresponding to the view point is

given. 

On the other hand, man-made objects are often complex shapes

that can be decomposed into simpler shapes and rotationally-

symmetric surfaces, e.g. tubular, which can be modeled and recon-

structed more easily with parametric surfaces. 

Our approach is similar in spirit to Chen et al. [15] , which gen-

erates a 3D model from a single image of the object with the inter-

action of the user. Chen et al. segment a complex shape of the ob-

ject into smaller and simpler parts guided by a series of “sweeps”

gestures: these allow the user to define two dimensions of a 2D

profile and “sweeping” it along the curved axis of the object. They

recover the texture from the image by back-projection, for the oc-

cluded parts two approaches are proposed. Under the assumption

that the object is symmetric, the visible texture is mirrored and

mapped to the occluded parts. Texture-less regions may still exist

for symmetrical points both out of the sight of the camera. In this

case inpainting is used to complete the texture [16] . 

Rather than relying on an accurate geometry, we instead rely on

the reconstruction of the geometry and the topology of the object

based on skeletons [5,6] . Texturing models obtained with a para-

metric reconstruction faces other challenges. Since the model ap-

proximates the geometry of the real object, camera and geometry

misalignments can be more severe than the classic pipelines, and

they must be taken into account when blending and registering

the images. While MVS can only reconstruct what is visible by the

cameras, parametric reconstruction can reconstruct occluded parts

of the object for which the photometric information is thus un-

available. In that case, texturing needs to fill the “holes” of those

parts. Inpainting [17] can be used to “hallucinate” the regions with-

out texture by propagating the texture of the neighbor regions. 

2.3. Inpainting 

There are two main approaches for inpainting techniques [17] .

Diffusion-based methods [18] are used in image restoration to fill

or correct small regions of the images for which a mask is pro-

vided by the user. These methods are generally based on Partial

Differential Equations (PDEs) and a diffusion model that iteratively

propagate the information from the outside of the mask along the

isophotes, i.e. the level lines perpendicular to the gradient vectors

of the pixels on the contour. These methods perform well when

filling small and smooth regions but are not adapted if a structure

or texture needs to be propagated. Moreover, these methods, being

iterative, have a high computational cost. 

Patch-based methods [19,20] are instead used to fill larger por-

tions of the image by copying either single pixels ( sparsity-based

[21] ), entire patches or a mixture of those from other parts of the

image ( exemplar-based [19] ). For each pixel p of the mask, they

search the most similar patch in the image to the one centered
n p , and they copy it. The search for this similar patch is the

ost important but also the most expensive step of the algorithm.

any variants and optimizations have been proposed over the last

ecade. One of the most effective approaches is PatchMatch [22] ,

hich efficiently finds for every patch the approximate nearest-

eighbor in the image using a randomized cooperative hill climb-

ng strategy. In [23] , the search is restricted to the most likely off-

ets, reducing the complexity and also enhancing the propagation

f the geometric structures of the image. The other critical step in

atch-based methods is the selection of p and the order of filling.

nion-peel order fills the missing data starting from the pixels on

he border and proceeding layer after layer towards the region’s

enter. This sometimes leads to unexpected results at the center

f the region and, in general, structures are not propagated inside

he region. Structure-aware methods, instead, give priority to pix-

ls lying on borders of objects, thus favoring the preservation of

tructures. On the other hand, a known issue of the PatchMatch

pproach is that it does not handle properly regular textures, i.e. ,

extures embedding regular patterns or structures. Other methods

ave been proposed to handle regular textures by performing a

tatistical analysis of the texture that allows to find the map of the

ominant directions (or offsets ) [24,25] : the inpainting problem is

hen cast as a global minimization of an energy function written

n terms of an offset map that enforces the structure and texture

onsistency. In [26] , the minimization problem is solved via graph

uts in order to reduce the computational complexity. 

. Surface parametrization and texturing

In the following sections we present our pipeline for texturing a

D model reconstructed from a set of n calibrated images (I i ) i =1 ... n .

