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Abstract—Technology evolution forecasting based on historical data

processing is a useful tool for quantitative analysis in technology plan-

ning and roadmapping. While previous efforts focused mainly on one-

dimensional forecasting, real technical systems require the evaluation of

multiple and conflicting figures of merit at the same time, such as cost

and performance. This paper presents a methodology for technology

forecasting based on Pareto (efficient) frontier estimation algorithms and

multiple regressions in presence of at least two conflicting figures of

merits. A tool was developed on the basis of the approach presented

in this paper. The methodology is illustrated with a case study from

the automotive industry. The paper also shows the validation of the

methodology and the estimation of the forecast accuracy adopting a

backward testing procedure.

Index Terms—Technology forecasting, technology planning, trend ex-

trapolation, Pareto frontiers.

I. INTRODUCTION

Forecasting technology evolution and developing research invest-

ment plans are at the core of the mission of a technology planning and

roadmapping function of any engineering organizations. Companies

need to identify and capture those trends, in order to remain ahead

of their competition. Evolution forecasts are often done based on

the intuition of experts and senior executives, and are complemented

by methods such as technology scouting and other approaches

adopted by strategy departments. Quantitative methods based on

historical data analysis are decision-making support methods that

help decision makers identifying patterns and defining evolution

trends from data. In particular, trend extrapolation methods stand out

from other technology forecasting approaches by being simple, fully

quantitative and free from subjectivity biases. Trend extrapolation

can be mathematically modelled using quantitative inputs and its

accuracy can be likewise estimated. The disadvantage of this type

of methods lies in its simplicity. First of all, there is always a risk of

the emergence of unknown events which can break evolution trend

(breakthrough innovations, economic crisis, and so on). This kind of

events are ignored during the numerical and unsupervised process

and should be taken into account by human intervention into the

mathematical model (what at the same time introduce new biases).

Secondly, classical growth curves trend extrapolation [1] address one-

dimensional forecasting ignoring the fact that reality is more complex

in a sense that a technology or a system can rarely be evaluated

by just one figure of merit (FoM). In reality, for any given year a

technology needs to be evaluated under multiple FoMs, thus defining

an n-dimensional surface of Pareto efficient design points.

This paper proposes a methodology to quantify technology evolu-

tion using a Pareto frontier forecasting approach assuming evaluations

based on two competing Figures of Merit. A similar approach to

solve this problem was proposed by researchers at Portland State

University, under the name of Technology Forecasting Using DEA

(TFDEA). With TFDEA, they adopted the data envelopment analysis

(DEA) approach for technology forecasting to estimate the relative

efficiency of each point and use this information to estimate the rate

of change of technology evolution to verify Moore’s law [2], predict

US Jet Fighter Aircraft introductions [3], forecast the performances

of wireless communication systems [4] and estimate performance of

the hybrid electric vehicle [5]. Latest methodological advances in

TFDEA development proposed frontiers segmentation and local rate

of change calculation to improve accuracy in technology evolution

forecasts [6].

We propose an alternative procedure for technology evolution

forecasting targeting two main goals. The first goal is to forecast

future nonlinear Pareto frontiers using a direct approach, differing

from the ambition of TFDEA of accurately estimating technology rate

of change. The second goal is to incorporate growth curve models

(such as the S-curve model) into the analysis, as proven patterns

describing technological progress.

Our proposed approach, being also visual, is suited for use in

concurrent design studies, such as for technology roadmapping for ex-

ample, where multiple experts convene and integrate their knowledge

using models. The resulting framework is therefore suited for strategic

planning and roadmapping and facilitates its future integration in a

concurrent design data exchange platform such as CEDESK [7].

Furthermore, our approach accounts for physical limits in esti-

mating technology evolution, which allows for additional validation

of the results. By providing engineering teams tools for forecast

adjustments, we allow experts to decide between different evolution

scenarios and avoid fallacies in conclusion due to reliance on a

purely automated approach. The approach furthermore informs users

on the value of residual errors in evolution estimates, as well as

its determination coefficients, giving them a chance to validate the

accuracy of forecasts.

The remainder of the paper is structured as follows. Section II

provides background and theory. Section III describes the mathemat-

ical approach here proposed for technology evolution forecasting.

Successively, the results of the case study are discussed along with

validation. The paper ends with conclusions and identification of

avenues for future work.

II. BACKGROUND AND THEORY

The input for the proposed forecasting procedure is a time-sampled

dataset of related technologies, systems or services with at least

two conflicting figures of merit (that is, for which a tradeoff has

been identified). It is assumed that each FoM has a monotonous

behaviour over the evolution of the system or service of interest,



Fig. 1: Trade space classification by FoMs direction.

such as increasing quality or decreasing cost and development time.

In measuring of productive efficiency theory each FoM is classified

either as input or as output [8].

During system development we aim to maximize outputs (e.g.

quality, power, performance) and minimize inputs (e.g. cost, mass,

consumption). Technological progress occurs in such a way that

inputs in average tend to decrease while outputs increase at the

same time (which means, in turn, that average systems become more

efficient over time). This is the case for example in data storage

technology, where devices such as hard drives becomes cheaper and

more capable at the same time over the last three decades.

Out of all possibilities, we can identify three mathematically differ-

ent trade spaces that we define as “input-input”, “input-output” and

“output-output”, respectively, as shown in Fig. 1. Inputs are all FoMs

we wish to minimize (as they are proxy for resources, hence cost).

Outputs are FoMs we wish to maximize (as they represent production,

or other beneficial attribute contributing to value delivery). For the

first type of trade space (Fig. 1a), the origin is an utopia point. Utopia

is defined as the ideal optimum, which however cannot be achieved

due to the opposing nature of the two FoMs. For the second type of

trade space (Fig. 1b) the [inf,inf] point is an utopia. Finally, for the

third type of trade space (Fig. 1c) we have an utopia line (asymptote)

coinciding with the y-axis.

To simplify the explanations and visualization this paper is con-

cerned with two-dimensional Pareto frontiers only. However, we

foresee to extend this approach to analyze n-dimensional Pareto

frontiers, where each FoM again may be either input or output. With

an increasing number of FoMs the number of possible trade space

types is increasing as well. So to have a single unified mathematical

process for all types of trade spaces, we are proposing to convert all

inputs to outputs by taking outputs as the reciprocals of the inputs.

For example, for cars we have two reciprocal metrics of the fuel

consumption - miles per gallon (MPG) and liters per 100 Kilometers

where first one is an output and second one is an input. We can

easily switch between these metrics during pre- or postprocessing

while core process works exclusively with outputs.

Year-by-year frontier movements can be mathematically expressed

by means of multiple growth curves (one growth curve for each

radial direction on a tradespace). The type of the fitting curves is

the second attribute for the classification. The simplest case (Fig. 2)

is the translational progress with constant rate of change in absence

of physical limits. The growth curves in this case are straight lines.

In the second case, (Fig. 3) technology evolution rate of change

slows down with time and asymptotically approach the physical

limit. Such situations occur more often in applications and commonly

described as the S-curve growth model.

In the most general case we have several growth curve models in

a single trade space. This means that the shape of frontier is changed

in time.

For instance, the double S-curve like the one depicted on Fig. 4

may occur due to the emergence of disruptive innovations and

Fig. 2: Constant rate of change progress.

Fig. 3: Slowing rate of change progress.

Fig. 4: Progress with two different growth curve models (e.g. in case

of disruptive innovation along FoM 2).

Fig. 5: OPM diagram of the proposed procedure.

paradigm shifts. Because of such influential events the convex frontier

may became concave which can be mathematically expressed as a

superposition of two or more growth curves.

III. MATHEMATICAL PROCEDURE

The proposed approach of frontiers estimating and forecasting is

illustrated in the Object Process Model (OPM) [9] shown in Fig. 5.



After the dataset is obtained and all FoMs are converted to

outputs we construct efficient frontiers by identifying Pareto efficient

solutions for each year. It is impossible to use directly the standard

Pareto frontier definition in our estimation algorithm. Instead, we

require the Pareto frontier to satisfy the following properties:

1) No point shall be ahead of the frontier (e.g. in the unfeasible

region);

2) The frontier is a monotonically decreasing function in a FoM

space (first derivative is greater than zero);

3) The frontier can be either convex or concave on the entire do-

main, but its first derivative must be monotonic (no concavity

changes).