.1. Reconstruction of the geometry 

We start from a reconstruction based on skeletons [6] , which

enerates a set of canal surfaces representing the captured 3D ob-

ect [27] . This reconstruction is based on an estimation of the pro-

ection of the skeleton of the 3D object on each image; using such

keleton correspondences, the 3D skeleton is estimated. First, a

hape is captured on several images and is segmented on each im-

ge with the semi-interactive algorithm GrabCut [28] . Then, per-

pective skeletons are computed on each image, and the user as-

ociates the extremities of each skeleton. Finally, a 3D skeleton of

he object is estimated. Each branch is reconstructed separately, as

 canal surface. The skeleton is used here as a set of parametric

urfaces, such as canal surfaces [4] , that approximates the complex

hape of the real object. A canal surface is the envelope of a family

f spheres, which centers and radii vary along a continuous curve.

ntuitively, the 3D objects reconstructed have a curve medial axis.

anal surfaces have a natural regular parametrization of their sur-

aces [29] , thus enabling texture mapping. 

.2. A parametric domain for the texture of a branch 

For each branch b of the model, we aim at creating a reference

mage texture I b . Each branch of the model is represented by a

arametric canal surface S ( t , θ ), where t is moving along the skele-

on curve C , and θ is turning around the skeleton point C ( t ) on the

urface. If t varies in an interval A so that { C ( t ), t ∈ A } describes the

ntire skeleton curve, w.l.o.g. we can take A = [0 , 1] . Thus, A × [0,

 π ] is the parametric domain of the canal surface. Our goal is to

econstruct a complete image I b on the domain A × [0, 2 π ] 1 . 



Fig. 3. For a given branch, in this case one of the branches composing the face of

the puppet, we can project the each image I i (first column) of the branch into a

(partial) image I b 
i 

(second column). The final texture image I b for the branch can be 

obtained by fusing together these images as described in Section 3.4 .
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Fig. 4. Confidence criterion applied to a viewpoint C and to a surface d S with tan- 

gent plane � at point Q .
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Then, for each image I i used for the geometric reconstruction

f the branch, we can project (since we assume the camera is

alibrated) the surface of the branch onto the image (see Fig. 3 ).

ach pixel of I i covered by the branch projection corresponds to at

east one 3D point S ( t , θ ). Note that, as the branches are generated

y triangulation of a 2D skeleton from different images, the back-

rojection does not exactly fit the image. However, since the mask

f the object on each input image is known from the skeleton-

ased reconstruction, we only use pixels from inside the mask to

stimate the texture of each branch. This mask filtering avoids con-

idering background pixels. 

.3. Handling occlusions 

As the model is composed of different canal surfaces, one of

he challenges is to correctly identify the texture belonging to a

ranch b , for example in case of (self-) occlusions among the dif-

erent parts of the object. To that end, we rely on a z -buffer: we

roject the points back on the reference image I i , to identify the

oint S ( t , θ ) closest to the viewpoint, that is, determining the pa-

ameters ( t , θ ) of the point S ( t , θ ) visible on I i . So, each point of

 ( t , θ ) visible on I i gets its color from image I i . Then, we gener-

te a label image, similar to a z-buffer, such that each pixel has

he label of the canal surface closest to the viewpoint. However,

s each reconstructed object is a combination of several canal sur-

aces, some canal surfaces are partially inside others. Thus, these

idden surface do not get a color from any image, which is a loss
f useful information for the completion of the texture. Painting all

he hidden surfaces, independently of the depth is wrong too. To

ssign a color each surface coherently, we paint each point behind

he visible point at distance less than a chosen threshold ε with

he color of the visible point. 

.4. Texturing a branch from multiple images 

As discussed in Section 2 , for each point of the surface there

ay be several images from which the texture can be selected. In

ur approach, given the set V of images I i in which a point of the

urface is visible, we apply the texture of the best image in the

et that fits the surface S . For that, we use the confidence criterion

efined in [30] and originally used for inpainting. 

This criterion gives for each pixel from the image a score named

rust based on two parameters: the distance from the viewpoint to

he tangent plane in the surface where the pixel is projected and

he angle of inclination between the normal to the surface and the

amera axis. 

We define for the center P i of each pixel p of the image I i ∈ V ,

he confidence function trust ( P i ) that depends on the distance from

he viewpoint of the image I i , and the normal to S at parameters

 t , θ ): 

rust (P i ) = 

(
f i 
d i 

)2 (
cos ψ 

cos φ

)3

(1) 

here f i is the focal length of the camera, d i its distance from the

angent plane � in S ( t , θ ), φ the angle between the camera axis

nd the normal to S ( t , θ ) and ψ the angle between the projection

ay of the point P i and the normal of the plane ( c.f. Fig. 4 ). 