The latter statement is worth discussing in depth because the con-

cavity of the Pareto frontier in the output-output space is not obvious,

and traditional econometrics approaches such as Data Envelopment

Analysis (DEA) fail at estimating results for non-convex Pareto

frontiers. Pareto front convexity is not always a realistic assumption

in technology trade space analysis, due to the nonlinear physical

processes underlying engineering tradeoffs. For instance, the set of

frontiers of thermal versus propulsive efficiencies for commercial

aircraft engines have been shown to be non-convex [10].

The problem of the Pareto optimal solutions determination in the

non-convex regions can be solved by applying the adaptive weighted

sum (AWS) method [11]. However, in our case this method is not

applicable due to the inverse nature of the considered problem.

AWS is the Pareto frontier generator which means that the model

of the system is known and mathematically defined. This situation

is common for the model-based systems engineering. In contrast, in

the considered problem the model of the system is unknown, the set

of solutions is limited and given as algorithm input. Thus, instead

of Pareto frontier generation (multi-objective optimization) we deal

with Pareto frontier estimation problem (curve fitting).

Further the exact mathematical routine is discussed.

For each dataset year we sample a set of nondominated points. By

definition point xi is nondominated if there is no any other point xj

for which Fk(xi) < Fk(xj) for ∀k, j, where F is the vector function

of multiple FoMs (which corresponds to dominated points filtering

step on Fig. 5).

The orange circles on Fig. 6 represent the set of nondominated

points of some given year for our case study. The frontier consisted of

this set is not smooth or, more precisely, doesn’t meet the formulated

above conditions for valid Pareto frontier. This means that due to

the finite number of existing products on the market (lack of data)

some points are not lying on true Pareto frontier which is current

cutting-edge for the given technology. To find this true Pareto frontier

we need to apply a curve-fitting procedure (referred to as frontier

estimation algorithm on OPM diagram on Fig. 5).

The problem of finding this true frontier can be formulated as stan-

dard linear optimization problem of minimizing distances between

true frontier ftrue and nondominated set fnd under the condition of

dominance ftrue over fnd and ftrue monotony:

min ‖ftrue − fnd‖∞

ftrue ≥ fnd (1)

f
′′

true ≥ 0 or f
′′

true ≤ 0

After we’ve calculated set of frontiers for all years (we call it

instance frontiers set in a sense that we’ve not applied interpolation

(a)

(b)

Fig. 6: Two results of frontier estimation algorithm (for two different

cut-off years).

in a time domain yet). The result of solving this problem for two

different years is shown on Fig. 6.

We perform the time domain interpolation along set of radial

directions (the concept of this step is illustrated on Fig. 7).

Each direction has its own combination of FoM weights and

represents very important concept of market segmentation (e.g. if

FoM 1 is engine power and FoM 2 is MPG the direction A stands

for the powerful cars whereas C stands for the economical).

Points A′, A′′, B′, B′′, C′, C′′ are inputs to our approach (de-

scribed as follows). Their location is found as intersection of piece-

wise interpolated efficient frontiers and radial directions A, B and

C. The resulting point series could be fitted by any growth curve. In

this paper the Gompertz curve was used in straight line form [12]:

log log
L

y
= a− bx (2)

Before fitting, the physical limit L or its allowed interval has to

be set or estimated as regression model parameter if dataset is full



Fig. 7: Time domain interpolation concept.

enough to make a reliable prediction. In the two-dimensional space

set of all physical limits in all possible radial directions forms a

limiting curve to which frontiers approach asymptotically. There are

several possibilities to define this limiting curve. One can define it

directly, but this is redundant and impractical because this curve has

the same shape as most recent frontiers. Therefore, it is enough to

set the estimates of some parameters of this curve e.g. absolute or

relative maximal value of each FoM (L1 and L2 on Fig. 7). Then,

the averaged shape of a several the most recent frontiers is estimated

and scaled to L1 and L2 (curve of physical limits estimation step on

Fig. 5).