The value of trust decreases as the distance d i increases and

lso as the angle ψ increases. Higher values of trust are pixels of

ood quality, whereas lower values denote points that are likely

o represent regions of the plane far from the camera and/or seen

nder a very skew angle. 

Based on this criterion, for each viewpoint i , we create a con-

dence map C i for each pixel of the reference image domain A ×
0 , 2 π ] ⊂ N 

2 : 

 i : 

{
A × [0 , 2 π ] −→ R 

p � −→ C i (p) = trust (P i ) 
(2) 

ith C i (p) = 0 if p is not a projection of a point of the plane �.

ig. 5 shows an example of two confidence maps corresponding to

wo distinct viewpoints, with the second image (c) having better

rust values than the first image (a). 



Fig. 5. Confidence maps of the head branch b for two different viewpoints (out of

four, not shown): (a,c) the reference images I b 
i 

generated independently for each im- 

age I i ; (b,d) the corresponding confidence maps where higher confidence values are

depicted with the Jet colormap; (e) the final reference image I b that fuses together

all four original views.
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Then, we construct the reference image I b of the branch b by

electing the pixels having the highest value of confidence: 

 b (p) = I i (p) , i = arg max 
i

C i (p) . 

he resulting image merges together all the textures from different

iewpoints. However, as shown in Fig. 5 , there may be regions of

he image for which no texture can be retrieved as they are not

een by any camera. Moreover, artifacts may exist due to the dif-

erent expositions of the images and their misalignment. 

. Improving texture

In the previous section, we showed how we map existing tex-

ures into the geometric model, how to determine the correct

ranch, and how to choose the best image according to the geome-

ry. As stated in Section 3 some issues still affect the quality of our

exturing. First, textures from different images may be misaligned

hen mapped in the reference image due to geometric approxi-

ation. On one hand, our 3D model implicitly only approximates

he geometry of the real object by a set of non degenerate canal

urfaces. On the other hand, a 3D branch is computed by a least

quare triangulation process [6] . For these two reasons the recon-

tructed geometry is approximate and thus offset the texture when

ack projected in parameter space. Classical reconstruction uses a

east square triangulation to reconstruct a 3D point from its pro-

ection in several images [31] , here, the same triangulation process

s applied for reconstructing a sphere, that is, a 3D point and a ra-

ius. Textures from different images may have lighting discontinu-

ties, due to different exposure or different light conditions. Finally,

ome parts of the model may not be visible on any images and the

elevant texture need to be generated. The next sections introduce

ome adjustment on the textures that we put in place to overcome

hese issues. 

.1. Correcting exposure 

We take into account the different exposure of the images by

pplying sequentially a local and a global adjustment. The local ad-

ustment is applied separately for each branch of the model. Then

 global optimization of the exposure is computed for all the im-

ges. 

Local exposure correction. When building the reference image for

 branch, different images may have different exposures, thus lead-

ng to color and brightness discontinuities in the final image (see

ig. 7 ). To cope with the difference in exposure, we apply a radio-

etric calibration of exposure derived from [32] . Given a branch b

nd its set V of images I i in which b is visible, we generate a set

f images I b 
i 
, parametrized in the same domain A × [0, 2 π ] as I b .

ote that, in general (up to alignment errors), each pixel I b 
i 
(p) is

he same pixel for each i , i.e. it represents the same point of the

urface, possibly with a different color value. If for some images of

 the value of I b 
i 
(p) is not defined because, e.g. , the point is not

isible or occluded, we set its value to an arbitrary value of 0. We

eed now to fuse together these images in order to obtain I b while

djusting and correcting the exposure. We formulate this problem

s the following non-linear optimization problem: 

min 

i ,r(p)

∑ 

i,p

(
I b i (p) − αi r(p)

)2
, (3)

here αi is the exposure coefficient for I i and r ( p ) is the pixel radi-

nce value. Fig. 7 shows a visual comparison between the original

nd normalized exposure. 

Global exposure correction. Once that for each branch b indepen-

ently, exposures in images (I b 
i 
) ∈ V have been corrected, we ad-

ust the exposure of the entire 3D object. Pixels of a same image I 
i 
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Fig. 6. The correction of the exposure and the registration on a global reference

image: (a) the reference image of a branch without exposure correction showing

a clear discontinuity between the texture of two images; (b) the reference image

with the exposure correction leading to a smoother transition between the images;

(c) the image of a branch with registration corrected: smile and cheek are now

continuous.
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an be projected onto different branches, that is, different domains

 

b 1 
i

and I 
b 2 
i

inherit different exposure correction parameters. Thus,

xposure may vary on adjacent parts of the 3D model. To avoid

his situation, we adjust the different exposure corrections so that,

n a single image I i the variance is minimized. Let us define for

 images and p branches the n × p matrix A = 

(
αi, j 

)
, where αi , j is

he exposure correction of the i th image in the j th mesh. Then, for

ach image I i we estimate a coefficient β i that minimizes the vari-

nce of the αi , j over all the branches j . More formally, we consider

 diagonal matrix X = diag 
(
β1 , β2 , . . . , βp 

)
that, when multiplied

y A , minimizes the variance; we then want to find the set of val-

es ˆ X such that: 

ˆ 
 = arg min 

X

(∑ 

i

Var ((AX ) i ) 

)
, (4) 

here ( AX ) i is the i th row of AX . We then update the texture of

ach mesh j with the new exposure coefficient α j,new 

= 

ˆ β j α j . Fig. 8

hows the difference between a render without global correction

left) an with the global correction (right). 

.2. Correcting texture misalignment 

Due to difference in the model or calibration errors, geometric

isalignment of the branches may occur and cause discontinuities

n the final texture image I b , in regions where the texture comes

rom different views with close values of trust (as illustrated on

ig. 6 b). To handle that, we consider the registration as an energy

inimization by graph cut [33] . For a pixel p of the image texture

 b , we assign a label l corresponding to the view from which p has

een taken (as explained in Section 3.3 ). Then the following energy

s minimized: 

 = 

∑ 

p∈ I b 
E d (p, l) + λ

∑ 

(p 1 ,p 2 ) ∈N 
E r (p 1 , p 2 , l 1 , l 2 ) , (5)

here E d is the data term, E r is the regularization term and λ is

 parameter that regulate the importance of the two energy func-

ions. In the data term, we penalize the labels with a poor trust for

he pixel p . Thus, we set E d as: 

 d (p, l) = f (C l (p)) , (6)

here f is a decreasing function for C l . The regularization term

hould penalize the choice of neighbor pixel belonging to differ-

nt views, in order to ensure the coherence of the pixels in the

ame region. We considered a similar function as the one defined

n [24] : 

 r (p 1 , p 2 , l 1 , l 2 ) = 

∥∥I l 1 (p 1 ) − I l 2 (p 1 ) 
∥∥ + 

∥∥I l 1 (p 2 ) − I l 2 (p 2 ) 
∥∥. (7)

We use the computed image explained in Section 3.4 as initial-

zation of the labeling of each pixel p of I b . Fig. 6 c shows the tex-

ure of the branch after the energy minimization, discontinuities

long the mouth have been fixed. 

.3. Completing textures with inpainting 

In our settings, the reconstruction does require only a limited

umber of images w.r.t. the classic MVS pipelines. Since the ob-

ect is modeled by a set of canal surfaces, two to five images are

sually sufficient to completely reconstruct the model. Moreover,

he images do not need to cover the entire object, thus allowing

o reconstruct parts of the object that are not visible. This is par-

icularly useful when capturing e.g. objects lying on some support.

owever, this leads to an obvious limitation in the texturing: as

ome parts of the object may not be visible from any viewpoints,

o information can be retrieved for the texture. Thus, some pix-

ls of the reference image I may not be colored. For texturing the
b 
hole object we then fill the missing regions of I b through two

ompletion methods depending on the nature of texture. 

We consider two kinds of textures: circular textures , where the

olor of a pixel p ( t , θ ) is independent of θ , and regular textures . As

n example, on Fig. 7 , the legs of the doll have, in the original ob-

ect, a rotationally symmetric pattern, thus are of circular type. At

he opposite, both the back of the head or the face have regular

exture type. The missing regions in both cases are the back side

hich has not been captured by the images as the object was ly-

ng on a plane. In both cases we apply the PatchMatch inpainting

lgorithm [22] , but with a different initialization step of the algo-

ithm. 

In the case of the legs, and more generally for rotationally sym-

etric textures, we rely on the symmetry of the texture for the

ompletion. The advantage of the symmetry is that it solves the

ffset issues along the skeleton direction. Fig. 9 shows the different



Fig. 7. The artifact caused by the difference of exposures in images: (a) the lower

part of the face of this character is brighter than the upper part; (b) after correction

of the exposure, the local correction leads to a coherent color between the two

parts of the face, the global correction fixes the difference of color between the

two arms.