In our methodology curve fitting procedure is applied to all radial

directions simultaneously with couple of additional conditions to

preserve the right shape curve transformation in time (see Fig. 2-4).

The resulting problem is a nonlinear convex optimization problem

(NLP). To give an example let’s formulate NLP for the Gompertz

curve-case model and also require the frontier to preserve concave

behaviour in time:

min
a,b

∥

∥

∥
log log

L

f(t)
− (a− bt)

∥

∥

∥

2

log log
L

f(t)
− (a− bt) ≤ 0 (3)

bi−1 − 2bi + bi+1 ≤ 0

0.2(ai − ai−1) ≤ ai+1 − ai ≤ ai − ai−1

Where i = 1...n is the indexes of the radial directions set, t is the

timescale, f(t) is the instant frontiers set, ai, bi are the parameters

of Gompertz curves for each radial direction, Li is the physical limit

estimation for each radial direction.

First equation determines the least-squares minimization of the

fitting residual errors. Second equation require the growth curves to

dominate the instance frontiers set in all points. Third and fourth

equations constrain the optimization parameters and mutually link

them in the FoMs space to preserve the right shape of the frontiers.

Here we would like to draw the attention to the following. After

time domain interpolation with growth curves most of the products

that were the best at their time actually no longer lie on cutting edge.

Consequently, frontiers estimated independently from time (blue dots

on Fig. 8) do not always coincide with true frontier set which depends

also on time trends of trade-off evolution. This corresponds to real

world experience; a technological frontier always goes ahead of mass

(a) L = 1.4

(b) L = 1.1

Fig. 8: Fitting the efficient frontiers in time domain along one of the

radial directions with Gompertz curves.

TABLE I: Cars dataset sample

Model Cost, e
Model
year

MPG
Engine Power,
Hp

Volkswagen Golf
Sportsvan 1.4

34 970 2016 43.5 150

Smart forfour 11 195 2015 56.0 71

Porsche 911
Targa 4

148 776 2015 19.0 370

Toyota Celica
Liftback 2000 ST

10 596 1980 24.0 89

Hyundai Atos
Multi 1.0i GLS

9 525 1998 37.3 55

market products. From this perspective it is important that proposed

analysis allows to calculate two kinds of slacks separately: delays

of best practise products and delays of all products from a general

technological frontier.

IV. CASE STUDY

We applied our approach to the estimation of Pareto frontiers in

the the automotive industry using a publicly available dataset (as

obtained from http://www.cars-data.com). The data set used for this

case study contains more than 5 000 car models with petrol engine

and manual transmission and covers over 40 years. The tradeoff is the

engine power vs fuel consumption in miles per gallon (output-output

type). An example of the data included in the data set is shown in

Table 1.



Fig. 9: Cars case study.

Fig. 9 shows the data sets of cars plotted on two FoMs of

interest: maximum engine power (as measured in horsepower) and

average fuel consumption in miles-per-gallon (MPG). This tradeoff

is representative of a typical compromise a customer makes between

performance and cost efficiency when purchasing a new vehicle. This

of course does not mean that there are no other factors which could

affect the decision. Among such factors are the level of comfort, price,

body type, trunk capacity, and so on. However, the chosen tradeoff

is probably a main technology-driven one in the automobile industry.

The analysis proposed here can (and has to) be extended to account

multiple figures of merit at the same time. However, for illustration

purposes in this paper, we limit the analysis here to two FoMs, with

no loss of generality, and leave multi-dimensional analysis for future

work.

As we account for two FoMs only in this case study, we focused

on data points different from each other in engine power and

fuel consumption, and neglected car variants distinguished by other

characteristics. For example, we did not consider in the data set

those cars that have the same engine power and fuel consumption

values, and different between each other under other characteristics

(for instance automatic versus manual transmission, and different

engine types such as diesel and hybrid).

Fig. 10 show the generated families of Pareto frontiers exhibiting

different physical limits. Suppose we have two estimates of physical

limits for our tradeoff - pessimistic and optimistic one. The historical

data are the same for both cases.

V. VALIDATION

We estimated the accuracy of our proposed Pareto forecasting

method using a backward testing approach. That is, we partition

our data set into training and validation subsets considering a given

threshold year, and verify the accuracy of our forecasts. The error

of forecasting is the difference between the real frontier (using

known data) and the estimated one (using only data before the given

threshold year).

The error itself could be measured either in years (as time differ-

ence between two corresponding frontiers) or as normalized distance

in FoM space (normalized with respect to maximal variance of FoMs

in the dataset). We used normalized distance since the estimated

models could have different performance in different regions of the

Pareto curve, due to varying rate of change as in the case of S-

curve models. Fig. 11 illustrates the logic of the accuracy estimation.

(a) Pessimistic estimate with physical limits 992 Hp, 99 MPG

(b) Optimistic estimate with physical limits 1860 Hp, 186 MPG

Fig. 10: Cars case study frontiers.

Fig. 11: The error calculation.

The normalized distance between points A and A′ is the accuracy

estimation for point A by proposed backward (or any other) test:

σ(A) =
√

σ2
1 + σ2

2 =

=

√

( f1(A)− f1(A′)

max(f1)−max(f1)

)2

+
( f2(A)− f2(A′)

max(f2)−max(f2)

)2

(4)

In a given formula f1(A) and f2(A) are the frontier values

estimated with full dataset and f1(A
′) and f2(A

′) are the frontier

values estimated with cutted dataset for the same radial direction.



(a) 1972-2017 timeframe dataset

(b) 1972-1994 timeframe dataset

Fig. 12: Frontiers generated during backward test.

Fig. 13: Normalized error of 1972-1994 timeframe dataset with

respect to 1972-2017.

Fig. 12 show the Pareto frontiers of the case study calculated using

the full data set versus the reduced data set (threshold year 1994).

The normalized error chart of the backward test shown on Fig. 13.

A forecast error is a function of a dataset sufficiency and of a

chosen approximation curve shape. It is clear from the figures that

Fig. 14: Accuracy contour plot of α and β.

forecasting errors are greater in the segment of more powerful cars

where the dataset is sparser. The forecast errors upon next 23 years

is inferior then 20%. In segment of low-cost cars, which segment is

more densely populated, the error is inferior then 10% which is quite

a good result.

To see how the threshold years choice affects the forecast accuracy

we performed parametrized version of the backward test. We intro-

duce two parameters and representing the relative values of upper

and lower threshold years:

α =
Lupper −min(T )

max(T )−min(T )
; β =

Lupper − Llower

Lupper −min(T )
. (5)

Where Lupper and Llower are the upper and lower threshold years

respectively. The average error is calculated for frontier 2027 (10

years prediction).

Parametric contour plot of and is shown on Fig. 14. As can be

seen from this figure accuracy is more correlated with α than with β

which means that recent data (cars from 90s, 00s and 10s) have more

influence on the prediction (recent data is more sufficient). This is not

necessarily means that this is true for any dataset. We are not using

any time weighting in our algorithm. Such situation occurs because

this time period is characterized with more competitive and diverse

market. This basically means more data which makes trends more

evident.

The last test is intended to confirm the sufficiency of a dataset.

Our case study is quite big (2160 data points). Obviously most of the

points are not Pareto optimal and, because of that, do not determine

the trend. The process of iterative exclusion of random points from

the full dataset and comparison of the results of frontier forecasting

gives us the estimation of the dataset sufficiency. The output of this

test is shown on Fig. 15. If the threshold accuracy for us is 10% then

the sufficient dataset should contain at least 400-500 data points.



Fig. 15: Dataset sufficiency estimation.

VI. CONCLUSION

We propose a Pareto forecasting approach to estimate technology

evolution over time. This approach helps users to visualize technology

evolution and facilitates the identification of efficient and non-

efficient technologies and supports decision-making in technology

investment by setting realistic target performances and forecasting

a development time for future technology. At the same time, to

be effective, the proposed approach requires proper calibration in

terms of growth curve and physical limits selection in characterizing

technologies.

Future work will extend this approach to n-dimensional Pareto

frontier forecasting, and development of additional case studies

in industrial applications. We also foresee experimentation of the

approach in concurrent design studies for technology planning and

roadmapping.
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