Fig. 8. Generated texture without (a) and with (b) global correction of the expo- 

sure. The artifacts caused by the differences on the exposure on each image are

handled by the global correction.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Completion of mesh with texture structure: (a) the input reference image

I b ; (b) the generated structure image I s ; (c) the final completed texture image ( c.f.

Fig. 10 for the final rendering).

Fig. 10. Texturing of one of the legs: (left) the original texture without inpainting

and (right) the result of the texture inpainting process.
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t  

m  
steps of our procedure for one of the legs. Starting from the orig-

inal reference image I b ( Fig. 9 a), we create a new image I s , called

the structure image ( Fig. 9 b): for each column of I b , we select the

pixel value with the maximum confidence along the column, and

we assign such value to the entire column. Note that the structure

image may still have unfilled regions if an entire column of I b had

no data. We then use the PatchMatch correspondence algorithm in

order to create a correspondence map between the original refer-

ence image I b and I s : for each patch of I s we find the best match-

ing patch in the original image. We apply the computed mapping

to I s to generate a new image which has a texture more similar to

the original one, yet with the same unfilled regions. We then apply

the classic PatchMatch algorithm to complete the unfilled regions

( Fig. 9 c). Fig. 10 shows the 3D branch with and without the texture

completion. 

As for the back of the head, and more generally for regular

textures, we use a diffusion inpainting as initialization, as used

in common implementations of PatchMatch inpainting algorithm

[34] .
. Experimental results

.1. Implementation details 

Once the 3D object is reconstructed, we use the OpenCV library

o create the texture images from the acquired images. The opti-

ization problem of the exposure correction is solved with Ceres



Fig. 11. An example of object (a) which does not satisfy our assumptions: the head

is a surface that cannot be properly modeled as a canal surface, thus affecting the

texture mapping (); the method described in Section 11 b helps to obtain a better

texturing of the object (c).

Table 1

Computation times for some plushes. The skeleton based reconstruction is sepa- 

rated in three main steps: first, a perspective skeleton is computed, then the user

associates the different extremities and finally, the triangulation is done. Before

extracting the texture from the different images, a z -buffering is used to charac- 

terize the front canal surface on each pixel. The z -buffering computation time is

highly improvable, as it is done on CPU and not GPU. On average, it takes 73s

for the exposure correction, 120s for the registration correction and 77s for the

texture completion.

Plush Blue Mouse Red Bear Rabbit

Perspective skeleton estimation 1.7s 1.4s 1.7s 1.8s 1.8s

Triangulation 1.3s 2.4s 1.3s 1.4s 1.6s

Z-buffering (CPU) 29s 39s 27s 26s 28s

Texture extraction from images 9.9s 15.1s 9.6s 8.4s 9.8s

Exposure correction 76s 120s 71s 78s 20s

Registration correction 88s 137s 145s 106s 153s

Texture completion 58s 128s 89s 51s 57s
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olver library [35] . The texture completion is implemented with

he image processing G’MIC framework [34] . The user selects for

ach branch which completion method should be used. 

The reconstruction method and the texturing method are im-

lemented in C ++ . Table 1 details the running time for some

lushes, with a break-down for each significant step. On average,

exturing takes 4min for our CPU implementation on a Linux Mint

achine equipped with an Intel i7-6700HQ CPU at 2.6 GHz with

 GB of RAM. 

.2. Results 

Plushes are good candidates for being a union of a set of canal

urfaces. They are mostly filled with foam, which is an isotropic

aterial: this creates shapes that expand in an isotropic way

round the axis, leading to surfaces that are circular around the

irection of the main axis. No assumptions on the number of legs,

r tail, are necessary. 
ig. 12. Some results obtained with the open-source state-of-the-art MVS pipeline Alice

hin parts (b) are difficult to reconstruct from few images with classic MVS pipelines. Incr

bject improve the quality of the final reconstruction: (c) and (d) have been reconstructed

ur dataset of objects are available here [39] .
Fig. 13 shows some results on the completion process of the

exture for some branches. The first column shows for a sin-

le branch, the raw reference image when projecting all the im-

ges onto the reference image I b without any correction. We ob-

erve brightness discontinuities in the texture due to different

mage exposition. The second column shows the same reference

mage after exposure adjustment and after the texture comple-

ion process described in Section 4.3 . Depending on the branch

nd the type of texture we either propagate the texture around

he axis of symmetry (second and forth row) or the PatchMatch

npainting. The third row shows the 3D branch with the final

exturing. 

Fig. 14 shows, for each row, the final result on three differ-

nt plushes. The first two columns show the model rendered un-

er two different viewpoints with the original texture, without any

ompletion and exposure adjustment. In the second column, note

hat the back of the plushes is not textured as they were lying on

 support during the capture, no images are available for those

egions. Moreover, differences in exposure and texture misalign-

ents are noticeable in all the models. In the last two columns

hows the reconstructed textured model: most exposure disconti-

uities have been correctly handled by our adjustment algorithm

nd the textures are smoother. Globally, each model has a better

lobal exposure and the structure of the regular textures is re-

pected (legs, ears of the second and third models). We provide

dditional results: models with the original texture [36] and after

pplying our pipeline for improving textures [37] . 

Some issues remain, and are discussed in the next section. 

.3. Limitations 

The completion method is chosen manually by the user accord-

ng to the type of texture (regular, rotationally-symmetric, stochas-

ic etc. ). In order to automate the task it would be interesting to

nalyze the original branch image I b in order to classify the texture

ature into circular or regular. Another possibility is to first apply

he two inpainting methods and then choose the method that gives

etter results. 

Our method depends on the accurate estimation of the camera

ositions to have a reliable reconstruction. Incorrect or poor cali-

ration may affect the results, especially when projecting the tex-

ure of the branch on the reference image I b . Moreover, the recon-

truction method assumes that the object is composed of a set of

anal surfaces and it is based on a least square triangulation, which

s sensitive to noise. The reconstruction of objects that do not sat-

sfy this constraint may be inaccurate. Fig. 11 shows an example of

 plush that does not satisfy the tubular geometry, especially for

he head which is not a typical canal surface (and would have a

urface medial axis). Even if the reconstruction gives a complete,

atisfying model, the offset to the real shape affects the mapping
Vision [38] using our images as input. Poorly textured objects (a) or objects with

easing the number of images and a better coverage of the whole space around the

 from 4 and 30 images, respectively. More 3D examples of MVS reconstruction for



Fig. 13. Texture enhancement of several branches: the first column shows the original texture as projected on the reference image I b while the second column shows the

completed texture. The third column shows the completed texture applied to the relevant 3D branch.
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of the texturing ( Fig. 11 b). Nevertheless, thanks to the misalign-

ment correction described in Section 4.2 we can obtain fair results

for texturing ( Fig. 11 c). 

Concerning the exposure correction, we only work on lighting:

the blue plush on Fig. 14 (second row) has different variation of

blue depending on the image. Our correction is not able to unify

or smooth different coloring. 

We report in Fig. 12 the reconstruction results obtained with

the open-source MVS pipeline AliceVision [38] with our input im-

ages. A direct comparison with our results is not fair as the as-
umptions are different: our work is limited to tubular objects

or which we reconstruct a full, textured, parametric model that

pproximates the real surface, while MVS approaches reconstruct

ore general objects by triangulation, thus obtaining, in general,

odels with finer geometric details. The advantage of our method

s that from very few images is able to reconstruct a textured

odel that has a good quality and can be a good basis, e.g. , for a

raphic designer to work on. Since the reconstruction process does

ot rely on finding image correspondences, our method is able to

eal with smooth or poorly textured surfaces. 



Fig. 14. Texture completion results on five plushes: the first two columns show the row model with the direct texture mapping, the last two columns show the model with

the texture improved (w.r.t. exposure and alignment) and completed through inpainting. The reconstructions of the first and second rows used 4 input images, and the one

of the third row (the mouse) used 3 input images.
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6. Conclusion

In this work, we have proposed a texturing and inpainting

method for models reconstructed as a set of canal surfaces. The

parametric nature of the model leads to good results concerning

the texturing, and we are able to correct the exposure and mis-

alignment, and inpaint the missing texture information. From just

a few images of a tubular 3D shape, a 3D model is reconstructed

and can be textured by the proposed method. The future directions

of this work are driven by the limitations: classifying the texture

into circular or regular, and generalizing the correction of the ex-

posure to smoothing of color. Moreover, most plushes are matte.

Additional work would be needed to handle shiny surfaces. 
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